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FOREWORD

Verification, validation, and uncertainty quantification (VVUQ) of engineering simulation models is currently of great

rformance evaluation via computational simulation. In response, The American Society of Mechanical Enginleefs
) formed a subcommittee on verification and validation (V&V) in computational solid mechanics (CSM), Kriown fis
V&V 10. The V&V 10 Subcommittee was redesignated as VVUQ 10 in 2021 since both V&V and uneertainty quahp-
on (UQ) have been specifically identified as critical technologies needed for the advancement of computational
nics.
growing reliance on CSM models for decision-making in government, industry, and academia demands that greatpr
on be given to the quantification of uncertainties associated with these models. UQ is a‘Critical component in the
tion and communication of both computational and experimental results in the process of reporting simulatign
5. UQ is foundational in the development and assessment of CSM models and their/predictive capability.
[E V&V 10-2006 (ref. [1]), Guide for Verification and Validation of Computational Solid Mechanics Models, whs
ly revised to ASME V&V 10-2019 (ref. [2]), Standard for Verification and\Validation of Computational Soljd
nics Models. Both editions address an important need for a common-language and process definition fpr
at the level appropriate for CSM model developers as well as theirimanagers and customers. ASME V&V 10
nded as an overview standard to be followed by detailed publications covering select topics and application]
V&V 10.1 (ref. [3]) provides examples to illustrate many key VVUQ céncepts. The overall purpose of this Standard|is
and on UQ, emphasized in ASME V&V 10.
Standard describes the role of UQ in modeling/simulation.and experimentation. UQ in modeling and simulati¢n
es consideration of model form uncertainties, numerical(solution uncertainties, model input uncertainties, and
ainties in model-basis data. In addition, propagation,of Uncertainties is an integral part of UQ in modeling a:[d
tion. UQ plays an important role in experimentation;therefore, key considerations in planning validation expeyi-
are discussed, since these experiments are specifically planned and performed to assess the predictive capability pf
putational model. A brief discussion of UQ in hierarchical CSM models is provided, as well as an overview of the role
in revisions to either the computational medel or the validation experiment.
Standard also addresses the role of UQ\in"model validation assessment, illustrated by several examples consif-
ifferent validation metrics that includewuncertainties. Because validation metrics incorporate uncertainties in both
mental measurements and model‘simulations, some consideration of uncertainties is required in establishing t]]e
i

%

ponding validation requirements:

Standard is available for public review on a continuing basis. This provides an opportunity for additional pub
 input from industry, academia, regulatory agencies, and the public-at-large.
[E VVUQ 10.2-2021 wds approved by the VVUQ Standards Committee on August 27, 2021, and was approved afd
bd by the American‘National Standards Institute on December 13, 2021.

ic



https://asmenormdoc.com/api2/?name=ASME VVUQ 10.2 2021.pdf

ASME VVUQ COMMITTEE
Verification, Validation, and Uncertainty Quantification in
Computational Modeling and Simulation

D. Benedict, U.S. Air Force Research Laboratory
Bischoff, Zimmer Biomet

Cheng, Fluor Corp.

'W. Doebling, Los Alamos National Laboratory
Dowding, Sandia National Laboratories

Eca, Instituto Superior Tecnico

J. Freitas, Southwest Research Institute

Hassan, Texas A&M University

Horner, ANSYS, Inc.

S. Kaizer, U.S. Nuclear Regulatory Commission

TEROoOFEFR®wWOTE

M. Moorcroft, Chair, Federal Aviation Adminjsttation
L. Kieweg, Vice Chair, Sandia National Labofatories

Atamturktur, Pennsylvania State University
Banyay, Pennsylvania State University

M| D. Benedict, U.S. Air Force Research Laboratory
J. Bodner, Medtronic Corp.

J. Budzien, Los Alamos National Laboratory

J. V. Cox, Sandia National\Laboratories

RJ|M. Ferencz, Lawrefiee, Livermore National Laboratory
L.|GutKin, Kinectriés

J. F. Imbert, JFL Consult

A|Koskelo, Los-Alamos National Laboratory

D] Lancaster; Pratt and Whitney

I. Lopez;lawrence Livermore National Laboratory
W, L. Oberkampf, William L. Oberkampf Consulting
C.|F.\Popelar, Southwest Research Institute

D
S.
M
M| C. Anderson, National Nuclear Securitys Administration
S.
G.

(The following is the roster of the Committee at the time of approval of this Standard.)

STANDARDS COMMITTEE OFFICERS

D. M. Moorcroft, Chair
B. H. Thacker, Vice Chair
M. Pagano, Secretary

STANDARDS COMMITTEE PERSONNEL

VVUQ 10 SUBCOMMITTEE — VERIFICATION, VALIDATION, AND UNCERTAINTY QUANTIFICATI(
COMPUTATIONAL SOLID MECHANICS

Pagano, Secretary, The American Society of MeChanical Engineers

K. E. Lewis, Lawrence Livermore National Laboratory

S. Mahadevan, Vanderbilt University

D. M. Moorcroft,\Federal Aviation Administration

M. Pagano,{The American Society of Mechanical Engineers

S. Rachuti, U'S. Department of Energy

R. Schultz,”Consultant

V. Sharma, Engineering Systems, Inc.

B.‘H,) Thacker, Southwest Research Institute

T. M. Morrison, Contributing Member, U.S. Food an
Administration

C. Robeck, Advanced Micro Devices

B. H. Thacker, Southwest Research Institute

G. Orient, Alternate, Sandia National Laboratories

S. W. Doebling, Contributing Member, Los Alamos N
Laboratory

W. Doeland, Contributing Member, European Union Aviatio
Agency

T. K. Hasselman, Contributing Member, Consultant

H. U. Mair, Contributing Member, Johns Hopkins University,
Physics Laboratory

S.-R. Hsieh, Contributing Member, Lawrence Livermore N
Laboratory

T. L. Paez, Contributing Member, Thomas Paez Consulting

X. Qu, Contributing Member, The Aerospace Corp.

C. P. Rogers, Contributing Member, Crea Consultants, Ltd.

G. Sagals, Contributing Member, Canadian Nuclear Safety Com

J. F. Schultze, Contributing Member, Los Alamos National Lab

i Drug

DN IN

htional

h Safety

Applied

ational

mission
poratory

K. Teferra, Contributing Member, Consultant



https://asmenormdoc.com/api2/?name=ASME VVUQ 10.2 2021.pdf

CORRESPONDENCE WITH THE VYVUQ COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned

intere|
revisi

Juon ; ) g
ns or a case, and attending Committee meetings. Correspondence should be addressed to:

Secretary, VVUQ Standards Committee

The American Society of Mechanical Engineers
Two Park Avenue

New York, NY 10016-5990
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or desjrable, as demonstrated by the experience gained from the application of the Standard/Approved revisions will e
published periodically.

Thig Standard is always open for comment, and the Committee welcomes proposals for revisions. Such proposdls
should be as specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the
reasons for the proposal, including any pertinent documentation.
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osing a Case. Cases may be issued to provide alternative rules when+justified, to permit early implementation pf
roved revision when the need is urgent, or to provide rules not covered by existing provisions. Cases are effectiye
liately upon ASME approval and shall be posted on the ASME/Committee web page.
uests for Cases shall provide a Statement of Need and Background Information. The request should identify the
rd and the paragraph, figure, or table number(s), and be-written as a Question and Reply in the same format ps
g Cases. Requests for Cases should also indicate the applicable edition(s) of the Standard to which the propos¢d

pplies.

rpretations. Upon request, the VVUQ Standards Committee will render an interpretation of any requirement pf
indard. Interpretations can only be rendered in response to a written request sent to the Secretary of the VVUQ
rds Committee.
uests for interpretation should preferably be submitted through the online Interpretation Submittal Form. The
5 accessible at http://go.asme.org/InterpretationRequest. Upon submittal of the form, the Inquirer will receive 4n
atic e-mail confirming receipt.
e Inquirer is unable to use the'online form, he/she may mail the request to the Secretary of the VVUQ Standargls
ittee at the above addreSs. The request for an interpretation should be clear and unambiguous. It is further rec-
nded that the Inquirer_submit his/her request in the following format:

[

Cite the applicable paragraph number(s) and the topic of the inquiry in one or two word

=z

h: Cite the applicable edition of the Standard for which the interpretation is being requestg

on: Phrase the question as a request for an interpretation of a specific requirement suitable fpr
general understanding and use, not as a request for an approval of a proprietary design pr
situation. Please provide a condensed and precise question, composed in such a way thata

“yes” or “no” reply is acceptable.

Proposed Reply(ies): Provide a proposed reply(ies) in the form of “Yes” or “No,” with explanation as needed. If

entering replies to more than one question, please number the questions and replies.

Background Information: Provide the Committee with any background information that will assist the Committee in

understanding the inquiry. The Inquirer may also include any plans or drawings that are
necessary to explain the question; however, they should not contain proprietary names or
information.
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Requests thatare notin the format described above may be rewritten in the appropriate format by the Committee prior
to being answered, which may inadvertently change the intent of the original request.

Moreover, ASME does not act as a consultant for specific engineering problems or for the general application or
understanding of the Standard requirements. If, based on the inquiry information submitted, it is the opinion of
the Committee that the Inquirer should seek assistance, the inquiry will be returned with the recommendation
that such assistance be obtained.

ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect
an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME

Cpmmittee or Subcommittee. ASME does not "approve,” certily, rate, or -endorse any item, construction, proptietary
d¢vice, or activity.

Attending Committee Meetings. The VVUQ Standards Committee regularly holds meetings and/or telephone donfer-
ences that are open to the public. Persons wishing to attend any meeting and/or telephone conference should contpct the
Sé¢cretary of the VVUQ Standards Committee. Future Committee meeting dates and locations kan’be found ¢n the
Committee Page at http://go.asme.org/VnVcommittee.
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INTRODUCTION

Model verification, validation, and uncertainty quantification (VVUQ) are the primary methods for quantifying and
buildij v v v :

tional

O CIredlp Y% d € d d O pULA4lIOIld Odels. ve dliO € proce Ol dElE O dl d CO DUUA-
model accurately represents the underlying mathematical model and its solution. Validation is the progess
deterthining the degree to which amodel is an accurate representation of the validation experiments from the per'spectiye
of the fintended uses of the model. Both verification and validation accumulate evidence of model correctness anid accp-
racy fqr a specific application of interest. Model VVUQ' cannot prove that the model is correct and accurate-fordll possibjle
scenatios; instead, VVUQ accumulates evidence of whether the model is sufficiently accurate for its intended uses. The
expected outcome of the VVUQ processis to inform the decision-maker of the credibility of the model forithe intended usgs
of the|model.

Undertainty quantification (UQ) in the context of VVUQ is the mathematical assessment 9f-uncertainties in model
simuldtion results and experimental results. Therefore, the goal is to quantify the uncertaintiées in both simulation a
experimental results so that the model accuracy can be assessed, and the predictive ¢apability of the model can he
established quantitatively. As described in this Standard, UQ is also important in ©ther related activities, including
modell development, parameter estimation, model calibration, experimental design;-and sensitivity analysis.

*For the purposes of this Standard, “model VVUQ” will be referred to as “VVUQ.”

viii
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THE ROLE OF UNCERTAINTY QUANTIFICATION IN

VERIFICATION AND VALIDATION OF COMPUTATIONAL SOLID

V4

ty
m

MECHANICS MODELS

PURPOSE AND SCOPE

J1 Purpose and Motivation

The purpose of this Standard is to expand upon the important role of uncertainty quantifieation (UQ) in verifi
lidation, and uncertainty quantification (VVUQ), as outlined in Figure 1.1-1. UQ plays an\important part in each

Cation,
of the

odeling and Simulation” and “Physical Experimentation” branches illustrated in th€ figure, ultimately quantifying the

ulrcertainties in the “Simulation Results” and “Experimental Results” generating the\‘Simulation Outputs” and “H

ental Outputs.” A detailed description of this figure is provided in ASME V&V-10-2019.

Consistent with the purpose of ASME V&V 10-2019, the motivation for developing ASME VVUQ 10.2 is the nee
mmon language and process of UQ in computational solid mechanics (CSM)) particularly as it may relate to how
bvelopers perform UQ as well as how they subsequently communicater€sults, conclusions, and recommendatio
bcision-maker. A decision-maker may be any individual or representative body, such as a review panel, deemed r

iple for determining if a model is acceptable for its intended uses..The'decision-maker may also be a customer rely

odel predictions to inform a decision.

2 Objectives and Scope

1.2.1 Objectives. The objectives of this Standard are to

(a) define and clarify the role of UQ as part of the VVUQ process
(b) provide guidance for the use of UQ in VVUQ activities

(c) acknowledge the importance of UQ in(decision-making

1.2.2 Scope. The scope of this Standard-includes the following:

(a) sources and types of uncertainty~dnd how they can be treated in the VVUQ process (section 2)
(b) quantification and propagation of uncertainties (section 3)

(c) uncertainties in validatioh eXperiments (section 4)

(d) uncertainties in model\validation assessment (section 5)

(e) revisions to the mode] and experiments (section 6)

(f) uncertainties in hierarchical models (section 7)

BACKGROUND AND DEFINITIONS

1 Mathematical Models

Models are idealized representations of the physical phenomena of interest. This Standard distinguishes betwe
pestofy mathematical models: empirical models and physics-based models. Examples of both types of mathen

xperi-

d for a
model
hs to a
PSpon-
ing on

bn two
natical

odels are provided in para. 2.2. These are defined as follows:

empirical model: a mathematical model whose functional framework is based primarily on observation and experiment.
In CSM, empirical models are typically expressed in closed-form algebraic relations, which may still encompass some level
of our conceptual or theoretical understanding of the physical phenomenon of interest. Empirical models may be simple
statistical models (e.g., regression analysis) or more complex (e.g., based on machine learning or generalized polynomial
expansions). Experimental data used to develop the empirical model are hereafter referred to as model-basis data. In the
CSM community, this type of data is also referred to as calibration data.
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Figure 1.1-1
Verification, Validation, and Uncertainty Quantification Process
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Figure 2.2-1
Illustration of a Tapered Cantilever Beam

N

W

55T

~

ysics-based model: a mathematical model whose functional framework is based on ¢oncepts and theories captur
nysical phenomena of interest. Such models are alternatively referred to as scientific or mechanistic, and in CSM
odels are often expressed by differential or integral equations or systems of equations. Experimental or observz
formation plays a secondary role in the development of physics-based medels.

2 Variables and Parameters

A mathematical model of any type relates an output variable,\y, to at least one input variable, x:

y = f(x)

here f(-) denotes the functional form of the mathematical model, hereafter referred to simply as the mode

p
8¢
V(

g o

o T

The model form f(-) itself includes additional guantities used to relate the output variable to the input variablg

ng the
these
tional

(2-1)

form.

Itiple input variables are common in practical CSMiapplications. It is noted that the variables are model-specific,
amnd an input variable in one model may be an outpuit variable in another model.

(s) by

eans of mathematical operations. These quantities are referred to as model parameters. While some parameters pay be

ysical or mathematical constants, the medel')parameters are typically quantities subject to variation, and therefi

riable or an output variable in another model.
In physics-based models, the model'parameters typically possess definitive physical meaning. In empirical mod¢
odel parameters may or may-nothave physical meaning. This distinction is very common and leads to differences
ocess of uncertainty quantification due to the differences in the primary sources of uncertainty associated with t
pes of models, as further.discussed in para. 3.1.

Examples of variables-and parameters in a physics-based model and in an empirical model follow:

(a) Example of Physics-Based Model. Consider the elastic deformation of a tapered cantilever beam shd
gure 2.2-1. The’vertical deflection, w, of the beam varies with the distance, x, from the supported end
bam and the (beam length, L, according to the following model derived from the classical beam theory (ref.

X

4
_a
w(x, L) = E—I()W[fr, a, z]

reare

nerally uncertain. When a nonconstant parameter in a given model has physical meaning (para. 2.1), it may be ar} input

Is, the
inthe
he two

'wn in
of the
4]):

(2-2)

E = modulus of elasticity
f- = support rotational flexibility
Ip = area moment of inertia (at x = 0)
L = beam length
q = a distributed static load
w = vertical deflection
W(-) = function representing the dependence on f,, a, and the ratio x/L
x = distance along beam from supported end
a = beam taper factor


https://asmenormdoc.com/api2/?name=ASME VVUQ 10.2 2021.pdf

ASME VVUQ 10.2-2021

In the physics-based model given by eq. (2-2), wis the output variable, xand L are the input variables, and the remaining
five inputs are the parameters associated with this specific model form. It is noted that the input variables x and L are
identified by adding them as arguments to the left-hand side of eq. (2-2).

Ifthe interestis in the variation of the beam deflection w with the distance x from the supported end and the staticload g,
eq. (2-2) may be rewritten as

aL* x (2-3)
W(xl ‘1) = E—IOW(fw a, E)

wherdwis the output variable, xand q are the input variables, and the remaining five quantities, including the beam lehgth
L,are the model parameters. Such reformulation is possible because both L and g have definitive meaning both within‘afgd
outside of the specific model form used in this example.

(b) |[Example of Empirical Model. Consider the material resistance to failure due to fatigue that is characterized on tke
basis ¢f experimental data obtained at different values, commonly referred to as levels, of alternating applied stress. The
number of fatigue cycles to failure, N, is typically represented as a power-law function of the alternating applied stress| S

by
N(S) = bo[i) 2
So
where
bo, b1 = parameters estimated from experimental data

N = number of fatigue cycles to failure

S = alternating applied stress

5o = normalizing constant

Inthe empirical model given by eq. (2-4), by the definitions above, N isthe output variable, Sis the input variable, and §,
by, by pre the parameters associated with this specific model form. The parameter S, is a normalizing constant, and the
paramnjeters by and b, are estimated from experimental data. As.inithe example of a physics-based model in (a), the inpjt
varialjle S is identified by adding it as an argument to the left-hand side of eq. (2-4). In the current example, however, the
paranieters by and b, do not possess definitive physical meaning and are only meaningful within the specific model fo
used in this example. Therefore, neither by nor b, can bewviewed as an input variable. On the other hand, the input variabjle
S possgsses definitive physical meaning both within,and outside this model. Input variables such as S are also commonlly
referrgd to as explanatory variables. It is noted thatthe input variable S can take an arbitrary value within its range in the
model application domain, whereas the model.parameters by and b, are represented by their best estimates and uncer-
taintigs.

The| power-law functional form of S«n this empirical model does not originate from understanding the physidal
mechgdnism of failure due to fatigue~Rather, it is selected for the following reasons:
(1) good track record with applicability to many structural materials
(2) versatility of trends obtained
(3) ease of linearizatiomwith respect to estimated model parameters, which substantially simplifies the process pf
model development

Ind¢ed, taking logarithms of both sides of eq. (2-4) results in

In[N(S)] = In(b) + by In(S/Sy) @h)

and thie formulation given by eq. (2-5) is then easily fit by linear regression to a set of experimental data {S;, N;}, where Njji
avalug of N'obtained experimentally at the jth level of the alternating stress S. The residual errors associated with su¢h
linear|regression are discussed in para. 2.8.

—
w

2.3 Errors and Uncertainties

In this paragraph, error and uncertainty are defined and classified, with further discussion provided in para. 2.4.
(a) error: quantitative difference between a measured or calculated value and the referent or true value.
(b) uncertainty: lack of certainty due to inherent randomness and/or insufficient knowledge.
(1) aleatory uncertainty: uncertainty due to inherent randomness (irreducible).
(2) epistemic uncertainty: uncertainty due to lack of knowledge (reducible).
(-a) recognized: lack-of-knowledge uncertainty that is consciously recognized.
(-b) unrecognized: lack-of-knowledge uncertainty that is not known to exist.
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Table 2.3-1
Examples of Sources of Error and Uncertainty
Error/
Source Uncertainty Type Examples
Model Error Numerical Errors associated with discretization, lack of mesh convergence, time stepping,
numerical integration/differentiation, contact algorithms, hourglass controls, etc.
Parametric Incorrect parameter assertion
Model form Errors associated with idealized representation of true physics: geometric
simplifications such as 2D plane strain/stress idealization; ignoring physical fealities
such as temperature effects
Uncertainty Epistemic Unrecognized loading condition or failure mode; use of approximate pyobability models;
assumption of probability models; small sample size
Aleatory Probability distributions for model parameters
Error Setup Incorrect or incomplete experimental planning or execution

E)Iperimental

setup Instrumentation | Exceeding physical limitations of experimental instrunients; improper calibrafion
Human Misplacement of sensors/instruments; incorrect readings or transcriptions
Uncertainty Epistemic Imperfect knowledge of loads/excitations and/or environmental conditions;
measurement bias; insufficient number of exXperimental replications
Aleatory Variability in material properties, load/excitations, environmental conditions,|and
measurements
Ad-built test Error Design Misspecification of material requirements

article

Construction Improper or inferior materialsydeviations from design specifications (as-built ve]

designed); varying bolt terque during assembly of a component

Fsus as-

Uncertainty Epistemic Unknown design tolerances; lack of knowledge about connectivity between comgonents,
method of construction, or boundary conditions; unknown material properfies
Aleatory Load/excitations, envifonmental conditions

The true value of a quantity is known only in specifi¢situations, e.g., when the value for a physical constant s defi
cgnvention, such as the gravitational constant, or by international agreement in metrology.

The true value of any measurement in natureiisnever known exactly; it is typically only known to within an esti
uncertainty. Consequently, whether the true value is known or unknown, errors can be modeled as uncertainties. I
nstances, this uncertainty would be epistemic in nature because it is theoretically reducible.

UQ in the context of VVUQ is the mathematical assessment of uncertainties in model simulation results and 6
mental results. Table 2.3-1 provides abreakdown of various sources, the different errors or uncertainties, and the ty
edch, with examples. This table gnlyillustrates common classifications. In many cases, different uncertainty types
modeled in different ways dépending on the application problem, analyst preference, organizational culture,

—

24 Aleatory and Epistemic Uncertainties

Aleatory uncertainty s also referred to as stochastic uncertainty, statistical uncertainty, irreducible uncertainty,
bility, and inherént*uncertainty. The fundamental nature of aleatory uncertainty lies in randomness, i.e., th
stiochastic process. Aleatory uncertainty commonly occurs in parameters that describe a system of interest.
may be, e,g.the stiffness (Young’s modulus) of a material, the mass and geometric properties of a compon|
sybsystem,or the stiffness in a bolted or riveted joint.

EpiStemic uncertainty is also referred to as reducible uncertainty, knowledge uncertainty, and subjective uncer
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The\fundamental source of epistemic uncertainty is incomplete information or knowledge of any type that is rel3

ted to

modeling the system of interest, the environment the system is exposed to, and any approximations made during the
formulation of the model. Epistemic uncertainty is associated with the modeler or observer, whereas aleatory uncertainty

is associated with the system being modeled or observed.

Incomplete knowledge of the aleatory uncertainty results in a mixture of aleatory and epistemic uncertainty. Such an
example is limited sampling. Including more samples reduces the epistemic uncertainty, but not necessarily the aleatory
uncertainty. In fact, more samples may increase the aleatory uncertainty by improving knowledge of the true distribu-

tions.
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Epistemic uncertainties are classified as recognized or unrecognized. A recognized epistemic uncertainty is one that
acknowledges alimited state of knowledge exists concerning some aspect of modeling, and an attempt is made to quantify
this limited knowledge. In this situation, when little or no experimental data are available for input quantities, it is

comm

on to resort to “expert” opinions from people knowledgeable of the system and environment. Some sources

of recognized epistemic uncertainty are limited knowledge of the material properties of the system, boundary conditions,

initial

conditions, and system excitation.

Anotherimportant example of arecognized epistemic uncertainty is model-form uncertainty. This is uncertainty due to
assumptions and approximations made in the formulation of the mathematical model of the system and environment.
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2.6 PBrobabilistic and Nonprobabilistic Methods

Pro
descri

proba
varies

ATy, increasing the Iidelity of the physics embodied within a model decreases the model-form uncertain
ver, higher fidelity also increases complexity, which in turn typically increases the number of parameters, computp-
burden, and the likelihood of errors.

inrecognized epistemic uncertainty is commonly referred to as a blind uncertainty or an “unknown, unknown.”
on sources of unrecognized epistemic uncertainty are (unrecognized) human mistakes, misuse (eith€r unintep-
or intentional) of the system, mistakes in judgment concerning modeling of the system or environment, apd
overed or misunderstood physical processes/mechanisms. Additional examples include unidentified program-
mistakes in the simulation software, mistakes in the preparation of input data, and mistakes in recording pr
sing experimental data used for validation.

eterministic and Nondeterministic Quantities

hinistic or nondeterministic. These terms are defined as follows:

pinistic quantity: a variable or a parameter that is not considered uncertain and therefore can be assigned a fix¢d

terministic quantity: a variable or a parameter that is considered uncertain and therefore cannotbe assigned a fix¢d

uncertainties associated with nondeterministic variables@and parameters may be aleatory, epistemic, or a comBbi-
ofthe two, as defined in para. 2.4, and may be treated using probabilistic or nonprobabilistic methods, as discuss¢d
n. 2.6.
h reference to the physics-based model represented by eq. (2-3), the input variable x and any of the model pp-
br's are treated as either deterministic or nondeterministic quantities depending on whether or not the uncertaingy
hted with each quantity is of interest, or is deemed to have a significant effect on the output variable w. Given afhy
ainty in the input variable x or in the inodel parameters, the output variable w is uncertain.
h reference to the empirical model représented by eq. (2-4), the input variable S may be treated either deternji-
lly or nondeterministically depending on whether the uncertainty associated with S is of interest or is deemed fo
significant effect on the outputvariable N. The normalizing model parameter S is assigned an arbitrary fixed valye,
ated deterministically. However, the model parameters by and b, are estimated from experimental data. In engi-
g applications of this model, the best estimate values of by and b, are commonly used to determine the variation pf
tput variable N with the\input variable S. However, the nondeterministic nature of by and b, is accounted for fs
bed in para. 3.1.2.

babilistic, methods treat uncertain variables and parameters of a mathematical model as random quantitigs
bed byprobability distributions. These terms are defined as follows:

bility.distribution: a mathematical relation describing how the probability associated with a variable or parametgr

with the value of the variable or parameter.

random quantity: a variable or parameter that is subject to inherent variations usually described by an associated prob-
ability distribution.

A probability distribution is typically expressed in the form of a probability density function (PDF) or a cumulative
distribution function (CDF). A simple example is a normally distributed random variable,' X, with a PDF given by ref. [5]:

1In this Standard, the term “random variable” is used for both “random variable” and “random parameter” and will be the convention used.
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Figure 2.6-1
Illustration of Aleatory and Epistemic Uncertainty
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GENERALNOTE: The dashed lines represent other possible functions because of uncertainty in the parametersdue to the use of limited s
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where x is a specific value of X.
Examples of a PDF and a CDF for a normally distributed random variable are shown in Figure 2.6-1. General
probability distribution (PDF or CDF) has its own parameters,such as the mean, y, and standard deviation, o, in eq
which are typically estimated from data.
Two illustrations of aleatory and epistemic uncertainty,are shown in Figure 2.6-1. In the figure, aleatory uncertg
characterized by a PDF [illustration (a)] or alternatively;a CDF [illustration (b)]. The PDF and CDF are alternative W
déscribe the same uncertainty, and for simplicity the term “probability distribution” is used herein to refer to
rgpresentation.
A probabilistic representation is well suited'for aleatory uncertainties (see para. 2.4) where an appropriate prob
distribution can be constructed or assuméd:In some cases, a PDF may also be used to represent epistemic uncertg
For example, in Figure 2.6-1, a uniform‘distribution over an interval [a, b] may be selected to represent the epi
uncertainty in the mean, y, of the hormal distribution used to represent the aleatory uncertainty. In other c
probability distribution is not appropriate for representing epistemic uncertainties. In such cases, the uncert
cquld be treated using other(mathematical theories such as intervals, probability bounds, or evidence theory
[d]1, [7], [8])- For the nonpragbabilistic representation of epistemic uncertainties, this Standard is confined to
where uncertainty bounds can be reasonably established, enabling the use of interval methods. In Figure 2.6
eyample, a uniform PDF mathematically assigns a constant probability to all values of y in the interval in [a
ntrast, simply,assigning the interval [a, b] to the mean, y, makes no assertion about the relative likelih
any specific vatué.of u in the interval [a, b].

(e}

2|7 Sensitivity Analysis

Sensitivity analysis (SA) (ref. [9]) is performed to quantify the effects of changes in model inputs (e.g., maten
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rgmeters, boundary conditions) on model outputs, i.e., response quantities (RQ).

Quantifying the relative importance of the model inputs can

(a) provide insight into the planning and justification of validation experiments

(b) facilitate model development decisions

(c) inform calibration activities

SAis often performed in conjunction with UQ for two reasons. First, SA can suggest which inputs have negligible i

mpact

on RQs and thus could be fixed during uncertainty propagation studies, resulting in reduced computational expense.

Second, the characterization of input uncertainty can influence the results of SA.
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There are two basic types of SA: local and global. Local SA involves perturbing model inputs, typically one at a time,
around some nominal value to quantify the rates of change in model output(s) due to a change in a model input. Local SA
doesnot consider the probability distribution of the model input. This deterministic approach can be problematic because
a specific, local (nominal) value must be used. Most models of interest are also nonlinear, making local sensitivities of
limited value exceptat or close to the specific point at which they were computed. However, the widespread use oflocal SA
is due primarily to simplicity and efficiency.

Global SA is used to study how the variation in a model output can be apportioned to the various sources of variation in
the model inputs (ref. [9]). These techniques are referred to as global because they consider the full variation in inputs, as
compdred to Iocal SA methods that are used at a specilic point. The two most common outcomes from a global SA are the
main ¢ffect and total effect sensitivity indices. For a given model input, the main effect sensitivity index quantifies how
much the output variance is reduced if the input variance is zero. The total effect sensitivity index is the main effect plus all
interaftions involving that input. Interaction effects are then quantified by taking the difference between the total and
main effect indices.

Depending on the type of global SA performed, e.g., factorial analysis (ref. [10]) or analysis of variance (ANOVA) (ref.
[11]), |and the number of variates, global SA may require more computations than local SA. The ntimiber of simulati¢n
evaludtions for a local SA scales with the number of nondeterministic inputs, M. On the othei~hand, variance-bas¢d
deconjposition (a typical method used to compute global sensitivity indices) may require N(M + 2) where N is the
user-gpecified number of sample evaluations. Ideally, the number of sample evaluations should be large enough
that increased evaluations do not further change the global SA results.

2.8 Residual Errors and Residual Uncertainty

Conider the empirical model for material resistance to failure due to fatigue defined in para. 2.2. As discussed, sucH a
modelmay be easily fit by single-variable linear regression to a set of experimental values of N obtained at different levdls
of S, if the model formulation is transformed as shown by eq. (2-5). In the process of its development, the linear regressi¢gn
model is typically represented as follows (ref. [11]):

ln(l\fj) = In(bo) + bl ln(S]/So) + Ej 2

wherd
{S; IN;} = the model-basis set of data points indexed\by j
&} = associated vector of residual errors, i.e.;differences between the observed values of N;and the fitted values pf
N;
Theldistribution of &; values has the mean‘of zero, and its standard deviation is commonly referred to as the standafd
residupl error, or simply as the standard error.
When the regression model developed as described is used to simulate N as a function of input variables, the vector pf
residdal errors, {€}, is replaced by(a random quantity denoted as U. For a single input variable, the alternating stress,|S,
the mpdel is then formulated as follows:

by
S i
N(S) = bo(—] exp(Ug) P
So
111[N(S)] = ln(bo) + bl ln(S/So) + Ug (2'9)
wherg
Ug — ldlldUlll quautity lClJl CDClltills 1caidua} UIIicct tdillt_y

The formulations given by egs. (2-8) and (2-9) are equivalent. The uncertainty Ug has a mean of zero and standard
deviation proportional, but not equal, to the standard error. This is further discussed in para. 3.1.2.

This model as described has a single input variable, the alternating stress, S. It is quite common in engineering practice
for the model-basis data to be associated with multiple input variables having more than one level. In this example, the
model-basis data may involve different levels of strain rate, temperature, and stress triaxiality (due to the use of different
specimen types in different testing rigs). Having the alternating stress as a single input variable in the model assumes that
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Figure 2.8-1
Variation of Standard Residual Error With Number of Input Variables Included in Empirical Model Formulation
f f f i
Alternating stress | Alternating stress Alternating stress Alternating stress
Strain rate Strain rate Strain rate
Temperature Temperature
Stress triaxiality
x
s
|
©
=}
S
172}
Q
i
e
@©
T
c
put
)
\f —A
T T T 1
1 2 3 4

Number of Input:Variables in Model Formulation

néne of the other input variables affects the@aterial resistance to failure due to fatigue to an extent that would w
tHeir incorporation into the model, and this may or may not be adequate.

A simple way of investigating the adequacy of this assumption is to incorporate an additive term into eq. (2-9)
agsociated with each of the other input variables and to examine the results of multivariable linear regression an
Example results of such analysis'are shown in Figure 2.8-1, representing the variation of the standard residual errd
thHe number of input variables included in the model formulation. It is evident that considering the effect of both the
rdte and the temperature-is.associated with substantial reduction in the standard residual error, whereas the addi
the stress triaxiality to-the model formulation does not result in any further decrease in this error.

Note that the standard residual error is not reduced to zero by incorporating additional input variables into the
fgrmulation, i.e.,dmproving the model quality this way eventually reaches a limit, which is determined by the in
rgndomness in the model-basis data. The residual uncertainty has multiple sources, both aleatory and epistemic,
therefore a Tixed uncertainty. The sources of the residual uncertainty are further discussed in para. 3.1.

3| UNCERTAINTY QUANTIFICATION IN MODELING AND SIMULATION
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of uncertainty affect the accuracy of predictions made with the model. As described in this section, the nature
problem and the source of uncertainties guide how the UQ is performed.

Generally, uncertainties in modeling and simulation can be associated with

(a) model form

(b) model inputs

(c) numerical solutions

(d) model-basis data

of the
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Understanding the differences between these sources of uncertainties is important because different characterization
and analysis techniques are often used to quantify the uncertainties originating from different sources and to propagate
these uncertainties through the model. Uncertainty propagation is the process of using the knowledge about uncertainty
in model input variables to quantify the uncertainty in output variables. In para. 3.1, a brief discussion is provided of the
sources of uncertainties in physics-based and empirical models. In para. 3.2, several methods for uncertainty propagation
are discussed.

3.1 Sources of Uncertainty in Modeling

Thejre are three sources of uncertainty in physics-based computational models: the model form, the model inputspand
the numerical solution. Uncertainties in the model form arise from assumptions or approximations in the formulation of a
specif]c set of mathematical equations to represent the reality of interest. Model input uncertainties représent the
uncerfainties in the nondeterministic input variables and parameters associated with the selected model form! Numeridal
solutign uncertainties arise, for example, due to discretization approximations, iterative solution algorithms, and par-
ticulayt computational platform characteristics.

Theluncertainties in empirical models originate primarily from three sources: the model form, the‘model inputs, afjd
the medel-basis data. As in the physics-based models, the uncertainties in the model form result\from assumptions afd
approkimations in the selection or formulation of a specific set of mathematical equations+to, represent the reality pf
interept. The uncertainties in the model-basis data arise from errors, both systematic andsandom, in the experimental
data uped to develop the model, as well as from limited sample size and a number of othérlimitations associated with the
model-basis data sets. Unlike in the physics-based models, such uncertainties are a major, and often a dominant, source pf
uncertfainties in the empirical models. Uncertainties associated with the model parameters (and the numerical solution)if
applicpble) typically play a smaller role in the empirical models than in the physics-based models.

3.1.1 Uncertainties in Model Form. Because the true form of the madel is not known, the selection of a speciiic
mathgmatical form for a given modeling application will lead to.some level of model-form uncertainty. In tlpe
procegs of developing a model, there are numerous questions that must be considered, such as

(a) [What can and should be modeled mathematically?

(b) [What are the important features that the model must,aceurately represent?

(c) What role do computational constraints, model dimensionality, and code maturity play in the complexity of the
model?

(d) [What physical principles or data is the model derived from?

(e) |Is the model expected to be adequate in the:entire prediction or application space?

Model-form uncertainty is generally treated as an-epistemic uncertainty because it stems from the inexact nature of the
modeling process. Physics intentionally ignorédor unintentionally missed in the idealized mathematical representati¢n
always exists. One example of missed physicsis'modeling the boundary condition of a cantilever beam as fully fixed, wh¢n
in reality there is some rotational moverhent. Another example of model-form uncertainty involves the computer-aid¢d
constrjuction of a model, in which thepart geometry is defeatured (simplified by removal of selected details) based on its
relevance to the fidelity of the simulation and before meshing. The extent of defeaturing may be driven by engineering
intuitipon, formal geometry feature sensitivity, or both.

In theory, model-form undertainty can be reduced through model enhancements, such as incorporation of additionjal
mechdnisms in a physics‘based model or additional terms in an empirical model. An example of adding terms to 4n
empirjcal model was discussed in para. 2.8, where the base model formulation eq. (2-8) with a single input variable, S, whs
amended with additienal terms representing the effects of additional explanatory variables. The model-form uncertaingy
contriputes to thexresidual uncertainty in the empirical models. Therefore, reducing the model-form uncertainty by
adding appropriate terms to the model formulation results in a reduction of the residual uncertainty, as shown fn
Figurq 2.8-150f course, the model-form uncertainty is reduced only if the input variables added to the model formulatign
have statistically significant effects on the response variable being modeled. It is also recognized that adding fidelity to the
mode AZL o en-in od ‘_llgl_ l!ll"lllr l! “!‘,‘.. palrametrers ahala ne nce Allrl l'.
added inputs will contribute to the uncertainty in the model output.

In practice, however, model enhancements have important limitations. Adding new physical mechanisms increases
computational expense or may require new code development. Additional physical mechanisms may require modifica-
tions to the underlying equations as different mechanisms are often treated with different mathematical formalisms.
Many molecular scale mechanisms, for example, are not easily modeled using continuum mechanics. Meanwhile, adding
terms to an empirical model may lead to difficulties with simultaneous estimation of many model parameters, commonly
referred to as overparameterization or overfitting.

10
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The validation process quantifies the discrepancy between the experimental and simulation outputs. The experimental
output with its associated aleatory and epistemic uncertainties is typically taken as the truth (i.e., referent) for the
purposes of validation. If all significant uncertainties are accounted for, a sufficient number of samples are used to
characterize and propagate the uncertainties, and no mistakes or blunders were made, then the model-form uncertainty
will be the main contributor to this discrepancy. Practically, however, the discrepancy between the experimental and
simulation outputs always results from multiple sources of uncertainty, only a portion of which is model-form uncer-
tainty. There is currently no widely accepted methodology to isolate the contribution of the model-form uncertainty from
the discrepancy between the experimental and simulation outputs.

3.1.2 Uncertainties in Model Inputs. Uncertainties in the model input variables and parameters are typically]quan-
tified using statistical methods or expert judgment and available reference information. It is typical to employ.ajeohbina-
tipn of these two methods by having an expert provide an initial assessment of the uncertainty that is then‘updated using
statistical methods when the relevant data become available.
Statistical estimation and model-fitting methods are used for probabilistic UQ where the model inpubuncertaintjes are
rgpresented by probability distributions. In most cases, the form of the probability distribution (e:g., normal, log-n¢rmal)
s|lassumed, and the parameters of the probability distribution are estimated statistically from-either available gxperi-
ental data or lower-level simulations in a hierarchical model. It is noted that empirical medels, by definition, ihvolve
irameters estimated from the model-basis data, such as by and b4 in the example discussed in section 2. Unlegs such
rameters are themselves quantities of interest being modeled, they are typically fréated deterministically when the
odel is used to simulate the output variable (see para. 2.5). However, the additienalbuncertainty in the output v4riable
duyie to the uncertainties associated with the fitted parameters is incorporated into_the residual uncertainty to accopint for
He nondeterministic nature of these parameters (ref. [11]). As aresult, the standard deviation of the residual unceftainty
s|llarger than the standard residual error estimated from the model-basis,data‘and is not constant across the rangeg of the
input variables in the model-basis data set.
Depending on the complexities of the model, quantity, and quality‘of available data, and the number of input vafiables
and parameters in the model, different statistical methods may be.used for the estimation of probability distripution
parameters. Experimental data for the uncertain modulus of elasticity, for example, can be used to estimate the mepn and
standard deviation of its distribution, as illustrated in Figur€’3.1.2-1. For situations where the experimental ddta are
sdarce, Bayesian inference approaches may be employed. When the model inputs are functions of other variables, Jower-
tier models are typically required for the uncertainties'in such inputs to be properly quantified.
Bayesian estimation (ref. [12]) can be used to updateTi.e., improve the estimate of) parameters given new infornpation.
The Bayesian methodology has the added benefitof being able to incorporate a wide range of different types of informa-
tipn that other techniques cannot easily consider,’such as expert knowledge. As previously stated, uncertainty assdciated
wiith expert knowledge is epistemic uncertainty. When experimental data are used in Bayesian estimation to injprove
prior parameter estimates based on eXpert knowledge, the epistemic uncertainty in the prior estimates is rgduced
cording to the amount of relevant’'information contained in the experimental data. With sufficient experimental
data, the epistemic uncertainty ificthe Bayesian parameter estimates can be made arbitrarily small; however] there
rgmains aleatory uncertainty in‘\the Bayesian parameter estimates associated with the variability in the experifental
data used in the Bayesian estimation (refs. [13], [14]).

When using Bayesian estimation to improve the estimates of model parameters, one must be wary of large charjges to
tHe prior estimates relative to the uncertainties originally assumed for those prior estimates. If the changes exceed the
rgnge of uncertainties.originally assumed, then the changes should be viewed as inconsistent with the prior modeling
agsumptions, which-should therefore be reevaluated. Furthermore, if the updated estimate of any parameter changes
ignificantly from its prior estimate without a correspondingly significant reduction in its uncertainty, that pargmeter
should be/removed from the set of parameters being estimated, or additional informative data should be sought.
The uncertainties in the model inputs may also be quantified purely on the basis of expert judgment or ref¢rence
information from existing standards or available literature. This form of uncertainty quantification is often subjectiye and
rnay possessalarge degree of implied epistemic uncertainty. In such cases, it is advisable to use nonprobabilistic mgthods,
such as interval analysis, so as not to assert knowledge of the probability distribution form and/or its parameters.
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3.1.3 Uncertaintiesin Numerical Solutions. Numerical solution uncertainties arise from a variety of sources including
spatial/temporal discretization, solution controls, and computational platform characteristics. Uncertainties generated
as part of the numerical solution of the model are termed numerical solution uncertainties and are best addressed by
performing calculation (solution) verification. The strategy of addressing numerical solution uncertainties in the overall
UQ process is either to demonstrate that they are negligible or to quantify their impact on the model output. When
demonstrating that the effect is negligible, the model developer must ensure that this condition is true for the entire space
(or range) of parameter uncertainty.

11
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Figure 3.1.2-1
Defining a Random Variable Using Data
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Disgretization of the idealized geometry for solid meehanics field solvers usually refers to discretization of the defep-
tured geometry. The resulting level of accuracy in boundary representation of curved entities is usually confounded with
the leyel of spatial resolution and, therefore, spatidl.convergence of the deformation field. Numerical uncertainty arisipg
from gpatial discretization is quantified by refining the mesh while retaining local geometric proportionality between the
meshgs. Assuming that the RQs are in their asymptotic convergence range with respect to spatial resolution, a Richards¢n
extragolation process can be used to estimate converged values of the RQs and their convergence rates (refs. [6], [15]).

For|most load histories and deformation modes of engineering interest, time/load steps are required to resolve the
equations of motion as well as path-dépendent processes such as incremental plasticity. Additionally, time/load steps
may b determined from numerical stability considerations such as the maximum time-step for a given model in explig¢it
dynampics analyses. Typically{solid mechanics modeling systems provide an adaptive time-step size feature thatincreasgs
or dedreases the time-step to improve efficiency. The simplest way of quantifying numerical uncertainties related fo
tempdral convergence.js:to allow automatic time-stepping in the UQ study and to perform a sensitivity study of the RQs
with respect to the-maximum allowed time step to demonstrate invariance of the RQs to step size.

Solytion controlsinclude, but are notlimited to, allowable and maximum residuals for equilibrium iterations, hourglaks
contrqls for finjte*elements, and choices of preconditioners. Hourglass control for a class of problems involving large
deforrpation:and failure may be a nonnegligible uncertainty that needs to be included in the overall UQ analysis. As with
tempdral discretization, the preferred approach is to determine a set of controls for which these factors can be considerg¢d
negligible

Numerical uncertainty in spectral analysis arises from the extraction of modes, i.e., the spectral decomposition of
system equations of state. The quality of the modes is related to mesh resolution and eigensolver settings, and the number
of modes affects the uncertainty in resolving the desired system responses. All these factors may have an effect on the RQs
and need to be assessed through a rigorous parametric study.

Computational platform characteristics include microprocessor architecture, the number of processors per node,
vendor, operating system, compiler, and compiler optimization levels. In large-scale system simulations on parallel
computers, consistency across the various processors must be considered before performing UQ. Invariance of RQs
with respect to processor count needs to be evaluated once the computational platform is selected.
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Figure 3.2-1
Illustration of the Uncertainty Propagation Process
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3.1.4 Uncertaintiesin Model-Basis Data. Uncertainties in the model-basis data eontribute to the overall uncertaji

p4ra. 2.8. The residual uncertainty component associated with these errors'is aleatory in nature, since it represe
herent randomness in the data. With reference to Figure 2.8-1, this cemponent of the residual uncertainty corre

odel-basis data with multiple input variables whendifferent experimental conditions are represented by very different
nyimbers of data points. In some cases, the uncertainty arising from this source may be reduced without compromising the
mpodel adequacy by means of weighted regression analysis and related statistical techniques. Limited sample size fepre-
sgnts another source of uncertainty in thé_model-basis data, and in engineering practice is typically addressed by
inlcreasing the magnitude of the residual uncertainty, e.g., by using the Student’s ¢-distribution instead of the stgndard
nermal distribution to represent the residual uncertainty (ref. [16]).

3|2 Uncertainty Propagation

Uncertainty propagation; illustrated in Figure 3.2-1, is the process of using knowledge about the uncertainty|in the
input variables and parameters of a model to quantify the uncertainty in the output variables (i.e., RQs). It is also ysed to
propagate uncertainty. from lower tiers in a modeling hierarchy to higher tiers (see section 7). There are nunperous
approaches to uncettainty propagation. This paragraph briefly discusses the most commonly used and widely acg¢epted
approaches.
Uncertaintyrpropagation methods include sampling methods, perturbation methods, and stochastic spectral mgthods.
All of these/methods require the assignment of probability distributions for the nondeterministic variables and garam-
ers, typically in the form of PDFs or CDFs. Sampling methods take a variety of forms. The most robust sampletbased
ethods use random sampling from the input variable and parameter distributions and are referred to as Mont¢ Carlo
ethod orMonte Carlosimulations hemodelisevaluatedaith eachrandomsamuple and theres sedtoconstruct
output PDFs (and/or CDFs). Monte Carlo methods, although robust and accurate, are often computationally expensive, as
they require a large number of samples (and thus a large number of model runs) to sufficiently converge on response
distributions and statistics. To reduce computational effort, a variety of variance reduction techniques can be used to
reduce the number of samples required for convergence. These include stratified sampling, Latin hypercube sampling,
importance sampling, and antithetic variates among others (ref. [17]).

Perturbation methods use various numerical integration strategies, typically employing model parameter sensitivities.
They were developed for a variety of reasons, but primarily to avoid the computational cost associated with sampling. In
many cases, perturbation methods, e.g,, first- and second-order reliability methods (ref. [18]), are far more efficient than
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sampling methods, especially when the model is computationally expensive to evaluate. However, perturbation methods
also require considerable computational effort to obtain model parameter sensitivities for problems with alarge number
of random variables (ref. [19]). There are also hybrid methods that combine sampling and perturbation methods to
balance accuracy with computational cost (ref. [20]).

Stochastic spectral (or Galerkin) methods (ref. [21]) such as polynomial chaos augment the system of differential or
difference equations that compose the physical model with stochastic parameters that represent the uncertainty. Some of
these methods are referred to as intrusive methods because implementation requires intrusive modification of the
equations of motion. Other stochastic spectral methods are nonintrusive. While powerful for some applications,
they dre not discussed here because thelr use 1s limited to specilic classes ol problems and their implementati¢n
is comjplex and requires specialized solvers that are undesirable for practical applications. Sampling methods and pertur-
batior methods are considered nonintrusive because uncertainty is propagated using existing deterministic solvers (e.g.,
commiercial finite element codes) and require no modifications to the governing equations.

All yncertainty propagation methods involve approximations that must be recognized and quantified inthe'validatign
procegs. Moreover, these methods themselves must be verified before being employed in the model validation proce;

._.
1

ERTAINTY QUANTIFICATION IN VALIDATION EXPERIMENTS

Avdlidation experiment is specifically planned and performed to assess the accuracy of a,computational model. Unlike
pes of experiments that are performed to improve fundamental understanding*of the physical system or fo

outputs are compared with simulation outputs, the ideal validation experiment should be conducted in a highly specifi¢d
and c¢ntrolled environment. While this section focuses on validation experiments, the guidance offered here can be

purpoge of model validation and understanding associated uncertainties (ref. [6]). Full details should be provided inj a

design of experiments. Correspondingly, the specithen response must be measured with high, quantified accuragy
includiing uncertainty. A good validation test plan-provides as many details as possible, requiring few, if any, assumptions
on thg part of the model developers’ interpretation of the experiment.

Thel key considerations in planning validation experiments include the following, adapted from ref. [22]:

(a) |The experiments should be plannedito capture the essential physics of interest, including all relevant physical inpjit
variables and parameters as well a§ initial and boundary conditions.

(b) |The experiments should be planned with emphasis on the inherent synergism between the computational afgd
experimental approaches.

(c) [The experiments should be planned to enable the uncertainties in the acquired data, including the measuremeht
uncertfainty, to be adequately characterized and quantified.

(d) |Depending on the' problem, multiple RQs should be measured so as to present a range of phenomena and data typgs
(e.g., dtrain, displagément, acceleration) for comparison with the simulation.

The|planning efthe experiments should be performed as a joint exercise between the experimentalists and the model
develapers. This is because the experimentalists need to gain a firm understanding of what the modelers aim to predigt,
and the modelers need a firm understanding of how the experimentalists intend to measure it. Often, preliminary (i.p.,
verifigdbutnot yet validated) or simplified versions of model simulations can help with the planning of each experime
but theseinteraetio if-the-validat A ettrentation—Thefinalexperimenta ptrts-sh
not be provided to the model developers until after their model simulations have been performed to ensure an unbiased
comparison. Alternatively, if the model developers do have access to completed experiments, they should be transparent
about any influence on their model simulations that could not be avoided.

There mustbe a shared understanding of what responses will be measured experimentally. Additionally, there mustbe
an agreement about all relevant physical input variables and parameters as well as initial and boundary conditions to be
controlled (and possibly measured) experimentally. It is generally recommended that model developers perform a
parametric study with the verified model to determine model sensitivities to help inform the experimental test
plan concerning test conditions, instrumentation, data acquisition, and other factors. Pretest sensitivity analyses

otHdberoted raldationpia d-doeed atio 3 oHEPH otld
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should also be performed to identify the most effective types of validation experiments, loading locations, sensor loca-
tions, and other relevant conditions.

What can be prescribed very precisely numerically may not be readily produced experimentally, and vice versa. For
example, the cantilevered boundary condition of Figure 3.2-1 can be prescribed perfectly in the model. However,
imposing a true cantilevered boundary condition is impossible to achieve experimentally because there will always
be some rotational movement between the test fixture and the test article in the experiment, whereas in the
model there will be none. Conversely, using a flat plate to apply a load over a region of a beam may be relatively
simple to execute experimentally, but load uniformity is not perfect, which introduces additional challenges for the

odeler.
w]ldeally, the model RQs are directly measured in the validation experiment. However, the experimental RQsmaynot be
directly measurable, may occur in small regions or in regions of high gradients where measurements are\not practical,
may not be measured without perturbing the intended test conditions, or may not be obtained with a suffi€ient lgvel of
agcuracy. Thus, the actual measured RQs may only be related to the desired RQs, and this information must be provided to
tHe modeler prior to performing model simulations.
It is highly beneficial if the experimental data allow different aspects of the model to be @ssessed. An exanpple is
measuring strain at additional points on a beam-bending experiment as opposed to onljnthe maximum defl¢ction.
Although some RQs may be of secondary importance, accurate simulations of these fesponses provide add]tional
eyidence that the model correctly simulates the governing physics. This qualitatively builds confidence that the corhputa-
tipnal model can be used to make accurate predictions for problem specifications that.are different (within reason|) from
tHose considered in model development and validation.
In many practical cases, experiments involve multiple variables, and validation data under many different festing
cgnditions are required. In such cases, the methodology of statistical experimental design (ref. [23]) often ensured that a
inimum amount of experimental work is performed to achieve the required level of statistical confidence in the pfocess
of uncertainty characterization and quantification, and that the uncertainty characterization and quantificatipn are
pé¢rformed as efficiently and accurately as possible for a given amount of validation data. Therefore, the methoglology
of statistical experimental design should always be considered‘in the planning of validation experiments wh¢never
appropriate and practical.

42 Uncertainty Quantification in Validation Experiments

Validation experiments should be performed at multiple validation points to ensure sufficient coverage of the|entire
v3lidation space. Because uncertainties are involved, a single validation experimentata given validation pointis gefjerally
nsufficient. Replicate experiments should be performed at each validation point to quantify the uncertainty[in the
experimental outputs. When replicate expefiments are not available, uncertainty in experimental outputs must He esti-
mpated by other means, such as relying(on‘experience and judgment. As another example, when symmetry is pfesent,
rgplicate results may be obtained by‘taking measurements at symmetrical locations on the test specimen.
During the early stages of experimental planning, it is useful to consider all potential sources of uncertainties pnd to
mpake an estimate of those uncertainties. ASME PTC 19.1 (ref. [24]) recommends performing a pretest UQ followgd by a
cqmparison with post-test UQ--Similarly, Coleman and Steele (ref. [25]) reflect this recommendation by perforing a
general uncertainty analysis’early in the experimental planning process, followed by a detailed uncertainty arfalysis.
Estimates are updatedasthe experimental planning and testing move toward completion and post-test UQ analysis| Many
methods can be usedMor estimating measurement uncertainty, including previous test results, published data, pxpert
judgment, and even-comparison of multiple methods of measurement in a single test. Collectively, these pretest andl post-
tegst activities promote early and ongoing communication between experimentalists and model developers, identify
rgsource allocation opportunities (both computational and experimental), inform the final stages of experimental plan-
ning, likely result in reduced measurement uncertainties, and possibly identify which measurements may dominate in
oyerall-result uncertainty.
Theresult of an experimental test is often calculated indirectly from several direct measurements using either|a data
reduction equation or a computational simulation. Thus, the uncertainties associated with each individual measurement
are propagated to estimate the uncertainty of the result. Techniques for propagation of experimental measurement
uncertainty are similar to those used in uncertainty propagation for simulations. For example, Taylor series approx-
imations and Monte Carlo simulation techniques can be used to propagate the measurement uncertainties into the
desired form; an in-depth description and multiple examples are given in ASME PTC 19.1.

—
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5 UNCERTAINTY QUANTIFICATION IN MODEL VALIDATION ASSESSMENT

Avalidation metric is used to compare an uncertain output from the model simulation with a corresponding uncertain
output from the validation experiment. This validation metric is then compared to the validation requirement to assess
whether or not the validation requirement is satisfied. In selecting the validation metric, key considerations should be
whatthe model is expected to predict (relative to the intended use of the model) as well as what types of experimental data
are available or needed.

51V

As dlefined in V&V 10 (ref. [2]), validation requirements are “specifications and expectations that a computationjal
modelmust meet to be acceptable for its intended use.” They are project-specific and are dependent on budget,schedule,
risk tdlerance, safety margin, and other considerations. Validation requirements should be agreed upon and specifi¢d
during the development of the VVUQ plan, prior to performing any validation experiments or model simulations. Validp-
tion requirements depend on the intended use of the model, type of analysis, uncertainty quantification approadh,
availaple data, and other factors, such as the consequence of making a wrong decision based on(a model predicti
For example, a team developing and validating a model to predict automotive crashworthinessimay employ an expli¢it
dynanpic finite element model to simulate a frontal impact scenario. RQs could include maximum deformation and
accelefration histories at various locations on the automobile and the occupant(s). Because validation metrics incorporage
uncertfainties in both experimental and simulation outputs, validation requirements may\need to be defined in terms pf
uncerfainty (e.g., the model is expected to be accurate for a given RQ to within 109%)with 90% confidence).

Requirements

5.2 \jalidation Metrics and Assessment

Compparison of simulation and experimental outputs, both of which include uncertainties, is performed with one pr
more RQs. The RQs may be directly computed and measured or may be gostprocessed to obtain the desired outputs fpr
compdrison. These outputs are labeled “Simulation Outputs” and “Experimental Outputs” in Figure 1.1-1.

Graphical overlays (cross-plots) of simulation and experimentakeutputs are generally insufficient for purposes pf
validafion assessment. Even the corridor approach, where the model is assumed to be validated if the simulation outpults
fall within some specified experimental corridor, is insufficient’because the degree of agreement between simulation afd
experjment is not explicitly quantified.

Conmparison of simulation and experimental outputs'\tequires some type of quantitative validation metric, whi¢h
usually takes the form of a difference measure (ref~{26]). Example metrics may include the difference between the
average values of simulated and measured outputs, the difference between statistics of outputs, or even the differenfe

Bechuse uncertain quantitjes\are involved, care must be taken to choose the RQs and validation metrics to ensure the
model is appropriately and\sufficiently challenged. For example, to demonstrate how well the model simulates the
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experjmentally measured RQ is also uncertain and characterized as a random variable, Y, the mean, y, for each of thepe
randolmzariables mav be computed he difference between these means 2 hown in eg - an then be computd
and tested against a corresponding validation requirement. This mean, Ay metric is clearly a function of the random
variables Y4 and Yeyp,, and therefore is a metric that considers uncertainty. However, this single-valued metric does not
directly account for (or provide insightinto) the magnitude of the uncertainty in Y;,,o4 and Yy, and thuslittle can be stated
regarding the uncertainty of this measure.
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Figure 5.2.1-1
Extension of the Mean Metric: The Difference Between Yp,oq and Ye,p
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With minimal effort, significant additional information can be obtained by extending the mean metric. If Y},,,4 a1

tHe mean and standard deviation (o) of Z can be computed:

Z = Ymod — Y:exp

Hz = 'quod h 'uYe)QJ

Oy = a% + 01%
mod exp
where
0V, 0q = standard deviation of Yyi0q
O-Yexp = standard deviation. of )Y,
07 = standard deviation of Z

q), and the new random variable Z is shown in Figure 5.2.1-1, illustration (b).

~

is|different from-the mean Ay metric introduced earlier. As shown in eq. (5-3), the mean of Z is, in fact, equal to th¢

—

slsatisfied

(-1

d Yeyp

arfe assumed independent,2 anew random variable, Z, can be defined as the difference between Y,,,q and Yy, fromfwhich

(5-2)

(5-3)

(5-4)

This is shown graphically in Figure 5.2.1-1. The simulated and measured RQs are shown in Figure 5.2.1-1, illusfration

As shown in FigGre 5.2.1-1, illustration (b), the variable Zis clearly also uncertain. It is important to note that this metric

mean

mletric, butZ also directly reflects the uncertainty in Yy,0q and Yeyp. By quantifying o upper and lower limits on Z fan be
cqmputed at any desired confidence level (e.g., 90%), which can then be tested against a corresponding valiflation
rgquirement. Therefore, a definitive statement can be made regarding the confidence in which the validation requirement

5.2.2 Area Metric. The area metric possesses many of the desirable features of a validation metric and fully accounts
for uncertainties in both the simulation and the experiment (ref. [27]). Accordingly, it provides a good basis for a discus-

sion on the use and interpretation of a metric when uncertainties are involved.
The area metric is a measure of the difference between the CDFs of two random variables, in this case, the CDF
simulated RQ and the CDF of the experimental RQ. The area metric, Z, is formulated as

of the

2 Independence between simulated and measured RQs would require that uncertain loads applied to the model and the test article also be inde-
pendent. This may be accomplished by independently and randomly selecting loads to drive the model and those to drive the test article from the same

random source.
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Figure 5.2.2-1
Illustration of the Area Metric
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Thelabsolute value in eq. (5-5) denotes that only the,magnitude of the difference is of interest, and that all differencps
betwegen Fy,,q(Y) and Feyp(Y) should be accumulated-in the integration. It can be seen in Figure 5.2.2-1 that the entife
distribution is important, not just the mean, standard deviation, or some other summary statistic.

The|shaded region in Figure 5.2.2-1, illustfation (a), denotes the area computed by eq. (5-5). The two CDFs shown afe
continuous functions, but the area can be computed even when the experimental or simulated CDF is a stepwise functi¢n
(indivjdual samples) or deterministict(a vertical line).

An mportant feature of the area-metric is that the area equals zero when the experimental and simulated CDFs afe
coinciflent [see Figure 5.2.2-1, illustration (b)]. Any difference between the two CDFs results in some area being accp-
mulated in eq. (5-5). This is appealing and makes intuitive sense from the standpoint of a metric being a distance measure;
when fwo points (or functiens-in this case) are coincident, the distance between the two points must equal zero. Howevdr,
when uncertainties are.invoelved, care must be taken to ensure that this result is interpreted correctly. An area of zefo
meang that the modeldsssimulating the same uncertainty as was measured in the validation experiment. From one pointpf
view, the model cahnot be expected to do any better than this. However, from the perspective of the ultimate intend¢d
uses df the model, further model development may be required to reduce the uncertainty associated with the model
predidtion.

5.2.3 .Error Metric. The error metric is defined as the relative difference between the uncertain simulation outp\rt,

Y. nd the uncertain experimental ocutput Y written as
mod» o P-erer—texpr

Yimod — Y

7= % (5-6)
Y,

exp
where Z is valid when the realizations of Y., are not zero (ref. [28]).

Because Y04 and Yy, are both random variables, Z will also be a random variable (i.e., uncertain). The PDF of Z [as in
Figure 5.2.3-1, illustration (a)] will usually not follow any standard PDF and will, in general, need to be evaluated by
sampling or some other uncertainty analysis method.

The probability of the absolute value of the error being less than or equal to a particular error value, z, is given by
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Figure 5.2.3-1
PDF and CDF of the Error Metric
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which by definition is the CDF of |Z| [as in Figure 5.2.3<1, illustration (b)]. The presence of the absolute value in eq. (5-7)
rdflects that the sign of the error is typically unimportant in the model validation problem; our interest is focused dnly on
tHe magnitude of the difference between the possible values of Y;,,q and Yep.

It should be noted that Y,,,,4 in eq. (5-6), describes the set of possible model simulations of a particular RQ, and|in the
typical case is the result of propagating ihput uncertainties (random variables) through the model. Likewisp, Y.,
dé¢scribes the set of possible outputs from the validation experiment, which is typically a set of replicate experiments,
sirce one or more uncertain test inpuits are involved (see para. 4.2). The CDF for Y, may also represent propagafion of
uncertainties from individual ndeasurements that make up the overall experimental result.

I3
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a
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If the CDF of Y,,,q overlays the/CDF of Y., exactly (i.e., they are coincident), then clearly Z given in eq. (5-6) will stfillbe a
ndom variable, and therewill be many combinations of p and z that satisfy eq. (5-7). This is because p represents the sum
all possible errors for'a given z, which is equivalent to drawing a random sample from Y4 and Yeyp, computing and
cumulating the errgr,/and repeating these steps a large number of times until convergence. It can be shown that the
ror is a minimum=-but not zero—when the CDF of Y},,,q and Y, are coincident. For Z to equal zero requires that the
andard deviation of Yy,,q4 and Yy, also be zero, i.e., deterministic.

The PDF and\CDF of |Z| are illustrated in Figure 5.2.3-1. The shapes of the PDF and CDF generally follow what is cplled a
lded distfibution, which is the result of the absolute value in eq. (5-7).

The-CDF can be used to return a probability given an allowable error, orviceversa. Figure 5.2.3-1, illustration (b), shows

requlrement is 10%, then the model is not Valldated However 1fa probablllty of 60% or less is deemed acceptable then
the validation requirement is met.

The mean metric quantifies the difference in the mean of the simulated and measured RQs, the area metric quantifies
the difference between the simulated uncertainty and the measured uncertainty, and the error metric quantifies the
percent error between the uncertain simulation output and the uncertain experimental output. The mean and area
metrics equal zero when the simulated and experimental CDFs are coincident, whereas the error metric equals
zero only when the CDFs are coincident and the uncertainty in the simulated and measured RQs is zero. The differences
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