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FOREWORD

Verification, validation, and uncertainty quantification (VVUQ) of engineering simulation models is currently of great
interest to government, industry, and academia, all ofwhich rely on computationalmodeling in the design and analysis of
engineered structures. This has challenged government, industry, and academia to develop credible models for design
and performance evaluation via computational simulation. In response, The American Society of Mechanical Engineers
(ASME) formed a subcommittee on verification and validation (V&V) in computational solid mechanics (CSM), known as
ASME V&V 10. The V&V 10 Subcommittee was redesignated as VVUQ 10 in 2021 since both V&V and uncertainty quan-
tification (UQ) have been specifically identified as critical technologies needed for the advancement of computational
mechanics.
Thegrowing relianceonCSMmodels fordecision-making ingovernment, industry, andacademiademands that greater

attention be given to the quantification of uncertainties associated with these models. UQ is a critical component in the
evaluation and communication of both computational and experimental results in the process of reporting simulation
results. UQ is foundational in the development and assessment of CSM models and their predictive capability.
ASME V&V 10-2006 (ref. [1]), Guide for Verification and Validation of Computational Solid Mechanics Models, was

recently revised to ASME V&V 10-2019 (ref. [2]), Standard for Verification and Validation of Computational Solid
Mechanics Models. Both editions address an important need for a common language and process definition for
VVUQ at the level appropriate for CSM model developers as well as their managers and customers. ASME V&V 10
is intended as an overview standard to be followed by detailed publications covering select topics and applications.
ASMEV&V10.1 (ref. [3]) provides examples to illustratemanykeyVVUQconcepts. Theoverall purposeof this Standard is
to expand on UQ, emphasized in ASME V&V 10.
This Standard describes the role of UQ in modeling/simulation and experimentation. UQ in modeling and simulation

includes consideration of model form uncertainties, numerical solution uncertainties, model input uncertainties, and
uncertainties in model-basis data. In addition, propagation of uncertainties is an integral part of UQ in modeling and
simulation. UQ plays an important role in experimentation; therefore, key considerations in planning validation experi-
ments arediscussed, since theseexperiments are specificallyplannedandperformed toassess thepredictive capability of
a computationalmodel. A brief discussion of UQ in hierarchical CSMmodels is provided, aswell as an overviewof the role
of UQ in revisions to either the computational model or the validation experiment.
This Standard also addresses the role of UQ in model validation assessment, illustrated by several examples consid-

eringdifferent validationmetrics that includeuncertainties. Because validationmetrics incorporateuncertainties in both
experimental measurements and model simulations, some consideration of uncertainties is required in establishing the
corresponding validation requirements.
This Standard is available for public review on a continuing basis. This provides an opportunity for additional public

review input from industry, academia, regulatory agencies, and the public-at-large.
ASME VVUQ 10.2-2021 was approved by the VVUQ Standards Committee on August 27, 2021, and was approved and

adopted by the American National Standards Institute on December 13, 2021.
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CORRESPONDENCE WITH THE VVUQ COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned
interests. As such, users of this Standard may interact with the Committee by requesting interpretations, proposing
revisions or a case, and attending Committee meetings. Correspondence should be addressed to:

Secretary, VVUQ Standards Committee
The American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016-5990
http://go.asme.org/Inquiry

Proposing Revisions. Revisions are made periodically to the Standard to incorporate changes that appear necessary
or desirable, as demonstrated by the experience gained from the application of the Standard. Approved revisions will be
published periodically.
This Standard is always open for comment, and the Committee welcomes proposals for revisions. Such proposals

should be as specific as possible, citing the paragraph number(s), the proposedwording, and a detailed description of the
reasons for the proposal, including any pertinent documentation.

Proposing a Case. Casesmay be issued to provide alternative rules when justified, to permit early implementation of
an approved revision when the need is urgent, or to provide rules not covered by existing provisions. Cases are effective
immediately upon ASME approval and shall be posted on the ASME Committee web page.
Requests for Cases shall provide a Statement of Need and Background Information. The request should identify the

Standard and the paragraph, figure, or table number(s), and be written as a Question and Reply in the same format as
existing Cases. Requests for Cases should also indicate the applicable edition(s) of the Standard to which the proposed
Case applies.

Interpretations. Upon request, the VVUQ Standards Committee will render an interpretation of any requirement of
the Standard. Interpretations can only be rendered in response to a written request sent to the Secretary of the VVUQ
Standards Committee.
Requests for interpretation should preferably be submitted through the online Interpretation Submittal Form. The

form is accessible at http://go.asme.org/InterpretationRequest. Upon submittal of the form, the Inquirer will receive an
automatic e-mail confirming receipt.
If the Inquirer is unable to use the online form, he/she may mail the request to the Secretary of the VVUQ Standards

Committee at the above address. The request for an interpretation should be clear and unambiguous. It is further rec-
ommended that the Inquirer submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry in one or two words.
Edition: Cite the applicable edition of the Standard for which the interpretation is being requested.
Question: Phrase the question as a request for an interpretation of a specific requirement suitable for

general understanding and use, not as a request for an approval of a proprietary design or
situation. Please provide a condensed and precise question, composed in such away that a
“yes” or “no” reply is acceptable.

Proposed Reply(ies): Provide a proposed reply(ies) in the form of “Yes” or “No,” with explanation as needed. If
entering replies to more than one question, please number the questions and replies.

Background Information: Provide the Committee with any background information that will assist the Committee in
understanding the inquiry. The Inquirer may also include any plans or drawings that are
necessary to explain the question; however, they should not contain proprietary names or
information.
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Requests that arenot in the format describedabovemaybe rewritten in the appropriate formatby theCommitteeprior
to being answered, which may inadvertently change the intent of the original request.
Moreover, ASME does not act as a consultant for specific engineering problems or for the general application or

understanding of the Standard requirements. If, based on the inquiry information submitted, it is the opinion of
the Committee that the Inquirer should seek assistance, the inquiry will be returned with the recommendation
that such assistance be obtained.
ASMEprocedures provide for reconsideration of any interpretationwhen or if additional information thatmight affect

an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
Committee or Subcommittee. ASME does not “approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary
device, or activity.

Attending CommitteeMeetings. The VVUQ Standards Committee regularly holdsmeetings and/or telephone confer-
ences that are open to the public. Personswishing to attend anymeeting and/or telephone conference should contact the
Secretary of the VVUQ Standards Committee. Future Committee meeting dates and locations can be found on the
Committee Page at http://go.asme.org/VnVcommittee.
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INTRODUCTION

Model verification, validation, and uncertainty quantification (VVUQ) are the primary methods for quantifying and
building credibility in mathematical/computational models. Verification is the process of determining that a computa-
tional model accurately represents the underlying mathematical model and its solution. Validation is the process of
determining thedegree towhichamodel is anaccurate representationof thevalidationexperiments fromtheperspective
of the intended uses of the model. Both verification and validation accumulate evidence of model correctness and accu-
racy for a specific application of interest.Model VVUQ* cannot prove that themodel is correct and accurate for all possible
scenarios; instead, VVUQ accumulates evidence of whether the model is sufficiently accurate for its intended uses. The
expectedoutcomeof theVVUQprocess is to informthedecision-makerof thecredibilityof themodel for the intendeduses
of the model.
Uncertainty quantification (UQ) in the context of VVUQ is the mathematical assessment of uncertainties in model

simulation results and experimental results. Therefore, the goal is to quantify the uncertainties in both simulation and
experimental results so that the model accuracy can be assessed, and the predictive capability of the model can be
established quantitatively. As described in this Standard, UQ is also important in other related activities, including
model development, parameter estimation, model calibration, experimental design, and sensitivity analysis.

* For the purposes of this Standard, “model VVUQ” will be referred to as “VVUQ.”

viii
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THE ROLE OF UNCERTAINTY QUANTIFICATION IN
VERIFICATION AND VALIDATION OF COMPUTATIONAL SOLID

MECHANICS MODELS

1 PURPOSE AND SCOPE

1.1 Purpose and Motivation

The purpose of this Standard is to expand upon the important role of uncertainty quantification (UQ) in verification,
validation, and uncertainty quantification (VVUQ), as outlined in Figure 1.1-1. UQ plays an important part in each of the
“Modeling and Simulation” and “Physical Experimentation” branches illustrated in the figure, ultimately quantifying the
uncertainties in the “Simulation Results” and “Experimental Results” generating the “Simulation Outputs” and “Experi-
mental Outputs.” A detailed description of this figure is provided in ASME V&V 10-2019.
Consistent with the purpose of ASME V&V 10-2019, the motivation for developing ASME VVUQ 10.2 is the need for a

common language and process of UQ in computational solidmechanics (CSM), particularly as it may relate to howmodel
developers perform UQ as well as how they subsequently communicate results, conclusions, and recommendations to a
decision-maker. A decision-makermay be any individual or representative body, such as a reviewpanel, deemed respon-
sible for determining if amodel is acceptable for its intended uses. The decision-makermay also be a customer relying on
model predictions to inform a decision.

1.2 Objectives and Scope

1.2.1 Objectives. The objectives of this Standard are to
(a) define and clarify the role of UQ as part of the VVUQ process
(b) provide guidance for the use of UQ in VVUQ activities
(c) acknowledge the importance of UQ in decision-making

1.2.2 Scope. The scope of this Standard includes the following:
(a) sources and types of uncertainty and how they can be treated in the VVUQ process (section 2)
(b) quantification and propagation of uncertainties (section 3)
(c) uncertainties in validation experiments (section 4)
(d) uncertainties in model validation assessment (section 5)
(e) revisions to the model and experiments (section 6)
(f) uncertainties in hierarchical models (section 7)

2 BACKGROUND AND DEFINITIONS

2.1 Mathematical Models

Models are idealized representations of the physical phenomena of interest. This Standard distinguishes between two
types of mathematical models: empirical models and physics-based models. Examples of both types of mathematical
models are provided in para. 2.2. These are defined as follows:
empirical model: amathematical model whose functional framework is based primarily on observation and experiment.
InCSM,empiricalmodels are typically expressed inclosed-formalgebraic relations,whichmaystill encompass some level
of our conceptual or theoretical understanding of the physical phenomenon of interest. Empirical models may be simple
statistical models (e.g., regression analysis) ormore complex (e.g., based onmachine learning or generalized polynomial
expansions). Experimental data used to develop the empirical model are hereafter referred to asmodel-basis data. In the
CSM community, this type of data is also referred to as calibration data.

ASME VVUQ 10.2-2021
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Figure 1.1-1
Verification, Validation, and Uncertainty Quantification Process
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physics-basedmodel: amathematicalmodelwhose functional framework is based on concepts and theories capturing the
physical phenomena of interest. Such models are alternatively referred to as scientific or mechanistic, and in CSM these
models are often expressed by differential or integral equations or systems of equations. Experimental or observational
information plays a secondary role in the development of physics-based models.

2.2 Variables and Parameters

A mathematical model of any type relates an output variable, y, to at least one input variable, x:
=y f x( ) (2-1)

where f (·) denotes the functional form of the mathematical model, hereafter referred to simply as the model form.
Multiple input variables are common in practical CSM applications. It is noted that the variables are model-specific,
and an input variable in one model may be an output variable in another model.
The model form f (·) itself includes additional quantities used to relate the output variable to the input variable(s) by

means ofmathematical operations. These quantities are referred to asmodel parameters.While someparametersmaybe
physical ormathematical constants, themodel parameters are typically quantities subject to variation, and therefore are
generally uncertain.When a nonconstant parameter in a givenmodel has physicalmeaning (para. 2.1), itmay be an input
variable or an output variable in another model.
In physics-basedmodels, themodel parameters typically possess definitive physicalmeaning. In empiricalmodels, the

model parametersmay ormaynot have physicalmeaning. This distinction is very common and leads to differences in the
process of uncertainty quantification due to the differences in the primary sources of uncertainty associatedwith the two
types of models, as further discussed in para. 3.1.
Examples of variables and parameters in a physics-based model and in an empirical model follow:
(a) Example of Physics-Based Model. Consider the elastic deformation of a tapered cantilever beam shown in

Figure 2.2-1. The vertical deflection, w, of the beam varies with the distance, x, from the supported end of the
beam and the beam length, L, according to the following model derived from the classical beam theory (ref. [4]):

=
i
k
jjjjjj

y
{
zzzzzzw x L

qL
EI

W f x
L

( , ) , ,r

4

0
(2-2)

where
E = modulus of elasticity
fr = support rotational flexibility
I0 = area moment of inertia (at x = 0)
L = beam length
q = a distributed static load
w = vertical deflection

W(·) = function representing the dependence on fr, α, and the ratio x/L
x = distance along beam from supported end
α = beam taper factor

Figure 2.2-1
Illustration of a Tapered Cantilever Beam
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In thephysics-basedmodel givenbyeq. (2-2),w is theoutput variable, xandLare the input variables, and the remaining
five inputs are the parameters associated with this specific model form. It is noted that the input variables x and L are
identified by adding them as arguments to the left-hand side of eq. (2-2).
If the interest is in thevariationof thebeamdeflectionwwith thedistance x fromthesupportedendand the static loadq,

eq. (2-2) may be rewritten as

= i
k
jjj y

{
zzzw x q

qL
EI

W f x
L

( , ) , ,r

4

0
(2-3)

wherew is theoutputvariable, xandqare the inputvariables, and the remaining fivequantities, including thebeam length
L, are themodel parameters. Such reformulation is possible becausebothL andqhavedefinitivemeaningbothwithin and
outside of the specific model form used in this example.
(b) Example of Empirical Model. Consider the material resistance to failure due to fatigue that is characterized on the

basis of experimental data obtained at different values, commonly referred to as levels, of alternating applied stress. The
number of fatigue cycles to failure,N, is typically represented as a power-law function of the alternating applied stress, S

=
i
k
jjjjj

y
{
zzzzzN S b S

S
( )

b

0
0

1
(2-4)

where
b0, b1 = parameters estimated from experimental data

N = number of fatigue cycles to failure
S = alternating applied stress
S0 = normalizing constant

In the empiricalmodel givenbyeq. (2-4), by thedefinitionsabove,N is theoutput variable,S is the input variable, and S0,
b0, b1 are the parameters associated with this specific model form. The parameter S0 is a normalizing constant, and the
parameters b0 and b1 are estimated from experimental data. As in the example of a physics-basedmodel in (a), the input
variable S is identified by adding it as an argument to the left-hand side of eq. (2-4). In the current example, however, the
parameters b0 and b1 do not possess definitive physical meaning and are onlymeaningful within the specificmodel form
used in this example. Therefore, neitherb0 nor b1 canbe viewedas an input variable. On the other hand, the input variable
S possesses definitive physical meaning both within and outside this model. Input variables such as S are also commonly
referred to as explanatory variables. It is noted that the input variable S can take an arbitrary valuewithin its range in the
model application domain, whereas the model parameters b0 and b1 are represented by their best estimates and uncer-
tainties.
The power-law functional form of S in this empirical model does not originate from understanding the physical

mechanism of failure due to fatigue. Rather, it is selected for the following reasons:
(1) good track record with applicability to many structural materials
(2) versatility of trends obtained
(3) ease of linearization with respect to estimated model parameters, which substantially simplifies the process of

model development
Indeed, taking logarithms of both sides of eq. (2-4) results in

[ ] = +N S b b S Sln ( ) ln( ) ln( / )0 1 0 (2-5)

and the formulationgivenby eq. (2-5) is theneasily fit by linear regression to a set of experimental data {Sj,Nj},whereNj is
a value of N obtained experimentally at the jth level of the alternating stress S. The residual errors associated with such
linear regression are discussed in para. 2.8.

2.3 Errors and Uncertainties

In this paragraph, error and uncertainty are defined and classified, with further discussion provided in para. 2.4.
(a) error: quantitative difference between a measured or calculated value and the referent or true value.
(b) uncertainty: lack of certainty due to inherent randomness and/or insufficient knowledge.
(1) aleatory uncertainty: uncertainty due to inherent randomness (irreducible).
(2) epistemic uncertainty: uncertainty due to lack of knowledge (reducible).
(-a) recognized: lack-of-knowledge uncertainty that is consciously recognized.
(-b) unrecognized: lack-of-knowledge uncertainty that is not known to exist.
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The true value of a quantity is knownonly in specific situations, e.g.,when the value for a physical constant is defined by
convention, such as the gravitational constant, or by international agreement in metrology.
The true value of anymeasurement in nature is never known exactly; it is typically only known to within an estimated

uncertainty. Consequently,whether the true value is knownor unknown, errors can bemodeled as uncertainties. Inmost
instances, this uncertainty would be epistemic in nature because it is theoretically reducible.
UQ in the context of VVUQ is the mathematical assessment of uncertainties in model simulation results and experi-

mental results. Table2.3-1provides abreakdownofvarious sources, thedifferent errorsoruncertainties, and the typesof
each, with examples. This table only illustrates common classifications. Inmany cases, different uncertainty types can be
modeled in different ways depending on the application problem, analyst preference, organizational culture, etc.

2.4 Aleatory and Epistemic Uncertainties

Aleatory uncertainty is also referred to as stochastic uncertainty, statistical uncertainty, irreducible uncertainty, varia-
bility, and inherent uncertainty. The fundamental nature of aleatory uncertainty lies in randomness, i.e., that of a
stochastic process. Aleatory uncertainty commonly occurs in parameters that describe a system of interest. These
may be, e.g., the stiffness (Young’s modulus) of a material, the mass and geometric properties of a component or
subsystem, or the stiffness in a bolted or riveted joint.
Epistemic uncertainty is also referred to as reducible uncertainty, knowledge uncertainty, and subjective uncertainty.

The fundamental source of epistemic uncertainty is incomplete information or knowledge of any type that is related to
modeling the system of interest, the environment the system is exposed to, and any approximations made during the
formulationof themodel. Epistemicuncertainty is associatedwith themodelerorobserver,whereasaleatoryuncertainty
is associated with the system being modeled or observed.
Incomplete knowledge of the aleatory uncertainty results in a mixture of aleatory and epistemic uncertainty. Such an

example is limited sampling. Includingmore samples reduces the epistemic uncertainty, but not necessarily the aleatory
uncertainty. In fact, more samples may increase the aleatory uncertainty by improving knowledge of the true distribu-
tions.

Table 2.3-1
Examples of Sources of Error and Uncertainty

Source
Error/

Uncertainty Type Examples
Model Error Numerical Errors associated with discretization, lack of mesh convergence, time stepping,

numerical integration/differentiation, contact algorithms, hourglass controls, etc.
Parametric Incorrect parameter assertion
Model form Errors associated with idealized representation of true physics; geometric

simplifications such as 2D plane strain/stress idealization; ignoring physical realities
such as temperature effects

Uncertainty Epistemic Unrecognized loading condition or failuremode; use of approximate probabilitymodels;
assumption of probability models; small sample size

Aleatory Probability distributions for model parameters
Experimental
setup

Error Setup Incorrect or incomplete experimental planning or execution
Instrumentation Exceeding physical limitations of experimental instruments; improper calibration
Human Misplacement of sensors/instruments; incorrect readings or transcriptions

Uncertainty Epistemic Imperfect knowledge of loads/excitations and/or environmental conditions;
measurement bias; insufficient number of experimental replications

Aleatory Variability in material properties, load/excitations, environmental conditions, and
measurements

As-built test
article

Error Design Misspecification of material requirements
Construction Improper or inferiormaterials; deviations fromdesign specifications (as-built versus as-

designed); varying bolt torque during assembly of a component
Uncertainty Epistemic Unknowndesign tolerances; lack of knowledge about connectivity between components,

method of construction, or boundary conditions; unknown material properties
Aleatory Load/excitations, environmental conditions
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Epistemic uncertainties are classified as recognized or unrecognized. A recognized epistemic uncertainty is one that
acknowledges a limited stateof knowledge exists concerning someaspect ofmodeling, andanattempt ismade toquantify
this limited knowledge. In this situation, when little or no experimental data are available for input quantities, it is
common to resort to “expert” opinions from people knowledgeable of the system and environment. Some sources
of recognized epistemic uncertainty are limited knowledgeof thematerial properties of the system, boundary conditions,
initial conditions, and system excitation.
Another important exampleof a recognizedepistemicuncertainty ismodel-formuncertainty. This is uncertaintydue to

assumptions and approximations made in the formulation of the mathematical model of the system and environment.
Generally, increasing the fidelity of the physics embodied within a model decreases the model-form uncertainty.
However, higher fidelity also increases complexity,which in turn typically increases the number of parameters, computa-
tional burden, and the likelihood of errors.
An unrecognized epistemic uncertainty is commonly referred to as a blind uncertainty or an “unknown unknown.”

Common sources of unrecognized epistemic uncertainty are (unrecognized) human mistakes, misuse (either uninten-
tional or intentional) of the system, mistakes in judgment concerning modeling of the system or environment, and
undiscovered or misunderstood physical processes/mechanisms. Additional examples include unidentified program-
ming mistakes in the simulation software, mistakes in the preparation of input data, and mistakes in recording or
processing experimental data used for validation.

2.5 Deterministic and Nondeterministic Quantities

In the context of uncertaintyquantification, bothvariables andparameters in agivenmodelmaybe referred toas either
deterministic or nondeterministic. These terms are defined as follows:
deterministic quantity: a variable or a parameter that is not considered uncertain and therefore can be assigned a fixed
value.
nondeterministic quantity: a variable or a parameter that is considereduncertain and therefore cannot be assigned a fixed
value.

The uncertainties associated with nondeterministic variables and parameters may be aleatory, epistemic, or a combi-
nationof the two, as defined inpara. 2.4, andmaybe treatedusingprobabilistic or nonprobabilisticmethods, as discussed
in para. 2.6.
With reference to the physics-based model represented by eq. (2-3), the input variable x and any of the model pa-

rameters are treated as either deterministic or nondeterministic quantities depending onwhether or not the uncertainty
associated with each quantity is of interest, or is deemed to have a significant effect on the output variable w. Given any
uncertainty in the input variable x or in the model parameters, the output variable w is uncertain.
With reference to the empirical model represented by eq. (2-4), the input variable S may be treated either determi-

nistically or nondeterministically depending on whether the uncertainty associated with S is of interest or is deemed to
havea significant effect on theoutput variableN. Thenormalizingmodel parameter S0 is assignedanarbitrary fixedvalue,
i.e., treated deterministically. However, the model parameters b0 and b1 are estimated from experimental data. In engi-
neering applications of thismodel, the best estimate values of b0 and b1 are commonly used to determine the variation of
the output variable N with the input variable S. However, the nondeterministic nature of b0 and b1 is accounted for as
described in para. 3.1.2.

2.6 Probabilistic and Nonprobabilistic Methods

Probabilistic methods treat uncertain variables and parameters of a mathematical model as random quantities
described by probability distributions. These terms are defined as follows:
probability distribution: a mathematical relation describing how the probability associated with a variable or parameter
varies with the value of the variable or parameter.
random quantity: a variable or parameter that is subject to inherent variations usually described by an associated prob-
ability distribution.

A probability distribution is typically expressed in the form of a probability density function (PDF) or a cumulative
distribution function (CDF). A simple example is a normally distributed random variable,1 X, with a PDF given by ref. [5]:

1 In this Standard, the term “random variable” is used for both “random variable” and “random parameter” and will be the convention used.
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=
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{
zzzzzzf x
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( )

1
2

exp
( )

2X

2

2 (2-6)

where x is a specific value of X.
Examples of a PDF and a CDF for a normally distributed random variable are shown in Figure 2.6-1. Generally, the

probability distribution (PDF or CDF) has its own parameters, such as themean, μ, and standard deviation, σ, in eq. (2-6),
which are typically estimated from data.
Two illustrations of aleatory and epistemic uncertainty are shown in Figure 2.6-1. In the figure, aleatory uncertainty is

characterized by a PDF [illustration (a)] or alternatively a CDF [illustration (b)]. The PDF and CDF are alternativeways to
describe the same uncertainty, and for simplicity the term “probability distribution” is used herein to refer to either
representation.
A probabilistic representation iswell suited for aleatory uncertainties (see para. 2.4)where an appropriate probability

distribution can be constructed or assumed. In some cases, a PDFmay also be used to represent epistemic uncertainties.
For example, in Figure 2.6-1, a uniform distribution over an interval [a, b] may be selected to represent the epistemic
uncertainty in the mean, μ, of the normal distribution used to represent the aleatory uncertainty. In other cases, a
probability distribution is not appropriate for representing epistemic uncertainties. In such cases, the uncertainties
could be treated using other mathematical theories such as intervals, probability bounds, or evidence theory (refs.
[6], [7], [8]). For the nonprobabilistic representation of epistemic uncertainties, this Standard is confined to cases
where uncertainty bounds can be reasonably established, enabling the use of interval methods. In Figure 2.6-1, for
example, a uniform PDF mathematically assigns a constant probability to all values of μ in the interval in [a, b]. In
contrast, simply assigning the interval [a, b] to the mean, μ, makes no assertion about the relative likelihood of
any specific value of μ in the interval [a, b].

2.7 Sensitivity Analysis

Sensitivity analysis (SA) (ref. [9]) is performed to quantify the effects of changes in model inputs (e.g., material pa-
rameters, boundary conditions) on model outputs, i.e., response quantities (RQ).
Quantifying the relative importance of the model inputs can
(a) provide insight into the planning and justification of validation experiments
(b) facilitate model development decisions
(c) inform calibration activities
SA is oftenperformed in conjunctionwithUQ for two reasons. First, SA can suggestwhich inputs have negligible impact

on RQs and thus could be fixed during uncertainty propagation studies, resulting in reduced computational expense.
Second, the characterization of input uncertainty can influence the results of SA.

Figure 2.6-1
Illustration of Aleatory and Epistemic Uncertainty
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There are two basic types of SA: local and global. Local SA involves perturbing model inputs, typically one at a time,
around some nominal value to quantify the rates of change inmodel output(s) due to a change in amodel input. Local SA
doesnot consider theprobabilitydistributionof themodel input.Thisdeterministic approachcanbeproblematicbecause
a specific, local (nominal) value must be used. Most models of interest are also nonlinear, making local sensitivities of
limitedvalueexcept at or close to the specificpoint atwhich theywere computed.However, thewidespreaduseof local SA
is due primarily to simplicity and efficiency.
Global SA is used to study how the variation in amodel output can be apportioned to the various sources of variation in

themodel inputs (ref. [9]). These techniques are referred to as global because they consider the full variation in inputs, as
compared to local SAmethods that are used at a specific point. The twomost common outcomes from a global SA are the
main effect and total effect sensitivity indices. For a given model input, the main effect sensitivity index quantifies how
much theoutput variance is reduced if the input variance is zero. The total effect sensitivity index is themain effect plus all
interactions involving that input. Interaction effects are then quantified by taking the difference between the total and
main effect indices.
Depending on the type of global SA performed, e.g., factorial analysis (ref. [10]) or analysis of variance (ANOVA) (ref.

[11]), and the number of variates, global SA may require more computations than local SA. The number of simulation
evaluations for a local SA scales with the number of nondeterministic inputs, M. On the other hand, variance-based
decomposition (a typical method used to compute global sensitivity indices) may require N(M + 2) where N is the
user-specified number of sample evaluations. Ideally, the number of sample evaluations should be large enough
that increased evaluations do not further change the global SA results.

2.8 Residual Errors and Residual Uncertainty

Consider the empirical model for material resistance to failure due to fatigue defined in para. 2.2. As discussed, such a
modelmaybe easily fit by single-variable linear regression to a set of experimental values ofNobtained at different levels
of S, if themodel formulation is transformedas shownbyeq. (2-5). In theprocess of its development, the linear regression
model is typically represented as follows (ref. [11]):

= + +N b b S Sln( ) ln( ) ln( / )j j j0 1 0 (2-7)

where
{Sj, Nj} = the model-basis set of data points indexed by j

{Ԑj} = associatedvectorof residual errors, i.e., differencesbetween theobservedvaluesofNjand the fittedvaluesof
Nj

The distribution of Ԑj values has the mean of zero, and its standard deviation is commonly referred to as the standard
residual error, or simply as the standard error.
When the regressionmodel developed as described is used to simulateN as a function of input variables, the vector of

residual errors, {Ԑj}, is replaced by a random quantity denoted as UԐ. For a single input variable, the alternating stress, S,
the model is then formulated as follows:

=
i
k
jjjjj

y
{
zzzzzN S b S

S
U( ) exp( )

b

0
0

1
(2-8)

[ ] = + +N S b b S S Uln ( ) ln( ) ln( / )0 1 0 (2-9)

where
UԐ = random quantity representing residual uncertainty

The formulations given by eqs. (2-8) and (2-9) are equivalent. The uncertainty UԐ has a mean of zero and standard
deviation proportional, but not equal, to the standard error. This is further discussed in para. 3.1.2.
Thismodel as described has a single input variable, the alternating stress, S. It is quite common in engineering practice

for the model-basis data to be associated with multiple input variables having more than one level. In this example, the
model-basis datamay involve different levels of strain rate, temperature, and stress triaxiality (due to the use of different
specimen types in different testing rigs). Having the alternating stress as a single input variable in themodel assumes that
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none of the other input variables affects the material resistance to failure due to fatigue to an extent that would warrant
their incorporation into the model, and this may or may not be adequate.
A simple way of investigating the adequacy of this assumption is to incorporate an additive term into eq. (2-9) that is

associated with each of the other input variables and to examine the results of multivariable linear regression analysis.
Example results of such analysis are shown in Figure 2.8-1, representing the variation of the standard residual errorwith
the number of input variables included in themodel formulation. It is evident that considering the effect of both the strain
rate and the temperature is associatedwith substantial reduction in the standard residual error, whereas the addition of
the stress triaxiality to the model formulation does not result in any further decrease in this error.
Note that the standard residual error is not reduced to zero by incorporating additional input variables into themodel

formulation, i.e., improving the model quality this way eventually reaches a limit, which is determined by the inherent
randomness in the model-basis data. The residual uncertainty has multiple sources, both aleatory and epistemic, and is
therefore a mixed uncertainty. The sources of the residual uncertainty are further discussed in para. 3.1.

3 UNCERTAINTY QUANTIFICATION IN MODELING AND SIMULATION

Bydefinition, amodel is anapproximationof reality, and thedegreeof that approximationaswell as thevarioussources
of uncertainty affect the accuracy of predictions made with the model. As described in this section, the nature of the
problem and the source of uncertainties guide how the UQ is performed.
Generally, uncertainties in modeling and simulation can be associated with
(a) model form
(b) model inputs
(c) numerical solutions
(d) model-basis data

Figure 2.8-1
Variation of Standard Residual Error With Number of Input Variables Included in Empirical Model Formulation
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Understanding the differences between these sources of uncertainties is important because different characterization
and analysis techniques are often used to quantify the uncertainties originating from different sources and to propagate
these uncertainties through themodel. Uncertainty propagation is the process of using the knowledge about uncertainty
in model input variables to quantify the uncertainty in output variables. In para. 3.1, a brief discussion is provided of the
sourcesof uncertainties inphysics-basedandempiricalmodels. In para. 3.2, severalmethods foruncertainty propagation
are discussed.

3.1 Sources of Uncertainty in Modeling

There are three sources of uncertainty in physics-based computational models: themodel form, themodel inputs, and
thenumerical solution. Uncertainties in themodel formarise fromassumptions or approximations in the formulationof a
specific set of mathematical equations to represent the reality of interest. Model input uncertainties represent the
uncertainties in thenondeterministic input variables andparameters associatedwith the selectedmodel form.Numerical
solution uncertainties arise, for example, due to discretization approximations, iterative solution algorithms, and par-
ticular computational platform characteristics.
The uncertainties in empirical models originate primarily from three sources: the model form, the model inputs, and

the model-basis data. As in the physics-based models, the uncertainties in the model form result from assumptions and
approximations in the selection or formulation of a specific set of mathematical equations to represent the reality of
interest. The uncertainties in the model-basis data arise from errors, both systematic and random, in the experimental
data used to develop themodel, as well as from limited sample size and a number of other limitations associatedwith the
model-basis data sets. Unlike in thephysics-basedmodels, suchuncertainties are amajor, andoften adominant, source of
uncertainties in the empiricalmodels. Uncertainties associatedwith themodel parameters (and thenumerical solution, if
applicable) typically play a smaller role in the empirical models than in the physics-based models.

3.1.1 Uncertainties in Model Form. Because the true form of the model is not known, the selection of a specific
mathematical form for a given modeling application will lead to some level of model-form uncertainty. In the
process of developing a model, there are numerous questions that must be considered, such as
(a) What can and should be modeled mathematically?
(b) What are the important features that the model must accurately represent?
(c) What role do computational constraints, model dimensionality, and code maturity play in the complexity of the

model?
(d) What physical principles or data is the model derived from?
(e) Is the model expected to be adequate in the entire prediction or application space?
Model-formuncertainty is generally treated as an epistemic uncertainty because it stems from the inexact nature of the

modeling process. Physics intentionally ignored or unintentionally missed in the idealizedmathematical representation
always exists. One example ofmissedphysics ismodeling the boundary condition of a cantilever beamas fully fixed,when
in reality there is some rotational movement. Another example of model-form uncertainty involves the computer-aided
construction of amodel, in which the part geometry is defeatured (simplified by removal of selected details) based on its
relevance to the fidelity of the simulation and before meshing. The extent of defeaturing may be driven by engineering
intuition, formal geometry feature sensitivity, or both.
In theory, model-form uncertainty can be reduced through model enhancements, such as incorporation of additional

mechanisms in a physics-based model or additional terms in an empirical model. An example of adding terms to an
empiricalmodelwasdiscussed inpara. 2.8,where thebasemodel formulation eq. (2-8)with a single input variable, S,was
amendedwith additional terms representing the effects of additional explanatory variables. Themodel-formuncertainty
contributes to the residual uncertainty in the empirical models. Therefore, reducing the model-form uncertainty by
adding appropriate terms to the model formulation results in a reduction of the residual uncertainty, as shown in
Figure 2.8-1. Of course, themodel-formuncertainty is reduced only if the input variables added to themodel formulation
have statistically significant effects on the responsevariable beingmodeled. It is also recognized that adding fidelity to the
model will often introduce additional nondeterministic input variables and parameters, and the uncertainties in these
added inputs will contribute to the uncertainty in the model output.
In practice, however, model enhancements have important limitations. Adding new physical mechanisms increases

computational expense or may require new code development. Additional physical mechanisms may require modifica-
tions to the underlying equations as different mechanisms are often treated with different mathematical formalisms.
Manymolecular scale mechanisms, for example, are not easily modeled using continuummechanics. Meanwhile, adding
terms to an empiricalmodelmay lead to difficultieswith simultaneous estimation ofmanymodel parameters, commonly
referred to as overparameterization or overfitting.
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Thevalidationprocessquantifies thediscrepancybetween the experimental and simulationoutputs. Theexperimental
output with its associated aleatory and epistemic uncertainties is typically taken as the truth (i.e., referent) for the
purposes of validation. If all significant uncertainties are accounted for, a sufficient number of samples are used to
characterize and propagate the uncertainties, and nomistakes or blunders weremade, then themodel-form uncertainty
will be the main contributor to this discrepancy. Practically, however, the discrepancy between the experimental and
simulation outputs always results from multiple sources of uncertainty, only a portion of which is model-form uncer-
tainty. There is currently nowidely acceptedmethodology to isolate the contribution of themodel-formuncertainty from
the discrepancy between the experimental and simulation outputs.

3.1.2 Uncertainties in Model Inputs. Uncertainties in the model input variables and parameters are typically quan-
tified using statisticalmethods or expert judgment and available reference information. It is typical to employ a combina-
tion of these twomethods by having an expert provide an initial assessment of the uncertainty that is then updated using
statistical methods when the relevant data become available.
Statistical estimation andmodel-fittingmethods are used for probabilistic UQwhere themodel input uncertainties are

represented by probability distributions. Inmost cases, the formof the probability distribution (e.g., normal, log-normal)
is assumed, and the parameters of the probability distribution are estimated statistically from either available experi-
mental data or lower-level simulations in a hierarchical model. It is noted that empirical models, by definition, involve
parameters estimated from the model-basis data, such as b0 and b1 in the example discussed in section 2. Unless such
parameters are themselves quantities of interest being modeled, they are typically treated deterministically when the
model is used to simulate the output variable (see para. 2.5). However, the additional uncertainty in the output variable
due to the uncertainties associatedwith the fitted parameters is incorporated into the residual uncertainty to account for
the nondeterministic nature of these parameters (ref. [11]). As a result, the standarddeviation of the residual uncertainty
is larger than the standard residual error estimated from themodel-basis data and is not constant across the ranges of the
input variables in the model-basis data set.
Depending on the complexities of themodel, quantity, and quality of available data, and the number of input variables

and parameters in the model, different statistical methods may be used for the estimation of probability distribution
parameters. Experimental data for the uncertainmodulus of elasticity, for example, can be used to estimate themean and
standard deviation of its distribution, as illustrated in Figure 3.1.2-1. For situations where the experimental data are
scarce, Bayesian inference approachesmay be employed.When themodel inputs are functions of other variables, lower-
tier models are typically required for the uncertainties in such inputs to be properly quantified.
Bayesian estimation (ref. [12]) can be used to update (i.e., improve the estimate of) parameters given new information.

The Bayesianmethodology has the added benefit of being able to incorporate a wide range of different types of informa-
tion that other techniques cannot easily consider, such as expert knowledge. As previously stated, uncertainty associated
with expert knowledge is epistemic uncertainty. When experimental data are used in Bayesian estimation to improve
prior parameter estimates based on expert knowledge, the epistemic uncertainty in the prior estimates is reduced
according to the amount of relevant information contained in the experimental data. With sufficient experimental
data, the epistemic uncertainty in the Bayesian parameter estimates can be made arbitrarily small; however, there
remains aleatory uncertainty in the Bayesian parameter estimates associated with the variability in the experimental
data used in the Bayesian estimation (refs. [13], [14]).
When using Bayesian estimation to improve the estimates of model parameters, onemust be wary of large changes to

the prior estimates relative to the uncertainties originally assumed for those prior estimates. If the changes exceed the
range of uncertainties originally assumed, then the changes should be viewed as inconsistent with the prior modeling
assumptions, which should therefore be reevaluated. Furthermore, if the updated estimate of any parameter changes
significantly from its prior estimate without a correspondingly significant reduction in its uncertainty, that parameter
should be removed from the set of parameters being estimated, or additional informative data should be sought.
The uncertainties in the model inputs may also be quantified purely on the basis of expert judgment or reference

information fromexisting standardsor available literature. This formofuncertainty quantification is often subjective and
maypossessa largedegreeof impliedepistemicuncertainty. In suchcases, it is advisable tousenonprobabilisticmethods,
such as interval analysis, so as not to assert knowledge of the probability distribution form and/or its parameters.

3.1.3 Uncertainties inNumericalSolutions.Numerical solutionuncertainties arise fromavarietyof sources including
spatial/temporal discretization, solution controls, and computational platform characteristics. Uncertainties generated
as part of the numerical solution of the model are termed numerical solution uncertainties and are best addressed by
performing calculation (solution) verification. The strategy of addressing numerical solution uncertainties in the overall
UQ process is either to demonstrate that they are negligible or to quantify their impact on the model output. When
demonstrating that the effect is negligible, themodel developermust ensure that this condition is true for the entire space
(or range) of parameter uncertainty.
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Discretization of the idealized geometry for solid mechanics field solvers usually refers to discretization of the defea-
tured geometry. The resulting level of accuracy in boundary representation of curved entities is usually confoundedwith
the level of spatial resolution and, therefore, spatial convergence of the deformation field. Numerical uncertainty arising
fromspatial discretization is quantified by refining themeshwhile retaining local geometric proportionality between the
meshes. Assuming that theRQsare in their asymptotic convergence rangewith respect to spatial resolution, aRichardson
extrapolation process can be used to estimate converged values of the RQs and their convergence rates (refs. [6], [15]).
For most load histories and deformation modes of engineering interest, time/load steps are required to resolve the

equations of motion as well as path-dependent processes such as incremental plasticity. Additionally, time/load steps
may be determined from numerical stability considerations such as themaximum time-step for a givenmodel in explicit
dynamicsanalyses.Typically, solidmechanicsmodeling systemsprovideanadaptive time-stepsize feature that increases
or decreases the time-step to improve efficiency. The simplest way of quantifying numerical uncertainties related to
temporal convergence is to allow automatic time-stepping in the UQ study and to perform a sensitivity study of the RQs
with respect to the maximum allowed time step to demonstrate invariance of the RQs to step size.
Solution controls include, but arenot limited to, allowable andmaximumresiduals for equilibrium iterations, hourglass

controls for finite elements, and choices of preconditioners. Hourglass control for a class of problems involving large
deformation and failure may be a nonnegligible uncertainty that needs to be included in the overall UQ analysis. As with
temporal discretization, thepreferredapproach is todetermine a set of controls forwhich these factors canbe considered
negligible.
Numerical uncertainty in spectral analysis arises from the extraction of modes, i.e., the spectral decomposition of

systemequationsof state. Thequality of themodes is related tomesh resolutionandeigensolver settings, and thenumber
ofmodes affects theuncertainty in resolving the desired systemresponses. All these factorsmayhavean effect on theRQs
and need to be assessed through a rigorous parametric study.
Computational platform characteristics include microprocessor architecture, the number of processors per node,

vendor, operating system, compiler, and compiler optimization levels. In large-scale system simulations on parallel
computers, consistency across the various processors must be considered before performing UQ. Invariance of RQs
with respect to processor count needs to be evaluated once the computational platform is selected.

Figure 3.1.2-1
Defining a Random Variable Using Data

Young's Modulus, GPa

Fr
eq

u
en

cy

206.0 221.7 216.9 196.4

202.8 210.6 205.2 211.6

207.7 203.9

3. CONSTRUCT HISTOGRAM4. SELECT PROBABILITY DISTRIBUTION

P
ro

b
ab

ili
ty

Young’s Modulus, GPa

Random variable

Values of Young’s Modulus (GPa)

1. CONDUCT EXPERIMENT

Mean (µ) = 208.3 GPa

Standard deviation (   ) = 7.3 GPa

Coefficient of variation (COV) =    /µ = 3.5%

2. PERFORM STATISTICAL ANALYSIS

0

0.5

1

1.5

2

2.5

3

3.5

196 200 204 208 212 216 220 224

s

s

ASME VVUQ 10.2-2021

12

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME VVUQ 10
.2 

20
21

https://asmenormdoc.com/api2/?name=ASME VVUQ 10.2 2021.pdf


3.1.4 Uncertainties inModel-BasisData.Uncertainties in themodel-basisdatacontribute to theoverall uncertainty in
the model output. Random errors in the model-basis data are one of the sources of the residual uncertainty defined in
para. 2.8. The residual uncertainty component associated with these errors is aleatory in nature, since it represents the
inherent randomness in the data.With reference to Figure 2.8-1, this component of the residual uncertainty corresponds
to the minimum value of the standard residual error that can be attained by incorporating all influential input variables
into the model formulation. The systematic errors in the reported values of the output variable may also provide a
significant contribution to the uncertainty in the model-basis data, in addition to the contribution made by the
random errors and addressed by the residual uncertainty.
In addition to the random and systematic errors in the experimental results, a number of other sources of uncertainty

are typically present in the model-basis data. One such source is associated with the substantial lack of balance in the
model-basis datawithmultiple input variableswhendifferent experimental conditions are representedby very different
numbersofdatapoints. In somecases, theuncertaintyarising fromthis sourcemaybe reducedwithout compromising the
model adequacy bymeans of weighted regression analysis and related statistical techniques. Limited sample size repre-
sents another source of uncertainty in the model-basis data, and in engineering practice is typically addressed by
increasing the magnitude of the residual uncertainty, e.g., by using the Student’s t-distribution instead of the standard
normal distribution to represent the residual uncertainty (ref. [16]).

3.2 Uncertainty Propagation

Uncertainty propagation, illustrated in Figure 3.2-1, is the process of using knowledge about the uncertainty in the
input variables and parameters of a model to quantify the uncertainty in the output variables (i.e., RQs). It is also used to
propagate uncertainty from lower tiers in a modeling hierarchy to higher tiers (see section 7). There are numerous
approaches to uncertainty propagation. This paragraph briefly discusses the most commonly used and widely accepted
approaches.
Uncertainty propagationmethods include samplingmethods, perturbationmethods, and stochastic spectral methods.

All of these methods require the assignment of probability distributions for the nondeterministic variables and param-
eters, typically in the form of PDFs or CDFs. Sampling methods take a variety of forms. The most robust sample-based
methods use random sampling from the input variable and parameter distributions and are referred to as Monte Carlo
methods (orMonteCarlo simulations). Themodel is evaluatedwith each randomsample and the results used to construct
output PDFs (and/or CDFs).Monte Carlomethods, although robust and accurate, are often computationally expensive, as
they require a large number of samples (and thus a large number of model runs) to sufficiently converge on response
distributions and statistics. To reduce computational effort, a variety of variance reduction techniques can be used to
reduce the number of samples required for convergence. These include stratified sampling, Latin hypercube sampling,
importance sampling, and antithetic variates among others (ref. [17]).
Perturbationmethodsuse variousnumerical integration strategies, typically employingmodelparameter sensitivities.

Theywere developed for a variety of reasons, but primarily to avoid the computational cost associatedwith sampling. In
many cases, perturbationmethods, e.g., first- and second-order reliabilitymethods (ref. [18]), are farmore efficient than

Figure 3.2-1
Illustration of the Uncertainty Propagation Process

Input
Uncertainties

Material Stiffness

Output
Uncertainty

Support Flexibility

Model

Beam Tip Displacement

P
D

F

P
D

F
P

D
F

ASME VVUQ 10.2-2021

13

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME VVUQ 10
.2 

20
21

https://asmenormdoc.com/api2/?name=ASME VVUQ 10.2 2021.pdf


samplingmethods, especiallywhen themodel is computationally expensive to evaluate. However, perturbationmethods
also require considerable computational effort to obtainmodel parameter sensitivities for problemswith a large number
of random variables (ref. [19]). There are also hybrid methods that combine sampling and perturbation methods to
balance accuracy with computational cost (ref. [20]).
Stochastic spectral (or Galerkin) methods (ref. [21]) such as polynomial chaos augment the system of differential or

differenceequations that compose thephysicalmodelwith stochastic parameters that represent theuncertainty. Someof
these methods are referred to as intrusive methods because implementation requires intrusive modification of the
equations of motion. Other stochastic spectral methods are nonintrusive. While powerful for some applications,
they are not discussed here because their use is limited to specific classes of problems and their implementation
is complex and requires specialized solvers that are undesirable for practical applications. Samplingmethods andpertur-
bationmethods are considerednonintrusive because uncertainty is propagated using existing deterministic solvers (e.g.,
commercial finite element codes) and require no modifications to the governing equations.
All uncertainty propagationmethods involve approximations thatmust be recognized and quantified in the validation

process. Moreover, these methods themselves must be verified before being employed in the model validation process.

4 UNCERTAINTY QUANTIFICATION IN VALIDATION EXPERIMENTS

A validation experiment is specifically planned and performed to assess the accuracy of a computationalmodel. Unlike
other types of experiments that are performed to improve fundamental understanding of the physical system or to
estimate model parameter values, validation experiments are specifically conducted to provide an independent
measure to compare with model simulation outputs and quantify the sources of discrepancy. Because experimental
outputs are comparedwith simulation outputs, the ideal validation experiment should be conducted in a highly specified
and controlled environment. While this section focuses on validation experiments, the guidance offered here can be
applied to other types of experimentation as well.

4.1 Characteristics of Validation Experiments

Validation experiments are planned and performed to generate high-quality experimental data specifically for the
purpose of model validation and understanding associated uncertainties (ref. [6]). Full details should be provided in a
validation testplan.Theapplied loads, as-built specimengeometry,materials, initial conditions, boundaryconditions, and
all other experimental inputs must be precisely controlled or accurately measured. Variables and parameters that are
uncertain require a testing strategy that sufficiently represents the input uncertainties, such as replicate testing and
design of experiments. Correspondingly, the specimen response must be measured with high, quantified accuracy
including uncertainty. A good validation test plan provides asmany details as possible, requiring few, if any, assumptions
on the part of the model developers’ interpretation of the experiment.
The key considerations in planning validation experiments include the following, adapted from ref. [22]:
(a) Theexperiments shouldbeplanned to capture theessential physicsof interest, includingall relevantphysical input

variables and parameters as well as initial and boundary conditions.
(b) The experiments should be planned with emphasis on the inherent synergism between the computational and

experimental approaches.
(c) The experiments should be planned to enable the uncertainties in the acquired data, including the measurement

uncertainty, to be adequately characterized and quantified.
(d) Dependingon theproblem,multipleRQs shouldbemeasured so as topresent a rangeof phenomenaanddata types

(e.g., strain, displacement, acceleration) for comparison with the simulation.
The planning of the experiments should be performed as a joint exercise between the experimentalists and the model

developers. This is because the experimentalists need to gain a firm understanding of what the modelers aim to predict,
and the modelers need a firm understanding of how the experimentalists intend to measure it. Often, preliminary (i.e.,
verified but not yet validated) or simplified versions ofmodel simulations can helpwith the planning of each experiment,
but these interactions should be noted in the validation plan and documentation. The final experimental outputs should
not be provided to themodel developers until after their model simulations have been performed to ensure an unbiased
comparison. Alternatively, if themodel developers do have access to completed experiments, they should be transparent
about any influence on their model simulations that could not be avoided.
Theremust be a sharedunderstandingofwhat responseswill bemeasured experimentally. Additionally, theremust be

an agreement about all relevant physical input variables and parameters as well as initial and boundary conditions to be
controlled (and possibly measured) experimentally. It is generally recommended that model developers perform a
parametric study with the verified model to determine model sensitivities to help inform the experimental test
plan concerning test conditions, instrumentation, data acquisition, and other factors. Pretest sensitivity analyses
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should also be performed to identify the most effective types of validation experiments, loading locations, sensor loca-
tions, and other relevant conditions.
What can be prescribed very precisely numerically may not be readily produced experimentally, and vice versa. For

example, the cantilevered boundary condition of Figure 3.2-1 can be prescribed perfectly in the model. However,
imposing a true cantilevered boundary condition is impossible to achieve experimentally because there will always
be some rotational movement between the test fixture and the test article in the experiment, whereas in the
model there will be none. Conversely, using a flat plate to apply a load over a region of a beam may be relatively
simple to execute experimentally, but load uniformity is not perfect, which introduces additional challenges for the
modeler.
Ideally, themodel RQs are directlymeasured in the validation experiment. However, the experimental RQsmay not be

directly measurable, may occur in small regions or in regions of high gradients where measurements are not practical,
may not be measured without perturbing the intended test conditions, or may not be obtained with a sufficient level of
accuracy. Thus, the actualmeasuredRQsmayonlybe related to thedesiredRQs, and this informationmust beprovided to
the modeler prior to performing model simulations.
It is highly beneficial if the experimental data allow different aspects of the model to be assessed. An example is

measuring strain at additional points on a beam-bending experiment as opposed to only the maximum deflection.
Although some RQs may be of secondary importance, accurate simulations of these responses provide additional
evidence that themodel correctly simulates the governing physics. This qualitatively builds confidence that the computa-
tional model can be used tomake accurate predictions for problem specifications that are different (within reason) from
those considered in model development and validation.
In many practical cases, experiments involve multiple variables, and validation data under many different testing

conditions are required. In such cases, themethodology of statistical experimental design (ref. [23]) often ensures that a
minimumamount of experimentalwork is performed to achieve the required level of statistical confidence in the process
of uncertainty characterization and quantification, and that the uncertainty characterization and quantification are
performed as efficiently and accurately as possible for a given amount of validation data. Therefore, the methodology
of statistical experimental design should always be considered in the planning of validation experiments whenever
appropriate and practical.

4.2 Uncertainty Quantification in Validation Experiments

Validation experiments should be performed at multiple validation points to ensure sufficient coverage of the entire
validation space.Becauseuncertainties are involved, a singlevalidationexperimentat agivenvalidationpoint is generally
insufficient. Replicate experiments should be performed at each validation point to quantify the uncertainty in the
experimental outputs. When replicate experiments are not available, uncertainty in experimental outputs must be esti-
mated by other means, such as relying on experience and judgment. As another example, when symmetry is present,
replicate results may be obtained by taking measurements at symmetrical locations on the test specimen.
During the early stages of experimental planning, it is useful to consider all potential sources of uncertainties and to

make an estimate of those uncertainties. ASME PTC 19.1 (ref. [24]) recommends performing a pretest UQ followed by a
comparison with post-test UQ. Similarly, Coleman and Steele (ref. [25]) reflect this recommendation by performing a
general uncertainty analysis early in the experimental planning process, followed by a detailed uncertainty analysis.
Estimates areupdatedas the experimental planningand testingmove towardcompletionandpost-testUQanalysis.Many
methods can be used for estimating measurement uncertainty, including previous test results, published data, expert
judgment, and even comparison ofmultiplemethods ofmeasurement in a single test. Collectively, these pretest and post-
test activities promote early and ongoing communication between experimentalists and model developers, identify
resource allocation opportunities (both computational and experimental), inform the final stages of experimental plan-
ning, likely result in reduced measurement uncertainties, and possibly identify which measurements may dominate in
overall result uncertainty.
The result of an experimental test is often calculated indirectly from several direct measurements using either a data

reduction equation or a computational simulation. Thus, the uncertainties associatedwith each individualmeasurement
are propagated to estimate the uncertainty of the result. Techniques for propagation of experimental measurement
uncertainty are similar to those used in uncertainty propagation for simulations. For example, Taylor series approx-
imations and Monte Carlo simulation techniques can be used to propagate the measurement uncertainties into the
desired form; an in-depth description and multiple examples are given in ASME PTC 19.1.
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5 UNCERTAINTY QUANTIFICATION IN MODEL VALIDATION ASSESSMENT

A validationmetric is used to compare an uncertain output from themodel simulationwith a corresponding uncertain
output from the validation experiment. This validation metric is then compared to the validation requirement to assess
whether or not the validation requirement is satisfied. In selecting the validation metric, key considerations should be
what themodel isexpected topredict (relative to the intendeduseof themodel) aswell aswhat typesof experimentaldata
are available or needed.

5.1 Validation Requirements

As defined in V&V 10 (ref. [2]), validation requirements are “specifications and expectations that a computational
modelmustmeet to be acceptable for its intended use.” They are project-specific and are dependent on budget, schedule,
risk tolerance, safety margin, and other considerations. Validation requirements should be agreed upon and specified
during the development of the VVUQ plan, prior to performing any validation experiments ormodel simulations. Valida-
tion requirements depend on the intended use of the model, type of analysis, uncertainty quantification approach,
available data, and other factors, such as the consequence of making a wrong decision based on a model prediction.
For example, a team developing and validating a model to predict automotive crashworthiness may employ an explicit
dynamic finite element model to simulate a frontal impact scenario. RQs could include maximum deformation and
accelerationhistories at various locations on the automobile and theoccupant(s). Because validationmetrics incorporate
uncertainties in both experimental and simulation outputs, validation requirements may need to be defined in terms of
uncertainty (e.g., the model is expected to be accurate for a given RQ to within 10% with 90% confidence).

5.2 Validation Metrics and Assessment

Comparison of simulation and experimental outputs, both of which include uncertainties, is performed with one or
more RQs. The RQs may be directly computed and measured or may be postprocessed to obtain the desired outputs for
comparison. These outputs are labeled “Simulation Outputs” and “Experimental Outputs” in Figure 1.1-1.
Graphical overlays (cross-plots) of simulation and experimental outputs are generally insufficient for purposes of

validation assessment. Even the corridor approach, where themodel is assumed to be validated if the simulation outputs
fallwithin some specified experimental corridor, is insufficient because the degree of agreement between simulation and
experiment is not explicitly quantified.
Comparison of simulation and experimental outputs requires some type of quantitative validation metric, which

usually takes the form of a difference measure (ref. [26]). Example metrics may include the difference between the
average values of simulated and measured outputs, the difference between statistics of outputs, or even the difference
between the probability distribution of outputs. A suitable validation metric should
(a) fully incorporate simulation and experimental uncertainties
(b) quantify the difference between simulation and experimental outputs
(c) reflect the level of uncertainty in the comparison
Validationmetrics and associated requirements should be established during the requirements definition phase of the

conceptual model development and must incorporate both numerical and experimental uncertainties.
Because uncertain quantities are involved, care must be taken to choose the RQs and validation metrics to ensure the

model is appropriately and sufficiently challenged. For example, to demonstrate how well the model simulates the
measured probability distribution, a metric that quantifies the difference between the simulated CDF and the experi-
mentally measured CDF would be appropriate.

5.2.1 MeanMetric. A simplemetric for comparing two uncertain quantities is the difference in the average (or mean)
values. An example is presented herein to introduce the concept of a simple metric that considers uncertainty.
Recognizing that the model-simulated RQ is uncertain and characterized as a random variable, Ymod, and that the

experimentallymeasuredRQ is also uncertain and characterized as a randomvariable, Yexp, themean, μ, for each of these
random variables may be computed. The difference between these means, as shown in eq. (5-1), can then be computed
and tested against a corresponding validation requirement. This mean, Δμ metric is clearly a function of the random
variables Ymod and Yexp, and therefore is ametric that considers uncertainty. However, this single-valuedmetric does not
directly account for (or provide insight into) themagnitudeof theuncertainty inYmod andYexp and thus little canbe stated
regarding the uncertainty of this measure.
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= Y Ymod exp (5-1)

With minimal effort, significant additional information can be obtained by extending themeanmetric. If Ymod and Yexp
are assumed independent,2 a new randomvariable, Z, can be defined as the difference betweenYmod and Yexp, fromwhich
the mean and standard deviation (σ) of Z can be computed:

=Z Y Ymod exp (5-2)

=Z Y Ymod exp (5-3)

= +Z Y Y
2 2
mod exp

(5-4)

where
Ymod = standard deviation of Ymod

Yexp = standard deviation of Yexp

Z = standard deviation of Z

This is shown graphically in Figure 5.2.1-1. The simulated and measured RQs are shown in Figure 5.2.1-1, illustration
(a), and the new random variable Z is shown in Figure 5.2.1-1, illustration (b).
As shown inFigure5.2.1-1, illustration (b), the variableZ is clearly alsouncertain. It is important tonote that thismetric

is different from themean Δμmetric introduced earlier. As shown in eq. (5-3), the mean of Z is, in fact, equal to the mean
metric, but Z also directly reflects the uncertainty in Ymod and Yexp. By quantifying σZ, upper and lower limits on Z can be
computed at any desired confidence level (e.g., 90%), which can then be tested against a corresponding validation
requirement. Therefore, adefinitive statement canbemaderegarding the confidence inwhich thevalidation requirement
is satisfied.

5.2.2 Area Metric. The area metric possesses many of the desirable features of a validation metric and fully accounts
for uncertainties in both the simulation and the experiment (ref. [27]). Accordingly, it provides a good basis for a discus-
sion on the use and interpretation of a metric when uncertainties are involved.
The area metric is a measure of the difference between the CDFs of two random variables, in this case, the CDF of the

simulated RQ and the CDF of the experimental RQ. The area metric, Z, is formulated as

2 Independence between simulated and measured RQs would require that uncertain loads applied to the model and the test article also be inde-
pendent. Thismay be accomplished by independently and randomly selecting loads to drive themodel and those to drive the test article from the same
random source.

Figure 5.2.1-1
Extension of the Mean Metric: The Difference Between Ymod and Yexp
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=Z F Y F Y dY( ) ( )mod exp (5-5)

where
Fexp(Y) = CDF of the experimental RQ
Fmod(Y) = CDF of the simulated RQ

The absolute value in eq. (5-5) denotes that only the magnitude of the difference is of interest, and that all differences
between Fmod(Y) and Fexp(Y) should be accumulated in the integration. It can be seen in Figure 5.2.2-1 that the entire
distribution is important, not just the mean, standard deviation, or some other summary statistic.
The shaded region in Figure 5.2.2-1, illustration (a), denotes the area computed by eq. (5-5). The two CDFs shown are

continuous functions, but the area can be computed evenwhen the experimental or simulated CDF is a stepwise function
(individual samples) or deterministic (a vertical line).
An important feature of the area metric is that the area equals zero when the experimental and simulated CDFs are

coincident [see Figure 5.2.2-1, illustration (b)]. Any difference between the two CDFs results in some area being accu-
mulated in eq. (5-5). This is appealing andmakes intuitive sense fromthe standpoint of ametric being adistancemeasure;
when twopoints (or functions in this case) are coincident, thedistancebetween the twopointsmust equal zero.However,
when uncertainties are involved, care must be taken to ensure that this result is interpreted correctly. An area of zero
means that themodel is simulating the sameuncertainty aswasmeasured in the validationexperiment. Fromonepoint of
view, the model cannot be expected to do any better than this. However, from the perspective of the ultimate intended
uses of the model, further model development may be required to reduce the uncertainty associated with the model
prediction.

5.2.3 Error Metric. The error metric is defined as the relative difference between the uncertain simulation output,
Ymod, and the uncertain experimental output, Yexp, written as

=Z
Y Y

Y
mod exp

exp
(5-6)

where Z is valid when the realizations of Yexp are not zero (ref. [28]).
Because Ymod and Yexp are both random variables, Zwill also be a random variable (i.e., uncertain). The PDF of Z [as in

Figure 5.2.3-1, illustration (a)] will usually not follow any standard PDF and will, in general, need to be evaluated by
sampling or some other uncertainty analysis method.
The probability of the absolute value of the error being less than or equal to a particular error value, z, is given by

Figure 5.2.2-1
Illustration of the Area Metric
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=p P Z z( ) (5-7)

which by definition is the CDF of |Z| [as in Figure 5.2.3-1, illustration (b)]. The presence of the absolute value in eq. (5-7)
reflects that the sign of the error is typically unimportant in themodel validation problem; our interest is focused only on
the magnitude of the difference between the possible values of Ymod and Yexp.
It should be noted that Ymod in eq. (5-6) describes the set of possible model simulations of a particular RQ, and in the

typical case is the result of propagating input uncertainties (random variables) through the model. Likewise, Yexp
describes the set of possible outputs from the validation experiment, which is typically a set of replicate experiments,
since one or more uncertain test inputs are involved (see para. 4.2). The CDF for Yexp may also represent propagation of
uncertainties from individual measurements that make up the overall experimental result.
If the CDFofYmod overlays the CDFofYexp exactly (i.e., they are coincident), then clearly Z given in eq. (5-6)will still be a

randomvariable, and therewill bemanycombinationsofpand z that satisfyeq. (5-7).This isbecausep represents thesum
of all possible errors for a given z, which is equivalent to drawing a random sample from Ymod and Yexp, computing and
accumulating the error, and repeating these steps a large number of times until convergence. It can be shown that the
error is a minimum—but not zero—when the CDF of Ymod and Yexp are coincident. For Z to equal zero requires that the
standard deviation of Ymod and Yexp also be zero, i.e., deterministic.
The PDF and CDFof |Z| are illustrated in Figure 5.2.3-1. The shapes of the PDF and CDF generally followwhat is called a

folded distribution, which is the result of the absolute value in eq. (5-7).
TheCDFcanbeused to returnaprobability givenanallowable error, or viceversa. Figure5.2.3-1, illustration (b), shows

that a10%error corresponds to a60%probability. Thus, there is a60%probability that the errorbetweenmodel and test
is not greater than 10%. If a higher probability is desired, say 90%, then the corresponding error is 15%. If the validation
requirement is 10%, then themodel is not validated. However, if a probability of 60% or less is deemed acceptable, then
the validation requirement is met.
The mean metric quantifies the difference in the mean of the simulated and measured RQs, the area metric quantifies

the difference between the simulated uncertainty and the measured uncertainty, and the error metric quantifies the
percent error between the uncertain simulation output and the uncertain experimental output. The mean and area
metrics equal zero when the simulated and experimental CDFs are coincident, whereas the error metric equals
zero only when the CDFs are coincident and the uncertainty in the simulated and measured RQs is zero. The differences

Figure 5.2.3-1
PDF and CDF of the Error Metric
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