

IEC 62541-9
Edition 3.0 2020-06

INTERNATIONAL
STANDARD
NORME
INTERNATIONALE

OPC unified architecture –
Part 9: Alarms and Conditions

Architecture unifiée OPC –
Partie 9: Alarmes et Conditions

IE
C

 6
25

41
-9

:2
02

0-
06

(e
n-

fr)

®

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee,…). It also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and
once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: sales@iec.ch.

Electropedia - www.electropedia.org
The world's leading online dictionary on electrotechnology,
containing more than 22 000 terminological entries in English
and French, with equivalent terms in 16 additional languages.
Also known as the International Electrotechnical Vocabulary
(IEV) online.

IEC Glossary - std.iec.ch/glossary
67 000 electrotechnical terminology entries in English and
French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
collected from earlier publications of IEC TC 37, 77, 86 and
CISPR.

A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -
webstore.iec.ch/advsearchform
La recherche avancée permet de trouver des publications IEC
en utilisant différents critères (numéro de référence, texte,
comité d’études,…). Elle donne aussi des informations sur les
projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished
Restez informé sur les nouvelles publications IEC. Just
Published détaille les nouvelles publications parues.
Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.

Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
monde, avec plus de 22 000 articles terminologiques en
anglais et en français, ainsi que les termes équivalents dans
16 langues additionnelles. Egalement appelé Vocabulaire
Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary
67 000 entrées terminologiques électrotechniques, en anglais
et en français, extraites des articles Termes et Définitions des
publications IEC parues depuis 2002. Plus certaines entrées
antérieures extraites des publications des CE 37, 77, 86 et
CISPR de l'IEC.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

mailto:info@iec.ch
https://www.iec.ch/
https://webstore.iec.ch/advsearchform
https://webstore.iec.ch/justpublished
https://webstore.iec.ch/csc
mailto:sales@iec.ch
http://www.electropedia.org/
http://std.iec.ch/glossary
https://webstore.iec.ch/advsearchform
https://webstore.iec.ch/justpublished
https://webstore.iec.ch/csc
mailto:sales@iec.ch
http://www.electropedia.org/
http://std.iec.ch/glossary
https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9
Edition 3.0 2020-06

INTERNATIONAL
STANDARD
NORME
INTERNATIONALE

OPC unified architecture –
Part 9: Alarms and Conditions

Architecture unifiée OPC –
Partie 9: Alarmes et Conditions

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 25.040.40; 35.100.05

ISBN 978-2-8322-8465-0

® Registered trademark of the International Electrotechnical Commission
 Marque déposée de la Commission Electrotechnique Internationale

®

 Warning! Make sure that you obtained this publication from an authorized distributor.
 Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 2 – IEC 62541-9:2020 © IEC 2020

CONTENTS

FOREWORD ... 10
1 Scope .. 12
2 Normative references .. 12
3 Terms, definitions, abbreviated terms and data types used .. 12

3.1 Terms and definitions .. 12
3.2 Abbreviated terms ... 15
3.3 Data types used .. 15

4 Concepts ... 15
4.1 General ... 15
4.2 Conditions .. 15
4.3 Acknowledgeable Conditions .. 17
4.4 Previous states of Conditions .. 18
4.5 Condition state synchronization .. 19
4.6 Severity, quality, and comment ... 19
4.7 Dialogs ... 20
4.8 Alarms .. 20
4.9 Multiple active states .. 22
4.10 Condition instances in the AddressSpace ... 23
4.11 Alarm and Condition auditing .. 24

5 Model .. 24
5.1 General ... 24
5.2 Two-state state machines ... 25
5.3 ConditionVariable ... 27
5.4 ReferenceTypes .. 27

5.4.1 General ... 27
5.4.2 HasTrueSubState ReferenceType .. 27
5.4.3 HasFalseSubState ReferenceType .. 28
5.4.4 HasAlarmSuppressionGroup ReferenceType ... 28
5.4.5 AlarmGroupMember ReferenceType .. 29

5.5 Condition Model .. 29
5.5.1 General ... 29
5.5.2 ConditionType ... 30
5.5.3 Condition and branch instances ... 34
5.5.4 Disable Method .. 34
5.5.5 Enable Method .. 35
5.5.6 AddComment Method .. 35
5.5.7 ConditionRefresh Method .. 36
5.5.8 ConditionRefresh2 Method .. 38

5.6 Dialog Model ... 40
5.6.1 General ... 40
5.6.2 DialogConditionType ... 40
5.6.3 Respond Method ... 42

5.7 Acknowledgeable Condition Model .. 42
5.7.1 General ... 42
5.7.2 AcknowledgeableConditionType .. 43
5.7.3 Acknowledge Method ... 44

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 3 –

5.7.4 Confirm Method ... 45
5.8 Alarm model.. 46

5.8.1 General ... 46
5.8.2 AlarmConditionType .. 47
5.8.3 AlarmGroupType ... 52
5.8.4 Reset Method .. 52
5.8.5 Silence Method .. 53
5.8.6 Suppress Method ... 54
5.8.7 Unsuppress Method ... 55
5.8.8 RemoveFromService Method ... 56
5.8.9 PlaceInService Method .. 56
5.8.10 ShelvedStateMachineType .. 57
5.8.11 LimitAlarmType .. 62
5.8.12 Exclusive limit types .. 64
5.8.13 NonExclusiveLimitAlarmType ... 67
5.8.14 Level Alarm ... 68
5.8.15 Deviation Alarm ... 69
5.8.16 Rate of change Alarms .. 70
5.8.17 Discrete Alarms ... 71
5.8.18 DiscrepancyAlarmType .. 75

5.9 ConditionClasses .. 75
5.9.1 Overview ... 75
5.9.2 BaseConditionClassType ... 76
5.9.3 ProcessConditionClassType .. 76
5.9.4 MaintenanceConditionClassType ... 77
5.9.5 SystemConditionClassType ... 77
5.9.6 SafetyConditionClassType ... 77
5.9.7 HighlyManagedAlarmConditionClassType .. 78
5.9.8 TrainingConditionClassType .. 78
5.9.9 StatisticalConditionClassType.. 78
5.9.10 TestingConditionSubClassType ... 79

5.10 Audit Events ... 79
5.10.1 Overview ... 79
5.10.2 AuditConditionEventType... 80
5.10.3 AuditConditionEnableEventType .. 80
5.10.4 AuditConditionCommentEventType .. 80
5.10.5 AuditConditionRespondEventType ... 81
5.10.6 AuditConditionAcknowledgeEventType .. 81
5.10.7 AuditConditionConfirmEventType .. 82
5.10.8 AuditConditionShelvingEventType ... 82
5.10.9 AuditConditionSuppressionEventType ... 82
5.10.10 AuditConditionSilenceEventType ... 83
5.10.11 AuditConditionResetEventType ... 83
5.10.12 AuditConditionOutOfServiceEventType .. 83

5.11 Condition Refresh related Events .. 84
5.11.1 Overview ... 84
5.11.2 RefreshStartEventType .. 84
5.11.3 RefreshEndEventType ... 84
5.11.4 RefreshRequiredEventType ... 85

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 4 – IEC 62541-9:2020 © IEC 2020

5.12 HasCondition Reference type .. 85
5.13 Alarm and Condition status codes ... 86
5.14 Expected A&C server behaviours .. 86

5.14.1 General ... 86
5.14.2 Communication problems .. 86
5.14.3 Redundant A&C servers .. 87

6 AddressSpace organisation ... 87
6.1 General ... 87
6.2 EventNotifier and source hierarchy ... 87
6.3 Adding Conditions to the hierarchy.. 88
6.4 Conditions in InstanceDeclarations ... 89
6.5 Conditions in a VariableType .. 90

7 System State and alarms ... 90
7.1 Overview... 90
7.2 HasEffectDisable .. 90
7.3 HasEffectEnable ... 91
7.4 HasEffectSuppress ... 91
7.5 HasEffectUnsuppressed .. 92

8 Alarm metrics .. 93
8.1 Overview... 93
8.2 AlarmMetricsType ... 93
8.3 AlarmRateVariableType .. 94
8.4 Reset Method ... 94

Annex A (informative) Recommended localized names .. 96
A.1 Recommended state names for TwoState variables .. 96

A.1.1 LocaleId "en" ... 96
A.1.2 LocaleId "de" ... 96
A.1.3 LocaleId "fr" ... 97

A.2 Recommended dialog response options .. 98
Annex B (informative) Examples .. 99

B.1 Examples for Event sequences from Condition instances 99
B.1.1 Overview ... 99
B.1.2 Server maintains current state only .. 99
B.1.3 Server maintains previous states ... 100

B.2 AddressSpace examples ... 101
Annex C (informative) Mapping to EEMUA ... 104
Annex D (informative) Mapping from OPC A&E to OPC UA A&C .. 105

D.1 Overview... 105
D.2 Alarms and Events COM UA wrapper .. 105

D.2.1 Event Areas ... 105
D.2.2 Event sources .. 106
D.2.3 Event categories .. 106
D.2.4 Event attributes ... 107
D.2.5 Event subscriptions ... 107
D.2.6 Condition instances ... 109
D.2.7 Condition Refresh .. 110

D.3 Alarms and Events COM UA proxy .. 110
D.3.1 General ... 110

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 5 –

D.3.2 Server status mapping ... 110
D.3.3 Event Type mapping .. 110
D.3.4 Event category mapping .. 111
D.3.5 Event Category attribute mapping .. 112
D.3.6 Event Condition mapping ... 115
D.3.7 Browse mapping .. 115
D.3.8 Qualified names ... 116
D.3.9 Subscription filters ... 117

Annex E (informative) IEC 62682 Mapping ... 119
E.1 Overview... 119
E.2 Terms ... 119
E.3 Alarm records and State indications .. 125

Annex F (informative) System State ... 126
F.1 Overview... 126
F.2 SystemStateStateMachineType ... 127

Bibliography .. 131

Figure 1 – Base Condition state model .. 16
Figure 2 – AcknowledgeableConditions state model .. 17
Figure 3 – Acknowledge state model ... 18
Figure 4 – Confirmed Acknowledge state model .. 18
Figure 5 – Alarm state machine model .. 21
Figure 6 – Typical Alarm Timeline example ... 22
Figure 7 – Multiple active states example ... 23
Figure 8 – ConditionType hierarchy .. 25
Figure 9 – Condition model ... 30
Figure 10 – DialogConditionType overview ... 40
Figure 11 – AcknowledgeableConditionType overview .. 43
Figure 12 – AlarmConditionType Hierarchy Model ... 47
Figure 13 – Alarm Model ... 48
Figure 14 – Shelve state transitions .. 58
Figure 15 – ShelvedStateMachineType model ... 58
Figure 16 – LimitAlarmType .. 63
Figure 17 – ExclusiveLimitStateMachineType ... 64
Figure 18 – ExclusiveLimitAlarmType ... 66
Figure 19 – NonExclusiveLimitAlarmType ... 67
Figure 20 – DiscreteAlarmType Hierarchy ... 72
Figure 21 – ConditionClass type hierarchy .. 76
Figure 22 – AuditEvent hierarchy .. 79
Figure 23 – Refresh Related Event Hierarchy ... 84
Figure 24 – Typical HasNotifier Hierarchy ... 88
Figure 25 – Use of HasCondition in a HasNotifier hierarchy .. 89
Figure 26 – Use of HasCondition in an InstanceDeclaration .. 89
Figure 27 – Use of HasCondition in a VariableType .. 90
Figure B.1 – Single state example... 99

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 6 – IEC 62541-9:2020 © IEC 2020

Figure B.2 – Previous state example ... 100
Figure B.3 – HasCondition used with Condition instances ... 102
Figure B.4 – HasCondition reference to a Condition type .. 103
Figure B.5 – HasCondition used with an instance declaration ... 103
Figure D.1 – The type model of a wrapped COM A&E server .. 107
Figure D.2 – Mapping UA Event Types to COM A&E Event Types 111
Figure D.3 – Example mapping of UA Event Types to COM A&E categories 112
Figure D.4 – Example mapping of UA Event Types to A&E categories with attributes 115
Figure F.1 – SystemState transitions .. 127
Figure F.2 – SystemStateStateMachineType Model .. 128

Table 1 – Parameter types defined in IEC 62541-3 ... 15
Table 2 – Parameter types defined in IEC 62541-4 ... 15
Table 3 – TwoStateVariableType definition ... 26
Table 4 – ConditionVariableType definition ... 27
Table 5 – HasTrueSubState ReferenceType ... 28
Table 6 – HasFalseSubState ReferenceType .. 28
Table 7 – HasAlarmSuppressionGroup ReferenceType ... 29
Table 8 – AlarmGroupMember ReferenceType .. 29
Table 9 – ConditionType definition .. 31
Table 10 – SimpleAttributeOperand .. 34
Table 11 – Disable result codes .. 34
Table 12 – Disable Method AddressSpace definition ... 35
Table 13 – Enable result codes ... 35
Table 14 – Enable Method AddressSpace definition .. 35
Table 15 – AddComment arguments ... 36
Table 16 – AddComment result codes ... 36
Table 17 – AddComment Method AddressSpace definition ... 36
Table 18 – ConditionRefresh parameters .. 37
Table 19 – ConditionRefresh result codes ... 37
Table 20 – ConditionRefresh Method AddressSpace definition.. 38
Table 21 – ConditionRefresh2 parameters .. 38
Table 22 – ConditionRefresh2 result codes ... 39
Table 23 – ConditionRefresh2 Method AddressSpace definition .. 40
Table 24 – DialogConditionType definition .. 41
Table 25 – Respond parameters ... 42
Table 26 – Respond Result Codes .. 42
Table 27 – Respond Method AddressSpace definition ... 42
Table 28 – AcknowledgeableConditionType definition ... 43
Table 29 – Acknowledge parameters .. 44
Table 30 – Acknowledge result codes ... 44
Table 31 – Acknowledge Method AddressSpace definition .. 45
Table 32 – Confirm Method parameters .. 45

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 7 –

Table 33 – Confirm result codes ... 45
Table 34 – Confirm Method AddressSpace definition .. 46
Table 35 – AlarmConditionType definition ... 49
Table 36 – AlarmGroupType definition .. 52
Table 37 – Silence result codes .. 53
Table 38 – Reset Method AddressSpace definition ... 53
Table 39 – Silence result codes .. 53
Table 40 – Silence Method AddressSpace definition ... 54
Table 41 – Suppress result codes ... 54
Table 42 – Suppress Method AddressSpace definition .. 55
Table 43 – Unsuppress result codes ... 55
Table 44 – Unsuppress Method AddressSpace definition .. 55
Table 45 – RemoveFromService result codes ... 56
Table 46 – RemoveFromService Method AddressSpace definition .. 56
Table 47 – PlaceInService result codes .. 57
Table 48 – PlaceInService Method AddressSpace definition ... 57
Table 49 –ShelvedStateMachineType definition .. 59
Table 50 – ShelvedStateMachineType transitions ... 60
Table 51 – Unshelve result codes ... 60
Table 52 – Unshelve Method AddressSpace definition .. 61
Table 53 – TimedShelve parameters ... 61
Table 54 – TimedShelve result codes ... 61
Table 55 – TimedShelve Method AddressSpace definition .. 62
Table 56 – OneShotShelve result codes ... 62
Table 57 – OneShotShelve Method AddressSpace definition .. 62
Table 58 – LimitAlarmType definition .. 63
Table 59 – ExclusiveLimitStateMachineType definition ... 65
Table 60 – ExclusiveLimitStateMachineType transitions ... 65
Table 61 – ExclusiveLimitAlarmType definition ... 66
Table 62 – NonExclusiveLimitAlarmType definition ... 68
Table 63 – NonExclusiveLevelAlarmType definition .. 68
Table 64 – ExclusiveLevelAlarmType definition ... 69
Table 65 – NonExclusiveDeviationAlarmType definition .. 69
Table 66 – ExclusiveDeviationAlarmType definition .. 70
Table 67 – NonExclusiveRateOfChangeAlarmType definition .. 71
Table 68 – ExclusiveRateOfChangeAlarmType definition .. 71
Table 69 – DiscreteAlarmType definition ... 72
Table 70 – OffNormalAlarmType Definition ... 72
Table 71 – SystemOffNormalAlarmType definition .. 73
Table 72 – TripAlarmType definition .. 73
Table 73 – InstrumentDiagnosticAlarmType definition ... 74
Table 74 – SystemDiagnosticAlarmType definition .. 74
Table 75 – CertificateExpirationAlarmType definition .. 74

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 8 – IEC 62541-9:2020 © IEC 2020

Table 76 – DiscrepancyAlarmType definition ... 75
Table 77 – BaseConditionClassType definition ... 76
Table 78 – ProcessConditionClassType definition ... 76
Table 79 – MaintenanceConditionClassType definition ... 77
Table 80 – SystemConditionClassType definition .. 77
Table 81 – SafetyConditionClassType definition ... 77
Table 82 – HighlyManagedAlarmConditionClassType definition .. 78
Table 83 – TrainingConditionClassType definition ... 78
Table 84 – StatisticalConditionClassType definition .. 78
Table 85 – TestingConditionSubClassType definition .. 79
Table 86 – AuditConditionEventType definition ... 80
Table 87 – AuditConditionEnableEventType definition .. 80
Table 88 – AuditConditionCommentEventType definition .. 81
Table 89 – AuditConditionRespondEventType definition ... 81
Table 90 – AuditConditionAcknowledgeEventType definition ... 81
Table 91 – AuditConditionConfirmEventType definition ... 82
Table 92 – AuditConditionShelvingEventType definition .. 82
Table 93 – AuditConditionSuppressionEventType definition .. 82
Table 94 – AuditConditionSilenceEventType definition .. 83
Table 95 – AuditConditionResetEventType definition .. 83
Table 96 – AuditConditionOutOfServiceEventType definition .. 83
Table 97 – RefreshStartEventType definition .. 84
Table 98 – RefreshEndEventType definition .. 84
Table 99 – RefreshRequiredEventType definition .. 85
Table 100 – HasCondition ReferenceType .. 85
Table 101 – Alarm & Condition result codes .. 86
Table 102 – HasEffectDisable ReferenceType .. 91
Table 103 – HasEffectEnable ReferenceType ... 91
Table 104 – HasEffectSuppress ReferenceType ... 92
Table 105 – HasEffectUnsuppress ReferenceType ... 92
Table 106 – AlarmMetricsType Definition .. 93
Table 107 – AlarmRateVariableType definition .. 94
Table 108 – Suppress result codes ... 94
Table 109 – Reset Method AddressSpace definition ... 95
Table A.1 – Recommended state names for LocaleId "en" .. 96
Table A.2 – Recommended display names for LocaleId "en" ... 96
Table A.3 – Recommended state names for LocaleId "de" .. 97
Table A.4 – Recommended display names for LocaleId "de" ... 97
Table A.5 – Recommended state names for LocaleId "fr" .. 98
Table A.6 – Recommended display names for LocaleId "fr" ... 98
Table A.7 – Recommended dialog response options ... 98
Table B.1 – Example of a Condition that only keeps the latest state 99
Table B.2 – Example of a Condition that maintains previous states via branches 101

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 9 –

Table C.1 – EEMUA Terms ... 104
Table D.1 – Mapping from standard Event categories to OPC UA Event types 106
Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables 108
Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables 108
Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables 109
Table D.5 – Event category attribute mapping table .. 113
Table E.1 – IEC 62682 Mapping.. 119
Table F.1 – SystemStateStateMachineType definition ... 129
Table F.2 – SystemStateStateMachineType transitions ... 130

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 10 – IEC 62541-9:2020 © IEC 2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPC UNIFIED ARCHITECTURE –

Part 9: Alarms and Conditions

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International standard IEC 62541-9 has been prepared by subcommittee 65E: Devices and
integration in enterprise systems, of IEC technical committee 65: Industrial-process
measurement, control and automation.

This third edition cancels and replaces the second edition published in 2015. This edition
constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous
edition:

a) added optional engineering units to the definition of RateOfChange alarms;
b) to fulfill the IEC 62682 model, the following elements have been added:

• AlarmConditionType States: Suppression, Silence, OutOfService, Latched;

• AlarmConditionType Properties: OnDelay, OffDelay, FirstInGroup, ReAlarmTime;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 11 –

• New alarm types: DiscrepencyAlarm, DeviationAlarm, InstrumentDiagnosticAlarm,
SystemDiagnosticAlarm.

c) added Annex that specifies how the concepts of this OPC UA part maps to IEC 62682 and
ISA 18.2;

d) added new ConditionClasses: Safety, HighlyManaged, Statistical, Testing, Training;
e) added CertificateExpiration AlarmType;
f) added Alarm Metrics model.

The text of this International Standard is based on the following documents:

FDIS Report on voting

65E/709/FDIS 65E/727/RVD

Full information on the voting for the approval of this International Standard can be found in
the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

Throughout this document and the other parts of the IEC 62541 series, certain document
conventions are used:

Italics are used to denote a defined term or definition that appears in the "Terms and
definition" clause in one of the parts of the IEC 62541 series.

Italics are also used to denote the name of a service input or output parameter or the name of
a structure or element of a structure that are usually defined in tables.

The italicized terms and names are, with a few exceptions, written in camel-case (the practice
of writing compound words or phrases in which the elements are joined without spaces, with
each element's initial letter capitalized within the compound). For example the defined term is
AddressSpace instead of Address Space. This makes it easier to understand that there is a
single definition for AddressSpace, not separate definitions for Address and Space.

A list of all parts of the IEC 62541 series, published under the general title OPC Unified
Architecture, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to
the specific document. At this date, the document will be

• reconfirmed,

• withdrawn,

• replaced by a revised edition, or

• amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 12 – IEC 62541-9:2020 © IEC 2020

OPC UNIFIED ARCHITECTURE –

Part 9: Alarms and Conditions

1 Scope

This part of IEC 62541 specifies the representation of Alarms and Conditions in the OPC
Unified Architecture. Included is the Information Model representation of Alarms and
Conditions in the OPC UA address space. Other aspects of alarm systems such as alarm
philosophy, life cycle, alarm response times, alarm types and many other details are captured
in documents such as IEC 62682 and ISA 18.2. The Alarms and Conditions Information Model
in this specification is designed in accordance with IEC 62682 and ISA 18.2.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document (including
any amendments) applies.

IEC TR 62541-1, OPC unified architecture – Part 1: Overview and concepts

IEC 62541-3, OPC unified architecture – Part 3: Address Space Model

IEC 62541-4, OPC unified architecture – Part 4: Services

IEC 62541-5, OPC unified architecture – Part 5: Information Model

IEC 62541-6, OPC unified architecture – Part 6: Mappings

IEC 62541-7, OPC unified architecture – Part 7: Profiles

IEC 62541-8, OPC unified architecture – Part 8: Data Access

IEC 62541-11, OPC unified architecture – Part 11: Historical Access

IEC 62682: Management of alarms systems for the process industries

EEMUA: 2nd Edition EEMUA 191 – Alarm System – A guide to design, management and
procurement (Appendixes 6, 7, 8, 9), available at
https://www.eemua.org/Products/Publications/Print/EEMUA-Publication-191.aspx

3 Terms, definitions, abbreviated terms and data types used

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC TR 62541-1,
IEC 62541-3, IEC 62541-4, and IEC 62541-5 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following
addresses:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://www.eemua.org/Products/Publications/Print/EEMUA-Publication-191.aspx
https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 13 –

• IEC Electropedia: available at http://www.electropedia.org/

• ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1
Acknowledge
Operator action that indicates recognition of an Alarm

Note 1 to entry: This definition is copied from EEMUA. The term "Accept" is another common term used to describe
Acknowledge. They can be used interchangeably. This document uses Acknowledge.

3.1.2
Active
state for an Alarm that indicates that the situation the Alarm is representing currently exists

Note 1 to entry: Other common terms defined by EEMUA are "Standing" for an Active Alarm and "Cleared" when
the Condition has returned to normal and is no longer Active.

3.1.3
AdaptiveAlarm
Alarm for which the set point or limits are changed by an algorithm

Note 1 to entry: AdaptiveAlarms are alarms that are adjusted automatically by algorithms. These algorithms can
detect conditions in a plant and change setpoints or limits to keep alarms from occurring. These changes occur, in
many cases, without Operator interactions.

3.1.4
AlarmFlood
condition during which the alarm rate is greater than the Operator can effectively manage

Note 1 to entry: OPC UA does not define the conditions that would be considered alarm flooding, these conditions
are defined in other specifications such as IEC 62682 or ISA 18.2.

3.1.5
AlarmSuppressionGroup
group of Alarms that is used to suppress other Alarms

Note 1 to entry: An AlarmSuppressionGroup is an instance of an AlarmGroupType that is used to suppress other
Alarms. If any Alarm in the group is active, then the AlarmSuppressionGroup is active. If all Alarms in the
AlarmSuppressionGroup are inactive then the AlarmSuppressionGroup is inactive

Note 2 to entry: The Alarm to be affected references AlarmSuppressionGroups with a HasAlarmSuppressionGroup
ReferenceType.

3.1.6
ConditionClass
Condition grouping that indicates in which domain or for what purpose a certain Condition is
used

Note 1 to entry: Some top-level ConditionClasses are defined in this specification. Vendors or organisations can
derive more concrete classes or define different top-level classes.

3.1.7
ConditionBranch
specific state of a Condition

Note 1 to entry: The Server can maintain ConditionBranches for the current state as well as for previous states.

3.1.8
ConditionSource
element which a specific Condition is based upon or related to

Note 1 to entry: Typically, this will be a Variable representing a process tag (e.g. FIC101) or an Object representing
a device or subsystem.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

http://www.iso.org/obp
https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 14 – IEC 62541-9:2020 © IEC 2020

Note 2 to entry: In Events generated for Conditions, the SourceNode Property (inherited from the BaseEventType)
will contain the NodeId of the ConditionSource.

3.1.9
confirm
Operator action informing the Server that a corrective action has been taken to address the
cause of the Alarm

3.1.10
disable
action configurating a system such that the Alarm will not be generated even though the base
Alarm Condition is present

Note 1 to entry: This definition is copied from EEMUA and is further defined in EEMUA.

Note 2 to entry: In IEC 62682, "disable" is referenced as "Out of Service".

3.1.11
LatchingAlarm
alarm that remains in alarm state after the process condition has returned to normal and
requires an Operator reset before the alarm returns to normal

Note 1 to entry: Latching alarms are typically discrepancy alarms, where an action does not occur within a specific
time. Once the action occurs the alarm stays active until it is reset.

3.1.12
Operator
special user who is assigned to monitor and control a portion of a process

Note 1 to entry: "A Member of the operations team who is assigned to monitor and control a portion of the process
and is working at the control system’s Console" as defined in EEMUA. In this document, an Operator is a special
user. All descriptions that apply to general users also apply to Operators.

3.1.13
Refresh
act of providing an update to an Event Subscription that provides all Alarms which are
considered to be Retained

Note 1 to entry: This concept is further defined in EEMUA.

3.1.14
Retain
Alarm in a state that is interesting for a Client wishing to synchronize its state of Conditions
with the Server’s state

3.1.15
Shelving
facility where the Operator is able to temporarily prevent an Alarm from being displayed to the
Operator when it is causing the Operator a nuisance

Note 1 to entry: "A Shelved Alarm will be removed from the list and will not re-annunciate until un-shelved" as
defined in EEMUA.

3.1.16
Suppress
act of determining whether an Alarm should not occur

Note 1 to entry: "An Alarm is suppressed when logical criteria are applied to determine that the Alarm should not
occur, even though the base Alarm Condition (e.g. Alarm setting exceeded) is present" as defined in EEMUA. In
IEC62682 Suppressed Alarms are also described as being "Suppressed by Design", in that the system is designed
with logic to Suppress an Alarm when certain criteria exist. For example, if a process unit is taken offline then low-
level alarms are Suppressed for all equipment in the off-line unit.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 15 –

3.2 Abbreviated terms
A&E Alarm & Event (as used for OPC COM)
COM (Microsoft Windows) Component Object Model
DA data access
UA Unified Architecture

3.3 Data types used

Table 1 and Table 2 describe the data types that are used throughout this document. These
types are separated into two tables. Base data types defined in IEC 62541-3 are given in
Table 1. The base types and data types defined in IEC 62541-4 are given in Table 2.

Table 1 – Parameter types defined in IEC 62541-3

Parameter Type

Argument

BaseDataType

NodeId

LocalizedText

Boolean

ByteString

Double

Duration

String

UInt16

Int32

UtcTime

Table 2 – Parameter types defined in IEC 62541-4

Parameter Type

IntegerId

StatusCode

4 Concepts

4.1 General

This document defines an Information Model for Conditions, Dialog Conditions, and Alarms
including acknowledgement capabilities. It is built upon and extends base Event handling
which is defined in IEC 62541-3, IEC 62541-4 and IEC 62541-5. This Information Model can
also be extended to support the additional needs of specific domains. The details of which
aspects of the Information Model are supported are defined via Profiles (see IEC 62541-7 for
Profile definitions). Some systems may expose historical Events and Conditions via the
standard Historical Access framework (see IEC 62541-11 for Historical Event definitions).

4.2 Conditions

Conditions are used to represent the state of a system or one of its components. Some
common examples are:

• a temperature exceeding a configured limit;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 16 – IEC 62541-9:2020 © IEC 2020

• a device needing maintenance;

• a batch process that requires a user to confirm some step in the process before
proceeding.

Each Condition instance is of a specific ConditionType. The ConditionType and derived types
are subtypes of the BaseEventType (see IEC 62541-3 and IEC 62541-5). This part defines
types that are common across many industries. It is expected that vendors or other
standardisation groups will define additional ConditionTypes deriving from the common base
types defined in this part. The ConditionTypes supported by a Server are exposed in the
AddressSpace of the Server.

Condition instances are specific implementations of a ConditionType. It is up to the Server
whether such instances are also exposed in the Server’s AddressSpace. Subclause 4.10
provides additional background about Condition instances. Condition instances shall have a
unique identifier to differentiate them from other instances. This is independent of whether
they are exposed in the AddressSpace.

As mentioned above, Conditions represent the state of a system or one of its components. In
certain cases, however, previous states that still need attention shall also be maintained.
ConditionBranches are introduced to deal with this requirement and distinguish current state
and previous states. Each ConditionBranch has a BranchId that differentiates it from other
branches of the same Condition instance. The ConditionBranch which represents the current
state of the Condition (the trunk) has a NULL BranchId. Servers can generate separate Event
Notifications for each branch. When the state represented by a ConditionBranch does not
need further attention, a final Event Notification for this branch will have the Retain Property
set to False. Subclause 4.4 provides more information and use cases. Maintaining previous
states and therefore the support of multiple branches is optional for Servers.

Conceptually, the lifetime of the Condition instance is independent of its state. However,
Servers may provide access to Condition instances only while ConditionBranches exist.

The base Condition state model is illustrated in Figure 1. It is extended by the various
Condition subtypes defined in this document and may be further extended by vendors or other
standardisation groups. The primary states of a Condition are disabled and enabled. The
Disabled state is intended to allow Conditions to be turned off at the Server or below the
Server (in a device or some underlying system). The Enabled state is normally extended with
the addition of substates.

Figure 1 – Base Condition state model

A transition into the Disabled state results in a Condition Event, however no subsequent
Event Notifications are generated until the Condition returns to the Enabled state.

IEC

Disabled

Enabled

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 17 –

When a Condition enters the Enabled state, that transition and all subsequent transitions
result in Condition Events being generated by the Server.

If Auditing is supported by a Server, the following Auditing related action shall be performed.
The Server will generate AuditEvents for Enable and Disable operations (either through a
Method call or some Server / vendor – specific means), rather than generating an AuditEvent
Notification for each Condition instance being enabled or disabled. For more information, see
the definition of AuditConditionEnableEventType in 5.10.2. AuditEvents are also generated for
any other Operator action that results in changes to the Conditions.

4.3 Acknowledgeable Conditions

AcknowledgeableConditions are subtypes of the base ConditionType.
AcknowledgeableConditions expose states to indicate whether a Condition has to be
acknowledged or confirmed.

An AckedState and a ConfirmedState extend the EnabledState defined by the Condition. The
state model is illustrated in Figure 2. The enabled state is extended by adding the AckedState
and (optionally) the ConfirmedState.

Figure 2 – AcknowledgeableConditions state model

Acknowledgment of the transition may come from the Client or may be due to some logic
internal to the Server. For example, acknowledgment of a related Condition may result in this
Condition becoming acknowledged, or the Condition may be set up to automatically
Acknowledge itself when the acknowledgeable situation disappears.

Two Acknowledge state models are supported by this document. Either of these state models
can be extended to support more complex acknowledgement situations.

The basic Acknowledge state model is illustrated in Figure 3. This model defines an
AckedState. The specific state changes that result in a change to the state depend on a
Server’s implementation. For example, in typical Alarm models the change is limited to a
transition to the Active state or transitions within the Active state. More complex models
however can also allow for changes to the AckedState when the Condition transitions to an
inactive state.

IEC

Disabled

Enabled

ConfirmedState
= TRUE

AckedState =
TRUE

ConfirmedState
= False

AckedState = False

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 18 – IEC 62541-9:2020 © IEC 2020

Figure 3 – Acknowledge state model

A more complex state model which adds a confirmation to the basic Acknowledge is illustrated
in Figure 4. The Confirmed Acknowledge model is typically used to differentiate between
acknowledging the presence of a Condition and having done something to address the
Condition. For example, an Operator receiving a motor high temperature Notification calls the
Acknowledge Method to inform the Server that the high temperature has been observed. The
Operator then takes some action such as lowering the load on the motor in order to reduce
the temperature. The Operator then calls the Confirm Method to inform the Server that a
corrective action has been taken.

Figure 4 – Confirmed Acknowledge state model

4.4 Previous states of Conditions

Some systems require that previous states of a Condition are preserved for some time. A
common use case is the acknowledgement process. In certain environments, it is required to
acknowledge both the transition into Active state and the transition into an inactive state.
Systems with strict safety rules sometimes require that every transition into Active state has
to be acknowledged. In situations where state changes occur in short succession there can be
multiple unacknowledged states and the Server has to maintain ConditionBranches for all
previous unacknowledged states. These branches will be deleted after they have been
acknowledged or if they reached their final state.

Multiple ConditionBranches can also be used for other use cases where snapshots of
previous states of a Condition require additional actions.

IEC

AckedState = TRUE

AckedState = False

Ack
By
Server

Acknowledge
Method

IEC
Confirmed by Server
Confirm Method

Acknowledged Unacknowledged

Acknowledge By Server
Acknowledge Method

Unconfirmed Confirmed

Server restricts to
Unconfirmed until
Acknowledged

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 19 –

4.5 Condition state synchronization

When a Client subscribes for Events, the Notification of transitions will begin at the time of the
Subscription. The currently existing state will not be reported. This means for example that
Clients are not informed of currently Active Alarms until a new state change occurs.

Clients can obtain the current state of all Condition instances that are in an interesting state,
by requesting a Refresh for a Subscription. It should be noted that Refresh is not a general
replay capability since the Server is not required to maintain an Event history.

Clients request a Refresh by calling the ConditionRefresh Method. The Server will respond
with a RefreshStartEventType Event. This Event is followed by the Retained Conditions. The
Server may also send new Event Notifications interspersed with the Refresh related Event
Notifications. After the Server is done with the Refresh, a RefreshEndEvent is issued marking
the completion of the Refresh. Clients shall check for multiple Event Notifications for a
ConditionBranch to avoid overwriting a new state delivered together with an older state from
the Refresh process. If a ConditionBranch exists, then the current Condition shall be reported.
This is True even if the only interesting item regarding the Condition is that
ConditionBranches exist. This allows a Client to accurately represent the current Condition
state.

A Client that wishes to display the current status of Alarms and Conditions (known as a
"current Alarm display") would use the following logic to process Refresh Event Notifications.
The Client flags all Retained Conditions as suspect on reception of the Event of the
RefreshStartEventType. The Client adds any new Events that are received during the Refresh
without flagging them as suspect. The Client also removes the suspect flag from any Retained
Conditions that are returned as part of the Refresh. When the Client receives a
RefreshEndEvent, the Client removes any remaining suspect Events, since they no longer
apply.

The following items should be noted with regard to ConditionRefresh:

• As described in 4.4 some systems require that previous states of a Condition are
preserved for some time. Some Servers – in particular if they require acknowledgement of
previous states – will maintain separate ConditionBranches for prior states that still need
attention.
ConditionRefresh shall issue Event Notifications for all interesting states (current and
previous) of a Condition instance and Clients can therefore receive more than one Event
for a Condition instance with different BranchIds.

• Under some circumstances a Server may not be capable of ensuring the Client is fully in
sync with the current state of Condition instances. For example, if the underlying system
represented by the Server is reset or communications are lost for some period of time the
Server may need to resynchronize itself with the underlying system. In these cases, the
Server shall send an Event of the RefreshRequiredEventType to advise the Client that a
Refresh may be necessary. A Client receiving this special Event should initiate a
ConditionRefresh as noted in this subclause.

• To ensure a Client is always informed, the three special EventTypes
(RefreshEndEventType, RefreshStartEventType and RefreshRequiredEventType) ignore
the Event content filtering associated with a Subscription and will always be delivered to
the Client.

• ConditionRefresh applies to a Subscription. If multiple Event Notifiers are included in the
same Subscription, all Event Notifiers are refreshed.

4.6 Severity, quality, and comment

Comment, severity and quality are important elements of Conditions and any change to them
will cause Event Notifications.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 20 – IEC 62541-9:2020 © IEC 2020

The Severity of a Condition is inherited from the base Event model defined in IEC 62541-5. It
indicates the urgency of the Condition and is also commonly called "priority", especially in
relation to Alarms in the ProcessConditionClassType.

A Comment is a user generated string that is to be associated with a certain state of a
Condition.

Quality refers to the quality of the data value(s) upon which this Condition is based. Since a
Condition is usually based on one or more Variables, the Condition inherits the quality of
these Variables. E.g., if the process value is "Uncertain", the "Level Alarm" Condition is also
questionable. If more than one variable is represented by a given condition or if the condition
is from an underlining system and no direct mapping to a variable is available, it is up to the
application to determine what quality is displayed as part of the condition.

4.7 Dialogs

Dialogs are ConditionTypes used by a Server to request user input. They are typically used
when a Server has entered some state that requires intervention by a Client. For example a
Server monitoring a paper machine indicates that a roll of paper has been wound and is ready
for inspection. The Server would activate a Dialog Condition indicating to the user that an
inspection is required. Once the inspection has taken place, the user responds by informing
the Server of an accepted or unaccepted inspection allowing the process to continue.

4.8 Alarms

Alarms are specializations of AcknowledgeableConditions that add the concepts of an Active
state and other states like Shelving state and Suppressed state to a Condition. The state
model is illustrated in Figure 5. The complete model with all states is defined in 5.8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 21 –

Figure 5 – Alarm state machine model

An Alarm in the Active state indicates that the situation the Condition is representing currently
exists. When an Alarm is an inactive state it is representing a situation that has returned to a
normal state.

Some Alarm subtypes introduce substates of the Active state. For example, an Alarm
representing a temperature may provide a high-level state as well as a critically high state
(see following Clause).

The Shelving state can be set by an Operator via OPC UA Methods. The Suppressed state is
set internally by the Server due to system specific reasons. Alarm systems typically
implement the suppress, out of service and shelve features to help keep Operators from being
overwhelmed during Alarm "storms" by limiting the number of Alarms an Operator sees on a
current Alarm display. This is accomplished by setting the SuppressedOrShelved flag on
second order dependent Alarms and/or Alarms of less severity, leading the Operator to
concentrate on the most critical issues.

The shelved, out of service and suppressed states differ from the Disabled state in that
Alarms are still fully functional and can be included in Subscription Notifications to a Client.

Alarms follow a typical timeline, which is illustrated in Figure 6. They have a number of delay
times associated with them and a number of states that they might occupy. The goal of an

IEC

Disabled

Active = TRUE

Enabled

Active = False

Suppressed = TRUE Suppressed = False

Shelved Unshelved

ConfirmedState
= TRUE

AckedState = TRUE AckedState = False

SilenceState =
TRUE

SilenceState =
False

OutOfService= False OutOfService=TRUE

ConfirmedState
= False

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 22 – IEC 62541-9:2020 © IEC 2020

alarming system is to inform Operators about conditions in a timely manner and allow the
Operator to take some action before some consequences occur. The consequences can be
economic (product is not usable and shall be discarded), can be physical (tank overflows),
can be safety related (fire or explosion could occur) or any of a number of other possibilities.
Typically, if no action is taken related to an alarm for some period of time, the process will
cross some threshold at which point consequences will start to occur. The OPC UA Alarm
model describes these states, delays and actions.

Pr
oc

es
s

Va
lu

e

Time

Normal In Alarm
Unacknowledged

Allowable Response time No Action, Process has
consequences

Consequences
start occurring

Alarm Limit
Alarm DeadbandAck

Delay
Operator

Response
Delay

Process
Delay

Acknowledged Alarm

Process
Responds to

action

Normal

OffDelay

IEC

Figure 6 – Typical Alarm Timeline example

4.9 Multiple active states

In some cases, it is desirable to further define the Active state of an Alarm by providing a
substate machine for the Active State. For example, a multi-state level Alarm when in the
Active state may be in one of the following substates: LowLow, Low, High or HighHigh. The
state model is illustrated in Figure 7.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 23 –

Figure 7 – Multiple active states example

With the multi-state Alarm model, state transitions among the substates of Active are allowed
without causing a transition out of the Active state.

To accommodate different use cases both a (mutually) exclusive and a non-exclusive model
are supported.

Exclusive means that the Alarm can only be in one substate at a time. If for example a
temperature exceeds the HighHigh limit the associated exclusive level Alarm will be in the
HighHigh substate and not in the High substate.

Some Alarm systems, however, allow multiple substates to exist in parallel. This is called non-
exclusive. In the previous example where the temperature exceeds the HighHigh limit a non-
exclusive level Alarm will be both in the High and the HighHigh substate.

4.10 Condition instances in the AddressSpace

Because Conditions always have a state (Enabled or Disabled) and possibly many substates
it makes sense to have instances of Conditions present in the AddressSpace. If the Server
exposes Condition instances they usually will appear in the AddressSpace as components of
the Objects that "own" them. For example, a temperature transmitter that has a built-in high
temperature Alarm would appear in the AddressSpace as an instance of some temperature
transmitter Object with a HasComponent Reference to an instance of a LimitAlarmType.

The availability of instances allows Data Access Clients to monitor the current Condition state
by subscribing to the Attribute values of Variable Nodes. The values of the nodes may not
always correspond with the value that appear in Events, they may be more recent than what
was in the Event.

While exposing Condition instances in the AddressSpace is not always possible, doing so
allows for direct interaction (read, write and Method invocation) with a specific Condition
instance. For example, if a Condition instance is not exposed, there is no way to invoke the
Enable or Disable Method for the specific Condition instance.

IEC

Active = False

Active = TRUE

HighHigh LowLow

High Low

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 24 – IEC 62541-9:2020 © IEC 2020

4.11 Alarm and Condition auditing

The IEC 62541 series includes provisions for auditing. Auditing is an important security and
tracking concept. Audit records provide the "Who", "When" and "What" information regarding
user interactions with a system. These audit records are especially important when Alarm
management is considered. Alarms are the typical instrument for providing information to a
user that something needs the user’s attention. A record of how the user reacts to this
information is required in many cases. Audit records are generated for all Method calls that
affect the state of the system, for example, an Acknowledge Method call would generate an
AuditConditionAcknowledgeEventType Event.

The standard AuditEventTypes defined in IEC 62541-5 already include the fields required for
Condition related audit records. To allow for filtering and grouping, this document defines a
number of subtypes of the AuditEventTypes but without adding new fields to them.

This document describes the AuditEventType that each Method is required to generate. For
example, the Disable Method has an AlwaysGeneratesEvent Reference to an
AuditConditionEnableEventType. An Event of this type shall be generated for every invocation
of the Method. The audit Event describes the user interaction with the system, in some cases
this interaction may affect more than one Condition or be related to more than one state.

5 Model

5.1 General

The Alarm and Condition model extends the OPC UA base Event model by defining various
Event Types based on the BaseEventType. All of the Event Types defined in this document
can be further extended to form domain or Server specific Alarm and Condition Types.

Instances of Alarm and Condition Types may be optionally exposed in the AddressSpace in
order to allow direct access to the state of an Alarm or Condition.

Subclauses 5.5 to 5.8 define the OPC UA Alarm and Condition Types. Figure 8 informally
describes the hierarchy of these Types. Subtypes of the LimitAlarmType and the
DiscreteAlarmType are not shown. The full AlarmConditionType hierarchy can be found in
Figure 8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 25 –

Defined in IEC 62541-5BaseEvent
Type

Acknowledgeable
Condition Type

RefreshStart
EventType

SystemEvent
Type

RefreshRequired
EventType

RefreshEnd
EventType

AlarmCondition
Type

DialogCondition
Type

ConditionType

StateMachine
Type

ExclusiveLimit
StateMachineType

Shelved
StateMachineType

LimitAlarm
Type

DiscreteAlarm
Type

OffNormalAlarm
Type

SystemOffNormal
AlarmType

IEC

Figure 8 – ConditionType hierarchy

Annex C specifies how the model described in this document maps to EEMUA.

Annex D specifies a recommended mapping between OPC Classic Alarm & Events (A&E)
servers and the model described in this document.

5.2 Two-state state machines

Most states defined in this document are simple – i.e. they are either True or False. The
TwoStateVariableType is introduced specifically for this use case. More complex states are
modelled by using a StateMachineType defined in IEC 62541-5.

The TwoStateVariableType is derived from the StateVariableType defined in IEC 62541-5 and
formally defined in Table 3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 26 – IEC 62541-9:2020 © IEC 2020

Table 3 – TwoStateVariableType definition

Attribute Value

BrowseName TwoStateVariableType

DataType LocalizedText

ValueRank -1 (-1 = Scalar)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the StateVariableType defined in IEC 62541-5.

Note that a Reference to this subtype is not shown in the definition of the StateVariableType

HasProperty Variable Id Boolean PropertyType Mandatory

HasProperty Variable TransitionTime UtcTime PropertyType Optional

HasProperty Variable EffectiveTransitionTime UtcTime PropertyType Optional

HasProperty Variable TrueState LocalizedText PropertyType Optional

HasProperty Variable FalseState LocalizedText PropertyType Optional

HasTrueSubState StateMachine or
TwoStateVariableType

<StateIdentifier> Defined in Clause 5.4.2 Optional

HasFalseSubState StateMachine or
TwoStateVariableType

<StateIdentifier> Defined in Clause 5.4.3 Optional

The Value Attribute of an instance of TwoStateVariableType contains the current state as a
human readable name. The EnabledState for example, might contain the name "Enabled"
when True and "Disabled" when False.

Id is inherited from the StateVariableType and overridden to reflect the required DataType
(Boolean). The value shall be the current state, i.e. either True or False.

TransitionTime specifies the time when the current state was entered.

EffectiveTransitionTime specifies the time when the current state or one of its substates was
entered. If, for example, a LevelAlarm is active and – while active – switches several times
between High and HighHigh, then the TransitionTime stays at the point in time where the
Alarm became active whereas the EffectiveTransitionTime changes with each shift of a
substate.

The optional Property EffectiveDisplayName from the StateVariableType is used if a state has
substates. It contains a human readable name for the current state after taking the state of
any SubStateMachines in account. As an example, the EffectiveDisplayName of the
EnabledState could contain "Active/HighHigh" to specify that the Condition is active and has
exceeded the HighHigh limit.

Other optional Properties of the StateVariableType have no defined meaning for
TwoStateVariableType.

TrueState and FalseState contain the localized string for the TwoStateVariableType value
when its Id Property has the value True or False, respectively. Since the two Properties
provide meta-data for the Type, Servers may not allow these Properties to be selected in the
Event filter for a MonitoredItem. Clients can use the Read Service to get the information from
the specific ConditionType.

A HasTrueSubState Reference is used to indicate that the True state has substates.

A HasFalseSubState Reference is used to indicate that the False state has substates.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 27 –

5.3 ConditionVariable

Various information elements of a Condition are not considered to be states. However, a
change in their value is considered important and supposed to trigger an Event Notification.
These information elements are called ConditionVariable.

ConditionVariables are represented by a ConditionVariableType, formally defined in Table 4.

Table 4 – ConditionVariableType definition

Attribute Value

BrowseName ConditionVariableType

DataType BaseDataType

ValueRank -2 (-2 = Any)

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseDataVariableType defined in IEC 62541-5.

HasProperty Variable SourceTimestamp UtcTime PropertyType Mandatory

SourceTimestamp indicates the time of the last change of the Value of this ConditionVariable.
It shall be the same time that would be returned from the Read Service inside the DataValue
structure for the ConditionVariable Value Attribute.

5.4 ReferenceTypes

5.4.1 General

This Clause defines ReferenceTypes that are needed beyond those already specified as part
of IEC 62541-3 and IEC 62541-5. This includes extending TwoStateVariableType state
machines with substates and the addition of Alarm grouping.

The TwoStateVariableType References will only exist when substates are available. For
example, if a TwoStateVariableType machine is in a False State, then any substates
referenced from the True state will not be available. If an Event is generated while in the
False state and information from the True state substate is part of the data that is to be
reported than this data would be reported as a NULL. With this approach,
TwoStateVariableTypes can be extended with subordinate state machines in a similar fashion
to the StateMachineType defined in IEC 62541-5.

5.4.2 HasTrueSubState ReferenceType

The HasTrueSubState ReferenceType is a concrete ReferenceType that can be used directly.
It is a subtype of the NonHierarchicalReferences ReferenceType.

The semantics indicate that the substate (the target Node) is a subordinate state of the True
super state. If more than one state within a Condition is a substate of the same super state
(i.e. several HasTrueSubState References exist for the same super state) they are all treated
as independent substates. The representation in the AddressSpace is specified in Table 5.

The SourceNode of the Reference shall be an instance of a TwoStateVariableType and the
TargetNode shall be either an instance of a TwoStateVariableType or an instance of a
subtype of a StateMachineType.

It is not required to provide the HasTrueSubState Reference from super state to substate, but
it is required that the substate provides the inverse Reference (IsTrueSubStateOf) to its super
state.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 28 – IEC 62541-9:2020 © IEC 2020

Table 5 – HasTrueSubState ReferenceType

Attributes Value

BrowseName HasTrueSubState

InverseName IsTrueSubStateOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.4.3 HasFalseSubState ReferenceType

The HasFalseSubState ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the NonHierarchicalReferences ReferenceType.

The semantics indicate that the substate (the target Node) is a subordinate state of the False
super state. If more than one state within a Condition is a substate of the same super state
(i.e. several HasFalseSubState References exist for the same super state) they are all treated
as independent substates. The representation in the AddressSpace is specified in Table 6.

The SourceNode of the Reference shall be an instance of a TwoStateVariableType and the
TargetNode shall be either an instance of a TwoStateVariableType or an instance of a
subtype of a StateMachineType.

It is not required to provide the HasFalseSubState Reference from super state to substate,
but it is required that the substate provides the inverse Reference (IsFalseSubStateOf) to its
super state.

Table 6 – HasFalseSubState ReferenceType

Attributes Value

BrowseName HasFalseSubState

InverseName IsFalseSubStateOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.4.4 HasAlarmSuppressionGroup ReferenceType

The HasAlarmSuppressionGroup ReferenceType is a concrete ReferenceType that can be
used directly. It is a subtype of the HasComponent ReferenceType.

This ReferenceType binds an AlarmSuppressionGroup to an Alarm.

The SourceNode of the Reference shall be an instance of an AlarmConditionType or subtype
and the TargetNode shall be an instance of an AlarmGroupType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 29 –

Table 7 – HasAlarmSuppressionGroup ReferenceType

Attributes Value

BrowseName HasAlarmSuppressionGroup

InverseName IsAlarmSuppressionGroupOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.4.5 AlarmGroupMember ReferenceType

The AlarmGroupMember ReferenceType is a concrete ReferenceType that can be used
directly. It is a subtype of the Organizes Reference Type.

This ReferenceType is used to indicate the Alarm instances that are part of an Alarm Group.

The SourceNode of the Reference shall be an instance of an AlarmGroupType or subtype of it
and the TargetNode shall be an instance of an AlarmConditionType or a subtype of it.

Table 8 – AlarmGroupMember ReferenceType

Attributes Value

BrowseName AlarmGroupMember

InverseName MemberOfAlarmGroup

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

5.5 Condition Model

5.5.1 General

The Condition model extends the Event model by defining the ConditionType. The
ConditionType introduces the concept of states differentiating it from the base Event model.
Unlike the BaseEventType, Conditions are not transient. The ConditionType is further
extended into Dialog and AcknowledgeableConditionType, each of which has its own
subtypes.

The Condition model is illustrated in Figure 9 and formally defined in the subsequent tables. It
is worth noting that this figure, like all figures in this document, is not intended to be complete.
Rather, the figures only illustrate information provided by the formal definitions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 30 – IEC 62541-9:2020 © IEC 2020

ConditionType

PropertyType:
Retain

ConditionRefresh

TwoStateVariableType:
EnableState

ConditionVariableType:
Quality

Disable

ClientUserId
AddComment

ConditionVariableType:
Comment

BaseEventType

Enable

Acknowledgeable
ConditionType

Dialog
ConditionType

ConditionVariableType:
LastSeverity

PropertyType:
BranchId

PropertyType:
ConditionName

PropertyType:
ConditionClassId

PropertyType:
ConditionClassName

ConditionRefresh2

PropertyType:
ConditionSubClassId

PropertyType:
ConditionSubClassName

IEC

Figure 9 – Condition model

5.5.2 ConditionType

The ConditionType defines all general characteristics of a Condition. All other ConditionTypes
derive from it. It is formally defined in Table 9. The False state of the EnabledState shall not
be extended with a substate machine.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 31 –

Table 9 – ConditionType definition

Attribute Value

BrowseName ConditionType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRul
e

Subtype of the BaseEventType defined in IEC 62541-5

HasSubtype ObjectType DialogConditionType Defined in 5.6.2

HasSubtype ObjectType AcknowledgeableConditionT
ype

Defined in 5.7.2

HasProperty Variable ConditionClassId NodeId PropertyType Mandatory

HasProperty Variable ConditionClassName LocalizedText PropertyType Mandatory

HasProperty Variable ConditionSubClassId NodeId[] PropertyType Optional

HasProperty Variable ConditionSubClassName LocalizedText[] PropertyType Optional

HasProperty Variable ConditionName String PropertyType Mandatory

HasProperty Variable BranchId NodeId PropertyType Mandatory

HasProperty Variable Retain Boolean PropertyType Mandatory

HasComponent Variable EnabledState LocalizedText TwoStateVariableType Mandatory

HasComponent Variable Quality StatusCode ConditionVariableType Mandatory

HasComponent Variable LastSeverity UInt16 ConditionVariableType Mandatory

HasComponent Variable Comment LocalizedText ConditionVariableType Mandatory

HasProperty Variable ClientUserId String PropertyType Mandatory

HasComponent Method Disable Defined in 5.5.4 Mandatory

HasComponent Method Enable Defined in 5.5.5 Mandatory

HasComponent Method AddComment Defined in 5.5.6 Mandatory

HasComponent Method ConditionRefresh Defined in 5.5.7 None

HasComponent Method ConditionRefresh2 Defined in 5.5.8 None

The ConditionType inherits all Properties of the BaseEventType. Their semantic is defined in
IEC 62541-5. SourceNode Property identifies the ConditionSource. See 5.12 for more details.
If the ConditionSource is not a Node in the AddressSpace, the NodeId is set to NULL. The
SourceNode Property is the Node, which the Condition is associated with, it may be the same
as the InputNode for an Alarm, but it may be a separate node. For example, a motor, which is
a Variable with a Value that is an RPM, may be the ConditionSource for Conditions which are
related to the motor as well as a temperature sensor associated with the motor. In the former,
the InputNode for the High RPM Alarm is the value of the Motor RPM, while in the later the
InputNode of the High Alarm would be the value of the temperature sensor that is associated
with the motor.

ConditionClassId specifies in which domain this Condition is used. It is the NodeId of the
corresponding subtype of BaseConditionClassType. See 5.9 for the definition of
ConditionClass and a set of ConditionClasses defined in this document. When using this
Property for filtering, Clients shall specify all individual subtypes of BaseConditionClassType
NodeIds. The OfType operator cannot be applied. BaseConditionClassType is used as class
whenever a Condition cannot be assigned to a more concrete class.

ConditionClassName provides the display name of the subtype of BaseConditionClassType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 32 – IEC 62541-9:2020 © IEC 2020

ConditionSubClassId specifies additional class[es] that apply to the Condition. It is the NodeId
of the corresponding subtype of BaseConditionClassType. See 5.9.6 for the definition of
ConditionClass and a set of ConditionClasses defined in this document. When using this
Property for filtering, Clients shall specify all individual subtypes of BaseConditionClassType
NodeIds. The OfType operator cannot be applied. The Client specifies a NULL in the filter, to
return Conditions where no sub class is applied. When returning Conditions, if this optional
field is not available in a Condition, a NULL shall be returned for the field.

ConditionSubClassName provides the display name[s] of the ConditionClassType[s] listed in
the ConditionSubClassId.

ConditionName identifies the Condition instance that the Event originated from. It can be used
together with the SourceName in a user display to distinguish between different Condition
instances. If a ConditionSource has only one instance of a ConditionType, and the Server has
no instance name, the Server shall supply the ConditionType browse name.

BranchId is NULL for all Event Notifications that relate to the current state of the Condition
instance. If BranchId is not NULL, it identifies a previous state of this Condition instance that
still needs attention by an Operator. If the current ConditionBranch is transformed into a
previous ConditionBranch then the Server needs to assign a non-NULL BranchId. An initial
Event for the branch will generated with the values of the ConditionBranch and the new
BranchId. The ConditionBranch can be updated many times before it is no longer needed.
When the ConditionBranch no longer requires Operator input the final Event will have Retain
set to False. The retain bit on the current Event is True, as long as any ConditionBranches
require Operator input. See 4.4 for more information about the need for creating and
maintaining previous ConditionBranches and Clause B.1 for an example using branches. The
BranchId DataType is NodeId although the Server is not required to have ConditionBranches
in the Address Space. The use of a NodeId allows the Server to use simple numeric
identifiers, strings or arrays of bytes.

Retain when True describes a Condition (or ConditionBranch) as being in a state that is
interesting for a Client wishing to synchronize its state with the Server’s state. The logic to
determine how this flag is set is Server specific. Typically, all Active Alarms would have the
Retain flag set; however, it is also possible for inactive Alarms to have their Retain flag set to
TRUE.

In normal processing when a Client receives an Event with the Retain flag set to False, the
Client should consider this as a ConditionBranch that is no longer of interest, in the case of a
"current Alarm display" the ConditionBranch would be removed from the display.

EnabledState indicates whether the Condition is enabled. EnabledState/Id is True if enabled,
False otherwise. EnabledState/TransitionTime defines when the EnabledState last changed.
Recommended state names are described in Annex A.

A Condition’s EnabledState effects the generation of Event Notifications and as such results
in the following specific behaviour:

• When the Condition instance enters the Disabled state, the Retain Property of this
Condition shall be set to False by the Server to indicate to the Client that the Condition
instance is currently not of interest to Clients. This includes all ConditionBranches if any
branches exist.

• When the Condition instance enters the enabled state, the Condition shall be evaluated
and all of its Properties updated to reflect the current values. If this evaluation causes the
Retain Property to transition to True for any ConditionBranch, then an Event Notification
shall be generated for that ConditionBranch.

• The Server may choose to continue to test for a Condition instance while it is Disabled.
However, no Event Notifications will be generated while the Condition instance is disabled.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 33 –

• For any Condition that exists in the AddressSpace the Attributes and the following
Variables will continue to have valid values even in the Disabled state; EventId, Event
Type, Source Node, Source Name, Time, and EnabledState. Other Properties may no
longer provide current valid values. All Variables that are no longer provided shall return a
status of Bad_ConditionDisabled. The Event that reports the Disabled state should report
the Properties as NULL or with a status of Bad_ConditionDisabled.

When enabled, changes to the following components shall cause a ConditionType Event
Notification:

• Quality

• Severity (inherited from BaseEventType)

• Comment

This may not be the complete list. Subtypes may define additional Variables that trigger Event
Notifications. In general, changes to Variables of the types TwoStateVariableType or
ConditionVariableType trigger Event Notifications.

Quality reveals the status of process values or other resources that this Condition instance is
based upon. If, for example, a process value is "Uncertain", the associated "LevelAlarm"
Condition is also questionable. Values for the Quality can be any of the OPC StatusCodes
defined in IEC 62541-8 as well as Good, Uncertain and Bad as defined in IEC 62541-4. These
StatusCodes are similar to but slightly more generic than the description of data quality in the
various field bus specifications. It is the responsibility of the Server to map internal status
information to these codes. A Server that supports no quality information shall return Good.
This quality can also reflect the communication status associated with the system that this
value or resource is based on and from which this Alarm was received. For communication
errors to the underlying system, especially those that result in some unavailable Event fields,
the quality shall be Bad_NoCommunication error.

Events are only generated for Conditions that have their Retain field set to True and for the
initial transition of the Retain field from True to False.

LastSeverity provides the previous severity of the ConditionBranch. Initially this Variable
contains a zero value; it will return a value only after a severity change. The new severity is
supplied via the Severity Property, which is inherited from the BaseEventType.

Comment contains the last comment provided for a certain state (ConditionBranch). It may
have been provided by an AddComment Method, some other Method or in some other
manner. The initial value of this Variable is NULL, unless it is provided in some other manner.
If a Method provides as an option the ability to set a Comment, then the value of this Variable
is reset to NULL if an optional comment is not provided.

ClientUserId is related to the Comment field and contains the identity of the user who inserted
the most recent Comment. The logic to obtain the ClientUserId is defined in IEC 62541-5.

The NodeId of the Condition instance is used as ConditionId. It is not explicitly modelled as a
component of the ConditionType. However, it can be requested with the following
SimpleAttributeOperand (see Table 10) in the SelectClause of the EventFilter:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 34 – IEC 62541-9:2020 © IEC 2020

Table 10 – SimpleAttributeOperand

Name Type Description

SimpleAttributeOperand

 typeId NodeId NodeId of the ConditionType Node

 browsePath[] QualifiedName empty

 attributeId IntegerId Id of the NodeId Attribute

5.5.3 Condition and branch instances

Conditions are Objects which have a state which changes over time. Each Condition instance
has the ConditionId as identifier which uniquely identifies it within the Server.

A Condition instance may be an Object that appears in the Server Address Space. If this is
the case the ConditionId is the NodeId for the Object.

The state of a Condition instance at any given time is the set values for the Variables that
belong to the Condition instance. If one or more Variable values change the Server generates
an Event with a unique EventId.

If a Client calls Refresh the Server will report the current state of a Condition instance by re-
sending the last Event (i.e. the same EventId and Time is sent).

A ConditionBranch is a copy of the Condition instance state that can change independently of
the current Condition instance state. Each Branch has an identifier called a BranchId which is
unique among all active Branches for a Condition instance. Branches are typically not visible
in the Address Space and this document does not define a standard way to make them
visible.

5.5.4 Disable Method

The Disable Method is used to change a Condition instance to the Disabled state. Normally,
the NodeId of the object instance as the ObjectId is passed to the Call Service. However,
some Servers do not expose Condition instances in the AddressSpace. Therefore, all Servers
shall allow Clients to call the Disable Method by specifying ConditionId as the ObjectId. The
Method cannot be called with an ObjectId of the ConditionType Node.

Signature

Disable();

Method Result Codes in Table 11 (defined in Call Service).

Table 11 – Disable result codes

Result Code Description

Bad_ConditionAlreadyDisabled See Table 101 for the description of this result code.

Table 12 specifies the AddressSpace representation for the Disable Method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 35 –

Table 12 – Disable Method AddressSpace definition

Attribute Value

BrowseName Disable

References NodeClass BrowseName DataType TypeDefinition ModellingR
ule

AlwaysGeneratesEvent ObjectType AuditConditionEnableEv
entType

Defined in 5.10.2

5.5.5 Enable Method

The Enable Method is used to change a Condition instance to the enabled state. Normally, the
NodeId of the object instance as the ObjectId is passed to the Call Service. However, some
Servers do not expose Condition instances in the AddressSpace. Therefore, all Servers shall
allow Clients to call the Enable Method by specifying ConditionId as the ObjectId. The Method
cannot be called with an ObjectId of the ConditionType Node. If the Condition instance is not
exposed, then it may be difficult for a Client to determine the ConditionId for a disabled
Condition.

Signature

Enable();

Method result codes in Table 13 (defined in Call Service).

Table 13 – Enable result codes

Result Code Description

Bad_ConditionAlreadyEnabled See Table 101 for the description of this result code.

Table 14 specifies the AddressSpace representation for the Enable Method.

Table 14 – Enable Method AddressSpace definition

Attribute Value

BrowseName Enable

References NodeClass BrowseName DataType TypeDefinition ModellingRu
le

AlwaysGeneratesEvent ObjectType AuditConditionEnableEventType Defined in 5.10.2

5.5.6 AddComment Method

The AddComment Method is used to apply a comment to a specific state of a Condition
instance. Normally, the NodeId of the Object instance is passed as the ObjectId to the Call
Service. However, some Servers do not expose Condition instances in the AddressSpace.
Therefore, all Servers shall also allow Clients to call the AddComment Method by specifying
ConditionId as the ObjectId. The Method cannot be called with an ObjectId of the
ConditionType Node.

Signature

AddComment(
 [in] ByteString EventId
 [in] LocalizedText Comment
);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 36 – IEC 62541-9:2020 © IEC 2020

The parameters are defined in Table 15.

Table 15 – AddComment arguments

Argument Description

EventId EventId identifying a particular Event Notification where a state was reported for a Condition.

Comment A localized text to be applied to the Condition.

Method result codes in Table 16 (defined in Call Service).

Table 16 – AddComment result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_EventIdUnknown See Table 101 for the description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on the
ConditionType Node.

See IEC 62541-4 for the general description of this result code.

Comments

Comments are added to Event occurrences identified via an EventId. EventIds where the
related EventType is not a ConditionType (or subtype of it) and thus does not support
Comments are rejected.

A ConditionEvent – where the Comment Variable contains this text – will be sent for the
identified state. If a comment is added to a previous state (i.e. a state for which the Server
has created a branch), the BranchId and all Condition values of this branch will be reported.

Table 17 specifies the AddressSpace representation for the AddComment Method.

Table 17 – AddComment Method AddressSpace definition

Attribute Value

BrowseName AddComment

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType AuditConditionComment
EventType

Defined in 5.10.4

5.5.7 ConditionRefresh Method

ConditionRefresh allows a Client to request a Refresh of all Condition instances that currently
are in an interesting state (they have the Retain flag set). This includes previous states of a
Condition instance for which the Server maintains Branches. A Client would typically invoke
this Method when it initially connects to a Server and following any situations, such as
communication disruptions, in which it would require resynchronization with the Server. This
Method is only available on the ConditionType or its subtypes. To invoke this Method, the call
shall pass the well-known MethodId of the Method on the ConditionType and the ObjectId
shall be the well-known ObjectId of the ConditionType Object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 37 –

Signature

ConditionRefresh(
 [in] IntegerId SubscriptionId
);

The parameters are defined in Table 18.

Table 18 – ConditionRefresh parameters

Argument Description

SubscriptionId A valid Subscription Id of the Subscription to be refreshed. The Server shall verify that the
SubscriptionId provided is part of the Session that is invoking the Method.

Method result codes in Table 19 (defined in Call Service).

Table 19 – ConditionRefresh result codes

Result Code Description

Bad_SubscriptionIdInvalid See IEC 62541-4 for the description of this result code

Bad_RefreshInProgress See Table 101 for the description of this result code

Bad_UserAccessDenied The Method was not called in the context of the Session that owns the Subscription

See IEC 62541-4 for the general description of this result code.

Comments

Subclause 4.5 describes the concept, use cases and information flow in more detail.

The input argument provides a Subscription identifier indicating which Client Subscription
shall be refreshed. If the Subscription is accepted the Server will react as follows:

1) The Server issues an event of RefreshStartEventType(defined in 5.11.2) marking the start
of Refresh. A copy of the instance of RefreshStartEventType is queued into the Event
stream for every Notifier MonitoredItem in the Subscription. Each of the Event copies shall
contain the same EventId.

2) The Server issues Event Notifications of any Retained Conditions and Retained Branches
of Conditions that meet the Subscriptions content filter criteria. Note that the EventId for
such a refreshed Notification shall be identical to the one for the original Notification: the
values of the other Properties are Server specific, in that some Servers might be able to
replay the exact Events with all Properties/Variables maintaining the same values as
originally sent, but other Servers might only be able to regenerate the Event. The
regenerated Event might contain some updated Property/Variable values. For example, if
the Alarm limits associated with a Variable were changed after the generation of the Event
without generating a change in the Alarm state, the new limit might be reported. In another
example, if the HighLimit was 100 and the Variable is 120. If the limit were changed to 90,
no new Event would be generated since no change to the StateMachine, but the limit on a
Refresh would indicate 90, when the original Event had indicated 100.

3) The Server may intersperse new Event Notifications that have not been previously issued
to the Notifier along with those being sent as part of the Refresh request. Clients shall
check for multiple Event Notifications for a ConditionBranch to avoid overwriting a new
state delivered together with an older state from the Refresh process.

4) The Server issues an instance of RefreshEndEventType (defined in 5.11.3) to signal the
end of the Refresh. A copy of the instance of RefreshEndEventType is queued into the
Event stream for every Notifier MonitoredItem in the Subscription. Each of the Events
copies shall contain the same EventId.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 38 – IEC 62541-9:2020 © IEC 2020

It is important to note that if multiple Event Notifiers are in a Subscription, all Event Notifiers
are processed. If a Client does not want all MonitoredItems refreshed, then the Client should
place each MonitoredItem in a separate Subscription or call ConditionRefresh2 if the Server
supports it.

If more than one Subscription is to be refreshed, then the standard call Service array
processing can be used.

As mentioned above, ConditionRefresh shall also issue Event Notifications for prior states if
they still need attention. In particular, this is True for Condition instances where previous
states still need acknowledgement or confirmation.

Table 20 specifies the AddressSpace representation for the ConditionRefresh Method.

Table 20 – ConditionRefresh Method AddressSpace definition

Attribute Value

BrowseName ConditionRefresh

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType RefreshStartEvent Defined in 5.11.2

AlwaysGeneratesEvent ObjectType RefreshEndEvent Defined in 5.11.3

5.5.8 ConditionRefresh2 Method

ConditionRefresh2 allows a Client to request a Refresh of all Condition instances that
currently are in an interesting state (they have the Retain flag set) that are associated with the
given Monitored item. In all other respects it functions as ConditionRefresh. A Client would
typically invoke this Method when it initially connects to a Server and following any situations,
such as communication disruptions where only a single MonitoredItem is to be resynchronized
with the Server. This Method is only available on the ConditionType or its subtypes. To invoke
this Method, the call shall pass the well-known MethodId of the Method on the ConditionType
and the ObjectId shall be the well-known ObjectId of the ConditionType Object.

This Method is optional and as such Clients must be prepared to handle Servers which do not
provide the Method. If the Method returns Bad_MethodInvalid, the Client shall revert to
ConditionRefresh.

Signature

ConditionRefresh2(
 [in] IntegerId SubscriptionId
 [in] IntegerId MonitoredItemId
);

The parameters are defined in Table 21.

Table 21 – ConditionRefresh2 parameters

Argument Description

SubscriptionId The identifier of the Subscription containing the MonitoredItem to be refreshed. The Server
shall verify that the SubscriptionId provided is part of the Session that is invoking the Method.

MonitoredItemId The identifier of the MonitoredItem to be refreshed. The MonitoredItemId shall be in the
provided Subscription.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 39 –

Method result codes in Table 22 (defined in Call Service).

Table 22 – ConditionRefresh2 result codes

Result Code Description

Bad_SubscriptionIdInvalid See IEC 62541-4 for the description of this result code

Bad_MonitoredItemIdInvalid See IEC 62541-4 for the description of this result code

Bad_RefreshInProgress See Table 101 for the description of this result code

Bad_UserAccessDenied The Method was not called in the context of the Session that owns the Subscription.

See IEC 62541-4 for the general description of this result code.

Bad_MethodInvalid See IEC 62541-4 for the description of this result code

Comments

Subclause 4.5 describes the concept, use cases and information flow in more detail.

The input argument provides a Subscription identifier and MonitoredItem identifier indicating
which MonitoredItem in the selected Client Subscription shall be refreshed. If the Subscription
and MonitoredItem is accepted the Server will react as follows:

1) The Server issues a RefreshStartEvent (defined in 5.11.2) marking the start of Refresh.
The RefreshStartEvent is queued into the Event stream for the Notifier MonitoredItem in
the Subscription.

2) The Server issues Event Notifications of any Retained Conditions and Retained Branches
of Conditions that meet the Subscriptions content filter criteria. Note that the EventId for
such a refreshed Notification shall be identical to the one for the original Notification: the
values of the other Properties are Server specific, in that some Servers may be able to
replay the exact Events with all Properties/Variables maintaining the same values as
originally sent, but other Servers might only be able to regenerate the Event. The
regenerated Event might contain some updated Property/Variable values. For example, if
the Alarm limits associated with a Variable were changed after the generation of the Event
without generating a change in the Alarm state, the new limit might be reported. In another
example, if the HighLimit was 100 and the Variable is 120. If the limit were changed to 90
no new Event would be generated since no change to the StateMachine, but the limit on a
Refresh would indicate 90, when the original Event had indicated 100.

3) The Server may intersperse new Event Notifications which have not been previously
issued to the notifier along with those being sent as part of the Refresh request. Clients
shall check for multiple Event Notifications for a ConditionBranch to avoid overwriting a
new state delivered together with an older state from the Refresh process.

4) The Server issues a RefreshEndEvent (defined in 5.11.3) to signal the end of the Refresh.
The RefreshEndEvent is queued into the Event stream for the Notifier MonitoredItem in
the Subscription.

If more than one MonitoredItem or Subscription is to be refreshed, then the standard call
Service array processing can be used.

As mentioned above, ConditionRefresh2 shall also issue Event Notifications for prior states if
those states still need attention. In particular, this is True for Condition instances where
previous states still need acknowledgement or confirmation.

Table 23 specifies the AddressSpace representation for the ConditionRefresh2 Method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 40 – IEC 62541-9:2020 © IEC 2020

Table 23 – ConditionRefresh2 Method AddressSpace definition

Attribute Value

BrowseName ConditionRefresh2

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType RefreshStartEvent Defined in 5.11.2

AlwaysGeneratesEvent ObjectType RefreshEndEvent Defined in 5.11.3

5.6 Dialog Model

5.6.1 General

The Dialog Model is an extension of the Condition model used by a Server to request user
input. It provides functionality similar to the standard Message dialogs found in most operating
systems. The model can easily be customized by providing Server specific response options
in the ResponseOptionSet and by adding additional functionality to derived Condition Types.

5.6.2 DialogConditionType

The DialogConditionType is used to represent Conditions as dialogs. It is illustrated in
Figure 10 and formally defined in Table 24.

LastResponse

DialogConditionType

ResponseOptionSet

TwoStateVariableType:
DialogState

Respond

OkResponse

ConditionType

EnableState

IsTrueSubState

Prompt

DefaultResponse CancelResponse

IEC

Figure 10 – DialogConditionType overview

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 41 –

Table 24 – DialogConditionType definition

Attribute Value

BrowseName DialogConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the ConditionType defined in clause 5.5.2

HasComponent Variable DialogState LocalizedText TwoStateVariableType Mandatory

HasProperty Variable Prompt LocalizedText PropertyType Mandatory

HasProperty Variable ResponseOptionSet LocalizedText [] PropertyType Mandatory

HasProperty Variable DefaultResponse Int32 PropertyType Mandatory

HasProperty Variable LastResponse Int32 PropertyType Mandatory

HasProperty Variable OkResponse Int32 PropertyType Mandatory

HasProperty Variable CancelResponse Int32 PropertyType Mandatory

HasComponent Method Respond Defined in Clause 5.6.3. Mandatory

The DialogConditionType inherits all Properties of the ConditionType.

DialogState/Id when set to True indicates that the Dialog is active and waiting for a response.
Recommended state names are described in Annex A.

Prompt is a dialog prompt to be shown to the user.

ResponseOptionSet specifies the desired set of responses as array of LocalizedText. The
index in this array is used for the corresponding fields like DefaultResponse, LastResponse
and SelectedOption in the Respond Method. The recommended localized names for the
common options are described in Annex A.

Typical combinations of response options are

• OK

• OK, Cancel

• Yes, No, Cancel

• Abort, Retry, Ignore

• Retry, Cancel

• Yes, No

DefaultResponse identifies the response option that should be shown as default to the user. It
is the index in the ResponseOptionSet array. If no response option is the default, the value of
the Property is −1.

LastResponse contains the last response provided by a Client in the Respond Method. If no
previous response exists, then the value of the Property is −1.

OkResponse provides the index of the OK option in the ResponseOptionSet array. This
choice is the response that will allow the system to proceed with the operation described by
the prompt. This allows a Client to identify the OK option if a special handling for this option is
available. If no OK option is available, the value of this Property is −1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 42 – IEC 62541-9:2020 © IEC 2020

CancelResponse provides the index of the response in the ResponseOptionSet array that will
cause the Dialog to go into the inactive state without proceeding with the operation described
by the prompt. This allows a Client to identify the Cancel option if a special handling for this
option is available. If no Cancel option is available, the value of this Property is −1.

5.6.3 Respond Method

Respond is used to pass the selected response option and end the dialog. DialogState/Id will
return to False.

Signature

Respond(
 [in] Int32 SelectedResponse
);

The parameters are defined in Table 25.

Table 25 – Respond parameters

Argument Description

SelectedResponse Selected index of the ResponseOptionSet array.

Method result codes in Table 26 (defined in Call Service).

Table 26 – Respond Result Codes

Result Code Description

Bad_DialogNotActive See Table 101 for the description of this result code.

Bad_DialogResponseInvalid See Table 101 for the description of this result code.

Table 27 specifies the AddressSpace representation for the Respond Method.

Table 27 – Respond Method AddressSpace definition

Attribute Value

BrowseName Respond

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType AuditConditionRespondEventType Defined in 5.10.5

5.7 Acknowledgeable Condition Model

5.7.1 General

The Acknowledgeable Condition Model extends the Condition model. States for
acknowledgement and confirmation are added to the Condition model.

AcknowledgeableConditions are represented by the AcknowledgeableConditionType which is
a subtype of the ConditionType. The model is formally defined in 5.7.2 to 5.7.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 43 –

5.7.2 AcknowledgeableConditionType

The AcknowledgeableConditionType extends the ConditionType by defining acknowledgement
characteristics. It is an abstract type. The AcknowledgeableConditionType is illustrated in
Figure 11 and formally defined in Table 28.

Acknowledgeable
ConditionType

Acknowledge
TwoStateVariableType:

AckedState

TwoStateVariableType:
ConfirmedState

Confirm

ConditionType

EnableState

HasTrueSubState

IEC

Figure 11 – AcknowledgeableConditionType overview

Table 28 – AcknowledgeableConditionType definition

Attribute Value

BrowseName AcknowledgeableConditionType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRu
le

Subtype of the ConditionType defined in 5.5.2.

HasSubtype ObjectType AlarmConditionType Defined in 5.8.2

HasComponent Variable AckedState LocalizedText TwoStateVariableType Mandatory

HasComponent Variable ConfirmedState LocalizedText TwoStateVariableType Optional

HasComponent Method Acknowledge Defined in 5.7.3 Mandatory

HasComponent Method Confirm Defined in 5.7.4 Optional

The AcknowledgeableConditionType inherits all Properties of the ConditionType.

AckedState when False indicates that the Condition instance requires acknowledgement for
the reported Condition state. When the Condition instance is acknowledged the AckedState is
set to True. ConfirmedState indicates whether it requires confirmation. Recommended state
names are described in Annex A. The two states are substates of the True EnabledState. See
4.3 for more information about acknowledgement and confirmation models. The EventId used
in the Event Notification is considered the identifier of this state and shall be used when
calling the Methods for acknowledgement or confirmation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 44 – IEC 62541-9:2020 © IEC 2020

A Server may require that previous states be acknowledged. If the acknowledgement of a
previous state is still open and a new state also requires acknowledgement, the Server shall
create a branch of the Condition instance as specified in 4.4. Clients are expected to keep
track of all ConditionBranches where AckedState/Id is False to allow acknowledgement of
those. See also 5.5.2 for more information about ConditionBranches and the examples in
Clause B.1. The handling of the AckedState and branches also applies to the ConfirmedState.

5.7.3 Acknowledge Method

The Acknowledge Method is used to acknowledge an Event Notification for a Condition
instance state where AckedState is False. Normally, the NodeId of the object instance is
passed as the ObjectId to the Call Service. However, some Servers do not expose Condition
instances in the AddressSpace. Therefore, Servers shall allow Clients to call the Acknowledge
Method by specifying ConditionId as the ObjectId. The Method cannot be called with an
ObjectId of the AcknowledgeableConditionType Node.

Signature

Acknowledge(
 [in] ByteString EventId
 [in] LocalizedText Comment
);

The parameters are defined in Table 29.

Table 29 – Acknowledge parameters

Argument Description

EventId EventId identifying a particular Event Notification.

Only Event Notifications where AckedState/Id was False can be acknowledged.

Comment A localized text to be applied to the Condition.

Method result codes in Table 30 (defined in Call Service).

Table 30 – Acknowledge result codes

Result Code Description

Bad_ConditionBranchAlreadyAcked See Table 101 for the description of this result code.

Bad_MethodInvalid The method id does not refer to a method for the specified object or ConditionId.

Bad_EventIdUnknown See Table 101 for the description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called
on the ConditionType Node. See IEC 62541-4 for the general description of this
result code.

Comments

A Server is responsible to ensure that each Event has a unique EventId. This allows Clients to
identify and acknowledge a particular Event Notification.

The EventId identifies a specific Event Notification where a state to be acknowledged was
reported. Acknowledgement and the optional comment will be applied to the state identified
with the EventId. If the comment field is NULL (both locale and text are empty) it will be
ignored and any existing comments will remain unchanged. If the comment is to be reset, an
empty text with a locale shall be provided.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 45 –

A valid EventId will result in an Event Notification where AckedState/Id is set to True and the
Comment Property contains the text of the optional comment argument. If a previous state is
acknowledged, the BranchId and all Condition values of this branch will be reported. Table 31
specifies the AddressSpace representation for the Acknowledge Method.

Table 31 – Acknowledge Method AddressSpace definition

Attribute Value

BrowseName Acknowledge

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGenerates
Event

ObjectType AuditConditionAcknowledge

EventType

Defined in 5.10.5

5.7.4 Confirm Method

The Confirm Method is used to confirm an Event Notifications for a Condition instance state
where ConfirmedState is False. Normally, the NodeId of the object instance is passed as the
ObjectId to the Call Service. However, some Servers do not expose Condition instances in the
AddressSpace. Therefore, Servers shall allow Clients to call the Confirm Method by specifying
ConditionId as the ObjectId. The Method cannot be called with an ObjectId of the
AcknowledgeableConditionType Node.

Signature

Confirm(
 [in] ByteString EventId
 [in] LocalizedText Comment
);

The parameters are defined in Table 32.

Table 32 – Confirm Method parameters

Argument Description

EventId EventId identifying a particular Event Notification.

Only Event Notifications where the Id property of the ConfirmedState is False can be
confirmed.

Comment A localized text to be applied to the Conditions.

Method result codes in Table 33 (defined in Call Service).

Table 33 – Confirm result codes

Result Code Description

Bad_ConditionBranchAlreadyConfirmed See Table 101 for the description of this result code.

Bad_MethodInvalid The method id does not refer to a method for the specified object or ConditionId.

See IEC 62541-4 for the general description of this result code.

Bad_EventIdUnknown See Table 101 for the description of this result code.

Bad_NodeIdUnknown Used to indicate that the specified ObjectId is not valid or that the Method was
called on the ConditionType Node.

See IEC 62541-4 for the general description of this result code.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 46 – IEC 62541-9:2020 © IEC 2020

Comments

A Server is responsible to ensure that each Event has a unique EventId. This allows Clients to
identify and confirm a particular Event Notification.

The EventId identifies a specific Event Notification where a state to be confirmed was
reported. A Comment can be provided which will be applied to the state identified with the
EventId.

A valid EventId will result in an Event Notification where ConfirmedState/Id is set to True and
the Comment Property contains the text of the optional comment argument. If a previous state
is confirmed, the BranchId and all Condition values of this branch will be reported. A Client
can confirm only events that have a ConfirmedState/Id set to False. The logic for setting
ConfirmedState/Id to False is Server specific and may even be event or condition specific.

Table 34 specifies the AddressSpace representation for the Confirm Method.

Table 34 – Confirm Method AddressSpace definition

Attribute Value

BrowseName Confirm

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEv
ent

ObjectType AuditConditionConfirmEventType Defined in 5.10.7

5.8 Alarm model

5.8.1 General

Figure 12 informally describes the AlarmConditionType, its subtypes and where it is in the
hierarchy of Event Types.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 47 –

AlarmConditionType

AcknowledgeableConditionType

ConditionType

ExclusiveLimit
AlarmType

Exclusive
Level

Exclusive
MultiDeviation

Exclusive
RateOfChange

NonExclusiveLimit
AlarmType

NonExclusive
Level

NonExclusive
MultiDeviation

NonExclusive
RateOfChange

OffNormalAlarmType

DiscreteAlarmType

SystemOffNormalAlarmType

LimitAlarmTypeDiscrepancy
AlarmType

IEC

Figure 12 – AlarmConditionType Hierarchy Model

5.8.2 AlarmConditionType

The AlarmConditionType is an abstract type that extends the AcknowledgeableConditionType
by introducing an ActiveState, SuppressedState and ShelvingState. It also adds the ability to
set a delay time, re-alarm time, Alarm groups and audible Alarm settings The Alarm model is
illustrated in Figure 13. This illustration is not intended to be a complete definition. It is
formally defined in Table 35.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 48 – IEC 62541-9:2020 © IEC 2020

ConditionType

Acknowledgeable
ConditionType

AlarmCondition
Type

StateMachineType:
ShelvingState

EnableState

TwoStateVariableType:
ActiveState

TwoStateVariableType:
SuppressedState

CurrentState

InputNode

SuppressedOrShelved

MaxTimeShelved

AudibleEnable

AudibleSound

OnDelay

OffDelay
RepeatCount

FirstInGroup

TwoStateVariableType:
SilenceState

<AlarmGroup>

FirstInGroupFlag

ReAlarmTime

ReAlarmRepeatCount

Silence

Suppress

TwoStateVariableType:
OutOfServiceState

IsTrueSubState

OutOfService

Reset

TwoStateVariableType:
LatchedState

IEC

Figure 13 – Alarm Model

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 49 –

Table 35 – AlarmConditionType definition

Attribute Value

BrowseName AlarmConditionType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AcknowledgeableConditionType defined in clause 5.7.2

HasComponent Variable ActiveState LocalizedText TwoStateVariableType Mandatory

HasProperty Variable InputNode NodeId PropertyType Mandatory

HasComponent Variable SuppressedState LocalizedText TwoStateVariableType Optional

HasComponent Variable OutOfServiceState LocalizedText TwoStateVariableType Optional

HasComponent Object ShelvingState ShelvedStateMachineType Optional

HasProperty Variable SuppressedOrShelved Boolean PropertyType Mandatory

HasProperty Variable MaxTimeShelved Duration PropertyType Optional

HasProperty Variable AudibleEnabled Boolean PropertyType Optional

HasComponent Variable AudibleSound AudioDataType AudioVariableType Optional

HasComponent Variable SilenceState LocalizedText TwoStateVariableType Optional

HasProperty Variable OnDelay Duration PropertyType Optional

HasProperty Variable OffDelay Duration PropertyType Optional

HasComponent Variable FirstInGroupFlag Boolean BaseDataVariableType Optional

HasComponent Object FirstInGroup AlarmGroupType Optional

HasComponent Object LatchedState LocalizedText TwoStateVariableType Optional

HasAlarmSuppress
ionGroup

Object <AlarmGroup> AlarmGroupType OptionalPlac
eholder

HasProperty Variable ReAlarmTime Duration PropertyType Optional

HasComponent Variable ReAlarmRepeatCount Int16 BaseDataVariableType Optional

HasComponent Method Silence Defined in 5.8.5 Optional

HasComponent Method Suppress Defined in 5.8.6 Optional

HasComponent Method Unsuppress Defined in 5.8.7 Optional

HasComponent Method RemoveFromService Defined in 5.8.8 Optional

HasComponent Method PlaceInService Defined in 5.8.9 Optional

HasComponent Method Reset Defined in 5.8.4 Optional

HasSubtype Object DiscreteAlarmType

HasSubtype Object LimitAlarmType

HasSubtype Object DiscrepancyAlarmType

The AlarmConditionType inherits all Properties of the AcknowledgeableConditionType. The
following states are substates of the True EnabledState.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 50 – IEC 62541-9:2020 © IEC 2020

ActiveState/Id when set to True indicates that the situation the Condition is representing
currently exists. When a Condition instance is in the inactive state (ActiveState/Id when set to
False) it is representing a situation that has returned to a normal state. The transitions of
Conditions to the inactive and Active states are triggered by Server specific actions. Subtypes
of the AlarmConditionType specified later in this document will have substate models that
further define the Active state. Recommended state names are described in Annex A.

The InputNode Property provides the NodeId of the Variable the Value of which is used as
primary input in the calculation of the Alarm state. If this Variable is not in the AddressSpace,
a NULL NodeId shall be provided. In some systems, an Alarm may be calculated based on
multiple Variables Values; it is up to the system to determine which Variable’s NodeId is used.

SuppressedState, OutOfServiceState and ShelvingState together allow the suppression of
Alarms on display systems. These three suppressions are generally used by different
personnel or systems at a plant, i.e. automatic systems, maintenance personnel and
Operators.

SuppressedState is used internally by a Server to automatically suppress Alarms due to
system specific reasons. For example, a system may be configured to suppress Alarms that
are associated with machinery that is in a state such as shutdown. For example, a low-level
Alarm for a tank that is currently not in use might be suppressed. Recommended state names
are described in Annex A.

OutOfServiceState is used by maintenance personnel to suppress Alarms due to a
maintenance issue. For example, if an instrument is taken out of service for maintenance or is
removed temporarily while it is being replaced or serviced, the item would have the
OutOfServiceState set. Recommended state names are described in Annex A.

ShelvingState suggests whether an Alarm shall (temporarily) be prevented from being
displayed to the user. It is quite often used by Operators to block nuisance Alarms. The
ShelvingState is defined in 5.8.10.

When an Alarm has any or all of the SuppressedState, OutOfServiceState or ShelvingState
set to True, the SuppressedOrShelved property shall be set True and this Alarm is then
typically not displayed by the Client. State transitions associated with the Alarm do occur, but
they are not typically displayed by the Clients as long as the Alarm remains in any of the
SuppressedState, OutOfServiceState or Shelved state.

The optional Property MaxTimeShelved is used to set the maximum time that an Alarm
Condition may be shelved. The value is expressed as duration. Systems can use this Property
to prevent permanent Shelving of an Alarm. If this Property is present it will be an upper limit
on the duration passed into a TimedShelve Method call. If a value that exceeds the value of
this Property is passed to the TimedShelve Method, then a Bad_ShelvingTimeOutOfRange
error code is returned on the call. If this Property is present it will also be enforced for the
OneShotShelved state, in that an Alarm Condition will transition to the Unshelved state from
the OneShotShelved state if the duration specified in this Property expires following a
OneShotShelve operation without a change of any of the other items associated with the
Condition.

The optional Property AudibleEnabled is a Boolean that indicates if the current state of this
Alarm includes an audible Alarm.

The optional Property AudibleSound contains the sound file that is to be played if an audible
Alarm is to be generated. This file would be play/generated as long as the Alarm is active and
unacknowledged, unless the silence StateMachine is included, in which case it may also be
silenced by this StateMachine.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 51 –

The SilenceState is used to suppress the generation of audible Alarms. Typically, it is used
when an Operator silences all Alarms on a screen, but needs to acknowledge the Alarms
individually. Silencing an Alarm shall silence the Alarm on all systems (screens) that it is
being reported on. Not all Clients will make use of this StateMachine, but it allows multiple
Clients to synchronize audible Alarm states. Acknowledging an Alarm shall automatically
silence an Alarm.

The OnDelay and OffDelay Properties can be used to eliminate nuisance Alarms. The
OnDelay is used to avoid unnecessary Alarms when a signal temporarily overshoots its
setpoint, thus preventing the Alarm from being triggered until the signal remains in the Alarm
state continuously for a specified length of time (OnDelay time). The OffDelay is used to
reduce chattering Alarms by locking the Alarm indication for a certain holding period after the
condition has returned to normal, i.e. the Alarm shall stay active for the OffDelay time and
shall not regenerate if it returns to active in that period. If the Alarm remains in the inactive
zone for OffDelay, it will then become inactive.

The optional variable FirstInGroupFlag is used together with the FirstInGroup object. The
FirstInGroup Object is an instance of an AlarmGroupType that groups a number of related
Alarms. The FirstInGroupFlag is set on the Alarm instance that was the first Alarm to trigger in
a FirstInGroup. If this variable is present, then the FirstInGroup shall also be present. These
two nodes allow an alarming system to determine which Alarm in the list was the trigger. It is
commonly used in situations where Alarms are interrelated, and usually multiple Alarms
occur. For example, usually all vibration sensors in a turbine trigger if any one of them
triggers, but what is important for an Operator is the first sensor that triggered.

The LatchedState Object, if present, indicates that this Alarm supports being latched. The
Alarm will remain with a retain bit of True until it is no longer active, is acknowledge and is
reset. The Reset Method, if called while active has no effect on the Alarm and is ignored and
an error of Bad_InvalidState is return on the call. The Object indicates the current state,
latched or not latched. Recommended state names are described in Annex A. If this Object is
provided, the Reset Method shall also be provided.

An Alarm instance may contain HasAlarmSuppressionGroup reference(s) to instance(s) of
AlarmGroupType. Each instance is an AlarmSuppressionGroup. When an
AlarmSuppressionGroup goes active, the Server shall set the SuppressedState of the Alarm
to True. When all of referenced AlarmSuppressionGroups are no longer active, then the
Server shall set SuppressedState to False. A single AlarmSuppressionGroup can be assigned
to multiple Alarms. AlarmSuppressionGroups are used to control AlarmFloods and to help
manage Alarms.

ReAlarmTime if present sets a time that is used to bring an Alarm back to the top of an Alarm
list. If an Alarm has not returned to normal within the provided time (from when it last was
alarmed), the Server will generate a new Alarm for it (as if it just went into alarm). If it has
been silenced it shall return to an un-silenced state, if it has been acknowledged it shall return
to unacknowledged. The Alarm active time is set to the time of the re-alarm.

ReAlarmRepeatCount, if present, counts the number times an Alarm was re-alarmed. Some
smart alarming system would use this count to raise the priority or otherwise generate
additional or different annunciations for the given Alarm. The count is reset when an Alarm
returns to normal.

Silence Method may be used to silence an instance of an Alarm. It is defined in 5.8.5.

Suppress Method may be used to suppress an instance of an Alarm. Most Alarm suppression
occurs via advanced alarming, but this method allows additional access to suppress a
particular Alarm instance. Additional details are provided in the definition in 5.8.6.

Unsuppress Method may be used to remove an instance of an Alarm from SuppressedState.
Additional details are provided in the definition in 5.8.7.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 52 – IEC 62541-9:2020 © IEC 2020

PlaceInService Method may be used to remove an instance of an Alarm from
OutOfServiceState. It is defined in 5.8.9.

RemoveFromService Method may be used to place an instance of an Alarm in
OutOfServiceState. It is defined in 5.8.8.

Reset Method is used to clear a latched Alarm. It is defined in 5.8.4. If this Object is provided,
the LatchedState Object shall also be provided.

More details about the Alarm Model and the various states can be found in 4.8 and in
Annex E.

5.8.3 AlarmGroupType

The AlarmGroupType provides a simple manner of grouping Alarms. This grouping may be
used for Alarm suppression or for identifying related Alarms. The actual usage of the
AlarmGroupType is specified where it is used.

The AlarmGroupType is formally defined in Table 36.

Table 36 – AlarmGroupType definition

Attribute Value

BrowseName AlarmGroupType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the FolderType defined in IEC 62541-5.

AlarmGroupMember Object <AlarmConditionInstance> AlarmConditionType OptionalPlace
holder

The instance of an AlarmGroupType should be given a name and description that describes
the purpose of the Alarm group.

The AlarmGroupType instance will contain a list of instances of AlarmConditionType or
subtype of AlarmConditionType referenced by AlarmGroupMember references. At least one
Alarm shall be present in an instance of an AlarmGroupType.

5.8.4 Reset Method

The Reset Method is used reset a latched Alarm instance. It is only available on an instance
of an AlarmConditionType that exposes the LatchedState. Normally, the NodeId of the Object
instance is passed as the ObjectId to the Call Service. However, some Servers do not expose
Condition instances in the AddressSpace. Therefore, Servers shall allow Clients to call the
Reset Method by specifying ConditionId as the ObjectId. The Method cannot be called with an
ObjectId of the AlarmConditionType Node.

Signature

Reset();

Method result codes are given in Table 37 (defined in Call service).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 53 –

Table 37 – Silence result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on the
ConditionType Node.

See IEC 62541-4 for the general description of this result code.

Bad_InvalidState The Alarm instance was not latched or still active or still required acknowledgement. For an
Alarm Instance to be reset, it must have been in Alarm, and returned to normal and have been
acknowledged prior to being reset.

Table 38 specifies the AddressSpace representation for the Reset Method.

Table 38 – Reset Method AddressSpace definition

Attribute Value

BrowseName Reset

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEv
ent

Ob jectType AuditConditionRese
tEventType

Defined in 5.10.11

5.8.5 Silence Method

The Silence Method is used to silence a specific Alarm instance. It is only available on an
instance of an AlarmConditionType that also exposes the SilenceState. Normally, the NodeId
of the Object instance is passed as the ObjectId to the Call Service. However, some Servers
do not expose Condition instances in the AddressSpace. Therefore, Servers shall allow
Clients to call the Silence Method by specifying ConditionId as the ObjectId. The Method
cannot be called with an ObjectId of the AlarmConditionType Node.

Signature

Silence();

Method result codes in Table 39 (defined in Call service).

Table 39 – Silence result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on the
ConditionType Node.

See IEC 62541-4 for the general description of this result code.

Comments

If the instance is not currently in an audible state, the command is ignored.

Table 40 specifies the AddressSpace representation for the Silence Method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 54 – IEC 62541-9:2020 © IEC 2020

Table 40 – Silence Method AddressSpace definition

Attribute Value

BrowseName Silence

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionSilenceEventType Defined in 5.10.10

5.8.6 Suppress Method

The Suppress Method is used to suppress a specific Alarm instance. It is only available on an
instance of an AlarmConditionType that also exposes the SuppressedState. This Method may
be used to change the SuppressedState of an Alarm and overwrite any suppression caused
by an associated AlarmSuppressionGroup. This Method works in parallel with any
suppression triggered by an AlarmSupressionGroup, in that if the Method is used to suppress
an Alarm, an AlarmSuppressionGroup might clear the suppression.

Normally, the NodeId of the object instance is passed as the ObjectId to the Call Service.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore,
Servers shall allow Clients to call the Suppress Method by specifying ConditionId as the
ObjectId. The Method may not be called with an ObjectId of the AlarmConditionType Node.

Signature

Suppress();

Method Result Codes in Table 41 (defined in Call Service).

Table 41 – Suppress result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on the
ConditionType Node.

See IEC 62541-4 for the general description of this result code.

Comments

Suppress Method applies to an Alarm instance, even if it is not currently active.

Table 42 specifies the AddressSpace representation for the Suppress Method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 55 –

Table 42 – Suppress Method AddressSpace definition

Attribute Value

BrowseName Suppress

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionSuppressionEventT
ype

Defined in 5.10.4

5.8.7 Unsuppress Method

The Unsuppress Method is used to clear the SuppressedState of a specific Alarm instance. It
is only available on an instance of an AlarmConditionType that also exposes the
SuppressedState. This Method may be used to overwrite any suppression cause by an
associated AlarmSuppressionGroup. This Method works in parallel with any suppression
triggered by an AlarmSuppressionGroup, in that if the Method is used to clear the
SuppressedState of an Alarm, any change in an AlarmSuppressionGroup might again
suppress the Alarm.

Normally, the NodeId of the ObjectInstance is passed as the ObjectId to the Call Service.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore,
Servers shall allow Clients to call the Unsuppress Method by specifying ConditionId as the
ObjectId. The Method may not be called with an ObjectId of the AlarmConditionType Node.

Signature

Unsuppress();

Method Result Codes in Table 43 (defined in Call Service).

Table 43 – Unsuppress result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on the
ConditionType Node.

See IEC 62541-4 for the general description of this result code.

Comments

Unsuppress Method applies to an Alarm instance, even if it is not currently active.

Table 44 specifies the AddressSpace representation for the Suppress Method.

Table 44 – Unsuppress Method AddressSpace definition

Attribute Value

BrowseName Unsuppress

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionSuppressionEventType Defined in 5.10.4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 56 – IEC 62541-9:2020 © IEC 2020

5.8.8 RemoveFromService Method

The RemoveFromService Method is used to suppress a specific Alarm instance. It is only
available on an instance of an AlarmConditionType that also exposes the OutOfServiceState.
Normally, the NodeId of the object instance is passed as the ObjectId to the Call Service.
However, some Servers do not expose Condition instances in the AddressSpace. Therefore,
Servers shall allow Clients to call the RemoveFromService Method by specifying ConditionId
as the ObjectId. The Method may not be called with an ObjectId of the AlarmConditionType
Node.

Signature

RemoveFromService ();

Method result codes in Table 45 (defined in Call Service).

Table 45 – RemoveFromService result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on the
ConditionType Node.

See IEC 62541-4 for the general description of this result code.

Comments

Instances that do not expose the OutOfService State shall reject RemoveFromService calls.
RemoveFromService Method applies to an Alarm instance, even if it is not currently in the
Active State.

Table 46 specifies the AddressSpace representation for the RemoveFromService Method.

Table 46 – RemoveFromService Method AddressSpace definition

Attribute Value

BrowseName RemoveFromService

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionOutOfServiceEventType Defined in 5.10.12

5.8.9 PlaceInService Method

The PlaceInService Method is used to set the OutOfServiceState to False of a specific Alarm
instance. It is only available on an instance of an AlarmConditionType that also exposes the
OutOfServiceState. Normally, the NodeId of the ObjectInstance is passed as the ObjectId to
the Call Service. However, some Servers do not expose Condition instances in the
AddressSpace. Therefore, Servers shall allow Clients to call the PlaceInService Method by
specifying ConditionId as the ObjectId. The Method may not be called with an ObjectId of the
AlarmConditionType Node.

Signature

PlaceInService ();

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 57 –

Method result codes in Table 47 (defined in Call Service).

Table 47 – PlaceInService result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid or that the Method was called on the
ConditionType Node.

See IEC 62541-4 for the general description of this result code.

Comments

The PlaceInService Method applies to an Alarm instance, even if it is not currently in the
Active State.

Table 48 specifies the AddressSpace representation for the PlaceInService Method.

Table 48 – PlaceInService Method AddressSpace definition

Attribute Value

BrowseName PlaceInService

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionOutOfServiceE
ventType

Defined in 5.10.12

5.8.10 ShelvedStateMachineType

5.8.10.1 Overview

The ShelvedStateMachineType defines a substate machine that represents an advanced
Alarm filtering model. This model is illustrated in Figure 15.

The state model supports two types of Shelving: OneShotShelving and TimedShelving. They
are illustrated in Figure 14. The illustration includes the allowed transitions between the
various substates. Shelving is an Operator initiated activity.

In OneShotShelving, a user requests that an Alarm be Shelved for its current Active state.
This type of Shelving is typically used when an Alarm is continually occurring on a boundary
(i.e. a Condition is jumping between High Alarm and HighHigh Alarm, always in the Active
state). The One Shot Shelving will automatically clear when an Alarm returns to an inactive
state. Another use for this type of Shelving is for a plant area that is shutdown i.e. a long
running Alarm such as a low-level Alarm for a tank that is not in use. When the tank starts
operation again, the Shelving state will automatically clear.

In TimedShelving, a user specifies that an Alarm be shelved for a fixed time period. This type
of Shelving is quite often used to block nuisance Alarms. For example, an Alarm that occurs
more than 10 times in a minute may get shelved for a few minutes.

In all states, the Unshelve can be called to cause a transition to the Unshelve state; this
includes Un-shelving an Alarm that is in the TimedShelve state before the time has expired
and the OneShotShelve state without a transition to an inactive state.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 58 – IEC 62541-9:2020 © IEC 2020

All but two transitions are caused by Method calls as illustrated in Figure 14. The "Time
Expired" transition is simply a system generated transition that occurs when the time value
defined as part of the "Timed Shelved Call" has expired. The "Any Transition Occurs"
transition is also a system generated transition; this transition is generated when the
Condition goes to an inactive state.

Timed
Shelved

Oneshot
Shelved

Unshelved

Timed Shelve call
Any Transition Occurs

One Shot Shelve callTime Expired

UnShelve call
UnShelve call

Timed Shelve call

One Shot Shelve call

IEC

Figure 14 – Shelve state transitions

The ShelvedStateMachineType includes a hierarchy of substates. It supports all transitions
between Unshelved, OneShotShelved and TimedShelved.

The state machine is illustrated in Figure 15 and formally defined in Table 49.

OneShotShelve

ShelvedStateMachine
Type

TimedShelved

OneShotShelved

UnShelvedToTimedShelved

HasCause

FiniteStateMachineType

Unshelved

UnShelvedToOneShotShelved

TimedShelvedToUnshelved

OneShotShelvedToUnShelved

Unshelve

HasCause

HasCause

TimedShelve

HasCause

TimedShelvedToOneShotShelved

HasCause
OneShotShelvedToTimedShelved

HasCause

StateType

TransitionType

UnshelveTime

IEC

Figure 15 – ShelvedStateMachineType model

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 59 –

Table 49 –ShelvedStateMachineType definition

Attribute Value

BrowseName ShelvedStateMachineType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FiniteStateMachineType defined in IEC 62541-5

HasProperty Variable UnshelveTime Duration PropertyType Mandatory

HasComponent Object Unshelved StateType

HasComponent Object TimedShelved StateType

HasComponent Object OneShotShelved StateType

HasComponent Object UnshelvedToTimedShelved TransitionType

HasComponent Object TimedShelvedToUnshelved TransitionType

HasComponent Object TimedShelvedToOneShotShelved TransitionType

HasComponent Object UnshelvedToOneShotShelved TransitionType

HasComponent Object OneShotShelvedToUnshelved TransitionType

HasComponent Object OneShotShelvedToTimedShelved TransitionType

HasComponent Method TimedShelve Defined in 5.8.10.3 Mandatory

HasComponent Method OneShotShelve Defined in 5.8.10.4 Mandatory

HasComponent Method Unshelve Defined in 5.8.10.2 Mandatory

UnshelveTime specifies the remaining time in milliseconds until the Alarm automatically
transitions into the Un-shelved state. For the TimedShelved state this time is initialised with
the ShelvingTime argument of the TimedShelve Method call. For the OneShotShelved state
the UnshelveTime will be a constant set to the maximum Duration except if a
MaxTimeShelved Property is provided.

This FiniteStateMachine supports three Active states; Unshelved, TimedShelved and
OneShotShelved. It also supports six transitions. The states and transitions are described in
Table 50. This FiniteStateMachine also supports three Methods; TimedShelve,
OneShotShelve and Unshelve.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 60 – IEC 62541-9:2020 © IEC 2020

Table 50 – ShelvedStateMachineType transitions

BrowseName References BrowseName TypeDefinition

Transitions

UnshelvedToTimedShelved FromState Unshelved StateType

 ToState TimedShelved StateType

 HasEffect AlarmConditionType

 HasCause TimedShelve Method

UnshelvedToOneShotShelved FromState Unshelved StateType

 ToState OneShotShelved StateType

 HasEffect AlarmConditionType

 HasCause OneShotShelve Method

TimedShelvedToUnshelved FromState TimedShelved StateType

 ToState Unshelved StateType

 HasEffect AlarmConditionType

TimedShelvedToOneShotShelved FromState TimedShelved StateType

 ToState OneShotShelved StateType

 HasEffect AlarmConditionType

 HasCause OneShotShelving Method

OneShotShelvedToUnshelved FromState OneShotShelved StateType

 ToState Unshelved StateType

 HasEffect AlarmConditionType

OneShotShelvedToTimedShelved FromState OneShotShelved StateType

 ToState TimedShelved StateType

 HasEffect AlarmConditionType

 HasCause TimedShelve Method

5.8.10.2 Unshelve Method

The Unshelve Method sets the instance of AlarmConditionType to the Unshelved state.
Normally, the MethodId found in the Shelving child of the Condition instance and the NodeId
of the Shelving object as the ObjectId are passed to the Call Service. However, some Servers
do not expose Condition instances in the AddressSpace. Therefore, all Servers shall also
allow Clients to call the Unshelve Method by specifying ConditionId as the ObjectId. The
Method may not be called with an ObjectId of the ShelvedStateMachineType Node.

Signature

Unshelve();

Method Result Codes in Table 51 (defined in Call Service).

Table 51 – Unshelve result codes

Result Code Description

Bad_ConditionNotShelved See Table 101 for the description of this result code.

Table 52 specifies the AddressSpace representation for the Unshelve Method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 61 –

Table 52 – Unshelve Method AddressSpace definition

Attribute Value

BrowseName Unshelve

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Defined in 5.10.7

5.8.10.3 TimedShelve Method

The TimedShelve Method sets the instance of AlarmConditionType to the TimedShelved state
(parameters are defined in Table 53 and result codes are described in Table 54). Normally,
the MethodId found in the Shelving child of the Condition instance and the NodeId of the
Shelving object as the ObjectId are passed to the Call Service. However, some Servers do not
expose Condition instances in the AddressSpace. Therefore, all Servers shall also allow
Clients to call the TimedShelve Method by specifying ConditionId as the ObjectId. The Method
may not be called with an ObjectId of the ShelvedStateMachineType Node.

Signature

TimedShelve(
 [in] Duration ShelvingTime
);

Table 53 – TimedShelve parameters

Argument Description

ShelvingTime Specifies a fixed time for which the Alarm is to be shelved. The Server may refuse the provided
duration. If a MaxTimeShelved Property exist on the Alarm than the Shelving time shall be less
than or equal to the value of this Property.

Method Result Codes (defined in Call Service).

Table 54 – TimedShelve result codes

Result Code Description

Bad_ConditionAlreadyShelved See Table 101 for the description of this result code.

The Alarm is already in TimedShelved state and the system does not allow a reset of the
shelved timer.

Bad_ShelvingTimeOutOfRange See Table 101 for the description of this result code.

Comments

Shelving for some time is quite often used to block nuisance Alarms. For example, an Alarm
that occurs more than 10 times in a minute may get shelved for a few minutes.

In some systems the length of time covered by this duration may be limited and the Server
may generate an error refusing the provided duration. This limit may be exposed as the
MaxTimeShelved Property.

Table 55 specifies the AddressSpace representation for the TimedShelve Method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 62 – IEC 62541-9:2020 © IEC 2020

Table 55 – TimedShelve Method AddressSpace definition

Attribute Value

BrowseName TimedShelve

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument[] PropertyType Mandatory

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Defined in 5.10.7

5.8.10.4 OneShotShelve Method

The OneShotShelve Method sets the instance of AlarmConditionType to the OneShotShelved
state. Normally, the MethodId found in the Shelving child of the Condition instance and the
NodeId of the Shelving object as the ObjectId are passed to the Call Service. However, some
Servers do not expose Condition instances in the AddressSpace. Therefore, all Servers shall
also allow Clients to call the OneShotShelve Method by specifying ConditionId as the
ObjectId. The Method may not be called with an ObjectId of the ShelvedStateMachineType
Node.

Signature

OneShotShelve();

Method Result Codes are defined in Table 56 (status code field is defined in Call Service).

Table 56 – OneShotShelve result codes

Result Code Description

Bad_ConditionAlreadyShelved See Table 101 for the description of this result code.

The Alarm is already in OneShotShelved state.

Table 57 specifies the AddressSpace representation for the OneShotShelve Method.

Table 57 – OneShotShelve Method AddressSpace definition

Attribute Value

BrowseName OneShotShelve

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Defined in 5.10.7

5.8.11 LimitAlarmType

Alarms may be modelled with multiple exclusive substates and assigned limits or they may be
modelled with nonexclusive limits that may be used to group multiple states together.

The LimitAlarmType is an abstract type used to provide a base Type for AlarmConditionTypes
with multiple limits. The LimitAlarmType is illustrated in Figure 16.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 63 –

AlarmConditionType

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimit
AlarmType

NonExclusiveLimit
AlarmType

BaseLowLimit

BaseLowLowLimit

BaseHighLimit

BaseHighHighLimit

IEC

Figure 16 – LimitAlarmType

The LimitAlarmType is formally defined in Table 58.

Table 58 – LimitAlarmType definition

Attribute Value

BrowseName LimitAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AlarmConditionType defined in 5.8.2.

HasSubtype ObjectType ExclusiveLimitAlarmType Defined in 5.8.12.3

HasSubtype ObjectType NonExclusiveLimitAlarmType Defined in 5.8.13

HasProperty Variable HighHighLimit Double PropertyType Optional

HasProperty Variable HighLimit Double PropertyType Optional

HasProperty Variable LowLimit Double PropertyType Optional

HasProperty Variable LowLowLimit Double PropertyType Optional

HasProperty Variable BaseHighHighLimit Double PropertyType Optional

HasProperty Variable BaseHighLimit Double PropertyType Optional

HasProperty Variable BaseLowLimit Double PropertyType Optional

HasProperty Variable BaseLowLowLimit Double PropertyType Optional

Four optional limits are defined which configure the states of the derived limit Alarm Types.
These Properties shall be set for any Alarm limits that are exposed by the derived limit Alarm
types. These Properties are listed as optional but at least one is required. For cases where an
underlying system cannot provide the actual value of a limit, the limit Property shall still be
provided, but will have its AccessLevel set to not readable. It is assumed that the limits are
described using the same Engineering Unit that is assigned to the variable that is the source
of the Alarm. For Rate of change limit Alarms, it is assumed this rate is units per second
unless otherwise specified.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 64 – IEC 62541-9:2020 © IEC 2020

Four optional base limits are defined which are used for AdaptiveAlarming. They contain the
configured Alarm limit. If a Server supports AdaptiveAlarming for Alarm limits, the
corresponding base Alarm limit shall be provided for any limits that are exposed by the
derived limit Alarm types. The value of this property is the value of the limit to which an
AdaptiveAlarm can be reset if any algorithmic changes need to be discarded.

The Alarm limits listed may cause an Alarm to be generated when a value equals the limit or it
may generate the Alarm when the limit is exceeded, (i.e. the Value is above the limit for
HighLimit and below the limit for LowLimit). The exact behaviour when the value is equal to
the limit is Server-specific.

The Variable that is the source of the LimitAlarmType Alarm shall be a scalar. This
LimitAlarmType can be subtyped if the Variable that is the source is an array. The subtype
shall describe the expected behaviour with respect to limits and the array values. Some
possible options:

• if any element of the array exceeds the limit, an Alarm is generated,

• if all elements exceed the limit, an Alarm is generated,

• the limits may also be an array, in which case if any array limit is exceeded by the
corresponding source array element, an Alarm is generated.

5.8.12 Exclusive limit types

5.8.12.1 Overview

This clause describes the state machine and the base Alarm Type behaviour for
AlarmConditionTypes with multiple mutually exclusive limits.

5.8.12.2 ExclusiveLimitStateMachineType

The ExclusiveLimitStateMachineType defines the state machine used by
AlarmConditionTypes that handle multiple mutually exclusive limits. It is illustrated in
Figure 17.

FiniteStateMachineType

Low

High

ExclusiveLimit
StateMachineType

LowLow

HighHigh

HighHighToHigh

HighToHighHigh

LowToLowLow

LowLowToLow

StateType

TransitionType

IEC

Figure 17 – ExclusiveLimitStateMachineType

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 65 –

It is created by extending the FiniteStateMachineType. It is formally defined in Table 59 and
the state transitions are described in Table 60.

Table 59 – ExclusiveLimitStateMachineType definition

Attribute Value

BrowseName ExclusiveLimitStateMachineType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the FiniteStateMachineType

HasComponent Object HighHigh StateType

HasComponent Object High StateType

HasComponent Object Low StateType

HasComponent Object LowLow StateType

HasComponent Object LowToLowLow TransitionType

HasComponent Object LowLowToLow TransitionType

HasComponent Object HighToHighHigh TransitionType

HasComponent Object HighHighToHigh TransitionType

Table 60 – ExclusiveLimitStateMachineType transitions

BrowseName References BrowseName TypeDefinition

Transitions

HighHighToHigh FromState HighHigh StateType

 ToState High StateType

 HasEffect AlarmConditionType

HighToHighHigh FromState High StateType

 ToState HighHigh StateType

 HasEffect AlarmConditionType

LowLowToLow FromState LowLow StateType

 ToState Low StateType

 HasEffect AlarmConditionType

LowToLowLow FromState Low StateType

 ToState LowLow StateType

 HasEffect AlarmConditionType

The ExclusiveLimitStateMachineType defines the substate machine that represents the actual
level of a multilevel Alarm when it is in the Active state. The substate machine defined here
includes High, Low, HighHigh and LowLow states. This model also includes in its transition
state a series of transition to and from a parent state, the inactive state. This state machine
as it is defined shall be used as a substate machine for a state machine which has an Active
state. This Active state could be part of a "level" Alarm or "deviation" Alarm or any other
Alarm state machine.

The LowLow, Low, High, HighHigh are typical for many industries. Vendors may introduce
substate models that include additional limits; they may also omit limits in an instance. If a
model omits states or transitions in the StateMachine, it is recommended that they provide the
optional Property AvailableStates and/or AvailableTransitions (see IEC 62541-5).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 66 – IEC 62541-9:2020 © IEC 2020

5.8.12.3 ExclusiveLimitAlarmType

The ExclusiveLimitAlarmType is used to specify the common behaviour for Alarm Types with
multiple mutually exclusive limits. The ExclusiveLimitAlarmType is illustrated in Figure 18.

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

ExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimitStateMachineType:
LimitState

CurrentState

IsTrueSubState

ExclusiveLevel
AlarmType

ExclusiveDeviation
AlarmType

ExclusiveRateOfChange
AlarmType

LimitAlarmType

IEC

Figure 18 – ExclusiveLimitAlarmType

The ExclusiveLimitAlarmType is formally defined in Table 61.

Table 61 – ExclusiveLimitAlarmType definition

Attribute Value

BrowseName ExclusiveLimitAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the LimitAlarmType defined in 5.8.11.

HasSubtype ObjectType ExclusiveLevelAlarmType Defined in 5.8.14.3

HasSubtype ObjectType ExclusiveDeviationAlarmType
Type

Defined in 5.8.15.3

HasSubtype ObjectType ExclusiveRateOfChangeAlarm
Type

Defined in 5.8.16.3

HasComponent Object LimitState ExclusiveLimitStateMachineType Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 67 –

The LimitState is a substate of the ActiveState and has an IsTrueSubStateOf reference to the
ActiveState. The LimitState represents the actual limit that is violated in an instance of
ExclusiveLimitAlarmType. When the ActiveState of the AlarmConditionType is inactive the
LimitState shall not be available and shall return NULL on read. Any Events that subscribe for
fields from the LimitState when the ActiveState is inactive shall return a NULL for these
unavailable fields.

5.8.13 NonExclusiveLimitAlarmType

The NonExclusiveLimitAlarmType is used to specify the common behaviour for Alarm Types
with multiple non-exclusive limits. The NonExclusiveLimitAlarmType is illustrated in Figure 19.

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

NonExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

IsTrueSubState

NonExclusiveLevel
AlarmType

NonExclusiveDeviation
AlarmType

NonExclusiveRateOfChange
AlarmType

HighHighState

HighState

LowState

LowLowState

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

IEC

Figure 19 – NonExclusiveLimitAlarmType

The NonExclusiveLimitAlarmType is formally defined in Table 62.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 68 – IEC 62541-9:2020 © IEC 2020

Table 62 – NonExclusiveLimitAlarmType definition

Attribute Value

BrowseName NonExclusiveLimitAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the LimitAlarmType defined in 5.8.11.

HasSubtype ObjectType NonExclusiveLevelAlarmType Defined in 5.8.14.2

HasSubtype ObjectType NonExclusiveDeviationAlarmType Defined in 5.8.15.2

HasSubtype ObjectType NonExclusiveRateOfChangeAlarmT
ype

Defined in 5.8.16.2

HasComponent Variable HighHighState LocalizedText TwoStateVariableType Optional

HasComponent Variable HighState LocalizedText TwoStateVariableType Optional

HasComponent Variable LowState LocalizedText TwoStateVariableType Optional

HasComponent Variable LowLowState LocalizedText TwoStateVariableType Optional

HighHighState, HighState, LowState, and LowLowState represent the non-exclusive states.
As an example, it is possible that both HighState and HighHighState are in their True state.
Vendors may choose to support any subset of these states. Recommended state names are
described in Annex A.

Four optional limits are defined that configure these states. At least the HighState or the
LowState shall be provided even though all states are optional. It is implied by the definition
of a HighState and a LowState that these groupings are mutually exclusive. A value cannot
exceed both a HighState value and a LowState value simultaneously.

5.8.14 Level Alarm

5.8.14.1 Overview

A level Alarm is commonly used to report when a limit is exceeded. It typically relates to an
instrument – e.g. a temperature meter. The level Alarm becomes active when the observed
value is above a high limit or below a low limit.

5.8.14.2 NonExclusiveLevelAlarmType

The NonExclusiveLevelAlarmType is a special level Alarm utilized with one or more non-
exclusive states. If for example both the High and HighHigh states need to be maintained as
active at the same time then an instance of NonExclusiveLevelAlarmType should be used.

The NonExclusiveLevelAlarmType is based on the NonExclusiveLimitAlarmType. It is formally
defined in Table 63.

Table 63 – NonExclusiveLevelAlarmType definition

Attribute Value

BrowseName NonExclusiveLevelAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the NonExclusiveLimitAlarmType defined in 5.8.13.

No additional Properties to the NonExclusiveLimitAlarmType are defined.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 69 –

5.8.14.3 ExclusiveLevelAlarmType

The ExclusiveLevelAlarmType is a special level Alarm utilized with multiple mutually exclusive
limits. It is formally defined in Table 64.

Table 64 – ExclusiveLevelAlarmType definition

Attribute Value

BrowseName ExclusiveLevelAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherits the Properties of the ExclusiveLimitAlarmType defined in 5.8.12.3.

No additional Properties to the ExclusiveLimitAlarmType are defined.

5.8.15 Deviation Alarm

5.8.15.1 Overview

A deviation Alarm is commonly used to report an excess deviation between a desired set point
level of a process value and an actual measurement of that value. The deviation Alarm
becomes active when the deviation exceeds or drops below a defined limit.

For example, if a set point had a value of 10, a high deviation Alarm limit of 2 and a low
deviation Alarm limit of −1, then the low substate is entered if the process value drops below
9; the high substate is entered if the process value raises above 12. If the set point were
changed to 11 then the new deviation values would be 10 and 13 respectively. The set point
may be fixed by a configuration, adjusted by an Operator or it may be adjusted by an
algorithm, the actual functionality exposed by the set point is application specific. The
deviation Alarm may also be used to report a problem between a redundant data source
where the difference between the primary source and the secondary source exceeds the
included limit. In this case, the SetpointNode would point to the secondary source.

5.8.15.2 NonExclusiveDeviationAlarmType

The NonExclusiveDeviationAlarmType is a special level Alarm utilized with one or more non-
exclusive states. If for example both the High and HighHigh states need to be maintained as
active at the same time, then an instance of NonExclusiveDeviationAlarmType should be
used.

The NonExclusiveDeviationAlarmType is based on the NonExclusiveLimitAlarmType. It is
formally defined in Table 65.

Table 65 – NonExclusiveDeviationAlarmType definition

Attribute Value

BrowseName NonExclusiveDeviationAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the NonExclusiveLimitAlarmType defined in 5.8.13.

HasProperty Variable SetpointNode NodeId PropertyType Mandatory

HasProperty Variable BaseSetpointNode NodeId PropertyType Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 70 – IEC 62541-9:2020 © IEC 2020

The SetpointNode Property provides the NodeId of the set point used in the deviation
calculation. In cases where the Alarm is generated by an underlying system and if the
Variable is not in the AddressSpace, a NULL NodeId shall be provided.

The BaseSetpointNode Property provides the NodeId of the original or base setpoint. The
value of this node is the value of the setpoint to which an AdaptiveAlarm may be reset if any
algorithmic changes need to be discarded. The value of this node usually contains the
originally configured set point.

5.8.15.3 ExclusiveDeviationAlarmType

The ExclusiveDeviationAlarmType is utilized with multiple mutually exclusive limits. It is
formally defined in Table 66.

Table 66 – ExclusiveDeviationAlarmType definition

Attribute Value

BrowseName ExclusiveDeviationAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling Rule

Inherits the Properties of the ExclusiveLimitAlarmType defined in 5.8.12.3.

HasProperty Variable SetpointNode NodeId PropertyType Mandatory

HasProperty Variable BaseSetpointNode NodeId PropertyType Optional

The SetpointNode Property provides the NodeId of the set point used in the Deviation
calculation. If this Variable is not in the AddressSpace, a NULL NodeId shall be provided.

The BaseSetpointNode Property provides the NodeId of the original or base setpoint. The
value of this node is the value of the set point to which an AdaptiveAlarm may be reset if any
algorithmic changes need to be discarded. The value of this node usually contains the
originally configured set point.

5.8.16 Rate of change Alarms

5.8.16.1 Overview

A Rate of Change Alarm is commonly used to report an unusual change or lack of change in a
measured value related to the speed at which the value has changed. The Rate of Change
Alarm becomes active when the rate at which the value changes exceeds or drops below a
defined limit.

A Rate of Change is measured in some time unit, such as seconds or minutes and some unit
of measure, such as percent or metre. For example, a tank may have a High limit for the Rate
of Change of its level (measured in metres) which would be 4 metres per minute. If the tank
level changes at a rate that is greater than 4 metres per minute, then the High substate is
entered.

5.8.16.2 NonExclusiveRateOfChangeAlarmType

The NonExclusiveRateOfChangeAlarmType is a special level Alarm utilized with one or more
non-exclusive states. If for example both the High and HighHigh states need to be maintained
as active at the same time this AlarmConditionType should be used.

The NonExclusiveRateOfChangeAlarmType is based on the NonExclusiveLimitAlarmType. It
is formally defined in Table 67.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 71 –

Table 67 – NonExclusiveRateOfChangeAlarmType definition

Attribute Value

BrowseName NonExclusiveRateOfChangeAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the NonExclusiveLimitAlarmType defined in clause 5.8.13.

HasProperty Variable EngineeringUnits EUInformation PropertyType Optional

EngineeringUnits provides the engineering units associated with the limits values. If this is not
provided, the assumed Engineering Unit is the same as the EU associated with the parent
variable per second e.g. if parent is meters, this unit is meters/second.

5.8.16.3 ExclusiveRateOfChangeAlarmType

ExclusiveRateOfChangeAlarmType is utilized with multiple mutually exclusive limits. It is
formally defined in Table 68.

Table 68 – ExclusiveRateOfChangeAlarmType definition

Attribute Value

BrowseName ExclusiveRateOfChangeAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Inherits the Properties of the ExclusiveLimitAlarmType defined in 5.8.12.3.

HasProperty Variable EngineeringUnits EUInformation PropertyType Optional

EngineeringUnits provides the engineering units associated with the limits values. If this is not
provided, the assumed Engineering Unit is the same as the EU associated with the parent
variable per second; e.g. if parent is metres, this unit is metres/second.

5.8.17 Discrete Alarms

5.8.17.1 DiscreteAlarmType

The DiscreteAlarmType is used to classify Types into Alarm Conditions where the input for the
Alarm may take on only a certain number of possible values (e.g. True/False,
running/stopped/terminating). The DiscreteAlarmType with subtypes defined in this document
is illustrated in Figure 20. It is formally defined in Table 69.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 72 – IEC 62541-9:2020 © IEC 2020

AlarmCondition
Type

OffNormalAlarmType

DiscreteAlarmType

TripAlarmType

LimitAlarmType

CertificateExpirationType

SystemOffNormalAlarmType

IEC

Figure 20 – DiscreteAlarmType Hierarchy

Table 69 – DiscreteAlarmType definition

Attribute Value

BrowseName DiscreteAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the AlarmConditionType defined in 5.8.2.

HasSubtype ObjectType OffNormalAlarmType Defined in 5.8.15

5.8.17.2 OffNormalAlarmType

The OffNormalAlarmType is a specialization of the DiscreteAlarmType intended to represent a
discrete Condition that is considered to be not normal. It is formally defined in Table 70. This
subtype is usually used to indicate that a discrete value is in an Alarm state, it is active as
long as a non-normal value is present.

Table 70 – OffNormalAlarmType Definition

Attribute Value

BrowseName OffNormalAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the DiscreteAlarmType defined in 5.8.17.1

HasSubtype ObjectType TripAlarmType Defined in 5.8.17.4

HasSubtype ObjectType SystemOffNormalAlarmType Defined in 5.8.17.3

HasProperty Variable NormalState NodeId PropertyType Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 73 –

The NormalState Property is a Property that points to a Variable which has a value that
corresponds to one of the possible values of the Variable pointed to by the InputNode
Property where the NormalState Property Variable value is the value that is considered to be
the normal state of the Variable pointed to by the InputNode Property. When the value of the
Variable referenced by the InputNode Property is not equal to the value of the NormalState
Property the Alarm is Active. If this Variable is not in the AddressSpace, a NULL NodeId shall
be provided.

5.8.17.3 SystemOffNormalAlarmType

This Condition is used by a Server to indicate that an underlying system that is providing
Alarm information is having a communication problem and that the Server may have invalid or
incomplete Condition state in the Subscription. Its representation in the AddressSpace is
formally defined in Table 71.

Table 71 – SystemOffNormalAlarmType definition

Attribute Value

BrowseName SystemOffNormalAlarmType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasSubtype ObjectType CertificateExpirationAlarmType Defined in 5.8.17.7

Subtype of the OffNormalAlarmType, i.e. it has HasProperty References to the same Nodes.

5.8.17.4 TripAlarmType

The TripAlarmType is a specialization of the OffNormalAlarmType intended to represent an
equipment trip Condition. The Alarm becomes active when the monitored piece of equipment
experiences some abnormal fault such as a motor shutting down due to an overload condition.
It is formally defined in Table 72. This Type is mainly used for categorization.

Table 72 – TripAlarmType definition

Attribute Value

BrowseName TripAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the OffNormalAlarmType defined in 5.8.17.2.

5.8.17.5 InstrumentDiagnosticAlarmType

The InstrumentDiagnosticAlarmType is a specialization of the OffNormalAlarmType intended
to represent a fault in a field device. The Alarm becomes active when the monitored device
experiences a fault such as a sensor failure. It is formally defined in Table 73. This Type is
mainly used for categorization.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 74 – IEC 62541-9:2020 © IEC 2020

Table 73 – InstrumentDiagnosticAlarmType definition

Attribute Value

BrowseName InstrumentDiagnosticAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the OffNormalAlarmType defined in clause 5.8.17.2.

5.8.17.6 SystemDiagnosticAlarmType

The SystemDiagnosticAlarmType is a specialization of the OffNormalAlarmType intended to
represent a fault in a system or sub-system. The Alarm becomes active when the monitored
system experiences a fault. It is formally defined in Table 74. This Type is mainly used for
categorization.

Table 74 – SystemDiagnosticAlarmType definition

Attribute Value

BrowseName SystemDiagnosticAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the OffNormalAlarmType defined in 5.8.17.2.

5.8.17.7 CertificateExpirationAlarmType

This SystemOffNormalAlarmType is raised by the Server when the Server’s Certificate is
within the ExpirationLimit of expiration. This Alarm automatically returns to normal when the
certificate is updated.

The SystemOffNormalAlarmType is formally defined in Table 75.

Table 75 – CertificateExpirationAlarmType definition

Attribute Value

BrowseName CertificateExpirationAlarmType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemOffNormalAlarmType defined in 5.8.17.3

HasProperty Variable ExpirationDate DateTime PropertyType Mandatory

HasProperty Variable ExpirationLimit Duration PropertyType Optional

HasProperty Variable CertificateType NodeId PropertyType Mandatory

HasProperty Variable Certificate ByteString PropertyType Mandatory

ExpirationDate is the date and time this certificate will expire.

ExpirationLimit is the time interval before the ExpirationDate at which this Alarm will trigger.
This shall be a positive number. If the property is not provided, a default of 2 weeks shall be
used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 75 –

CertificateType – See Part 12 for definition of CertificateType.

Certificate is the certificate that is about to expire.

5.8.18 DiscrepancyAlarmType

The DiscrepancyAlarmType is commonly used to report an action that did not occur within an
expected time range.

The DiscrepancyAlarmType is based on the AlarmConditionType. It is formally defined in
Table 76.

Table 76 – DiscrepancyAlarmType definition

Attribute Value

BrowseName DiscrepancyAlarmType

IsAbstract False

References Node Class BrowseName DataType TypeDefinition ModellingRule

Subtype of the AlarmConditionType defined in 5.8.2.

HasProperty Variable TargetValueNode NodeId PropertyType Mandatory

HasProperty Variable ExpectedTime Duration PropertyType Mandatory

HasProperty Variable Tolerance Double PropertyType Optional

The TargetValueNode Property provides the NodeId of the Variable that is used for the target
value.

The ExpectedTime Property provides the Duration within which the value pointed to by the
InputNode shall equal the value specified by the TargetValueNode (or be within the Tolerance
range, if specified).

The Tolerance Property is a value that may be added to or subtracted from the
TargetValueNode’s value, providing a range that the value can be in without generating the
Alarm.

A DiscrepancyAlarmType may be used to indicate a motor has not responded to a start
request within a given time, or that a process value has not reached a given value after a
setpoint change within a given time interval.

The DiscrepancyAlarmType shall return to normal when the value has reached the target
value.

5.9 ConditionClasses

5.9.1 Overview

Conditions are used in specific application domains like Maintenance, System or Process. The
ConditionClass hierarchy is used to specify domains and is orthogonal to the ConditionType
hierarchy. The ConditionClassId Property of the ConditionType is used to assign a Condition
to a ConditionClass. Clients may use this Property to filter out essential classes. OPC UA
defines the base ObjectType for all ConditionClasses and a set of common classes used
across many industries. Figure 21 informally describes the hierarchy of ConditionClass Types
defined in this document.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 76 – IEC 62541-9:2020 © IEC 2020

Defined in IEC 62541-5
BaseObjectType

BaseConditionClass
Type

ProcessConditionClass
Type

MaintenanceConditionClass
Type

SystemConditionClass
Type

IEC

Figure 21 – ConditionClass type hierarchy

ConditionClasses are not representations of Objects in the underlying system and, therefore,
only exist as Type Nodes in the Address Space.

5.9.2 BaseConditionClassType

BaseConditionClassType is used as class whenever a Condition cannot be assigned to a
more concrete class. Servers should use a more specific ConditionClass, if possible. All
ConditionClass Types derive from BaseConditionClassType. It is formally defined in Table 77.

Table 77 – BaseConditionClassType definition

Attribute Value

BrowseName BaseConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseObjectType defined in IEC 62541-5.

5.9.3 ProcessConditionClassType

The ProcessConditionClassType is used to classify Conditions related to the process itself.
Examples of a process would be a control system in a boiler, or the instrumentation
associated with a chemical plant or paper machine. The ProcessConditionClassType is
formally defined in Table 78.

Table 78 – ProcessConditionClassType definition

Attribute Value

BrowseName ProcessConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseConditionClassType defined in 5.9.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 77 –

5.9.4 MaintenanceConditionClassType

The MaintenanceConditionClassType is used to classify Conditions related to maintenance.
Examples of maintenance would be Asset Management systems or conditions, which occur in
process control systems, which are related to calibration of equipment. The
MaintenanceConditionClassType is formally defined in Table 79. No further definition is
provided here. It is expected that other standards development groups will define domain-
specific subtypes.

Table 79 – MaintenanceConditionClassType definition

Attribute Value

BrowseName MaintenanceConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in 5.9.2.

5.9.5 SystemConditionClassType

The SystemConditionClassType is used to classify Conditions related to the System. It is
formally defined in Table 80. System Conditions occur in the controlling or monitoring system
process. Examples of System related items could include available disk space on a computer,
Archive media availability, network loading issues or a controller error. No further definition is
provided here. It is expected that other standards development groups or vendors will define
domain-specific subtypes.

Table 80 – SystemConditionClassType definition

Attribute Value

BrowseName SystemConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in 5.9.2.

5.9.6 SafetyConditionClassType

The SafetyConditionClassType is used to classify Conditions related to safety. It is formally
defined in Table 81.

Safety Conditions occur in the controlling or monitoring system process. Examples of safety
related items could include emergency shutdown systems or fire suppression systems.

Table 81 – SafetyConditionClassType definition

Attribute Value

BrowseName SafetyConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in 5.9.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 78 – IEC 62541-9:2020 © IEC 2020

5.9.7 HighlyManagedAlarmConditionClassType

In Alarm systems some Alarms may be classified as highly managed Alarms. This class of
Alarm requires special handling that varies according to the individual requirements. It might
require individual acknowledgement or not allow suppression or any of a number of other
special behaviours. The HighlyManagedAlarmConditionClassType is used to classify
Conditions as highly managed Alarms. It is formally defined in Table 82.

Table 82 – HighlyManagedAlarmConditionClassType definition

Attribute Value

BrowseName HighlyManagedAlarmConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in 5.9.2.

5.9.8 TrainingConditionClassType

The TrainingConditionClassType is used to classify Conditions related to training system or
training exercises. It is formally defined in Table 83. These Conditions typically occur in a
training system or are generated as part of a simulation for a training exercise. Training
Conditions might be process or system conditions. It is expected that other standards
development groups or vendors will define domain-specific subtypes.

Table 83 – TrainingConditionClassType definition

Attribute Value

BrowseName TrainingConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in 5.9.2.

5.9.9 StatisticalConditionClassType

The StatisticalConditionClassType is used to classify Conditions related that are based on
statistical calculations. It is formally defined in Table 84. These Conditions are generated as
part of a statistical analysis. They might be any of an Alarm number of types.

Table 84 – StatisticalConditionClassType definition

Attribute Value

BrowseName StatisticalConditionClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in 5.9.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 79 –

5.9.10 TestingConditionSubClassType

The TestingConditionSubClassType is used to classify Conditions related to testing of an
Alarm system or Alarm function. It is formally defined in Table 85. Testing Conditions might
include a condition to test an alarm annunciation such as a horn or other panel. It might also
be used to temporarily reclassify a Condition to check response times or suppression logic. It
is expected that other standards development groups or vendors will define domain-specific
subtypes.

Table 85 – TestingConditionSubClassType definition

Attribute Value

BrowseName TestingConditionSubClassType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the BaseConditionClassType defined in 5.9.2.

5.10 Audit Events

5.10.1 Overview

Following are subtypes of AuditUpdateMethodEventType that will be generated in response to
the Methods defined in this document. They are illustrated in Figure 22.

Defined in IEC 62541-5
AuditEventType

AuditConditionComment
EventType

AuditCondition
EventType

AuditUpdateMethod
EventType

AuditConditionAcknowledge
EventType

AuditConditionEnable
EventType

AuditConditionShelving
EventType

AuditConditionRespond
EventType

AuditConditionConfirm
EventType

AuditConditionSupress
EventType

AuditConditionSIlence
EventType

AuditConditionOutOf
ServiceEventType

IEC

Figure 22 – AuditEvent hierarchy

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 80 – IEC 62541-9:2020 © IEC 2020

AuditConditionEventTypes are normally used in response to a Method call. However, these
Events shall also be notified if the functionality of such a Method is performed by some other
Server-specific means. In this case, the SourceName Property shall contain a proper
description of this internal means and the other Properties should be filled in as described for
the given EventType.

5.10.2 AuditConditionEventType

This EventType is used to subsume all AuditConditionEventTypes. It is formally defined in
Table 86.

Table 86 – AuditConditionEventType definition

Attribute Value

BrowseName AuditConditionEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditUpdateMethodEventType defined in IEC 62541-5

AuditConditionEventTypes inherit all Properties of the AuditUpdateMethodEventType defined
in IEC 62541-5. Unless a subtype overrides the definition, the inherited Properties of the
Condition will be used as defined.

• The inherited Property SourceNode shall be filled with the ConditionId.

• The SourceName shall be "Method/" and the name of the Service that generated the Event
(e.g. Disable, Enable, Acknowledge, etc.).

This EventType can be further customized to reflect particular Condition related actions.

5.10.3 AuditConditionEnableEventType

This EventType is used to indicate a change in the enabled state of a Condition instance. It is
formally defined in Table 87.

Table 87 – AuditConditionEnableEventType definition

Attribute Value

BrowseName AuditConditionEnableEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The SourceName shall indicate Method/Enable or Method/Disable. If the audit Event is not the
result of a Method call, but due to an internal action of the Server, the SourceName shall
reflect Enable or Disable, it may be preceded by an appropriate description such as
"Internal/Enable" or "Remote/Enable".

5.10.4 AuditConditionCommentEventType

This EventType is used to report an AddComment action. It is formally defined in Table 88.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 81 –

Table 88 – AuditConditionCommentEventType definition

Attribute Value

BrowseName AuditConditionCommentEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Mandatory

HasProperty Variable Comment LocalizedText PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The ConditionEventId field shall contain the id of the event for which the comment was added.

The Comment contains the actual comment that was added.

5.10.5 AuditConditionRespondEventType

This EventType is used to report a Respond action (see 5.6). It is formally defined in
Table 89.

Table 89 – AuditConditionRespondEventType definition

Attribute Value

BrowseName AuditConditionRespondEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable SelectedResponse Uint32 PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The SelectedResponse field shall contain the response that was selected.

5.10.6 AuditConditionAcknowledgeEventType

This EventType is used to indicate acknowledgement or confirmation of one or more
Conditions. It is formally defined in Table 90.

Table 90 – AuditConditionAcknowledgeEventType definition

Attribute Value

BrowseName AuditConditionAcknowledgeEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Mandatory

HasProperty Variable Comment LocalizedText PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The ConditionEventId field shall contain the id of the Event that was acknowledged.

The Comment contains the actual comment that was added; it may be a blank comment or a
NULL.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 82 – IEC 62541-9:2020 © IEC 2020

5.10.7 AuditConditionConfirmEventType

This EventType is used to report a Confirm action. It is formally defined in Table 91.

Table 91 – AuditConditionConfirmEventType definition

Attribute Value

BrowseName AuditConditionConfirmEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Mandatory

HasProperty Variable Comment LocalizedText PropertyType Mandatory

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

The ConditionEventId field shall contain the id of the Event that was confirmed.

The Comment contains the actual comment that was added; it may be a blank comment or a
NULL.

5.10.8 AuditConditionShelvingEventType

This EventType is used to indicate a change to the Shelving state of a Condition instance. It is
formally defined in Table 92.

Table 92 – AuditConditionShelvingEventType definition

Attribute Value

BrowseName AuditConditionShelvingEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ShelvingTime Duration PropertyType Optional

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

If the Method indicates a TimedShelve operation, the ShelvingTime field shall contain duration
for which the Alarm is to be shelved. For other Shelving Methods, this parameter may be
omitted or NULL.

5.10.9 AuditConditionSuppressionEventType

This EventType is used to indicate a change to the Suppression state of a Condition instance.
It is formally defined in Table 93.

Table 93 – AuditConditionSuppressionEventType definition

Attribute Value

BrowseName AuditConditionSuppressionEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 83 –

This Event indicates an Alarm suppression operation. An audit Event of this type shall be
generated, if audit events are supported for any suppression action, including automatic
system-based suppression.

5.10.10 AuditConditionSilenceEventType

This EventType is used to indicate a change to the Silence state of a Condition instance. It is
formally defined in Table 94.

Table 94 – AuditConditionSilenceEventType definition

Attribute Value

BrowseName AuditConditionSilenceEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

This event indicates that an Alarm was silenced, but not acknowledged. An audit event of this
type shall be generated, if Audit events are supported for any silence action, including
automatic system-based silence.

5.10.11 AuditConditionResetEventType

This EventType is used to indicate a change to the Latched state of a Condition instance. It is
formally defined in Table 95.

Table 95 – AuditConditionResetEventType definition

Attribute Value

BrowseName AuditConditionResetEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

This event indicates that an Alarm was reset. An audit event of this type shall be generated, if
Audit events are supported for any Alarm action.

5.10.12 AuditConditionOutOfServiceEventType

This EventType is used to indicate a change to the OutOfService State of a Condition
instance. It is formally defined in Table 96.

Table 96 – AuditConditionOutOfServiceEventType definition

Attribute Value

BrowseName AuditConditionOutOfServiceEventType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the AuditConditionEventType defined in 5.10.2 that is, inheriting the InstanceDeclarations of that Node.

An audit Event of this type shall be generated if audit Events are supported.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 84 – IEC 62541-9:2020 © IEC 2020

5.11 Condition Refresh related Events

5.11.1 Overview

Following are subtypes of SystemEventType that will be generated in response to a Refresh
Methods call. They are illustrated in Figure 23.

Defined in IEC 62541-5

RefreshEnd
EventType

SystemEventType

BaseEventType

RefreshRequired
EventType

RefreshStart
EventType

IEC

Figure 23 – Refresh Related Event Hierarchy

5.11.2 RefreshStartEventType

This EventType is used by a Server to mark the beginning of a Refresh Notification cycle. Its
representation in the AddressSpace is formally defined in Table 97.

Table 97 – RefreshStartEventType definition

Attribute Value

BrowseName RefreshStartEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in IEC 62541-5, i.e. it has HasProperty References to the same Nodes.

5.11.3 RefreshEndEventType

This EventType is used by a Server to mark the end of a Refresh Notification cycle. Its
representation in the AddressSpace is formally defined in Table 98.

Table 98 – RefreshEndEventType definition

Attribute Value

BrowseName RefreshEndEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in IEC 62541-5, i.e. it has HasProperty References to the same Nodes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 85 –

5.11.4 RefreshRequiredEventType

This EventType is used by a Server to indicate that a significant change has occurred in the
Server or in the subsystem below the Server that may or does invalidate the Condition state
of a Subscription. Its representation in the AddressSpace is formally defined in Table 99.

Table 99 – RefreshRequiredEventType definition

Attribute Value

BrowseName RefreshRequiredEventType

IsAbstract True

References NodeClass BrowseName DataType TypeDefinition ModellingRule

Subtype of the SystemEventType defined in IEC 62541-5, i.e. it has HasProperty References to the same Nodes.

When a Server detects an Event queue overflow, it shall track if any Condition Events have
been lost, if any Condition Events were lost, it shall issue a RefreshRequiredEventType Event
to the Client after the Event queue is no longer in an overflow state.

5.12 HasCondition Reference type

The HasCondition ReferenceType is a concrete ReferenceType and can be used directly. It is
a subtype of NonHierarchicalReferences. The representation in the AddressSpace is specified
in Table 100.

The semantic of this ReferenceType is to specify the relationship between a ConditionSource
and its Conditions. Each ConditionSource shall be the target of a HasEventSource Reference
or a subtype of HasEventSource. The AddressSpace organisation that shall be provided for
Clients to detect Conditions and ConditionSources is defined in Clause 6. Various examples
for the use of this ReferenceType may be found in Clause B.2.

HasCondition References can be used in the Type definition of an Object or a Variable. In this
case, the SourceNode of this ReferenceType shall be an ObjectType or VariableType Node or
one of their InstanceDeclaration Nodes. The TargetNode shall be a Condition instance
declaration or a ConditionType. The following rules for instantiation apply:

• all HasCondition References used in a Type shall exist in instances of these Types as
well;

• if the TargetNode in the Type definition is a ConditionType, the same TargetNode will be
referenced on the instance.

HasCondition References may be used solely in the instance space when they are not
available in Type definitions. In this case, the SourceNode of this ReferenceType shall be an
Object, Variable or Method Node. The TargetNode shall be a Condition instance or a
ConditionType.

Table 100 – HasCondition ReferenceType

Attributes Value

BrowseName HasCondition

InverseName IsConditionOf

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 86 – IEC 62541-9:2020 © IEC 2020

5.13 Alarm and Condition status codes

Table 101 defines the StatusCodes defined for Alarm and Conditions (A&C).

Table 101 – Alarm & Condition result codes

Symbolic Id Description

Bad_ConditionAlreadyEnabled The addressed Condition is already enabled.

Bad_ConditionAlreadyDisabled The addressed Condition is already disabled.

Bad_ConditionAlreadyShelved The Alarm is already in a shelved state.

Bad_ConditionBranchAlreadyAcked The EventId does not refer to a state that needs acknowledgement.

Bad_ConditionBranchAlreadyConfirmed The EventId does not refer to a state that needs confirmation.

Bad_ConditionNotShelved The Alarm is not in the requested shelved state.

Bad_DialogNotActive The DialogConditionType instance is not in Active state.

Bad_DialogResponseInvalid The selected option is not a valid index in the ResponseOptionSet array.

Bad_EventIdUnknown The specified EventId is not known to the Server.

Bad_RefreshInProgress A ConditionRefresh operation is already in progress.

Bad_ShelvingTimeOutOfRange The provided Shelving time is outside the range allowed by the Server for Shelving

5.14 Expected A&C server behaviours

5.14.1 General

This subclause describes behaviour that is expected from an OPC UA Server that is
implementing the A&C Information Model. In particular this subclause describes specific
behaviours that apply to various aspect of the A&C Information Model.

5.14.2 Communication problems

In some implementation of an OPC UA A&C Server, the Alarms and Condition are provided by
an underlying system. The expected behaviour of an A&C Server when it is encountering
communication problems with the underlying system is:

• If communication fails to the underlying system,
– For any Event field related information that is exposed in the address space, the

Value/StatusCode obtained when reading the Event fields that are associated with the
communication failure shall have a value of NULL and a StatusCode of
Bad_CommunicationError.

– For Subscriptions that contain Conditions for which the failure applies, the effected
Conditions generate an Event, if the Retain field is set to True. These Events shall
have their Event fields that are associated with the communication failure contain a
StatusCode of Bad_CommunicationError for the value.

– A Condition of the SystemOffNormalAlarmType shall be used to report the
communication failure to Alarm Clients. The NormalState field shall contain the NodeId
of the Variable that indicates the status of the underlying system.

• For start-up of an A&C Server that is obtaining A&C information from an already running
underlying system:
– If a value is unavailable for an Event field that is being reported due to a start-up of the

UA Server (i.e. the information is just not available for the Event) the Event field shall
contain a StatusCode set to Bad_WaitingForInitialData for the value.

– If the "Time" field is normally provided by the underlying system and is unavailable, the
Time will be reported as a StatusCode with a value of Bad_WaitingForInitialData.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 87 –

5.14.3 Redundant A&C servers

In an OPC UA Server that is implementing the A&C Information Model and that is configured
to be a redundant OPC UA Server, the following behaviour is expected:

• The EventId is used to uniquely identify an Event. For an Event that is in each of the
redundant Servers, it shall be identical. This applies to all standard Events, Alarms and
Conditions. This may be accomplished by sharing of information between redundant
Server (such as actual Events) or it may be accomplished by providing a strict EventId
generating algorithm that will generate an identical EventId for each Event.

• It is expected that for cold or warm failovers of redundant Servers, Subscription for Events
shall require a Refresh operation. The Client shall initiate this Refresh operation.

• It is expected that for hot failovers of redundant Servers, Subscriptions for Events may
require a Refresh operation. The Server shall issue a RefreshRequiredEventType Event if
it is required.

• For transparent redundancy, a Server shall not require any action be performed by a
Client.

6 AddressSpace organisation

6.1 General

The AddressSpace organisation described in this clause allows Clients to detect Conditions
and ConditionSources. An additional hierarchy of Object Nodes that are notifiers may be
established to define one or more areas; the Client can subscribe to specific areas to limit the
Event Notifications sent by the Server. Additional examples can be found in Clause B.2.

6.2 EventNotifier and source hierarchy

HasNotifier and HasEventSource References are used to expose the hierarchical organization
of Event notifying Objects and ConditionSources. An Event notifying Object represents
typically an area of Operator responsibility. The definition of such an area configuration is
outside the scope of this document. If areas are available, they shall be linked together and
with the included ConditionSources using the HasNotifier and the HasEventSource Reference
Types. The Server Object shall be the root of this hierarchy.

Figure 24 shows such a hierarchy. Note that HasNotifier is a subtype of HasEventSource. I.e.
the target Node of a HasNotifier Reference (an Event notifying Object) can also be a
ConditionSource. The HasEventSource Reference is used if the target Node is a
ConditionSource but cannot be used as Event notifier. See IEC 62541-3 for the formal
definition of these Reference Types.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 88 – IEC 62541-9:2020 © IEC 2020

Server

Tank A

LevelMeasurement

Area 1

HasNotifier

HasNotifier

Tank FarmHasNotifier

HasEventSource

Machine B

HasNotifier

Device B

HasNotifier

Device C

HasEventSource

IEC

Figure 24 – Typical HasNotifier Hierarchy

6.3 Adding Conditions to the hierarchy

HasCondition is used to reference Conditions. The Reference is from a ConditionSource to a
Condition instance or – if no instance is exposed by the Server – to the ConditionType.

Clients can locate Conditions by first browsing for ConditionSources following
HasEventSource References (including subtypes like the HasNotifier Reference) and then
browsing for HasCondition References from all target Nodes of the discovered References.

Figure 25 shows the application of the HasCondition Reference in a HasNotifier hierarchy.
The Variable LevelMeasurement and the Object "Device B" Reference Condition instances.
The Object "Tank A" References a ConditionType (MySystemAlarmType) indicating that a
Condition exists but is not exposed in the AddressSpace.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 89 –

Server

Tank A

LevelMeasurement

Area 1

HasNotifier

HasNotifier

Tank FarmHasNotifier

HasEventSource

Machine B

HasNotifier

Device B

HasNotifier

MyLevelAlarmType:
LevelMonitoringHasCondition

MyAlarmTypeA:
Condition 1

MyAlarmTypeA:
Condition 2

HasCondition

HasCondition

MySystemAlarmType

IEC

Figure 25 – Use of HasCondition in a HasNotifier hierarchy

6.4 Conditions in InstanceDeclarations

Figure 26 shows the use of the HasCondition Reference and the HasEventSource Reference
in an InstanceDeclaration. They are used to indicate what References and Conditions are
available on the instance of the ObjectType.

The use of the HasEventSource Reference in the context of InstanceDeclarations and
TypeDefinition Nodes has no effect for Event generation.

Tank A

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

TankType

HasCondition

HasEventSource
HasEventSource

HasCondition

IEC

Figure 26 – Use of HasCondition in an InstanceDeclaration

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 90 – IEC 62541-9:2020 © IEC 2020

6.5 Conditions in a VariableType

Use of HasCondition in a VariableType is a special use case since Variables (and
VariableTypes) may not have Conditions as components. Figure 27 provides an example of
this use case. Note that there is no component relationship for the "LevelMonitoring" Alarm. It
is Server-specific whether and where they assign a HasComponent Reference.

Tank A

ExclusiveLevelAlarmType:

LevelMonitoring

LevelMeasurementType:

LevelMeasurement

HasEventSource

HasCondition

AlarmType

LevelMeasurementType

AnalogItemType

ExclusiveLevelAlarmType:

LevelMonitoring

HasCondition

ExclusiveLevel
AlarmType

BaseObjectType BaseVariableType

IEC

Figure 27 – Use of HasCondition in a VariableType

7 System State and alarms

7.1 Overview

The state of alarms is affected by the state of the process, equipment, system or plant. For
example, when a tank is taken out of service, the level alarms associated with the tank would
be no longer used, until the tank is returned to service. This clause describes ReferenceTypes
that can be used by a StateMachine to indicate that a specific Effect on Alarms caused by the
transition of a StateMachine. StateMachines that describe the state of a process, system or
equipment can vary, but an example StateMachine is provided in Annex F.

7.2 HasEffectDisable

The HasEffectDisable ReferenceType is a concrete ReferenceType and can be used directly.
It is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will be
disabled.

• If the Reference is to an Object then all Alarms in the HasNotifier hierarchy below that
Object are disabled,

• If the target is an AlarmType then all instances of that AlarmType in the HasNotifier
hierarchy below the Object containing the StateMachine are disabled,

• If the target is an Alarm instance then the given Alarm instance is disabled.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType
or one of its subtypes. The TargetNode can be of an Object or AlarmType.

The representation of the HasEffectDisable ReferenceType in the AddressSpace is specified
in Table 102.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 91 –

Table 102 – HasEffectDisable ReferenceType

Attributes Value

BrowseName HasEffectDisable

InverseName MayBeDisabledBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

7.3 HasEffectEnable

The HasEffectEnable ReferenceType is a concrete ReferenceType and may be used directly.
It is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will be
enabled.

• If the Reference is to an Object then all Alarms in the HasNotifier hierarchy below that
Object are enabled.

• If the target is an AlarmType then all instances of that AlarmType in the HasNotifier
hierarchy below the Object containing the StateMachine are enabled.

• If the target is an Alarm instance then the given Alarm instance is enabled.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType
or one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasEffectenable ReferenceType in the AddressSpace is specified in
Table 103.

Table 103 – HasEffectEnable ReferenceType

Attributes Value

BrowseName HasEffectEnable

InverseName MayBeEnabledBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

7.4 HasEffectSuppress

The HasEffectSuppress ReferenceType is a concrete ReferenceType and may be used
directly. It is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will be
suppressed.

• If the reference is to an Object then all Alarms in the EventNotifer hierarchy below that
Object are suppressed.

• If the target is an AlarmType then all instance of that AlarmType in the HasNotifier
hierarchy below the Object containing the StateMachine are suppressed.

• If the target is an Alarm instance then the given Alarm instance is suppressed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 92 – IEC 62541-9:2020 © IEC 2020

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType
or one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasEffectSuppress ReferenceType in the AddressSpace is
specified in Table 104.

Table 104 – HasEffectSuppress ReferenceType

Attributes Value

BrowseName HasEffectSuppress

InverseName MayBeSuppressedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

7.5 HasEffectUnsuppressed

The HasEffectUnsuppressed ReferenceType is a concrete ReferenceType and may be used
directly. It is a subtype of HasEffect.

The semantic of this ReferenceType is to point form a Transition to an Alarm that will no
longer be suppressed.

• If the Reference is to an Object then all Alarms in the HasNotifier hierarchy below that
Object are removed from being suppressed.

• If the target is an AlarmType then all instance of that AlarmType are no longer suppressed
below the Object containing the StateMachine.

• if the target is an Alarm instance then the given Alarm instance is no longer suppressed.
No errors are logged if the Alarm was not suppressed.

The SourceNode of this ReferenceType shall be an Object of the ObjectType TransitionType
or one of its subtypes. The TargetNode can be of any NodeClass.

The representation of the HasEffectUnsuppress ReferenceType in the AddressSpace is
specified in Table 105.

Table 105 – HasEffectUnsuppress ReferenceType

Attributes Value

BrowseName HasEffectUnsuppress

InverseName MayBeUnsuppressedBy

Symmetric False

IsAbstract False

References NodeClass BrowseName Comment

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 93 –

8 Alarm metrics

8.1 Overview

The goal of a well-designed alarm system is to ensure that an Operator is made aware of
issues, both critical and non-critical, but is not overwhelmed by alarms/alerts or other
messages. When designing an alarm system, criteria are defined for alarm rates and general
performance of the system at various levels (Operator station, plant area, overall system etc.).
Evaluating the performance of an alarm system with regard to these design criteria requires
the collection of alarm metrics. These metrics provide summaries of alarm rates and other
alarm-related information.

This clause defines a standard structure for metrics. This structure may be implemented at
multiple levels allowing a Server to collect metrics as needed. For example, an Object of this
type might be added to the Server Object providing a summary of the Alarm performance for
the entire Server. An instance might also be provided on an Object that includes a HasNotifier
hierarchy, such as a tank Object. In this case, it would provide the summary of all of the
Alarms that are part of the tank HasNotifier hierarchy.

8.2 AlarmMetricsType

This ObjectType is used for metric information. The ObjectType is formally defined in
Table 106.

Table 106 – AlarmMetricsType Definition

Attribute Value

BrowseName AlarmMetricsType

IsAbstract False

References NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Subtype of the BaseObjectType defined in IEC 62541-5.

HasComponent Variable AlarmCount UInt32 BaseDataVariableType Mandatory

HasComponent Variable StartTime UtcTime BaseDataVariableType Mandatory

HasComponent Variable MaximumActiveState Duration BaseDataVariableType Mandatory

HasComponent Variable MaximumUnAck Duration BaseDataVariableType Mandatory

HasComponent Variable CurrentAlarmRate Double AlarmRateVariableType Mandatory

HasComponent Variable MaximumAlarmRate Double AlarmRateVariableType Mandatory

HasComponent Variable MaximumReAlarmCount UInt32 BaseDataVariableType Mandatory

HasComponent Variable AverageAlarmRate Double AlarmRateVariableType Mandatory

HasComponent Method Reset Mandatory

An instance of AlarmMetricsType can be added, with a HasComponent reference, to any
Object that has its "SubscribeToEvents" bit set within the EventNotifier Attribute. It will collect
the Alarm metrics for all Alarm sources assigned to this notifier Object. For example, if Alarm
metrics are desired for Tank A Object (see Figure B.3) that is in the HasNotifier hierarchy than
an instance of this object would be referenced by the Tank A object. When this object is
associated with the Server Object it will report Alarm metrics for the entire Server.

AlarmCount is the total count of Alarms since the last restart of the system or reset of this
counter.

StartTime is the time at which the Server started or the time of the last Reset Method
invocation, whichever is later.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 94 – IEC 62541-9:2020 © IEC 2020

MaximumActiveState is the maximum time for which an Alarm was in the active state.

MaximumUnAck is the maximum time for which an Alarm was in the unacknowledged state.

CurrentAlarmRate is the sum of Alarms that occurred in the last Rate number of minutes (see
8.3). This sum should not include nuisance Alarms (i.e. chattering alarms). It is updated every
Rate number of minutes.

MaximumAlarmRate is the maximum Alarm rate detected since the start of the Server, where
the rate is calculated as for CurrentAlarmRate.

MaximumReAlarmCount is the maximum ReAlarmCount for any Alarm.

AverageAlarmRate is the average Alarm rate since the start of the Server or the last
invocation of Reset Method, where the rate is calculated as for CurrentAlarmRate.

Reset is a Method that will reset all of the counters, rates or times in this Object

8.3 AlarmRateVariableType

This variable type provides a unit field for the rate for which the Alarm diagnostic applies.

Table 107 – AlarmRateVariableType definition

Attribute Value

BrowseName AlarmRateVariableType

IsAbstract False

ValueRank Scalar

DataType Double

References NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable Rate UInt16 PropertyType Mandatory

Rate is the number of minutes over which the item is calculated.

8.4 Reset Method

The Reset Method is used to reset all of the counters, rates and time in the Object.

Signature

Reset();

Method Result Codes in Table 108 (defined in Call Service).

Table 108 – Suppress result codes

Result Code Description

Bad_MethodInvalid The MethodId provided does not correspond to the ObjectId provided. See IEC 62541-4 for the
general description of this result code.

Bad_NodeIdInvalid Used to indicate that the specified ObjectId is not valid. See IEC 62541-4 for the general
description of this result code.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 95 –

Comments

The Reset Method will clear all setting in the diagnostic object and initialize them to zero.

Table 109 specifies the AddressSpace representation for the Reset Method.

Table 109 – Reset Method AddressSpace definition

Attribute Value

BrowseName Reset

References NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditUpdateMethodEventType Defined in IEC 62541-5.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 96 – IEC 62541-9:2020 © IEC 2020

Annex A
(informative)

Recommended localized names

A.1 Recommended state names for TwoState variables

A.1.1 LocaleId "en"

The recommended state display names for the LocaleId "en" are listed in Table A.1 and
Table A.2.

Table A.1 – Recommended state names for LocaleId "en"

Condition Type State Variable False State Name True State Name

ConditionType EnabledState Disabled Enabled

DialogConditionType DialogState Inactive Active

AcknowledgeableConditionType

AckedState Unacknowledged Acknowledged

ConfirmedState Unconfirmed Confirmed

AlarmConditionType ActiveState Inactive Active

SuppressedState Unsuppressed Suppressed

OutOfServiceState In Service Out of Service

SilenceState Silenced Not Silenced

LatchedState Latched Unlatched

NonExclusiveLimitAlarmType HighHighState HighHigh inactive HighHigh active

HighState High inactive High active

LowState Low inactive Low active

LowLowState LowLow inactive LowLow active

Table A.2 – Recommended display names for LocaleId "en"

Condition Type Browse Name display name

Shelved

Unshelved Unshelved

TimedShelved Timed Shelved

OneShotShelved One Shot Shelved

Exclusive HighHigh HighHigh

High High

Low Low

LowLow LowLow

A.1.2 LocaleId "de"

The recommended state display names for the LocaleId "de" are listed in Table A.3 and
Table A.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 97 –

Table A.3 – Recommended state names for LocaleId "de"

Condition Type State Variable False State Name True State Name

ConditionType EnabledState Ausgeschaltet Eingeschaltet

DialogConditionType DialogState Inaktiv Aktiv

AcknowledgeableConditionType

AckedState Unquittiert Quittiert

ConfirmedState Unbestätigt Bestätigt

AlarmConditionType ActiveState Inaktiv Aktiv

SuppressedState Nicht unterdrückt Unterdrückt

OutOfServiceState In Betrieb Außer Betrieb

SilenceState Stumm Nicht Stumm

LatchedState Verriegelt Entriegelt

NonExclusiveLimitAlarmType HighHighState HighHigh inaktiv HighHigh aktiv

HighState High inaktiv High aktiv

LowState Low inaktiv Low aktiv

LowLowState LowLow inaktiv LowLow aktiv

Table A.4 – Recommended display names for LocaleId "de"

Condition Type Browse Name display name

Shelved

Unshelved Nicht zurückgestellt

TimedShelved Befristet zurückgestellt

OneShotShelved Einmalig zurückgestellt

Exclusive HighHigh HighHigh

High High

Low Low

LowLow LowLow

A.1.3 LocaleId "fr"

The recommended state display names for the LocaleId "fr" are listed in Table A.5 and
Table A.6.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 98 – IEC 62541-9:2020 © IEC 2020

Table A.5 – Recommended state names for LocaleId "fr"

Condition Type State Variable False State Name True State Name

ConditionType EnabledState Hors Service En Service

DialogConditionType DialogState Inactive Active

AcknowledgeableConditionType

AckedState Non-acquitté Acquitté

ConfirmedState Non-Confirmé Confirmé

AlarmConditionType ActiveState Inactive Active

SuppressedState Présent Supprimé

OutOfServiceState En Fonction Hors Fonction

SilenceState Muette Non-Muette

LatchedState

NonExclusiveLimitAlarmType HighHighState Très Haute Inactive Très Haute Active

HighState Haute inactive Haute active

LowState Basse inactive Basse active

LowLowState Très basse inactive Très basse active

Table A.6 – Recommended display names for LocaleId "fr"

Condition Type Browse Name display name

Shelved

Unshelved Surveillée

TimedShelved Mise de coté temporelle

OneShotShelved Mise de coté unique

Exclusive HighHigh Très haute

High Haute

Low Basse

LowLow Très basse

A.2 Recommended dialog response options

The recommended Dialog response option names in different locales are listed in Table A.7.

Table A.7 – Recommended dialog response options

Locale "en" Locale "de" Locale "fr"

Ok OK Ok

Cancel Abbrechen Annuler

Yes Ja Oui

No Nein Non

Abort Abbrechen Abandonner

Retry Wiederholen Réessayer

Ignore Ignorieren Ignorer

Next Nächster Prochain

Previous Vorheriger Precedent

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 99 –

Annex B
(informative)

Examples

B.1 Examples for Event sequences from Condition instances

B.1.1 Overview

The following examples show the Event flow for typical Alarm situations. Table B.1 and
Table B.2 list the value of state Variables for each Event Notification.

B.1.2 Server maintains current state only

This example is for Servers that do not support previous states and therefore do not create
and maintain Branches of a single Condition.

Figure B.1 shows an Alarm as it becomes active and then inactive and also the
acknowledgement and confirmation cycles. Table B.1 lists the values of the state Variables.
All Events are coming from the same Condition instance and therefore have the same
ConditionId.

Time Axis

Active

1
Event

Notifications

Acked

Confirmed

76532 84

IEC

Figure B.1 – Single state example

Table B.1 – Example of a Condition that only keeps the latest state

EventId BranchId Active Acked Confirmed Retain Description

-*) NULL False True True False Initial state of Condition.

1 NULL True False True True Alarm goes active.

2 NULL True True False True Condition acknowledged Confirm required

3 NULL False True False True Alarm goes inactive.

4 NULL False True True False Condition confirmed

5 NULL True False True True Alarm goes active.

6 NULL False False True True Alarm goes inactive.

7 NULL False True False True Condition acknowledged, Confirm required.

8 NULL False True True False Condition confirmed.

*) The first row is included to illustrate the initial state of the Condition. This state will not be reported by an
Event.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 100 – IEC 62541-9:2020 © IEC 2020

B.1.3 Server maintains previous states

This example is for Servers that are able to maintain previous states of a Condition and
therefore create and maintain Branches of a single Condition.

Figure B.2 illustrates the use of branches by a Server requiring acknowledgement of all
transitions into Active state, not just the most recent transition. In this example no
acknowledgement is required on a transition into an inactive state. Table B.2 lists the values
of the state Variables. All Events are coming from the same Condition instance and have
therefore the same ConditionId.

 Time Axis

Active

1
Event

Notifications

Acked

Confirmed

832

Current State
(BranchId Null)

Active=true

Previous State
(BranchId 1)

Previous State
(BranchId 2)

Active=true

Acked=false

5

7

6

9

11

12

13

1410

4

IEC

Figure B.2 – Previous state example

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 101 –

Table B.2 – Example of a Condition that maintains previous states via branches

EventId BranchId Active Acked Confirmed Retain Description
a) NULL False True True False Initial state of Condition.

1 NULL True False True True Alarm goes active.

2 NULL True True True True Condition acknowledged requires Confirm

3 NULL False True False True Alarm goes inactive.

4 NULL False True True False Confirmed

5 NULL True False True True Alarm goes active.

6 NULL False True True True Alarm goes inactive.

7 1 True False True True
b)
 Prior state needs acknowledgment. Branch #1

created.

8 NULL True False True True Alarm goes active again.

9 1 True True False True Prior state acknowledged, Confirm required.

10 NULL False True True True
b)
 Alarm goes inactive again.

11 2 True False True True Prior state needs acknowledgment. Branch #2
created.

12 1 True True True False Prior state confirmed. Branch #1 deleted.

13 2 True True True False

Prior state acknowledged, Auto Confirmed by
system. Branch #2 deleted.

The confirmation of the previous transition
allows the system to auto confirm this
transition

14 NULL False True True False No longer of interest.
a) The first row is included to illustrate the initial state of the Condition. This state will not be reported by an

Event.

 Notes on specific situations shown with this example:

 If the current state of the Condition is acknowledged then the Acked flag is set and the new state is reported
(Event #2). If the Condition state changes before it can be acknowledged (Event #6) then a branch state is
reported (Event #7). Timestamps for the Events #6 and #7 is identical.

 The branch state can be updated several times (Events #9) before it is cleared (Event #12).

 A single Condition can have many branch states active (Events #11).
b) It is recommended as in this table to leave Retain=True as long as there exist previous states (branches).

B.2 AddressSpace examples

This clause provides additional examples for the use of HasNotifier, HasEventSource and
HasCondition References to expose the organization of areas and sources with their
associated Conditions. This hierarchy is additional to a hierarchy provided with Organizes and
Aggregates References.

Figure B.3 illustrates the use of the HasCondition Reference with Condition instances.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 102 – IEC 62541-9:2020 © IEC 2020

HasNotifier

Objects

Server

Tank A

Organizes

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

Area 1

Tank Farm Machine B

Device B

MyAlarmTypeA:
Condition 1

MyAlarmTypeA:
Condition 2

HasEventSource

HasEventSourceHasCondition

HasCondition

IEC

Figure B.3 – HasCondition used with Condition instances

In systems where Conditions are not available as instances, the ConditionSource may
reference the ConditionTypes instead. This is illustrated with the example in Figure B.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 103 –

Objects

Server

Tank A

Organizes

LevelMeasurement

ProcessAlarm
Type

ExclusiveLimit
AlarmType

Exclusive
Level

MyLevelAlarmType

HasNotifier

Area 1

Tank Farm Machine B

HasEventSource

HasCondition

IEC

Figure B.4 – HasCondition reference to a Condition type

Figure B.5 provides an example where the HasCondition Reference is already defined in the
Type system. The Reference may point to a Condition Type or to an instance. Both variants
are shown in this example. A Reference to a Condition Type in the Type system will result in a
Reference to the same Type Node in the instance.

Tank A

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

Tank Farm

HasEventSource

HasCondition

MyLevelAlarmType:
LevelMonitoring

LevelMeasurement

TankType

HasCondition

HasEventSource

MySystemAlarmType

HasNotifier
HasConditionHasCondition

IEC

Figure B.5 – HasCondition used with an instance declaration

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 104 – IEC 62541-9:2020 © IEC 2020

Annex C
(informative)

Mapping to EEMUA

Table C.1 lists EEMUA terms and how OPC UA terms maps to them.

Table C.1 – EEMUA Terms

EEMUA Term OPC UA Term EEMUA Definition

Accepted Acknowledged=True
An Alarm is accepted when the Operator has indicated awareness of its
presence.

In OPC UA, this may be accomplished with the Acknowledge Method.

Active Alarm Active = True An Alarm Condition which is on (i.e. limit has been exceeded and Condition
continues to exist).

Alarm Message Message Property (defined
in IEC 62541-5.)

Test information presented to the Operator that describes the Alarm Condition.

Alarm Priority Severity Property (defined in
IEC 62541-5.)

The ranking of Alarms by severity and response time.

Alert -

A lower priority Notification than an Alarm that has no serious consequence if
ignored or missed. In some Industries also referred to as a "Prompt" or
"Warning".

No direct mapping! In UA the concept of Alerts may be accomplished by the
use of severity. E.g., Alarms that have a severity below 50 may be considered
as Alerts.

Cleared Active = False An Alarm state that indicates the Condition has returned to normal.

Disable Enabled = False An Alarm is disabled when the system is configured such that the Alarm will not
be generated even though the base Alarm Condition is present.

Prompt Dialog
A request from the control system that the Operator perform some process
action that the system cannot perform or that requires Operator authority to
perform.

Raised Active = True An Alarm is Raised or initiated when the Condition creating the Alarm has
occurred.

Release OneShotShelving

A "release" is a facility that may be applied to a standing (UA = active) Alarm in
a similar way to which Shelving is applied. A released Alarm is temporarily
removed from the Alarm list and put on the shelf. There is no indication to the
Operator when the Alarm clears, but it is taken off the shelf. Hence, when the
Alarm is raised again it appears on the Alarm list in the normal way.

Reset Retain=False

An Alarm is Reset when it is in a state that can be removed from the Display
list.

OPC UA includes Retain flag which as part of its definition states: "when a
Client receives an Event with the Retain flag set to False, the Client should
consider this as a Condition/Branch that is no longer of interest, in the case of
a "current Alarm display" the Condition/Branch would be removed from the
display"

Shelving Shelving

Shelving is a facility where the Operator is able to temporarily prevent an Alarm
from being displayed to the Operator when it is causing the Operator a
nuisance. A Shelved Alarm will be removed from the list and will not re-
annunciate until un-shelved.

Standing Active = True An Alarm is Standing whilst the Condition persists (Raised and Standing are
often used interchangeably).

Suppress Suppress
An Alarm is suppressed when logical criteria are applied to determine that the
Alarm should not occur, even though the base Alarm Condition (e.g. Alarm
setting exceeded) is present.

Unaccepted Acknowledged = False An Alarm is accepted when the Operator has indicated awareness of its
presence. It is unaccepted until this has been done.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 105 –

Annex D
(informative)

Mapping from OPC A&E to OPC UA A&C

D.1 Overview

Serving as a bridge between COM and OPC UA components, the Alarm and Events proxy and
wrapper enable existing A&E COM Clients and Servers to connect to UA Alarms and
Conditions components.

Simply stated, there are two aspects to the migration strategy. The first aspect enables a UA
Alarms and Conditions Client to connect to an existing Alarms and Events COM Server via a
UA Server wrapper. This wrapper is notated from this point forward as the A&E COM UA
Wrapper. The second aspect enables an existing Alarms and Events COM Client to connect to
a UA Alarms and Conditions Server via a COM proxy. This proxy is notated from this point
forward as the A&E COM UA Proxy.

An Alarms and Events COM Client is notated from this point forward as A&E COM Client.

A UA Alarms and Conditions Server is notated from this point forward as UA A&C Server.

The mappings describe generic A&E COM interoperability components. It is recommended
that vendors use this mapping if they develop their own components; however, some
applications may benefit from vendor-specific mappings.

D.2 Alarms and Events COM UA wrapper

D.2.1 Event Areas

Event Areas in the A&E COM Server are represented in the A&E COM UA Wrapper as
Objects with a TypeDefinition of BaseObjectType. The EventNotifier Attribute for these
Objects always has the SubscribeToEvents flag set to True.

The root Area is represented by an Object with a BrowseName that depends on the UA
Server. It is always the target of a HasNotifier Reference from the Server Node. The root Area
allows multiple A&E COM Servers to be wrapped within a single UA Server.

The Area hierarchy is discovered with the BrowseOPCAreas and the GetQualifiedAreaName
Methods. The Area name returned by BrowseOPCAreas is used as the BrowseName and
DisplayName for each Area Node. The QualifiedAreaName is used to construct the NodeId.
The NamespaceURI qualifying the NodeId and BrowseName is a unique URI assigned to the
combination of machine and COM Server.

Each Area is the target of HasNotifier Reference from its parent Area. It may be the source of
one or more HasNotifier References to its child Areas. It may also be a source of a
HasEventSource Reference to any sources in the Area.

The A&E COM Server may not support filtering by Areas. If this is the case, then no Area
Nodes are shown in the UA Server address space. Some implementations could use the
AREAS Attribute to provide filtering by Areas within the A&E COM UA Wrapper.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 106 – IEC 62541-9:2020 © IEC 2020

D.2.2 Event sources

Event Sources in the A&E COM Server are represented in the A&E COM UA Wrapper as
Objects with a TypeDefinition of BaseObjectType. If the A&E COM Server supports source
filtering then the SubscribeToEvents flag is True and the Source is a target of a HasNotifier
Reference. If source filtering is not supported the SubscribeToEvents flag is False and the
Source is a target of a HasEventSource Reference.

The Sources are discovered by calling BrowseOPCAreas and the GetQualifiedSourceName
Methods. The Source name returned by BrowseOPCAreas is used as the BrowseName and
DisplayName. The QualifiedSourceName is used to construct the NodeId. Event Source
Nodes are always targets of a HasEventSource Reference from an Area.

D.2.3 Event categories

Event Categories in the A&E COM Server are represented in the UA Server as ObjectTypes
which are subtypes of BaseEventType. The BrowseName and DisplayName of the ObjectType
Node for Simple and Tracking Event Types are constructed by appending the text ‘EventType’
to the Description of the Event Category. For Condition Event Types the text ‘AlarmType’ is
appended to the Condition Name.

These ObjectType Nodes have a super type which depends on the A&E Event Type, the
Event Category Description and the Condition Name; however, the best mapping requires
knowledge of the semantics associated with the Event Categories and Condition Names. If an
A&E COM UA Wrapper does not know these semantics then Simple Event Types are
subtypes of BaseEventType, Tracking Event Types are subtypes of AuditEventType and
Condition Event Types are subtypes of the AlarmType. Table D.1 defines mappings for a set
of "well known" Category description and Condition Names to a standard super type.

Table D.1 – Mapping from standard Event categories to OPC UA Event types

COM A&E Event Type Category Description Condition Name OPC UA EventType

Simple --- --- BaseEventType

Simple Device Failure --- DeviceFailureEventType

Simple System Message --- SystemEventType

Tracking --- --- AuditEventType

Condition --- --- AlarmType

Condition Level --- LimitAlarmType

Condition Level PVLEVEL ExclusiveLevelAlarmType

Condition Level SPLEVEL ExclusiveLevelAlarmType

Condition Level HI HI NonExclusiveLevelAlarmType

Condition Level HI NonExclusiveLevelAlarmType

Condition Level LO NonExclusiveLevelAlarmType

Condition Level LO LO NonExclusiveLevelAlarmType

Condition Deviation --- NonExclusiveDeviationAlarmType

Condition Discrete --- DiscreteAlarmType

Condition Discrete CFN OffNormalAlarmType

Condition Discrete TRIP TripAlarmType

There is no generic mapping defined for A&E COM sub-Conditions. If an Event Category is
mapped to a LimitAlarmType then the sub Condition name in the Event shall be used to set
the state of a suitable State Variable. For example, if the sub-Condition name is "HI HI" then
that means the HighHigh state for the LimitAlarmType is active

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 107 –

For Condition Event Types, the Event Category is also used to define subtypes of
BaseConditionClassType.

Figure D.1 illustrates how ObjectType Nodes created from the Event Categories and
Condition Names are placed in the standard OPC UA HasNotifier hierarchy.

BaseEventType

<CategoryA>
EventType

<CategoryB>
EventType AuditEventType

<CategoryC>
EventType

AlarmType<ConditionNameX>
AlarmType

ExclusiveLevel
AlarmType

LevelAlarmType

ExclusiveLimit
AlarmType

DeviationAlarmType

<ConditionNameY>
AlarmType

<ConditionNameZ>
AlarmType

IEC

Figure D.1 – The type model of a wrapped COM A&E server

D.2.4 Event attributes

Event Attributes in the A&E COM Server are represented in the UA Server as Variables which
are targets of HasProperty References from the ObjectTypes which represent the Event
Categories. The BrowseName and DisplayName are the description for the Event Attribute.
The data type of the Event Attribute is used to set DataType and ValueRank. The NodeId is
constructed from the EventCategoryId, ConditionName and the AttributeId.

D.2.5 Event subscriptions

The A&E COM UA Wrapper creates a Subscription with the COM AE Server the first time a
MonitoredItem is created for the Server Object or one of the Nodes representing Areas. The
Area filter is set based on the Node being monitored. No other filters are specified.

If all MonitoredItems for an Area are disabled then the Subscription will be deactivated.

The Subscription is deleted when the last MonitoredItem for the Node is deleted.

When filtering by Area, the A&E COM UA Wrapper needs to add two Area filters: one based
on the QualifiedAreaName which forms the NodeId and one with the text ‘/*’ appended to it.
This ensures that Events from sub areas are correctly reported by the COM AE Server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 108 – IEC 62541-9:2020 © IEC 2020

A simple A&E COM UA Wrapper will always request all Attributes for all Event Categories
when creating the Subscription. A more sophisticated wrapper may look at the EventFilter to
determine which Attributes are actually used and only request those.

Table D.2 lists how the fields in the ONEVENTSTRUCT which are used by the A&E COM UA
Wrapper are mapped to UA BaseEventType Variables.

Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

EventId

szSource

szConditionName

ftTime

ftActiveTime

dwCookie

A ByteString constructed by appending the fields together.

EventType

dwEventType

dwEventCategory

szConditionName

The NodeId for the corresponding ObjectType Node. The
szConditionName maybe omitted by some implementations.

SourceNode szSource The NodeId of the corresponding Source Object Node.

SourceName szSource -

Time ftTime -

ReceiveTime - Set when the Notification is received by the wrapper.

LocalTime - Set based on the clock of the machine running the wrapper.

Message szMessage "Locale" is the default locale for the COM AE Server.

Severity dwSeverity -

Table D.3 lists how the fields in the ONEVENTSTRUCT which are used by the A&E COM UA
Wrapper are mapped to UA AuditEventType Variables.

Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

ActionTimeStamp ftTime Only set for tracking Events.

Status - Always set to True.

ServerId - Set to the COM AE Server NamespaceURI

ClientAuditEntryId - Not set.

ClientUserId szActorID -

Table D.4 lists how the fields in the ONEVENTSTRUCT which are used by the A&E COM UA
Wrapper are mapped to UA AlarmType Variables.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 109 –

Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables

UA Event Variable ONEVENTSTRUCT
Field

Notes

ConditionClassId dwEventType
Set to the NodeId of the ConditionClassType for the Event
Category of a Condition Event Type. Set to the NodeId of
BaseConditionClassType Node for non-Condition Event Types.

ConditionClassName dwEventType
Set to the BrowseName of the ConditionClassType for the Event
Category of Condition Event Type. To set "BaseConditionClass"
non-Condition Event Types.

ConditionName szConditionName -

BranchId - Always set to NULL.

Retain wNewState Set to True if the OPC_CONDITION_ACKED bit is not set or
OPC_CONDITION_ACTIVE bit is set.

EnabledState wNewState Set to "Enabled" or "Disabled"

EnabledState.Id wNewState Set to True if OPC_CONDITION_ENABLED is set

EnabledState.

EffectiveDisplayName
wNewState

A string constructed from the bits in the wNewState flag.

The following rules are applied in order to select the string:

"Disabled" if OPC_CONDITION_ENABLED is not set.

"Unacknowledged" if OPC_CONDITION_ACKED is not set.

"Active" if OPC_CONDITION_ACKED is set.

"Enabled" if OPC_CONDITION_ENABLED is set.

Quality wQuality The COM DA Quality converted to a UA StatusCode.

Severity dwSeverity
Set based on the last Event received for the Condition instance.

Set to the current value if the last Event is not available.

Comment - The value of the ACK_COMMENT Attribute

ClientUserId szActorID -

AckedState wNewState Set to "Acknowledged" or "Unacknowledged "

AckedState.Id wNewState Set to True if OPC_CONDITION_ACKED is set

ActiveState wNewState Set to "Active" or "Inactive "

ActiveState.Id wNewState Set to True if OPC_CONDITION_ACTIVE is set

ActiveState.TransitionTime ftActiveTime

This time is set when the ActiveState transitions from False to True.

NOTE Additional logic applies to exclusive limit alarms, in that the
LimitState.TransitionTime also needs to be set, but this is set each
time a limit is crossed (multiple limits might exist). For the initial
transition to True the ftActiveTime is used for both
LimitState.TransitionTime and ActiveState.TransitionTime. For
subsequent transition the ActiveState.Transition time does not
change, but the LimitState.TransitionTime will be updated with the
new ftActiveTime.

For example, if an alarm has Hi and HiHi limits, when the Hi limit is
crossed and the alarm goes active the FTActiveTime is used for
both times, but when the HiHi limit is later crossed, the
FtActiveTime is only be used for the LimitState.TransitionTime.

NOTE The ftActiveTime is part of the key for identifying the
unique event in the A&E server and needs to be saved for
processing any commands back to the A&E Server.

The A&C Condition Model defines other optional Variables which are not needed in the A&E
COM UA Wrapper. Any additional fields associated with Event Attributes are also reported.

D.2.6 Condition instances

Condition instances do not appear in the UA Server address space. Conditions may be
acknowledged by passing the EventId to the Acknowledge Method defined on the
AcknowledgeableConditionType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 110 – IEC 62541-9:2020 © IEC 2020

Conditions may not be enabled or disabled via the COM A&E Wrapper.

D.2.7 Condition Refresh

The COM A&E Wrapper does not store the state of Conditions. When ConditionRefresh is
called the Refresh Method is called on all COM AE Subscriptions associated with the
ConditionRefresh call. The wrapper needs to wait until it receives the call back with the
bLastRefresh flag set to True in the OnEvent call before it can tell the UA Client that the
Refresh has completed.

D.3 Alarms and Events COM UA proxy

D.3.1 General

As illustrated in the figure below, the A&E COM UA Proxy is a COM Server combined with a
UA Client. It maps the Alarms and Conditions address space of UA A&C Server into the
appropriate COM Alarms and Event Objects.

Subclauses D.3.2 through D.3.9 identify the design guidelines and constraints used to
develop the A&E COM UA Proxy provided by the OPC Foundation. In order to maintain a high
degree of consistency and interoperability, it is strongly recommended that vendors, who
choose to implement their own version of the A&E COM UA Proxy, follow these same
guidelines and constraints.

The A&E COM Client simply needs to address how to connect to the UA A&C Server.
Connectivity approaches include the one where A&E COM Clients connect to a UA A&C
Server with a CLSID just as if the target Server were an A&E COM Server. However, the
CLSID may be considered virtual since it is defined to connect to intermediary components
that ultimately connect to the UA A&C Server. Using this approach, the A&E COM Client calls
co-create instance with a virtual CLSID as described above. This connects to the A&E COM
UA Proxy components. The A&E COM UA Proxy then establishes a secure channel and
session with the UA A&C Server. As a result, the A&E COM Client gets a COM Event Server
interface pointer.

D.3.2 Server status mapping

The A&E COM UA Proxy reads the UA A&C Server status from the Server Object Variable
Node. Status enumeration values that are returned in ServerStatusDataType structure may be
mapped 1 for 1 to the A&E COM Server status values with the exception of UA A&C Server
status values Unknown and Communication Fault. These both map to the A&E COM Server
status value of Failed.

The VendorInfo string of the A&E COM Server status is mapped from ManufacturerName.

D.3.3 Event Type mapping

Since all Alarms and Conditions Events belong to a subtype of BaseEventType, the A&E COM
UA Proxy maps the subtype as received from the UA A&C Server to one of the three A&E
Event types: Simple, Tracking and Condition. Figure D.2 shows the mapping as follows:

• those A&C Events which are of subtype AuditEventType are marked as A&E Event type
Tracking;

• those A&C Events which are ConditionType are marked as A&E Event type Condition;

• those A&C Events which are of any subtype except AuditEventType or ConditionType are
marked as A&E Event type Simple.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 111 –

BaseEvent
Type

AuditEvent
Type

BaseModelChangeEvent
Type

Condition
Type

SystemEvent
Type

 UA Base Event
Types

COM Alarm and
Event Types

Tracking Condition Simple

Mapping of UA Events includes subtypes of each base event type

IEC

Figure D.2 – Mapping UA Event Types to COM A&E Event Types

Note that the Event type mapping described above also applies to the children of each
subtype.

D.3.4 Event category mapping

Each A&E Event type (e.g. Simple, Tracking, Condition) has an associated set of Event
categories which are intended to define groupings of A&E Events. For example, Level and
Deviation are possible Event categories of the Condition Event type for an A&E COM Server.
However, since A&C does not explicitly support Event categories, the A&E COM UA Proxy
uses A&C Event types to return A&E Event categories to the A&E COM Client. The A&E COM
UA Proxy builds the collection of supported categories by traversing the type definitions in the
address space of the UA A&C Server. Figure D.3 shows the mapping as follows:

• A&E Tracking categories consist of the set of all Event types defined in the hierarchy of
subtypes of AuditEventType and TransitionEventType, including AuditEventType itself and
TransitionEventType itself.

• A&E Condition categories consist of the set of all Event types defined in the hierarchy of
subtypes of ConditionType, including ConditionType itself.

• A&E Simple categories consist of the set of Event types defined in the hierarchy of
subtypes of BaseEventType excluding AuditEventType and ConditionType and their
respective subtypes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 112 – IEC 62541-9:2020 © IEC 2020

BaseEvent
Type

Condition
Type

 UA Condition Type
Hierarchy
(partial)

COM A&E Condition
Type

Condition Event Type

AcknowledgeableCondition
Type

AlarmCondition
Type

Catergory 2 : AcknowledgeableConditionType

Catergory 3 : AlarmConditionType

Catergory 1 : ConditionType

IEC

Figure D.3 – Example mapping of UA Event Types to COM A&E categories

Category name is derived from the display name Attribute of the Node type as discovered in
the type hierarchy of the UA A&C Server.

Category description is derived from the description Attribute of the Node type as discovered
in the type hierarchy of the UA A&C Server.

The A&E COM UA Proxy assigns Category IDs.

D.3.5 Event Category attribute mapping

The collection of Attributes associated with any given A&E Event is encapsulated within the
ONEVENTSTRUCT. Therefore, the A&E COM UA Proxy populates the Attribute fields within
the ONEVENTSTRUCT using corresponding values from UA Event Notifications either directly
(e.g. Source, Time, Severity) or indirectly (e.g. OPC COM Event category determined by way
of the UA Event type). Table D.5 lists the Attributes currently defined in the
ONEVENTSTRUCT in the leftmost column. The rightmost column of Table D.5 indicates how
the A&E COM UA proxy defines that Attribute.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 113 –

Table D.5 – Event category attribute mapping table

A&E ONEVENTSTRUCT "attribute" A&E COM UA Proxy Mapping

The following items are present for all A&E event types

szSource UA BaseEventType Property: SourceName

ftTime UA BaseEventType Property: Time

szMessage UA BaseEventType Property: Message

dwEventType See D.3.3

dwEventCategory See D.3.4

dwSeverity UA BaseEventType Property: Severity

dwNumEventAttrs Calculated within A&E COM UA Proxy

pEventAttributes Constructed within A&E COM UA Proxy

The following items are present only for A&E Condition-Related Events

szConditionName UA ConditionType Property: ConditionName

szSubConditionName UA ActiveState Property: EffectiveDisplayName

wChangeMask Calculated within Alarms and Events COM UA proxy

wNewState: OPC_CONDITION_ACTIVE A&C AlarmConditionType Property: ActiveState

Note that events mapped as non-Condition Events and those that do not derive
from AlarmConditionType are set to ACTIVE by default.

wNewState: OPC_CONDITION_ENABLED A&C ConditionType Property: EnabledState

 Note, Events mapped as non-Condition Events are set to ENABLED (state bit
mask = 0x1) by default.

wNewState: OPC_CONDITION_ACKED A&C AcknowledgeableConditionType Property: AckedState

Note that A&C Events mapped as non-Condition Events or which do not derive
from AcknowledgeableConditionType are set to UNACKNOWLEDGED and
AckRequired = False by default.

wQuality A&C ConditionType Property: Quality

Note that Events mapped as non-Condition Events are set to
OPC_QUALITY_GOOD by default.

In general, the Severity field of the StatusCode is used to map COM status codes
OPC_QUALITY_BAD, OPC_QUALITY_GOOD and OPC_QUALITY_UNCERTAIN.
When possible, specific status' are mapped directly. These include (UA => COM):

Bad status codes

 Bad_ConfigurationError => OPC_QUALITY_CONFIG_ERROR

 Bad_NotConnected => OPC_QUALITY_NOT_CONNECTED

 Bad_DeviceFailure => OPC_QUALITY_DEVICE_FAILURE

 Bad_SensorFailure => OPC_QUALITY_SENSOR_FAILURE

 Bad_NoCommunication => OPC_QUALITY_COMM_FAILURE

 Bad_OutOfService => OPC_QUALITY_OUT_OF_SERVICE

Uncertain status codes

 Uncertain_NoCommunicationLastUsableValue =>
OPC_QUALITY_LAST_USABLE

 Uncertain_LastUsableValue => OPC_QUALITY_LAST_USABLE

 Uncertain_SensorNotAccurate => OPC_QUALITY_SENSOR_CAL

 Uncertain_EngineeringUnitsExceeded => OPC_QUALITY_EGU_EXCEEDED

 Uncertain_SubNormal => OPC_QUALITY_SUB_NORMAL

Good status codes

 Good_LocalOverride => OPC_QUALITY_LOCAL_OVERRIDE

bAckRequired If the ACKNOWLEDGED bit (OPC_CONDITION_ACKED) is set then the Ack
Required Boolean is set to False, otherwise the Ack Required Boolean is set to
True. If the Event is not of type AcknowledgeableConditionType or subtype, then
the AckRequired Boolean is set to False.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 114 – IEC 62541-9:2020 © IEC 2020

A&E ONEVENTSTRUCT "attribute" A&E COM UA Proxy Mapping

ftActiveTime If the Event is of type AlarmConditionType or subtype and a transition from
ActiveState of False to ActiveState to True is being processed then the
TransitionTime Property of ActiveState is used. If the Event is not of type
AlarmConditionType or subtype then this field is set to current time.

Note: Additional logic applies to exclusive limit alarms, This value should be
mapped to the LimitState.TransitionTime.

dwCookie Generated by the A&E COM UA Proxy. These unique Condition Event cookies are
not associated with any related identifier from the address space of the UA A&C
Server.

The following is used only for A&E tracking events and for A&E condition-relate events which are acknowledgement
notifications

szActorID

Vendor specific Attributes – ALL

ACK Comment

AREAS All A&E Events are assumed to support the "Areas" Attribute. However, no
Attribute or Property of an A&C Event is available which provides this value.
Therefore, the A&E COM UA Proxy initializes the value of the Areas Attribute
based on the MonitoredItem producing the Event. If the A&E COM Client has
applied no area filtering to a Subscription, the corresponding A&C Subscription will
contain just one MonitoredItem – that of the UA A&C Server Object. Events
forwarded to the A&E COM Client on behalf of this Subscription will carry an Areas
Attribute value of empty string. If the A&E COM Client has applied an area filter to
a Subscription then the related UA A&C Subscription will contain one or more
MonitoredItems for each notifier Node identified by the area string(s). Events
forwarded to the A&E COM Client on behalf of such a Subscription will carry an
areas Attribute whose value is the relative path to the notifier which produced the
Event (i.e. the fully qualified area name).

Vendor specific Attributes – based on category

SubtypeProperty1 All the UA A&C subtype Properties that are not part of the standard set exposed by
BaseEventType or ConditionType

SubtypePropertyn

Condition Event instance records are stored locally within the A&E COM UA Proxy. Each
record holds ONEVENTSTRUCT data for each EventSource/Condition instance. When the
Condition instance transitions to the state INACTIVE|ACKED, where AckRequired = True or
simply INACTIVE, where AckRequired = False, the local Condition record is deleted. When a
Condition Event is received from the UA A&C Server and a record for this Event (identified by
source/Condition pair) already exists in the proxy Condition Event store, the existing record is
simply updated to reflect the new state or other change to the Condition, setting the change
mask accordingly and producing an OnEvent callback to any subscribing Clients. In the case
where the Client application acknowledges an Event which is currently unacknowledged
(AckRequired = True), the UA A&C Server Acknowledge Method associated with the
Condition is called and the subsequent Event produced by the UA A&C Server indicating the
transition to acknowledged will result in an update to the current state of the local Condition
record, as well as an OnEvent Notification to any subscribing Clients.

The A&E COM UA Proxy maintains the mapping of Attributes on an Event category basis. An
Event category inherits its Attributes from the Properties defined on all supertypes in the UA
Event Type hierarchy. New Attributes are added for any Properties defined on the direct UA
Event type to A&E category mapping. The A&E COM UA Proxy adds two Attributes to each
category: AckComment and Areas. Figure D.4 shows an example of this mapping.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 115 –

BaseEvent
Type

Condition
Type

AcknowledgeableCondition
Type

AlarmCondition
Type

 UA Condition Type
Hierarchy
(partial)

Composite set of UA properties from
BaseEventType +
ConditionType +
AcknowleageableConditionType +
AlarmConditionType

Composite set of UA properties from
BaseEventType +
ConditionType

Composite set of UA properties from
BaseEventType +
ConditionType +
AcknowleageableConditionType A&E COM UA

Proxy : Mapped
Categories and

Associated
Attributes

IEC

Figure D.4 – Example mapping of UA Event Types to A&E categories with attributes

D.3.6 Event Condition mapping

Events of any subtype of ConditionType are designated COM Condition Events and are
subject to additional processing due to the stateful nature of Condition Events. COM
Condition Events transition between states composed of the triplet
ENABLED|ACTIVE|ACKNOWLEDGED. In UA A&C, Event subtypes of ConditionType only
carry a value which can be mapped to ENABLED (DISABLED) and optionally, depending on
further sub typing, may carry additional information which can be mapped to ACTIVE
(INACTIVE) or ACKNOWLEDGED (UNACKNOWLEGED). Condition Event processing
proceeds as described in Table D.5 (see A&E ONEVENTSTRUCT "Attribute" rows:
OPC_CONDITION_ACTIVE, OPC_CONDITION_ENABLED and OPC_CONDITION_ACKED).

D.3.7 Browse mapping

A&E COM browsing yields a hierarchy of areas and sources. Areas can contain both sources
and other areas in tree fashion where areas are the branches and sources are the leaves. The
A&E COM UA Proxy relies on the "HasNotifier" Reference to assemble a hierarchy of
branches/areas such that each Object Node which contains a HasNotifier Reference and
whose EventNotifier Attribute is set to SubscribeToEvents is considered an area. The root for
the HasNotifier hierarchy is the Server Object. Starting at the Server Object, HasNotifier
References are followed and each HasNotifier target whose EventNotifier Attribute is set to
SubscribeToEvents becomes a nested COM area within the hierarchy.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 116 – IEC 62541-9:2020 © IEC 2020

The HasNotifier target may also be a HasNotifier source. Further, any Node which is a
HasEventSource source and whose EventNotifier Attribute is set to SubscribeToEvents is also
considered a COM Area. The target Node of any HasEventSource Reference is considered an
A&E COM "source" or leaf in the A&E COM browse tree.

In general, Nodes which are the source Nodes of the HasEventSource Reference and/or are
the source Nodes of the HasNotifier Reference are always A&ECOM Areas. Nodes which are
the target Nodes of the HasEventSource Reference are always A&E COM Sources. Note
however that targets of HasEventSource which cannot be found by following the HasNotifier
References from the Server Object are ignored.

Given the above logic, the A&E COM UA Proxy browsing will have the following limitations:
Only those Nodes in the UA A&C Server’s address space which are connected by the
HasNotifier Reference (with exception of those contained within the top level Objects folder)
are considered for area designation. Only those Nodes in the UA A&C Server’s address space
which are connected by the HasEventSource Reference (with exception of those contained
within the top level Objects folder) are considered for area or source designation. To be an
area, a Node shall contain a HasNotifier Reference and its EventNotifier Attribute shall be set
to SubscribeToEvents. To be a source, a Node shall be the target Node of a HasEventSource
Reference and shall have been found by following HasNotifier References from the Server
Object.

D.3.8 Qualified names

D.3.8.1 Qualified name syntax

From the root of any sub tree in the address space of the UA A&C Server, the A&E COM
Client may request the list of areas and/or sources contained within that level. The resultant
list of area names or source names will consist of the set of browse names belonging to those
Nodes which meet the criteria for area or source designation as described above. These
names are "short" names meaning that they are not fully qualified. The A&E COM Client may
request the fully qualified representation of any of the short area or source names. In the case
of sources, the fully qualified source name returned to the A&E COM Client will be the string
encoded value of the NodeId as defined in IEC 62541-6 (e.g., "ns=10;i=859"). In the case of
areas, the fully qualified area name returned to the COM Client will be the relative path to the
notifier Node as defined in IEC 62541-4 (e.g.,
"/6:Boiler1/6:Pipe100X/1:Input/2:Measurement"). Relative path indices refer to the namespace
table described in D.3.8.2.

D.3.8.2 Namespace table

UA Server Namespace table indices may vary over time. This represents a problem for those
A&E COM Clients which cache and reuse fully qualified area names. One solution to this
problem would be to use a qualified name syntax which includes the complete URIs for all
referenced table indices. This, however, would result in fully qualified area names which are
unwieldy and impractical for use by A&E COM Clients. As an alternative, the A&E COM UA
Proxy will maintain an internal copy of the UA A&C Server's namespace table together with
the locally cached endpoint description. The A&E COM UA Proxy will evaluate the UA A&C
Server’s namespace table at connect time against the cached copy and automatically handle
any re-mapping of indices if required. The A&E COM Client can continue to present cached
fully qualified area names for filter purposes and the A&E COM UA Proxy will ensure these
names continue to reference the same notifier Node even if the Server's namespace table
changes over time.

To implement the relative path, the A&E COM UA Proxy maintains a stack of INode interfaces
of all the Nodes browsed leading to the current level. When the A&E COM Client calls
GetQualifiedAreaName, the A&E COM UA Proxy first validates that the area name provided is
a valid area at the current level. Then looping through the stack, the A&E COM UA Proxy
builds the relative path. Using the browse name of each Node, the A&E COM UA Proxy
constructs the translated name as follows:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 117 –

QualifiedName translatedName = new QualifiedName(Name,(ushort)
ServerMappingTable[NamespaceIndex]) where

Name – the unqualified browse name of the Node

NamespaceIndex – the Server index

the ServerMappingTable provides the Client namespace index that corresponds to the
Server index.

A ‘/’ is appended to the translated name and the A&E COM UA Proxy continues to loop
through the stack until the relative path is fully constructed.

D.3.9 Subscription filters

D.3.9.1 General

The A&E COM UA Proxy supports all of the defined A&E COM filter criteria.

D.3.9.2 Filter by Event, category or severity

These filter types are implemented using simple numeric comparisons. For Event filters, the
received Event shall match the Event type(s) specified by the filter. For Category filters, the
received Event’s category (as mapped from UA Event type) shall match the category or
categories specified by the filter. For severity filters, the received Event severity shall be
within the range specified by the Subscription filter.

D.3.9.3 Filter by source

In the case of source filters, the UA A&C Server is free to provide any appropriate, Server-
specific value for SourceName. There is no expectation that source Nodes discovered via
browsing can be matched to the SourceName Property of the Event returned by the UA A&C
Server using string comparisons. Further, the A&E COM Client may receive Events from
sources which are not discoverable by following only HasNotifier and/or HasEventSource
References. Thus, source filters will only apply if the source string can be matched to the
SourceName Property of an Event as received from the target UA A & C Server. Source filter
logic will use the pattern matching rules documented in the A&E COM specification, including
the use of wildcard characters.

D.3.9.4 Filter by area

The A&E COM UA Proxy implements Area filtering by adjusting the set of MonitoredItems
associated with a Subscription. In the simple case where the Client selects no area filter, the
A&E COM UA Proxy will create a UA Subscription which contains just one MonitoredItem, the
Server Object. In doing so, the A&E COM UA Proxy will receive Events from the entire Server
address space – that is, all Areas. The A&E COM Client will discover the areas associated
with the UA Server address space by browsing. The A&E COM Client will use
GetQualifiedAreaName as usual in order to obtain area strings which may be used as filters.
When the A&E COM Client applies one or more of these area strings to the COM Subscription
filter, the A&E COM UA Proxy will create MonitoredItems for each notifier Node identified by
the area string(s). Recall that the fully qualified area name is in fact the namespace qualified
relative path to the associated notifier Node.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 118 – IEC 62541-9:2020 © IEC 2020

The A&E COM UA Proxy calls the TranslateBrowsePathsToNodeIds Service to get the Node
ids of the fully qualified area names in the filter. The Node ids are then added as
MonitoredItems to the UA Subscription maintained by the A&E COM UA Proxy. The A&E COM
UA Proxy also maintains a reference count for each of the areas added, to handle the case of
multiple A&E COM Subscription applying the same area filter. When the A&E COM
Subscriptions are removed or when the area name is removed from the filter, the ref count on
the MonitoredItem corresponding to the area name is decremented. When the ref count goes
to zero, the MonitoredItem is removed from the UA Subscription.

As with source filter strings, area filter strings may contain wildcard characters. Area filter
strings which contain wildcard characters require more processing by the A&E COM UA
Proxy. When the A&E COM Client specifies an area filter string containing wildcard
characters, the A&E COM UA Proxy will scan the relative path for path elements that are
completely specified. The partial path containing just those segments which are fully specified
represents the root of the notifier sub tree of interest. From this sub tree root Node, the A&E
COM UA Proxy will collect the list of notifier Nodes below this point. The relative path
associated with each of the collected notifier Nodes in the sub tree will be matched against
the Client supplied relative path containing the wildcard character. A MonitoredItem is created
for each notifier Node in the sub-tree whose relative path matches that of the supplied relative
path using established pattern matching rules. An area filter string which contains wildcard
characters may result in multiple MonitoredItems added to the UA Subscription. By contrast,
an area filter string made up of fully specified path segments and no wildcard characters will
result in one MonitoredItem added to the UA Subscription. So, the steps involved are:

1) check if the filter string contains any of these wild card characters, '*', '?', '#', '[', ']', '!', '-';
2) scan the string for path elements that are completely specified by retrieving the substring

up to the last occurrence of the ‘/’ character;
3) obtain the NodeId for this path using TranslateBrowsePathsToNodeIds;
4) browse the Node for all notifiers below it;
5) using the ComUtils.Match() function match the browse names of these notifiers against

the Client supplied string containing the wild card character;
6) add the Node ids of the notifiers that match as MonitoredItems to the UA Subscription.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 119 –

Annex E
(informative)

IEC 62682 Mapping

E.1 Overview

This annex provides a description of how the IEC 62682 information model may be mapped to
OPC UA. It highlights term differences, concepts and other functionality. IEC 62682 provides
additional information about managing and limiting alarms not covered by this specification.

NOTE ISA 18.2 is not discussed by this mapping, but IEC 62682 and ISA 18.2 are related and most definitions in
ISA 18.2 correspond to the definitions in IEC 62682.

E.2 Terms

IEC 62682 defines a large number of terms that are covered by the OPC UA model but not
used in the text. These IEC 62682 terms are listed in Table E.1 and include a description,
mapping or relationship to OPC UA Alarms and Events:

Table E.1 – IEC 62682 Mapping

IEC 62682 OPC UA Mapping / Related
Concept

IEC 62682 Definition

OPC UA Application of

absolute alarm ExclusiveDeviationAlarmType
NonExclusiveDeviationAlarmType

An alarm generated when the alarm set point is
exceeded.

Both OPC UA models expose a set point and process
the Alarm as an absolute Alarm requires, the only
difference is the interaction between relative states
(High, HighHigh...)

adaptive alarm Alarm for which the setpoint is changed by an
algorithm (e.g. rate based).

In OPC UA, adaptive alarming may be part of a vendor
specific alarm application, but it would or could make
use of a number of standard Alarm functions described
in this specification. OPC UA provides limit, rate of
change and deviation alarming. Vendors may easily
develop algorithms to adjust any of the limits that are
exposed.

adjustable alarm /
operator-set alarm

ExclusiveLimitAlarmType
NonExclusiveLimitAlarmType

An alarm for which the set point can be changed
manually by the Operator.

Both OPC UA models allow Alarm limits to be writeable
and allow for an Operator to change the limit. For all
changes to limits, an audit event should be generated
tracking the change.

advanced alarming A collection of techniques that can help manage
annunciations during specific situations.

In OPC UA advanced alarming may be part of a vendor
specific alarm application, but it would or could make
use of a number of standard Alarm functions described
in this specification, such as adaptive setting of a
setpoint for deviation Alarm. It might also require the
definition of new Alarm subtypes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 120 – IEC 62541-9:2020 © IEC 2020

IEC 62682 OPC UA Mapping / Related
Concept

IEC 62682 Definition

OPC UA Application of

Annunciation / Alarm
Annunciation

Retain A function of the alarm system is to call the attention
of the Operator to an alarm.

OPC UA provides an Alarm model that includes
concepts such as re-alarming, Alarm silence and Alarm
delays, but it is up to the Client application to make
use of these features to generate both audible and
visual annunciation to the Operator. OPC UA does not
provide visual indication but it does provide priority
information on which the client can be configured to
provide the appropriate visual display. A key concept
for alarm display is the concept of Alarm states and a
Retain bit (see Annex B for more details).

alarm attribute Various Alarm Properties The setting for an alarm within the process control
system.

OPC UA defines a number of Properties that reflect
what would be termed alarm attributes in IEC 62682
such as Alarm setpoint which maps to the setpoint
property in an ExclusiveDeviationAlarmType.

alarm class ConditionClass,

ConditionSubClass

A group of alarms with a common set of alarm
management requirements (e.g. testing, training,
monitoring, and audit requirements).

OPC UA provides ConditionClasses, but also provides
other groupings, like ConditionSubClass OPC UA also
specifies a number of predefined classes, but it is
expected that vendors, other standards group or even
end users will define their own extensions to these
classes. The OPC concepts allow Alarms to be
categorized as needed.

alarm Deadband ExclusiveDeviationAlarmType
NonExclusiveDeviationAlarmType

A change in signal from the alarm setpoint necessary
for the alarm to return to normal.

In OPC UA, the ExclusiveDeviationAlarmType and
NonExclusiveDeviationAlarmType contain an Alarm
deadband and can be used for the same functionality
described in IEC 62682.

filtering(alarm) Event Subscription A function which selects alarm records to be displayed
according to a given element of the alarm record.

In OPC UA, Alarms are received by a Client according
to the specific filter requested by the Client. The
filtering can be very robust or very simple according to
the needs of the client. It is up to the Client application
to generate and provide the appropriate filter to the
server. OPC UA’s Alarm model is a subscription-based
model, not a push model that is configured on a
server. The choice of filter is a client’s responsibility.

alarm flood Alarm diagnostics A condition during which the Alarm rate is greater than
the Operator can effectively manage – (e.g. more than
10 Alarms per 10 min).

OPC UA does not define Alarm flooding but it does
provide the capability to collect diagnostics that would
allow an engineer to review overall Alarm performance.

alarm group alarm group A set of alarms with common association (e.g. process
unit, process area, equipment set, or service). Alarm
groups are primarily used for display purposes.

OPC UA allows the definition of Alarm groups and the
assignment of Alarms to these groups. In addition.
OPC UA allows Alarms to also be part of a category.
OPC UA also allows Alarms to be organized as a
HasNotifier hierarchy (see Clause 6). Groups,
categories and hierarchies can be used for filtering or
restricting Alarms that are being displayed.

alarm history historical events long-term repository for alarm records.

IEC 62541-11 describes historical Events.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 121 –

IEC 62682 OPC UA Mapping / Related
Concept

IEC 62682 Definition

OPC UA Application of

alarm log short-term repository for alarm records.

This part does not specify repositories for Alarms.
Alarm logging is a Client function.

alarm management

alarm system
management

 collection of processes and practices for determining,
documenting, designing, operating, monitoring, and
maintaining alarm systems.

OPC UA provides an infrastructure to allow vendors
and Operators to provide Alarm management, as such
it should be an integral part of an alarm management
system.

alarm message Events text string displayed with the alarm indication that
provides additional information to the Operator (e.g.,
Operator action).

OPC UA provides an Event structure that includes
many different pieces of information (see IEC 62541-5
for additional details). Clients can subscribe for as
much of this information as desired and display this as
an Alarm message. All typical fields that would be
associated with an Alarm message are available. In
addition, OPC UA provides significant additional
information.

alarm priority Priority relative importance assigned to an alarm within the
alarm system to indicate the urgency of response (e.g.,
seriousness of consequences and allowable response
time)

OPC UA provides a Priority Variable as part of the
Alarm Object that provides the same functionality

alarm rate Alarm diagnostics the number of alarm annunciation, per Operator, in a
specific time interval.

OPC UA provides diagnostics allowing the collection of
Alarm rate information at any level in the system.

Record (Alarm) Events, Event filtering a set of information which documents an alarm state
change.

In OPC UA all Alarms are generated as an Event and
the Client can select the fields that are to be included
in the Events. This selection can be customized for
each AlarmConditionType, which allows a customized
Alarm record to be generated.

alarm setpoint, alarm
limit, alarm trip point

Limit Alarms, Discrete Alarms the threshold value of a process variable or discrete
state that triggers the alarm indication.

OPC UA supports Alarm limits and setpoints for
multiple Alarm types, including limit Alarms and
discrete Alarms.

Sorting (alarm) a function which orders alarm records to be displayed
according to a given element of alarm record.

OPC UA does not provide Alarm sorting as part of an
event subscription. Multiple filtering options are
provided, but the Client is required to perform any
ordering of Alarms.

alarm summary,
alarm list

 a display that lists alarm annunciations with selected
information (e.g. date, time, priority, and alarm type).

In OPC UA Alarm summaries and Alarm lists are Client
functionality and are not specified. Extensive filtering
capabilities are provided by the Server to allow easier
implementation of Alarm summaries or lists by a
Client.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 122 – IEC 62541-9:2020 © IEC 2020

IEC 62682 OPC UA Mapping / Related
Concept

IEC 62682 Definition

OPC UA Application of

Alert An audible and/or visible means of indicating to the
Operator an equipment or process condition that can
require evaluation when time allows.

Alerts are items that should be attended to, but are not
as urgent as Alarms. OPC UA does not differentiate
between Alarms and alerts, but it does provide a full
range of priorities for Alarms. It is up to the end users
to determine what range of priorities are considered an
alert vs an Alarm etc.

allowable response
time

 The maximum time between the annunciation of the
alarm and when the Operator takes corrective action to
avoid the consequence.

OPC UA does not provide any specific fields for
allowable response time, but it does track the times at
which an Alarm occurs and when any actions are taken
on the Alarm.

annunciator device or group of devices that call attention to
changes in process conditions

OPC UA does not define annunciators, this is Client
functionality that can be implemented using OPC UA

Audit comprehensive assessment that includes the
evaluation of alarm system performance and the
effectiveness of the work practices used to administer
the alarm system.

OPC UA does provide a number of features that can
facilitate an audit, including diagnostics and audit
events. Do not confuse OPC Audit Event with the IEC
audit concept.

bad-measurement
alarm

 an alarm generated when the signal for a process
measurement is outside the expected range (e.g. 3.8
mA for a 4 mA to 20 mA signal).

A bad measurement Alarm is not defined in OPC UA,
but limit Alarms are defined and they could be used
directly to represent a bad-measurement Alarm.
Alternatively, limit Alarms could be further subtyped to
allow easier filtering on bad-measurement Alarms if
desired.

bit-pattern alarm Discrete alarm an alarm that is generated when a pattern of digital
signals matches a predetermined pattern.

In OPC UA a bit pattern Alarm can be mapped to a
DiscreteAlarmType.

calculated alarm An alarm generated from a calculated value instead of
a direct process measurement.

In OPC UA any of the defined Alarm types can be
applied to calculated values or to process values.

call-out alarm alarm that notifies and informs an Operator by means
other than, or in addition to, a console display (e.g.
pager or telephone)

OPC UA does not specify call-out alarms, since this is
client functionality. OPC UA does provide the ability to
categorize or group an Alarm such that it could be
easily identified as requiring a different type of
annunciation.

chattering alarm OnDelay, OffDelay alarm that repeatedly transitions between the alarm
state and the normal state in a short period of time.

The OPC UA features of OnDelay and OffDelay can be
used to help control chattering Alarms.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 123 –

IEC 62682 OPC UA Mapping / Related
Concept

IEC 62682 Definition

OPC UA Application of

classification ConditionClasses the process of separating alarms into alarm classes
based on common requirements (e.g. testing, training,
monitoring, and auditing requirements).

OPC defines a number of extensible ConditionClasses
that can be used for this purpose.

controller-output
alarm

 alarm generated from the output signal of a control
algorithm (e.g. PID controller) instead of a direct
process measurement.

OPC UA does not provide an Alarm type for controller-
output alarm, but a type could be created or an
existing type could be used, depending on the
requirements.

dynamic alarming An automatic modification of alarm attributes based on
process state or conditions.

OPC UA does not define dynamic alarming behaviour,
but it allows programmatic access to limits, set points
or other parameters that would be required for a
dynamic alarming solution.

enforcement enhanced alarming technique that can verify and
restore alarm attributes in the control system to the
values in the master alarm database.

OPC UA does not provide enforcement, but it enables
enforcement by providing an information model that
includes default setting for Alarm types as well as
original settings for dynamic Alarms. These features
may be used by a Client application to provide
enforcement.

fleeting alarm Suppression, Shelving An alarm that transitions between an active alarm state
and an inactive alarm state in a short period of time.

OPC UA provides Alarm Suppression and Shelving
which an Operator might use to control fleeting Alarms.

first-out alarm

first-up alarm

FirstInGroup

FirstInGroupFlag

An alarm determined (i.e. by first-out logic) to be the
first, in a multiple-alarm scenario.

OPC UA can support first-up/first-out Alarms as part of
the Alarm information model, including definition of the
group of Alarms.

instrument diagnostic
alarm

InstrumentDiagnosticAlarmType An alarm generated by a field device to indicate a fault
(e.g. sensor failure).

OPC UA provides support for InstrumentDiagnostic
Alarms that can be used to represent a failed sensor or
an instrument diagnostic.

monitoring Alarm Diagnostics measurement and reporting of quantitative (objective)
aspects of alarm system performance.

OPC UA provides diagnostic collection capabilities that
can be used to measure and reports quantitative
information related to alarm system performance.

nuisance alarm Alarm Diagnostics An alarm that annunciates excessively, unnecessarily,
or does not return to normal after the Operator
response is taken. EXAMPLE: Chattering alarm,
fleeting alarm, or stale alarm.

The OPC UA model provides Alarm Diagnostics for
tracking the information needed to identify if an Alarm
is a nuisance Alarm (i.e. has been in an Alarm state
excessively or does not return to normal).

plant state

plant mode

StateMachines defined set of operational conditions for a process
plant.

OPC UA provides an example StateMachine (see
Annex F) that can be customized or adapted to provide
process information. This StateMachine could also be
used to affect alarming.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 124 – IEC 62541-9:2020 © IEC 2020

IEC 62682 OPC UA Mapping / Related
Concept

IEC 62682 Definition

OPC UA Application of

process area Event Hierarchies

Object References (IEC 62541-5)

physical, geographical or logical grouping of resources
determined by the site.

OPC UA provides multiple manners in which an
information model can be displayed, this includes
grouping objects into process areas or any other
desired grouping. This is an inherent part of the OPC
UA information model.

re-alarming alarm,
re-triggering alarm

ReAlarmTime

ReAlarmRepeatCount

alarm that is automatically re-annunciated to the
Operator under certain conditions.

OPC UA supports re-alarming as part of its base
AlarmConditionType.

recipe-driven alarm StateMachines

Alarm Limits

alarm with setpoints that depend on the recipe that is
currently being executed.

OPC UA provides support for adjustable Alarm limits.
It also provides support for programs and other
functionality that could be used to drive recipes.
Annex F provides an example of a StateMachine and
how it could be used to adjust Alarm settings.

Reset LatchedState / Reset Operator action that unlatches a latched alarm.

OPC UA provides an optional StateMachine to indicate
an Alarm is capable of being latched and is in a
latched state. It also provides a Reset Method for
clearing the latched state.

safety related alarm

safety alarm

SafetyConditionClassType an alarm that is classified as critical to process safety
for the protection of human life or the environment.

OPC UA defines a safety ConditionClass for grouping
safety related alarms.

stale alarm Alarm Diagnostics alarm that remains annunciated for an extended period
of time (e.g. 24 hours).

OPC UA Alarm Diagnostics can track the length of time
an Alarm is active.

state-based alarm –
mode-based alarms

StateMachine alarm that has attributes modified or is suppressed
based on operating states or process conditions.

OPC UA can provide a system state StateMachine to
support process, device or system states (see
Annex F). With this StateMachine Servers can adjust
Alarm attributes or just Suppress or Disable Alarms
based on the StateMachine. The StateMachine can be
applied at multiple levels in the system.

statistical alarm StatisticalConditionClassType alarm generated based on statistical processing of a
process variable or variables.

OPC UA provides an Alarm Condition class that any of
the existing AlarmConditionTypes can be assigned to.
This allows any Alarm types, such as limit Alarms, to
be generated by statistical analysis.

Suppress SuppressedOrShelved Any mechanism to prevent the indication of the alarm
to the Operator when the base alarm condition is
present (i.e. shelving, suppressed by design, out-of-
service).

OPC UA provides a flag SuppressedOrShelved that
matches this functionality.

suppressed by
design

SuppressedState alarm annunciation to the Operator prevented based
on plant state or other conditions.

OPC UA provides a SuppressedState that matches this
functionality.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 125 –

IEC 62682 OPC UA Mapping / Related
Concept

IEC 62682 Definition

OPC UA Application of

system diagnostic
alarm

SystemDiagnosticAlarmType alarm generated by the control system to indicate a
fault within the system hardware, software or
components.

OPC UA defines a system diagnostic Alarm that can be
used to represent faults with system hardware,
software or components.,

The following terms in IEC 62682 match the terms/concepts defined in the OPC UA
specification and do not need any additional mapping or discussion:

• Acknowledge

• Active

• Alarm

• Alarm OffDelay

• Alarm OnDelay

• Alarm Type

• Deviation Alarm

• Discrepancy Alarm

• Event

• Highly Managed Alarm

• LatchingAlarm

• OutofService

• Rateofchange alarms

• Return to normal

• Shelve

• Silence

• Unacknowledged

E.3 Alarm records and State indications

OPC UA provides all of the items listed as both required and recommended as part of its
alarm definitions, but it is up to the client to subscribe for the information. In OPC UA the
Client controls what alarm information is requested and obtained from the Server. The Server
does not define visual aspects of the alarm system, but does provide priority information from
which the visual aspect can be set on the client side.

OPC UA also supports all of the states described in IEC 62682. This includes tracking the
process states, system states and individual alarm states. OPC UA also provides a
StateMachine model that can be used in conjunction with an alarm system to alter alarm
behaviour based on the state of a system or process. For example, during start-up or
shutdown of a process or a system, some alarms might be suppressed.

The behaviour of an OPC UA alarm system also mimics that required by IEC 62682. All
behaviour described in IEC 62682 can easily be mapped to functionality define in OPC UA
Alarm & Conditions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 126 – IEC 62541-9:2020 © IEC 2020

Annex F
(informative)

System State

F.1 Overview

The state of alarms is affected by the state of the process, equipment, system or plant. For
example, when a tank is taken out of service, the level alarms associated with the tank would
be no longer used, until the tank is returned to service. This annex describes a StateMachine
that can be deployed as part of a system designed and used to reflect the current state of the
system, process, equipment or item. A customized version of this model can be implemented
for any system, this sample is just an illustration.

The current state from the StateMachine is applied to all items in the HasNotifier hierarchy
below the object with which the StateMachine is associated. The SystemState StateMachine
can be used to automatically disable, enable, suppress or un-suppress Alarms related to the
Object (with in the hierarchy of alarms from the given object). The StateMachine can also be
used by advanced alarming software to adjust the setpoint, limits or other items related to the
Alarms in the hierarchy.

Optionally, multiple SystemState StateMachines can be deployed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 127 –

StartingUp ShuttingDown

Operating

Emergency
Shutdown/

Other

Process
 ShutdownStabilized

Shutdown
CompleteInitiate

Startup

Shutdown

StartUp

OutofService

Maintenance

Return to
Service

Take Out
 Of Service

Hand to
Process

Hand to
Maintenance

Line Up Isolate
 System

IEC

Figure F.1 – SystemState transitions

F.2 SystemStateStateMachineType

The SystemStateStateMachineType includes a hierarchy of substates. It supports multiple
transitions between Operating, StartingUp, ShuttingDown, Shutdown, OutOfService and
Maintenance.

The state machine is illustrated in Figure F.2 and formally defined in Table F.1.
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
54

1-9
:20

20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 128 – IEC 62541-9:2020 © IEC 2020

Maintain

SystemState
StateMachineType

ShuttingDown

StartingUp

StartingUpToOperating
HasCause

FiniteStateMachineType

Operating

OutOfserviceToMaintenance

OutofServiceToOperating

OperatingToOutofService

Place
OutOfService

HasCause

HasCause

Start

MaintenanceToOutOfService
HasCause

ShutdownToStartingUpHasCause

StateType

TransitionType

Shutdown

Maintenance

OutOfService OutofServiceToShutdown

ShutdownToOutOfService

OutOfService
Shutdown

HasCause

HasCause

ShutdownToOperating

QuickStart

HasCause

ShuttingdownToShutdown

Stop
OperatingToShuttingDownHasCause

OperatingToShutdown

Quick
Shutdown

HasCause

IEC

Figure F.2 – SystemStateStateMachineType Model

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 129 –

Table F.1 – SystemStateStateMachineType definition

Attribute Value

BrowseName SystemStateStateMachineType

IsAbstract False

References Node
Class

BrowseName DataType TypeDefinition Modelling Rule

Subtype of the FiniteStateMachineType defined in IEC 62541-5

HasComponent Object Operating StateType

HasComponent Object ShuttingDown StateType

HasComponent Object StartingUp StateType

HasComponent Object Shutdown StateType

HasComponent Object OutOfService StateType

HasComponent Object Maintenance StateType

HasComponent Object ShutdownToOperating TransitionType

HasComponent Object OperatingToShutdown TransitionType

HasComponent Object ShuttingdownToShutdown TransitionType

HasComponent Object OperatingToShuttingdown TransitionType

HasComponent Object StartingUpToOperating TransitionType

HasComponent Object ShutdownToStartingUp TransitionType

HasComponent Object OutofServiceToShutdown TransitionType

HasComponent Object ShutdownToOutOfService TransitionType

HasComponent Object OutofServiceToOperating TransitionType

HasComponent Object OperatingToOutofService TransitionType

HasComponent Object MaintenanceToOutOfService TransitionType

HasComponent Object OutOfServiceToMaintenance TransitionType

HasComponent Method Start Defined in Clause XXX Optional

HasComponent Method Maintain Defined in Clause XXX Optional

HasComponent Method Stop Defined in Clause XXX Optional

HasComponent Method PlaceOutOfservice Defined in Clause XXX Optional

HasComponent Method QuickShutdown Defined in Clause XXX Optional

HasComponent Method QuickStart Defined in Clause XXX Optional

HasComponent Method OutOfServiceShutdown Defined in Clause XXX Optional

The actual selection of States and Transitions would depend on the deployment of the
StateMachine. If the StateMachine were being applied to a tank or other part of a process, it
might have a different set of States than if it were applied to a meter or instrument. The meter
may only have Operating, OutOfService and Maintenance, while the tank may have all of the
described States and Transitions.

The StateMachine supports six possible states including: Operating, ShuttingDown,
StartingUp, Shutdown, OutOfService, Maintenance. It supports 12 possible Transitions and 7
possible Methods.

The SystemStateStateMachineType transitions are formally defined in Table F.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 130 – IEC 62541-9:2020 © IEC 2020

Table F.2 – SystemStateStateMachineType transitions

BrowseName References BrowseName TypeDefinition

Transitions

ShutdownToOperating FromState Shutdown StateType

 ToState Operating StateType

 HasCause QuickStart Method

OperatingToShutdown FromState Operating StateType

 ToState Shutdown StateType

 HasCause QuickShutdown Method

ShuttingdownToShutdown FromState ShuttingDown StateType

 ToState Shutdown StateType

OperatingToShuttingdown FromState Operating StateType

 ToState ShuttingDown StateType

 HasCause Stop Method

StartingUpToOperating FromState StartingUp StateType

 ToState Operating StateType

ShutdownToStartingUp FromState Shutdown StateType

 ToState StartingUp StateType

 HasCause Start Method

OutofServiceToShutdown FromState OutOfService StateType

 ToState Shutdown StateType

 HasCause OutOfServiceShutdown Method

ShutdownToOutOfService FromState Shutdown StateType

 ToState OutOfService StateType

 HasCause OutOfServiceShutdown Method

OutOfServiceToOperating FromState OutOfService StateType

 ToState Operating StateType

 HasCause PlaceOutOfService Method

OperatingToOutofService FromState Operating StateType

 ToState OutOfService StateType

 HasCause PlaceOutOfService Method

MaintenanceToOutofService FromState Maintenance StateType

 ToState OutOfService StateType

 HasCause Maintain Method

OutOfServiceToMaintenance FromState OutOfService StateType

 ToState Maintenance StateType

 HasCause Maintain Method

The system can always generate additional HasCause References, such as internal code. No
HasEffect References are defined, but an implementation might define HasEffect References
(such as HasEffectDisable) for disabling or enabling Alarms, suppressing Alarms or adjusting
setpoints or limits of Alarms. The targets of the reference might be an individual Alarm or
portion of a plant or piece of equipment. See Clause 7 for a list of HasEffect References that
could be used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 131 –

Bibliography

ISA 18.2, Management of Alarm Systems for the Process Industries
https://www.isa.org/store/ansi/isa-182-2016,-management-of-alarm-systems-for-the-process-
industries/46962105

IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One
https://www.ietf.org/rfc/rfc2045.txt

IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two
https://www.ietf.org/rfc/rfc2046.txt

IETF RFC 2047, Multipurpose Internet Mail Extensions (MIME) Part Three
https://www.ietf.org/rfc/rfc2047.txt

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://www.ietf.org/rfc/rfc2045.txt
https://www.ietf.org/rfc/rfc2046.txt
https://www.ietf.org/rfc/rfc2047.txt
https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 132 – IEC 62541-9:2020 © IEC 2020

SOMMAIRE

AVANT-PROPOS .. 140
1 Domaine d'application ... 143
2 Références normatives .. 143
3 Termes, définitions, termes abrégés et types de données utilisés 143

3.1 Termes et définitions .. 143
3.2 Termes abrégés .. 146
3.3 Types de données utilisés ... 146

4 Concepts ... 147
4.1 Généralités ... 147
4.2 Conditions .. 147
4.3 Conditions acquittables ... 148
4.4 Etats antérieurs des Conditions .. 150
4.5 Synchronisation des états d'une condition ... 150
4.6 Sévérité, qualité et commentaire ... 151
4.7 Dialogues ... 152
4.8 Alarmes .. 152
4.9 Etats actifs multiples ... 153
4.10 Instances de Condition dans l'AddressSpace .. 154
4.11 Conduite d'audits pour les Alarmes et les Conditions .. 155

5 Modèle .. 155
5.1 Généralités ... 155
5.2 Diagrammes d'états à deux états .. 156
5.3 ConditionVariable ... 158
5.4 ReferenceTypes .. 158

5.4.1 Généralités .. 158
5.4.2 ReferenceType HasTrueSubState .. 158
5.4.3 ReferenceType HasFalseSubState .. 159
5.4.4 ReferenceType HasAlarmSuppressionGroup ... 159
5.4.5 ReferenceType AlarmGroupMember .. 160

5.5 Modèle de Condition ... 160
5.5.1 Généralités .. 160
5.5.2 ConditionType ... 161
5.5.3 Instances de Condition et de branche .. 165
5.5.4 Méthode Disable .. 165
5.5.5 Méthode Enable .. 166
5.5.6 Méthode AddComment .. 166
5.5.7 Méthode ConditionRefresh .. 168
5.5.8 Méthode ConditionRefresh2... 169

5.6 Modèle de Dialogue .. 171
5.6.1 Généralités .. 171
5.6.2 DialogConditionType ... 171
5.6.3 Méthode Respond.. 173

5.7 Modèle de Condition acquittable ... 174
5.7.1 Généralités .. 174
5.7.2 AcknowledgeableConditionType .. 174
5.7.3 Méthode Acknowledge ... 175

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 133 –

5.7.4 Méthode Confirm ... 177
5.8 Modèle d'Alarme ... 178

5.8.1 Généralités .. 178
5.8.2 AlarmConditionType .. 178
5.8.3 AlarmGroupType ... 183
5.8.4 Méthode Reset .. 184
5.8.5 Méthode Silence .. 184
5.8.6 Méthode Suppress ... 185
5.8.7 Méthode Unsuppress ... 186
5.8.8 Méthode RemoveFromService ... 187
5.8.9 Méthode PlaceInService .. 188
5.8.10 ShelvedStateMachineType .. 189
5.8.11 LimitAlarmType .. 194
5.8.12 Types de limites exclusives ... 196
5.8.13 NonExclusiveLimitAlarmType ... 200
5.8.14 Alarme de niveau ... 201
5.8.15 Alarme d'écart ... 202
5.8.16 Alarmes de vitesse de variation ... 203
5.8.17 Alarmes discrètes .. 205
5.8.18 DiscrepancyAlarmType .. 208

5.9 ConditionClasses .. 209
5.9.1 Vue d'ensemble ... 209
5.9.2 BaseConditionClassType ... 209
5.9.3 ProcessConditionClassType .. 210
5.9.4 MaintenanceConditionClassType ... 210
5.9.5 SystemConditionClassType ... 210
5.9.6 SafetyConditionClassType ... 211
5.9.7 HighlyManagedAlarmConditionClassType .. 211
5.9.8 TrainingConditionClassType .. 211
5.9.9 StatisticalConditionClassType.. 212
5.9.10 TestingConditionSubClassType ... 212

5.10 Evénements d'Audit .. 212
5.10.1 Vue d'ensemble ... 212
5.10.2 AuditConditionEventType... 213
5.10.3 AuditConditionEnableEventType .. 214
5.10.4 AuditConditionCommentEventType .. 214
5.10.5 AuditConditionRespondEventType ... 214
5.10.6 AuditConditionAcknowledgeEventType .. 215
5.10.7 AuditConditionConfirmEventType .. 215
5.10.8 AuditConditionShelvingEventType ... 216
5.10.9 AuditConditionSuppressionEventType ... 216
5.10.10 AuditConditionSilenceEventType ... 216
5.10.11 AuditConditionResetEventType ... 217
5.10.12 AuditConditionOutOfServiceEventType .. 217

5.11 Evénements relatifs au Rafraîchissement de Condition 217
5.11.1 Vue d'ensemble ... 217
5.11.2 RefreshStartEventType .. 218
5.11.3 RefreshEndEventType ... 218
5.11.4 RefreshRequiredEventType ... 219

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 134 – IEC 62541-9:2020 © IEC 2020

5.12 Type de référence HasCondition ... 219
5.13 Codes de statut pour les Alarmes et les Conditions... 220
5.14 Comportements attendus du serveur A&C ... 220

5.14.1 Généralités .. 220
5.14.2 Problèmes de communication .. 220
5.14.3 Serveurs A&C redondants ... 221

6 Organisation de l'AddressSpace .. 221
6.1 Généralités ... 221
6.2 EventNotifier et hiérarchie de source .. 221
6.3 Ajout de Conditions à la hiérarchie .. 222
6.4 Conditions dans les InstanceDeclarations ... 223
6.5 Conditions dans un VariableType .. 224

7 État du système et alarmes ... 224
7.1 Vue d'ensemble .. 224
7.2 HasEffectDisable .. 224
7.3 HasEffectEnable ... 225
7.4 HasEffectSuppress ... 225
7.5 HasEffectUnsuppressed .. 226

8 Mesures d'Alarme .. 227
8.1 Vue d'ensemble .. 227
8.2 AlarmMetricsType ... 227
8.3 AlarmRateVariableType .. 229
8.4 Méthode Reset ... 229

Annexe A (informative) Désignations localisées recommandées .. 230
A.1 Désignations d'états recommandées pour les variables TwoState 230

A.1.1 LocaleId "en" ... 230
A.1.2 LocaleId "de" ... 230
A.1.3 LocaleId "fr" ... 231

A.2 Options de réponses recommandées dans les dialogues 232
Annexe B (informative) Exemples .. 233

B.1 Exemples pour des séquences d'événements issues d'instances de Condition ... 233
B.1.1 Vue d'ensemble ... 233
B.1.2 Le Serveur maintient seulement l'état courant ... 233
B.1.3 Le Serveur maintient les états antérieurs ... 234

B.2 Exemples d'AddressSpaces .. 235
Annexe C (informative) Mapping avec l'EEMUA ... 238
Annexe D (informative) Mapping d'OPC A&E vers OPC UA A&C 239

D.1 Vue d'ensemble .. 239
D.2 Conteneur COM UA d'Alarmes et d'Evénements ... 239

D.2.1 Zones d'événements .. 239
D.2.2 Sources d'événements ... 240
D.2.3 Catégories d'événements .. 240
D.2.4 Attributs d'événements .. 242
D.2.5 Abonnements à des événements ... 242
D.2.6 Instances de Condition .. 245
D.2.7 Rafraîchissement de Condition .. 245

D.3 Proxy COM UA d'Alarmes et d'Evénements .. 245
D.3.1 Généralités .. 245

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 135 –

D.3.2 Mapping de statut de Serveur .. 245
D.3.3 Mapping de types d'événements .. 245
D.3.4 Mapping de catégories d'événements .. 246
D.3.5 Mapping d'attributs de catégories d'événements .. 247
D.3.6 Mapping de Conditions d'Evénements ... 250
D.3.7 Mapping par navigation ... 251
D.3.8 Noms qualifiés ... 251
D.3.9 Filtres d'abonnement ... 252

Annexe E (informative) Mapping avec l'IEC 62682 ... 255
E.1 Vue d'ensemble .. 255
E.2 Termes ... 255
E.3 Enregistrements d'Alarmes et indications d'Etat .. 261

Annexe F (informative) État du Système .. 262
F.1 Vue d'ensemble .. 262
F.2 SystemStateStateMachineType ... 263

Bibliographie ... 267

Figure 1 – Modèle d'état de base d'une Condition ... 148
Figure 2 – Modèle d'état des AcknowledgeableConditions .. 149
Figure 3 – Modèle d'état d'Acquittement ... 149
Figure 4 – Modèle d'état d'un Acquittement confirmé .. 150
Figure 5 – Modèle de diagramme d'états des alarmes ... 152
Figure 6 – Exemple de Chronologie d'Alarme type .. 153
Figure 7 – Exemple d'états actifs multiples ... 154
Figure 8 – Hiérarchie du ConditionType .. 156
Figure 9 – Modèle de Condition .. 161
Figure 10 – Vue d'ensemble du DialogConditionType ... 172
Figure 11 – Vue d'ensemble de l'AcknowledgeableConditionType 174
Figure 12 – Modèle de la hiérarchie d'AlarmConditionType ... 178
Figure 13 – Modèle d'Alarme .. 179
Figure 14 – Transitions d'états de suspension .. 190
Figure 15 – Modèle de ShelvedStateMachineType .. 190
Figure 16 – LimitAlarmType .. 195
Figure 17 – ExclusiveLimitStateMachineType ... 197
Figure 18 – ExclusiveLimitAlarmType ... 199
Figure 19 – NonExclusiveLimitAlarmType ... 200
Figure 20 – Hiérarchie du DiscreteAlarmType ... 205
Figure 21 – Hiérarchie des Types de ConditionClasses .. 209
Figure 22 – Hiérarchie d'AuditEvent .. 213
Figure 23 – Hiérarchie d'événements relatifs au rafraîchissement 218
Figure 24 – Hiérarchie HasNotifier type .. 222
Figure 25 – Utilisation de HasCondition dans une hiérarchie HasNotifier 223
Figure 26 – Utilisation de HasCondition dans une InstanceDeclaration 223
Figure 27 – Utilisation de HasCondition dans un VariableType ... 224
Figure B.1 – Exemple d'état unique... 233

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 136 – IEC 62541-9:2020 © IEC 2020

Figure B.2 – Exemple d'état antérieur ... 234
Figure B.3 – Référence HasCondition utilisée avec des instances de Condition 236
Figure B.4 – Référence HasCondition à un type de Condition ... 237
Figure B.5 – Référence HasCondition utilisée avec une déclaration d'instance 237
Figure D.1 – Modèle de type d'un Serveur COM A&E contenu .. 242
Figure D.2 – Mapping des types d'Evénements UA avec les types d'Événements COM
A&E .. 246
Figure D.3 – Exemple de mapping des types d'Evénements UA avec les catégories
COM A&E ... 247
Figure D.4 – Exemple de mapping des types d'Evénements UA avec les catégories
A&E avec attributs .. 250
Figure F.1 – Transitions du SystemState .. 263
Figure F.2 – Modèle de SystemStateStateMachineType ... 264

Tableau 1 – Types de paramètres définis dans l'IEC 62541-3 ... 146
Tableau 2 – Types de paramètres définis dans l'IEC 62541-4 ... 146
Tableau 3 – Définition de TwoStateVariableType .. 157
Tableau 4 – Définition de ConditionVariableType .. 158
Tableau 5 – ReferenceType HasTrueSubState ... 159
Tableau 6 – ReferenceType HasFalseSubState .. 159
Tableau 7 – ReferenceType HasAlarmSuppressionGroup ... 160
Tableau 8 – ReferenceType AlarmGroupMember .. 160
Tableau 9 – Définition de ConditionType ... 162
Tableau 10 – SimpleAttributeOperand... 165
Tableau 11 – Codes de résultats de la Méthode Disable ... 166
Tableau 12 – Définition de l'AddressSpace pour la Méthode Disable 166
Tableau 13 – Codes de résultats de la Méthode Enable .. 166
Tableau 14 – Définition de l'AddressSpace pour la Méthode Enable 166
Tableau 15 – Arguments de la Méthode AddComment .. 167
Tableau 16 – Codes de résultats de la Méthode AddComment .. 167
Tableau 17 – Définition de l'AddressSpace pour la Méthode AddComment 167
Tableau 18 – Paramètres de la Méthode ConditionRefresh ... 168
Tableau 19 – Codes de résultats de la Méthode ConditionRefresh 168
Tableau 20 – Définition de l'AddressSpace pour la Méthode ConditionRefresh 169
Tableau 21 – Paramètres de la Méthode ConditionRefresh2 ... 170
Tableau 22 – Codes de résultats de la Méthode ConditionRefresh2 170
Tableau 23 – Définition de l'AddressSpace pour la Méthode ConditionRefresh2 171
Tableau 24 – Définition de DialogConditionType ... 172
Tableau 25 – Paramètres de la Méthode Respond .. 173
Tableau 26 – Codes de résultats de la Méthode Respond ... 173
Tableau 27 – Définition de l'AddressSpace pour la Méthode Respond 174
Tableau 28 – Définition d'AcknowledgeableConditionType .. 175
Tableau 29 – Paramètres de la Méthode Acknowledge ... 176
Tableau 30 – Codes de résultats de la Méthode Acknowledge .. 176

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 137 –

Tableau 31 – Définition de l'AddressSpace pour la Méthode Acknowledge 176
Tableau 32 – Paramètres de la Méthode Confirm .. 177
Tableau 33 – Codes de résultats de la Méthode Confirm .. 177
Tableau 34 – Définition de l'AddressSpace pour la Méthode Confirm 178
Tableau 35 – Définition d'AlarmConditionType .. 180
Tableau 36 – Définition d'AlarmGroupType ... 183
Tableau 37 – Codes de résultats de la Méthode Reset ... 184
Tableau 38 – Définition de l'AddressSpace pour la Méthode Reset 184
Tableau 39 – Codes de résultats de la Méthode Silence ... 185
Tableau 40 – Définition de l'AddressSpace pour la Méthode Silence 185
Tableau 41 – Codes de résultats de la Méthode Suppress .. 186
Tableau 42 – Définition de l'AddressSpace pour la Méthode Suppress 186
Tableau 43 – Codes de résultats de la Méthode Unsuppress .. 187
Tableau 44 – Définition de l'AddressSpace pour la Méthode Unsuppress 187
Tableau 45 – Codes de résultats de la Méthode RemoveFromService 187
Tableau 46 – Définition de l'AddressSpace pour la Méthode RemoveFromService 188
Tableau 47 – Codes de résultats de la Méthode PlaceInService ... 188
Tableau 48 – Définition de l'AddressSpace pour la Méthode PlaceInService 189
Tableau 49 – Définition de ShelvedStateMachineType .. 191
Tableau 50 – Transitions de ShelvedStateMachineType ... 192
Tableau 51 – Codes de résultat de la Méthode Unshelve .. 192
Tableau 52 – Définition de l'AddressSpace pour la Méthode Unshelve 193
Tableau 53 – Paramètres de la Méthode TimedShelve .. 193
Tableau 54 – Codes de résultats de la Méthode TimedShelve .. 193
Tableau 55 – Définition de l'AddressSpace pour la Méthode TimedShelve 194
Tableau 56 – Codes de résultats de la Méthode OneShotShelve .. 194
Tableau 57 – Définition de l'AddressSpace pour la Méthode OneShotShelve 194
Tableau 58 – Définition de LimitAlarmType ... 195
Tableau 59 – Définition d'ExclusiveLimitStateMachineType .. 197
Tableau 60 – Transitions d'ExclusiveLimitStateMachineType .. 198
Tableau 61 – Définition d'ExclusiveLimitAlarmType .. 199
Tableau 62 – Définition de NonExclusiveLimitAlarmType .. 201
Tableau 63 – Définition de NonExclusiveLevelAlarmType ... 201
Tableau 64 – Définition d'ExclusiveLevelAlarmType .. 202
Tableau 65 – Définition de NonExclusiveDeviationAlarmType ... 203
Tableau 66 – Définition d'ExclusiveDeviationAlarmType ... 203
Tableau 67 – Définition de NonExclusiveRateOfChangeAlarmType..................................... 204
Tableau 68 – Définition d'ExclusiveRateOfChangeAlarmType ... 204
Tableau 69 – Définition de DiscreteAlarmType .. 205
Tableau 70 – Définition d'OffNormalAlarmType ... 206
Tableau 71 – Définition de SystemOffNormalAlarmType ... 206
Tableau 72 – Définition de TripAlarmType .. 207
Tableau 73 – Définition d'InstrumentDiagnosticAlarmType .. 207

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 138 – IEC 62541-9:2020 © IEC 2020

Tableau 74 – Définition de SystemDiagnosticAlarmType ... 207
Tableau 75 – Définition de CertificateExpirationAlarmType ... 208
Tableau 76 – Définition de DiscrepancyAlarmType ... 208
Tableau 77 – Définition de BaseConditionClassType .. 209
Tableau 78 – Définition de ProcessConditionClassType .. 210
Tableau 79 – Définition de MaintenanceConditionClassType .. 210
Tableau 80 – Définition de SystemConditionClassType ... 211
Tableau 81 – Définition de SafetyConditionClassType .. 211
Tableau 82 – Définition de HighlyManagedAlarmConditionClassType 211
Tableau 83 – Définition de TrainingConditionClassType ... 212
Tableau 84 – Définition de StatisticalConditionClassType ... 212
Tableau 85 – Définition de TestingConditionSubClassType ... 212
Tableau 86 – Définition d'AuditConditionEventType .. 213
Tableau 87 – Définition d'AuditConditionEnableEventType ... 214
Tableau 88 – Définition d'AuditConditionCommentEventType ... 214
Tableau 89 – Définition d'AuditConditionRespondEventType .. 215
Tableau 90 – Définition d'AuditConditionAcknowledgeEventType .. 215
Tableau 91 – Définition d'AuditConditionConfirmEventType .. 215
Tableau 92 – Définition d'AuditConditionShelvingEventType ... 216
Tableau 93 – Définition d'AuditConditionSuppressionEventType ... 216
Tableau 94 – Définition d'AuditConditionSilenceEventType ... 216
Tableau 95 – Définition d'AuditConditionResetEventType ... 217
Tableau 96 – Définition d'AuditConditionOutOfServiceEventType 217
Tableau 97 – Définition de RefreshStartEventType ... 218
Tableau 98 – Définition de RefreshEndEventType .. 218
Tableau 99 – Définition de RefreshRequiredEventType .. 219
Tableau 100 – ReferenceType HasCondition .. 220
Tableau 101 – Codes de résultats pour les Alarmes et les Conditions 220
Tableau 102 – ReferenceType HasEffectDisable .. 225
Tableau 103 – ReferenceType HasEffectEnable ... 225
Tableau 104 – ReferenceType HasEffectSuppress ... 226
Tableau 105 – ReferenceType HasEffectUnsuppress .. 227
Tableau 106 – Définition d'AlarmMetricsType ... 228
Tableau 107 – Définition d'AlarmRateVariableType ... 229
Tableau 108 – Codes de résultats de la Méthode Suppress .. 229
Tableau 109 – Définition de l'AddressSpace pour la Méthode Reset 229
Tableau A.1 – Désignations d'états recommandées pour le LocaleId "en" 230
Tableau A.2 – Désignations d'affichage recommandées pour le LocaleId "en" 230
Tableau A.3 – Désignations d'états recommandées pour le LocaleId "de" 231
Tableau A.4 – Désignations d'affichage recommandées pour le LocaleId "de" 231
Tableau A.5 – Désignations d'états recommandées pour le LocaleId "fr" 232
Tableau A.6 – Désignations d'affichage recommandées pour le LocaleId "fr" 232
Tableau A.7 – Options de réponses recommandées dans les dialogues 232

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 139 –

Tableau B.1 – Exemple d'une Condition qui conserve uniquement l'état le plus récent 233
Tableau B.2 – Exemple d'une Condition qui maintient les états antérieurs par des
branches ... 235
Tableau C.1 – Termes de l'EEMUA ... 238
Tableau D.1 – Mapping entre les catégories d'Evènements normalisées et les types
d'Evénements OPC UA ... 241
Tableau D.2 – Mapping des champs de l'ONEVENTSTRUCT avec les Variables de
BaseEventType de l'UA .. 243
Tableau D.3 – Mapping des champs de l'ONEVENTSTRUCT avec les Variables
d'AuditEventType de l'UA .. 243
Tableau D.4 – Mapping des champs de l'ONEVENTSTRUCT avec les Variables
d'AlarmType de l'UA ... 244
Tableau D.5 – Tableau de mapping d'attributs de catégories d'Événements 248
Tableau E.1 – Mapping avec l'IEC 62682 .. 255
Tableau F.1 – Définition de SystemStateStateMachineType ... 265
Tableau F.2 – Transitions du SystemStateStateMachineType ... 266

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 140 – IEC 62541-9:2020 © IEC 2020

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

ARCHITECTURE UNIFIÉE OPC –

Partie 9: Alarmes et Conditions

AVANT-PROPOS

1) La Commission Electrotechnique Internationale (IEC) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l’IEC). L’IEC a pour
objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines
de l'électricité et de l'électronique. A cet effet, l’IEC – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de l’IEC"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec l’IEC, participent
également aux travaux. L’IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.

2) Les décisions ou accords officiels de l’IEC concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l’IEC
intéressés sont représentés dans chaque comité d’études.

3) Les Publications de l’IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l’IEC. Tous les efforts raisonnables sont entrepris afin que l’IEC
s'assure de l'exactitude du contenu technique de ses publications; l’IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.

4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l’IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l’IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l’IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.

5) L’IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l’IEC. L’IEC n'est responsable d'aucun des services effectués par les organismes de certification
indépendants.

6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.

7) Aucune responsabilité ne doit être imputée à l’IEC, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de l’IEC, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de l’IEC ou de
toute autre Publication de l’IEC, ou au crédit qui lui est accordé.

8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.

9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de l’IEC peuvent faire
l’objet de droits de brevet. L’IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits
de brevets et de ne pas avoir signalé leur existence.

La Norme internationale IEC 62541-9 a été établie par le sous-comité 65E: Les dispositifs et
leur intégration dans les systèmes de l'entreprise, du comité d'études 65 de l'IEC: Mesure,
commande et automation dans les processus industriels.

Cette troisième édition annule et remplace la deuxième édition parue en 2015. Cette édition
constitue une révision technique.

Cette édition inclut les modifications techniques majeures suivantes par rapport à l'édition
précédente:

a) des unités techniques facultatives ont été ajoutées à la définition des alarmes
RateOfChange;

b) afin de respecter le modèle IEC 62682, les éléments suivants ont été ajoutés:

• états d'AlarmConditionType: Suppression, Silence, OutOfService, Latched;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 141 –

• Propriétés d'AlarmConditionType: OnDelay, OffDelay, FirstInGroup, ReAlarmTime;

• nouveaux types d'alarmes: DiscrepencyAlarm, DeviationAlarm,
InstrumentDiagnosticAlarm, SystemDiagnosticAlarm;

c) ajout d'une annexe qui spécifie la manière dont les concepts de cette partie d'OPC UA
assurent la correspondance avec l'IEC 62682 et l'ISA 18.2;

d) nouvelles ConditionClasses ajoutées: Safety, HighlyManaged, Statistical, Testing,
Training;

e) ajout de l'AlarmType CertificateExpiration;
f) ajout d'un modèle de Mesures d'Alarme.

Le texte de cette Norme internationale est issu des documents suivants:

FDIS Rapport de vote

65E/709/FDIS 65E/727/RVD

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à l'approbation de cette Norme internationale.

Ce document a été rédigé selon les Directives ISO/IEC, Partie 2.

Dans l'ensemble du présent document et dans les autres parties de la série IEC 62541,
certaines conventions de document sont utilisées:

Le format italique est utilisé pour mettre en évidence un terme défini ou une définition qui
apparaît à l'article "Termes et définitions" dans l'une des parties de la série IEC 62541.

Le format italique est également utilisé pour mettre en évidence le nom d'un paramètre
d'entrée ou de sortie de service, ou le nom d'une structure ou d'un élément de structure
habituellement défini dans les tableaux.

Par ailleurs, les termes et les noms en italique sont, à quelques exceptions près, écrits en
camel-case (pratique qui consiste à joindre, sans espace, les éléments des mots ou
expressions composés, la première lettre de chaque élément étant en majuscule). Par
exemple, le terme défini est AddressSpace et non Espace d'adressage. Cela permet de mieux
comprendre qu'il existe une définition unique pour AddressSpace, et non deux définitions
distinctes pour Espace et pour Adressage.

Une liste de toutes les parties de la série IEC 62541, publiées sous le titre
général Architecture unifiée OPC Unified Architecture, peut être consultée sur le site web de
l'IEC.

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
54

1-9
:20

20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 142 – IEC 62541-9:2020 © IEC 2020

Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de
stabilité indiquée sur le site web de l’IEC sous "http://webstore.iec.ch" dans les données
relatives au document recherché. A cette date, le document sera

• reconduit,

• supprimé,

• remplacé par une édition révisée, ou

• amendé.

IMPORTANT – Le logo "colour inside" qui se trouve sur la page de couverture de
cette publication indique qu'elle contient des couleurs qui sont considérées comme
utiles à une bonne compréhension de son contenu. Les utilisateurs devraient, par
conséquent, imprimer cette publication en utilisant une imprimante couleur.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 143 –

ARCHITECTURE UNIFIÉE OPC –

Partie 9: Alarmes et Conditions

1 Domaine d'application

La présente partie de l'IEC 62541 spécifie la représentation des Alarmes et des Conditions
dans l'Architecture unifiée OPC. Il comprend la représentation par le Modèle d'information des
Alarmes et des Conditions dans l'espace d'adressage OPC UA. Les autres aspects des
systèmes d'alarme tels que la philosophie d'alarme, le cycle de vie, le temps de réponse de
l'alarme, les types d'alarmes et de nombreux autres détails figurent dans des documents tels
que l'IEC 62682 et l'ISA 18.2. Le Modèle d'information sur les Alarmes et les Conditions de la
présente spécification est conçu conformément à l'IEC 62682 et à l'ISA 18.2.

2 Références normatives

Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu,
des exigences du présent document. Pour les références datées, seule l’édition citée
s’applique. Pour les références non datées, la dernière édition du document de référence
s'applique (y compris les éventuels amendements).

IEC TR 62541-1, OPC unified architecture – Part 1: Overview and concepts (disponible en
anglais seulement)

IEC 62541-3, Architecture unifiée OPC – Partie 3: Modèle d'espace d'adressage

IEC 62541-4, Architecture unifie OPC – Partie 4: Services

IEC 62541-5, Architecture unifiée OPC – Partie 5: Modèle d'information

IEC 62541-6, Architecture unifiée OPC – Partie 6: Mappings

IEC 62541-7, Architecture unifiée OPC – Partie 7: Profils

IEC 62541-8, Architecture unifiée OPC – Partie 8: Accès aux données

IEC 62541-11, Architecture unifiée OPC – Partie 11: Accès à l'historique

IEC 62682: Gestion de systèmes d'alarme dans les industries de transformation

EEMUA: 2nd Edition EEMUA 191 – Alarm System – A guide to design, management and
procurement (Appendixes 6, 7, 8, 9) (disponible en anglais seulement), disponible à l'adresse
https://www.eemua.org/Products/Publications/Print/EEMUA-Publication-191.aspx

3 Termes, définitions, termes abrégés et types de données utilisés

3.1 Termes et définitions

Pour les besoins du présent document, les termes et définitions donnés dans
l'IEC TR 62541-1, l'IEC 62541-3, l'IEC 62541-4, l'IEC 62541-5 ainsi que les suivants
s'appliquent.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://www.eemua.org/Products/Publications/Print/EEMUA-Publication-191.aspx
https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 144 – IEC 62541-9:2020 © IEC 2020

L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes:

• IEC Electropedia: disponible à l'adresse http://www.electropedia.org/

• ISO Online browsing platform: disponible à l'adresse http://www.iso.org/obp

3.1.1
Acquittement
action de l'Opérateur qui indique la reconnaissance d'une Alarme

Note 1 à l'article: Cette définition est tirée de l'EEMUA. Le terme "Acceptation" est un autre terme courant utilisé
pour décrire l'Acquittement. Les deux termes peuvent être utilisés de manière interchangeable. Le présent
document utilise Acquittement.

3.1.2
Active
état d'une Alarme qui indique que la situation que l'Alarme représente existe actuellement

Note 1 à l'article: D'autres termes courants définis par l'EEMUA sont "en cours" pour une Alarme active et "effacée"
lorsque la Condition est revenue à la normale et n'est plus Active.

3.1.3
AdaptiveAlarm
Alarme dont le point de consigne ou les limites sont modifiés par un algorithme

Note 1 à l'article: Les AdaptiveAlarms sont des alarmes qui sont automatiquement ajustées par des algorithmes.
Ces algorithmes peuvent détecter des conditions au sein d'une installation et modifier les points de consigne ou les
limites afin d'empêcher les alarmes. Très souvent, ces modifications se produisent sans interaction de l'Opérateur.

3.1.4
AlarmFlood
condition pendant laquelle le taux d'alarme est supérieur à ce que l'Opérateur peut gérer
efficacement

Note 1 à l'article: L'OPC UA ne définit pas les conditions qui seraient jugées comme des afflux d'alarmes; ces
conditions sont définies dans d'autres spécifications telles que l'IEC 62682 ou l'ISA 18.2.

3.1.5
AlarmSuppressionGroup
groupe d'Alarmes utilisé pour supprimer d'autres Alarmes

Note 1 à l'article: Un AlarmSuppressionGroup est une instance d'un AlarmGroupType utilisé pour supprimer
d'autres Alarmes. Si une Alarme du groupe est active, alors l'AlarmSuppressionGroup est actif. Si toutes les
Alarmes de l'AlarmSuppressionGroup sont inactives, alors l'AlarmSuppressionGroup est inactif.

Note 2 à l'article: L'Alarme à affecter référence les AlarmSuppressionGroups avec un ReferenceType
HasAlarmSuppressionGroup.

3.1.6
ConditionClass
ensemble de Conditions qui indique le domaine ou le but pour lequel une certaine Condition
est utilisée

Note 1 à l'article: Un certain nombre de ConditionClasses de haut niveau sont définies dans la présente
spécification. Les fournisseurs ou les organisations peuvent obtenir des classes plus concrètes ou définir des
classes de haut niveau différentes.

3.1.7
ConditionBranch
état spécifique d'une Condition

Note 1 à l'article: Le Serveur peut maintenir des ConditionBranches pour l'état courant ainsi que pour des états
antérieurs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

http://www.iso.org/obp
https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 145 –

3.1.8
ConditionSource
élément sur lequel repose une Condition spécifique ou auquel celle-ci se rapporte

Note 1 à l'article: Il s'agit habituellement d'une Variable représentant un marqueur de processus (par exemple
FIC101) ou d'un Objet représentant un appareil ou un sous-système.

Note 2 à l'article: Dans des Evénements générés pour des Conditions, la Propriété SourceNode (héritée du
BaseEventType) contient le NodeId de la ConditionSource.

3.1.9
confirmer
action de l'Opérateur informant le Serveur qu'une action corrective a été entreprise pour
traiter la cause de l'Alarme

3.1.10
désactiver
action de configuration d'un système de telle manière que l'Alarme n'est pas générée même si
la Condition d'Alarme de base est présente

Note 1 à l'article: Cette définition est tirée de l'EEMUA et est décrite plus en détail dans l'EEMUA.

Note 2 à l'article: Dans l'IEC 62682, "désactiver" est référencé sous la dénomination "Hors service".

3.1.11
LatchingAlarm
alarme qui reste à l'état d'alarme après que la condition de processus est revenue à la
normale et qui nécessite une réinitialisation de l'Opérateur avant que l'alarme revienne à la
normale

Note 1 à l'article: Les alarmes à enclenchement sont en général des alarmes d'anomalie, lorsqu'une action ne se
produit pas dans un délai spécifique. Lorsque l'action se produit, l'alarme reste active jusqu'à sa réinitialisation.

3.1.12
Opérateur
utilisateur spécial qui est affecté à la surveillance et à la commande d'une partie d'un
processus

Note 1 à l'article: "Un membre d'une équipe opérations affecté à la surveillance et à la commande d'une partie du
processus et travaillant au niveau de la Console du système de commande" selon la définition de l'EEMUA. Dans
le présent document, un Opérateur est un utilisateur spécial. Toutes les descriptions qui s'appliquent aux
utilisateurs généraux s'appliquent aussi aux Opérateurs.

3.1.13
Rafraîchissement
action de mise à jour d'un Abonnement à des Evénements qui fournit toutes les Alarmes
jugées comme étant Retenues

Note 1 à l'article: Cette notion est définie plus en détail dans l'EEMUA.

3.1.14
Retain
Alarme dans un état intéressant pour un Client qui souhaite synchroniser son état de
Conditions à l'état du Serveur

3.1.15
Suspension
moyen par lequel l'Opérateur est capable d'empêcher temporairement qu'une Alarme ne
s'affiche à l'attention de l'Opérateur lorsqu'elle cause une gêne pour l'Opérateur

Note 1 à l'article: "Une Alarme suspendue est retirée de la liste et n'est pas annoncée de nouveau tant qu'elle sa
suspension n'est pas annulée" selon la définition de l'EEMUA.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 146 – IEC 62541-9:2020 © IEC 2020

3.1.16
Supprimer
action de déterminer qu'il convient qu'une Alarme ne se produise pas

Note 1 à l'article: "Une Alarme est supprimée lorsque des critères logiques sont appliqués pour déterminer qu'il
convient que l'Alarme ne se produise pas, même si la Condition de base de l'Alarme (valeur de consigne d'Alarme
dépassée par exemple) est présente" selon la définition de l'EEMUA. Dans l'IEC 62682, les Alarmes Supprimées
sont également décrites comme étant "Supprimées par Conception", le système étant conçu pour Supprimer une
Alarme en présence de certains critères. Par exemple, si une unité de traitement est déconnectée, les alarmes de
niveau bas sont Supprimées pour tous les équipements de l'unité déconnectée.

3.2 Termes abrégés
A&E Alarme et Evénement (comme utilisé pour le COM OPC)
COM (Microsoft Windows) Component Object Model (Modèle d'objet composant)
DA data access (accès aux données)
UA Unified Architecture (Architecture unifiée)

3.3 Types de données utilisés

Les Tableaux 1 et 2 décrivent les types de données qui sont utilisés tout au long du présent
document. Ces types sont répartis en deux tableaux. Les types de données de base définis
dans l'IEC 62541-3 sont consignés dans le Tableau 1. Les types de base et les types de
données de base définis dans l'IEC 62541-4 sont consignés dans le Tableau 2.

Tableau 1 – Types de paramètres définis dans l'IEC 62541-3

Type de paramètre

Argument

BaseDataType

NodeId

LocalizedText

Booléen

ByteString

Double

Durée

Chaîne

UInt16

Int32

UtcTime

Tableau 2 – Types de paramètres définis dans l'IEC 62541-4

Type de paramètre

IntegerId

StatusCode

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 147 –

4 Concepts

4.1 Généralités

Le présent document définit un Modèle d'information pour les Conditions, les Conditions de
dialogue et les Alarmes, y compris les fonctionnalités d'acquittement. Ce modèle s'appuie sur
la gestion d'Evénements de base définie dans l'IEC 62541-3, IEC 62541-4 et l'IEC 62541-5 et
les complète. Ce Modèle d'information peut aussi être étendu pour prendre en charge les
autres besoins de domaines spécifiques. Les détails des aspects du Modèle d'information pris
en charge sont définis par le biais des Profils (voir l'IEC 62541-7 pour la définition des
Profils). Certains systèmes peuvent présenter les Evénements et Conditions historiques par le
biais du Cadre d'Accès à l'historique (voir l'IEC 62541-11 pour la définition des Evénements
historiques).

4.2 Conditions

Les Conditions sont utilisées pour représenter l'état d'un système ou de l'un de ses
composants. Certains exemples communs sont:

• une température dépassant une limite configurée;

• un appareil présentant la nécessité d'une maintenance;

• un processus par lots qui exige que l'utilisateur confirme une certaine étape du processus
avant de se poursuivre.

Chaque instance de Condition est d'un ConditionType spécifique. Le ConditionType et les
types résultants sont des sous-types du BaseEventType (voir l'IEC 62541-3 et l'IEC 62541-5).
La présente partie définit les types qui sont communs à de nombreux secteurs. Il est prévu
que les fournisseurs ou autres groupes de normalisation définissent des ConditionTypes
supplémentaires obtenus à partir des types de base communs définis dans la présente partie.
Les ConditionTypes pris en charge par un Serveur sont présentés dans l'AddressSpace du
Serveur.

Les instances de Condition sont des mises en œuvre spécifiques d'un ConditionType. Il
incombe au Serveur de décider si, oui ou non, ces instances sont également présentées dans
l'AddressSpace du Serveur. Le 4.10 fournit un contexte supplémentaire concernant les
instances de Condition. Les instances de Condition doivent avoir un identificateur unique pour
les différencier des autres instances, qu'elles soient présentées ou non dans l'AddressSpace.

Comme mentionné ci-dessus, les Conditions représentent l'état d'un système ou de l'un de
ses composants. Cependant, dans certains cas, les états antérieurs qui nécessitent encore de
l'attention doivent également être maintenus. Les ConditionBranches sont introduites afin de
traiter de cette exigence et établir la distinction entre l'état courant et les états antérieurs.
Chaque ConditionBranch a un BranchId qui la différencie des autres branches de la même
instance de Condition. La ConditionBranch qui représente l'état courant de la Condition (le
tronc) a un BranchId NULL. Les Serveurs peuvent générer des Notifications d'Evénements
pour chaque branche. Lorsqu'il n'est pas nécessaire que l'état représenté par une
ConditionBranch fasse l'objet d'attention supplémentaire, une Notification d'Evénement finale
pour cette branche a sa Propriété Retain définie sur False. Le 4.4 fournit plus d'informations
et des cas d'utilisation. La conservation d'états antérieurs et donc la prise en charge de
plusieurs branches sont facultatives pour les Serveurs.

D'un point de vue conceptuel, la durée de vie de l'instance de Condition est indépendante de
son état. Cependant, les Serveurs peuvent fournir l'accès à des instances de Condition
uniquement tant qu'il existe des ConditionBranches.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 148 – IEC 62541-9:2020 © IEC 2020

Le modèle d'état de base d'une Condition est représenté à la Figure 1. Il est étendu par les
divers sous-types de Conditions définis dans le présent document et peut être étendu
davantage par les fournisseurs ou autres groupes de normalisation. Les états principaux
d'une Condition sont "Disabled" et "Enabled". L'état Disabled est destiné à permettre la
désactivation des Conditions au niveau du Serveur ou en dessous du Serveur (dans un
appareil ou un certain système sous-jacent). L'état Enabled est normalement étendu par
l'ajout de sous-états.

Figure 1 – Modèle d'état de base d'une Condition

Un passage à l'état Disabled se traduit par un Evénement de Condition, mais il n'est pas
généré de Notifications d'Evénements consécutives tant que la Condition n'est pas revenue à
l'état Enabled.

Lorsqu'une Condition entre dans l'état Enabled, ce passage et tous les passages consécutifs
se traduisent par la création d'Evénements de Condition par le Serveur.

Lorsque l'Audit est pris en charge par un Serveur, l'action suivante liée à un Audit doit être
réalisée. Le Serveur crée des AuditEvents pour les opérations Enable et Disable (soit par
invocation d'une Méthode ou par certains moyens spécifiques au Serveur/fournisseur), plutôt
que de créer une Notification d'AuditEvent pour chaque instance de Condition activée ou
désactivée. Pour plus d'informations, voir la définition d'AuditConditionEnableEventType
en 5.10.2. Les AuditEvents sont également générés pour toute autre action de l'Opérateur qui
entraîne des changements des Conditions.

4.3 Conditions acquittables

Les AcknowledgeableConditions sont des sous-types du ConditionType de base. Les
AcknowledgeableConditions présentent les états pour indiquer qu'une Condition doit être
acquittée ou confirmée.

Un AckedState et un ConfirmedState étendent l'état Enabled défini par la Condition. Le
modèle d'état est représenté à la Figure 2. L'état activé est étendu en ajoutant l'AckedState et
(facultativement) le ConfirmedState.

IEC

Disabled

Enabled

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 149 –

Figure 2 – Modèle d'état des AcknowledgeableConditions

L'acquittement de la transition peut venir du Client ou peut être dû à une certaine logique
interne au Serveur. Par exemple, l'acquittement d'une Condition connexe peut faire que cette
Condition devienne acquittée, ou la Condition peut être réglée pour s'Acquitter elle-même
automatiquement lorsque la situation acquittable disparaît.

Deux modèles d'états d'Acquittement sont pris en charge dans le présent document. Chacun
de ces modèles d'états peut être étendu afin de prendre en charge des situations
d'acquittement plus complexes.

Le modèle d'état de base d'Acquittement est représenté à la Figure 3. Ce modèle définit un
AckedState. Les changements d'état spécifiques qui se traduisent par un changement vers
l'état dépendent de la mise en œuvre du Serveur. Par exemple, dans les modèles d'Alarme
types, le changement se limite à une transition vers l'état Active ou à des transitions au sein
de l'état Active. Cependant, des modèles plus complexes peuvent aussi admettre des
changements vers l'AckedState lorsque la Condition passe à un état inactif.

Figure 3 – Modèle d'état d'Acquittement

Un modèle d'état plus complexe qui ajoute une confirmation à l'Acquittement de base est
représenté à la Figure 4. Le modèle d'Acquittement confirmé est habituellement utilisé pour
établir une différence entre le fait d'acquitter la présence d'une Condition et le fait d'avoir
entrepris une action pour traiter la Condition. Par exemple, un Opérateur recevant une
Notification de température élevée du moteur appelle la Méthode Acknowledge pour signaler
au Serveur qu'une température élevée a été observée. L'Opérateur entreprend ensuite une
certaine action, comme diminuer la charge sur le moteur afin de faire baisser la température.

IEC

Disabled

Enabled

ConfirmedState
= TRUE

AckedState =
TRUE

ConfirmedState
= False

AckedState = False

IEC

AckedState = TRUE

AckedState = False

Acquittée
par le
Serveur

Méthode
Acknowledge

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 150 – IEC 62541-9:2020 © IEC 2020

L'Opérateur appelle ensuite la Méthode Confirm pour signaler au Serveur qu'une action
corrective a été entreprise.

Figure 4 – Modèle d'état d'un Acquittement confirmé

4.4 Etats antérieurs des Conditions

Certains systèmes exigent que les états antérieurs d'une Condition soient conservés pendant
un certain temps. Un cas d'utilisation commun est le processus d'acquittement. Dans certains
environnements, tant l'acquittement du passage à l'état Active que l'acquittement du passage
à l'état inactif sont exigés. Les systèmes avec des règles de sécurité strictes exigent parfois
que chaque transition vers l'état Active soit acquittée. Dans les situations où les changements
d'état se succèdent rapidement, il peut exister plusieurs états non acquittés, et le Serveur doit
maintenir les ConditionBranches pour tous les états antérieurs non acquittés. Ces branches
sont supprimées dès qu'elles ont été acquittées ou si elles ont atteint leur état final.

Les ConditionBranches multiples peuvent également être utilisées pour d'autres cas
d'utilisation où des états antérieurs instantanés d'une Condition exigent des actions
supplémentaires.

4.5 Synchronisation des états d'une condition

Lorsqu'un Client s'abonne à des Evénements, la Notification des transitions commence au
moment de l'Abonnement. L'état courant existant n'est pas signalé. Cela signifie par exemple
que les Clients ne sont pas informés des Alarmes actuellement Actives jusqu'à ce qu'un
nouveau changement d'état se produise.

Les Clients peuvent obtenir l'état courant de toutes les instances de Condition qui sont dans
un état intéressant en demandant le Rafraîchissement d'un Abonnement. Il convient de noter
que le Rafraîchissement n'est pas un moyen de réitération systématique, car le Serveur n'est
pas tenu de conserver un historique des Evénements.

Les Clients demandent un Rafraîchissement en appelant la Méthode ConditionRefresh. Le
Serveur répond par un Evénement de RefreshStartEventType. Cet Evénement est suivi des
Conditions Retenues. Le Serveur peut aussi envoyer de nouvelles Notifications d'Evénements
parsemées de Notifications d'Evénements de Rafraîchissement. Lorsque le Serveur en a
terminé avec le Rafraîchissement, un RefreshEndEvent est produit et marque la fin du
Rafraîchissement. Les Clients doivent vérifier toutes les Notifications d'Evénements pour
détecter une ConditionBranch afin d'éviter d'écraser un nouvel état délivré en même temps
qu'un état plus ancien par le processus de Rafraîchissement. Si une ConditionBranch existe,
la Condition courante doit alors être consignée. Ceci est vrai même si le seul élément
intéressant concernant la Condition est que des ConditionBranches existent. Cela permettre à
un Client de représenter avec précision l'état courant de la Condition.

IEC
Confirmé par le Serveur

Méthode

Acquittée Non acquittée

Acquittement par le Serveur
Méthode Acknowledge

Non confirmé Confirmé

Serveur restreint à
"Non confirmé"
jusqu'à l'Acquittement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 151 –

Un Client souhaitant afficher le statut courant des Alarmes et des Conditions (appelé
"affichage d'Alarmes courantes") utiliserait la logique suivante pour traiter les Notifications
d'Evénements de Rafraîchissement. A la réception de l'Evénement du
RefreshStartEventType, le Client marque toutes les Conditions Retenues comme suspectes.
Le Client ajoute tous les éventuels nouveaux Evénements qui ont été reçus pendant le
Rafraîchissement sans les marquer comme suspects. Le Client enlève également le fanion
"suspect" de toutes les éventuelles Conditions Retenues qui sont renvoyées comme partie
intégrante du Rafraîchissement. Lorsque le Client reçoit un RefreshEndEvent, il retire tous les
éventuels Evénements suspects restants, car ils ne s'appliquent plus.

Il convient de noter les éléments suivants en ce qui concerne ConditionRefresh:

• comme décrit en 4.4, certains systèmes exigent que les états antérieurs d'une Condition
soient conservés pendant un certain temps. Certains Serveurs, en particulier ceux qui
exigent l'acquittement des états antérieurs, maintiennent des ConditionBranches distinctes
pour les états antérieurs qui nécessitent encore de l'attention.
ConditionRefresh doit produire des Notifications d'Evénements pour tous les états
intéressants (courants et antérieurs) d'une instance de Condition, et les Clients peuvent
par conséquent recevoir plusieurs Evénements pour une même instance de Condition
avec des BranchIds (identificateurs de branche) différents;

• dans certaines circonstances, un Serveur peut ne pas être capable de garantir que le
Client est totalement synchronisé avec l'état courant des instances de Condition. Par
exemple, si le système sous-jacent représenté par le Serveur est réinitialisé ou que les
communications sont perdues pendant un certain temps, il peut être nécessaire pour le
Serveur de se resynchroniser au système sous-jacent. Dans de tels cas, le Serveur doit
envoyer un Evénement de type RefreshRequiredEventType pour annoncer au Client qu'un
Rafraîchissement peut être nécessaire. Il convient qu'un Client recevant cet Evénement
spécial déclenche un ConditionRefresh comme indiqué dans le présent paragraphe;

• afin de s'assurer qu'un Client est toujours informé, les trois EventTypes spéciaux
(RefreshEndEventType, RefreshStartEventType et RefreshRequiredEventType) ignorent
le filtrage de contenu d'Evénement associé à un Abonnement et sont toujours délivrés au
Client;

• ConditionRefresh s'applique à un Abonnement. Si plusieurs Notifications d'Evénement
sont incluses dans le même Abonnement, toutes les Notifications d'Evénement sont
rafraîchies.

4.6 Sévérité, qualité et commentaire

Commentaire, sévérité et qualité sont des éléments importants de Conditions, et tout
changement qui leur est apporté engendre des Notifications d'Evénement.

La Sévérité d'une Condition est héritée du modèle d'Evénement de base défini dans
l'IEC 62541-5. Elle indique l'urgence de la Condition et elle est également communément
appelée "priorité", notamment en rapport avec les Alarmes appartenant au
ProcessConditionClassType.

Un Commentaire est une chaîne créée par l'utilisateur qui doit être associée à un certain état
d'une Condition.

La Qualité se réfère à la qualité de la ou des valeurs de données sur lesquelles cette
Condition est fondée. Etant donné qu'une Condition est habituellement fondée sur une ou
plusieurs Variables, la Condition hérite de la qualité de ces Variables. Par exemple, si la
valeur de processus est "Uncertain", la Condition "Level Alarm" est également douteuse.
Lorsque deux variables ou plus sont représentées par une condition donnée ou si la condition
provient d'un système sous-jacent, et lorsqu'aucun mapping direct avec une variable n'est
disponible, il revient à l‘application de déterminer le niveau de qualité affiché comme partie
intégrante de la condition.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 152 – IEC 62541-9:2020 © IEC 2020

4.7 Dialogues

Les Dialogues sont des ConditionTypes utilisés par un Serveur pour demander des données
d'utilisateur. Ils sont habituellement utilisés lorsqu'un Serveur est entré dans un état qui exige
l'intervention d'un Client. Par exemple, un Serveur surveillant une machine à papier indique
qu'un rouleau de papier a été enroulé et est prêt à l'inspection. Le Serveur activerait une
Condition de Dialogue indiquant à l'utilisateur qu'une inspection est exigée. Lorsque
l'inspection a eu lieu, l'utilisateur répond en informant le Serveur que l'inspection est acceptée
ou n'est pas acceptée, permettant au processus de se poursuivre.

4.8 Alarmes

Les Alarmes sont des spécialisations des AcknowledgeableConditions qui ajoutent à une
Condition les concepts d'état Active et d'autres états tels que Shelving et Suppressed. Le
modèle d'état est représenté à la Figure 5. Le modèle complet avec tous les états est défini
en 5.8.

Figure 5 – Modèle de diagramme d'états des alarmes

Une Alarme à l'état Active indique que la situation décrite par la Condition est actuellement
présente. Lorsqu'une Alarme est dans l'état inactif, elle indique une situation qui est revenue
à un état normal.

IEC

Disabled

Active = TRUE

Enabled

Active = False

Suppressed = TRUE Suppressed = False

Shelved Unshelved

ConfirmedState
= TRUE

AckedState = TRUE AckedState = False

SilenceState =
TRUE

SilenceState =
False

OutOfService= False OutOfService=TRUE

ConfirmedState
= False

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 153 –

Certains sous-types d'Alarmes introduisent des sous-états de l'état Active. Par exemple, une
Alarme représentant une température peut fournir aussi bien un état de niveau élevé qu'un
état de niveau élevé critique (voir le paragraphe suivant).

L'état Shelving peut être établi par un Opérateur par le biais des Méthodes OPC UA. L'état
Suppressed est établi en interne par le Serveur pour des raisons spécifiques au système. Les
systèmes d'Alarme mettent habituellement en œuvre les fonctionnalités de suppression, de
mise hors service et de suspension pour éviter que les Opérateurs ne soient submergés par
des flots d'Alarmes en limitant le nombre d'Alarmes qu'un Opérateur voit sur l'affichage des
Alarmes en cours. Cela est accompli par le réglage du fanion SuppressedOrShelved sur des
Alarmes dépendantes de second ordre et/ou des Alarmes de moindre sévérité, amenant
l'Opérateur à se concentrer sur les questions les plus critiques.

Les états "Shelved", "Out of Service" et "Suppressed" diffèrent de l'état Disabled, car les
Alarmes sont encore totalement fonctionnelles et peuvent être incluses dans des Notifications
d'Abonnement adressées à un Client.

Les alarmes suivent une chronologie type représentée à la Figure 6. Plusieurs temps de
retard et états qu'elles peuvent occuper leur sont associés. Le but d'un système d'alarme est
d'informer les Opérateurs des conditions dans le temps prévu et de permettre à l'Opérateur
de prendre des mesures avant que des conséquences se produisent. Les conséquences
peuvent être économiques (le produit n'est pas utilisable et doit être éliminé), physiques
(débordement de réservoir), liées à la sécurité (un incendie ou une explosion peut se
produire) ou toute autre possibilité. Habituellement, si aucune mesure n'est prise par rapport
à une alarme après un certain temps, le processus passe un point au-delà duquel des
conséquences commencent à se produire. Le modèle d'Alarme OPC UA décrit ces états,
retards et mesures.

V
al

eu
r

du
 tr

ai
te

m
en

t

Temps

Normal Sur Alarme non
acquittée

Temps de réponse admissible
Aucune action, le
traitement a des
conséquences

Des conséquences
commencent à

 se produire

Limite de l 'alarme
Bande morte de

l'alarme

Délai
d'acquittement

Délai de
réponse de
l'opérateur

Délai de
traitement

Alarme acquittée

Le traitement
répond à
l'action

Normal

OffDelay

IEC

Figure 6 – Exemple de Chronologie d'Alarme type

4.9 Etats actifs multiples

Dans certains cas, il est souhaitable de définir plus en détail l'état Active d'une Alarme en
fournissant un diagramme de sous-états pour l'état Active. Par exemple, une Alarme de
niveau à états multiples lorsque son état est Active peut s'inscrire dans l'un des sous-états
suivants: LowLow, Low, High ou HighHigh. Le modèle d'état est représenté à la Figure 7.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 154 – IEC 62541-9:2020 © IEC 2020

Figure 7 – Exemple d'états actifs multiples

Avec le modèle d'Alarme à états multiples, les transitions d'états parmi les sous-états d'Active
sont admises sans entraîner de transition hors de l'état Active.

Pour prendre en charge différents cas d'utilisation, un modèle (mutuellement) exclusif et un
modèle non exclusif sont pris en charge.

Exclusif signifie que l'Alarme ne peut être que dans un seul sous-état à la fois. Si, par
exemple, la température dépasse la limite HighHigh, l'Alarme de niveau exclusive associée
est dans le sous-état "HighHigh" et non dans le sous-état "High".

Certains systèmes d'Alarme autorisent, toutefois, la coexistence de plusieurs sous-états en
parallèle. Cela est qualifié de "non exclusif". Dans l'exemple précédent où la température
dépasse la limite HighHigh, une Alarme de niveau non exclusive est à la fois dans le sous-
état "High" et dans le sous-état "HighHigh".

4.10 Instances de Condition dans l'AddressSpace

Sachant que les Conditions ont toujours un état (Enabled ou Disabled) et éventuellement
plusieurs sous-états, il est logique que des instances de Condition soient présentes dans
l'AddressSpace. Si le Serveur présente des instances de Condition, celles-ci apparaissent
habituellement dans l'AddressSpace comme composants des Objets qui les "possèdent". Par
exemple, un transmetteur de température qui comporte une Alarme intégrée de température
élevée apparaîtrait dans l'AddressSpace comme une instance d'un certain Objet transmetteur
de température avec une Référence HasComponent à une instance d'un LimitAlarmType.

La disponibilité d'instances donne la possibilité à des Clients d'accès aux données de
surveiller l'état courant de la Condition en s'abonnant aux valeurs d'Attributs des Nœuds de
Variables. Les valeurs des nœuds peuvent ne pas toujours correspondre à la valeur qui
apparaît dans les Evénements, elles peuvent être plus récentes que celles de l'Evénement.

IEC

Active = False

Active = TRUE

HighHigh LowLow

High Low

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 155 –

Alors que le fait de présenter des instances de Condition dans l'AddressSpace n'est pas
toujours possible, le faire permettre l'interaction directe (lecture, écriture et invocation de
Méthode) avec une instance spécifique de Condition. Par exemple, si une instance de
Condition n'est pas présentée, il n'y a aucun moyen d'invoquer la Méthode Enable ou Disable
pour l'instance de Condition spécifique.

4.11 Conduite d'audits pour les Alarmes et les Conditions

La série IEC 62541 inclut des dispositions pour la conduite d'audits. La conduite d'audits est
un concept important de sécurité et de suivi. Les enregistrements d'audit fournissent les
informations de type "Qui", "Quand" et "Quoi" concernant les interactions utilisateur avec un
système. Ces enregistrements d'audit sont particulièrement importants lorsque la gestion des
Alarmes est envisagée. Les Alarmes constituent l'instrument type pour informer un utilisateur
que quelque chose exige son attention. Un enregistrement de la manière dont l'utilisateur
réagit à ces informations est indispensable dans de nombreux cas. Les enregistrements
d'audit sont générés par tous les appels de Méthode qui ont une incidence sur l'état du
système, par exemple un appel de la Méthode Acknowledge génère un Evénement
AuditConditionAcknowledgeEventType.

Les AuditEventTypes normalisés définis dans l'IEC 62541-5 incluent déjà les champs exigés
pour les enregistrements d'audit relatifs à la Condition. Pour permettre le filtrage et le
regroupement, le présent document définit un certain nombre de sous-types des
AuditEventTypes, mais sans leur ajouter de nouveaux champs.

Le présent document décrit l'AuditEventType que chaque Méthode est tenue de générer. Par
exemple, la Méthode Disable comporte une Référence AlwaysGeneratesEvent à un
AuditConditionEnableEventType. Un Evénement de ce type doit être généré pour chaque
invocation de la Méthode. L'Evénement d'audit décrit l'interaction de l'utilisateur avec le
système; dans certains cas, cette interaction peut affecter plusieurs Conditions ou être liée à
plusieurs états.

5 Modèle

5.1 Généralités

Le modèle d'Alarme et de Condition étend le modèle d'Evénement de base OPC UA en
définissant divers Types d'Evénements fondés sur le BaseEventType. Tous les Types
d'Evénements définis dans le présent document peuvent être étendus davantage pour former
des Types d'Alarmes et de Conditions spécifiques au domaine ou au Serveur.

Des instances des Types d'Alarmes et de Conditions peuvent être facultativement présentées
dans l'AddressSpace afin de permettre un accès direct à l'état d'une Alarme ou d'une
Condition.

Les Types d'Alarmes et de Conditions selon OPC UA sont définis du 5.5 au 5.8. La Figure 8
décrit de manière informelle la hiérarchie de ces Types. Les sous-types du LimitAlarmType et
du DiscreteAlarmType ne sont pas représentés. La hiérarchie complète d'AlarmConditionType
est disponible à la Figure 8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 156 – IEC 62541-9:2020 © IEC 2020

Défini dans l'IEC 62541-5
BaseEvent

Type

Acknowledgeable
Condition Type

RefreshStart
EventType

SystemEvent
Type

RefreshRequired
EventType

RefreshEnd
EventType

AlarmCondition
Type

DialogCondition
Type

ConditionType

StateMachine
Type

ExclusiveLimit
StateMachineType

Shelved
StateMachineType

LimitAlarm
Type

DiscreteAlarm
Type

OffNormalAlarm
Type

SystemOffNormal
AlarmType

IEC

Figure 8 – Hiérarchie du ConditionType

L'Annexe C spécifie comment mapper le modèle décrit dans le présent document avec
l'EEMUA.

L'Annexe D spécifie un mapping recommandé entre les serveurs OPC A&E et le modèle décrit
dans le présent document.

5.2 Diagrammes d'états à deux états

La plupart des états définis dans le présent document sont simples: soit True, soit False. Le
TwoStateVariableType est introduit spécialement pour ce cas d'utilisation. Des états plus
complexes sont modélisés en utilisant un StateMachineType défini dans l'IEC 62541-5.

Le TwoStateVariableType est obtenu à partir du StateVariableType défini dans l'IEC 62541-5
et défini de façon formelle dans le Tableau 3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 157 –

Tableau 3 – Définition de TwoStateVariableType

Attribut Valeur

BrowseName TwoStateVariableType

DataType LocalizedText

ValueRank -1 (-1 = Scalar)

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type du StateVariableType défini dans l'IEC 62541-5.

Noter qu'une Reference à ce sous-type n'apparaît pas dans la définition du StateVariableType.

HasProperty Variable Id Booléen PropertyType Obligatoire

HasProperty Variable TransitionTime UtcTime PropertyType Facultative

HasProperty Variable EffectiveTransitionTime UtcTime PropertyType Facultative

HasProperty Variable TrueState LocalizedText PropertyType Facultative

HasProperty Variable FalseState LocalizedText PropertyType Facultative

HasTrueSubState StateMachine ou
TwoStateVariableType

<StateIdentifier> Défini en 5.4.2 Facultative

HasFalseSubState StateMachine ou
TwoStateVariableType

<StateIdentifier> Défini en 5.4.3 Facultative

L'Attribut Valeur d'une instance de TwoStateVariableType contient l'état courant sous la forme
d'un nom lisible par l'homme. L'EnabledState, par exemple, pourrait contenir le nom
"Enabled" lorsqu'il est True et "Disabled" lorsqu'il est False.

Id est hérité du StateVariableType et remplacé pour refléter le DataType (Booléen) exigé. La
valeur doit être l'état courant, à savoir soit True, soit False.

TransitionTime spécifie l'heure de l'entrée dans l'état courant.

EffectiveTransitionTime spécifie l'heure de l'entrée dans l'état courant ou dans l'un de ses
sous-états. Si, par exemple, une LevelAlarm est active et, alors qu'elle est active, commute
plusieurs fois entre High et HighHigh, la TransitionTime reste à l'instant auquel l'Alarme est
devenue active alors que la EffectiveTransitionTime change à chaque changement d'un sous-
état.

La Propriété facultative EffectiveDisplayName issue du StateVariableType est utilisée si un
état comporte des sous-états. Elle contient un nom lisible par l'homme pour l'état courant
après prise en compte de l'état de tous les éventuels SubStateMachines. A titre d'exemple,
l'EffectiveDisplayName de l'EnabledState pourrait contenir "Active/HighHigh" pour spécifier
que la Condition est active et a dépassé la limite HighHigh.

D'autres Propriétés facultatives du StateVariableType n'ont pas de signification définie pour
TwoStateVariableType.

TrueState et FalseState contiennent la chaîne localisée pour la valeur de
TwoStateVariableType lorsque sa Propriété Id a respectivement la valeur True ou False.
Sachant que les deux Propriétés fournissent des métadonnées pour le Type, les Serveurs
peuvent ne pas offrir la possibilité de choisir ces Propriétés dans le filtre d'Evénements pour
un MonitoredItem. Les Clients peuvent utiliser le Service Read pour récupérer des
informations à partir du ConditionType spécifique.

La Référence HasTrueSubState est utilisée pour indiquer que l'état True comporte des sous-
états.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 158 – IEC 62541-9:2020 © IEC 2020

La Référence HasFalseSubState est utilisée pour indiquer que l'état False comporte des
sous-états.

5.3 ConditionVariable

Les divers éléments d'information d'une Condition ne sont pas jugés comme étant des états.
Cependant, une modification de leur valeur est jugée importante et censée déclencher une
Notification d'Evénement. Ces éléments d'information sont appelés ConditionVariable.

Les ConditionVariables sont représentées par un ConditionVariableType défini de façon
formelle dans le Tableau 4.

Tableau 4 – Définition de ConditionVariableType

Attribut Valeur

BrowseName ConditionVariableType

DataType BaseDataType

ValueRank -2 (-2 = Any)

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type du BaseDataVariableType défini dans l'IEC 62541-5.

HasProperty Variable SourceTimestamp UtcTime PropertyType Obligatoire

Le SourceTimestamp indique l'heure du dernier changement de la Valeur de cette
ConditionVariable. Il doit s'agir de la même heure qui serait renvoyée par le Service Read au
sein de la structure de DataValue pour l'Attribut Valeur de la ConditionVariable.

5.4 ReferenceTypes

5.4.1 Généralités

Le présent paragraphe définit les ReferenceTypes qu'il est nécessaire de connaître en plus
de ceux déjà spécifiés dans le cadre de l'IEC 62541-3 et de l'IEC 62541-5. Cela comprend
l'extension des diagrammes d'états de TwoStateVariableType avec des sous-états et l'ajout
d'un groupement d'Alarmes.

Les Références TwoStateVariableType n'existent que lorsque des sous-états sont
disponibles. Par exemple, si un diagramme TwoStateVariableType a un état False, alors tout
sous-état dont la référence est l'état True n'est pas disponible. Lorsqu'un Evénement est
généré alors que son état est False et lorsque les informations issues du sous-état de l'état
True font partie des données à consigner, ces données sont alors consignées comme NULL.
Avec cette approche, les TwoStateVariableTypes peuvent être étendus avec des diagrammes
d'états subordonnés, d'une manière similaire au StateMachineType défini dans l'IEC 62541-5.

5.4.2 ReferenceType HasTrueSubState

Le ReferenceType HasTrueSubState est un ReferenceType concret qui peut être directement
utilisé. Il s'agit d'un sous-type du ReferenceType NonHierarchicalReferences.

La sémantique indique que le sous-état (le Nœud cible) est un état subordonné au super état
True. Si plusieurs états au sein d'une Condition sont des sous-états du même super état (à
savoir, plusieurs Références HasTrueSubState existent pour le même super état), ils sont
tous traités comme des sous-états indépendants. La représentation dans l'AddressSpace est
spécifiée dans le Tableau 5.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 159 –

Le SourceNode de la Référence doit être une instance d'un TwoStateVariableType et le
TargetNode doit être soit une instance d'un TwoStateVariableType, soit une instance d'un
sous-type d'un StateMachineType.

Il n'est pas nécessaire que la Référence HasTrueSubState d'un super état à un sous-état soit
fournie, mais il est exigé que le sous-état fournisse la Référence inverse (IsTrueSubStateOf)
à son super état.

Tableau 5 – ReferenceType HasTrueSubState

Attributs Valeur

BrowseName HasTrueSubState

InverseName IsTrueSubStateOf

Symmetric False

IsAbstract False

Références NodeClass BrowseName Commentaire

5.4.3 ReferenceType HasFalseSubState

Le ReferenceType HasFalseSubState est un ReferenceType concret qui peut être
directement utilisé. Il s'agit d'un sous-type du ReferenceType NonHierarchicalReferences.

La sémantique indique que le sous-état (le Nœud cible) est un état subordonné au super état
False. Si plusieurs états au sein d'une Condition sont des sous-états du même super état (à
savoir, plusieurs Références HasFalseSubState existent pour le même super état), ils sont
tous traités comme des sous-états indépendants. La représentation dans l'AddressSpace est
spécifiée dans le Tableau 6.

Le SourceNode de la Référence doit être une instance d'un TwoStateVariableType et le
TargetNode doit être soit une instance d'un TwoStateVariableType, soit une instance d'un
sous-type d'un StateMachineType.

Il n'est pas nécessaire que la Référence HasFalseSubState d'un super état à un sous-état
soit fournie, mais il est exigé que le sous-état fournisse la Référence inverse
(IsFalseSubStateOf) à son super état.

Tableau 6 – ReferenceType HasFalseSubState

Attributs Valeur

BrowseName HasFalseSubState

InverseName IsFalseSubStateOf

Symmetric False

IsAbstract False

Références NodeClass BrowseName Commentaire

5.4.4 ReferenceType HasAlarmSuppressionGroup

Le ReferenceType HasAlarmSuppressionGroup est un ReferenceType concret qui peut être
directement utilisé. Il s'agit d'un sous-type du ReferenceType HasComponent.

Ce ReferenceType lie un AlarmSuppressionGroup à une Alarme.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 160 – IEC 62541-9:2020 © IEC 2020

Le SourceNode de la Référence doit être une instance d'un AlarmConditionType ou d'un
sous-type, et le TargetNode doit être une instance d'un AlarmGroupType.

Tableau 7 – ReferenceType HasAlarmSuppressionGroup

Attributs Valeur

BrowseName HasAlarmSuppressionGroup

InverseName IsAlarmSuppressionGroupOf

Symmetric False

IsAbstract False

Références NodeClass BrowseName Commentaire

5.4.5 ReferenceType AlarmGroupMember

Le ReferenceType AlarmGroupMember est un ReferenceType concret qui peut être
directement utilisé. Il s'agit d'un sous-type du ReferenceType Organizes.

Ce ReferenceType permet d'indiquer les instances d'Alarmes qui font partie d'un Groupe
d'Alarmes.

Le SourceNode de la Référence doit être une instance d'un AlarmGroupType ou d'un sous-
type de celui-ci et le TargetNode doit être une instance d'un AlarmConditionType ou d'un
sous-type de celui-ci.

Tableau 8 – ReferenceType AlarmGroupMember

Attributs Valeur

BrowseName AlarmGroupMember

InverseName MemberOfAlarmGroup

Symmetric False

IsAbstract False

Références NodeClass BrowseName Commentaire

5.5 Modèle de Condition

5.5.1 Généralités

Le modèle de Condition étend le modèle d'Evénement en définissant le ConditionType. Le
ConditionType introduit le concept d'états qui le différencie du modèle d'Evénement de base.
Contrairement aux BaseEventType, les Conditions ne sont pas transitoires. Le ConditionType
est davantage étendu en Dialogue et AcknowledgeableConditionType, chacun de ceux-ci
ayant leurs propres sous-types.

Le modèle de Condition est représenté à la Figure 9 et défini de façon formelle dans les
tableaux suivants. Il est utile de préciser que cette figure, comme toutes les figures du
présent document, est volontairement incomplète. Les figures représentent uniquement des
informations fournies par les définitions formelles.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 161 –

ConditionType

PropertyType:
Retain

ConditionRefresh

TwoStateVariableType:
EnableState

ConditionVariableType:
Quality

Disable

ClientUserId
AddComment

ConditionVariableType:
Comment

BaseEventType

Enable

Acknowledgeable
ConditionType

Dialog
ConditionType

ConditionVariableType:
LastSeverity

PropertyType:
BranchId

PropertyType:
ConditionName

PropertyType:
ConditionClassId

PropertyType:
ConditionClassName

ConditionRefresh2

PropertyType:
ConditionSubClassId

PropertyType:
ConditionSubClassName

IEC

Figure 9 – Modèle de Condition

5.5.2 ConditionType

Le ConditionType définit toutes les caractéristiques générales d'une Condition. Tous les
autres ConditionTypes en sont issus. Il est défini de façon formelle dans le Tableau 9. L'état
False de l'EnabledState ne doit pas être étendu avec un diagramme de sous-états.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 162 – IEC 62541-9:2020 © IEC 2020

Tableau 9 – Définition de ConditionType

Attribut Valeur

BrowseName ConditionType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRul
e

Sous-type du BaseEventType défini dans l'IEC 62541-5

HasSubtype ObjectType DialogConditionType Défini en 5.6.2

HasSubtype ObjectType Acknowledgeable
ConditionType

Défini en 5.7.2

HasProperty Variable ConditionClassId NodeId PropertyType Obligatoire

HasProperty Variable ConditionClassName LocalizedText PropertyType Obligatoire

HasProperty Variable ConditionSubClassId NodeId PropertyType Facultative

HasProperty Variable ConditionSubClassName LocalizedText PropertyType Facultative

HasProperty Variable ConditionName Chaîne PropertyType Obligatoire

HasProperty Variable BranchId NodeId PropertyType Obligatoire

HasProperty Variable Retain Booléen PropertyType Obligatoire

HasComponent Variable EnabledState LocalizedText TwoStateVariableType Obligatoire

HasComponent Variable Quality StatusCode ConditionVariableType Obligatoire

HasComponent Variable LastSeverity UInt16 ConditionVariableType Obligatoire

HasComponent Variable Commentaire LocalizedText ConditionVariableType Obligatoire

HasProperty Variable ClientUserId Chaîne PropertyType Obligatoire

HasComponent Méthode Disable Défini en 5.5.4 Obligatoire

HasComponent Méthode Enable Défini en 5.5.5 Obligatoire

HasComponent Méthode AddComment Défini en 5.5.6 Obligatoire

HasComponent Méthode ConditionRefresh Défini en 5.5.7 Aucune

HasComponent Méthode ConditionRefresh2 Défini en 5.5.8 Aucune

Le ConditionType hérite de toutes les Propriétés du BaseEventType. Leur sémantique est
définie dans l'IEC 62541-5. La Propriété SourceNode identifie la ConditionSource. Voir 5.12
pour plus de détails. Si la ConditionSource n'est pas un Nœud dans l'AddressSpace, le
NodeId est défini sur NULL. Le SourceNode est le Nœud auquel la Condition est associée; il
peut être identique à l'InputNode pour une Alarme, mais peut être un nœud distinct. Par
exemple un moteur, qui est une Variable dont la Valeur est r/min (RPM), peut être la
ConditionSource pour les Conditions associées au moteur, tout comme un capteur de
température également associé au moteur. Dans le premier cas, l'InputNode de l'Alarme RPM
High est la valeur de r/min du moteur, tandis que dans le dernier cas, l'InputNode de l'Alarme
High serait la valeur du capteur de température associé au moteur.

Le ConditionClassId spécifie le domaine dans lequel cette Condition est utilisée. Il s'agit du
NodeId du BaseConditionClassType correspondant. Voir 5.9 pour la définition de la
ConditionClass et un jeu de ConditionClasses définies dans le présent document. Lorsqu'ils
utilisent cette Propriété à des fins de filtrage, les Clients doivent spécifier tous les NodeIds
des sous-types individuels de BaseConditionClassType. L'opérateur OfType ne peut pas être
appliqué. Le BaseConditionClassType est utilisé comme une classe chaque fois qu'une
Condition ne peut pas être affectée à une classe plus concrète.

Le ConditionClassName fournit le nom d'affichage du sous-type de BaseConditionClassType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 163 –

Le ConditionSubClassId spécifie la ou les classes supplémentaires qui s'appliquent à la
Condition. Il s'agit du NodeId du BaseConditionClassType correspondant. Voir 5.9.6 pour la
définition de la ConditionClass et un jeu de ConditionClasses définies dans le présent
document. Lorsqu'ils utilisent cette Propriété à des fins de filtrage, les Clients doivent
spécifier tous les NodeIds des sous-types individuels de BaseConditionClassType.
L'opérateur OfType ne peut pas être appliqué. Le Client spécifie NULL dans le filtre, pour
renvoyer les Conditions pour lesquelles aucune sous-classe ne s'applique. Lors du renvoi des
Conditions, si ce champ facultatif n'est pas disponible dans une Condition, une valeur NULL
doit être renvoyée pour le champ.

Le ConditionSubClassName fournit le ou les noms d'affichage des ConditionClassTypes
répertoriés dans le ConditionSubClassId.

Le ConditionName identifie l'instance de Condition qui est à l'origine de l'Evénement. Il peut
être utilisé avec le SourceName dans un affichage utilisateur pour distinguer les différentes
instances de Condition. Si une ConditionSource n'a qu'une seule instance d'un ConditionType
et que le Serveur n'a pas de nom d'instance, le Serveur doit fournir le nom de navigation du
ConditionType.

Le BranchId est NULL pour toutes les Notifications d'Evénements qui se rapportent à l'état
courant de l'instance de Condition. Si le BranchId n'est pas NULL, il identifie un état antérieur
de cette instance de Condition qui nécessite encore l'attention d'un Opérateur. Si la
ConditionBranch courante est transformée en une ConditionBranch antérieure, il est
nécessaire que le Serveur affecte un BranchId non NULL. Un Evénement initial pour la
branche est généré avec les valeurs de la ConditionBranch et du nouveau BranchId. La
ConditionBranch peut être mise à jour plusieurs fois avant que cela ne soit plus nécessaire.
Lorsque la ConditionBranch n'exige plus d'entrée de l'Opérateur, Retain est défini sur False
pour l'Evénement final. Le bit "Retain" sur l'Evénement courant est True tant que les
ConditionBranches exigent une entrée de l'Opérateur. Voir 4.4 pour plus d'informations sur la
nécessité de créer et de maintenir des ConditionBranches antérieures, et l'Article B.1 pour un
exemple utilisant des branches. Le DataType BranchId est le NodeId, bien que le Serveur ne
soit pas tenu d'avoir des ConditionBranches dans l'AddressSpace. L'utilisation d'un NodeId
permet au Serveur d'utiliser de simples identificateurs numériques, chaînes ou matrices
d'octets.

La définition de Retain sur True permet à une Condition (ou une ConditionBranch) d'être dans
un état intéressant pour un Client souhaitant synchroniser son état avec l'état du Serveur. La
logique permettant de déterminer la manière dont le fanion est réglé est spécifique au
Serveur. Habituellement, le fanion Retain de toutes les Alarmes Actives est défini; cependant,
il est également possible que le fanion Retain des Alarmes inactives soit défini sur TRUE.

En traitement normal, lorsqu'un Client reçoit un Evénement dont le fanion Retain est défini sur
False, il convient que le Client voie cela comme une ConditionBranch qui n'a plus d'intérêt;
dans le cas d'un "affichage d'Alarmes courantes", la ConditionBranch serait retirée de
l'affichage.

EnabledState indique si, oui ou non, la Condition est activée. EnabledState/Id est True si elle
est activée, False autrement. EnabledState/TransitionTime définit le moment où
l'EnabledState a changé pour la dernière fois. Les noms d'états recommandés sont décrits
dans l'Annexe A.

L'EnabledState d'une Condition effectue la création de Notifications d'Evénements et, à ce
titre, se traduit par le comportement spécifique suivant:

• lorsque l'instance de Condition entre dans l'état Disabled, la Propriété Retain de cette
Condition doit être définie sur False par le Serveur afin d'indiquer au Client que l'instance
de Condition ne présente pas actuellement d'intérêt pour les Clients. Cela comprend
toutes les ConditionBranches si des branches existent;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 164 – IEC 62541-9:2020 © IEC 2020

• lorsque l'instance de Condition entre dans l'état activé, la Condition doit être évaluée et
toutes ses Propriétés mises à jour pour refléter les valeurs actuelles. Si cette évaluation
fait passer la Propriété Retain à True pour une ConditionBranch, une Notification
d'Evénement doit être générée pour la ConditionBranch en question;

• le Serveur peut choisir de continuer à effectuer des essais pour une instance de Condition
pendant qu'elle est Désactivée. Cependant, aucune Notification d'Evénement n'est
générée pendant que l'instance de Condition est désactivée;

• pour n'importe quelle Condition qui existe dans l'AddressSpace, les Attributs et les
Variables suivantes continuent à être valides, même dans l'état Disabled: EventId, Event
Type, Source Node, Source Name, Time et EnabledState. D'autres Propriétés peuvent ne
plus fournir de valeurs valides courantes. Toutes les Variables qui ne reçoivent plus de
valeurs doivent renvoyer le statut Bad_ConditionDisabled. Il convient que l'Evénement qui
signale l'état Disabled signale les Propriétés comme étant NULL ou ayant le statut
Bad_ConditionDisabled.

Dans l'état Enabled, les changements apportés aux composants suivants doivent entraîner
une Notification d'Evénement de ConditionType:

• Quality (qualité);

• Severity (sévérité, héritée de BaseEventType);

• Comment (commentaire).

Cette liste peut ne pas être exhaustive. Les sous-types peuvent définir des Variables
supplémentaires qui déclenchent des Notifications d'Evénements. En général, les
changements apportés aux Variables des types TwoStateVariableType ou
ConditionVariableType déclenchent des Notifications d'Evénements.

Quality révèle le statut des valeurs de processus ou autres ressources sur lesquelles cette
instance de Condition est fondée. Si, par exemple, une valeur de processus est "Uncertain",
la Condition "LevelAlarm" associée est également douteuse. Les valeurs de Quality peuvent
être tous les StatusCodes OPC définis dans l'IEC 62541-8 ainsi que Good, Uncertain et Bad,
définis dans l'IEC 62541-4. Ces StatusCodes sont semblables à la description de la qualité de
données, mais légèrement plus génériques que celle des diverses spécifications relatives aux
bus de terrain. Il est de la responsabilité du Serveur de de réaliser le mapping entre les
informations de statut interne avec ces codes. Un Serveur qui ne prend en charge aucune
information relative à la qualité doit renvoyer Good. Cette qualité peut également refléter le
statut de communication associé au système sur lequel est fondée cette valeur ou ressource,
et duquel cette Alarme a été reçue. Pour les erreurs de communication du système
sous-jacent, notamment celles donnant lieu à l'indisponibilité de certains champs
d'Evénement, la qualité doit être l'erreur Bad_NoCommunication.

Les Evénements sont uniquement générés pour les Conditions dont le champ Retain est
défini sur True et pour la transition initiale du champ Retain de True à False.

LastSeverity fournit la sévérité antérieure de la ConditionBranch. Initialement, cette Variable
contient une valeur nulle; elle renvoie une valeur uniquement après un changement de
sévérité. La nouvelle sévérité est fournie dans la Propriété Severity qui est héritée du
BaseEventType.

Comment contient le dernier commentaire fourni pour un état donné (ConditionBranch). Il peut
avoir été fourni par une Méthode AddComment, une autre Méthode ou d'une tout autre
manière. La valeur initiale de cette Variable est NULL, à moins qu'elle ne soit fournie d'une
tout autre manière. Si une Méthode fournit comme option la possibilité de définir Comment, la
valeur de cette Variable est alors réinitialisée à NULL si un commentaire facultatif n'est pas
fourni.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 165 –

Le ClientUserId est lié au champ Comment et contient l'identité de l'utilisateur qui a inséré le
Commentaire le plus récent. La logique pour obtenir le ClientUserId est définie dans
l'IEC 62541-5.

Le NodeId de l'instance de Condition est utilisé comme ConditionId. Il n'est pas explicitement
modélisé comme un composant du ConditionType. Il peut toutefois faire l'objet d'une
demande avec le SimpleAttributeOperand suivant (voir Tableau 10) dans la SelectClause de
l'EventFilter.

Tableau 10 – SimpleAttributeOperand

Nom Type Description

SimpleAttributeOperand

 typeId NodeId NodeId du Nœud de ConditionType

 browsePath[] QualifiedName vide

 attributeId IntegerId Identificateur de l'Attribut NodeId

5.5.3 Instances de Condition et de branche

Les Conditions sont des Objets qui ont un état qui change au fil du temps. Chaque instance
de Condition a un ConditionId qui l'identifie de manière unique au sein du Serveur.

Une instance de Condition peut être un Objet qui apparaît dans l'Espace d'Adressage du
Serveur. Si tel est le cas, le ConditionId est le NodeId de l'Objet.

L'état d'une instance de Condition à un instant donné correspond aux valeurs établies pour
les Variables qui appartiennent à l'instance de Condition. En cas de changement d'une ou
plusieurs valeurs des Variables, le Serveur génère un Evénement avec un EventId unique.

Si un Client appelle le Rafraîchissement, le Serveur signale l'état courant d'une instance de
Condition en envoyant de nouveau le dernier Evénement (à savoir, les mêmes valeurs
d'EventId et de Time).

Une ConditionBranch est une copie de l'état de l'instance de Condition qui peut changer
indépendamment de l'état courant de l'instance de Condition. Chaque Branche a un
identificateur appelé BranchId, qui est unique parmi toutes les Branches actives pour une
instance de Condition. De manière générale, les Branches ne sont pas visibles dans l'Espace
d'Adressage et le présent document ne définit pas de moyen normalisé de les rendre visibles.

5.5.4 Méthode Disable

La Méthode Disable est utilisée pour faire passer une instance de Condition à l'état Disabled.
Généralement, le NodeId de l'instance d'objet est transmis en tant qu'ObjectId au Service
d'Appel. Cependant, certains Serveurs ne présentent pas d'instances de Condition dans
l'AddressSpace. Par conséquent, tous les Serveurs doivent autoriser les Clients à appeler la
Méthode Disable en spécifiant le ConditionId en tant qu'ObjectId. La Méthode ne peut pas
être appelée avec un ObjectId du Nœud de ConditionType.

Signature

Disable();

Le Tableau 11 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 166 – IEC 62541-9:2020 © IEC 2020

Tableau 11 – Codes de résultats de la Méthode Disable

Code de résultat Description

Bad_ConditionAlreadyDisabled Voir Tableau 101 pour la description de ce code de résultat.

Le Tableau 12 spécifie la représentation de l'AddressSpace pour la Méthode Disable.

Tableau 12 – Définition de l'AddressSpace pour la Méthode Disable

Attribut Valeur

BrowseName Disable

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionEnableEv
entType

Défini en 5.10.2

5.5.5 Méthode Enable

La Méthode Enable est utilisée pour faire passer une instance de Condition à l'état Enabled.
Généralement, le NodeId de l'instance d'objet est transmis en tant qu'ObjectId au Service
d'Appel. Cependant, certains Serveurs ne présentent pas d'instances de Condition dans
l'AddressSpace. Par conséquent, tous les Serveurs doivent autoriser les Clients à appeler la
Méthode Enable en spécifiant le ConditionId en tant qu'ObjectId. La Méthode ne peut pas être
appelée avec un ObjectId du Nœud de ConditionType. Si l'instance de Condition n'est pas
présentée, il peut alors être difficile pour un Client de déterminer le ConditionId d'une
Condition désactivée.

Signature

Enable();

Le Tableau 13 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 13 – Codes de résultats de la Méthode Enable

Code de résultat Description

Bad_ConditionAlreadyEnabled Voir Tableau 101 pour la description de ce code de résultat.

Le Tableau 14 spécifie la représentation de l'AddressSpace pour la Méthode Enable.

Tableau 14 – Définition de l'AddressSpace pour la Méthode Enable

Attribut Valeur

BrowseName Enable

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionEnableEventType Défini en 5.10.2

5.5.6 Méthode AddComment

La Méthode AddComment permet d'associer un commentaire à un état spécifique d'une
instance de Condition. Généralement, le NodeId de l'instance d'Objet est transmis en tant
qu'ObjectId au Service d'Appel. Cependant, certains Serveurs ne présentent pas d'instances
de Condition dans l'AddressSpace. Par conséquent, tous les Serveurs doivent également
autoriser les Clients à appeler la Méthode AddComment en spécifiant le ConditionId en tant
qu'ObjectId. La Méthode ne peut pas être appelée avec un ObjectId du Nœud de
ConditionType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 167 –

Signature

AddComment(
 [in] ByteString EventId
 [in] LocalizedText Commentaire
);

Les paramètres sont définis dans le Tableau 15.

Tableau 15 – Arguments de la Méthode AddComment

Argument Description

EventId EventId identifiant une Notification d'Evénement particulière où un état a été consigné pour une
Condition.

Comment Texte localisé à appliquer à la Condition.

Le Tableau 16 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 16 – Codes de résultats de la Méthode AddComment

Code de résultat Description

Bad_MethodInvalid Le MethodId fourni ne correspond pas à l'ObjectId fourni. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Bad_EventIdUnknown Voir Tableau 101 pour la description de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été appelée
sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Commentaires

Des Commentaires sont ajoutés aux occurrences d'Evénements identifiées par un EventId.
Les EventIds où l'EventType concerné n'est pas un ConditionType (ou un sous-type de celui-
ci) et qui ne prennent donc pas en charge les Commentaires sont rejetés.

Un ConditionEvent, où la Variable Comment contient ce texte, est envoyé pour l'état identifié.
Si un commentaire est ajouté à un état antérieur (à savoir un état pour lequel le Serveur a
créé une branche), le BranchId et toutes les valeurs de Condition pour cette branche sont
consignés.

Le Tableau 17 spécifie la représentation de l'AddressSpace pour la Méthode AddComment.

Tableau 17 – Définition de l'AddressSpace pour la Méthode AddComment

Attribut Valeur

BrowseName AddComment

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument PropertyType Obligatoire

AlwaysGeneratesEvent ObjectType AuditConditionComment
EventType

Défini en 5.10.4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 168 – IEC 62541-9:2020 © IEC 2020

5.5.7 Méthode ConditionRefresh

ConditionRefresh permet à un Client de demander un Rafraîchissement de toutes les
instances de Condition qui sont actuellement dans un état intéressant (leur fanion Retain est
défini). Cela inclut les états antérieurs d'une instance de Condition pour lesquels le Serveur
maintient des Branches. Un Client invoque généralement cette Méthode lorsqu'il se connecte
initialement à un Serveur et à la suite de toutes les situations, telles que les interruptions de
communication, dans lesquelles il exige la resynchronisation au Serveur. Cette Méthode n'est
disponible qu'avec le ConditionType ou ses sous-types. Pour invoquer cette Méthode, l'appel
doit transmettre le MethodId notoire de la Méthode au ConditionType et l'ObjectId doit être
l'ObjectId notoire de l'Objet de ConditionType.

Signature

ConditionRefresh(
 [in] IntegerId SubscriptionId
);

Les paramètres sont définis dans le Tableau 18.

Tableau 18 – Paramètres de la Méthode ConditionRefresh

Argument Description

SubscriptionId Identificateur d'Abonnement valide pour l'Abonnement à rafraîchir. Le Serveur doit vérifier que
le SubscriptionId fourni fait partie de la Session qui invoque la Méthode.

Le Tableau 19 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 19 – Codes de résultats de la Méthode ConditionRefresh

Code de résultat Description

Bad_SubscriptionIdInvalid Voir l'IEC 62541-4 pour la description de ce code de résultat

Bad_RefreshInProgress Voir Tableau 101 pour la description de ce code de résultat

Bad_UserAccessDenied La Méthode n'a pas été appelée dans le contexte de la Session qui possède l'Abonnement.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Commentaires

Le 4.5 décrit plus précisément le concept, les cas d'utilisation et le flux d'informations.

L'argument d'entrée fournit un identificateur d'Abonnement indiquant l'Abonnement Client qui
doit être rafraîchi. Si l'Abonnement est accepté, le Serveur réagit comme suit:

1) le Serveur émet un événement de RefreshStartEventType (défini en 5.11.2) marquant le
début du Rafraîchissement. Une copie de l'instance du RefreshStartEventType est mise
en file d'attente dans le flux d'Evénements pour chaque MonitoredItem Notificateur dans
l'Abonnement. Chacune des copies de l'Evénement doit contenir le même EventId;

2) le Serveur émet des Notifications d'Evénements de n'importe quelles Conditions Retenues
et Branches Retenues des Conditions qui satisfont aux critères du filtre de contenu des
Abonnements. Noter que l'EventId de cette Notification rafraîchie doit être identique à
celui de la Notification originale: les valeurs des autres Propriétés sont spécifiques au
Serveur, car certains Serveurs peuvent être capables de réitérer les Evénements exacts
avec toutes les Propriétés/Variables conservant les mêmes valeurs que celles envoyées à
l'origine, mais d'autres Serveurs peuvent être seulement capables de régénérer

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 169 –

l'Evénement. L'Evénement régénéré peut contenir des valeurs de Propriété/Variable
mises à jour. Par exemple, si les limites de l'Alarme associées à une Variable ont été
modifiées après la génération de l'Evénement sans générer de modification de l'état de
l'Alarme, la nouvelle limite peut être consignée. Dans un autre exemple, si HighLimit
est 100 et la Variable 120: si la limite est modifiée pour 90, aucun nouvel Evénement n'est
généré puisqu'aucune modification du StateMachine ne s'est produite, mais la limite sur
un Rafraîchissement indiquerait 90 alors que l'Evénement original indiquait 100;

3) le Serveur peut intercaler de nouvelles Notifications d'Evénements qui n'ont pas été
émises précédemment à l'attention du Notificateur avec celles envoyées dans le cadre de
la demande de Rafraîchissement. Les Clients doivent vérifier toutes les Notifications
d'Evénements pour détecter une ConditionBranch afin d'éviter d'écraser un nouvel état
délivré en même temps qu'un état plus ancien par le processus de Rafraîchissement;

4) le Serveur émet une instance du RefreshEndEventType (défini en 5.11.3) pour signaler la
fin du Rafraîchissement. Une copie de l'instance du RefreshEndEventType est mise en file
d'attente dans le flux d'Evénements pour chaque MonitoredItem Notificateur dans
l'Abonnement. Chaque copie des Evénements doit contenir le même EventId.

Il est important de noter que si plusieurs Notifications d'Evénements sont dans un
Abonnement, toutes les Notifications d'Evénements sont traitées. Si un Client ne souhaite pas
que tous les MonitoredItems soient rafraîchis, il convient alors que le Client place chaque
MonitoredItem dans un Abonnement distinct ou appelle ConditionRefresh2 si le Serveur le
prend en charge.

Si plusieurs Abonnements doivent être rafraîchis, le traitement de matrice de Service d'appel
normalisé peut alors être utilisé.

Comme mentionné ci-dessus, ConditionRefresh doit aussi émettre des Notifications
d'Evénements pour les états antérieurs qui nécessitent encore de l'attention. Cela est
particulièrement vrai pour les instances de Condition dans lesquelles il existe des états
antérieurs pour lesquels il est encore nécessaire de donner un acquittement ou une
confirmation.

Le Tableau 20 spécifie la représentation de l'AddressSpace pour la Méthode
ConditionRefresh.

Tableau 20 – Définition de l'AddressSpace pour la Méthode ConditionRefresh

Attribut Valeur

BrowseName ConditionRefresh

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument PropertyType Obligatoire

AlwaysGeneratesEvent ObjectType RefreshStartEvent Défini en 5.11.2

AlwaysGeneratesEvent ObjectType RefreshEndEvent Défini en 5.11.3

5.5.8 Méthode ConditionRefresh2

ConditionRefresh2 permet à un Client de demander un Rafraîchissement de toutes les
instances de Condition qui sont actuellement dans un état intéressant (leur fanion Retain est
défini) et associées à l'élément surveillé donné. Cette méthode fonctionne à tous autres
égards comme ConditionRefresh. Un Client invoque généralement cette Méthode lorsqu'il se
connecte initialement à un Serveur et à la suite de toutes les situations, telles que les
interruptions de communication, dans lesquelles un seul MonitoredItem doit être
resynchronisé avec le Serveur. Cette Méthode n'est disponible qu'avec le ConditionType ou
ses sous-types. Pour invoquer cette Méthode, l'appel doit transmettre le MethodId notoire de
la Méthode au ConditionType et l'ObjectId doit être l'ObjectId notoire de l'Objet de
ConditionType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 170 – IEC 62541-9:2020 © IEC 2020

Cette Méthode est facultative et, en tant que telle, les Clients doivent être prêts à traiter des
Serveurs qui ne fournissent pas la Méthode. Si la Méthode renvoie Bad_MethodInvalid, le
Client doit revenir à ConditionRefresh.

Signature

ConditionRefresh2(
 [in] IntegerId SubscriptionId
 [in] IntegerId MonitoredItemId
);

Les paramètres sont définis dans le Tableau 21.

Tableau 21 – Paramètres de la Méthode ConditionRefresh2

Argument Description

SubscriptionId Identificateur de l'Abonnement qui contient le MonitoredItem à rafraîchir. Le Serveur doit
vérifier que le SubscriptionId fourni fait partie de la Session qui invoque la Méthode.

MonitoredItemId Identificateur du MonitoredItem à rafraîchir. Le MonitoredItemId doit être dans l'Abonnement
fourni.

Le Tableau 22 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 22 – Codes de résultats de la Méthode ConditionRefresh2

Code de résultat Description

Bad_SubscriptionIdInvalid Voir l'IEC 62541-4 pour la description de ce code de résultat

Bad_MonitoredItemIdInvalid Voir l'IEC 62541-4 pour la description de ce code de résultat

Bad_RefreshInProgress Voir Tableau 101 pour la description de ce code de résultat

Bad_UserAccessDenied La Méthode n'a pas été appelée dans le contexte de la Session qui possède l'Abonnement.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Bad_MethodInvalid Voir l'IEC 62541-4 pour la description de ce code de résultat

Commentaires

Le 4.5 décrit plus précisément le concept, les cas d'utilisation et le flux d'informations.

L'argument d'entrée fournit un identificateur d'Abonnement et un identificateur de
MonitoredItem qui indique quel MonitoredItem de l'Abonnement Client choisi doit être
rafraîchi. Si l'Abonnement et le MonitoredItem sont acceptés, le Serveur réagit comme suit:

1) le Serveur émet un RefreshStartEvent (défini en 5.11.2) marquant le début du
Rafraîchissement. Le RefreshStartEvent est mis en file d'attente dans le flux
d'Evénements pour le MonitoredItem Notificateur dans l'Abonnement.

2) le Serveur émet des Notifications d'Evénements de n'importe quelles Conditions Retenues
et Branches Retenues des Conditions qui satisfont aux critères du filtre de contenu des
Abonnements. Noter que l'EventId de cette Notification rafraîchie doit être identique à
celui de la Notification originale: les valeurs des autres Propriétés sont spécifiques au
Serveur, car certains Serveurs peuvent être capables de réitérer les Evénements exacts
avec toutes les Propriétés/Variables conservant les mêmes valeurs que celles envoyées à
l'origine, mais d'autres Serveurs peuvent être seulement capables de régénérer
l'Evénement. L'Evénement régénéré peut contenir des valeurs de Propriété/Variable
mises à jour. Par exemple, si les limites de l'Alarme associées à une Variable ont été
modifiées après la génération de l'Evénement sans générer de modification de l'état de

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 171 –

l'Alarme, la nouvelle limite peut être consignée. Dans un autre exemple, si HighLimit
est 100 et la Variable 120: si la limite est modifiée pour 90, aucun nouvel Evénement n'est
généré puisqu'aucune modification du StateMachine ne s'est produite, mais la limite sur
un Rafraîchissement indiquerait 90 alors que l'Evénement original indiquait 100.

3) le Serveur peut intercaler de nouvelles Notifications d'Evénements qui n'ont pas été
émises précédemment à l'attention du notificateur avec celles envoyées dans le cadre de
la demande de Rafraîchissement. Les Clients doivent vérifier toutes les Notifications
d'Evénements pour détecter une ConditionBranch afin d'éviter d'écraser un nouvel état
délivré en même temps qu'un état plus ancien par le processus de Rafraîchissement.

4) le Serveur émet un RefreshEndEvent (défini en 5.11.3) pour signaler la fin du
Rafraîchissement; Le RefreshEndEvent est mis en file d'attente dans le flux d'Evénements
pour le MonitoredItem Notificateur dans l'Abonnement.

Si plusieurs MonitoredItems ou Abonnements doivent être rafraîchis, le traitement de matrice
de Service d'appel normalisé peut alors être utilisé.

Comme mentionné ci-dessus, ConditionRefresh2 doit aussi émettre des Notifications
d'Evénements pour les états antérieurs qui nécessitent encore de l'attention. Cela est
particulièrement vrai pour les instances de Condition dans lesquelles il existe des états
antérieurs pour lesquels il est encore nécessaire de donner un acquittement ou une
confirmation.

Le Tableau 23 spécifie la représentation de l'AddressSpace pour la Méthode
ConditionRefresh2.

Tableau 23 – Définition de l'AddressSpace pour la Méthode ConditionRefresh2

Attribut Valeur

BrowseName ConditionRefresh2

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument PropertyType Obligatoire

AlwaysGeneratesEvent ObjectType RefreshStartEvent Défini en 5.11.2

AlwaysGeneratesEvent ObjectType RefreshEndEvent Défini en 5.11.3

5.6 Modèle de Dialogue

5.6.1 Généralités

Le modèle de Dialogue est une extension du modèle de Condition utilisé par un Serveur pour
demander des données d'utilisateur. Il fournit une fonctionnalité semblable aux dialogues de
Messages normalisés rencontrés dans la plupart des systèmes d'exploitation. Le modèle peut
être facilement personnalisé en fournissant des options de réponse spécifiques au Serveur
dans le ResponseOptionSet et en ajoutant une fonctionnalité supplémentaire aux Types de
Conditions résultants.

5.6.2 DialogConditionType

Le DialogConditionType permet de représenter des Conditions sous la forme de dialogues. Il
est représenté à la Figure 10 et défini de façon formelle dans le Tableau 24.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 172 – IEC 62541-9:2020 © IEC 2020

LastResponse

DialogConditionType

ResponseOptionSet

TwoStateVariableType:
DialogState

Respond

OkResponse

ConditionType

EnableState

IsTrueSubState

Prompt

DefaultResponse CancelResponse

IEC

Figure 10 – Vue d'ensemble du DialogConditionType

Tableau 24 – Définition de DialogConditionType

Attribut Valeur

BrowseName DialogConditionType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type du ConditionType défini en 5.5.2.

HasComponent Variable DialogState LocalizedText TwoStateVariableType Obligatoire

HasProperty Variable Prompt LocalizedText PropertyType Obligatoire

HasProperty Variable ResponseOptionSet LocalizedText [] PropertyType Obligatoire

HasProperty Variable DefaultResponse Int32 PropertyType Obligatoire

HasProperty Variable LastResponse Int32 PropertyType Obligatoire

HasProperty Variable OkResponse Int32 PropertyType Obligatoire

HasProperty Variable CancelResponse Int32 PropertyType Obligatoire

HasComponent Méthode Respond Défini en 5.6.3 Obligatoire

Le DialogConditionType hérite de toutes les Propriétés du ConditionType.

Lorsqu'il est défini sur True, le DialogState/Id indique que le Dialogue est actif et attend une
réponse. Les noms d'états recommandés sont décrits dans l'Annexe A.

Prompt est une invite de dialogue à montrer à l'utilisateur.

ResponseOptionSet spécifie le jeu souhaité de réponses sous la forme d'une matrice de
LocalizedText. L'indice dans cette matrice est utilisé pour les champs correspondants tels que
DefaultResponse, LastResponse et SelectedOption dans la Méthode Respond. Les noms
localisés recommandés pour les options communes sont décrits dans l'Annexe A.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 173 –

Les combinaisons types d'options de réponse sont:

• OK;

• OK, Annuler;

• Oui, Non, Annuler;

• Abandonner, Réessayer, Ignorer;

• Réessayer, Annuler;

• Oui, Non.

DefaultResponse identifie l'option de réponse qu'il convient de montrer comme valeur par
défaut à l'utilisateur. Il s'agit de l'indice dans la matrice ResponseOptionSet. Si aucune option
de réponse n'est la valeur par défaut, la valeur de la Propriété est "−1".

LastResponse contient la dernière réponse fournie par un Client dans la Méthode Respond.
Si aucune réponse antérieure n'existe, la valeur de la Propriété est "−1".

OkResponse fournit l'indice de l'option OK dans la matrice ResponseOptionSet. Ce choix est
la réponse qui permet au système de poursuivre avec l'opération décrite par l'invite de
commande. Cela permet au Client d'identifier l'option OK si une gestion spéciale est
disponible pour cette option. Si aucune option OK n'est disponible, la valeur de cette
Propriété est "−1".

CancelResponse fournit l'indice de réponse dans la matrice ResponseOptionSet qui fait
passer le Dialogue à l'état inactif sans procéder à l'opération décrite par l'invite de
commande. Cela permet au Client d'identifier l'option Annuler si une gestion spéciale est
disponible pour cette option. Si aucune option Annuler n'est disponible, la valeur de cette
Propriété est "−1".

5.6.3 Méthode Respond

La Méthode Respond permet de transmettre l'option de réponse choisie et de terminer le
dialogue. Le DialogState/Id revient à False.

Signature

Respond(
 [in] Int32 SelectedResponse
);

Les paramètres sont définis dans le Tableau 25.

Tableau 25 – Paramètres de la Méthode Respond

Argument Description

SelectedResponse Indice choisi dans la matrice ResponseOptionSet.

Le Tableau 26 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 26 – Codes de résultats de la Méthode Respond

Code de résultat Description

Bad_DialogNotActive Voir Tableau 101 pour la description de ce code de résultat.

Bad_DialogResponseInvalid Voir Tableau 101 pour la description de ce code de résultat.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 174 – IEC 62541-9:2020 © IEC 2020

Le Tableau 27 spécifie la représentation de l'AddressSpace pour la Méthode Respond.

Tableau 27 – Définition de l'AddressSpace pour la Méthode Respond

Attribut Valeur

BrowseName Respond

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument PropertyType Obligatoire

AlwaysGeneratesEvent ObjectType AuditConditionRespondEventType Défini en 5.10.5

5.7 Modèle de Condition acquittable

5.7.1 Généralités

Le modèle de Condition acquittable étend le modèle de Condition. Des états pour
l'acquittement et la confirmation sont ajoutés au modèle de Condition.

Les AcknowledgeableConditions sont représentées par l'AcknowledgeableConditionType qui
est un sous-type du ConditionType. Le modèle est défini de façon formelle du 5.7.2 au 5.7.4.

5.7.2 AcknowledgeableConditionType

L'AcknowledgeableConditionType étend le ConditionType en définissant des caractéristiques
d'acquittement. Il s'agit d'un type abstrait. L'AcknowledgeableConditionType est représenté à
la Figure 11 et défini de façon formelle dans le Tableau 28.

Acknowledgeable
ConditionType

Acknowledge
TwoStateVariableType:

AckedState

TwoStateVariableType:
ConfirmedState

Confirm

ConditionType

EnableState

HasTrueSubState

IEC

Figure 11 – Vue d'ensemble de l'AcknowledgeableConditionType

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 175 –

Tableau 28 – Définition d'AcknowledgeableConditionType

Attribut Valeur

BrowseName AcknowledgeableConditionType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRu
le

Sous-type du ConditionType défini en 5.5.2.

HasSubtype ObjectType AlarmConditionType Défini en 5.8.2

HasComponent Variable AckedState LocalizedText TwoStateVariableType Obligatoire

HasComponent Variable ConfirmedState LocalizedText TwoStateVariableType Facultative

HasComponent Méthode Acquittement Défini en 5.7.3 Obligatoire

HasComponent Méthode Confirm Défini en 5.7.4 Facultative

L'AcknowledgeableConditionType hérite de toutes les Propriétés du ConditionType.

Lorsqu'il est False, AckedState indique que l'instance de Condition exige l'acquittement pour
l'état de Condition consigné. Lorsque l'instance de Condition est acquittée, l'AckedState est
défini sur True. ConfirmedState indique si, oui ou non, cela nécessite une confirmation. Les
noms d'états recommandés sont décrits dans l'Annexe A. Les deux états sont des sous-états
d'EnabledState True. Voir 4.3 pour plus d'informations sur les modèles d'acquittement et de
confirmation. L'EventId utilisé dans la Notification d'Evénement est vu comme l'identificateur
de cet état et doit être utilisé pour appeler les Méthodes pour l'acquittement ou la
confirmation.

Un Serveur peut exiger que des états antérieurs soient acquittés. Si l'acquittement d'un état
antérieur est encore ouvert et un nouvel état exige également un acquittement, le Serveur
doit créer une branche de l'instance de Condition comme spécifié en 4.4. Il est prévu que les
Clients gardent une trace de toutes les ConditionBranches où AckedState/Id est False pour
permettre leur acquittement. Voir également 5.5.2 pour plus d'informations sur les
ConditionBranches et les exemples de l'Article B.1. La gestion de l'AckedState et des
branches s'applique aussi au ConfirmedState.

5.7.3 Méthode Acknowledge

La Méthode Acknowledge est utilisée pour acquitter une Notification d'Evénement pour un
état de l'instance de Condition où AckedState est False. Généralement, le NodeId de
l'instance d'objet est transmis en tant qu'ObjectId au Service d'Appel. Cependant, certains
Serveurs ne présentent pas d'instances de Condition dans l'AddressSpace. Par conséquent,
les Serveurs doivent autoriser les Clients à appeler la Méthode Acknowledge en spécifiant le
ConditionId en tant qu'ObjectId. La Méthode ne peut pas être appelée avec un ObjectId du
Nœud d'AcknowledgeableConditionType.

Signature

Acknowledge(
 [in] ByteString EventId
 [in] LocalizedText Commentaire
);

Les paramètres sont définis dans le Tableau 29.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 176 – IEC 62541-9:2020 © IEC 2020

Tableau 29 – Paramètres de la Méthode Acknowledge

Argument Description

EventId EventId identifiant une Notification d'Evénement particulière.

Seules les Notifications d'Evénements où AckedState/Id était False peuvent être acquittées.

Comment Texte localisé à appliquer à la Condition.

Le Tableau 30 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 30 – Codes de résultats de la Méthode Acknowledge

Code de résultat Description

Bad_ConditionBranchAlreadyAcked Voir Tableau 101 pour la description de ce code de résultat.

Bad_MethodInvalid L'identificateur de la méthode ne se réfère pas à une méthode pour l'objet ou le
ConditionId spécifié.

Bad_EventIdUnknown Voir Tableau 101 pour la description de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été
appelée sur le Nœud de ConditionType. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Commentaires

Un Serveur est chargé de s'assurer que chaque Evénement a un EventId unique. Cela permet
aux Clients d'identifier et d'acquitter une Notification d'Evénement particulière.

L'EventId identifie une Notification d'Evénement spécifique où un état à acquitter avait été
consigné. L'acquittement et le commentaire facultatif sont appliqués à l'état identifié par
l'EventId. Si le champ de commentaire est NULL (le paramètre de lieu et le texte sont vides),
il est ignoré et les commentaires existants éventuels restent inchangés. Si le commentaire est
à réinitialiser, un texte vide avec un paramètre de lieu doit être fourni.

Un EventId valide se traduit par une Notification d'Evénement où l'AckedState/Id est défini sur
True et la Propriété Comment contient le texte de l'argument de commentaire facultatif. Si un
état antérieur est acquitté, le BranchId et toutes les valeurs de Condition de cette branche
sont consignés. Le Tableau 31 spécifie la représentation de l'AddressSpace pour la Méthode
Acknowledge.

Tableau 31 – Définition de l'AddressSpace pour la Méthode Acknowledge

Attribut Valeur

BrowseName Acquittement

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument PropertyType Obligatoire

AlwaysGenerates
Event

ObjectType AuditConditionAcknowledge

EventType

Défini en 5.10.5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 177 –

5.7.4 Méthode Confirm

La Méthode Confirm est utilisée pour confirmer une Notification d'Evénement pour un état de
l'instance de Condition où le ConfirmedState est False. Généralement, le NodeId de l'instance
d'objet est transmis en tant qu'ObjectId au Service d'Appel. Cependant, certains Serveurs ne
présentent pas d'instances de Condition dans l'AddressSpace. Par conséquent, les Serveurs
doivent autoriser les Clients à appeler la Méthode Confirm en spécifiant le ConditionId en tant
qu'ObjectId. La Méthode ne peut pas être appelée avec un ObjectId du Nœud
d'AcknowledgeableConditionType.

Signature

Confirm(
 [in] ByteString EventId
 [in] LocalizedText Commentaire
);

Les paramètres sont définis dans le Tableau 32.

Tableau 32 – Paramètres de la Méthode Confirm

Argument Description

EventId EventId identifiant une Notification d'Evénement particulière.

Seules les Notifications d'Evénement dont la propriété Id du ConfirmedState est False peuvent
être confirmées.

Comment Texte localisé à appliquer aux Conditions.

Le Tableau 33 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 33 – Codes de résultats de la Méthode Confirm

Code de résultat Description

Bad_ConditionBranchAlreadyConfirmed Voir Tableau 101 pour la description de ce code de résultat.

Bad_MethodInvalid L'identificateur de la méthode ne se réfère pas à une méthode pour l'objet ou le
ConditionId spécifié.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Bad_EventIdUnknown Voir Tableau 101 pour la description de ce code de résultat.

Bad_NodeIdUnknown Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a
été appelée sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Commentaires

Un Serveur est chargé de s'assurer que chaque Evénement a un EventId unique. Cela permet
aux Clients d'identifier et de confirmer une Notification d'Evénement particulière.

L'EventId identifie une Notification d'Evénement spécifique où un état à confirmer avait été
consigné. Un Commentaire qui est appliqué à l'état identifié par l'EventId peut être fourni.

Un EventId valide se traduit par une Notification d'Evénement où le ConfirmedState/Id est
défini sur True, et la Propriété Comment contient le texte de l'argument de commentaire
facultatif. Si un état antérieur est confirmé, le BranchId et toutes les valeurs de Condition pour
cette branche sont consignés. Un Client peut confirmer uniquement les événements qui ont
un ConfirmedState/Id défini sur False. La logique de définition du ConfirmedState/Id sur False
est spécifique au Serveur et peut même être spécifique à l'événement ou à la condition.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 178 – IEC 62541-9:2020 © IEC 2020

Le Tableau 34 spécifie la représentation de l'AddressSpace pour la Méthode Confirm.

Tableau 34 – Définition de l'AddressSpace pour la Méthode Confirm

Attribut Valeur

BrowseName Confirm

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument PropertyType Obligatoire

AlwaysGeneratesEv
ent

ObjectType AuditConditionConfirmEventType Défini en 5.10.7

5.8 Modèle d'Alarme

5.8.1 Généralités

La Figure 12 décrit de manière informelle l'AlarmConditionType, ses sous-types et sa position
dans la hiérarchie des Types d'Evénements.

AlarmConditionType

AcknowledgeableConditionType

ConditionType

ExclusiveLimit
AlarmType

Exclusive
Level

Exclusive
MultiDeviation

Exclusive
RateOfChange

NonExclusiveLimit
AlarmType

NonExclusive
Level

NonExclusive
MultiDeviation

NonExclusive
RateOfChange

OffNormalAlarmType

DiscreteAlarmType

SystemOffNormalAlarmType

LimitAlarmTypeDiscrepancy
AlarmType

IEC

Figure 12 – Modèle de la hiérarchie d'AlarmConditionType

5.8.2 AlarmConditionType

L'AlarmConditionType est un type abstrait qui étend l'AcknowledgeableConditionType en
introduisant un ActiveState, un SuppressedState et un ShelvingState. Il ajoute également la
possibilité de définir un temps de retard, un temps de nouvelle alarme, des groupes d'Alarmes
et des paramètres d'Alarme sonore. Le modèle d'Alarme est représenté à la Figure 13. Cette
représentation est une définition volontairement incomplète. Il est défini de façon formelle
dans le Tableau 35.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 179 –

ConditionType

Acknowledgeable
ConditionType

AlarmCondition
Type

StateMachineType:
ShelvingState

EnableState

TwoStateVariableType:
ActiveState

TwoStateVariableType:
SuppressedState

CurrentState

InputNode

SuppressedOrShelved

MaxTimeShelved

AudibleEnable

AudibleSound

OnDelay

OffDelay
RepeatCount

FirstInGroup

TwoStateVariableType:
SilenceState

<AlarmGroup>

FirstInGroupFlag

ReAlarmTime

ReAlarmRepeatCount

Silence

Suppress

TwoStateVariableType:
OutOfServiceState

IsTrueSubState

OutOfService

Reset

TwoStateVariableType:
LatchedState

IEC

Figure 13 – Modèle d'Alarme

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 180 – IEC 62541-9:2020 © IEC 2020

Tableau 35 – Définition d'AlarmConditionType

Attribut Valeur

BrowseName AlarmConditionType

IsAbstract False

Références Node
Class

BrowseName DataType TypeDefinition ModellingRu
le

Sous-type de l'AcknowledgeableConditionType défini en 5.7.2

HasComponent Variable ActiveState LocalizedText TwoStateVariableType Obligatoire

HasProperty Variable InputNode NodeId PropertyType Obligatoire

HasComponent Variable SuppressedState LocalizedText TwoStateVariableType Facultative

HasComponent Variable OutOfServiceState LocalizedText TwoStateVariableType Facultative

HasComponent Objet ShelvingState ShelvedStateMachineType Facultative

HasProperty Variable SuppressedOrShelved Booléen PropertyType Obligatoire

HasProperty Variable MaxTimeShelved Durée PropertyType Facultative

HasProperty Variable AudibleEnabled Booléen PropertyType Facultative

HasComponent Variable AudibleSound AudioData
Type

AudioVariableType Facultative

HasComponent Variable SilenceState LocalizedText TwoStateVariableType Facultative

HasProperty Variable OnDelay Durée PropertyType Facultative

HasProperty Variable OffDelay Durée PropertyType Facultative

HasComponent Variable FirstInGroupFlag Booléen BaseDataVariableType Facultative

HasComponent Objet FirstInGroup AlarmGroupType Facultative

HasComponent Objet LatchedState LocalizedText TwoStateVariableType Facultative

HasAlarmSuppress
ionGroup

Objet <AlarmGroup> AlarmGroupType OptionalPlac
eholder

HasProperty Variable ReAlarmTime Durée PropertyType Facultative

HasComponent Variable ReAlarmRepeatCount Int16 BaseDataVariableType Facultative

HasComponent Méthode Silence Défini en 5.8.5 Facultative

HasComponent Méthode Supprimer Défini en 5.8.6 Facultative

HasComponent Méthode Unsuppress Défini en 5.8.7 Facultative

HasComponent Méthode RemoveFromService Défini en 5.8.8 Facultative

HasComponent Méthode PlaceInService Défini en 5.8.9 Facultative

HasComponent Méthode Reset Défini en 5.8.4 Facultative

HasSubtype Objet DiscreteAlarmType

HasSubtype Objet LimitAlarmType

HasSubtype Objet DiscrepancyAlarmType

L'AlarmConditionType hérite de toutes les Propriétés de l'AcknowledgeableConditionType.
Les états suivants sont des sous-états d'EnabledState True.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 181 –

Lorsqu'il est défini sur True, l'ActiveState/Id indique que la situation représentée par la
Condition est actuellement présente. Lorsqu'une instance de Condition est dans l'état inactif
(l'ActiveState/Id défini sur False), cela représente une situation qui est revenue à un état
normal. Les transitions de Conditions vers les états inactif et Active sont déclenchées par des
actions spécifiques au Serveur. Les sous-types de l'AlarmConditionType spécifiés plus loin
dans le présent document ont des modèles de sous-états qui définissent l'état Active de façon
plus approfondie. Les noms d'états recommandés sont décrits dans l'Annexe A.

La Propriété InputNode fournit le NodeId de la Variable dont la Valeur est utilisée comme
donnée d'entrée primaire dans le calcul de l'état d'Alarme. Si cette Variable n'est pas dans
l'AddressSpace, un NodeId NULL doit être fourni. Dans certains systèmes, une Alarme peut
être calculée sur la base de plusieurs Valeurs de Variables; il incombe au système de
déterminer quel NodeId de Variable est utilisé.

L'association de SuppressedState, OutOfServiceState et ShelvingState permet de supprimer
les Alarmes sur les systèmes d'affichage. Ces trois suppressions sont généralement utilisées
par différents personnels ou systèmes d'une installation, c'est-à-dire des systèmes
automatiques, du personnel de maintenance et des Opérateurs.

SuppressedState est utilisé en interne par un Serveur afin de supprimer automatiquement des
Alarmes pour des raisons spécifiques au système. Par exemple, un système peut être
configuré pour supprimer des Alarmes associées à des machines qui sont à l'arrêt. Par
exemple, une Alarme de niveau bas pour un réservoir qui n'est pas en cours d'utilisation peut
être supprimée. Les noms d'états recommandés sont décrits dans l'Annexe A.

OutOfServiceState permet au personnel de maintenance de supprimer des Alarmes dues à un
problème de maintenance. Par exemple, si un instrument est mis hors service à des fins de
maintenance ou est temporairement retiré pour être remplacé ou entretenu, l'état de l'élément
est défini sur OutOfServiceState. Les noms d'états recommandés sont décrits dans
l'Annexe A.

ShelvingState suggère si, oui ou non, une Alarme doit (temporairement) ne pas être affichée
à l'attention de l'utilisateur. Cela est très souvent utilisé par les Opérateurs pour bloquer les
Alarmes injustifiées. Le ShelvingState est défini en 5.8.10.

Lorsqu'une Alarme a l'un ou tous les états SuppressedState, OutOfServiceState ou
ShelvingState définis sur True, la propriété SuppressedOrShelved doit être définie sur True et
cette Alarme n'est alors généralement pas affichée par le Client. Les transitions d'états
associées à l'Alarme ont effectivement lieu, mais elles ne sont généralement pas affichées
par les Clients tant que l'Alarme reste dans l'un des états SuppressedState,
OutOfServiceState ou Shelved.

La Propriété facultative MaxTimeShelved est utilisée pour attribuer la durée maximale
pendant laquelle une Condition d'Alarme peut être suspendue. La valeur est exprimée sous la
forme d'une durée. Les systèmes peuvent utiliser cette Propriété pour empêcher la
Suspension permanente d'une Alarme. Si cette Propriété est présente, elle représente une
limite supérieure pour la durée passée dans un appel de Méthode TimedShelve. Si une valeur
supérieure à la valeur de cette Propriété est transmise à la Méthode TimedShelve, un code
d'erreur Bad_ShelvingTimeOutOfRange est alors renvoyé lors de l'appel. Si cette Propriété
est présente, elle est également en vigueur pour l'état OneShotShelved, ainsi une Condition
d'Alarme passe à l'état Unshelved à partir de l'état OneShotShelved si la durée spécifiée dans
cette Propriété expire à la suite d'une opération OneShotShelve sans changement des autres
éléments éventuels associés à la Condition.

La Propriété AudibleEnabled facultative est un Booléen qui indique si l'état courant de cette
Alarme inclut une Alarme sonore.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 182 – IEC 62541-9:2020 © IEC 2020

La Propriété AudibleSound facultative contient le fichier son qui doit être joué si une Alarme
sonore doit être générée. Ce fichier est joué/généré tant que l'Alarme est active et non
acquittée, sauf si le StateMachine silence est inclus, auquel cas il peut également être réduit
au silence par ce StateMachine.

Le SilenceState permet de supprimer la génération d'Alarmes sonores. Généralement, il est
utilisé lorsqu'un Opérateur réduit au silence toutes les Alarmes sur un écran, mais qu'il est
nécessaire qu'il acquitte les Alarmes de manière individuelle. Réduire une Alarme au silence
doit réduire l'Alarme au silence sur tous les systèmes (écrans) sur lesquels elle est signalée.
Tous les Clients ne font pas appel à ce StateMachine, mais il permet à plusieurs Clients de
synchroniser des états d'Alarme sonore. Acquitter une Alarme doit automatiquement la
réduire au silence.

Les Propriétés OnDelay et OffDelay peuvent être utilisées pour éliminer les Alarmes
injustifiées. OnDelay permet d'éviter les Alarmes inutiles lorsqu'un signal dépasse
temporairement son point de consigne, empêchant ainsi l'Alarme d'être déclenchée avant que
le signal reste à l'état d'Alarme en continu pour une période spécifiée (durée OnDelay).
OffDelay permet de réduire les Alarmes intermittentes en verrouillant l'indication de l'Alarme
pour une certaine durée après que la situation est revenue à la normale. C'est-à-dire que
l'Alarme doit rester active pendant la durée OffDelay et ne doit pas se régénérer si elle
redevient active pendant cette période. Si l'Alarme reste dans la zone inactive pendant le
temps OffDelay, elle devient alors inactive.

La variable FirstInGroupFlag facultative est utilisée avec l'objet FirstInGroup. L'Objet
FirstInGroup est une instance d'un AlarmGroupType qui regroupe plusieurs Alarmes
associées. Le FirstInGroupFlag est défini sur l'instance d'Alarme qui était la première Alarme
à se déclencher dans un FirstInGroup. En présence de cette variable, le FirstInGroup doit
aussi être présent. Ces deux nœuds permettent à un système d'alarme de déterminer quelle
Alarme de la liste a été le déclencheur. Ils sont communément utilisés dans les situations où
les Alarmes sont corrélées et où généralement plusieurs Alarmes se produisent. En général,
tous les capteurs de vibrations d'une turbine, par exemple, se déclenchent si l'un se
déclenche, mais l'important, pour un Opérateur, est le premier capteur à s'être déclenché.

L'Objet LatchedState, s'il est présent, indique que le verrouillage de cette Alarme est pris en
charge. Le bit "retain" de l'Alarme reste True jusqu'à ce qu'il ne soit plus actif, soit acquitté et
réinitialisé. Si la Méthode Reset est appelée alors qu'elle est active, elle n'a pas d'effet sur
l'Alarme et est ignorée, et la réponse à l'appel est une erreur Bad_InvalidState. L'Objet
indique l'état courant, verrouillé ou non verrouillé. Les noms d'états recommandés sont décrits
dans l'Annexe A. Si cet Objet est fourni, la Méthode Reset doit aussi être fournie.

Une instance d'Alarme peut contenir une ou plusieurs références HasAlarmSuppressionGroup
à des instances d'AlarmGroupType. Chaque instance est un AlarmSuppressionGroup.
Lorsqu'un AlarmSuppressionGroup devient actif, le Serveur doit définir le SuppressedState de
l'Alarme sur True. Lorsque plus aucun AlarmSuppressionGroup référencé n'est actif, le
Serveur doit alors définir le SuppressedState sur False. Un seul AlarmSuppressionGroup peut
être attribué à plusieurs Alarmes. Les AlarmSuppressionGroups sont utilisés pour contrôler
les AlarmFloods et pour mieux gérer les Alarmes.

ReAlarmTime, le cas échéant, définit un temps utilisé pour ramener une Alarme au sommet
d'une liste d'Alarmes. Si une Alarme n'est pas revenue à la normale dans le temps donné (à
partir du dernier moment où elle a été activée), le Serveur génère une nouvelle Alarme
(comme s'il s'agissait de la première). Si elle a été réduite au silence, elle doit revenir à un
état non silencieux, et si elle a été acquittée, elle doit revenir à un état non acquitté. La durée
d'activité de l'Alarme est fonction du temps de nouvelle alarme.

ReAlarmRepeatCount, le cas échéant, comptabilise le nombre de fois qu'une Alarme est
réactivée. Certains systèmes d'alarme intelligents utiliseront ce décompte pour élever le
degré de priorité ou pour générer des indications supplémentaires ou différentes pour
l'Alarme donnée. Le décompte est réinitialisé lorsqu'une Alarme revient à la normale.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 183 –

La Méthode Silence peut être utilisée pour réduire une instance d'Alarme au silence. Elle est
définie en 5.8.5.

La Méthode Suppress peut être utilisée pour supprimer une instance d'Alarme. Le plus
souvent, la suppression d'une Alarme se produit par l'intermédiaire de la programmation
avancée des alarmes, mais cette méthode permet de bénéficier d'un accès supplémentaire ou
de supprimer une instance d'Alarme particulière. De plus amples détails sont fournis dans la
définition en 5.8.6.

La Méthode Unsuppress peut être utilisée pour retirer une instance d'Alarme de l'état
SuppressedState. De plus amples détails sont fournis dans la définition en 5.8.7.

La Méthode PlaceInService peut être utilisée pour retirer une instance d'Alarme de l'état
OutOfServiceState. Elle est définie en 5.8.9.

La Méthode RemoveFromService peut être utilisée pour placer une instance d'Alarme dans
l'état OutOfServiceState. Elle est définie en 5.8.8.

La Méthode Réinitialiser est utilisée pour effacer une Alarme verrouillée. Elle est définie
en 5.8.4. Si cet Objet est fourni, l'Objet LatchedState doit aussi être fourni.

Plus de détails concernant le modèle d'Alarme et les divers états peuvent être consultés
en 4.8 et à l'Annexe E.

5.8.3 AlarmGroupType

L'AlarmGroupType fournit une manière simple de regrouper les Alarmes. Ce regroupement
peut être utilisé pour supprimer une Alarme ou pour identifier les Alarmes associées. L'usage
réel de l'AlarmGroupType est spécifié lorsqu'il est utilisé.

L'AlarmGroupType est défini de façon formelle dans le Tableau 36.

Tableau 36 – Définition d'AlarmGroupType

Attribut Valeur

BrowseName AlarmGroupType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type du FolderType défini dans l'IEC 62541-5.

AlarmGroupMember Objet <AlarmConditionInstance> AlarmConditionType Optional
Placeholder

Il convient de nommer l'instance d'un AlarmGroupType et de décrire l'objectif du groupe
d'Alarmes.

L'instance d'AlarmGroupType contient un liste d'instances d'AlarmConditionType ou d'un
sous-type d'AlarmConditionType référencé par des références d'AlarmGroupMember. Au
moins une Alarme doit être présente dans une instance d'AlarmGroupType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 184 – IEC 62541-9:2020 © IEC 2020

5.8.4 Méthode Reset

La Méthode Reset est utilisée pour réinitialiser une instance d'Alarme verrouillée. Elle n'est
disponible que sur une instance d'un AlarmConditionType présentant le LatchedState.
Généralement, le NodeId de l'instance d'Objet est transmis en tant qu'ObjectId au Service
d'Appel. Cependant, certains Serveurs ne présentent pas d'instances de Condition dans
l'AddressSpace. Par conséquent, les Serveurs doivent autoriser les Clients à appeler la
Méthode Reset en spécifiant le ConditionId en tant qu'ObjectId. La Méthode ne peut pas être
appelée avec un ObjectId du Nœud d'AlarmConditionType.

Signature

Reset();

Le Tableau 37 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 37 – Codes de résultats de la Méthode Reset

Code de résultat Description

Bad_MethodInvalid Le MethodId fourni ne correspond pas à l'ObjectId fourni. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été appelée
sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Bad_InvalidState L'instance d'Alarme n'a pas été verrouillée, est encore active ou exige encore d'être acquittée.
Pour qu'une instance d'Alarme soit réinitialisée, elle doit auparavant avoir été en état d'Alarme,
être revenue à la normale et avoir été acquittée.

Le Tableau 38 spécifie la représentation de l'AddressSpace pour la Méthode Reset.

Tableau 38 – Définition de l'AddressSpace pour la Méthode Reset

Attribut Valeur

BrowseName Reset

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEv
ent

ObjectType AuditCondition
ResetEventType

Défini en 5.10.11

5.8.5 Méthode Silence

La Méthode Silence est utilisée pour réduire une instance d'Alarme spécifique au silence. Elle
n'est disponible que sur une instance d'un AlarmConditionType présentant aussi le
SilenceState. Généralement, le NodeId de l'instance d'Objet est transmis en tant qu'ObjectId
au Service d'Appel. Cependant, certains Serveurs ne présentent pas d'instances de Condition
dans l'AddressSpace. Par conséquent, les Serveurs doivent autoriser les Clients à appeler la
Méthode Silence en spécifiant le ConditionId en tant qu'ObjectId. La Méthode ne peut pas
être appelée avec un ObjectId du Nœud d'AlarmConditionType.

Signature

Silence();

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 185 –

Le Tableau 39 présente les codes de résultats de la Méthode (définis dans le service
d'Appel).

Tableau 39 – Codes de résultats de la Méthode Silence

Code de résultat Description

Bad_MethodInvalid Le MethodId fourni ne correspond pas à l'ObjectId fourni. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été appelée
sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Commentaires

Si l'instance n'est pas actuellement dans un état sonore, la commande est ignorée.

Le Tableau 40 spécifie la représentation de l'AddressSpace pour la Méthode Silence.

Tableau 40 – Définition de l'AddressSpace pour la Méthode Silence

Attribut Valeur

BrowseName Silence

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionSilenceEventType Défini en 5.10.10

5.8.6 Méthode Suppress

La Méthode Suppress est utilisée pour supprimer une instance d'Alarme spécifique. Elle n'est
disponible que sur une instance d'un AlarmConditionType présentant aussi le
SuppressedState. Cette Méthode peut être utilisée pour modifier le SuppressedState d'une
Alarme et écraser toute suppression provoquée par un AlarmSuppressionGroup associé.
Cette Méthode fonctionne en parallèle avec toute suppression déclenchée par un
AlarmSupressionGroup, au sens que si la Méthode est utilisée pour supprimer une Alarme, un
AlarmSuppressionGroup peut effacer la suppression.

Généralement, le NodeId de l'instance d'objet est transmis en tant qu'ObjectId au Service
d'Appel. Cependant, certains Serveurs ne présentent pas d'instances de Condition dans
l'AddressSpace. Par conséquent, les Serveurs doivent autoriser les Clients à appeler la
Méthode Suppress en spécifiant le ConditionId en tant qu'ObjectId. La Méthode ne peut pas
être appelée avec un ObjectId du Nœud d'AlarmConditionType.

Signature

Suppress();

Le Tableau 41 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 186 – IEC 62541-9:2020 © IEC 2020

Tableau 41 – Codes de résultats de la Méthode Suppress

Code de résultat Description

Bad_MethodInvalid Le MethodId fourni ne correspond pas à l'ObjectId fourni. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été appelée
sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Commentaires

La Méthode Suppress s'applique à une instance d'Alarme, même si elle n'est pas active.

Le Tableau 42 spécifie la représentation de l'AddressSpace pour la Méthode Suppress.

Tableau 42 – Définition de l'AddressSpace pour la Méthode Suppress

Attribut Valeur

BrowseName Supprimer

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionSuppressionEventT
ype

Défini en 5.10.4

5.8.7 Méthode Unsuppress

La Méthode Unsuppress est utilisée pour effacer le SuppressedState d'une instance d'Alarme
spécifique. Elle n'est disponible que sur une instance d'un AlarmConditionType présentant
aussi le SuppressedState. Cette Méthode peut être utilisée pour écraser toute suppression
provoquée par un AlarmSuppressionGroup associé. Cette Méthode fonctionne en parallèle
avec toute suppression déclenchée par un AlarmSuppressionGroup, au sens que si la
Méthode est utilisée pour effacer le SuppressedState d'une Alarme, toute modification d'un
AlarmSuppressionGroup peut supprimer à nouveau l'Alarme.

Généralement, le NodeId de l'ObjectInstance est transmis en tant qu'ObjectId au Service
d'Appel. Cependant, certains Serveurs ne présentent pas d'instances de Condition dans
l'AddressSpace. Par conséquent, les Serveurs doivent autoriser les Clients à appeler la
Méthode Unsuppress en spécifiant le ConditionId en tant qu'ObjectId. La Méthode ne peut
pas être appelée avec un ObjectId du Nœud d'AlarmConditionType.

Signature

Unsuppress();

Le Tableau 43 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 187 –

Tableau 43 – Codes de résultats de la Méthode Unsuppress

Code de résultat Description

Bad_MethodInvalid Le MethodId fourni ne correspond pas à l'ObjectId fourni. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été appelée
sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Commentaires

La Méthode Unsuppress s'applique à une instance d'Alarme, même si elle n'est pas active.

Le Tableau 44 spécifie la représentation de l'AddressSpace pour la Méthode Unsuppress.

Tableau 44 – Définition de l'AddressSpace pour la Méthode Unsuppress

Attribut Valeur

BrowseName Unsuppress

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionSuppressionEventType Défini en 5.10.4

5.8.8 Méthode RemoveFromService

La Méthode RemoveFromService est utilisée pour supprimer une instance d'Alarme
spécifique. Elle n'est disponible que sur une instance d'un AlarmConditionType présentant
aussi l'OutOfServiceState. Généralement, le NodeId de l'instance d'objet est transmis en tant
qu'ObjectId au Service d'Appel. Cependant, certains Serveurs ne présentent pas d'instances
de Condition dans l'AddressSpace. Par conséquent, les Serveurs doivent autoriser les Clients
à appeler la Méthode RemoveFromService en spécifiant le ConditionId en tant qu'ObjectId. La
Méthode peut ne pas être appelée avec un ObjectId du Nœud d'AlarmConditionType.

Signature

RemoveFromService ();

Le Tableau 45 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 45 – Codes de résultats de la Méthode RemoveFromService

Code de résultat Description

Bad_MethodInvalid Le MethodId fourni ne correspond pas à l'ObjectId fourni. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été appelée
sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 188 – IEC 62541-9:2020 © IEC 2020

Commentaires

Les instances qui ne présentent pas l'Etat OutOfService doivent rejeter les appels de
RemoveFromService. La Méthode RemoveFromService s'applique à une instance d'Alarme,
même si elle n'est pas actuellement à l'Etat Active.

Le Tableau 46 spécifie la représentation de l'AddressSpace pour la Méthode
RemoveFromService.

Tableau 46 – Définition de l'AddressSpace pour la Méthode RemoveFromService

Attribut Valeur

BrowseName RemoveFromService

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

AlwaysGeneratesEvent ObjectType AuditConditionOutOfServiceEventType Défini en 5.10.12

5.8.9 Méthode PlaceInService

La Méthode PlaceInService est utilisée pour définir l'OutOfServiceState d'une instance
d'Alarme spécifique sur False. Elle n'est disponible que sur une instance d'un
AlarmConditionType présentant aussi l'OutOfServiceState. Généralement, le NodeId de
l'ObjectInstance est transmis en tant qu'ObjectId au Service d'Appel. Cependant, certains
Serveurs ne présentent pas d'instances de Condition dans l'AddressSpace. Par conséquent,
les Serveurs doivent autoriser les Clients à appeler la Méthode PlaceInService en spécifiant
le ConditionId en tant qu'ObjectId. La Méthode ne peut pas être appelée avec un ObjectId du
Nœud d'AlarmConditionType.

Signature

PlaceInService ();

Le Tableau 47 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 47 – Codes de résultats de la Méthode PlaceInService

Code de résultat Description

Bad_MethodInvalid Le MethodId fourni ne correspond pas à l'ObjectId fourni. Voir l'IEC 62541-4 pour la description
générale de ce code de résultat.

Bad_NodeIdInvalid Utilisé pour indiquer que l'ObjectId spécifié n'est pas valide ou que la Méthode a été appelée
sur le Nœud de ConditionType.

Voir l'IEC 62541-4 pour la description générale de ce code de résultat.

Commentaires

La Méthode PlaceInService s'applique à une instance d'Alarme, même si elle n'est pas
actuellement à l'Etat Active.

Le Tableau 48 spécifie la représentation de l'AddressSpace pour la Méthode PlaceInService.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 189 –

Tableau 48 – Définition de l'AddressSpace pour la Méthode PlaceInService

Attribut Valeur

BrowseName PlaceInService

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionOutOfServiceE
ventType

Défini en 5.10.12

5.8.10 ShelvedStateMachineType

5.8.10.1 Vue d'ensemble

Le ShelvedStateMachineType définit un diagramme de sous-états qui représente un modèle
avancé de filtrage d'Alarmes. Ce modèle est représenté à la Figure 15.

Le modèle d'état prend en charge deux types de Suspensions: OneShotShelving et
TimedShelving. Ils sont représentés à la Figure 14. La représentation comporte les transitions
admises entre les divers sous-états. La Suspension est une activité déclenchée par
l'Opérateur.

En OneShotShelving, un utilisateur demande qu'une Alarme soit suspendue pendant son état
Active. Ce type de Suspension est habituellement utilisé lorsqu'une Alarme se produit en
continu sur une limite (à savoir, une Condition oscille entre l'Alarme High et l'Alarme
HighHigh, toujours dans l'état Active). La Suspension en une seule fois s'efface
automatiquement lorsqu'une Alarme revient à un état inactif. Une autre utilisation pour ce type
de Suspension concerne une zone d'installation qui est arrêtée, à savoir une Alarme
fonctionnant longtemps telle qu'une Alarme de niveau bas pour un réservoir qui n'est pas en
cours d'utilisation. Lorsque le réservoir recommence à fonctionner, l'état Shelving s'efface
automatiquement.

En TimedShelving, un utilisateur spécifie qu'une Alarme soit suspendue pendant une durée
donnée. Ce type de Suspension est très souvent utilisé pour bloquer les Alarmes injustifiées.
Par exemple, une Alarme qui se produit plus de 10 fois en une minute peut être suspendue
pendant quelques minutes.

Dans tous les états, la méthode Unshelve peut être appelée pour entraîner une transition vers
l'état Unshelve; cela inclut le Un-shelving d'une Alarme qui est dans l'état TimedShelve avant
que la durée n'expire et l'état OneShotShelve sans transition vers un état inactif.

Toutes les transitions, à l'exception de deux d'entre elles, sont causées par des appels de
Méthode, représentés à la Figure 14. La transition "Time Expired" est simplement une
transition générée par le système qui se produit lorsque la valeur de temps définie comme
partie du "Timed Shelved Call" a expiré. La transition "Any Transition Occurs" est également
une transition générée par le système; cette transition est générée lorsque la Condition passe
à un état inactif.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 190 – IEC 62541-9:2020 © IEC 2020

Timed
Shelved

Oneshot
Shelved

Unshelved

Appel de TimeShelved

Appel de OneShotShelved

IEC

Figure 14 – Transitions d'états de suspension

Le ShelvedStateMachineType inclut une hiérarchie de sous-états. Il prend en charge toutes
les transitions entre Unshelved, OneShotShelved et TimedShelved.

Le diagramme d'états est représenté à la Figure 15 et défini de façon formelle dans le
Tableau 49.

OneShotShelve

ShelvedStateMachine
Type

TimedShelved

OneShotShelved

UnShelvedToTimedShelved

HasCause

FiniteStateMachineType

Unshelved

UnShelvedToOneShotShelved

TimedShelvedToUnshelved

OneShotShelvedToUnShelved

Unshelve

HasCause

HasCause

TimedShelve

HasCause

TimedShelvedToOneShotShelved

HasCause
OneShotShelvedToTimedShelved

HasCause

StateType

TransitionType

UnshelveTime

IEC

Figure 15 – Modèle de ShelvedStateMachineType

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 191 –

Tableau 49 – Définition de ShelvedStateMachineType

Attribut Valeur

BrowseName ShelvedStateMachineType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du FiniteStateMachineType défini dans l'IEC 62541-5

HasProperty Variable UnshelveTime Durée PropertyType Obligatoire

HasComponent Objet Unshelved StateType

HasComponent Objet TimedShelved StateType

HasComponent Objet OneShotShelved StateType

HasComponent Objet UnshelvedToTimedShelved TransitionType

HasComponent Objet TimedShelvedToUnshelved TransitionType

HasComponent Objet TimedShelvedToOneShotShelved TransitionType

HasComponent Objet UnshelvedToOneShotShelved TransitionType

HasComponent Objet OneShotShelvedToUnshelved TransitionType

HasComponent Objet OneShotShelvedToTimedShelved TransitionType

HasComponent Méthode TimedShelve Défini en 5.8.10.3 Obligatoire

HasComponent Méthode OneShotShelve Défini en 5.8.10.4 Obligatoire

HasComponent Méthode Unshelve Défini en 5.8.10.2 Obligatoire

UnshelveTime spécifie le temps restant en millisecondes jusqu'à ce que l'Alarme passe
automatiquement à l'état Un-shelved. Pour l'état TimedShelved, ce temps est initialisé avec
l'argument ShelvingTime de l'appel de la Méthode TimedShelve. Pour l'état OneShotShelved,
le UnshelveTime est une constante réglée sur la durée maximale, sauf si la propriété
MaxTimeShelved est fournie.

Ce FiniteStateMachine prend en charge trois états Active: Unshelved, TimedShelved et
OneShotShelved. Il prend également en charge six transitions. Les états et les transitions
sont décrits dans le Tableau 50. Ce FiniteStateMachine prend également en charge trois
Méthodes: TimedShelve, OneShotShelve et Unshelve.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 192 – IEC 62541-9:2020 © IEC 2020

Tableau 50 – Transitions de ShelvedStateMachineType

BrowseName Références BrowseName TypeDefinition

Transitions

UnshelvedToTimedShelved FromState Unshelved StateType

 ToState TimedShelved StateType

 HasEffect AlarmConditionType

 HasCause TimedShelve Méthode

UnshelvedToOneShotShelved FromState Unshelved StateType

 ToState OneShotShelved StateType

 HasEffect AlarmConditionType

 HasCause OneShotShelve Méthode

TimedShelvedToUnshelved FromState TimedShelved StateType

 ToState Unshelved StateType

 HasEffect AlarmConditionType

TimedShelvedToOneShotShelved FromState TimedShelved StateType

 ToState OneShotShelved StateType

 HasEffect AlarmConditionType

 HasCause OneShotShelving Méthode

OneShotShelvedToUnshelved FromState OneShotShelved StateType

 ToState Unshelved StateType

 HasEffect AlarmConditionType

OneShotShelvedToTimedShelved FromState OneShotShelved StateType

 ToState TimedShelved StateType

 HasEffect AlarmConditionType

 HasCause TimedShelve Méthode

5.8.10.2 Méthode Unshelve

La Méthode Unshelve met l'instance d'AlarmConditionType à l'état Unshelved. Normalement,
le MethodId trouvé dans l'enfant Shelving de l'instance de Condition et le NodeId de l'objet
Shelving en tant qu'ObjectId sont transmis au Service d'Appel. Cependant, certains Serveurs
ne présentent pas d'instances de Condition dans l'AddressSpace. Par conséquent, tous les
Serveurs doivent également autoriser les Clients à appeler la Méthode Unshelve en spécifiant
le ConditionId en tant qu'ObjectId. La Méthode ne peut pas être appelée avec un ObjectId du
Nœud de ShelvedStateMachineType.

Signature

Unshelve();

Le Tableau 51 présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 51 – Codes de résultat de la Méthode Unshelve

Code de résultat Description

Bad_ConditionNotShelved Voir Tableau 101 pour la description de ce code de résultat.

Le Tableau 52 spécifie la représentation de l'AddressSpace pour la méthode Unshelve.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 193 –

Tableau 52 – Définition de l'AddressSpace pour la Méthode Unshelve

Attribut Valeur

BrowseName Unshelve

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Défini en 5.10.7

5.8.10.3 Méthode TimedShelve

La Méthode TimedShelve met l'instance d'AlarmConditionType à l'état TimedShelved (les
paramètres sont définis dans le Tableau 53 et les codes de résultats sont décrits dans le
Tableau 54). Normalement, le MethodId trouvé dans l'enfant Shelving de l'instance de
Condition et le NodeId de l'objet Shelving en tant qu'ObjectId sont transmis au Service
d'Appel. Cependant, certains Serveurs ne présentent pas d'instances de Condition dans
l'AddressSpace. Par conséquent, tous les Serveurs doivent également autoriser les Clients à
appeler la Méthode TimedShelve en spécifiant le ConditionId en tant qu'ObjectId. La Méthode
ne peut pas être appelée avec un ObjectId du Nœud de ShelvedStateMachineType.

Signature

TimedShelve(
 [in] Duration ShelvingTime
);

Tableau 53 – Paramètres de la Méthode TimedShelve

Argument Description

ShelvingTime Spécifie une durée fixe pendant laquelle l'Alarme doit être suspendue. Le Serveur peut refuser
la durée proposée. Si la propriété MaxTimeShelved existe sur l'Alarme, la durée de
Suspension doit être inférieure ou égale à la valeur de cette propriété.

Le tableau suivant présente les codes de résultats de la Méthode (définis dans le Service
d'Appel).

Tableau 54 – Codes de résultats de la Méthode TimedShelve

Code de résultat Description

Bad_ConditionAlreadyShelved Voir Tableau 101 pour la description de ce code de résultat.

L'Alarme est déjà dans l'état TimedShelved et le système n'admet pas de réinitialisation du
temporisateur de suspension.

Bad_ShelvingTimeOutOfRange Voir Tableau 101 pour la description de ce code de résultat.

Commentaires

La Suspension pendant une certaine durée est très souvent utilisée pour bloquer les Alarmes
injustifiées. Par exemple, une Alarme qui se produit plus de 10 fois en une minute peut être
suspendue pendant quelques minutes.

Dans certains systèmes, la période couverte par cette durée peut être limitée et le Serveur
peut générer une erreur refusant la durée proposée. Cette limite peut être présentée comme
étant la Propriété MaxTimeShelved.

Le Tableau 55 spécifie la représentation de l'AddressSpace pour la Méthode TimedShelve.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 194 – IEC 62541-9:2020 © IEC 2020

Tableau 55 – Définition de l'AddressSpace pour la Méthode TimedShelve

Attribut Valeur

BrowseName TimedShelve

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable InputArguments Argument PropertyType Obligatoire

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Défini en 5.10.7

5.8.10.4 Méthode OneShotShelve

La Méthode OneShotShelve met l'instance d'AlarmConditionType à l'état OneShotShelved.
Normalement, le MethodId trouvé dans l'enfant Shelving de l'instance de Condition et le
NodeId de l'objet Shelving en tant qu'ObjectId sont transmis au Service d'Appel. Cependant,
certains Serveurs ne présentent pas d'instances de Condition dans l'AddressSpace. Par
conséquent, tous les Serveurs doivent également autoriser les Clients à appeler la Méthode
OneShotShelve en spécifiant le ConditionId en tant qu'ObjectId. La Méthode ne peut pas être
appelée avec un ObjectId du Nœud de ShelvedStateMachineType.

Signature

OneShotShelve();

Les codes de résultats de la Méthode sont définis dans le Tableau 56 (le champ de code de
statut est défini dans le Service d'Appel).

Tableau 56 – Codes de résultats de la Méthode OneShotShelve

Code de résultat Description

Bad_ConditionAlreadyShelved Voir Tableau 101 pour la description de ce code de résultat.

L'Alarme est déjà dans l'état OneShotShelved.

Le Tableau 57 spécifie la représentation de l'AddressSpace pour la Méthode OneShotShelve.

Tableau 57 – Définition de l'AddressSpace pour la Méthode OneShotShelve

Attribut Valeur

BrowseName OneShotShelve

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

AlwaysGeneratesEvent ObjectType AuditConditionShelvingEventType Défini en 5.10.7

5.8.11 LimitAlarmType

Les Alarmes peuvent être modélisées avec plusieurs sous-états exclusifs et des limites
attribuées, ou peuvent être modélisées avec des limites non exclusives qui peuvent être
utilisées pour regrouper plusieurs états.

Le LimitAlarmType est un type abstrait utilisé pour fournir un Type de base pour les
AlarmConditionTypes avec plusieurs limites. Le LimitAlarmType est représenté à la Figure 16.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 195 –

AlarmConditionType

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimit
AlarmType

NonExclusiveLimit
AlarmType

BaseLowLimit

BaseLowLowLimit

BaseHighLimit

BaseHighHighLimit

IEC

Figure 16 – LimitAlarmType

Le LimitAlarmType est défini de façon formelle dans le Tableau 58.

Tableau 58 – Définition de LimitAlarmType

Attribut Valeur

BrowseName LimitAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type de l'AlarmConditionType défini en 5.8.2.

HasSubtype ObjectType ExclusiveLimitAlarmType Défini en 5.8.12.3

HasSubtype ObjectType NonExclusiveLimitAlarmType Défini en 5.8.13

HasProperty Variable HighHighLimit Double PropertyType Facultative

HasProperty Variable HighLimit Double PropertyType Facultative

HasProperty Variable LowLimit Double PropertyType Facultative

HasProperty Variable LowLowLimit Double PropertyType Facultative

HasProperty Variable BaseHighHighLimit Double PropertyType Facultative

HasProperty Variable BaseHighLimit Double PropertyType Facultative

HasProperty Variable BaseLowLimit Double PropertyType Facultative

HasProperty Variable BaseLowLowLimit Double PropertyType Facultative

Quatre limites facultatives sont définies et configurent les états des types d'Alarmes limites
résultants. Ces Propriétés doivent être établies pour toutes les éventuelles limites d'Alarme
qui sont présentées par les types d'Alarmes limites résultants. Ces Propriétés sont
répertoriées comme facultatives, mais au moins une est exigée. Pour les cas où un système
sous-jacent ne peut pas fournir la valeur effective d'une limite, la Propriété limite doit toujours
être fournie, mais elle a son AccessLevel défini comme non lisible. Il est admis par hypothèse
que les limites sont décrites en utilisant la même Unité technique que celle attribuée à la
variable qui est la source de l'Alarme. Pour les Alarmes de limite de vitesse de variation, il est
admis par hypothèse que cette vitesse est en unités par seconde, sauf spécification contraire.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 196 – IEC 62541-9:2020 © IEC 2020

Quatre limites de base facultatives sont définies et utilisées pour l'AdaptiveAlarming. Elles
contiennent la limite d'Alarme configurée. Si un Serveur prend en charge l'AdaptiveAlarming
pour les limites d'Alarme, la base correspondante de la limite d'Alarme doit être donnée pour
toute limite présentée par les types d'Alarmes limites résultants. La valeur de cette propriété
est la valeur de la limite à laquelle une AdaptiveAlarm peut être réinitialisée s'il est nécessaire
que toute modification algorithmique soit rejetée.

Les limites d'Alarme répertoriées peuvent entraîner la génération d'une Alarme lorsqu'une
valeur devient égale à la limite ou peut générer une Alarme lorsque la limite est dépassée (à
savoir, la valeur est au-dessus de la limite pour HighLimit et au-dessous de la limite pour
LowLimit). Le comportement exact lorsque la valeur est égale à la limite est spécifique au
Serveur.

La Variable qui est la source de l'Alarme de LimitAlarmType doit être scalaire. Ce
LimitAlarmType peut être sous-typé si la Variable qui est la source est une matrice. Le sous-
type doit décrire le comportement attendu vis-à-vis des limites et des valeurs de matrice.
Parmi les options possibles:

• si un élément de la matrice dépasse la limite, une Alarme est générée;

• si tous les éléments dépassent la limite, une Alarme est générée;

• les limites peuvent aussi être une matrice, auquel cas si la limite de toute matrice est
dépassée par l'élément de la matrice source correspondante, une Alarme est générée.

5.8.12 Types de limites exclusives

5.8.12.1 Vue d'ensemble

Le présent paragraphe décrit le diagramme d'états et le comportement du Type d'Alarme de
base pour les Types de Conditions d'Alarme comportant plusieurs limites mutuellement
exclusives.

5.8.12.2 ExclusiveLimitStateMachineType

L'ExclusiveLimitStateMachineType définit le diagramme d'états utilisé par des
AlarmConditionTypes qui gèrent plusieurs limites mutuellement exclusives. Il est représenté à
la Figure 17.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 197 –

FiniteStateMachineType

Low

High

ExclusiveLimit
StateMachineType

LowLow

HighHigh

HighHighToHigh

HighToHighHigh

LowToLowLow

LowLowToLow

StateType

TransitionType

IEC

Figure 17 – ExclusiveLimitStateMachineType

Il est créé en étendant le FiniteStateMachineType. Il est défini de façon formelle dans le
Tableau 59 et les transitions d'états sont décrites dans le Tableau 60.

Tableau 59 – Définition d'ExclusiveLimitStateMachineType

Attribut Valeur

BrowseName ExclusiveLimitStateMachineType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du FiniteStateMachineType

HasComponent Objet HighHigh StateType

HasComponent Objet High StateType

HasComponent Objet Low StateType

HasComponent Objet LowLow StateType

HasComponent Objet LowToLowLow TransitionType

HasComponent Objet LowLowToLow TransitionType

HasComponent Objet HighToHighHigh TransitionType

HasComponent Objet HighHighToHigh TransitionType

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 198 – IEC 62541-9:2020 © IEC 2020

Tableau 60 – Transitions d'ExclusiveLimitStateMachineType

BrowseName Références BrowseName TypeDefinition

Transitions

HighHighToHigh FromState HighHigh StateType

 ToState High StateType

 HasEffect AlarmConditionType

HighToHighHigh FromState High StateType

 ToState HighHigh StateType

 HasEffect AlarmConditionType

LowLowToLow FromState LowLow StateType

 ToState Low StateType

 HasEffect AlarmConditionType

LowToLowLow FromState Low StateType

 ToState LowLow StateType

 HasEffect AlarmConditionType

L'ExclusiveLimitStateMachineType définit le diagramme de sous-états qui représente le
niveau réel d'une Alarme à plusieurs niveaux lorsqu'elle est dans l'état Active. Le diagramme
de sous-états défini ici inclut les états High, Low, HighHigh et LowLow. Ce modèle inclut
également dans son état de transition une série de transitions vers et depuis un état parent,
l'état inactif. Ce diagramme d'états tel que défini doit être utilisé comme un diagramme de
sous-états pour un diagramme d'états qui a un état Active. Cet état Active pourrait être une
Alarme de "niveau" ou une Alarme d'"écart" ou n'importe quel autre diagramme d'états
d'Alarme.

Les états LowLow, Low, High, HighHigh sont caractéristiques pour de nombreux secteurs. Les
fournisseurs peuvent introduire des modèles de sous-états qui incluent des limites
supplémentaires; ils peuvent également omettre des limites dans une instance. Si un modèle
omet des états ou des transitions dans le StateMachine, il est recommandé qu'il fournisse les
Propriétés AvailableStates et/ou AvailableTransitions facultatives (voir l'IEC 62541-5).

5.8.12.3 ExclusiveLimitAlarmType

L'ExclusiveLimitAlarmType permet de spécifier le comportement commun des Types
d'Alarmes ayant plusieurs limites mutuellement exclusives. L'ExclusiveLimitAlarmType est
représenté à la Figure 18.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 199 –

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

ExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

LowLimit

LowLowLimit

HighLimit

HighHighLimit

ExclusiveLimitStateMachineType:
LimitState

CurrentState

IsTrueSubState

ExclusiveLevel
AlarmType

ExclusiveDeviation
AlarmType

ExclusiveRateOfChange
AlarmType

LimitAlarmType

IEC

Figure 18 – ExclusiveLimitAlarmType

L'ExclusiveLimiAlarmType est défini de façon formelle dans le Tableau 61.

Tableau 61 – Définition d'ExclusiveLimitAlarmType

Attribut Valeur

BrowseName ExclusiveLimitAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type du LimitAlarmType défini en 5.8.11.

HasSubtype ObjectType ExclusiveLevelAlarmType Défini en 5.8.14.3

HasSubtype ObjectType Type
ExclusiveDeviationAlarmType

Défini en 5.8.15.3

HasSubtype ObjectType ExclusiveRateOfChangeAlarm
Type

Défini en 5.8.16.3

HasComponent Objet LimitState ExclusiveLimitStateMachineType Obligatoire

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 200 – IEC 62541-9:2020 © IEC 2020

Le LimitState est un sous-état de l'ActiveState et comporte une référence IsTrueSubstateOf à
l'ActiveState. Le LimitState représente la violation de la limite effective dans une instance
d'ExclusiveLimitAlarmType. Lorsque l'ActiveState du AlarmConditionType est inactif, le
LimitState ne doit pas être disponible et doit renvoyer la valeur NULL en lecture. Tous les
Evénements qui ont soumis un abonnement pour les champs issus du LimitState
lorsqu'ActiveState est inactif doivent renvoyer une valeur NULL pour ces champs non
disponibles.

5.8.13 NonExclusiveLimitAlarmType

Le NonExclusiveLimitAlarmType permet de spécifier le comportement commun des Types
d'Alarmes ayant plusieurs limites non exclusives. Le NonExclusiveLimitAlarmType est
représenté à la Figure 19.

ConditionType

Acknowledgeable
ConditionType

AlarmConditionType

NonExclusiveLimit
AlarmType

ActiveState

EnableState

IsTrueSubState

IsTrueSubState

NonExclusiveLevel
AlarmType

NonExclusiveDeviation
AlarmType

NonExclusiveRateOfChange
AlarmType

HighHighState

HighState

LowState

LowLowState

LimitAlarmType

LowLimit

LowLowLimit

HighLimit

HighHighLimit

IEC

Figure 19 – NonExclusiveLimitAlarmType

 Le NonExclusiveLimitAlarmType est défini de façon formelle dans le Tableau 62.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 201 –

Tableau 62 – Définition de NonExclusiveLimitAlarmType

Attribut Valeur

BrowseName NonExclusiveLimitAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type du LimitAlarmType défini en 5.8.11.

HasSubtype ObjectType NonExclusiveLevelAlarmType Défini en 5.8.14.2

HasSubtype ObjectType NonExclusiveDeviationAlarmType Défini en 5.8.15.2

HasSubtype ObjectType NonExclusiveRateOfChangeAlarmT
ype

Défini en 5.8.16.2

HasComponent Variable HighHighState LocalizedText TwoStateVariableType Facultative

HasComponent Variable HighState LocalizedText TwoStateVariableType Facultative

HasComponent Variable LowState LocalizedText TwoStateVariableType Facultative

HasComponent Variable LowLowState LocalizedText TwoStateVariableType Facultative

HighHighState, HighState, LowState et LowLowState représentent les états non exclusifs. A
titre d'exemple, il est possible que le HighState et le HighHighState soient tous deux dans
leur état True. Les fournisseurs peuvent choisir de prendre en charge n'importe quel sous-
ensemble de ces états. Les noms d'états recommandés sont décrits dans l'Annexe A.

Quatre limites facultatives sont définies et configurent ces états. Même si tous les états sont
facultatifs, au moins l'état HighState ou LowState doit être fourni. Il découle de la définition
d'un HighState et d'un LowState que ces regroupements sont mutuellement exclusifs. Une
valeur ne peut pas dépasser simultanément une valeur HighState et une valeur LowState.

5.8.14 Alarme de niveau

5.8.14.1 Vue d'ensemble

Une Alarme de niveau est communément utilisée pour signaler qu'une limite a été dépassée.
Elle est généralement associée à un instrument, par exemple un instrument de mesure de la
température. L'Alarme de niveau devient active lorsque la valeur observée se situe au-dessus
de la limite haute ou en dessous de la limite basse.

5.8.14.2 NonExclusiveLevelAlarmType

Le NonExclusiveLevelAlarmType est une Alarme de niveau spéciale avec un ou plusieurs
états non exclusifs. Si, par exemple, il est nécessaire de maintenir les états High et HighHigh
comme actifs en même temps, il convient alors d'utiliser une instance du
NonExclusiveLevelAlarmType.

Le NonExclusiveLevelAlarmType est fondé sur le NonExclusiveLimitAlarmType. Il est défini
de façon formelle dans le Tableau 63.

Tableau 63 – Définition de NonExclusiveLevelAlarmType

Attribut Valeur

BrowseName NonExclusiveLevelAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du NonExclusiveLimitAlarmType défini en 5.8.13.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 202 – IEC 62541-9:2020 © IEC 2020

Aucune Propriété supplémentaire du NonExclusiveLimitAlarmType n'est définie.

5.8.14.3 ExclusiveLevelAlarmType

L'ExclusiveLevelAlarmType est une Alarme de niveau spéciale utilisée avec plusieurs limites
mutuellement exclusives. Il est défini de façon formelle dans le Tableau 64.

Tableau 64 – Définition d'ExclusiveLevelAlarmType

Attribut Valeur

BrowseName ExclusiveLevelAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Hérite des propriétés de l'ExclusiveLimitAlarmType défini en 5.8.12.3.

Aucune Propriété supplémentaire de l'ExclusiveLimitAlarmType n'est définie.

5.8.15 Alarme d'écart

5.8.15.1 Vue d'ensemble

Une Alarme d'écart est communément utilisée pour rapporter un écart excessif entre le niveau
de consigne souhaité d'une valeur de processus et une mesure effective de la valeur en
question. L'Alarme d'écart devient active lorsque l'écart passe au-dessus ou chute en
dessous d'une limite définie.

Par exemple, si un point de consigne a une valeur de 10, une limite haute de l'Alarme d'écart
de 2 et une limite basse de l'Alarme d'écart de −1, il y a passage dans le sous-état bas si la
valeur de processus chute au-dessous de 9; il y a passage dans le sous-état haut si la valeur
de processus devient supérieure à 12. Si le point de consigne passait à 11, les nouvelles
valeurs de l'écart seraient respectivement 10 et 13. Le point de consigne peut être fixé par
une configuration, ajusté par un Opérateur ou par un algorithme; la fonctionnalité effective
présentée par le point de consigne est spécifique à l'application. L'Alarme d'écart peut
également être utilisée pour rapporter un problème entre une source de données redondante
où la différence entre la source primaire et la source secondaire dépasse la limite incluse.
Dans ce cas, le SetpointNode pointerait vers la source secondaire.

5.8.15.2 NonExclusiveDeviationAlarmType

Le NonExclusiveDeviationAlarmType est une Alarme de niveau spéciale avec un ou plusieurs
états non exclusifs. Si, par exemple, il est nécessaire de maintenir les états High et HighHigh
comme actifs en même temps, il convient alors d'utiliser une instance du
NonExclusiveDeviationAlarmType.

Le NonExclusiveDeviationAlarmType est fondé sur le NonExclusiveLimitAlarmType. Il est
défini de façon formelle dans le Tableau 65.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 203 –

Tableau 65 – Définition de NonExclusiveDeviationAlarmType

Attribut Valeur

BrowseName NonExclusiveDeviationAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du NonExclusiveLimitAlarmType défini en 5.8.13.

HasProperty Variable SetpointNode NodeId PropertyType Obligatoire

HasProperty Variable BaseSetpointNode NodeId PropertyType Facultative

La Propriété SetpointNode fournit le NodeId du point de consigne utilisé dans le calcul de
l'écart. Dans les cas où l'Alarme est générée par un système sous-jacent et où la Variable
n'est pas dans l'AddressSpace, un NodeId NULL doit être fourni.

La Propriété BaseSetpointNode fournit le NodeId du point de consigne original ou de base. La
valeur de ce nœud est la valeur du point de consigne auquel une AdaptiveAlarm peut être
réinitialisée s'il est nécessaire que toute modification algorithmique soit rejetée. La valeur de
ce nœud contient généralement le point de consigne configuré à l'origine.

5.8.15.3 ExclusiveDeviationAlarmType

L'ExclusiveDeviationAlarmType est utilisé avec plusieurs limites mutuellement exclusives. Il
est défini de façon formelle dans le Tableau 66.

Tableau 66 – Définition d'ExclusiveDeviationAlarmType

Attribut Valeur

BrowseName ExclusiveDeviationAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Hérite des Propriétés de l'ExclusiveLimitAlarmType défini en 5.8.12.3.

HasProperty Variable SetpointNode NodeId PropertyType Obligatoire

HasProperty Variable BaseSetpointNode NodeId PropertyType Facultative

La Propriété SetpointNode fournit le NodeId du point de consigne utilisé dans le calcul de
l'Ecart. Si cette Variable n'est pas dans l'AddressSpace, un NodeId NULL doit être fourni.

La Propriété BaseSetpointNode fournit le NodeId du point de consigne original ou de base. La
valeur de ce nœud est la valeur du point de consigne auquel une AdaptiveAlarm peut être
réinitialisée s'il est nécessaire que toute modification algorithmique soit rejetée. La valeur de
ce nœud contient généralement le point de consigne configuré à l'origine.

5.8.16 Alarmes de vitesse de variation

5.8.16.1 Vue d'ensemble

Une Alarme de Vitesse de Variation est communément utilisée pour rapporter une variation
inhabituelle ou une absence de variation d'une valeur mesurée liée à la vitesse à laquelle la
valeur a changé. L'Alarme de Vitesse de Variation devient active lorsque la vitesse de
variation d'une valeur dépasse ou devient inférieure à une limite définie.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 204 – IEC 62541-9:2020 © IEC 2020

Une Vitesse de Variation est mesurée en une certaine unité de temps (secondes ou minutes,
par exemple) et une certaine unité de mesure (pourcentage ou mètre, par exemple). Par
exemple, un réservoir peut avoir une limite High pour la Vitesse de Variation de son niveau
(mesuré en mètres) qui serait de quatre mètres par minute. Si le niveau du réservoir varie à
une vitesse supérieure à quatre mètres par minute, il y a passage dans le sous-état High.

5.8.16.2 NonExclusiveRateOfChangeAlarmType

Le NonExclusiveRateOfChangeAlarmType est une Alarme de niveau spéciale utilisée avec un
ou plusieurs états non exclusifs. Si, par exemple, il est nécessaire de maintenir les états High
et HighHigh comme actifs en même temps, il convient d'utiliser cet AlarmConditionType.

Le NonExclusiveRateOfChangeAlarmType est fondé sur le NonExclusiveLimitAlarmType. Il
est défini de façon formelle dans le Tableau 67.

Tableau 67 – Définition de NonExclusiveRateOfChangeAlarmType

Attribut Valeur

BrowseName NonExclusiveRateOfChangeAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du NonExclusiveLimitAlarmType défini en 5.8.13.

HasProperty Variable EngineeringUnits EUInformation PropertyType Facultative

EngineeringUnits donne les unités techniques associées aux valeurs des limites. En l'absence
de cette donnée, l'Unité technique admise par hypothèse est la même que l'Unité associée à
la variable parente par seconde; par exemple, si la variable parente est le mètre, l'unité est le
mètre/seconde.

5.8.16.3 ExclusiveRateOfChangeAlarmType

L'ExclusiveRateOfChangeAlarmType est utilisé avec plusieurs limites mutuellement
exclusives. Il est défini de façon formelle dans le Tableau 68.

Tableau 68 – Définition d'ExclusiveRateOfChangeAlarmType

Attribut Valeur

BrowseName ExclusiveRateOfChangeAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Hérite des Propriétés de l'ExclusiveLimitAlarmType défini en 5.8.12.3.

HasProperty Variable EngineeringUnits EUInformation PropertyType Facultative

EngineeringUnits donne les unités techniques associées aux valeurs des limites. En l'absence
de cette donnée, l'Unité technique admise par hypothèse est la même que l'Unité associée à
la variable parente par seconde; par exemple, si la variable parente est le mètre, l'unité est le
mètre/seconde.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 205 –

5.8.17 Alarmes discrètes

5.8.17.1 DiscreteAlarmType

Le DiscreteAlarmType permet de classer les Types en Conditions d'Alarme où l'entrée pour
l'Alarme ne peut prendre qu'un certain nombre de valeurs possibles (par exemple True/False,
running/stopped/terminating). Le DiscreteAlarmType dont les sous-types sont définis dans le
présent document est représenté à la Figure 20. Il est défini de façon formelle dans le
Tableau 69.

AlarmCondition
Type

OffNormalAlarmType

DiscreteAlarmType

TripAlarmType

LimitAlarmType

CertificateExpirationType

SystemOffNormalAlarmType

IEC

Figure 20 – Hiérarchie du DiscreteAlarmType

Tableau 69 – Définition de DiscreteAlarmType

Attribut Valeur

BrowseName DiscreteAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type de l'AlarmConditionType défini en 5.8.2.

HasSubtype ObjectType OffNormalAlarmType Défini en 5.8.15

5.8.17.2 OffNormalAlarmType

L'OffNormalAlarmType est une spécialisation du DiscreteAlarmType visant à représenter une
Condition discrète qui est jugée comme anormale. Il est défini de façon formelle dans le
Tableau 70. Ce sous-type est habituellement utilisé pour indiquer qu'une valeur discrète est
un état d'Alarme; il est actif tant que la valeur anormale est présente.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 206 – IEC 62541-9:2020 © IEC 2020

Tableau 70 – Définition d'OffNormalAlarmType

Attribut Valeur

BrowseName OffNormalAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du DiscreteAlarmType défini en 5.8.17.1

HasSubtype ObjectType TripAlarmType Défini en 5.8.17.4

HasSubtype ObjectType SystemOffNormalAlarmType Défini en 5.8.17.3

HasProperty Variable NormalState NodeId PropertyType Obligatoire

La Propriété NormalState est une Propriété qui désigne une Variable ayant une valeur qui
correspond à l'une des valeurs possibles de la Variable désignée par la Propriété InputNode,
où la valeur de Variable de la Propriété NormalState correspond à la valeur jugée comme
étant l'état normal de la Variable désignée par la Propriété InputNode. Lorsque la valeur de la
Variable référencée par la Propriété InputNode n'est pas égale à la valeur de la Propriété
NormalState, l'Alarme est Active. Si cette Variable n'est pas dans l'AddressSpace, un NodeId
NULL doit être fourni.

5.8.17.3 SystemOffNormalAlarmType

Cette Condition permet à un Serveur d'indiquer qu'un système sous-jacent qui fournit des
informations d'Alarme présente un problème de communication, et que le Serveur peut avoir
un état de Condition non valide ou incomplet dans l'Abonnement. Sa représentation dans
l'AddressSpace est définie de façon formelle dans le Tableau 71.

Tableau 71 – Définition de SystemOffNormalAlarmType

Attribut Valeur

BrowseName SystemOffNormalAlarmType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasSubtype ObjectType CertificateExpirationAlarmType Défini en 5.8.17.7

Sous-type de l'OffNormalAlarmType, c'est-à-dire que ses Références HasProperty se rapportent aux mêmes Nœuds.

5.8.17.4 TripAlarmType

Le TripAlarmType est une spécialisation de l'OffNormalAlarmType visant à représenter une
Condition de déclenchement d'un équipement. L'Alarme devient active lorsque l'élément
d'équipement surveillé fait l'expérience d'un défaut anormal tel que l'arrêt moteur en raison
d'une condition de surcharge. Il est défini de façon formelle dans le Tableau 72. Ce Type est
principalement utilisé pour la catégorisation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 207 –

Tableau 72 – Définition de TripAlarmType

Attribut Valeur

BrowseName TripAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type de l'OffNormalAlarmType défini en 5.8.17.2.

5.8.17.5 InstrumentDiagnosticAlarmType

L'InstrumentDiagnosticAlarmType est une spécialisation de l'OffNormalAlarmType visant à
représenter un défaut dans un appareil de terrain. L'Alarme devient active lorsque l'appareil
surveillé fait l'expérience d'un défaut tel que la défaillance d'un capteur. Il est défini de façon
formelle dans le Tableau 73. Ce Type est principalement utilisé pour la catégorisation.

Tableau 73 – Définition d'InstrumentDiagnosticAlarmType

Attribut Valeur

BrowseName InstrumentDiagnosticAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type de l'OffNormalAlarmType défini en 5.8.17.2.

5.8.17.6 SystemDiagnosticAlarmType

Le SystemDiagnosticAlarmType est une spécialisation de l'OffNormalAlarmType visant à
représenter un défaut dans un système ou sous-système. L'Alarme devient active lorsque le
système surveillé fait l'expérience d'un défaut. Il est défini de façon formelle dans le
Tableau 74. Ce Type est principalement utilisé pour la catégorisation.

Tableau 74 – Définition de SystemDiagnosticAlarmType

Attribut Valeur

BrowseName SystemDiagnosticAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type de l'OffNormalAlarmType défini en 5.8.17.2.

5.8.17.7 CertificateExpirationAlarmType

Ce SystemOffNormalAlarmType est levé par le Serveur lorsque le Certificat du Serveur est
dans l'ExpirationLimit de l'expiration. Cette Alarme revient automatiquement à la normale
lorsque le certificat est mis à jour.

Le SystemOffNormalAlarmType est défini de façon formelle dans le Tableau 75.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 208 – IEC 62541-9:2020 © IEC 2020

Tableau 75 – Définition de CertificateExpirationAlarmType

Attribut Valeur

BrowseName CertificateExpirationAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du SystemOffNormalAlarmType défini en 5.8.17.3

HasProperty Variable ExpirationDate DateTime PropertyType Obligatoire

HasProperty Variable ExpirationLimit Durée PropertyType Facultative

HasProperty Variable CertificateType NodeId PropertyType Obligatoire

HasProperty Variable Certificate ByteString PropertyType Obligatoire

ExpirationDate exprime la date et l'heure auxquelles ce certificat expire.

ExpirationLimit exprime l'intervalle de temps avant l'ExpirationDate à laquelle l'Alarme se
déclenche. Il doit s'agir d'un nombre positif. Si la propriété n'est pas fournie, une valeur par
défaut de 2 semaines doit être utilisée.

CertificateType: voir la Partie 12 pour la définition de CertificateType.

Certificate correspond au certificat sur le point d'expirer.

5.8.18 DiscrepancyAlarmType

Le DiscrepancyAlarmType est couramment utilisé pour rapporter une action qui ne s'est pas
produite sur une plage de temps prévue.

Le DiscrepancyAlarmType est fondé sur l'AlarmConditionType. Il est défini de façon formelle
dans le Tableau 76.

Tableau 76 – Définition de DiscrepancyAlarmType

Attribut Valeur

BrowseName DiscrepancyAlarmType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type de l'AlarmConditionType défini en 5.8.2.

HasProperty Variable TargetValueNode NodeId PropertyType Obligatoire

HasProperty Variable ExpectedTime Durée PropertyType Obligatoire

HasProperty Variable Tolerance Double PropertyType Facultative

La Propriété TargetValueNode fournit le NodeId de la Variable utilisée pour la valeur cible.

La Propriété ExpectedTime fournit la Durée pendant laquelle la valeur vers laquelle a pointé
l'InputNode doit être égale à la valeur spécifiée par le TargetValueNode (ou se trouver dans
la plage de Tolérance, le cas échéant).

La Propriété Tolerance est une valeur qui peut être ajoutée ou retirée de la valeur du
TargetValueNode, fournissant une plage dans laquelle la valeur peut se trouver sans générer
l'Alarme.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 209 –

Un DiscrepancyAlarmType peut être utilisé pour indiquer qu'un moteur n'a pas répondu à une
demande de démarrage dans un délai donné, ou qu'une valeur de processus n'a pas atteint
une valeur donnée après la modification d'un point de consigne dans un intervalle de temps
donné.

Le DiscrepancyAlarmType doit revenir à la normale lorsque la valeur a atteint la valeur cible.

5.9 ConditionClasses

5.9.1 Vue d'ensemble

Les Conditions sont utilisées dans des domaines d'application spécifiques tels que la
maintenance, le système ou le processus. La hiérarchie de ConditionClass est utilisée pour
spécifier les domaines et elle est orthogonale à la hiérarchie du ConditionType. La Propriété
ConditionClassId du ConditionType est utilisée pour affecter une Condition à une
ConditionClass. Les Clients peuvent utiliser cette Propriété pour filtrer les classes
essentielles. OPC UA définit l'ObjectType de base pour toutes les ConditionClasses et un jeu
de classes communes utilisées dans de nombreux secteurs. La Figure 21 décrit de manière
informelle la hiérarchie des Types de ConditionClasses définis dans le présent document.

Défini dans l'IEC 62541-5
BaseObjectType

BaseConditionClass
Type

ProcessConditionClass
Type

MaintenanceConditionClass
Type

SystemConditionClass
Type

IEC

Figure 21 – Hiérarchie des Types de ConditionClasses

Les ConditionClasses ne sont pas des représentations d'Objets dans le système sous-jacent
et n'existent donc que comme Nœuds de Type dans l'AddressSpace.

5.9.2 BaseConditionClassType

Le BaseConditionClassType est utilisé comme une classe chaque fois qu'une Condition ne
peut pas être affectée à une classe plus concrète. Il convient que les Serveurs utilisent une
ConditionClass plus spécifique, si possible. Tous les Types de ConditionClasses sont obtenus
à partir du BaseConditionClassType. Il est défini de façon formelle dans le Tableau 77.

Tableau 77 – Définition de BaseConditionClassType

Attribut Valeur

BrowseName BaseConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseObjectType défini dans l'IEC 62541-5.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 210 – IEC 62541-9:2020 © IEC 2020

5.9.3 ProcessConditionClassType

Le ProcessConditionClassType permet de classer des Conditions relatives au processus lui-
même. Les exemples de processus sont les suivants: système de commande d'une chaudière
ou instrumentation associée à une usine chimique ou une machine à papier. Le
ProcessConditionClassType est défini de façon formelle dans le Tableau 78.

Tableau 78 – Définition de ProcessConditionClassType

Attribut Valeur

BrowseName ProcessConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition Modelling
Rule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.9.4 MaintenanceConditionClassType

Le MaintenanceConditionClassType permet de classer des Conditions relatives à la
maintenance. Les exemples de maintenance sont les suivants: systèmes de gestion de l'actif
ou conditions, qui se produisent avec les systèmes de commande de processus, associés à
l'étalonnage des équipements. Le MaintenanceConditionClassType est défini de façon
formelle dans le Tableau 79. Aucune définition supplémentaire n'est fournie ici. Il est prévu
que d'autres groupes de développement de normes définissent les sous-types spécifiques au
domaine.

Tableau 79 – Définition de MaintenanceConditionClassType

Attribut Valeur

BrowseName MaintenanceConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.9.5 SystemConditionClassType

Le SystemConditionClassType permet de classer des Conditions relatives au Système. Il est
défini de façon formelle dans le Tableau 80. Les Conditions système se produisent dans le
processus du système de commande ou de surveillance. Les exemples d'éléments liés au
système peuvent inclure l'espace disque disponible sur un ordinateur, la disponibilité des
supports d'archivage, les problèmes de charge de réseau ou une erreur de contrôleur.
Aucune définition supplémentaire n'est fournie ici. Il est prévu que d'autres groupes de
développement de normes ou fournisseurs définissent les sous-types spécifiques au domaine.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 211 –

Tableau 80 – Définition de SystemConditionClassType

Attribut Valeur

BrowseName SystemConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.9.6 SafetyConditionClassType

Le SafetyConditionClassType permet de classer des Conditions relatives à la sécurité. Il est
défini de façon formelle dans le Tableau 81.

Les Conditions de sécurité se produisent dans le processus du système de commande ou de
surveillance. Les exemples d'éléments liés à la sécurité peuvent inclure les systèmes d'arrêt
d'urgence ou les systèmes anti-incendie.

Tableau 81 – Définition de SafetyConditionClassType

Attribut Valeur

BrowseName SafetyConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.9.7 HighlyManagedAlarmConditionClassType

Dans les systèmes d'Alarme, certaines Alarmes peuvent être classées comme des Alarmes à
gestion intensive. Cette classe d'Alarmes exige une gestion particulière qui varie selon les
exigences individuelles. Elle peut exiger un acquittement individuel ou ne pas autoriser la
suppression de comportements particuliers. Le HighlyManagedAlarmConditionClassType
permet de classer des Conditions en tant qu'Alarmes à gestion intensive. Il est défini de façon
formelle dans le Tableau 82.

Tableau 82 – Définition de HighlyManagedAlarmConditionClassType

Attribut Valeur

BrowseName HighlyManagedAlarmConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.9.8 TrainingConditionClassType

Le TrainingConditionClassType permet de classer des Conditions relatives à un système ou à
des exercices de formation. Il est défini de façon formelle dans le Tableau 83. Ces Conditions
se produisent généralement dans un système de formation ou sont générées dans le cadre
d'une simulation pour un exercice de formation. Les Conditions de formation peuvent être des
conditions de processus ou de système. Il est prévu que d'autres groupes de développement
de normes ou fournisseurs définissent les sous-types spécifiques au domaine.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 212 – IEC 62541-9:2020 © IEC 2020

Tableau 83 – Définition de TrainingConditionClassType

Attribut Valeur

BrowseName TrainingConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.9.9 StatisticalConditionClassType

Le StatisticalConditionClassType permet de classer les Conditions associées fondées sur des
calculs statistiques. Il est défini de façon formelle dans le Tableau 84. Ces Conditions sont
générées dans le cadre d'une analyse statistique. Elles peuvent être de tout type parmi
plusieurs types d'Alarmes.

Tableau 84 – Définition de StatisticalConditionClassType

Attribut Valeur

BrowseName StatisticalConditionClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.9.10 TestingConditionSubClassType

Le TestingConditionSubClassType permet de classer des Conditions relatives aux essais d'un
système d'Alarme ou d'une fonction d'Alarme. Il est défini de façon formelle dans le
Tableau 85. Les Conditions d'essai peuvent inclure une condition visant à soumettre à l'essai
une indication d'alarme telle qu'un avertisseur sonore ou autre. Elles peuvent également être
utilisées pour reclasser de manière temporaire une Condition afin de vérifier les temps de
réponse ou la logique de suppression. Il est prévu que d'autres groupes de développement de
normes ou fournisseurs définissent les sous-types spécifiques au domaine.

Tableau 85 – Définition de TestingConditionSubClassType

Attribut Valeur

BrowseName TestingConditionSubClassType

IsAbstract True

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type du BaseConditionClassType défini en 5.9.2.

5.10 Evénements d'Audit

5.10.1 Vue d'ensemble

Les sous-types suivants de l'AuditUpdateMethodEventType sont générés en réponse aux
Méthodes définies dans le présent document. Ils sont représentés à la Figure 22.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 213 –

Défini dans l'IEC 62541-5AuditEventType

AuditConditionComment
EventType

AuditCondition
EventType

AuditUpdateMethod
EventType

AuditConditionAcknowledge
EventType

AuditConditionEnable
EventType

AuditConditionShelving
EventType

AuditConditionRespond
EventType

AuditConditionConfirm
EventType

AuditConditionSupress
EventType

AuditConditionSIlence
EventType

AuditConditionOutOf
ServiceEventType

IEC

Figure 22 – Hiérarchie d'AuditEvent

Les AuditConditionEventTypes sont normalement utilisés en réponse à un appel de Méthode.
Cependant, ces Evénements doivent aussi être notifiés si la fonctionnalité d'une telle Méthode
est accomplie par d'autres moyens spécifiques au Serveur. Dans ce cas, la Propriété
SourceName doit contenir une description correcte de ces moyens internes, et il convient de
remplir les autres Propriétés comme décrit pour l'EventType donné.

5.10.2 AuditConditionEventType

Cet EventType permet de subsumer tous les AuditConditionEventTypes. Il est défini de façon
formelle dans le Tableau 86.

Tableau 86 – Définition d'AuditConditionEventType

Attribut Valeur

BrowseName AuditConditionEventType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type de l'AuditUpdateMethodEventType défini dans l'IEC 62541-5.

Les AuditConditionEventTypes héritent de toutes les Propriétés de
l'AuditUpdateMethodEventType défini dans l'IEC 62541-5. A moins qu'un sous-type neutralise
la définition, les Propriétés héritées de la Condition sont utilisées comme défini.

• La Propriété SourceNode héritée doit être remplie avec le ConditionId.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

 – 214 – IEC 62541-9:2020 © IEC 2020

• Le SourceName doit être "Method/" et le nom du Service qui a généré l'Evénement
(par exemple, Disable, Enable, Acknowledge, etc.).

Cet EventType peut être adapté davantage afin de refléter les actions particulières relatives à
la Condition.

5.10.3 AuditConditionEnableEventType

Cet EventType permet d'indiquer un changement de l'état activé d'une instance de Condition.
Il est défini de façon formelle dans le Tableau 87.

Tableau 87 – Définition d'AuditConditionEnableEventType

Attribut Valeur

BrowseName AuditConditionEnableEventType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

Sous-type de l'AuditConditionEventType défini en 5.10.2, c'est-à-dire qu'il hérite des InstanceDeclarations de ce Nœud.

Le SourceName doit indiquer "Method/Enable" ou "Method/Disable". Si l'Evénement d'audit
n'est pas le résultat d'un appel de Méthode, mais est dû à une action interne du Serveur, le
SourceName doit refléter "Enable" ou "Disable"; il peut être précédé d'une description
appropriée telle que "Internal/Enable" ou "Remote/Enable".

5.10.4 AuditConditionCommentEventType

Cet EventType permet de consigner une action AddComment. Il est défini de façon formelle
dans le Tableau 88.

Tableau 88 – Définition d'AuditConditionCommentEventType

Attribut Valeur

BrowseName AuditConditionCommentEventType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Obligatoire

HasProperty Variable Comment LocalizedText PropertyType Obligatoire

Sous-type de l'AuditConditionEventType défini en 5.10.2, c'est-à-dire qu'il hérite des InstanceDeclarations de ce Nœud.

Le champ ConditionEventId doit contenir l'identificateur de l'événement pour lequel le
commentaire a été ajouté.

Comment contient le commentaire réel ayant été ajouté.

5.10.5 AuditConditionRespondEventType

Cet EventType permet de consigner une action Respond (voir 5.6). Il est défini de façon
formelle dans le Tableau 89.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

IEC 62541-9:2020 © IEC 2020 – 215 –

Tableau 89 – Définition d'AuditConditionRespondEventType

Attribut Valeur

BrowseName AuditConditionRespondEventType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable SelectedResponse Uint32 PropertyType Obligatoire

Sous-type de l'AuditConditionEventType défini en 5.10.2, c'est-à-dire qu'il hérite des InstanceDeclarations de ce Nœud.

Le champ SelectedResponse doit contenir la réponse qui a été choisie.

5.10.6 AuditConditionAcknowledgeEventType

Cet EventType permet d'indiquer l'acquittement ou la confirmation d'une ou de plusieurs
Conditions. Il est défini de façon formelle dans le Tableau 90.

Tableau 90 – Définition d'AuditConditionAcknowledgeEventType

Attribut Valeur

BrowseName AuditConditionAcknowledgeEventType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Obligatoire

HasProperty Variable Comment LocalizedText PropertyType Obligatoire

Sous-type de l'AuditConditionEventType défini en 5.10.2, c'est-à-dire qu'il hérite des InstanceDeclarations de ce Nœud.

Le champ ConditionEventId doit contenir l'identificateur de l'Evénement acquitté.

Comment contient le commentaire réel ajouté; il peut s'agir d'un commentaire vide ou d'une
valeur NULL.

5.10.7 AuditConditionConfirmEventType

Cet EventType permet de consigner une action Confirm. Il est défini de façon formelle dans le
Tableau 91.

Tableau 91 – Définition d'AuditConditionConfirmEventType

Attribut Valeur

BrowseName AuditConditionConfirmEventType

IsAbstract False

Références NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ConditionEventId ByteString PropertyType Obligatoire

HasProperty Variable Comment LocalizedText PropertyType Obligatoire

Sous-type de l'AuditConditionEventType défini en 5.10.2, c'est-à-dire qu'il hérite des InstanceDeclarations de ce Nœud.

Le champ ConditionEventId doit contenir l'identificateur de l'Evénement confirmé.

Comment contient le commentaire réel ajouté; il peut s'agir d'un commentaire vide ou d'une
valeur NULL.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

54
1-9

:20
20

https://iecnorm.com/api/?name=fb17296691e5e20af924b79afcc7395a

	English
	CONTENTS
	FOREWORD
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviated terms and data types used
	3.1 Terms and definitions
	3.2 Abbreviated terms
	3.3 Data types used

	4 Concepts
	4.1 General
	4.2 Conditions
	4.3 Acknowledgeable Conditions
	4.4 Previous states of Conditions
	4.5 Condition state synchronization
	4.6 Severity, quality, and comment
	4.7 Dialogs
	4.8 Alarms
	4.9 Multiple active states
	4.10 Condition instances in the AddressSpace
	4.11 Alarm and Condition auditing

	5 Model
	5.1 General
	5.2 Two-state state machines
	5.3 ConditionVariable
	5.4 ReferenceTypes
	5.4.1 General
	5.4.2 HasTrueSubState ReferenceType
	5.4.3 HasFalseSubState ReferenceType
	5.4.4 HasAlarmSuppressionGroup ReferenceType
	5.4.5 AlarmGroupMember ReferenceType

	5.5 Condition Model
	5.5.1 General
	5.5.2 ConditionType
	5.5.3 Condition and branch instances
	5.5.4 Disable Method
	5.5.5 Enable Method
	5.5.6 AddComment Method
	5.5.7 ConditionRefresh Method
	5.5.8 ConditionRefresh2 Method

	5.6 Dialog Model
	5.6.1 General
	5.6.2 DialogConditionType
	5.6.3 Respond Method

	5.7 Acknowledgeable Condition Model
	5.7.1 General
	5.7.2 AcknowledgeableConditionType
	5.7.3 Acknowledge Method
	5.7.4 Confirm Method

	5.8 Alarm model
	5.8.1 General
	5.8.2 AlarmConditionType
	5.8.3 AlarmGroupType
	5.8.4 Reset Method
	5.8.5 Silence Method
	5.8.6 Suppress Method
	5.8.7 Unsuppress Method
	5.8.8 RemoveFromService Method
	5.8.9 PlaceInService Method
	5.8.10 ShelvedStateMachineType
	5.8.11 LimitAlarmType
	5.8.12 Exclusive limit types
	5.8.13 NonExclusiveLimitAlarmType
	5.8.14 Level Alarm
	5.8.15 Deviation Alarm
	5.8.16 Rate of change Alarms
	5.8.17 Discrete Alarms
	5.8.18 DiscrepancyAlarmType

	5.9 ConditionClasses
	5.9.1 Overview
	5.9.2 BaseConditionClassType
	5.9.3 ProcessConditionClassType
	5.9.4 MaintenanceConditionClassType
	5.9.5 SystemConditionClassType
	5.9.6 SafetyConditionClassType
	5.9.7 HighlyManagedAlarmConditionClassType
	5.9.8 TrainingConditionClassType
	5.9.9 StatisticalConditionClassType
	5.9.10 TestingConditionSubClassType

	5.10 Audit Events
	5.10.1 Overview
	5.10.2 AuditConditionEventType
	5.10.3 AuditConditionEnableEventType
	5.10.4 AuditConditionCommentEventType
	5.10.5 AuditConditionRespondEventType
	5.10.6 AuditConditionAcknowledgeEventType
	5.10.7 AuditConditionConfirmEventType
	5.10.8 AuditConditionShelvingEventType
	5.10.9 AuditConditionSuppressionEventType
	5.10.10 AuditConditionSilenceEventType
	5.10.11 AuditConditionResetEventType
	5.10.12 AuditConditionOutOfServiceEventType

	5.11 Condition Refresh related Events
	5.11.1 Overview
	5.11.2 RefreshStartEventType
	5.11.3 RefreshEndEventType
	5.11.4 RefreshRequiredEventType

	5.12 HasCondition Reference type
	5.13 Alarm and Condition status codes
	5.14 Expected A&C server behaviours
	5.14.1 General
	5.14.2 Communication problems
	5.14.3 Redundant A&C servers

	6 AddressSpace organisation
	6.1 General
	6.2 EventNotifier and source hierarchy
	6.3 Adding Conditions to the hierarchy
	6.4 Conditions in InstanceDeclarations
	6.5 Conditions in a VariableType

	7 System State and alarms
	7.1 Overview
	7.2 HasEffectDisable
	7.3 HasEffectEnable
	7.4 HasEffectSuppress
	7.5 HasEffectUnsuppressed

	8 Alarm metrics
	8.1 Overview
	8.2 AlarmMetricsType
	8.3 AlarmRateVariableType
	8.4 Reset Method

	Annexes
	Annex A (informative) Recommended localized names
	A.1 Recommended state names for TwoState variables
	A.1.1 LocaleId "en"
	A.1.2 LocaleId "de"
	A.1.3 LocaleId "fr"

	A.2 Recommended dialog response options

	Annex B (informative) Examples
	B.1 Examples for Event sequences from Condition instances
	B.1.1 Overview
	B.1.2 Server maintains current state only
	B.1.3 Server maintains previous states

	B.2 AddressSpace examples

	Annex C (informative) Mapping to EEMUA
	Annex D (informative) Mapping from OPC A&E to OPC UA A&C
	D.1 Overview
	D.2 Alarms and Events COM UA wrapper
	D.2.1 Event Areas
	D.2.2 Event sources
	D.2.3 Event categories
	D.2.4 Event attributes
	D.2.5 Event subscriptions
	D.2.6 Condition instances
	D.2.7 Condition Refresh

	D.3 Alarms and Events COM UA proxy
	D.3.1 General
	D.3.2 Server status mapping
	D.3.3 Event Type mapping
	D.3.4 Event category mapping
	D.3.5 Event Category attribute mapping
	D.3.6 Event Condition mapping
	D.3.7 Browse mapping
	D.3.8 Qualified names
	D.3.9 Subscription filters

	Annex E (informative) IEC 62682 Mapping
	E.1 Overview
	E.2 Terms
	E.3 Alarm records and State indications

	Annex F (informative) System State
	F.1 Overview
	F.2 SystemStateStateMachineType

	Bibliography
	Figures
	Figure 1 – Base Condition state model
	Figure 2 – AcknowledgeableConditions state model
	Figure 3 – Acknowledge state model
	Figure 4 – Confirmed Acknowledge state model
	Figure 5 – Alarm state machine model
	Figure 6 – Typical Alarm Timeline example
	Figure 7 – Multiple active states example
	Figure 8 – ConditionType hierarchy
	Figure 9 – Condition model
	Figure 10 – DialogConditionType overview
	Figure 11 – AcknowledgeableConditionType overview
	Figure 12 – AlarmConditionType Hierarchy Model
	Figure 13 – Alarm Model
	Figure 14 – Shelve state transitions
	Figure 15 – ShelvedStateMachineType model
	Figure 16 – LimitAlarmType
	Figure 17 – ExclusiveLimitStateMachineType
	Figure 18 – ExclusiveLimitAlarmType
	Figure 19 – NonExclusiveLimitAlarmType
	Figure 20 – DiscreteAlarmType Hierarchy
	Figure 21 – ConditionClass type hierarchy
	Figure 22 – AuditEvent hierarchy
	Figure 23 – Refresh Related Event Hierarchy
	Figure 24 – Typical HasNotifier Hierarchy
	Figure 25 – Use of HasCondition in a HasNotifier hierarchy
	Figure 26 – Use of HasCondition in an InstanceDeclaration
	Figure 27 – Use of HasCondition in a VariableType
	Figure B.1 – Single state example
	Figure B.2 – Previous state example
	Figure B.3 – HasCondition used with Condition instances
	Figure B.4 – HasCondition reference to a Condition type
	Figure B.5 – HasCondition used with an instance declaration
	Figure D.1 – The type model of a wrapped COM A&E server
	Figure D.2 – Mapping UA Event Types to COM A&E Event Types
	Figure D.3 – Example mapping of UA Event Types to COM A&E categories
	Figure D.4 – Example mapping of UA Event Types to A&E categories with attributes
	Figure F.1 – SystemState transitions
	Figure F.2 – SystemStateStateMachineType Model

	Tables
	Table 1 – Parameter types defined in IEC 62541-3
	Table 2 – Parameter types defined in IEC 62541-4
	Table 3 – TwoStateVariableType definition
	Table 4 – ConditionVariableType definition
	Table 5 – HasTrueSubState ReferenceType
	Table 6 – HasFalseSubState ReferenceType
	Table 7 – HasAlarmSuppressionGroup ReferenceType
	Table 8 – AlarmGroupMember ReferenceType
	Table 9 – ConditionType definition
	Table 10 – SimpleAttributeOperand
	Table 11 – Disable result codes
	Table 12 – Disable Method AddressSpace definition
	Table 13 – Enable result codes
	Table 14 – Enable Method AddressSpace definition
	Table 15 – AddComment arguments
	Table 16 – AddComment result codes
	Table 17 – AddComment Method AddressSpace definition
	Table 18 – ConditionRefresh parameters
	Table 19 – ConditionRefresh result codes
	Table 20 – ConditionRefresh Method AddressSpace definition
	Table 21 – ConditionRefresh2 parameters
	Table 22 – ConditionRefresh2 result codes
	Table 23 – ConditionRefresh2 Method AddressSpace definition
	Table 24 – DialogConditionType definition
	Table 25 – Respond parameters
	Table 26 – Respond Result Codes
	Table 27 – Respond Method AddressSpace definition
	Table 28 – AcknowledgeableConditionType definition
	Table 29 – Acknowledge parameters
	Table 30 – Acknowledge result codes
	Table 31 – Acknowledge Method AddressSpace definition
	Table 32 – Confirm Method parameters
	Table 33 – Confirm result codes
	Table 34 – Confirm Method AddressSpace definition
	Table 35 – AlarmConditionType definition
	Table 36 – AlarmGroupType definition
	Table 37 – Silence result codes
	Table 38 – Reset Method AddressSpace definition
	Table 39 – Silence result codes
	Table 40 – Silence Method AddressSpace definition
	Table 41 – Suppress result codes
	Table 42 – Suppress Method AddressSpace definition
	Table 43 – Unsuppress result codes
	Table 44 – Unsuppress Method AddressSpace definition
	Table 45 – RemoveFromService result codes
	Table 46 – RemoveFromService Method AddressSpace definition
	Table 47 – PlaceInService result codes
	Table 48 – PlaceInService Method AddressSpace definition
	Table 49 –ShelvedStateMachineType definition
	Table 50 – ShelvedStateMachineType transitions
	Table 51 – Unshelve result codes
	Table 52 – Unshelve Method AddressSpace definition
	Table 53 – TimedShelve parameters
	Table 54 – TimedShelve result codes
	Table 55 – TimedShelve Method AddressSpace definition
	Table 56 – OneShotShelve result codes
	Table 57 – OneShotShelve Method AddressSpace definition
	Table 58 – LimitAlarmType definition
	Table 59 – ExclusiveLimitStateMachineType definition
	Table 60 – ExclusiveLimitStateMachineType transitions
	Table 61 – ExclusiveLimitAlarmType definition
	Table 62 – NonExclusiveLimitAlarmType definition
	Table 63 – NonExclusiveLevelAlarmType definition
	Table 64 – ExclusiveLevelAlarmType definition
	Table 65 – NonExclusiveDeviationAlarmType definition
	Table 66 – ExclusiveDeviationAlarmType definition
	Table 67 – NonExclusiveRateOfChangeAlarmType definition
	Table 68 – ExclusiveRateOfChangeAlarmType definition
	Table 69 – DiscreteAlarmType definition
	Table 70 – OffNormalAlarmType Definition
	Table 71 – SystemOffNormalAlarmType definition
	Table 72 – TripAlarmType definition
	Table 73 – InstrumentDiagnosticAlarmType definition
	Table 74 – SystemDiagnosticAlarmType definition
	Table 75 – CertificateExpirationAlarmType definition
	Table 76 – DiscrepancyAlarmType definition
	Table 77 – BaseConditionClassType definition
	Table 78 – ProcessConditionClassType definition
	Table 79 – MaintenanceConditionClassType definition
	Table 80 – SystemConditionClassType definition
	Table 81 – SafetyConditionClassType definition
	Table 82 – HighlyManagedAlarmConditionClassType definition
	Table 83 – TrainingConditionClassType definition
	Table 84 – StatisticalConditionClassType definition
	Table 85 – TestingConditionSubClassType definition
	Table 86 – AuditConditionEventType definition
	Table 87 – AuditConditionEnableEventType definition
	Table 88 – AuditConditionCommentEventType definition
	Table 89 – AuditConditionRespondEventType definition
	Table 90 – AuditConditionAcknowledgeEventType definition
	Table 91 – AuditConditionConfirmEventType definition
	Table 92 – AuditConditionShelvingEventType definition
	Table 93 – AuditConditionSuppressionEventType definition
	Table 94 – AuditConditionSilenceEventType definition
	Table 95 – AuditConditionResetEventType definition
	Table 96 – AuditConditionOutOfServiceEventType definition
	Table 97 – RefreshStartEventType definition
	Table 98 – RefreshEndEventType definition
	Table 99 – RefreshRequiredEventType definition
	Table 100 – HasCondition ReferenceType
	Table 101 – Alarm & Condition result codes
	Table 102 – HasEffectDisable ReferenceType
	Table 103 – HasEffectEnable ReferenceType
	Table 104 – HasEffectSuppress ReferenceType
	Table 105 – HasEffectUnsuppress ReferenceType
	Table 106 – AlarmMetricsType Definition
	Table 107 – AlarmRateVariableType definition
	Table 108 – Suppress result codes
	Table 109 – Reset Method AddressSpace definition
	Table A.1 – Recommended state names for LocaleId "en"
	Table A.2 – Recommended display names for LocaleId "en"
	Table A.3 – Recommended state names for LocaleId "de"
	Table A.4 – Recommended display names for LocaleId "de"
	Table A.5 – Recommended state names for LocaleId "fr"
	Table A.6 – Recommended display names for LocaleId "fr"
	Table A.7 – Recommended dialog response options
	Table B.1 – Example of a Condition that only keeps the latest state
	Table B.2 – Example of a Condition that maintains previous states via branches
	Table C.1 – EEMUA Terms
	Table D.1 – Mapping from standard Event categories to OPC UA Event types
	Table D.2 – Mapping from ONEVENTSTRUCT fields to UA BaseEventType Variables
	Table D.3 – Mapping from ONEVENTSTRUCT fields to UA AuditEventType Variables
	Table D.4 – Mapping from ONEVENTSTRUCT fields to UA AlarmType Variables
	Table D.5 – Event category attribute mapping table
	Table E.1 – IEC 62682 Mapping
	Table F.1 – SystemStateStateMachineType definition
	Table F.2 – SystemStateStateMachineType transitions

	Français
	SOMMAIRE
	1 Domaine d'application
	2 Références normatives
	3 Termes, définitions, termes abrégés et types de données utilisés
	3.1 Termes et définitions
	3.2 Termes abrégés
	3.3 Types de données utilisés

	4 Concepts
	4.1 Généralités
	4.2 Conditions
	4.3 Conditions acquittables
	4.4 Etats antérieurs des Conditions
	4.5 Synchronisation des états d'une condition
	4.6 Sévérité, qualité et commentaire
	4.7 Dialogues
	4.8 Alarmes
	4.9 Etats actifs multiples
	4.10 Instances de Condition dans l'AddressSpace
	4.11 Conduite d'audits pour les Alarmes et les Conditions

	5 Modèle
	5.1 Généralités
	5.2 Diagrammes d'états à deux états
	5.3 ConditionVariable
	5.4 ReferenceTypes
	5.4.1 Généralités
	5.4.2 ReferenceType HasTrueSubState
	5.4.3 ReferenceType HasFalseSubState
	5.4.4 ReferenceType HasAlarmSuppressionGroup
	5.4.5 ReferenceType AlarmGroupMember

	5.5 Modèle de Condition
	5.5.1 Généralités
	5.5.2 ConditionType
	5.5.3 Instances de Condition et de branche
	5.5.4 Méthode Disable
	5.5.5 Méthode Enable
	5.5.6 Méthode AddComment
	5.5.7 Méthode ConditionRefresh
	5.5.8 Méthode ConditionRefresh2

	5.6 Modèle de Dialogue
	5.6.1 Généralités
	5.6.2 DialogConditionType
	5.6.3 Méthode Respond

	5.7 Modèle de Condition acquittable
	5.7.1 Généralités
	5.7.2 AcknowledgeableConditionType
	5.7.3 Méthode Acknowledge
	5.7.4 Méthode Confirm

	5.8 Modèle d'Alarme
	5.8.1 Généralités
	5.8.2 AlarmConditionType
	5.8.3 AlarmGroupType
	5.8.5 Méthode Silence
	5.8.6 Méthode Suppress
	5.8.7 Méthode Unsuppress
	5.8.8 Méthode RemoveFromService
	5.8.9 Méthode PlaceInService
	5.8.10 ShelvedStateMachineType
	5.8.11 LimitAlarmType
	5.8.12 Types de limites exclusives
	5.8.13 NonExclusiveLimitAlarmType
	5.8.14 Alarme de niveau
	5.8.15 Alarme d'écart
	5.8.16 Alarmes de vitesse de variation
	5.8.17 Alarmes discrètes
	5.8.18 DiscrepancyAlarmType
	5.8.4 Méthode Reset

	5.9 ConditionClasses
	5.9.1 Vue d'ensemble
	5.9.2 BaseConditionClassType
	5.9.3 ProcessConditionClassType
	5.9.4 MaintenanceConditionClassType
	5.9.5 SystemConditionClassType
	5.9.6 SafetyConditionClassType
	5.9.7 HighlyManagedAlarmConditionClassType
	5.9.8 TrainingConditionClassType
	5.9.9 StatisticalConditionClassType
	5.9.10 TestingConditionSubClassType

	5.10 Evénements d'Audit
	5.10.1 Vue d'ensemble
	5.10.2 AuditConditionEventType
	5.10.3 AuditConditionEnableEventType
	5.10.4 AuditConditionCommentEventType
	5.10.5 AuditConditionRespondEventType
	5.10.6 AuditConditionAcknowledgeEventType
	5.10.7 AuditConditionConfirmEventType
	5.10.8 AuditConditionShelvingEventType
	5.10.9 AuditConditionSuppressionEventType
	5.10.10 AuditConditionSilenceEventType
	5.10.11 AuditConditionResetEventType
	5.10.12 AuditConditionOutOfServiceEventType

	5.11 Evénements relatifs au Rafraîchissement de Condition
	5.11.1 Vue d'ensemble
	5.11.2 RefreshStartEventType
	5.11.3 RefreshEndEventType
	5.11.4 RefreshRequiredEventType

	5.12 Type de référence HasCondition
	5.13 Codes de statut pour les Alarmes et les Conditions
	5.14 Comportements attendus du serveur A&C
	5.14.1 Généralités
	5.14.2 Problèmes de communication
	5.14.3 Serveurs A&C redondants

	6 Organisation de l'AddressSpace
	6.1 Généralités
	6.2 EventNotifier et hiérarchie de source
	6.3 Ajout de Conditions à la hiérarchie
	6.4 Conditions dans les InstanceDeclarations
	6.5 Conditions dans un VariableType

	7 État du système et alarmes
	7.1 Vue d'ensemble
	7.2 HasEffectDisable
	7.3 HasEffectEnable
	7.4 HasEffectSuppress
	7.5 HasEffectUnsuppressed

	8 Mesures d'Alarme
	8.1 Vue d'ensemble
	8.2 AlarmMetricsType
	8.3 AlarmRateVariableType
	8.4 Méthode Reset

	Annexes
	Annexe A (informative) Désignations localisées recommandées
	A.1 Désignations d'états recommandées pour les variables TwoState
	A.1.1 LocaleId "en"
	A.1.2 LocaleId "de"
	A.1.3 LocaleId "fr"

	A.2 Options de réponses recommandées dans les dialogues

	Annexe B (informative) Exemples
	B.1 Exemples pour des séquences d'événements issues d'instances de Condition
	B.1.1 Vue d'ensemble
	B.1.2 Le Serveur maintient seulement l'état courant
	B.1.3 Le Serveur maintient les états antérieurs

	B.2 Exemples d'AddressSpaces

	Annexe C (informative) Mapping avec l'EEMUA
	Annexe D (informative) Mapping d'OPC A&E vers OPC UA A&C
	D.1 Vue d'ensemble
	D.2 Conteneur COM UA d'Alarmes et d'Evénements
	D.2.1 Zones d'événements
	D.2.2 Sources d'événements
	D.2.3 Catégories d'événements
	D.2.4 Attributs d'événements
	D.2.5 Abonnements à des événements
	D.2.6 Instances de Condition
	D.2.7 Rafraîchissement de Condition

	D.3 Proxy COM UA d'Alarmes et d'Evénements
	D.3.1 Généralités
	D.3.2 Mapping de statut de Serveur
	D.3.3 Mapping de types d'événements
	D.3.4 Mapping de catégories d'événements
	D.3.5 Mapping d'attributs de catégories d'événements
	D.3.6 Mapping de Conditions d'Evénements
	D.3.7 Mapping par navigation
	D.3.8 Noms qualifiés
	D.3.9 Filtres d'abonnement

	Annexe E (informative) Mapping avec l'IEC 62682
	E.1 Vue d'ensemble
	E.2 Termes
	E.3 Enregistrements d'Alarmes et indications d'Etat

	Annexe F (informative) État du Système
	F.1 Vue d'ensemble
	F.2 SystemStateStateMachineType

	Bibliographie
	Figures
	Figure 1 – Modèle d'état de base d'une Condition
	Figure 2 – Modèle d'état des AcknowledgeableConditions
	Figure 3 – Modèle d'état d'Acquittement
	Figure 4 – Modèle d'état d'un Acquittement confirmé
	Figure 5 – Modèle de diagramme d'états des alarmes
	Figure 6 – Exemple de Chronologie d'Alarme type
	Figure 7 – Exemple d'états actifs multiples
	Figure 8 – Hiérarchie du ConditionType
	Figure 9 – Modèle de Condition
	Figure 10 – Vue d'ensemble du DialogConditionType
	Figure 11 – Vue d'ensemble de l'AcknowledgeableConditionType
	Figure 12 – Modèle de la hiérarchie d'AlarmConditionType
	Figure 13 – Modèle d'Alarme
	Figure 14 – Transitions d'états de suspension
	Figure 15 – Modèle de ShelvedStateMachineType
	Figure 16 – LimitAlarmType
	Figure 17 – ExclusiveLimitStateMachineType
	Figure 18 – ExclusiveLimitAlarmType
	Figure 19 – NonExclusiveLimitAlarmType
	Figure 20 – Hiérarchie du DiscreteAlarmType
	Figure 21 – Hiérarchie des Types de ConditionClasses
	Figure 22 – Hiérarchie d'AuditEvent
	Figure 23 – Hiérarchie d'événements relatifs au rafraîchissement
	Figure 24 – Hiérarchie HasNotifier type
	Figure 25 – Utilisation de HasCondition dans une hiérarchie HasNotifier
	Figure 26 – Utilisation de HasCondition dans une InstanceDeclaration
	Figure 27 – Utilisation de HasCondition dans un VariableType
	Figure B.1 – Exemple d'état unique
	Figure B.2 – Exemple d'état antérieur
	Figure B.3 – Référence HasCondition utilisée avec des instances de Condition
	Figure B.4 – Référence HasCondition à un type de Condition
	Figure B.5 – Référence HasCondition utilisée avec une déclaration d'instance
	Figure D.1 – Modèle de type d'un Serveur COM A&E contenu
	Figure D.2 – Mapping des types d'Evénements UA avec les types d'Événements COM A&E
	Figure D.3 – Exemple de mapping des types d'Evénements UA avec les catégories COM A&E
	Figure D.4 – Exemple de mapping des types d'Evénements UA avec les catégories A&E avec attributs
	Figure F.1 – Transitions du SystemState
	Figure F.2 – Modèle de SystemStateStateMachineType

	Tableaux
	Tableau 1 – Types de paramètres définis dans l'IEC 62541-3
	Tableau 2 – Types de paramètres définis dans l'IEC 62541-4
	Tableau 3 – Définition de TwoStateVariableType
	Tableau 4 – Définition de ConditionVariableType
	Tableau 5 – ReferenceType HasTrueSubState
	Tableau 6 – ReferenceType HasFalseSubState
	Tableau 7 – ReferenceType HasAlarmSuppressionGroup
	Tableau 8 – ReferenceType AlarmGroupMember
	Tableau 9 – Définition de ConditionType
	Tableau 10 – SimpleAttributeOperand
	Tableau 11 – Codes de résultats de la Méthode Disable
	Tableau 12 – Définition de l'AddressSpace pour la Méthode Disable
	Tableau 13 – Codes de résultats de la Méthode Enable
	Tableau 14 – Définition de l'AddressSpace pour la Méthode Enable
	Tableau 15 – Arguments de la Méthode AddComment
	Tableau 16 – Codes de résultats de la Méthode AddComment
	Tableau 17 – Définition de l'AddressSpace pour la Méthode AddComment
	Tableau 18 – Paramètres de la Méthode ConditionRefresh
	Tableau 19 – Codes de résultats de la Méthode ConditionRefresh
	Tableau 20 – Définition de l'AddressSpace pour la Méthode ConditionRefresh
	Tableau 21 – Paramètres de la Méthode ConditionRefresh2
	Tableau 22 – Codes de résultats de la Méthode ConditionRefresh2
	Tableau 23 – Définition de l'AddressSpace pour la Méthode ConditionRefresh2
	Tableau 24 – Définition de DialogConditionType
	Tableau 25 – Paramètres de la Méthode Respond
	Tableau 26 – Codes de résultats de la Méthode Respond
	Tableau 27 – Définition de l'AddressSpace pour la Méthode Respond
	Tableau 28 – Définition d'AcknowledgeableConditionType
	Tableau 29 – Paramètres de la Méthode Acknowledge
	Tableau 30 – Codes de résultats de la Méthode Acknowledge
	Tableau 31 – Définition de l'AddressSpace pour la Méthode Acknowledge
	Tableau 32 – Paramètres de la Méthode Confirm
	Tableau 33 – Codes de résultats de la Méthode Confirm
	Tableau 34 – Définition de l'AddressSpace pour la Méthode Confirm
	Tableau 35 – Définition d'AlarmConditionType
	Tableau 36 – Définition d'AlarmGroupType
	Tableau 37 – Codes de résultats de la Méthode Reset
	Tableau 38 – Définition de l'AddressSpace pour la Méthode Reset
	Tableau 39 – Codes de résultats de la Méthode Silence
	Tableau 40 – Définition de l'AddressSpace pour la Méthode Silence
	Tableau 41 – Codes de résultats de la Méthode Suppress
	Tableau 42 – Définition de l'AddressSpace pour la Méthode Suppress
	Tableau 43 – Codes de résultats de la Méthode Unsuppress
	Tableau 44 – Définition de l'AddressSpace pour la Méthode Unsuppress
	Tableau 45 – Codes de résultats de la Méthode RemoveFromService
	Tableau 46 – Définition de l'AddressSpace pour la Méthode RemoveFromService
	Tableau 47 – Codes de résultats de la Méthode PlaceInService
	Tableau 48 – Définition de l'AddressSpace pour la Méthode PlaceInService
	Tableau 49 – Définition de ShelvedStateMachineType
	Tableau 50 – Transitions de ShelvedStateMachineType
	Tableau 51 – Codes de résultat de la Méthode Unshelve
	Tableau 52 – Définition de l'AddressSpace pour la Méthode Unshelve
	Tableau 53 – Paramètres de la Méthode TimedShelve
	Tableau 54 – Codes de résultats de la Méthode TimedShelve
	Tableau 55 – Définition de l'AddressSpace pour la Méthode TimedShelve
	Tableau 56 – Codes de résultats de la Méthode OneShotShelve
	Tableau 57 – Définition de l'AddressSpace pour la Méthode OneShotShelve
	Tableau 58 – Définition de LimitAlarmType
	Tableau 59 – Définition d'ExclusiveLimitStateMachineType
	Tableau 60 – Transitions d'ExclusiveLimitStateMachineType
	Tableau 61 – Définition d'ExclusiveLimitAlarmType
	Tableau 62 – Définition de NonExclusiveLimitAlarmType
	Tableau 63 – Définition de NonExclusiveLevelAlarmType
	Tableau 64 – Définition d'ExclusiveLevelAlarmType
	Tableau 65 – Définition de NonExclusiveDeviationAlarmType
	Tableau 66 – Définition d'ExclusiveDeviationAlarmType
	Tableau 67 – Définition de NonExclusiveRateOfChangeAlarmType
	Tableau 68 – Définition d'ExclusiveRateOfChangeAlarmType
	Tableau 69 – Définition de DiscreteAlarmType
	Tableau 70 – Définition d'OffNormalAlarmType
	Tableau 71 – Définition de SystemOffNormalAlarmType
	Tableau 72 – Définition de TripAlarmType
	Tableau 73 – Définition d'InstrumentDiagnosticAlarmType
	Tableau 74 – Définition de SystemDiagnosticAlarmType
	Tableau 75 – Définition de CertificateExpirationAlarmType
	Tableau 76 – Définition de DiscrepancyAlarmType
	Tableau 77 – Définition de BaseConditionClassType
	Tableau 78 – Définition de ProcessConditionClassType
	Tableau 79 – Définition de MaintenanceConditionClassType
	Tableau 80 – Définition de SystemConditionClassType
	Tableau 81 – Définition de SafetyConditionClassType
	Tableau 82 – Définition de HighlyManagedAlarmConditionClassType
	Tableau 83 – Définition de TrainingConditionClassType
	Tableau 84 – Définition de StatisticalConditionClassType
	Tableau 85 – Définition de TestingConditionSubClassType
	Tableau 86 – Définition d'AuditConditionEventType
	Tableau 87 – Définition d'AuditConditionEnableEventType
	Tableau 88 – Définition d'AuditConditionCommentEventType
	Tableau 89 – Définition d'AuditConditionRespondEventType
	Tableau 90 – Définition d'AuditConditionAcknowledgeEventType
	Tableau 91 – Définition d'AuditConditionConfirmEventType
	Tableau 92 – Définition d'AuditConditionShelvingEventType
	Tableau 93 – Définition d'AuditConditionSuppressionEventType
	Tableau 94 – Définition d'AuditConditionSilenceEventType
	Tableau 95 – Définition d'AuditConditionResetEventType
	Tableau 96 – Définition d'AuditConditionOutOfServiceEventType
	Tableau 97 – Définition de RefreshStartEventType
	Tableau 98 – Définition de RefreshEndEventType
	Tableau 99 – Définition de RefreshRequiredEventType
	Tableau 100 – ReferenceType HasCondition
	Tableau 101 – Codes de résultats pour les Alarmes et les Conditions
	Tableau 102 – ReferenceType HasEffectDisable
	Tableau 103 – ReferenceType HasEffectEnable
	Tableau 104 – ReferenceType HasEffectSuppress
	Tableau 105 – ReferenceType HasEffectUnsuppress
	Tableau 106 – Définition d'AlarmMetricsType
	Tableau 107 – Définition d'AlarmRateVariableType
	Tableau 108 – Codes de résultats de la Méthode Suppress
	Tableau 109 – Définition de l'AddressSpace pour la Méthode Reset
	Tableau A.1 – Désignations d'états recommandées pour le LocaleId "en"
	Tableau A.2 – Désignations d'affichage recommandées pour le LocaleId "en"
	Tableau A.3 – Désignations d'états recommandées pour le LocaleId "de"
	Tableau A.4 – Désignations d'affichage recommandées pour le LocaleId "de"
	Tableau A.5 – Désignations d'états recommandées pour le LocaleId "fr"
	Tableau A.6 – Désignations d'affichage recommandées pour le LocaleId "fr"
	Tableau A.7 – Options de réponses recommandées dans les dialogues
	Tableau B.1 – Exemple d'une Condition qui conserve uniquement l'état le plus récent
	Tableau B.2 – Exemple d'une Condition qui maintientles états antérieurs par des branches
	Tableau C.1 – Termes de l'EEMUA
	Tableau D.1 – Mapping entre les catégories d'Evènements normalisées et les types d'Evénements OPC UA
	Tableau D.2 – Mapping des champs de l'ONEVENTSTRUCT avec les Variables de BaseEventType de l'UA
	Tableau D.3 – Mapping des champs de l'ONEVENTSTRUCT avec les Variables d'AuditEventType de l'UA
	Tableau D.4 – Mapping des champs de l'ONEVENTSTRUCT avec les Variables d'AlarmType de l'UA
	Tableau D.5 – Tableau de mapping d'attributs de catégories d'Événements
	Tableau E.1 – Mapping avec l'IEC 62682
	Tableau F.1 – Définition de SystemStateStateMachineType
	Tableau F.2 – Transitions du SystemStateStateMachineType

