IEC TS 61508-3-2:2024-08(en)

IEC TS 61508-3-2

Edition 1.0 2024-08

TECHNICAL
SPECIFICATION

S
Functional safety of electrical/electronic/pro momable electronic safety-rglated
sydtems —
Pant 3-2: Requirements and guidance i@ use of mathematical and logicdl
techniques for establishing exact properties of software and its documentgtion

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland

Abouf the IEC

The Ipternational Electrotechnical Commission (IEC) is the leading global organization that prepares and, ‘puljlishes
Internptional Standards for all electrical, electronic and related technologies.

About IEC publications
The tgchnical content of IEC publications is kept under constant review by the IEC. Please make-sure' that you haje the
latest jedition, a corrigendum or an amendment might have been published.

IEC puyiblications search - webstore.iec.ch/advsearchform IEC Products & Services Portal <products.iec.ch
The apvanced search enables to find IEC publications by a Discover our powerful searchi‘engine and read freely fall the
variety of criteria (reference number, text, technical publications previews, gtaphical symbols and the glgssary.
comm|ttee, ...). It also gives information on projects, replaced With a subscription yot'will"always have access to up fo date
and withdrawn publications. content tailored to your needs.

IEC Juist Published - webstore.iec.ch/justpublished Electropedia - Wwww.electropedia.org

Stay yp to date on all new IEC publications. Just Published The world's Jeading online dictionary on electrotechrjology,
detailq all new publications released. Available online andonce containing more than 22 500 terminological entries in English

a month by email. and French, with equivalent terms in 25 additional langfiages.
. Also"knewn as the International Electrotechnical Vocgbulary
IEC Clstomer Service Centre - webstore.iec.ch/csc (IEVYonline.

If you ish to give us your feedback on this publication or need
furthe assistance, please contact the Customer Service
Centrg: sales@iec.ch.

mailto:info@iec.ch
https://www.iec.ch/
https://webstore.iec.ch/advsearchform
https://webstore.iec.ch/justpublished
https://webstore.iec.ch/csc
mailto:sales@iec.ch
https://products.iec.ch/
http://www.electropedia.org/
https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2

Edition 1.0 2024-08

TECHNICAL
SPECIFICATION

Fullctional safety of electrical/electronic/progtammable electronic safety-r¢lated
systems —

Pait 3-2: Requirements and guidance in the use of mathematical and logicz
techniques for establishing exact properties of software and its document3tion

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 25.040.40 ISBN 978-2-8322-9565-6

Warning! Make sure that you obtained this publication from an authorized distributor.

® Registered trademark of the International Electrotechnical Commission

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

-2- IEC TS 61508-3-2:2024 © |IEC 2024

CONTENTS

O T T 1 I PP 3
LN I 2 1 1 L O 1 PN 5
1 1T o 1= S 6
2 NOrMative referENCES .. o 6
3 Terms, definitions and abbreviations ... 6

3.1 Terms and definifioNSo 6

3.2 ADDreviations ... e 15
4 |Conformance to this document 15
5 Formal safety requirements specification16
6 |[Formal software architecture / Design specificationo.coo ...16
7 Higher-level programming languages: Selection of ESCLc..cooiiiii it eneinninnnnnl .17
8 |Compilation to object Codecoiiiiiiiii e .. 17
9 Run-time errors and exceptions ..oy .17
10 JApplicable techniQUESoeiii e e ...18
Anngx A (normative) Applicable Mathematical and Logical Techniques.............cc.cceeveennnn, ...19
Anngx B (informative) Specific Mathematical and Logical Technhiques...........ccooeeiiiiiinn..l] ...21
Anngx C (informative) Properties assured by application, of’'specific M< techniques...... .24
Anngx D (informative) Software refinement from safety/specification to Code26

D}1 TransTOrmMatioN. ... e e e ...26

D}2 RefiNEMENT L. N s ...26
BibliOgraphy 27
Tablg A.1 — M< TEChNIQUES ..o 0 e e e e ...19
Table B.1 — Specific M< TechniQUes/TOOISoiuiiiiiiie e ... 21
Table C.1 — Properties Assured-by M< Techniques............ooiiiiiiii ...24

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -3-

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUNCTIONAL SAFETY OF ELECTRICAL/ELECTRONIC/PROGRAMMABLE

1)

2)

3)

4)

5)

6)

7)

8)

9)

ELECTRONIC SAFETY-RELATED SYSTEMS -

Part 3-2: Requirements and guidance in the use of mathematical

_ and logical techniques for establishing exact properties

of software and its documentation

FOREWORD

THe International Electrotechnical Commission (IEC) is a worldwide organization for standardization comp
all national electrotechnical committees (IEC National Committees). The object of IEC is-tolpromote interng
cd-operation on all questions concerning standardization in the electrical and electrofic-fields. To this en
infaddition to other activities, IEC publishes International Standards, Technical Specifications, Technical Re]
Pdyblicly Available Specifications (PAS) and Guides (hereafter referred to as\V’IEC Publication(s)”).
preparation is entrusted to technical committees; any IEC National Committee int€rested in the subject dea
may participate in this preparatory work. International, governmental and non-gevernmental organizations li
with the IEC also participate in this preparation. IEC collaborates closely with the International Organizati
Standardization (ISO) in accordance with conditions determined by agreement between the two organizati

rising
tional
d and
ports,
Their
t with
hising
bn for
bns.

THe formal decisions or agreements of IEC on technical matters expréss, as nearly as possible, an interngtional

cdnsensus of opinion on the relevant subjects since each technical committee has representation frd
inferested IEC National Committees.

IEIC Publications have the form of recommendations for international use and are accepted by IEC N4
Committees in that sense. While all reasonable efforts @re made to ensure that the technical content d
Pyblications is accurate, IEC cannot be held responsible for the way in which they are used or fg
misinterpretation by any end user.

In| order to promote international uniformity, IEC\National Committees undertake to apply IEC Public
trgnsparently to the maximum extent possible in their national and regional publications. Any divergence be
anly IEC Publication and the corresponding national or regional publication shall be clearly indicated in the

IE[C itself does not provide any attestations of conformity. Independent certification bodies provide conf
agsessment services and, in some are@s, access to IEC marks of conformity. IEC is not responsible fd
sgrvices carried out by independent certification bodies.

All users should ensure that they. have the latest edition of this publication.

m all

tional
f IEC
r any

htions
ween
atter.

brmity
r any

N¢ liability shall attach to IEC"“ef its directors, employees, servants or agents including individual experts and

members of its technical cemmittees and IEC National Committees for any personal injury, property damd
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal feeg
expenses arising out'of the publication, use of, or reliance upon, this IEC Publication or any othe
Pyblications.

Attention is drawnito the Normative references cited in this publication. Use of the referenced publicati
indispensablefor-the correct application of this publication.

IEIC drawshattention to the possibility that the implementation of this document may involve the use
pdtent(s)..}EC takes no position concerning the evidence, validity or applicability of any claimed patent rig
reppéect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s),

ge or
) and
r IEC

bns is

bf (a)
hts in
hich

may \be required to implement this document. However, implementers are cautioned that this may not rep

esent

the Tatest information, which may be obtained from the patent database available at htips://patents.iec.ch. IEC

shall not be held responsible for identifying any or all such patent rights.

IEC TS 61508-3-2 has been prepared by subcommittee 65A: System aspects, of IEC technical
committee 65: Industrial-process measurement, control and automation. It is a Technical
Specification.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

-4 - IEC TS 61508-3-2:2024 © |IEC 2024

The text of this Technical Specification is based on the following documents:

Draft Report on voting

65A/1113/DTS 65A/1143/RVDTS

Full information on the voting for its approval can be found in the report on voting indicated in
the above table.

The language used for the development of this Technical Specification is English.

This|document was drafted in accordance with ISO/IEC Directives, Part 2, and develop¢d in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement; available
at www.iec.ch/members_experts/refdocs. The main document types developegd,‘by IEQ are
described in greater detail at www.iec.ch/publications.

A lis{ of all parts in the IEC 61508 series, published under the general title~Eunctional safgty of
elecftrical/electronic/programmable electronic safety-related systems, can. be found on thg IEC
webgite.

The pommittee has decided that the contents of this document will remain unchanged unt|l the
stability date indicated on the IEC website under webstore.i€e.ch in the data related t¢ the
specific document. At this date, the document will be

—

pconfirmed,
e withdrawn, or

e revised.

https://www.iec.ch/members_experts/refdocs
https://www.iec.ch/publications
https://webstore.iec.ch/?ref=menu
https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -5-

INTRODUCTION

IEC 61508-1:2010 through IEC 61508-7:2010 forms the series of basic standards for the
functional safety of electric, electronic and programmable electronic systems (E/E/PE systems).
It covers the life cycle of these systems. The major part of the functionality of such systems is
often implemented in software. IEC 61508-3:2010 sets software requirements.

IEC 61508-3:2010 Annex A (normative) and Annexes B and C (informative) contain tables
listing various techniques and measures, and provide some guidance to the selection of such
techniques for different safety integrity levels (SIL). It lists general categories and gives different

level

of recommendationfor these—such-as—"not recommended' "recommended-or"h
— Reh HoR—+oi—h 5 A RO+ —F —h

reco
deve

Thes
Meth
spec
spec
code

at rdntime. In this document, we refer to these methods by “using the descriptio

math

of the M< techniques in this document are not restricted to-software development,

equg
tech

document only safety-related applications of M< techniques are explicitly addressed.

Use
for 6

development enables various types of run-time failures to be ruled out through rigag

deve
from

T oo oo

mmended", as well as more specific techniques for various phases of soft
lopment.

e techniques and measures are a mix of generic and specific. The jphrase "Fg
ods" as used in IEC 61508-3 refers to the use of mathematical and logicaltechnique
fying, assessing, designing and verifying software. Today, such methods’are availab
fying requirements, for the assessment of the design, for checking source code and o
and for the derivation of test suites, and for monitoring the correct operation of soft

ematical and logical techniques (M< sometimes doubled as M< techniques). S

Ily applicable to other digital-system-based engineering\technologies. None of the M
niques are limited to the domain of safety-related software systems, although in

pf the recommended methods of IEC 61508-3:2010, Annexes A, B and C do not rule
xample, susceptibility of the software to‘un-time failure. State of the art in soft

lopment of the software. It is possible‘using techniques identified here to assure free
many types of software run-time failtres.

ware

rmal
s for
e for
bject
ware
h as
ome
eing
I<
this

out,
ware
rous
dom

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

-6 - IEC TS 61508-3-2:2024 © |IEC 2024

FUNCTIONAL SAFETY OF ELECTRICAL/ELECTRONIC/PROGRAMMABLE

ELECTRONIC SAFETY-RELATED SYSTEMS -

Part 3-2: Requirements and guidance in the use of mathematical
and logical techniques for establishing exact properties
of software and its documentation

1

This|Technical Specification, part of the IEC 61508 series, covers the general-assuran
depgndable software used in critical operational-technology (OT) which is running‘on hard
deviges which are specified as part of the OT application. It is particularly, aimed at s3
related software which is being developed according to the E/E/PE software“functional s
stanglard IEC 61508-3; in particular, the development of the software follows a Formal S
Reqgdirements Specification. Successful use of some or all of the assurance points specifi

cope

te of
ware
fety-
hfety
hfety
ed in

this document enhances the confidence that a particular piece of safety-related software njeets
the requirements of the SIL of the safety function which it (partially or fully) implements| and
thergby increases the systematic capability of the software.

2 Normative references

The following documents are referred to in the textin Such a way that some or all of their coptent
consttitutes requirements of this document. For dated references, only the edition cited applies.
For [undated references, the latest editionz,of the referenced document (including| any
amendments) applies.

IEC 1508-3:2010, Functional safety. \of electrical/electronic/programmable electronic sdfety-
related systems — Part 3: Software requirements

IEC 61508-4:2010, Functional: safety of electrical/electronic/programmable electronic sdfety-
related systems — Part 4: Définitions and abbreviations

3 Terms, definitions and abbreviations

3.1 Terms_and definitions

For the purposes of this document, the following terms and definitions apply.

I1ISO and1EC maintain h:\rminnlngir-nl databases for use in standardization at the foll A'Iing
addresses:

e |EC Electropedia: available at http://www.electropedia.org/

e |SO Online browsing platform: available at http://www.iso.org/obp

3.1.1

abstract interpretation
<of a computer program> static analysis of a program on abstract program states or abstract
machine states that provides sound results for a given property, i.e., that never reports the
property to hold if it does not hold

http://www.iso.org/obp
https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -7-

3.1.2

assurance point

<in software development using M<> triple, consisting of software and/or documentation
(S1), another SW and/or documentation (S2), and a property P jointly of S1 and S2 such that
P(S1.S2) can be formally mathematically proved

Note 1 to entry: Although a mathematical proof is formally possible at an assurance point, such a proof can be too
complex, or require too many resources, to be given in its entirety and reliably checked, say by an assessor.

3.1.3
automated prover

auto r
com;l:uter program which performs inference in a formal logic between sentences of alfgrmal

langliage

3.1.4
automated proving
usinran automated prover

3.1.5
charjacteristic function
<of g set or a relation> function (of variable domain) and codomain{0,1} such that its valpe is
one yhen its argument belongs to the set or relation, and its value is 0 when its argument does
not Helong to the set or relation

3.1.6
codir?enerator

automatic code generator
software which effects the transformation of a high-level language program or a specification
into § common third- or fourth-generation-language program

3.1.7
cod%-g standard

programming-language subsetting
<in M< techniques> restrictions on the constructs with which a program can be written
high{level programming language

na

Note | to entry: The purposerof a coding standard which restricts programming-language constructs that may be
used [s to assure an unambiguous semantics to a program written according to the coding standard.

Note ? to entry: A typical coding standard (n.b., the singular version of this phrase is uncommon) will ensurg that
known causes of unfeliable behaviour in program code are avoided, e.g., pointer variables are proscribed; undefined
or coinpiler-variable~language features are avoided. Coding standards for programs written in a language without
strong data typing)might well ensure that the anticipated or specified range of input or output data is explicitly chpcked
at input or output.

Note B todentry: The term coding standards in general use often refers to further properties of code than subsétting.

3.1.8
compilation
translation operation that translates executable source code level (ESCL) into object code (OC)

Note 1 to entry: The definition explicitly mentions ESCL, a concept used in this document, but not generally where
compilers are used and compilation is practiced.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

-8 - IEC TS 61508-3-2:2024 © |IEC 2024

3.1.9

completeness

<of a formal language with a logic with respect to a given semantic property> quality of a formal
language with an associated logic and a formal semantics that holds with respect to a given
semantic property if every sentence of the language having this property can be shown to have
this property through inference in the associated logic

Note 1 to entry: An algorithm is complete with respect to a property if it always proves the property if it holds.

3.1.10

compositional

<Of oTiarsSc at OS a TS T St ad S i TC angoagecananot,Say any
indicition of context, say the reference of indexicals) and which constructs a transcriptionpprely

3.1.
computable

recufrsive

<computable-function theory> turing-computable

Note] to entry: Recursive is used here in the sense in which this term is used in{Turing computability and recprsive
functipn theory [117, [2].

Note ? to entry: There are in the mathematical literature other notions of ¥computable” than Turing-computable.
Some| are known to be equivalent to Turing-computable, but for some~the question is open. This definition thus
disampbiguates use of the term “computable”. Similarly, in computer Science and system engineering theg term
“recullsive” has variable meanings; this definition disambiguates use, of the term.

Note B to entry: The term “decidable” is often used to refer to*properties; the term “computable” to functigns. A
propefty is decidable if and only if its characteristic function, is*computable.

Note 4 to entry: “Turing computable” is a concept whiehtis usually defined over many tens of pages of textbogks on
recurgion theory, often using many subsidiary concepts*[1] [2]. There lacks a short definition to use here.

Note p to entry: There are other notions of computability in logic and computer science which are not, or not known
to be,|reducible to Turing-computability.

3.1.12
consgistency
propgrty of a collection of sentences of a formal language that they are not contradictory

ually
e

T Numbers in square brackets refer to the Bibliography.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -9-

3.1.15

element

part of a subsystem comprising a single component or any group of components that performs
one or more element safety functions

Note 1 to entry: An element may comprise hardware and/or software.

Note 2 to entry: A typical element is a sensor, programmable controller or final element

[SOURCE: IEC 61508-4:2010, 3.4.5]

3.1.16
element safety function
that part of a safety function which is implemented by an element

[SOURCE: IEC 61508-4:2010, 3.5.3]

3.1.18

formal inference

<in g logic> derivation of a sentence from premises using the explicit formal rules of inference
of the logic

3.1.19

formal language

<in M<> language with a defined syntax‘which is parsable without exception by means of
digital computation, and such that it is computable whether a given sequence of symbols fprms

a sentence of the language or not

Note | to entry: The term “sentence” is used in this document for a member of a formal language, but in|many
formal languages other terms are more appropriately used. When a formal language consists of strings of symbols
simpliciter, as do formal languages.informal language theory, automata theory, and formal logic, then a well-formed
memMHer is called a sentence, except in formal logic, where it is called a well-formed formula. In programming
langufges, a well-formed membeér is called a valid program, and in specification languages, a well-formed mg¢mber
is called a valid specificationz.In-diagrammatic languages, a well-formed member would be called a valid diagfam.

Note 2 to entry: This fiotion of formal language is that used in logic, linguistics, mathematics, formal language
theory, automata théory and theory of compilation. Formal languages such as (engineering and soffware)
specification languages also often come with a preferred formal semantics (e.g., Z, TLA) and the use of the t¢rm in
such $oftware engin€ering contexts often implicitly includes the formal semantics.

Note B to entry” In mathematics and automata theory, the term formal language denotes just a set of strings of
symbols from' a defined symbol set, with no constraints upon how these strings are formed. However, all the formal
langupgestised in M< satisfy the conditions given in the definition.

Note 4 to entry: In formal logic, the term “language” (without the prefix “formal”) customarily refers to the set of non-
logical symbols. The set of logical symbols of a formal language of logic is customarily taken to be determined,
although it varies between first-order logic and higher-order logics.

3.1.20

formal logic

propositional logic, predicate logic, higher-order logic, combinatory logic, modal logic, non-
classical logic, other mathematical language structure based on a formal language which has
a notion of formal inference, consistency and contradiction

3.1.21

formal proof

<in a formal logic, of a sentence from a given set of sentences> written formal inference of the
sentence in the formal logic, using as premises the sentences in the given set

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

-10 - IEC TS 61508-3-2:2024 © |IEC 2024

3.1.22

formal semantics

< of a language> precise mathematical rendering of the (intended) meaning of the sentences
of a formal language, such that any two sentences identical in meaning have the same
rendering, and any two sentences which differ in meaning have different renderings

Note 1 to entry: A formal semantics has some or all of the structure of a semantics of a formal logic.

Note 2 to entry: In most formal semantics, two sentences with identical meaning can initially receive differing
transcriptions, and it can be the case that these transcriptions have to be further manipulated, say by using a formal
“reduction agent”, such as a theorem prover or checker, to render the judgement that the renderings, namely the
transcriptions reduced by the reduction agent, are identical. The rendering in this case consists in transcription,

Note B to entry: There is no requirement that it be computable whether two sentences have the same megning.

functional specification written in a formal language with a formal,semantics

3.1.35
formal verification
<in M<> mathematically rigorous argument or method to guarantee that required propdgrties
are datisfied

Note | to entry: Some formal verification methods work-to a specified level of confidence less than certainty|

Note 2 to entry: Examples of formal verification \methods are theorem proving, model checking, and abstract
interpfetation.

3.1.36
fulfi
<by B software object, of a (object) specification; or a (subject) specification, of a (ohjject)
specjfication> be such thatthe'rendering of the (object) specification can be formally prpven
from|the rendering of the software object/(subject) specification in a formal logic

Note | to entry: The terms.“(subject) specification” and “(object) specification” are used here to indicate whlich of
two specifications is the\subject, respectively the object, of the verb “fulfil”.

3.1.27
intengmediate _executable specification
IES
sourge/code at a programming-language level chosen to be above that of the executable squrce
codellevel, when multiple levels of source code exist, according to 6.1

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -1 -

3.1.28

level

<of a programming language> sublanguage of a high-level programming language which is
related by syntactic transformation to other levels — other sublanguages — of the programming
language

EXAMPLE 1 The programming language Java has so-called “source code” and bytecode. Java bytecode is
generated by a Java compiler from Java source code. Java source code is a level; Java bytecode is a level. The
Java source code level is “above” the Java bytecode level.

EXAMPLE 2 Commonly-used programming languages, for example C and C++, have “standard libraries”, which
consist of more or less complex functions which are invoked in source code using a single identifier. C source code
which f L f f f ; T 1 fTh only
uses ferms and operators with explicit, unambiguous semantics. C.1 code in which the library functions have| been
replaged by in-line code which does not involve the library-function identifiers, or only involves some butnof| all of
them,|also forms a level, say C.2. C1 is “above” C.2 because source code in C.1 is transformed into sQurce cpde in
C.2 with the same meaning through replacing the library functions not in C.2 with in-line coderexecuting [those
functipns.

Note | to entry: A programming language level L.1 is said to be “above” another level L.2.if both L.1 and L|2 are
rigorojusly syntactically defined and a program in L.1 is transformable using commen;programming-language
technplogy into a program in L.2 with the same semantics.

3.1.29
modgl checker
software which performs model checking on program code

3.1.30
model checking
<of g collection of program states, machine states, af)states of a formal model> enumeratipn of
a collection of states and checking for each state inithe collection whether a given state property
is fulfilled or not

Note | to entry: Model checking is often performed.using abstract states for reasons of practicality due jo the
combinatorics involved. The power of model checking lies largely in the method of abstraction, which attempts to
cover|a lot of actual program states with as few.abstract states as possible in order to check the property effectively.

3.1.31
objerct code
execjtable code installed ~directly on, and executable directly on, digital-computatjonal
hardare

3.1.32
progf checker

automated proof'checker
software whichdakes machine-readable formal proofs in a formal logical language and refurns
a value indicating whether the proof is a correct proof or not

3.1.33
refinemment
act of transforming an intermediate executable specification into another intermediate
executable specification or executable source code level preserving the formal semantics of the
original specification but with more detail about execution

EXAMPLE 1 The transformation of Java source code into Java bytecode is refinement.
EXAMPLE 2 The transformation of C.1 into C.2 in EXAMPLE 2 of 3.1.28 is refinement.

EXAMPLE 3 The transformation of a state-machine description into, say, C code implementing that state machine
is refinement.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

-12 - IEC TS 61508-3-2:2024 © |IEC 2024

3.1.34

relative completeness

<of a formal specification> completeness in which the semantics of sentences are partially given
by outside constraints

Note 1 to entry: Formal semantics are compositional when they allow deduction of (semantics) transcriptions purely
from sentences (see 3.1.17) without using context, purely using the parse tree of the sentence. Some useful formal
semantics are non-compositional; context must be used to determine the meaning of a statement. Using context in
this way is an example of a semantics being partially given by outside constraints.

3.1.35

rendering
< of A sentence in a formal semantics> form by means of which a sentence is determined {o be
idenfical in meaning to or different in meaning from another sentence

3.1.36

rigoyous
<of @ specification> unambiguous and explicitly understood to cover all poSsible behav|ours
and ¢apable of being thoroughly checked for aspects of correctness and incorrectness

3.1.37

rigoyous
<of @ formal verification> conducted using formal inference and’capable of being thoroyghly
checked for aspects of correctness and incorrectness

3.1.38

rigorous
<of g4 process> carried out with attention paid to each and every process step to ensure that it
has been correctly executed

3.1.39
runt{me verification
techpique whereby monitoring variables-are placed in program code, whose values represent a
partial program state which indicates in greater or in less detail whether a computation is
corrgctly running, and raises an.alarm or an exception when this is not the case

3.1.40
safety function
funcfion to be implemented by an E/E/PE safety-related system or other risk redugtion
measures, that is interided to achieve or maintain a safe state for the EUC, in respect|of a
specjfic hazardous.event

EXAMPLE Examples of safety functions include:

— fupctions that are required to be carried out as positive actions to avoid hazardous situations (for example
switehing’off a motor); and

— fubetions-thatpreventactions-beingtaken{forexample-preventing-a—notorstarting)-
[SOURCE: IEC 61508-4:2010, 3.5.1]

3.1.41

schedulability analysis

analysis determining if all tasks can be scheduled by a given scheduling algorithm to run and
finish before their deadlines

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -13 -

3.1.42
semi-computable
semi-decidable
recursively enumerable in the sense in which this term is used in Turing computability and
recursive function theory

Note 1 to entry: See [1], [2].

3.1.43
sentence
<in formal language theory> string of symbols which is a well-formed member of the language

Note
is sim|

Note
called
forma
langu
progr

Note
or fon
consi
spatig
defini

3.1.4
sour

exhibits the property of soundness

3.1.4
sour
<of 3
hold
in th

3.1.4
sour
<of 4
a for
valid

Note
these
sema

Note
checK

to entry: When a language is taken to be simply a set of strings of symbols, then a sentence of thelan
ply a member of this set

P to entry: When the formal language is a formal specification language, a sentence in this sense is
an assertion, or a condition, or a module (of those specification languages which require madules). Wh¢
language is the language of a logic, a sentence in this sense is called a well-formed formula. When the f
hge is a programming language, a sentence in this sense is a (valid) program, whjch\is not conventio
mming-language theory.

B to entry: In computer science, there are diagrammatic languages, such as those-for some forms of auto
defining hierarchies of classes of data, or for illustrating interprocess_ «ommunication, that can al
ered a form of formal language, even though they do not consist of strings*of symbols, but rather of ¢

ion of “well formed” equally applies to such arrangement-languages:

4
d

5
dness
logic, with respect to a formal semantics> quality of the logic and formal semanticg
5 if, whenever the logic proves a sefitence of the language, this sentence is logically
b formal semantics

6

dness

static analyzer, with respect to a given formal semantics> quality of a static analyze
mal semantics that ‘holds if, whenever the analyzer makes an assertion S, S is log
with respect to the formal semantics

to entry: Ifeassumptions A1, A2, ..., An are used by the analyzer to assert S, then S is to be valid
same assumptions; i.e., the sentence (A1 A A2 A.A An — S) is logically valid with respect to the f
htics.

P to, éntry: This definition applies to any static formal verification tool, including theorem provers and
lerS.

juage

often
tn the
ormal
nal in

mata,
5O be
lertain

| arrangements of symbols, often two-dimensional. It seems inapprapriate to call these sentences. The

that
valid

and
cally

under
ormal

model

Note 3 to entry: It can often be the case that the formal semantics being used is undecidable, hence that th
no algorithm for exceptionlessly checking that S is logically valid with respect to the semantics. When practical
checking fails, this is most often for reasons of complexity that do not relate to the undecidability of the underlying
semantics; undecidability is mostly not a practical hindrance to such checks.

3.1.47
source code
program written in a formal higher-level programming language

3.1.48

stati

c analysis

ere is

analysis of the properties of a program or a specification in a formal language through analysis
of the text of the program or the specification rather than through execution or partial execution

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

- 14 - IEC TS 61508-3-2:2024 © |IEC 2024

3.1.49

systematic capability

measure (expressed on a scale of SC 1 to SC 4) of the confidence that the systematic safety
integrity of an element meets the requirements of the specified SIL, in respect of the specified
element safety function, when the element is applied in accordance with the instructions
specified in the system manual for compliant items

[SOURCE: IEC 61508-4:2010, 3.5.9]

3.1.50

theorem prover
software whose primary input consists of putative theorems and a set of premises in ayfdrmal
logic|and which attempts to determine if there is a formal proof of the putative theorems in the
logiclor not

Note [to entry: A theorem prover is for a specific (and specified) formal logic.

Note P to entry: A theorem prover can succeed on given input (it identifies a proof), orfail(it has not identified a
proof). Failure does not necessarily mean that there is not a proof in the logic. A theorem’prover for which failure
entaily that there is no proof in the logic is known as a "decision procedure".

Note B to entry: Some logics preclude that any computational engine can always\d€liver a correct yes/no ansper in
every|case, so theorem provers are often based on algorithms which are neceSsarily incomplete.

Note 4 to entry: There are many forms of theorem provers, ranging from "proof checkers", which are not interpctive
and cpncomitantly require possibly considerable logical work in advance\from the human user, to "proof assistants"
or "inferactive theorem provers" which exhibit various levels of interaction with a user, who "guides" a proof towards
the dgsired goal.

3.1.91
trangcription
<of g sentence of a formal language in a formal’'semantics> written form into which the sentence
is trgnslated in a formal semantics, before any reduction is applied to determine the rendgring

3.1.52

unambiguous
<of g sentence, of a specification> having a unique rendering in a formal semantics up to logical
or bghavioural equivalence

Note | to entry: This definition does not formally fulfil the substitutability criterion for terms: “X is unambiguous”
would| be rendered as “X is-has a unique.....”. However, readers can resolve the phrase “is has” easily.

3.1.53
unde¢cidability
category of decCision problem complexity implying that there is no automatic algorithm| that
alwals proves’the decision true if it holds (completeness) and never proves the decision tfue if
it dogs notyhold (soundness)

3.1.54
undecidable
not decidable

Note 1 to entry: If a form of formal reasoning is undecidable, it follows that there is a formal logic which
accomplishes this reasoning (or is generally understood to do so) and that there is no algorithm for determining
whether a given well-formed formula of the logic is provable or not provable. However, while it can be important to
know that the problem being addressed is undecidable, the practical issues involved in using theorem provers on
concrete problem instances usually vastly outweigh any issues that can arise through the undecidability of the
underlying logic. For many undecidable problems sound algorithms provide practical solutions.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 - 15—

3.1.55

well-formed

<in a formal language> valid member of the formal language built up according to the rules of
definition of the language

Note 1 to entry: If the formal language consists of simple strings of symbols, as in a regular language or context-
free language, such as the language of a formal logic, then a well-formed member of the language is often called a
sentence. If the formal language is a programming language, a well-formed member is called a valid program. If the
formal language is a formal specification language, a well-formed member is called a specification.

Note 2 to entry: In computer science, there are diagrammatic languages, such as those for some forms of automata,
or for defining hierarchies of classes of data, or for illustrating interprocess communication, that can also be
consigered—atermefformaltanguage—e: rer-though-they—dorotconsistef-strinrgs—ef-symbels—Sueh—arrangeiments
constfucted according to the formation rules of such a diagrammatic language are well-formed according, fo this

definifion.

3.1.86

worgt-case execution time analysis
WCHT analysis

analysis resulting in a trustworthy upper bound on the length of time jit\takes the maghine
instryictions of a specific task to run on specific hardware

Note | to entry: WCET analysis assumes non-interrupted execution of a tasK. Effects of task preemptiop and
blocking are considered during schedulability analysis.

Note ? to entry: Interference effects that can affect the non-interrupted ‘execution time of a task, e.g., dque to
confligting accesses to resources shared between different cores of multi-core systems, are counted to the WCET.
The non-interrupted worst-case execution time of a task discounting such interferences is typically called infrinsic
WCET.

3.1.97
worgt-case response time analysis
WCRT analysis

analysis resulting in a trustworthy upper baund on the maximal time it takes a task invocation
to cdmplete all its activity relative to its arfival time

Note [to entry: The arrival time is the time at'which a task invocation is ready to start running.

Note ? to entry: Aspects of the worst-case response time of a task include its worst-case execution time, the time
it is pfeempted by higher-priority tasksy.and the time it is blocked on synchronization primitives

3.2 Abbreviations

ESCL ExecutablexSource Code Level

FSRP Formal Safety Requirements Specification

IES Intermediate Executable Specification

M&L[T Mathematical and logical techniques in systems engineering
oC Object Code

SWA/DS Software Architecture/Design Specification
WCET Worst-Case Execution Time

4 Conformance to this document

To conform to this technical specification, it shall be demonstrated that all the relevant
requirements have been satisfied to any required criteria specified and therefore, for each
clause, all the objectives have been met. The demonstration shall include justification of the
selection of requirements as relevant, based on the claimed application of M< techniques
across the software lifecycle.

NOTE Conformance to this technical specification does not require satisfaction of every clause, only those relevant
to the lifecycle aspects to which mathematical and logical techniques are applied.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

- 16 - IEC TS 61508-3-2:2024 © |IEC 2024

5 Formal safety requirements specification

5.1

An unambiguous, rigorous formal safety requirements specification (FSRS) sha

written for software components.

NOTE 1 The FSRS required in 5.1 is suitable to fulfil the requirement of IEC 61508-3:2010, 7.2, that is, the
is a software safety requirements specification as required by IEC 61508-3:2010, 7.2.

II be

FSRS

NOTE 2 According to IEC 61508-3:2010 7.4.2.8, when the software implements some safety function, then the
software is safety-related and the associated software requirements specification includes a safety

entire
requir

ements specification.

NOTH
First,
some
dangq
specif
behay
the sy
1:201

NOTH
requir
Formg
accon

NOTH
using
analy

5.2
a) ¢
b) r

NOTH
accou

NOTE
requir

(prop
and th
which

5.3
be d

6 |

6.1

3 There are three main ways in which a safety requirements specification could ultimately be inade
it could fail to govern some safety-related behaviour which it should indeed subsume (that is, fail o \eX
evidently dangerous system behaviour). Second, it could be ambiguous, and through the ambiguity allow
rous behaviour which could be excluded in an unambiguous specification. Third, it could'usée a f
ication language which is inadequate to capture some distinctions between non-dangerous)and dang
iours, and thereby exclude some non-dangerous behaviours which are in fact benign, unnecessarily rest
stem developed. The adequacy of a software safety requirements specification is governed by IEC 6
D, 7.10 and IEC 61508-3:2010, 7.2 and is not completely determined by Clause 4 of this'document.

4 A language for the FSRS is not specified here; it is for the developer to,€hoose and adopt. Hov
ng the FSRS to be unambiguous constrains the possible ways in which an FSRS-¢an be written, as dog
| specification languages and their formal semantics are suitable for “assuring these properties
plishing these tasks, as are controlled natural languages (which are a form of formal specification langy

5 Formal safety requirements specification means that a specificatien/language suitable for formal an|
automated or semi-automated methods is used. Automated analysis itself is not required by 5.1; m
bis can be used.

The FSRS shall be checked using mathematical and/or logical techniques for
pnsistency,
blative completeness.

1 The check for relative completeness is telassure that all scenarios which can lead to hazards have
nted for in the FSRS.

2 Checking for consistency and retative completeness can be performed whether the formal reag
ed is in a decidable logic, or whetherit is undecidable. For example, predicate logic is undecidable; Bg
sitional) logic is decidable, but it is'0ften necessary to try to check statements in predicate logic for consis
is is often accomplished in a theeorem prover through a technique known as Skolemising, which yields a fo
can be handled by propositional-logic provers, often called SAT solvers.

The methods and:reésults used for checking consistency and relative completeness
bcumented.

Formal software architecture / Design specification

Thesoftware architecture / design specification (SWA/DS) shall be rigorous.

uate.
clude
some
ormal
erous
icting
1508-

ever,

s 5.2.
and

age.

alysis
anual

been

oning
olean
ency,
rmula

shall

6.2

NOTE 1

That the SWA/DS fulfils the FSRS is an assurance point. There shall be a formal, rigorous
and correct verification that the SWA/DS fulfils the FSRS.

by IEC 61508-3:2010 7.4.

NOTE 2 Automated formal verification is not required by 6.2. Manual formal verification can be used.

The SWA/DS is both a software architecture design and a software system design specification as required

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -17 -

7 Higher-level programming languages: Selection of ESCL

7.1

shall

NOTE

If a higher-level programming language is used, there is one level or there are many
levels at which the exact behaviour of the software is completely described. One of these levels

be chosen to be called Executable Source-Code Level (ESCL).

1 For example, if Java is chosen, then either of Java source-code or byte-code can be chosen as ESC

L.Ifa

state-machine specification environment is used, and source-code in the programming language C is automatically
generated from state-machine specifications, then either the state-machine specification or the resulting C source-
code can be chosen as ESCL.

NOTE,
behaVi

NOTH
chain
Execy

7.2
form

NOTH

8 Compilation to object code

That
corre

NOTH

NOTH
proof.

such ptep with formal status is compilation of the ESCL using a certified compiler: the certification of the co

typicq
neceg

generpted by the compiler will in any case be linked, along with library functionality. Arguments are typically prg

in the
linker

9 I

9.1

9.2
the |

9.3

achi¢vethe specified system states when exceptions are raised.

Bl, rigorous and correct formal verification that the code in the ESCLdulfils the SWA/L

iour of the software is completely described, in the sense of this 7.1.

3 When there are many possible choices of ESCL, then the formal verification process can be.splitup
of individual formal verifications between the levels. The levels before the last (lowest) are called|Interm
table Specifications (IES); the last (lowest) is the ESCL.

That the code in the ESCL fulfils the SWA/DS is an assurance point)~There shall

Automated formal verification is not required by 7.2. Manual formal verification can be used.

the object code fulfils the ESCL is an assurance, point. There shall be a rigorous
ct formal verification that the object code fulfils the<ESCL.

1 Manual formal verification that OC fulfils ESCL is usually impracticable.

2 The required rigorous and correct formal verification can fall short of being a fully formal mathen

Typically, there will be many steps in the verification and some of these steps will have formal status]|.

Ily renders formal status on a claim that the.Compiled code fulfils the ESCL. However, compiled code
sarily the final object code. There can be @alls to library functions which are outside the compiler, and thg

documentation to this assurance point.that calls to library functions fulfil (part of) the ESCL, as well as th
preserves the semantics of the ESCL.

Run-time errors and‘exceptions
A list of types.of run-time errors which are avoided shall be formulated.

There shall'be a rigorous, correct formal verification that run-time errors of the typ
st in 9.1do not occur.

There shall be a rigorous, correct formal verification that run-time exception han

exact

into a
bdiate

be a
S.

and

atica
One
mpiler
is not
code
vided
at the

BS in

dlers

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

- 18 — IEC TS 61508-3-2:2024 © |IEC 2024

10 Applicable techniques

10.1 MA< techniques chosen to substantiate claims for software and its documentation
required at assurance points shall be correctly defined, justified, sound and appropriate for the
required task.

NOTE 1 Applicable methods and techniques to achieve certain properties of software when applying them during
the development are given in Annex A (see Table A.1).

NOTE 2 Annex B (see Table B.1) shows specific methods, which can be used to implement each of the more
general methods of Table A.1.

NOTH 3 Annex C (see Table C.1) shows which properties of the software can be assured when using eachisgecific
methdds of Table B.1.

10.2(The attributes required of the chosen M< techniques in 10.1 shall be doeumented.

10.3| M< techniques as given in Annex A (see Table A.1) shall be used)régardless of the
requ|red SC of the software.

NOTH Use of appropriate techniques during each step of development will result“in complete traceability of
functipnal and safety requirements specifications down to source-code level.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 -19 -

Annex A
(normative)

Applicable Mathematical and Logical Techniques

Table A.1 — M< Techniques

Method / Technique

1 Formal safety requirements specification (FSRS)

2 Eormal ESRS analysis (relative completeness, consistencyappropriateness)

3 Automated proving/proof checking of the properties of FSRS?

4 Formal modelling, model checking, and model exploration of FSRS

5 Formal software architecture / design specification (SWA/DS)

6 Formal analysis of SWA/DS

7 Automated proving/proof checking of fulfilment of the FSRS by SWA/DS?

8 Formal modelling, model checking, and model exploration of SWA/DS

9 Abstract interpretation (sound static analysis)

10[[Co-development of SWA/DS with ESCLP

11| [Automated source-code generation from SWA/DS or intermediate executable specification (IES)?

12| | Automated proving/proof checking of fulfiiment of SWA/DS by IES?

13| | Automated verification-condition generation from/with ESCL?

14| | Rigorous formal semantics of ESCL

15| | Automated ESCL-level proving /proof checking of properties (such as freedom from

susceptibility to certain kinds of run-time error)?

16| | Automated proving/proof checking of fulfiiment.s¥? SWA/DS by ESCL?

17| | Formal test case generation from FSRS®

18| | Formal test case generation from SWA/BS®

19| | Formal test case generation from IES®

20[| Formal test case generation from.ESCL®

21| | Formal coding-standards analysis

22| | Worst-Case Execution Fime (WCET) analysis/Worst-Case Response Time (WCRT) analysis/Schedulgbility

analysis

23| | Monitor synthesis/runtime verification

24| | Formally verified-Compilation

25| | Automated)proving/proof checking of fulfilment of ESCL by object code

2 | “Automated” means that a tool is used, in part or in whole. Qualification and use of tools is covered in|{I[EC 61508-
3:2010:744.4.

b | “«Cd-development” refers to software development with the use of such annotated programming languaggs as ANNA
(Stanford ANNotated Ada) SPARK?2 and Eiffe|™3

¢ Testing is not a method which can provide guarantees at an assurance point — it can, in a well-known quotation
from 1969, “demonstrate the presence of bugs but not their absence.” However, M< is used in test case
generation and so is listed here. Test case generation involves requirements on the output of a test to be formulated,
and checked when the test is run.

SPARK is the trade name of a product supplied by AdaCore. This information is given for the convenience of

users of this document and does not constitute an endorsement by IEC of the product named. Equivalent products
may be used if they can be shown to lead to the same results.

convenience of users of this document and does not constitute an endorsement by IEC.

This trademark is provided for reasons of public interest or public safety. This information is given for the

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

- 20 - IEC TS 61508-3-2:2024 © |IEC 2024

NOTE Table A.1 is intended to classify industrially-mature M<. It is the intent of the table that every industrially-
mature M< technique falls under one of the categories in the second column of the table. However, methods
develop and evolve: for example, WCET analysis was included in initial versions of this table in 2010 and is
complemented by WCRT analysis and schedulability analysis. It is to be expected that techniques not yet included
evolve and become industrially-mature; the table is to be read as a best attempt at classification at time of publication.

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

Specific Mathematical and Logical Techniques

IEC TS 61508-3-2:2024 © |IEC 2024

- 21 -

Annex B
(informative)

Table B.1 — Specific M< Techniques/Tools

Name of the Technique or Specific M< Techniques and Tools Existing in / new
Method
Formal safety requirements [« Formal Description Language In IEC 61508}3:2010
specification (FSRS)) Table A4
Formal Notation

» Controlled Natural Language

* Formal Logic

» Ontological Hazard Analysis
Formal FSRS analysis * Automated Consistency Checking New

» Theorem Prover / Proof Assistant / Proof Checker
Automated proving/proof * Automated Consistency Checking New
checking of properties
(consist%ncyp P * Theorem Prover / Proof Assistant APréof Checker
completeness of certain
types) of FSRS
Formal modelling, model * Modelling Language In IEC 61508}3:2010
checking, and model)) Table A.2
exploration of FSRS * Formal modelling of functions

* Hierarchical Modeg]|ling

* Model Checker
Formal design specification |+ Graphical*Design Language In IEC 615083:2010
(SWA/DS) L Table A.2

* Farmal Description Language

» ~Formal Logic

** Formal Refinement
Formal analysis of * Automated Consistency Checking In IEC 61508}7:2010,
SWA/DS

* Theorem Prover / Proof Assistant / Proof Checker B.2.4
Automated proving/proof * Formal Refinement New
checking.ofdulfilment of
the FSRS By SWA/DS * Theorem Prover

* Proof Assistance

» Proof Checker

* Model Checking
Formal modelling, model * Modelling of Functions In IEC 61508-3:2010

checking, and model
exploration of SWA/DS

Hierarchical State Machines
Modelling using petri-nets
Model Checking

Model State Exploration

Tables A.2, A4, A7,

B.5, B.7

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

- 22 - IEC TS 61508-3-2:2024 © |IEC 2024

Name of the Technique or

Specific M< Techniques and Tools

Existing in / new

Method
9 Abstract interpretation + Data flow analysis New
(sound static analysis)))
Information flow analysis
* Code guideline checking
* Runtime error analysis
» Worst-case execution time analysis
« Worst-case stack usage analysis
10 ||Co-development of » Co-development Tools for software source-code New
SWA/DS with Executable))
Source-Code Level (ESCL) | Languages allowing simultaneous development of
source code and formal design specifications
11 ||Automated source-code * Formal semantics-preserving Code Generators from In' IEC 61508}7:2010,
generation from SWA/DS textual formal design specifications C.4.6
or intermediate executable) .
specification (IES) * Formal semantics-preserving Code Generators from
graphical design specifications
12 ||Automated or assisted * Proof Checker New
proving/proof checking of
fulfilment of SWA/DS by ~ |* Theorem Prover
IES
13 ||Automated or assisted * Proof Checker New
formal-verification-
condition generation * Theorem Prover
from/with ESCL
14 ||Rigorous formal semantics [+ Programming language with rigorous formal semantics |New
of ESCL
* Programming<anguage safe subset with rigorous
formal semantics
15 ||Automated ESCL-level + Static-Code analysis tools New
proving /proof checking of
properties (such as
freedom from susceptibility
to certain kinds of run-time
error)
16 ||Automated proving/proof * Automated Proof Checker New
checking of fulfilment/of
SWA/DS by ESCL
17 ||Formal test.case * Automatic test case generators New
generation)from FSRS
18 ||Fermal test case » Automatic test case generators New
géenération from SWA/DS
19 [Formal test case » Automatic test case generators New
generation from IES
20 [Formal test case * Automatic test case generators New
generation from ESCL
21 Formal coding-standards » Coding Standards In IEC 61508-3:2010,
analysis (SPARK, MISRA)) Tables A.3, A.4, B.1
C, etc) « Coding Standards Analysis
22 [Worst-Case Execution *+ WCET-analysis tools New

Time (WCET)
analysis/Worst-Case
Response Time (WCRT)
analysis/Schedulability
analysis

WCRT-analysis tools

Schedulability-analysis tools

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

IEC TS 61508-3-2:2024 © |IEC 2024 - 23 -

Name of the Technique or

Specific M< Techniques and Tools

Existing in / new

checking of fulfilment of
ESCL by object code

Automated theorem prover

Method
23 [Monitor synthesis/runtime |+ Monitor Synthesis / Runtime Verification New
verification
24 [Formally verified « Formally verified compiler New
compilation
25 |Automated proving/proof * Automated proof checker New

https://iecnorm.com/api/?name=0f6283dfd86e0fdf69c2cb48fe5b24d6

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviations
	3.1 Terms and definitions
	3.2 Abbreviations

	4 Conformance to this document
	5 Formal safety requirements specification
	6 Formal software architecture / Design specification
	7 Higher-level programming languages: Selection of ESCL
	8 Compilation to object code
	9 Run-time errors and exceptions
	10 Applicable techniques
	Annex A (normative) Applicable Mathematical and Logical Techniques
	Annex B (informative) Specific Mathematical and Logical Techniques
	Annex C (informative) Properties assured by application of specific M< techniques
	Annex D (informative) Software refinement from safety specification to Code
	D.1 Transformation
	D.2 Refinement

	Bibliography
	Table A.1 – M< Techniques
	Table B.1 – Specific M< Techniques/Tools
	Table C.1 – Properties Assured by M< Techniques

