INTERNATIONAL ISO/IEC
STANDARD 13211-2

First edition
2000-06-01

Information technology — Pregramming
languages — Prolog —

Part 2:
Modules

Technologies de l'information=— Langages de programmation|— Prolog —
Partie 2: Modules

Reference number
ISO/IEC 13211-2:2000(E)

© ISO/IEC 2000

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 7341079

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

Contents Page
FOreword W NS \Y
INtroduction Ve vi
1 SCOpPe. . . e e 1
1.1 NOtES . .o ST e 1
2 Normative reference e N e 1
3 Terms and definitions R e 1
4 Compliance. e e 3
4.1 Prolog proCessor.o e AN e 3
42 Module text A e 3
4.3 Prolog goal e NN e 3
4.4 Prolog modules N e 3
4.4.1 Prolog text without modules .~/ e 3
442 The module USer. 0 . . . e 4
4.5 Documentation 4
451 Dynamic Modules . . .ol . . b 4
4.5.2 |Inaccessible Procedures 4
5 Syntax N e 4
5.1 Module text8) e 4
5.2 Terms .. e 4
521 OPperaforso e 4
6 Language conCepts and semantiCS. e 4
6.1 Related terMS oo 5
6.1.1% Qualified and unqualified terms e 5
6.2 Module text e 5
6.2.1 Module USer 5
6°2.2 Procedure Visibility e 5
6.2.3 Module interface b 5
6.2.4 Module directives b 6
6.25 Module bodyi.iiiieieeea e 7
B.2.6 ClaUSES o o 7
6.3 Complete database 8
6.3.1 Visible database 8
6.3.2 EXaMpPIES . .. 8
6.4 Context Sensitive PrediCates 8
6.4.1 Metapredicate built-inS. 8
6.4.2 Context sensitive DUII-INS 9
6.4.3 Module name eXpansioN 9
6.4.4 Examples: MetaprediCatest 9
6.5 Converting a term to a clause, and a clause to aterm 10
6.5.1 Converting a term to the head of a clause 10
6.5.2 Converting a module qualified termtoabody 10
6.5.3 Converting the body of a clause to a term. i i e 11
6.6 Executing a Prolog goal e e 12
iii

© ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

6.6.1 Data types for the execution model 12
6.6.2 Initialization 12
6.6.3 Searching the complete database i 13
6.6.4 Selecting a clause for exeCution. 13
6.6.5 BaCKIraCKingt 14
6.6.6 Executing a user-defined procedure: e 14
6.6.7 Executing a built-in predicate e 14
6.7 Executing @ control CONSIIUCEo e e 14
B.7.1 callll .. 14
B.7.2 CatCh/ 3 . . 15
B.7.3 TNIOW L . . o 15
6.8 Predicate Properties. 16
6.9 Flags[- - -« o T 16
6.9.1 | Flag: colonsetscalling.context R 1 6
B.10 Errorgo 16
6.10.1 Error classification. T 16
7 Built-in predicates. NI 16
7.1 The fprmat of built-in predicate definitions e N 16
7.0.1 | Type of an argument. O 16
7.2 Module predicates e e W INT 16
7.2 | currentmodule/l 17
7.2.2 | predicateproperty/2 AT 17
7.3 Clausg retrieval and information NN 18
7.3 | clausel2 . .. e N 18
7.3.2 | currentpredicatel/l e 19
7.4 Databpse access and modification 20
TAL | @assertall N 20
TA2|@SSertz/l . .o AN 21
TA3 | retract/l M 21
TAA4 | abolish/l N Y 22
v © ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

Foreword

system for

orldwide standardization. National bodies that are members of ISO or IEC participate in thecdevelopment of Internations

ISO (the InFrnational Organization for Standardization) and IEC (the International Electrotechnical Commissipn) form the specializec

Standards t

IEC technic@l committees collaborate in fields of mutual interest. Other international organizations, governmental

liaison with

Internationa

In the field |of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JT|

Standards 3
requires apf

Attention is firawn to the possibility that some of the elements of this part of ISO/IEC43211 may be the subject of g
shall not be held responsible for identifying any or all such patent rights.

Internationa

Subcommittee SC 2Brogramming languages, their environments and system software interfaces

rough technical committees established by the respective organization to deal with particular fields’of
SO and IEC, also take part in the work.

Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

dopted by the joint technical committee are circulated to national bodies for voting. Publication as
roval by at least 75 % of the national bodies casting a vote.

Standard ISO/IEC 13211-2 was prepared by Joint Téchnical Committee ISO/IEC Jiforinat

technical activity. ISO al

and non-governmental,

C 1. Draft International
an International Standa

atent rights. ISO and 1E(

ion technology

ISO/IEC 13211 consists of the following parts, under the generaltit&@mation technology — Programming languageg — Prolog
— Part 1:|General core
— Part 2:[Modules
© ISO/IEC 2000 — All rights reserved \%

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13

Introduction

This is the firg

Prolog (Progr
not just as a
programming

The language
since at Impe
led in 1972 t
theoretical fra
built the first i

The crucial fe
made equal, g
to other paths|

Prolog is good
also because
web applicatig
of HTML ‘on

This Internatid
Standard for

Modules in P
systems out g
each procedu
complex by th

|

211-2:2000(E)

t International Standard for Prolog, Part 2 (Modules). It was produced on May 1, 2000.

mming in Logic) combines the concepts of logical and algorithmic programming, and is reco
important tool in Al (Artificial Intelligence) and expert systems, but as a general purpose hig
anguage with some unique properties.

ework, while Colmerauer’s gave rise to the programming language Prolog. Colmerauer and his te|
hterpreter, and David Warren at the Al Department, University of Edinburgh, produced the first co

htures of Prolog are unification and backtracking. Unification shows how two arbitrary structures
nd Prolog processors employ a search strategy which.tries to find a solution to a problem by bac
if any one particular search comes to a dead engh

the concept of backing out of an operationyis-built into the language. Prolog is also good for in
ns because the language lends itself to Both the production and analysis of text, allowing for prd
he fly'.

nal Standard defines syntax and ‘semantics of modules in ISO Prolog. There is no other Inte
rolog modules.

log serve to partition the 'name space and support encapsulation for the purposes of construct

e is to be defined.if-a given name space. The requirements for Prolog modules are rende
e existence of context sensitive procedures.

originates from work in the early 1970s by Robert A. Kowalski while-at Edinburgh University (anc
ial College, London) and Alain Colmerauer at the University of Aix-Marseilles in France. Their 4
the use of formal logic as the basis for a programming language. Kowalski's research provig

pnized
h-level

ever
fforts
ed the
Am then
npiler.

can be
tracking

for windowing and multimedia because of the(ease of building complex data structures dynamically, and

eractive
duction

national

ng large

f smaller components.«The module system is procedure-based rather than atom-based. This means that

ed more

Vi

© ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

INTERNATIONAL STANDARD ISO/IEC 13211-2:2000(E)

Information technology — Programming languages —
Prolog — Part 2: Modules

1 Scope recent edition of the normative document indicated below. For

undated references, the latest edition of the normative document
This part of ISO/IEC 13211 is designed to promote the referred to applies. Members of ISO and IEC maintain registers of
applicability and portability of Prolog modules that contain currently valid International Standards.

Pr0|og text r\mplylng with-the rnqlllrnmonfc of-the Drngrnmmlng

Language Prolog as specified in this part of ISO/IEC 13211. ISO/IEC 13211-1 : 1995|nformation techmolggy — Program-
ming languages — Prolog Part 1: General\cQre.

This part of[ISO/IEC 13211 specifies:

a) The representation of Prolog text that constitutes a Prolog 3 Terms and definitions
module,
. L The terminology for this part/of ISO/IEC 13P11 has a format
b) The gonstraints that shall be satisfied to prepare Prolog qdeled on ti?gt of 1ISO 2p382
modules for execution, and '

. - o An entry consists <of ;a phrase (ibold type)| being defined,

¢) The requirements, restrictions and limits imposed on & fqowed by its defifition. Words and phrages defined in the

conforming Prolog processor that processes modules. glossary are printéd iitalics when they are ddfined in ISO/IEC

. o 13211-1 or ‘other entries of this part of ISOIEC 13211. When
This part of[ISO/IEC 13211 does not specify: a definitioff. contains two words or phrases [defined in separate
entriesr directly following each other (or separated only by a

a) The sjze or number of Prolog modules that will exceed the punetuation sign), * (an asterisk) separates fhem.

capacity of any specific data processing system or language

processorf or the actions to be taken when the limit iS \&rds and phrases not defined in the glosdary are assumed to
exceeded have the meaning given in ISO 2382-15 and ISO/IEC 13211-1;
if they do not appear in ISO 2382-15 or ISOJIEC 13211-1, then

b) The methods of activating the Prolog processor or_the they are assumed to have their usual meaning.

set of commands used to control the environment in*which

Prolog mgdules are prepared for execution, A double asterisk (**) is used to denote thosg definitions where

¢) The mechanisms by which Prolog modules-are loaded, there is a change from the meaning given i} ISO/IEC 13211-1.

d) The Jrelationship between Prolog .modules and the 3.1 accessible procedure:See 3.39 —procedure, accessihle
processorispecific file system.

3.2 activation, of a procedure: A procefure has been
1.1 Noteg activatedwhen it is called for execution.

Notes in th|s part of ISO/IEC 143211 have no effect on the . »))
language, Pfolog text, module~téxt or Prolog processors that are 3-3 argument, qualified: A qualified term which is an
defined as ¢onforming tothis part of ISO/IEC 13211. Reasons argumentin a module name qualified * predigation

for includingl a note incldde:

3.4 calling context: The set olvisible procedyresthe operator
table, thecharacter conversion mappingnd Prolog flag values
denoted by amodule nameand used as a corjtext factivation
of a context sensitive procedure

a) Crosq references to other clauses and subclauses of this
part of IOMEE-/13211 in order to help readers find their
way aroumd;

b) Warnings when a built-in predicate as defined in this part

of ISO/IEC 13211 has a different meaning in some existing 3.5 database, visible: The visible databaseof a module M

implementations. is the set ofproceduresthat can beactivated without module
name qualificationfrom within M

2 Normative reference 3.6 defining module: See 3.23 -module, defining

The following normative document contains provision which,

through reference in this text, constitute provisions of this part of 37 export: To make aprocedure of an exporting module
ISO/IEC 13211. For dated references, subsequent amendments 10, ayajlable forimport or re-exportby other modules

or revisions of, any of these publications do not apply. However,

parties to agreements based on this part of ISO/IEC 13211 are

encouraged to investigate the possibility of applying the most 3.8 exported procedure: See 3.41 —procedure, exported

© ISO/IEC 2000 — All rights reserved 1

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

3.9 import:
by a module *

3.10
certain explicit

To make procedures * exporteddr re-exported

visiblein an importing or re-exporting module

import, selective: The importationinto a moduleof only

ly indicatedorocedures * exportear re-exported

by a module (see 6.2.5.2).

3.11 load (a

modulg: Load the module interfaceof a module

and correctly prepare all itbodies if any, for execution

NOTE — The ipterface—of a-—module shall be loaded before =1V} hnrl\/

3.25 module, existing: A module whose interface has been
prepared for executiorfsee 6.2.3).

3.26 module, exporting: A module that makes available
proceduresfor import or re-exportby other modules

3.27 module interface: A sequence ofread-terms which
specify theexportedand re-exported procedures aagported *
metapredicate®f a module

of the module

3.12 load (a
interface of the

3.13 lookup

see 6.2.3).

module interfacg Correctly prepare thenodule
module for execution

module: See 3.29 -module, lookup

3.28 module, importing: A module into cwhigh procedures
areimported adding them to theisible database]f the module

3.29 module, lookup: The medule where sealch foclauses
of a proceduretakes place.

3.14 meta-argument: An argument in anetaproceduravhich

NOTE — The lookup module, defines the visible datg
accessible without module“name qualification (see

base of procedures
5.1.1.3).

is context sen|

3.15 metaprg

Sitive.

dicate: A predicate denoting ametaprocedure

3.16 metapredicate directive: A directive stipulating that a

procedureis a

3.17 metapre

metapredicate

dicate mode indicator: Either a predicate indi-

cator or a compound term each of whose arguments is, or

*' (see 6.1.

3.18 metaprq
the calling cg

.4).

cedure: A procedurewhose actions depend on
ntext and which therefore carries:-augmented

moduleinformation designating thisalling context

3.19 metava
in a metapro

iable: A variable occurring as anargument
edurewhich will be subject tomodule name

qualification when theprocedureis @ctivated.

3.20 module
together with

A named cellection oproceduresanddirectives
provisions~t@xport some of theproceduresand

to import and fe-export*-proceduredrom other modules

3.21 module

baody: A Prolog textcontaining the definitions

3.30 module rame: An atom identifying a mo

3.31 _module name qualification: The qualifica
with~asxmodule name

3.32 module, qualifying: See 6.1.1.3 Qualify
ule, lookup module and defining module

3.33 module, re-exporting: A module whi
exportation,* imports certain procedures and ¢
sameprocedures

3.34 module text: A sequence ofead-termsd
tives module directivesand clauses

3.35 module, user: A module with name use|
all user-defined procedurethat are not specifie
to a specificmodule

3.36 predicate **: An identifier or qualified ide
with an arity.

Hule

ion of a term

ng mod-

ch, by re-
exports these

enoting direc-

r containing
d as belonging

ntifiertogether

of the procedu
directiveslocal

resof a module fogether withimport and other
to thatmodule body

3.22 module, calling (of a procedur@: The modulein which
a correspondingactivator is executed

3.23 module, defining: The module in whose module body
(or bodies)a procedureis defined explicitly and entirely.

3.24 module directive: A term D which affects the meaning
of module text(6.2.4), and is denoted in thatodule textby a
directive-term:- (D).

2

3.37 predicate name, qualified: The qualified identifierof a
predicate

3.38 preparation for execution: Implementation dependent
handling of bothProlog text and module textby a processor
which results, if successful, in the processor being ready to
execute the prepareBrolog textor module text

3.39 procedure, accessible:A procedureis accessibleif it
can be activated with module name qualificatiorfrom any
module which is currentlyloaded

© ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

3.40 procedure, context sensitive: A procedure is context
sensitiveif the effect of its execution depends on tlealling
contextin which it is activated

3.41 procedure, exported: A procedurethat is made available
by a modulefor import or re-exportby other modules

3.42 procedure, visible (in a module M): A procedure
that can be activated fromM without using module name
qualification

ISO/IEC 13211-2:2000(E)

1) the requirements of this part of ISO/IEC 13211,
including the requirements set out in ISO/IEC 13211-1
General Core, whether or not the text makes explicit use

of modules, and

2) the implementation defined and implementation specific
features of the Prolog processor,

b) Correctly execute Prolog goals which have been prepared
for execution and which conform to:

1) the requirements of this part of ISO/IEC 13211 and

3.43 procepss **: Executionactivity of a processorrunning
prepared Prplog textand module textto manipulateconforming
Prolog data Jaccomplishside effectsand compute results.

3.44 protofype: A compound termwhere eachargumentis
a variable

3.45 protofype, qualified: A qualified term whose first
argumentis @ module nameand secondargumentis a prototype

3.46 qualiflcation: The textual replacement (6.4.3) oftarm
T by the terfn M:T where M is a module name

3.47 qualifled argument: See 3.3 —argument, qualified

3.48 qualifled term: See 3.51 -term, qualified

* visible in the re-exporting module while at the~same time
making thenp available foimport or re-exportby, other modules
from the re-gxporting module

3.49 re-e)}ort: To makeprocedures * exportedy amodule

3.50 re-export, selective: The re-exportationby are-exporting
* module of ¢ertain indicategrocedures * exportefom another
module (see|6.2.4.3).

3.51 term,
0)2

qualified: ,A “\term whose principal functor is

3.52 Vvisiblg procedure (in amoduleM): See 3.42 procedure,
visible

ISO/EC 13211, and

2) the implementation defined and\impl
features of the Prolog processar,

c) Reject any Prolog

text, module text o

syntax fails to conform to:

1) the requirements\of this part of IS]

ISO/IEC 13211, and

2) the implementation defined and impl
features jof\the Prolog processor,

d) Specify all permitted variations from th
13221 ‘and ISO/IEC 13211 in the manner

part,‘of ISO/IEC 13211

and ISO/IEC 1321

e) Offer a strictly conforming mode whig
use of an implementation specific featu
module text or while executing a goal.

4.2 Module text

Conforming module text shall use only the (

in this part of ISO/IEC

13211 and SO/

the implementation defined and implementati
supported by the processor.

Strictly conforming module text shall use o
specified in this part of ISO/IEC 13211 and
and the implementation defined features sp

of ISO/IEC 13211.

4.3 Prolog goal

A conforming Prolog goal is one whose eX
by the constructs specified in this part g

and ISO/NFC 13211-1

ementation specific

r read-term whose

O/IEC 13211 and

Pmentation specific

s part of ISO/IEC
prescribed by this
1, and

h shall reject the
e in Prolog text,

onstructs specified
FC 13211-1, and
on specific features

hly the constructs
ISO/IEC 13211-1,
ecified by this part

ecution is defined
f ISO/IEC 13211

and the implemen

ation defined and

3.53 visible database (of amoduleM:
visible

See 3.5 — database,

4 Compliance
4.1 Prolog processor

A conforming processor shall:

a) Correctly prepare for execution Prolog text and module

text which conforms to:

© ISO/IEC 2000 — All rights reserved

implementation specific features supported by the processor.

A strictly conforming Prolog goal is one whose execution is

defined by constructs specified in this part of ISO/IEC 13211
and ISO/IEC 13211-1, and the implementation defined features
specified by this part of ISO/IEC 13211.

4.4 Prolog modules

4.4.1 Prolog text without modules

A processor supporting modules shall be able to prepare and
execute Prolog text that does not explicitly use modules. Such

3

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

text shall be prepared and executed as the body of the required
built-in module namediser.

4.4.2 The module user

shall belong to the moduleser .

4.5 Documentation

Table 1 — The initial operator table

defined imple
this part of IS

Priority Specifier Operator(s)
1200 xfx - >
1200 fx - ?-
1100 xfy
A Prolog processor shall support a built-in modulsser . 1050 xfy ->
User-defined procedures not defined in any particular module 1000 xfy ,
900 fy =+
700 xfx =\=
700 xfx == \== @< @=< @> @>=
700 xfx =
A conforming [Prolog processor shall be accompanied by docu- 600 xfy :
mentation thatl completes the definition of every implementation 500 yfx +- NV
entation specific features (if any) specified in 400 yfx * [Il rem mogi<< >p
D/IEC 13211and ISO/IEC 13211-1. 200 xfx
200 xfy
200 fy -\

4.5.1 Dynam|c Modules
A Prolog prd
specific proce
modules durin

cessor may support additional implementation
dures that support the creation or abolition of
p execution of a Prolog goal.

4.5.2 Inaccegsible Procedures
A Prolog procs
is to make ce

not accessiblg

PSSOr may support additional features whose effect
tain procedures defined in the body of a module
from outside the module.

5 Syntax

This clause
supports mod

efines the abstract syntax of Prolog, text that
les. The notation is that of ISO/IEC 13211-1.

Clause 5.1 defines the syntax of module text. Clause 5.2 defines
the role of thg operator ‘.

5.1 Module(text

Module text is a sequence of" read-terms which denote (1)

module directi
clauses of usq

es, (2) interface_directives, (3) directives, and (4)
r-defined precedures.

a module/directive and of a module interface
t of a directive.

The syntax o
directive is tha

Clause 6.2.4 defines, the module directives
interface directives. .Clause 6.2.5 defines dire|
to those of ISO/IE€\13211-1 that can appear i
and their meanings:

5.2 Terms
5.2¢1) “Operators

The operator table specific to a moduédefined
will be regarded as operators in the context of
moduleMwhen (1) a sequence of tokens is parg
by the built-in predicateread _term/3 or (2) K
prepared for execution or (3) output by the b
write _term/3, write _term/2, write/1, writg
writeg/1, writeq/2

The effect of the directivesop/3 , char _con
and set _prolog _flag/2 in modules with mul
described in 6.2.5.4.

Table 1 defines the predefined operators. Thd
used for module qualification.

NOTES

1 This table is the same as table 7 of ISO/IEC
single addition of the operator ‘.

2 When used in a predicate indicator or predica

and the module
Ctives in addition
n a module body

which atoms
the given module
ed as a read-term
Prolog text is
uilt-in predicates
/2,

version/2
liple bodies is

operator is

13211-1 with the

[

fe name ‘' is an

atom qualifier. This means that a predicate name

an be a compound

meddle text = m text ;
Abstract: mt mt

m text = directive term, m text ;
Abstract: d-t d t

m text = clause term, m text ;
Abstract: c-t c t

m text = ;
Abstract: nil
4

term provided that the functor is .

3 The operator table can be changed both by the

interface directiveop/3 and by the module directiveop/3

body of a module.

6 Language concepts and semantics

This clause defines the semantic concepts
modules.

use of the module
in the

of Prolog with

a) Subclause 6.1 defines the qualifying module and unqual-

ified term associated with a qualified term,

© ISO/IEC 2000 — All r

ights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

b) Subclause 6.2 defines the division of module text into

Prolog modules,

in module

d) Subclause 6.3 defines the complete database and its

text and in the complete database,

relation to Prolog modules,

ISO/IEC 13211-2:2000(E)

If the flag colon _sets _calling _context

6.9.1 is true

shall be a compound term each of whose arguments is “’ or
“*'_In this case an argument whose position corresponds to a
c) Subclause 6.2.6 defines the relationship between clauses ‘' is a meta-argument, and an argument corresponding to *'

shall not be a meta-argument.

6.2 Module text

e) Subclause 6.4 defines metapredicates and the process of Module text specifies one or more user-defined modules and the
name qualification,

f) Subclg

required moduleuser . A module consists of

a single module

interface and zero or more corresponding bodies. The interface

clauses a

g) Subcl
the prese

h) Subcl
construct

oL claf o £ £ + %
OSC O o UCTMCS— e~ Prott S35~ OT COMVETUTTg— tCTTTTS— (O

hd vice versa in the context of modules,

huse 6.6 defines the process of executing a goal in

hce of module qualification,

huse 6.7 defines the process of executing a control

n the presence of module qualification.

Shatibe prepared for execution before any_o
may be separated from the interface.-~f
bodies, they need not be contiguous.

The heads of clauses in module fext:shall b
qualified only by the module bedy in which
by explicit qualification of the ‘clause head.

Every procedure that is\ neither a contro

the bodies. Bodies
there are multiple

e implicitly module
they appear, not

construct nor a

1) Subclguse 6.8 defines predicate properties, built-in predicate belohgs to some modulg. Built-in predi-

i) Subclduse 6.9 defines required flags in addition to those C2teS and contrgl goristructs are visible querywhere and do

required ty ISO/IEC 13211-1. not require Mo ule” qualification, except that if th(_a_ﬂag
colon _sets _calling _context 6.9.1 istrye the builtin

k) Subcl
by I1SO/IE

huse 6.10 defines errors in addition to those required

C 13211-1.

6.1 Relate¢d terms

This clause
13211-1.

6.1.1 Qual
6.1.1.1 Qu

A qualified {

6.1.1.2 Un

An unqualifi
/2

6.1.1.3 Qu

Given a m
module QM

extends the definitions of clause 7.1 of ISO/IEC

fied and unqualified terms
blified terms

erm is a term whose principal fuhctor i€)/2

ualified terms

ed term is a term (whose principal functor is not

blifying module

duleM*and a termT, the associated qualifying

= gm(M:T) and associated unqualified terdil =

ut(M:T) of

(MsT) are defined as follows:

metapredicates’/(6.4.1) , the context sensitiv|
call/l andcatch/3 may be module qualifie
of setting-the calling context.

6.2,.1 Module user

The required moduleiser contains all user-d
not defined within a body of a specific modul
an empty module interface. However, modul
an explicit interface for moduleuser . Any
must be loaded before any Prolog text belon
user .

NOTE — An explicit interface for moduleuser e
to be exported from moduleuser to other mo
metapredicates to be defined in moduiser .

6.2.2 Procedure Visibility

All procedures defined in a module are a
module by use of explicit module qualificati
allowable extension to provide a mechanisn
procedures defined in a modul® so that
activated, inspected or modified except fron
the moduleM

e builtins 6.4.2 and
d for the purpose

efined procedures
e, It has by default
e text may contain
such interface
ging to the module

hables procedures
dules and allows

cessible from any
bn. It shall be an
that hides certain
they cannot be
within a body of

a) If the

is Mand ut(M:T)

principal functor ofT is not (:)/2 thengm(M:T)
isT;

Amodute—shatt ot make—visibte by mporto
more procedures with a given (unqualified)
defined in different modules. If a procedure

re-export two or
predicate indicator
with (unqualified)

predicate indicatoiPl from the complete database is visible in

b) If the principal functor of T is (:)/2 with first argument
MM and second argumeifitl, thengm(M:T) is the qualifying
module of gm(MM:TT), and ut(M:T) is the unqualified
term ut(MM:TT) .

Mno other procedure with the same predicate indicator shall be
made visible inM

NOTE — More than one import or re-export directive may make
visible a single procedure in a module.

6.1.1.4 Metapredicate mode indicators

A
a
is

©

6.2.3 Module interface
metapredicate mode indicator is either a predicate indicator or
compound termMName(Modes) each of whose arguments
oor v,

A module interface in module text specifies the name of the
module, the operators, character conversions and Prolog flag

ISO/IEC 2000 — All rights reserved 5

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

values that shall be used when the processor begins to prepare designated byl , and thatMMmakes these procedures available
for execution the bodies of the module, and the user-defined for import or re-export (fromMNI by other modules.

procedures of a module that are
a) exported from the module,
b) re-exported from the module, and

c) defined to be metapredicates by the module.

A sequence of directives shall form the module interface of the
module with nameNameiif :

A procedure designated B3 in areexport(M,Pl)

directive

shall be that of a procedure exported or re-exported by the

module M

No procedure designated W shall be a control construct or

a built-in predicate.

6.2.4.4 Module interface directive reexport/1

a) The firgt directive is a directivemodule(Name) .
(6.2.4.1)

b) The last directive is a directivend _module(Name) .
(6.2.4.9)

c) Each other element of the sequence is a module interface
directive. (6(2.4.2 through 6.2.4.8)

The interface
body of the m

for a moduléName shall be loaded before any
odule.

6.2.4 Modulg directives
Module directi
module text in
character conv
for execution

ves are module text which serve to 1) separate

o the individual modules, and 2) define operators,

ersions and flag values that apply to the preparation
bf the bodies of the corresponding module.

6.2.4.1 Modyle directive module/l
The module di
text bracketed
directive end _
Prolog modulg

ectivenodule(Name) specifies that the_interface
by the directive and the matching closing interface
module(Name) defines the interface to the
Name

6.2.4.2 Modyle interface directive export/1

A module interface directiveexport(Pl) in the module
interface of al moduleM where\Pl is a predicate indicator,

a predicate ipdicator sequence or a predicate indicator list,
specifies that [he modulskmakes the procedures designated by
Pl available for import (into’ or re-export by other modules.

A procedure
shall be that ¢
the moduleM

Hesignated bl in a export(PI) directive
fva{procedure defined in the body (or bodies) of

A module interface directivereexport(Pl) i
interface of a moduleM where Pl is an.'atom,

N

the module
a sequence of

atoms, or a list of atoms specifies that/the nmodMeémports

all the user defined procedures exparted or r
modules designated bl and thatM makes thg
available for import into or resexportation by o

p-exported by the
bse procedures
her modules.

6.2.4.5 Module interface/directive metapredicate/1

A module interface,\directivemetapredicate(Ml
module interface~0f a modul& where Ml is a
mode indicatory a metapredicate mode indicg
a metapredicate mode indicator list specifies
defines @nd exports the metaprocedures desig

6.24.6 Module interface directive op/3

A module interface directivep(Priority, Op S
Operator) in the module interface of a mo
the initial operator table to be altered only fo
for execution of all the bodies of the modulé

The argumentsPriority, Op _specifier , an
shall satisfy the same constraints as for the su
of the built-in predicateop/3 (8.14.3 of ISO/IEC

in the
Imetapredicate
tor sequence, or
that the module
nateld| by

pecifier,
dul® enables
the preparation

d Operator
ccessful execution
13211-1) and

the initial operator table of the module shall he altered in the

same way.
Operators defined in a module inte
op(Priority, Op _specifier, Operator)

directive
not

face
shall

affect the syntax of read terms in Prolog and nmpodule texts other

than the bodies of the corresponding module.

6.2.4.7 Module interface directive charconverg

ion/2

A _module interface directivechar conversion(l

| _char,

No procedure designated B shall be a control construct, a
built-in predicate, or an imported procedure.

NOTE — Since control constructs and built-in predicates are visible
everywhere they cannot be exported.

6.2.4.3 Module interface directive reexport/2

A directive reexport(M, PI) in the interface of a modul®M
whereMis an atom andPl is a predicate indicator, a predicate

indicator sequence or a predicate indicator list specifies that
the moduleMMimports from the moduleM all the procedures

6

Out char) in the module interface of a mo
the initial character conversion mappir@onvc
ISO/IEC 13211-1) to be altered only for the
execution of all the bodies of the modul

The argumentsin _char , and Out _char
same constraints as for the successful execut
predicatechar _conversion/2
and Convc shall be altered in the same way.

Character conversions defined in a module i
char _conversion(In _char, Out _char)

dul! enables
(see 3.29 of
preparation for

shall satisfy the

ion of the built-in

(8.14.5 of ISO/IEC 13211-1)

nterface directive

shall not affect

the syntax of read terms in Prolog and module texts other than

the bodies of the corresponding module.

© ISO/IEC 2000 — All r

ights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

6.2.4.8 Module interface directive sefprolog-flag/2

A module interface directive set _prolog _flag(Flag,

Value) in the module interface of a modul& enables
the initial value associated with a Prolog flag to be altered only
for the preparation for execution of all the bodies of the module
M

The argumentsFlag , and Value shall satisfy the same
constraints as for the successful execution of the built-in
predicateset _prolog _flag/i2 (8.17.1 of ISO/IEC 13211-1)
and theValue shall be associated with flaglag in the same

ISO/IEC 13211-2:2000(E)

the moduleMMimports from the module M all
designated byPI .

A procedure designated byl in a import(M,PI)

the procedures

directive

shall be a procedure exported or re-exported by the mohlule

No procedure designated Wl shall be a control construct or

a built-in predicate.

6.2.5.3 Directive import/1

way.

Values assq
set _prolog
associated
bodies of th

ciated with flags in a module interface directive
_flag(Flag, Value) shall not affect the values
vith flags in Prolog and module texts other than the
e corresponding module.

6.2.4.9 Mopule directive endmodule/1
The module
atom that h
directive mo
for the mod

directiveend _module(Name) where Name is an

s already appeared as the argument of a module
Hule/1 , specifies the termination of the interface
lleName

NOTE — Unl
text. Thusop/|
are both mod
7.4.2.5 and 7

bss otherwise so defined module directives are not Prolog
B, char _conversion/2 and set _prolog _flag/2

Lle directives and directives (see ISO/IEC 13211-1 7.4.2.4,
.14.2.9.)

6.2.5 Modyle body

A module K
defines use

ody belonging to a module is Prolog textwhich
-defined procedures that belong to the:module.

A sequence
module with

of directives and clauses shall fornnJa body of the
nameName if:

a) The [first element of the seQuence is a directive
body(Nanje) (6.2.5.1).

b) The [last element of the" sequence is a directive
end _body{Name) (6.2.5.4).

Directives import/1
importing m
exporting m

and\import/2 make visible in the
odule preoCedures defined in an exporting or re-
bdule.

6.2.5.1 Mofule” directive body/1

A directive import(MI)
is an atom, a sequence of atoms, or alist
that the moduleMMimports all the pro¢edure
modules designated byll. Such procedures 4§
MMwithout name qualification.

6.2.5.4 Module directive ‘endbody/1

The module directiveend _body(Name) whe
atom that has already appeared as the arg
directive body/l \specifies the termination d
belonging to dhe~particular module body of

The preparation for execution of any mod
set ther operator table, character conversio
(see 3.29 of ISO/IEC 13211-1), and Prolo
new initial state, determined by the module
op/3 , char _conversion/2 , and set _prolo
the interface ofM This state shall affect on
for execution of the subsequent bodies
The effect of directivesop/3 , char _conver
set _prolog _flag/2 in a body of a modulé/4
during the preparation for execution of the ¢
subsequent bodies of the moduié

NOTE — A single module may have more than
module text does not permit the nesting of any
the Prolog text of the body of any module of
module.

6.2.6 Clauses
A clause-term in one of the bodies of a mg
text causes a clause of a user-defined proce

the moduleM

A clauseC of a clause-term € C.) in the bod
shall be an unqualified term which is a claug

in a body of a meddileviMwhere Ml

of atoms specifies
5 exported by the
hall be visible in

re Name is an
ument of a module
f the Prolog text
hodiNeme

ule interface shall
n mappihgvc

j flag values to a
interface directives
y _flag/2 in

y the preparation
bf the modMe
sion/2, and
hall accumulate
irrent body and all

one body. However
module body within
her than thser

deof module
dure to be added to

of a moduleM
e term whose head

A module directive body(Name) where Name is an atom
giving the name of a module specifies that the Prolog text
bracketed between this directive and the next end module
directive end_body(Name) belongs to the moduleName
Such procedures shall be visible in all bodiesName without
name qualification.

6.2.5.2 Directive import/2

A directive import(M, PI) in a body of a moduldMMwhere

M is an atom andPl is a predicate indicator, a predicate
indicator sequence or a predicate indicator list specifies that

© ISO/IEC 2000 — All rights reserved

;3 art ullqua:iﬁcd tCIIII Al Id aha” oatlaf‘y thc
those required for a successful execution of t
assertz(C)

S5ame constraints as
he built-in predicate

(7.4.2) in the context oM except that no error

referring to modification of a static procedure shall occ@.

shall be converted to a clause- t

and added to the module

The predicate indicatoP/N of the head ofC shall not be

the predicate indicator of any built-in predicate, or a control
construct, and shall not be that of any predicate imported into
or reexported byM

NOTE — If the directive discontiguous/1 is in effect for a

predicate defined in the body of a module, then clauses for that
predicate may appear in separate bodies of the module. The order in

7

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

which the clauses are added to the complete database depends on theM without explicit module qualification and from outsid&with

order in which t

6.2.6.1 Exam

he bodies are prepared for execution.

ples

The examples defined in this clause assume the complete

database has been created from module text that includes the \otg

following:

module(utilities).
export([length/2, reverse/2]).
end_module(utilities).

M as calling context.

It includes all built-in predicates and control constructs, all
procedures defined in the bodies Mf all procedures imported
into M and all procedures re-exported b

A procedure visible in a moduld that is neither a control
construct nor a built-in predicate is either (1) completely defined in the
bodies of M or (2) completely defined in the bodies of some module
MM exported fromMMand imported or reexported intvl Furthermore

the options (1) and (2) are mutually exclusive.

- body(utilities).
length(List|
length1([],
length1([H

N1

reverse(Lig

rey

reversel([]
reversel([

rey
:-end_body(utilit

- module(foo).
- end_module(f
- body(foo).
-import(utilities)
p(Y) - a(

q([1,2,3,4]).
- end_body(foo).

The examples

foo:p(X).
succeeds,
unifying X W
foo:reverse([1,2
succeeds,
unifying L
utilities:reversel
succeeds,
unifying L w|
foo:reversel([1,
existence_er|

6.3 Compleg

The complete
which executig
complete data

Len) :- length1(List, O, N).
N, N).

| T, N, L) :-

is N + 1,lengthl(T, N1, L).

t, Reversed) :-
ersel(List, [], Reversed).

R,R).
H | T], Acc, R) :-
ersel(T, [H | Acc], R).
es).
DO).

),length(X,Y).

are executed in the context of the modakr .

th 4.
3], L).

ith [3,2,1].
[1,2,3], 1, L.

th [3,2,1].
3l 00 L.

or(procedure, foo:reversed).

te database

database is' the database of procedures against
n of a-geal is performed. The procedures in the
base(are:

a) all conttolconstructs,

b) all built-

c) all user-

Each user-def

6.3.2 Examples
The following examples use the campléte dajabase defined in
6.2.6.1.

The visible database d6o consists of the following procedures:

All built-in predicateS, and control
constructs.

From foo:
p/1,.q/;

Imported-from utilities:
tength/2, reverse/2

6)4 Context sensitive predicates
The effect of a context sensitive procedure |depends on the
calling context (3.40) in which it is activated.

bcedures one or
nts. If the flag
etrue then

se arguments to
alification. The
netapredicates is

Metapredicates are predicates denoting pr
more of whose arguments are meta-argumg
colon _sets _calling _context has the vall
activation of the metapredicate will require thd
be unified with terms that require module qU
effect of certain other built-ins which are not 1
also dependent on the calling context.

When the flagcolon _sets _calling _context |[is true the
calling context can be set explicitly by using the infix operator
When the flagcolon _sets _calling _fontext is

false some other implementation defined met
setting the calling context shall be provided.

hod for explicitly

6.4.1 Metapredicate built-ins

in predicates,
defined procedures.

ined procedure is identified by a unique qualified

predicate indicator where the module name qualification of the
predicate indicator is the defining module of the procedure.

6.3.1 Visible

database

The visible database of a modul is the collection of all

procedures in

8

the complete database that can be activated from

The following built-in predicates are metapredicates listed with
their metapredicate mode indicators:

a) The database access and modification built-
in predicates clause(:,*), asserta(:), as-

sertz(:), retract(:), abolish(:) , and pred-
icate _property(:,*) ,

b) The logic and control built-in predicatesnce(:)

’

\+() , and
c) The all solutions predicates setof(*,:,*),
bagof(*,:,*) , and findall(*,:,*) .

© ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

6.4.2 Context sensitive built-ins

The following built-in predicates are context sensitive:

ISO/IEC 13211-2:2000(E)

- module(sort_with_errors).

- export(sort/2).
- end_module(sort_with_errors).
- body(sort_with_errors).

a) Built-ins affecting the operator table, character con- o
. ;- import(trace).
version and Prolog flags: op/3, current _op/3, sort(List, SortedList) :-
char _conversion/2 , current _char _conversion/2 sort(List, SortedList, [J).
set _prolog _flag/2 , andcurrent _prolog _flag/2 ; sort([], L,L).
sort([X[L], RO, R) :-
b) Built-in predicates that read or write terms: # split(X,L,L1,L2),
read _term/3 , write _term/3, write _term/2, # sort(L1, RO, R1),
write/1, write/2, writeq/1, and writeq/2 # sort(L2, [X|R1], R).
SP Ly L O
split(X, [Y|L], [Y |L1], L2):-
. Y @< X, !,
6.4.3 Modyle name expansion Split(X,L, L2, L2).
_ _ split(X, [Y | L], [Y |L1], L2):-
When the Prolog flagcolon _sets _calling _context s Y @< X, !

true an argumeniX of a metapredicate go@lP which occurs

at a positionp corresponding to a "

indicator of
the calling

X appearing as a .’

module M wi

When the

in the metapredicate mode
MP shall be qualified with the module name of
ontext wherMP is activated. An unqualified term

"' argument in a call of a predicd® in
| be replaced by(M:X) in the activation ofMP
is

Prolog flagcolon _sets _calling _context

split(X,L, L2, L2).
split(X, [Y | L, [Y |L1], L&)~
split(X, L, L2, L2).

- end_body(sort_with_errors).

The goal:

sort([3,2,1], L).

fails, writing

CALL sort_with_errors calls split(3,[2,1],_A,_B)

hism for setting the
calling contex®
p context of the

true the meta-arguments in an unqualified teMP which FAIL sort_with.efrors calls split(3,[2,1],_A, B).
represents A metapredicate goal in the calling context of a
module CMghall be module qualified wittcM If the term MP
is module dualified then the meta-arguments shall be module 6 442" colonsetscalling_context false
qualified with the qualifying module of the term.
This example illustrates an alternate mecha
When the Prolog flagcolon _sets _calling _context is calling context. Here@/2 is used to set the
false arguments of a metapredicate goal are not subject,t0" @ Mepresents a call of the go&in the callin
module qudlification. An implementation defined method\of module M
setting the ¢alling context shall be provided.
:-module tools.
-meta [interpret/1].
6.4.4 Exanmples: Metapredicates :-end_module tools.
6.4.4.1 colpnsetscalling_context true i-begin_module tools.
These exarples on module qualification_assume that the Prolog 'nterpret(Goal) :-
flag lon _setp _calling _context is true calling_context(Module),
- - - : inter(Goal, Module, Module, Module).
The following example illustrates_the use of a metapredicate t0 o jnter(
obtain contgxt information for\débugging purposes. % Goal,
% CallingContextOfCurrentClause,
- module(trage). % LookupContextOfGoal
- exporfs(#/1). % CallingContextOfGoal)
- metagredicate(#(3)).
inter(true, _, _,) - L
- end_modulg(trace)- inter((G1,G2), CallingContext, Home, At) :- I,
- body(trace) inter(G1, CallingContext, Home, At),
- op(950, X, #). INter(G2Z, CalngContext, Home, Af).
inter((M:G), CallingContext, _, At) :- |,
(# Goal) :- inter(G, CallingContext, M, At).

Goal = Module

: G,

inform_user('CALL’, Module, G),

call(Goal),

inform_user(CEXIT’, Module, G).
(# Goal) :-

Goal = Module :

G,

inform_user('FAIL’, Module, Goal),

fail.

inform_user(Port, Module, Goal) :-
write(Port), write(’ ’), write(Module),
write(" calls ’), writeq(Goal), nl.
- end_body(trace).

© ISO/IEC 20

00 — All rights reserved

inter((G@M), CallingContext, Home, _) :- |,
inter(G, CallingContext, Home, M).
inter(calling_context(M), CallingContext, _, _) :-
!
M = CallingContext.
inter(G, _, Home, At):-
functor(G,N,A),

% next find defining module
current_visible(HomeModule, N/A) @ Home,
current_predicate(N/A) @ HomeModule, !,

% fails with BIPS
clause(G, Body) @ HomeModule,
inter(Body, At, HomeModule, HomeModule).

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

inter(G, _, Home, At) :-
call(Home:G) @ At.

:-end_module tools.

:-module programs.
-export [mysort/2].
:-end_module programs.

-begin_module programs.
% dynamic only for debugging reasons
-dynamic([app/3,mysort/2,part/4]).

6.5.1 Converting a term to the head of a clause

A term T can be converted withtV as calling
predication which is the headd of a clause
module MM

a) The associated unqualified term (6.1.1L2)

context to a
with defining

of (M:T) is

converted to a predicatioH as in 7.6.1 of ISO/IEC 13211-1:

b) The defining moduleMM for the predication is the

qualifying module 6.1.1.3 ofM:T) .

app([J.L.L).
app([HIT].L.[HIF):
app(T,L,G).

=]
'

mysort([],[]).

mysort([G|T],S):
part(G,T,L,H
mysort(L,LS
mysort(H,H¥),
app(LS,[G|HS].S).

part(_,[.0.0)-

part(J,[H|R],[HIL),U):-
H =<,

=

8
part(J,R,L,{).

part(J,[H|R],L,[HJU]):-
H>J,

!,
part(J,R,L,{).
:-end_module pfograms.

:-begin_module |daten.
list([7,2,6,5,1]).
list([9,0,4,8,3]).
-end_module dpten.

/* module "user */
-import tools.
-import programs.
-import daten.

dosort:- interpreg(sort).

sort:-
list(X),
write(unsorfed: '), write(X), ‘nl,
mysort(X,Y
write('sorteq:), write¢Y), nl,
fail.

sort.

6.5.2 Converting a module qualified term~{o_4

In the calling context of a modul® with ‘given deg
DMa termT is converted to the body [of a clau
of steps.

a) The termT is module)qualified with thg
calling context to giveM:T

b) The termM:T is’ simplified (6.5.2.1) to r
module qualification giving a ternRT.

body

fining module
e in a sequence

e name of the

bduce repeated

c) The simplified termRT is converted to a hodBT in the

calling context ofM with defining moduleDM (
d) /The bodyBT is further simplified to rem
module qualifications (6.5.2.3).

6.5.2.1 Simplifying a module qualified term

A module qualified termrM:T is simplified to a rq
qualified termRT as follows:

a) If T is a variable therRT is M:T,

b) Else if the principal functor ofT is ':-/2
of the control constructg,)/2 , (;)/2 or (-
first argumentA and second argumemg, the s
RT is the same functor (respectively, contro|

5.5.2.2).

ove redundant

duced module

or one
>)I2 , with
mplified term
construct) with

argumentsRA and RB obtained by simplifying the qualified

terms M:A and M:B respectively.
c) Else if the principal functor off is (1) , f
MM second argumenTT, the term MM:TT is
give RT,

d) ElseRTis M:T.

irst argument
simplified to

6.5 Converting a term to a clause, and a clause to a
term

Prolog provides the ability to convert Prolog data to and from
However the argument of a goal is a term whereas
the complete database contains procedures with the user-defined
procedures being formed from clauses. Some procedures convert
a term to a clause, while others convert a clause to a
corresponding term. This clause defines how the conversion is

code.

to be carried out in the presence of modules.

10

6.5.2.2 Converting a simplified term to a body

If the Prolog flagcolon _sets _calling
value true

_context
then in the calling context of a modul€M with

has the

defining moduleDMa simplified (qualified) ternT is converted

to a goalG which is the body of a clause:

a) If T is one of the control constructs)/2

(V2 or

(- >)/2 , then each argument of shall be converted to a

goal.

b) Else T is a term with principal functor(:)/2

first argumentM and second argumeniT, an
converted to a goas as follows:

© ISO/IEC 2000 — All r

with
d T shall be

ights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

1) If TT is a variable thenG is the control construct
call with argumentM:TT.

2) Else if TT is a term whose principal functor is one of
the control constructstrue , fail , !, or throw/1 then

G is the same control construct and the arguments (if any)
of Gand TT are identical.

3) Else if TT is a term whose principal functor is
call/l or catch/3 then G is M:G1 where G1 is the
corresponding control construct and the argumentsGaf
and TT are identical.

ISO/IEC 13211-2:2000(E)

6.5.2.4 Further implementation defined conversions

goal, these may include:

An implementation may perform additional conversions on a

a) Removing module qualifications of predications visible in

the defining module.

b) If the flag colon _sets _calling _context has the
value true performing module qualification of the meta

arguments of metapredicates and/or the
call/l and catch/3

4) If T is an atom or compound term whose principal
functor FT does not appear in table 9 of ISO/IEC 13211-1
then G is the goalM:G1 where G1 is a predication whose
predicate indicator i$T, and the arguments, if any, @1
and T are identical.

If the Prolop flagcolon _sets _calling _context has the
value false | then in the calling context of a moduléMwith
defining mogluleDMa simplified (qualified) ternT is converted
to a goal G yhich is the body of a clause:

a) If T i3 one of the control constructs)/2 , (})/2 or
(- >)/2 , [then each argument of shall be converted to a
goal.

b) Else T is a term with principal functor(:)/2 with
first argurpentM and second argumenkT, and T shall be
converted|to a goas as follows:

1) If TT is a variable thenG is the control construct
call with argumentTT.

2) Elsg if TT is a term whose principal functor is one’ of
the control constructstrue , fail , !, or throw/1 ~then

G is thg same control construct and the arguments (if any)
of Gand TT are identical.

3) ElsgifTT is a term whose principal functor @all/1
or catch/3 then G is the same conttel”control construct
and theg arguments db and TT are ‘identical.

4) If T is an atom or compound term whose principal
functor FT does not appear.in table 9 of ISO/IEC 13211-1
then G is the goalM:G1 where G1 is a predication whose
predicate indicator i=T,vand the arguments, if any, @1
and T are identicals

NOTE — In| this second case additional implementation specific
conversions (p.5.2.4c)\are required to account for the explicit method
of setting the| calling/context.

control constructs

c) If the flag colon _sets _calling (=Context has the

value false performing conversions\req

ired by the im-

plementation specific method of setting the calling context.

6.5.3 Converting the body-of a clause to a|

term

A goal G which is a (predication with predicate indicat®¥N
in the body of a clalse of a moduld can bg¢ converted to a

term T:

a) If theNprincipal functor ofG is not (:)/2
zero, thenT is the atomP.

and if N is

b)™\§ G is a control construct which appg¢ars in table 9 of

ISO/IEC 13211-1, therT is a term with th
principal functor. If the principal functor ¢
catch/3 or throw/1 then the argument
identical, else if the principal functor off

e corresponding
T is cal/l
dband T are
is (,)/2 or

(52 or (- >)/2 then each argument d& shall also be

converted to a term.

c) If colon _sets _calling _context is
is an instance of the implementation speg
sets the calling context the@ shall be conve
using to the implementation specific meth

d) If the principal functor of G is not (:)
not zero thenT is a renamed copy ofT1
the compound term whose principal funct
arguments ofG and TT are identical.

e) Else if the principal functor ofG is
argumentMMand second argume@Gthen G
the termMM:TT, where TT is obtained by
a term in the calling context oMM

The foIIowmg examples are provided to illu

false and G
cific construct that
rted to a ter

d for conversion.

2 and N is
where TT is
br RN and the

(:)/2 with first
is converted to
convertingsGto

strate the simplifi-

version of terms to

6.5.2.3 Removing redundant module qualifications

A body which is a goalG in a defining moduleDMis reduced
to a goalRGwithout redundant module qualifications as follows:

a) If Gis one of the control construct§)’2 , (;)/2
or (- >)/2 , then RGis the same control construct and the

arguments ofRG are obtained from those db be reducing
each argument for redundant module qualifications.

b) If G is a module qualified goaM:G1 and M is the
defining moduleDMthen RGis G1,

c) ElseRGis identical toRG

© ISO/IEC 2000 — All rights reserved

ol Lfiadl ath
cationr UI IIIU\JUIC goancu terms—ane-the—cot

goals.

Defining module = m, context module = foo.
This would arise in a goal such as
foo:asserta(m:bar(X) :- baz(X)).

In the case where the Prolog flag
colon_sets_calling context is true

the corresponding clause asserted into
module m would be

bar(X) :- foo:baz(X).

(i) Case colon_sets_calling_context true.

11

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

Module qualified

Simplified term --

Clause in dm --

Module qualified

Simplified term --

Body --

Module qualified

Simplified term --

term -- m:(:-(dm:h, (a,m1:b)))

- (dm:h , (m:a, ml:b))
h :- m:a, ml:b.

term -- n:(->'(X, throw(B))

->'(n:X, n:throw(B))
*->'(call(n:X), throw(B)).

term -- m:(’,'(n:a, b))

'(n:a, m:b)

Body (defining module m) -- '’(n:a, b).

(ii) Case colon_

sets_calling_context false.

Table 2 — The execution stack after initialization with the

goal m:goal
S. Decorated Substi- Bl
index Subgoal Stack, tution
1 ((m:goal , user, O),newstack ps), {} nil
newstack gg

h)

The current decorated subgoal stack and

@/2 sets the Cﬂ“;lly context:

Module qualified
Simplified term
Clause in dm

Module qualifieq
Simplified term
Body --

Module qualified
Simplified term
Body --

6.6 Executi

This clause deg
goal is execute
on the stack m

6.6.1 Data ty

The execution 1
S of execution {
of ISO/IEC 132

term -- m:(:- dm:h, (a @ g, m1:b)))
-- - (dm:h, (m:(a @ q), m1:b)))

- h: -a@g, mib.
term -- n:(->'(X, throw(B))
- ->'(n:X, n:throw(B))
->'(call(X), throw(B)).
term -- n:(->'(X @ q, throw(B))

- ->'(n:(X @ q), n:throw(B))
->'(call(X) @ g, throw(B)).
ng a Prolog goal

I in the presence of module qualification.
pdel in clause 7.7 of ISO/IEC 13211-1.

pes for the execution model

tate€S. It is an extension of the model in.clause 7.7
11-1, where the extension adds modulesinformation.

ES is a structured data type with components:

S.index -
of S.

decsglstk
sequence of

subst - A
of the variabl

Bl - Backi
re-execute a

Activators that might be activated during execution.

ES.

rack information: a value which defines how to

goal.

The choicepoint

is—ES
T (8

cribes the flow of control through Prolog clauses as a
It is based

hodel of module Prolog is based on an execudtion stack

A value defined by the current\ndmber of components

— A stack of decorated" subgoals which defines a

Substitution which-defines the state of the instantiations

c) The current substitution, and

d) Backtracking information.
currdecgsgl
of currstate . It contains:

a) The current activatorcurract , (this may be a
b) The current context-moduleontextmodule
context in whichthe “current decorated subgoal

and

, the current decorated subgoal, tisp(decsglstk)

qualified term,)

hich gives the
is to be executed,

f a user-defined

ose body these

c) Its cutparent
Bl has~value:
nil — Its initial value, or
ctrl — The procedure is a control construct, dr
bip - The activated procedure is a built-in preflicate, or
(DM, up(CL)) — CL is a list of the clauses
procedure whose predicate is identical dorract , J|and which are
still to be executed, andMis the module in wh
clauses appear.
6.6.2 Initialization

The method by which a user delivers a goal to th
shall be implementation defined.

A goal is prepared for execution by transforming it
If the flag colon _sets _calling _context s true ti
of a metapredicate requires that all arguments of
qualified (6.4.3) with the module name of the callin
execution (6.6.4f).

b Prolog processor

into an activator.
ue execution

ype ‘' be module
b context prior to

The initial value of the calling context isiser .

for tha avacution efof&c_’_
(

A decorated subgoaDS is a structured data type with components:

activator
be executed

contextmodule

the activator

cutparent
where control

currstate
a) An index
12

, the current execution state tep(S)

— A predicationP prepared for execution which must
successfully in order to satisfy the goal.

— An atom identifying the module in which
is being called.

— A pointer to a deeper execution state that indicates

is resumed should a cut be re-executed.
. It contains:

which identifies its position i, and

Table 2 shows the execution stack after it has been initialized and is

ready to executem:goal .

6.6.2.1 A goal succeeds

A goal is satisfied when the decorated subgoal stackusfstate

is empty. A solution for the goaim:goal
corresponding substitution:.

6.6.2.2 A goal fails

Execution fails when the execution sta&kis empty.

© ISO/IEC 2000 — All r

is represented by the

ights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

6.6.2.3 Re-executing a goal

After satisfying an initial goal, execution may continue by trying to
satisfy it again.

Procedurally,
a)

Pop currstate from S,

b) Continue execution at 6.6.5.

ISO/IEC 13211-2:2000(E)

j) Else create the sef of all modules that are the subject of
import/1 or reexport/1 directives inn and add toOpen the
elements ofS that are on neitheOpen nor Closed .

k) Continue at 6.6.3.1f.

NOTES
1 Because a moduleymay not make visible two different procedures

from the same database that would have the same unqualified predicate
indicator (6.2.2) inmno more than one such procedure can be found.

6.6.3 Searchi 2 Because no more than one procedure can be found the choice of
o g mm%‘l_i—m_o_d_ﬁ'rﬂmo Ule from the seopen does not need 1o be specified.

This clause d
a procedure
corresponds

pscribes how, with lookup modutethe processor locates
in the complete database whose predicate indicator
o a given (possibly module qualified) activator.

6.6.3.1 Searching the visible database

The procedurp in the complete database corresponding to a procedure
p (whose pripcipal functor is necessarily n@)/2) in the visible
database dedtermined by a modutes located as follows:

a) |If the principal functor ofp is a control construct or built-in
predicate therp is the required procedure.
b) |If ther¢ is a user-defined procedupe with the same principal

functor and arity ap defined inmthen p is the required procedure.

c) The sglective import, reexport and selective reexport directives
of mare examined; (1) if there is a directive namipgas imported

or re-expofted from a module then search is carried out in the
visible datgbase oh for a procedurep which is exported byn;

(2) else if fthere is a directive naming a moduieas imported «or
re-exported| then search is carried out in the visible database. of
for a procqdurep which is exported byn.

d)

Else the search fails.

he search in the visible database«of a moduler a
procedurp is carried out as follows:

Procedurally
user defined

a) |If ther
functor and

b is a user-defined procedupewith the same principal
arity ap defined inmthenyp is the required procedure,

b) Else fgrm two setOpen and‘Closed each initially empty.
c) Add mjto the setClosed):

d) If therg¢ is a selective import directivenport(n,Pl) or a
selective rgexport sdirectiveeexport(n,Pl) where PI includes
p replace Qpen by jthe set whose sole member ris

e) Else cteate _a lisS of all the modules that are the suhj
import/1 or reexport/1 directives inm and replaceOpen by
the setS.

f) If Open is empty the search fails,

g) Else remove a module from Open and add it toClosed .
h) If there is a user defined procedugewith the same principal

functor and arity asq defined inn and exported byn then q is
the required procedure, and the search terminates,

i) Else if there is aimport/2 directive or a reexport/2
directive in n naming p as imported from a modulein and nn

is not on Closed replaceOpen by the set whose sole element is
nn,

© ISO/IEC 2000 — All rights reserved

3 Since importation is idempotent no medule rleeds to be searched

more than once.

this subclause does
ted by a conforming
algorithm.

4 The provision of an explicit searchalgorithm ir
not prescribe that this algorithm shall*be impleme
processor rather it specifies only the effect of thd

6.6.3.2 Searching for a given procedure

The processor locates in the complete database
a procedurep cofresponding to a given term.

ith lookup madule

a) Determine the unqualified terdT and qual
associated tdm:T) .

fying moduleLT

b). JIf the principal functor ofUT is a control cgnstruct or built-in

procedurep then p is the required procedure.

c) If the principal functor of UT is a userfefined procedure
p (not a control construct or built-in predicate) then the visible
database (6.3.1) oET is searched for a procegluge. If no such

procedure exists the search fails.

6.6.4 Selecting a clause for execution
Execution proceeds in a succession of steps.

dedetextmod-

, the processor
a procqguuhose
torresponds with the

a) Using the visible database given by the m
ule of the current decorated subgoalirrdecsg!
searches the complete database (6.6.3.2) for
(possibly module qualified) predicate indicator
(possibly qualified) identifier and arity afurract

b) If no procedure is found in step 6.6.4a,
on the value of the flaginknown:

then action depends

error — There shall be an error

existence _error(procedure, M:PF)

and PF is the
predicate indicator of the (possibly qualifiedurract , or

warning — An implementation dependent warning shall be
generated and curract replaced by the control consfaitt , or
fail — curract
fail

shall be replaced by the control construct

c) |If curract identifies a user-defined predicate 48Mto the
module name of the module in whose body the predicate is defined.

d) If the flag colon _sets _calling _context is true set
contextmodule in the current decorated subgoal to the qualifying
module associated to(contextmodule:curract) and set
curract to the associated unqualified term.

13

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

e)

If the flag colon _sets _calling
form any implementation actions required to set the value of

_context is false per-

contextmodule

f) If the flag colon _sets _calling
that any meta-arguments aurract

(6.4.3).

9)

ctrl
(6.7).

_context is true ensure
have been module qualified

If p is a control construct (true, fail, call, cut, conjunction,
disjunction, if-then, if-then-else, catch, throw) thesl
and execution continues according to the rules defined in

is set to

i) Apply the substitutionMGUto CCG

j) Replace the current activator @CGby the MGUmodified body

of ¢ .
k) SetBI of CCSto nil

I) Set the substitution olf€CSto a composition of
of currstate and MGU

m) Set cutparent
subgoal stack ofCCSto the current choice point.

the substitution

of the new first subgoal of the decorated

h)y If pis
continue exel

i) If pisa
in which the
where CL is
Continue exe
NOTE — After
qualified.
6.6.5 Backtrg

A procedure bg
goal has been

Procedurally, b3

a) Examine
b) If Bl is
remove the H
c) If Bl is
at 6.6.7.

d) If Bl is
e) If Bl is

continue exe

6.6.6 Execut
Procedurally a

a) If there
(BM, up([))

b) Else con
| CT]) with

built-in predicateBP then BI
ution at 6.6.7.

Is set tobip and

user-defined procedure th@&Mis set to the module
procedure is defined aml is set to(DM,up(CL)) ,
p list of the current clauses qf of the procedure;
Cution at 6.6.6

the execution of these stepsirract is not module
cking

cktracks (1) if a goal has failed, or (2) if the initial

cktracking shall be executed as follows:
the value oBIl for the new currstate

DM, up(CL)) thenp is a user defined procedure
ead o€L and continue at 6.6.6.

ip thenp is a built-in predicate, continue execution

Ctrl the effect of re-executing it is defined in 6.7.

hil then the newcurract has_not,been executed,

ution at 6.6.4.
ng a user-defined progedure:
Iiser-defined procedure shall be executed as follows:

are no (moré).clauses far then Bl has the value
and coftihnle execution at 6.6.6.1,

Bider (clatise where Bl has the value(DM, up([c
thescalling contextDM

Batisfied, and the processor is asked to re-execute it.

n) Set the contextmodule of the new first

decorated subgoal stack ©©M

0) PushCCSon to S. It becomes the .neveurrstg
previous currstate becomes itschoicepaint

p) Continue execution at 6.6.4,

6.6.6.1 Executing a user-defined procedure
clauses

When a user-defined Jprocedure has been selected
but has no more~tlauses, i.eBl has a value(DM,
shall be executed as follows:

from S.

a) Popcurrstate

b)/ Continue execution at 6.6.5.

6.6.7 Executing a built-in predicate

Procedurally a built-in predicate shall be executed 4
of ISO/IEC 13211-1.

For the built-in predicates that have meta-argum
access and madification built-in predicates clause(:

serta(:), assertz(:), retract(:), abolish(:)

predicate _property(:,*) , the logic and control i
once(:) , () , and the all solutions predicatest
bagof(*,:,*) , and findall(*,:,*) , the cu
subgoal gives access to the calling context.

For the builtin predicates which are ¢
(6.42) - op/3, current _op/3 , char _co
current _char _conversion/2 , set _prolog _flag

rent _prolog _flagi2 read _term/3 ,
write _term/2 , write/1 | write/2 , writeg/1 , a
the current decorated subgoal gives access to the

wifite

subgoal of the

te and the

with no more

for execution 6.6.4

up@) it

s in section 7.7.12

ents, the database
*), as-

, and
uilt-in predicates
f(*,:,%),
rent decorated

bntext sensitive
hversion/2

2 , cur
_term/3 ,

d writeq/2
calling context.

6.7 Executing a control construct

c)
for execution,

d) ElseBl i

If the head ofc and curract

are unifiable then it is selected
and continue execution at 6.6.6 e,

s replaced by a valu¢DM, up(CT)) and continue

execution at 6.6.6 a.

e) Letc

f) Unify the
unifier MGU

9)
h)

be a renamed copy of the clauseof up([c

Make a copyCCS of currstate

D

head ofc’ and curract producing a most general

Apply the substitutionMGUto the body ofc’ .

. It contains a copy of the

current goal which is calledCCG

14

This clause describes the modifications required to
the execution model of ISO/IEC 13211-1. For all
not specifically described, the model is unchanged.

6.7.1 call/l

6.7.1.1 Description
call(G)
a goal which is true in the context o€M Procedu

construct call, denoted bygall(G)

a) Make a copyCCS of currstate

the descriptions of
control constructs

is true in the calling context of modul€EMiff G represents

rally, a control

, shall be executed as follows:

© ISO/IEC 2000 — All rights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

b) SetBl of CCSto nil

c) Pop currdecsgl (= from

currentgoal of CCS

(call(G), CM, CP))

d) If the term G has as associated unqualified term a variable,

there shall be an instantiation error,

e) Else if the termG has as associated unqualified term a number,

there shall be a type error,

f) Else in the calling context of the modul€M and defining
module CMconvert the termG to a goalGoal with calling context

ISO/IEC 13211-2:2000(E)

a) Make a copyCCSof currstate
b) Replacecurract of CCShby call(G)
c) SetBIl to nil

d) PushCCSonto S.

e) Continue execution at 6.6.4.

f) Pop currstate from S.

g) Continue execution at 6.6.5.

M the qualifying module ofCM:G) (6.5.2).
g) Let NN be the choice point oturrstate
h) Push(¢Goal, M, NN) on to currentgoal of CCS
i) PushCfSonto S.

j) Continge execution at 6.6.4.

k) Pop cyrrstate from S.

I) Continye execution at 6.6.5.

call(G) is fe-executable. On backtracking, continue at 6.7.1.1k.

6.7.1.2 Template and modes

call(+callable _term) .

6.7.1.3 Errprs

a) G is a|variable

— instantiafjon _error.

b) The gyalifying module ofCM:G) cannot be determined (6.1.1).
— instantiatjon _error.

c) G is ng¢ither a variable nor a callableé term
— type _errpr(callable, G).

d) G canrjot be converted to a/goal
— type _errpr(callable, G).

6.7.1.4 Examples
call(m:X:foo).

type_error(caljable, ,m:X:foo).

catch(G,C,R) is
6.7.2.1f.

re-executable. On backtracking, continue at

6.7.2.2 Template and modes

catch(?callable _term, ?term, ?term)

6.7.2.3 Errors

a) G is a variable

— instantiation _error.

b) The ‘qualifying module ofCM:G) cannot be determined (6.1.1).
— instantiation _error.

c). Gis neither a variable nor a callable term
~# type _error(callable, G).

6.7.3 throw/1
6.7.3.1 Description

throw(B) is a control construct that is neitherl true nor false. It
exists only for its procedural effect of causing [the normal flow of

control to be transferred back to an existing cajl aitch/3 (see
6.7.2).
Procedurally, a control construct throw, denoted fhyow(B) , shall

be executed as follows:

a) Make a renamed copgZA of curract , arld a copyCP of
cutparent
b) Pop currstate from S.

c) It shall be a system error (7.12.2j of ISQ/IEC 13211-1)Sf
is now empty,

d) Else if (1) the newcurract is a call of thg control construct
catch/3 , and (2) the argument ofCA unifies|with the second

6.7.2 catch/3

The catch andthrow control constructs enable execution to continue
after an error without intervention from the user.

6.7.2.1 Description

catch(G,C,R) is true in the calling context of modul€Miff (1)
call(G) is true in the context ofCM or (2) the call of G is
interrupted by a call ofthrow/1 whose argument unifies witlC,
and call(R) is true in the context ofCM Procedurally, a control
construct catch, denoted hyatch(G,C,R) is executed as follows:

© ISO/IEC 2000 — All rights reserved

argument o ofthe—catch—witt—most gcllclai mifielGY and (3)
the cutparent is less thanCP, then continue at 6.7.3.1b.

e) Apply MGUto currentgoal

f) Replacecurract by call(R)
of the control constructatch/3

, whereR is the third argument
from 6.7.3.1d.

g) SetBI to nil

h) Continue execution at 6.6.4.

6.7.3.2 Template and modes

throw(+nonvar)

15

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

6.7.3.3 Errors

6.10.1 Error classification

a) B is a variable The following types are added to the classification of 7.12.2 of
— instantiation _error. ISO/IEC 13211-1.
b) B does not unify with theC argument of any call otatch/3 a) The list of valid types is extended by the addition of
— system _error. metapredicate _mode.indicator (See 7.12.2 b of ISO/IEC
13211-1.)
. Predi r rti b) _The list of valid domains is extended by the addition of
6.8 edicate properties predicate _property . (See 7.12.2 c of ISO/IEC 13211-1.)
The_ propertle_s of procedures ..C?r.] bf found using the. built-in c) The list of object types is extended by the additionnuddule .
predlcate predlc te “property(CatabreT— P roperty) Twetre (See 7.12.2 d of ISO/IEC 13211_1)
Callable is tlhe meta-argument ternviodule:Goal (7.2.2). The e '

predicate propefties supported shall include:

static — The procedure is static.

dynamic —|The procedure is dynamic.

public — The procedure is a public procedure.

private —|The procedure is a private procedure.

built _.n 4 The procedure is a built-in predicate.

multifile — The procedure is the subject of a multifile directive.
exported The moduleModule exports the procedure.

metapredicats
and MPMI is

(MPMI) — The procedure is a metapredicate,
ts metapredicate mode indicator.
into

imported _frgm(From) The predicate is

module Module from the moduleFrom.

imported

defined _in(Q
DefiningModu

efiningModule) — The module with the-name
e is the defining module of the procedure:

A processor ma
as an impleme

y support one of more additional predicate properties
tation specific feature.

6.9 Flags

The following flag is added to those ‘of)7.11 of ISO/IEC 13211-1.

6.9.1 Flag: cplonsetscalling:context
Possible valuetfue , false

Default value: lnplementation defined

d)
implicit

The list of permission types is extehded b
. (See 7.12.2 e of ISO/IEC 13211-1.)

7 Built-in predicates

7.1 The format of built-in predicate defini

The format of the builttigvpredicate definitions follow
13211-1.

7.1.1 Type-of an argument

The fallowing additional argument types are require|
_mode_indicator

metapredicate — as terminolog

predicate _property — a procedure property (6.8).
prototype — as terminology.
qualified _or _unqualified clause - a clause

associated unqualified term is a clause.

7.2 Module predicates

The examples provided for these built-in predicates g
database has been created from the following mo
colon _sets _calling _context is assumed to have

- module(foo).

- export(p/1).

- metapredicate(p(:)).
end_module(foo).

module(bar).
- export(g/1).

y the addition of

ions

that of ISO/IEC

or term whose

ssume the complete
ule text. The flag
the valtree .

- end_module(bar).

Changeable: No

Description: If the value of this flag isrue the operator () is used
to set the calling context of a metapredicate goal. Meta-arguments in
a metapredicate goal must be module qualified when the predicate is
activated, with the defining module of the procedure in whose body
they are found. If the value idalse some other implementation

defined mechanism by which context sensitive predicates can access °

their calling context must be provided.

6.10 Errors

The following errors are defined in addition to those defined in section
7.12 of ISO/IEC 13211-1.

16

- module(baz).
- export(g/1).
end_module(baz).

- body(foo).
p(X) :- write(X).
end_body(foo).

body(bar).
- import(foo, p/1).
a(X) :- a(x), p(X)
q(X) :- a(X), foo:p(2).
a(1).

end_body(bar).

© ISO/IEC 2000 — All r

ights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

- body(baz). b) Determines the unqualified ter with principal functor P of
- import(bar, g/1). arity N associated with(M:Prototype) . PIN is the associated
- end_body(baz). predicate indicator.

c) Searches the complete database and creates &esetp of
all terms PP such thatP/N identifies a procedure in the visible
7.2.1 currentmodule/1 database oMMwhich has predicate proper§P and PP is unifiable
with Property
7.2.1.1 Description
d) |If Setpp is non empty set is proceeds to 7.2.2.1f,
current _module(Module) is true iff Module unifies with the))
name of an existing module. e) Else the predicate fails.

Procedurallychirrent _module(Module) is executed as follows: f) Chooses the first elemenPPP of Setpp., linifies PPP with
Property and the predicate succeeds.

a) Searches the complete database for all active modules and

creates a $eB of all terms M such that there is a module whose g) If all the elements ofSetpp have been chosen the predicate

identifier umifies withModule . fails,

b) If a ngn-empty set is found, then proceeds to 7.2.1.1d, h) Else chooses the first elemeRPP of Setpp that has not
already been chosen, unifi@&PPwith Property Jand the predicate

c) Else te goal fails. succeeds.

d) Choosps an element & and the goal succeeds. predicate _property(Prototype, Property) is re-executable.

On backtracking, ceontinde at 7.2.2.1g.
e) If all the elements ofS have been chosen then the goal fails, .) . .
The order in whiech-properties are found pyedicate [_property/2

f) Else clhooses an element of the setwhich has not already is implementatior dependent.

been chos¢n and the goal succeeds.
current _modlule(Module) is re-executable. On backtracking, 7.22:2. Template and modes
continue at 7}2.1.1e.) .
predicate _property(+prototype, ?predicate _property)
NOTE — curfent _module(M) succeeds if the interface tM has

been loaded, |whether or not any bodieshMinay have been prepared

for execution. 7.2.2.3 Errors

a) Prototype is a variable

7.2.1.2 Template and Modes - instantiation _error

current _moglule(?atom) b) The qualifying module of(M:Prototype) cannot be deter-
mined (6.1.1)
— instantiation _error

7.2.1.3 Errprs) . .
c) Prototype is neither a variable nor a calable term

a) Modulg is neither a variable noftan®atom — type error(callable, Prototype)
— type _efror(atom, Module) d) Property is neither a variable nor a pregicate property
B ' ' — domain _error(predicate _property, Proper}y) .
7.2.1.4 Examples e) The module identified bjMMdoes not exist
— existence _error(module, MM)

current_moduje(foo).

succeedsy 7.2.2.4 Examples

current_module(fred:sid).
type_error(atom, fred:sid).

Goals attempted in the context of the module
bar.
7.2.2 predicateproperty/2)
predicate_property(q(X), exported).
7.2.2.1 Description succeeds, X is not instantiated.
. . . predicate_property(p(X), defined_in(S)).
predicate _property(Prototype, Property) is true in the succeeds, S is unified with foo,
calling context of a moduleM iff the procedure associated with the X is not instantiated.

argumentPrototype has predicate propertProperty
predicate_property(foo:p(X), metapredicate(Y)).

Procedurally predicate _property(Prototype, Property) is succeeds, Y is unified with p(:),
executed as follows: X is not instantiated.
a) Determines the qualifying module &MMof (M:Prototype) . predicate_property(X:p(Y), exported).

© ISO/IEC 2000 — All rights reserved 17

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

instantiation_error.

Goal attempted in the context of the module
baz.

predicate_property(foo:p(X), metapredicate(Y)).
succeeds, Y is unified with p(:),
X is not instantiated.

The following example assumes that the Prolog

flag colon_sets_calling_context has the value true.

bar:predicate_property(p(X), imported_from(Y)).

:- dynamic(horns/1).

limbs(X) :- insects:legs(X).
limbs(X) :- mammals:legs(X).

- end_body(animals).

7.3.1 clause/2

7.3.1.1 Description

SUCCeedS, > ainneu Vvltll TOU7
X is not ingtantiated.

7.3 Clause Jretrieval and information

This clause desgribes the interaction of the built-in predictaese/2

with the modulg system.

The examples provided for these built-in predicates assume that the
complete databgse has been created from the following module text.

- module(mamrpals).

- export(ddg/0, cat/0, elk/1).
- end_module(hammals).
- body(mammajs).

:- dynamic(cpt/0).
cat.

:- dynamic(dpg/0).
dog :- true.

:- dynamic(e}k/1).
elk(X) :- mopse(X).

:- dynamic(njoose/1).

legs(4).

- end_body{mammals).
- module(insects)

- export(antf0, bee/0).
- end_module(ipsects).

- body(insects)

clause(Head, Body)
iff:

— The associated unqualified term @¥l:Head)

is true in the calling contex

— The procedure oHH is publig, ‘and

— There is a clause in the, qualifying moduleM
which corresponds to @ term:- B which unifie

Body.

Procedurally, clause(Head, Body)

is executed

context of a moduleM as follows:

of a module

id HH (6.1.1.3),

of (M:Head)
5 with HH -

in the calling

a) Determines the qualifying modulBM of (M:Hgad) (6.1.1.3)
to be ‘séarched for the clauses.

b){ Determines the unqualified termH associated wit{M:Head) .

c) Searches sequentially through each public us

defined in the chosen module and creates allish
clause(H,B) such that:

1) DM contains a clause whose head can
calling context and defining modulBeMto a tern
body can be converted with calling context an
DMto a termB,

2) H unifies with HH and

3) B unifies with Body.
d) If a non-empty list is found, then proceeds
e) Else the goal fails.

f) Chooses the first element of the lik and the)

pr-defined procedure
[all the terms

be converted with
hH and whose
d defining module

o 7.3.1.1f,

goal succeeds.

thosen then the

:- dynamic(aht/0).

ant. g) If all the elements of the list have been
goal fails,

:- dynamic(bpef0y

bee. h) Else chooses the first element bfthat has n
chosen, and the goal succeeds.

:- dynamic(legs/1).

legs(6). clause/2

body_type(segmented).
- end_body(insects).
- module(animals).

;- exports(limbs/1).
- end_module(animals).
- body(animals).

:- import(insects, [ant/0, bee/0]).
- import(mammals, [dog/0, cat/0, elk/1]).

18

7.3.1.2 Template and modes

clause(+term, ?callable _term)

7.3.1.3 Errors

a) Head is a variable
— instantiation _error

© ISO/IEC 2000 — All r

ot already been

is re-executable. On backtracking, continue at 7.3.1.1g.

ights reserved

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

