
Reference number
ISO/IEC 13211-2:2000(E)

© ISO/IEC 2000

INTERNATIONAL
STANDARD

ISO/IEC
13211-2

First edition
2000-06-01

Information technology — Programming
languages — Prolog —

Part 2:
Modules

Technologies de l'information — Langages de programmation — Prolog —

Partie 2: Modules

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2000 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

Contents Page

Foreword . v

Introduction . vi

1 Scope: 1
1.1 Notes . 1

2 Normative reference : 1

3 Terms and definitions : 1

4 Compliance: 3
4.1 Prolog processor . 3
4.2 Module text . 3
4.3 Prolog goal . 3
4.4 Prolog modules . 3

4.4.1 Prolog text without modules . 3
4.4.2 The module user . 4

4.5 Documentation . 4
4.5.1 Dynamic Modules . 4
4.5.2 Inaccessible Procedures . 4

5 Syntax : 4
5.1 Module text . 4
5.2 Terms . 4

5.2.1 Operators . 4

6 Language concepts and semantics: 4
6.1 Related terms . 5

6.1.1 Qualified and unqualified terms . 5
6.2 Module text . 5

6.2.1 Module user . 5
6.2.2 Procedure Visibility . 5
6.2.3 Module interface . 5
6.2.4 Module directives . 6
6.2.5 Module body . 7
6.2.6 Clauses . 7

6.3 Complete database . 8
6.3.1 Visible database . 8
6.3.2 Examples . 8

6.4 Context sensitive predicates . 8
6.4.1 Metapredicate built-ins . 8
6.4.2 Context sensitive built-ins . 9
6.4.3 Module name expansion . 9
6.4.4 Examples: Metapredicates . 9

6.5 Converting a term to a clause, and a clause to a term . 10
6.5.1 Converting a term to the head of a clause . 10
6.5.2 Converting a module qualified term to a body . 10
6.5.3 Converting the body of a clause to a term . 11

6.6 Executing a Prolog goal . 12

iiiISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

6.6.1 Data types for the execution model . 12
6.6.2 Initialization . 12
6.6.3 Searching the complete database . 13
6.6.4 Selecting a clause for execution . 13
6.6.5 Backtracking . 14
6.6.6 Executing a user-defined procedure: . 14
6.6.7 Executing a built-in predicate . 14

6.7 Executing a control construct . 14
6.7.1 call/1 . 14
6.7.2 catch/3 . 15
6.7.3 throw/1 . 15

6.8 Predicate properties . 16
6.9 Flags . 16

6.9.1 Flag: colonsetscalling context . 16
6.10 Errors . 16

6.10.1 Error classification . 16

7 Built-in predicates : 16
7.1 The format of built-in predicate definitions . 16

7.1.1 Type of an argument . 16
7.2 Module predicates . 16

7.2.1 currentmodule/1 . 17
7.2.2 predicateproperty/2 . 17

7.3 Clause retrieval and information . 18
7.3.1 clause/2 . 18
7.3.2 currentpredicate/1 . 19

7.4 Database access and modification . 20
7.4.1 asserta/1 . 20
7.4.2 assertz/1 . 21
7.4.3 retract/1 . 21
7.4.4 abolish/1 . 22

iv ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

vISO/IEC 2000 – All rights reserved©

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized
system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International
Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and
IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard
requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 13211 may be the subject of patent rights. ISO and IEC
shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 13211-2 was prepared by Joint Technical Committee ISO/IEC JTC 1,Information technology,
Subcommittee SC 22,Programming languages, their environments and system software interfaces.

ISO/IEC 13211 consists of the following parts, under the general titleInformation technology — Programming languages — Prolog:

� Part 1: General core

� Part 2: Modules

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

Introduction
This is the first International Standard for Prolog, Part 2 (Modules). It was produced on May 1, 2000.

Prolog (Programming in Logic) combines the concepts of logical and algorithmic programming, and is recognized
not just as an important tool in AI (Artificial Intelligence) and expert systems, but as a general purpose high-level
programming language with some unique properties.

The language originates from work in the early 1970s by Robert A. Kowalski while at Edinburgh University (and ever
since at Imperial College, London) and Alain Colmerauer at the University of Aix-Marseilles in France. Their efforts
led in 1972 to the use of formal logic as the basis for a programming language. Kowalski’s research provided the
theoretical framework, while Colmerauer’s gave rise to the programming language Prolog. Colmerauer and his team then
built the first interpreter, and David Warren at the AI Department, University of Edinburgh, produced the first compiler.

The crucial features of Prolog are unification and backtracking. Unification shows how two arbitrary structures can be
made equal, and Prolog processors employ a search strategy which tries to find a solution to a problem by backtracking
to other paths if any one particular search comes to a dead end.

Prolog is good for windowing and multimedia because of the ease of building complex data structures dynamically, and
also because the concept of backing out of an operation is built into the language. Prolog is also good for interactive
web applications because the language lends itself to both the production and analysis of text, allowing for production
of HTML ‘on the fly’.

This International Standard defines syntax and semantics of modules in ISO Prolog. There is no other International
Standard for Prolog modules.

Modules in Prolog serve to partition the name space and support encapsulation for the purposes of constructing large
systems out of smaller components. The module system is procedure-based rather than atom-based. This means that
each procedure is to be defined in a given name space. The requirements for Prolog modules are rendered more
complex by the existence of context sensitive procedures.

vi ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

INTERNATIONAL STANDARD ISO/IEC 13211-2:2000(E)

Information technology — Programming languages —
Prolog — Part 2: Modules

1 Scope

This part of ISO/IEC 13211 is designed to promote the
applicability and portability of Prolog modules that contain
Prolog text complying with the requirements of the Programming
Language Prolog as specified in this part of ISO/IEC 13211.

This part of ISO/IEC 13211 specifies:

a) The representation of Prolog text that constitutes a Prolog
module,

b) The constraints that shall be satisfied to prepare Prolog
modules for execution, and

c) The requirements, restrictions and limits imposed on a
conforming Prolog processor that processes modules.

This part of ISO/IEC 13211 does not specify:

a) The size or number of Prolog modules that will exceed the
capacity of any specific data processing system or language
processor, or the actions to be taken when the limit is
exceeded,

b) The methods of activating the Prolog processor or the
set of commands used to control the environment in which
Prolog modules are prepared for execution,

c) The mechanisms by which Prolog modules are loaded,

d) The relationship between Prolog modules and the
processor-specific file system.

1.1 Notes

Notes in this part of ISO/IEC 13211 have no effect on the
language, Prolog text, module text or Prolog processors that are
defined as conforming to this part of ISO/IEC 13211. Reasons
for including a note include:

a) Cross references to other clauses and subclauses of this
part of ISO/IEC 13211 in order to help readers find their
way around,

b) Warnings when a built-in predicate as defined in this part
of ISO/IEC 13211 has a different meaning in some existing
implementations.

2 Normative reference

ISO/IEC 13211-1 : 1995,Information technology — Program-
ming languages – Prolog Part 1: General core.

3 Terms and definitions

The terminology for this part of ISO/IEC 13211 has a format
modeled on that of ISO 2382.

An entry consists of a phrase (inbold type) being defined,
followed by its definition. Words and phrases defined in the
glossary are printed initalics when they are defined in ISO/IEC
13211-1 or other entries of this part of ISO/IEC 13211. When
a definition contains two words or phrases defined in separate
entries directly following each other (or separated only by a
punctuation sign), * (an asterisk) separates them.

Words and phrases not defined in the glossary are assumed to
have the meaning given in ISO 2382-15 and ISO/IEC 13211-1;
if they do not appear in ISO 2382-15 or ISO/IEC 13211-1, then
they are assumed to have their usual meaning.

A double asterisk (**) is used to denote those definitions where
there is a change from the meaning given in ISO/IEC 13211-1.

3.1 accessible procedure:See 3.39 –procedure, accessible.

3.2 activation, of a procedure: A procedure has been
activatedwhen it is called for execution.

3.3 argument, qualified: A qualified term which is an
argument in a module name qualified * predication.

3.4 calling context: The set ofvisible procedures, theoperator
table, thecharacter conversion mappingand Prolog flag values
denoted by amodule name, and used as a context foractivation
of a context sensitive procedure.

3.5 database, visible: The visible databaseof a module M
is the set ofproceduresthat can beactivated without module
name qualificationfrom within M.

3.6 defining module: See 3.23 –module, defining.

3.7 export: To make a procedure of an exporting module
available for import or re-export by other modules.

3.8 exported procedure: See 3.41 –procedure, exported.

1ISO/IEC 2000 – All rights reserved©

The following normative document contains provision which,
through reference in this text, constitute provisions of this part of
ISO/IEC 13211. For dated references, subsequent amendments to,
or revisions of, any of these publications do not apply. However,
parties to agreements based on this part of ISO/IEC 13211 are
encouraged to investigate the possibility of applying the most

recent edition of the normative document indicated below. For
undated references, the latest edition of the normative document
referred to applies. Members of ISO and IEC maintain registers of
currently valid International Standards.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

3.9 import: To make procedures * exportedor re-exported
by a module * visiblein an importing or re-exporting module.

3.10 import, selective: The importation into a moduleof only
certain explicitly indicatedprocedures * exportedor re-exported
by a module (see 6.2.5.2).

3.11 load (a module): Load the module interfaceof a module
and correctly prepare all itsbodies, if any, for execution.

NOTE — The interface of a module shall be loaded before any body
of the module (see 6.2.3).

3.12 load (a module interface): Correctly prepare themodule
interface of the module for execution.

3.13 lookup module: See 3.29 –module, lookup.

3.14 meta-argument: An argument in ametaprocedurewhich
is context sensitive.

3.15 metapredicate: A predicatedenoting ametaprocedure.

3.16 metapredicate directive: A directive stipulating that a
procedure is a metapredicate.

3.17 metapredicate mode indicator: Either a predicate indi-
cator or a compound term each of whose arguments is‘:’ , or
‘*’ (see 6.1.1.4).

3.18 metaprocedure: A procedurewhose actions depend on
the calling context, and which therefore carries augmented
module information designating thiscalling context.

3.19 metavariable: A variable occurring as anargument
in a metaprocedurewhich will be subject to module name
qualification when theprocedure is activated.

3.20 module: A named collection ofproceduresanddirectives
together with provisions toexport some of theproceduresand
to import and re-export * proceduresfrom other modules.

3.21 module body: A Prolog text containing the definitions
of the proceduresof a module together with import and other
directives local to thatmodule body.

3.22 module, calling (of a procedure): The module in which
a correspondingactivator is executed.

3.23 module, defining: The module in whose module body
(or bodies)a procedure is defined explicitly and entirely.

3.24 module directive: A term D which affects the meaning
of module text(6.2.4), and is denoted in thatmodule textby a
directive-term:- (D). .

3.25 module, existing: A module whose interface has been
prepared for execution(see 6.2.3).

3.26 module, exporting: A module that makes available
proceduresfor import or re-export by other modules.

3.27 module interface: A sequence of read-terms which
specify theexportedand re-exported procedures andexported *
metapredicatesof a module.

3.28 module, importing: A module into which procedures
are imported, adding them to thevisible databaseof the module.

3.29 module, lookup: The module where search forclauses
of a procedure takes place.

NOTE — The lookup module defines the visible database of procedures
accessible without module name qualification (see 6.1.1.3).

3.30 module name: An atom identifying a module.

3.31 module name qualification: The qualification of a term
with a module name.

3.32 module, qualifying: See 6.1.1.3 –Qualifying mod-
ule, lookup module and defining module .

3.33 module, re-exporting: A module which, by re-
exportation,* imports certain procedures and exports these
sameprocedures.

3.34 module text: A sequence ofread-termsdenotingdirec-
tives, module directivesand clauses.

3.35 module, user: A module with name user containing
all user-defined proceduresthat are not specified as belonging
to a specificmodule.

3.36 predicate **: An identifier or qualified identifiertogether
with an arity.

3.37 predicate name, qualified: The qualified identifierof a
predicate.

3.38 preparation for execution: Implementation dependent
handling of bothProlog text and module textby a processor
which results, if successful, in the processor being ready to
execute the preparedProlog text or module text.

3.39 procedure, accessible:A procedure is accessibleif it
can be activated with module name qualificationfrom any
modulewhich is currentlyloaded.

2 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

3.40 procedure, context sensitive: A procedure is context
sensitive if the effect of its execution depends on thecalling
context in which it is activated.

3.41 procedure, exported: A procedurethat is made available
by a module for import or re-export by other modules.

3.42 procedure, visible (in a module M): A procedure
that can be activated fromM without using module name
qualification.

3.43 process **: Execution activity of a processor running
prepared Prolog textand module textto manipulateconforming
Prolog data, accomplishside effectsand compute results.

3.44 prototype: A compound termwhere eachargument is
a variable.

3.45 prototype, qualified: A qualified term whose first
argumentis a module nameand secondargumentis a prototype.

3.46 qualification: The textual replacement (6.4.3) of aterm
T by the term M:T where M is a module name.

3.47 qualified argument: See 3.3 –argument, qualified

3.48 qualified term: See 3.51 –term, qualified.

3.49 re-export: To makeprocedures * exportedby a module
* visible in the re-exporting module, while at the same time
making them available forimport or re-exportby other modules
from the re-exporting module.

3.50 re-export, selective: The re-exportationby a re-exporting
* moduleof certain indicatedprocedures * exportedfrom another
module (see 6.2.4.3).

3.51 term, qualified: A term whose principal functor is
(:)/2 .

3.52 visible procedure (in amoduleM): See 3.42 –procedure,
visible.

3.53 visible database (of amoduleM): See 3.5 – database,
visible.

4 Compliance

4.1 Prolog processor

A conforming processor shall:

a) Correctly prepare for execution Prolog text and module
text which conforms to:

1) the requirements of this part of ISO/IEC 13211,
including the requirements set out in ISO/IEC 13211-1
General Core, whether or not the text makes explicit use
of modules, and

2) the implementation defined and implementation specific
features of the Prolog processor,

b) Correctly execute Prolog goals which have been prepared
for execution and which conform to:

1) the requirements of this part of ISO/IEC 13211 and
ISO/IEC 13211, and

2) the implementation defined and implementation specific
features of the Prolog processor,

c) Reject any Prolog text, module text or read-term whose
syntax fails to conform to:

1) the requirements of this part of ISO/IEC 13211 and
ISO/IEC 13211, and

2) the implementation defined and implementation specific
features of the Prolog processor,

d) Specify all permitted variations from this part of ISO/IEC
13211 and ISO/IEC 13211 in the manner prescribed by this
part of ISO/IEC 13211 and ISO/IEC 13211, and

e) Offer a strictly conforming mode which shall reject the
use of an implementation specific feature in Prolog text,
module text or while executing a goal.

4.2 Module text

Conforming module text shall use only the constructs specified
in this part of ISO/IEC 13211 and ISO/IEC 13211-1, and
the implementation defined and implementation specific features
supported by the processor.

Strictly conforming module text shall use only the constructs
specified in this part of ISO/IEC 13211 and ISO/IEC 13211-1,
and the implementation defined features specified by this part
of ISO/IEC 13211.

4.3 Prolog goal

A conforming Prolog goal is one whose execution is defined
by the constructs specified in this part of ISO/IEC 13211
and ISO/IEC 13211-1, and the implementation defined and
implementation specific features supported by the processor.

A strictly conforming Prolog goal is one whose execution is
defined by constructs specified in this part of ISO/IEC 13211
and ISO/IEC 13211-1, and the implementation defined features
specified by this part of ISO/IEC 13211.

4.4 Prolog modules

4.4.1 Prolog text without modules

A processor supporting modules shall be able to prepare and
execute Prolog text that does not explicitly use modules. Such

3ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

text shall be prepared and executed as the body of the required
built-in module nameduser.

4.4.2 The module user

A Prolog processor shall support a built-in moduleuser .
User-defined procedures not defined in any particular module
shall belong to the moduleuser .

4.5 Documentation

A conforming Prolog processor shall be accompanied by docu-
mentation that completes the definition of every implementation
defined implementation specific features (if any) specified in
this part of ISO/IEC 13211and ISO/IEC 13211-1.

4.5.1 Dynamic Modules

A Prolog processor may support additional implementation
specific procedures that support the creation or abolition of
modules during execution of a Prolog goal.

4.5.2 Inaccessible Procedures

A Prolog processor may support additional features whose effect
is to make certain procedures defined in the body of a module
not accessible from outside the module.

5 Syntax

This clause defines the abstract syntax of Prolog text that
supports modules. The notation is that of ISO/IEC 13211-1.

Clause 5.1 defines the syntax of module text. Clause 5.2 defines
the role of the operator ‘:’.

5.1 Module text

Module text is a sequence of read-terms which denote (1)
module directives, (2) interface directives, (3) directives, and (4)
clauses of user-defined procedures.

The syntax of a module directive and of a module interface
directive is that of a directive.

module text = m text ;
Abstract: mt mt

m text = directive term, m text ;
Abstract: d � t d t

m text = clause term, m text ;
Abstract: c � t c t

m text = ;
Abstract: nil

Table 1 — The initial operator table

Priority Specifier Operator(s)
1200 xfx :- -->
1200 fx :- ?-
1100 xfy ;
1050 xfy ->
1000 xfy ,
900 fy \+
700 xfx = \=
700 xfx == \== @< @=< @> @>=
700 xfx =..
700 xfx is =:= =\= < =< > >=
600 xfy :
500 yfx + - /\ \/
400 yfx * / // rem mod << >>
200 xfx **
200 xfy ˆ
200 fy - \

Clause 6.2.4 defines the module directives and the module
interface directives. Clause 6.2.5 defines directives in addition
to those of ISO/IEC 13211-1 that can appear in a module body
and their meanings.

5.2 Terms

5.2.1 Operators

The operator table specific to a moduleM defines which atoms
will be regarded as operators in the context of the given module
moduleMwhen (1) a sequence of tokens is parsed as a read-term
by the built-in predicateread term/3 or (2) Prolog text is
prepared for execution or (3) output by the built-in predicates
write term/3, write term/2, write/1, write/2,
writeq/1, writeq/2 .

The effect of the directivesop/3 , char conversion/2
and set prolog flag/2 in modules with multiple bodies is
described in 6.2.5.4.

Table 1 defines the predefined operators. The operator‘:’ is
used for module qualification.

NOTES

1 This table is the same as table 7 of ISO/IEC 13211-1 with the
single addition of the operator ‘:’.

2 When used in a predicate indicator or predicate name ‘:’ is an
atom qualifier. This means that a predicate name can be a compound
term provided that the functor is ‘:’.

3 The operator table can be changed both by the use of the module
interface directiveop/3 and by the module directiveop/3 in the
body of a module.

6 Language concepts and semantics

This clause defines the semantic concepts of Prolog with
modules.

a) Subclause 6.1 defines the qualifying module and unqual-
ified term associated with a qualified term,

4 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

b) Subclause 6.2 defines the division of module text into
Prolog modules,

c) Subclause 6.2.6 defines the relationship between clauses
in module text and in the complete database,

d) Subclause 6.3 defines the complete database and its
relation to Prolog modules,

e) Subclause 6.4 defines metapredicates and the process of
name qualification,

f) Subclause 6.5 defines the process of converting terms to
clauses and vice versa in the context of modules,

g) Subclause 6.6 defines the process of executing a goal in
the presence of module qualification,

h) Subclause 6.7 defines the process of executing a control
construct in the presence of module qualification.

i) Subclause 6.8 defines predicate properties,

j) Subclause 6.9 defines required flags in addition to those
required by ISO/IEC 13211-1.

k) Subclause 6.10 defines errors in addition to those required
by ISO/IEC 13211-1.

6.1 Related terms

This clause extends the definitions of clause 7.1 of ISO/IEC
13211-1.

6.1.1 Qualified and unqualified terms

6.1.1.1 Qualified terms

A qualified term is a term whose principal functor is(:)/2 .

6.1.1.2 Unqualified terms

An unqualified term is a term whose principal functor is not
(:)/2 .

6.1.1.3 Qualifying module

Given a moduleM and a termT, the associated qualifying
module QM = qm(M:T) and associated unqualified termUT =
ut(M:T) of (M:T) are defined as follows:

a) If the principal functor ofT is not (:)/2 thenqm(M:T)
is M and ut(M:T) is T;

b) If the principal functor ofT is (:)/2 with first argument
MM, and second argumentTT, thenqm(M:T) is the qualifying
module of qm(MM:TT) , and ut(M:T) is the unqualified
term ut(MM:TT) .

6.1.1.4 Metapredicate mode indicators

A metapredicate mode indicator is either a predicate indicator or
a compound termMName(Modes) each of whose arguments
is ‘:’ or ‘*’.

If the flag colon sets calling context 6.9.1 is true
shall be a compound term each of whose arguments is ‘:’ or
‘*’. In this case an argument whose position corresponds to a
‘:’ is a meta-argument, and an argument corresponding to ‘*’
shall not be a meta-argument.

6.2 Module text

Module text specifies one or more user-defined modules and the
required moduleuser . A module consists of a single module
interface and zero or more corresponding bodies. The interface
shall be prepared for execution before any of the bodies. Bodies
may be separated from the interface. If there are multiple
bodies, they need not be contiguous.

The heads of clauses in module text shall be implicitly module
qualified only by the module body in which they appear, not
by explicit qualification of the clause head.

Every procedure that is neither a control construct nor a
built-in predicate belongs to some module. Built-in predi-
cates and control constructs are visible everywhere and do
not require module qualification, except that if the flag
colon sets calling context 6.9.1 is true the builtin
metapredicates (6.4.1) , the context sensitive builtins 6.4.2 and
call/1 andcatch/3 may be module qualified for the purpose
of setting the calling context.

6.2.1 Module user

The required moduleuser contains all user-defined procedures
not defined within a body of a specific module. It has by default
an empty module interface. However, module text may contain
an explicit interface for moduleuser . Any such interface
must be loaded before any Prolog text belonging to the module
user .

NOTE — An explicit interface for moduleuser enables procedures
to be exported from moduleuser to other modules and allows
metapredicates to be defined in moduleuser .

6.2.2 Procedure Visibility

All procedures defined in a module are accessible from any
module by use of explicit module qualification. It shall be an
allowable extension to provide a mechanism that hides certain
procedures defined in a moduleM so that they cannot be
activated, inspected or modified except from within a body of
the moduleM.

A module shall not make visible by import or re-export two or
more procedures with a given (unqualified) predicate indicator
defined in different modules. If a procedure with (unqualified)
predicate indicatorPI from the complete database is visible in
M no other procedure with the same predicate indicator shall be
made visible inM.

NOTE — More than one import or re-export directive may make
visible a single procedure in a module.

6.2.3 Module interface

A module interface in module text specifies the name of the
module, the operators, character conversions and Prolog flag

5ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

values that shall be used when the processor begins to prepare
for execution the bodies of the module, and the user-defined
procedures of a module that are

a) exported from the module,

b) re-exported from the module, and

c) defined to be metapredicates by the module.

A sequence of directives shall form the module interface of the
module with nameName if :

a) The first directive is a directivemodule(Name) .
(6.2.4.1)

b) The last directive is a directiveend module(Name) .
(6.2.4.9)

c) Each other element of the sequence is a module interface
directive. (6.2.4.2 through 6.2.4.8)

The interface for a moduleName shall be loaded before any
body of the module.

6.2.4 Module directives

Module directives are module text which serve to 1) separate
module text into the individual modules, and 2) define operators,
character conversions and flag values that apply to the preparation
for execution of the bodies of the corresponding module.

6.2.4.1 Module directive module/1

The module directivemodule(Name) specifies that the interface
text bracketed by the directive and the matching closing interface
directive end module(Name) defines the interface to the
Prolog moduleName.

6.2.4.2 Module interface directive export/1

A module interface directiveexport(PI) in the module
interface of a moduleM, where PI is a predicate indicator,
a predicate indicator sequence or a predicate indicator list,
specifies that the moduleM makes the procedures designated by
PI available for import into or re-export by other modules.

A procedure designated byPI in a export(PI) directive
shall be that of a procedure defined in the body (or bodies) of
the moduleM.

No procedure designated byPI shall be a control construct, a
built-in predicate, or an imported procedure.

NOTE — Since control constructs and built-in predicates are visible
everywhere they cannot be exported.

6.2.4.3 Module interface directive reexport/2

A directive reexport(M, PI) in the interface of a moduleMM
whereM is an atom andPI is a predicate indicator, a predicate
indicator sequence or a predicate indicator list specifies that
the moduleMMimports from the moduleM all the procedures

designated byPI , and thatMMmakes these procedures available
for import or re-export (fromMM) by other modules.

A procedure designated byPI in a reexport(M,PI) directive
shall be that of a procedure exported or re-exported by the
module M.

No procedure designated byPI shall be a control construct or
a built-in predicate.

6.2.4.4 Module interface directive reexport/1

A module interface directivereexport(PI) in the module
interface of a moduleM, where PI is an atom, a sequence of
atoms, or a list of atoms specifies that the moduleM imports
all the user defined procedures exported or re-exported by the
modules designated byPI and thatM makes these procedures
available for import into or re-exportation by other modules.

6.2.4.5 Module interface directive metapredicate/1

A module interface directivemetapredicate(MI) in the
module interface of a moduleM, where MI is a metapredicate
mode indicator, a metapredicate mode indicator sequence, or
a metapredicate mode indicator list specifies that the module
defines and exports the metaprocedures designated byMI .

6.2.4.6 Module interface directive op/3

A module interface directiveop(Priority, Op specifier,
Operator) in the module interface of a moduleM enables
the initial operator table to be altered only for the preparation
for execution of all the bodies of the moduleM.

The argumentsPriority, Op specifier , and Operator
shall satisfy the same constraints as for the successful execution
of the built-in predicateop/3 (8.14.3 of ISO/IEC 13211-1) and
the initial operator table of the module shall be altered in the
same way.

Operators defined in a module interface directive
op(Priority, Op specifier, Operator) shall not
affect the syntax of read terms in Prolog and module texts other
than the bodies of the corresponding module.

6.2.4.7 Module interface directive charconversion/2

A module interface directivechar conversion(In char,
Out char) in the module interface of a moduleM enables
the initial character conversion mappingConvC (see 3.29 of
ISO/IEC 13211-1) to be altered only for the preparation for
execution of all the bodies of the moduleM.

The argumentsIn char , and Out char shall satisfy the
same constraints as for the successful execution of the built-in
predicatechar conversion/2 (8.14.5 of ISO/IEC 13211-1)
and ConvC shall be altered in the same way.

Character conversions defined in a module interface directive
char conversion(In char, Out char) shall not affect
the syntax of read terms in Prolog and module texts other than
the bodies of the corresponding module.

6 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

6.2.4.8 Module interface directive setprolog flag/2

A module interface directive set prolog flag(Flag,
Value) in the module interface of a moduleM enables
the initial value associated with a Prolog flag to be altered only
for the preparation for execution of all the bodies of the module
M.

The argumentsFlag , and Value shall satisfy the same
constraints as for the successful execution of the built-in
predicateset prolog flag/2 (8.17.1 of ISO/IEC 13211-1)
and theValue shall be associated with flagFlag in the same
way.

Values associated with flags in a module interface directive
set prolog flag(Flag, Value) shall not affect the values
associated with flags in Prolog and module texts other than the
bodies of the corresponding module.

6.2.4.9 Module directive endmodule/1

The module directiveend module(Name) where Name is an
atom that has already appeared as the argument of a module
directive module/1 , specifies the termination of the interface
for the moduleName.

NOTE — Unless otherwise so defined module directives are not Prolog
text. Thusop/3, char conversion/2 and set prolog flag/2
are both module directives and directives (see ISO/IEC 13211-1 7.4.2.4,
7.4.2.5 and 7.4.2.9.)

6.2.5 Module body

A module body belonging to a module is Prolog text which
defines user-defined procedures that belong to the module.

A sequence of directives and clauses shall form a body of the
module with nameName if:

a) The first element of the sequence is a directive
body(Name) (6.2.5.1).

b) The last element of the sequence is a directive
end body(Name) (6.2.5.4).

Directives import/1 and import/2 make visible in the
importing module procedures defined in an exporting or re-
exporting module.

6.2.5.1 Module directive body/1

A module directive body(Name) where Name is an atom
giving the name of a module specifies that the Prolog text
bracketed between this directive and the next end module
directive end body(Name) belongs to the moduleName.
Such procedures shall be visible in all bodies ofName without
name qualification.

6.2.5.2 Directive import/2

A directive import(M, PI) in a body of a moduleMMwhere
M is an atom andPI is a predicate indicator, a predicate
indicator sequence or a predicate indicator list specifies that

the moduleMMimports from the module M all the procedures
designated byPI .

A procedure designated byPI in a import(M,PI) directive
shall be a procedure exported or re-exported by the moduleM.

No procedure designated byPI shall be a control construct or
a built-in predicate.

6.2.5.3 Directive import/1

A directive import(MI) in a body of a moduleMMwhereMI
is an atom, a sequence of atoms, or a list of atoms specifies
that the moduleMMimports all the procedures exported by the
modules designated byMI . Such procedures shall be visible in
MMwithout name qualification.

6.2.5.4 Module directive endbody/1

The module directiveend body(Name) where Name is an
atom that has already appeared as the argument of a module
directive body/1 specifies the termination of the Prolog text
belonging to the particular module body of moduleName.

The preparation for execution of any module interface shall
set the operator table, character conversion mappingConvC

(see 3.29 of ISO/IEC 13211-1), and Prolog flag values to a
new initial state, determined by the module interface directives
op/3 , char conversion/2 , and set prolog flag/2 in
the interface ofM. This state shall affect only the preparation
for execution of the subsequent bodies of the moduleM.
The effect of directivesop/3 , char conversion/2 , and
set prolog flag/2 in a body of a moduleMshall accumulate
during the preparation for execution of the current body and all
subsequent bodies of the moduleM.

NOTE — A single module may have more than one body. However
module text does not permit the nesting of any module body within
the Prolog text of the body of any module other than theuser
module.

6.2.6 Clauses

A clause-term in one of the bodies of a moduleM of module
text causes a clause of a user-defined procedure to be added to
the moduleM.

A clauseC of a clause-term (= C.) in the body of a moduleM
shall be an unqualified term which is a clause term whose head
is an unqualified term and shall satisfy the same constraints as
those required for a successful execution of the built-in predicate
assertz(C) (7.4.2) in the context ofM, except that no error
referring to modification of a static procedure shall occur.C
shall be converted to a clauseh:- t and added to the module
M.

The predicate indicatorP/N of the head ofC shall not be
the predicate indicator of any built-in predicate, or a control
construct, and shall not be that of any predicate imported into
or reexported byM.

NOTE — If the directive discontiguous/1 is in effect for a
predicate defined in the body of a module, then clauses for that
predicate may appear in separate bodies of the module. The order in

7ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

which the clauses are added to the complete database depends on the
order in which the bodies are prepared for execution.

6.2.6.1 Examples

The examples defined in this clause assume the complete
database has been created from module text that includes the
following:

:- module(utilities).
:- export([length/2, reverse/2]).
:- end_module(utilities).
:- body(utilities).

length(List, Len) :- length1(List, 0, N).
length1([], N, N).
length1([H | T], N, L) :-

N1 is N + 1,length1(T, N1, L).

reverse(List, Reversed) :-
reverse1(List, [], Reversed).

reverse1([], R,R).
reverse1([H | T], Acc, R) :-

reverse1(T, [H | Acc], R).
:-end_body(utilities).

:- module(foo).
:- end_module(foo).
:- body(foo).
:-import(utilities).

p(Y) :- q(X),length(X,Y).

q([1,2,3,4]).
:- end_body(foo).

The examples are executed in the context of the moduleuser .

foo:p(X).
succeeds,
unifying X with 4.

foo:reverse([1,2,3], L).
succeeds,
unifying L with [3,2,1].

utilities:reverse1([1,2,3], [], L).
succeeds,
unifying L with [3,2,1].

foo:reverse1([1,2,3], [], L).
existence_error(procedure, foo:reverse1).

6.3 Complete database

The complete database is the database of procedures against
which execution of a goal is performed. The procedures in the
complete database are:

a) all control constructs,

b) all built-in predicates,

c) all user-defined procedures.

Each user-defined procedure is identified by a unique qualified
predicate indicator where the module name qualification of the
predicate indicator is the defining module of the procedure.

6.3.1 Visible database

The visible database of a moduleM is the collection of all
procedures in the complete database that can be activated from

M without explicit module qualification and from outsideM with
M as calling context.

It includes all built-in predicates and control constructs, all
procedures defined in the bodies ofM, all procedures imported
into M, and all procedures re-exported byM.

NOTE — A procedure visible in a moduleM that is neither a control
construct nor a built-in predicate is either (1) completely defined in the
bodies of M or (2) completely defined in the bodies of some module
MM, exported fromMMand imported or reexported intoM. Furthermore
the options (1) and (2) are mutually exclusive.

6.3.2 Examples

The following examples use the complete database defined in
6.2.6.1.

The visible database offoo consists of the following procedures:

All built-in predicates and control
constructs.

From foo:
p/1, q/1.

Imported from utilities:
length/2, reverse/2

6.4 Context sensitive predicates

The effect of a context sensitive procedure depends on the
calling context (3.40) in which it is activated.

Metapredicates are predicates denoting procedures one or
more of whose arguments are meta-arguments. If the flag
colon sets calling context has the valuetrue then
activation of the metapredicate will require these arguments to
be unified with terms that require module qualification. The
effect of certain other built-ins which are not metapredicates is
also dependent on the calling context.

When the flagcolon sets calling context is true the
calling context can be set explicitly by using the infix operator
‘:’ . When the flag colon sets calling context is
false some other implementation defined method for explicitly
setting the calling context shall be provided.

6.4.1 Metapredicate built-ins

The following built-in predicates are metapredicates listed with
their metapredicate mode indicators:

a) The database access and modification built-
in predicates clause(:,*), asserta(:), as-
sertz(:), retract(:), abolish(:) , and pred-
icate property(:,*) ,

b) The logic and control built-in predicatesonce(:) ,
\+(:) , and

c) The all solutions predicates setof(*,:,*),
bagof(*,:,*) , and findall(*,:,*) .

8 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

6.4.2 Context sensitive built-ins

The following built-in predicates are context sensitive:

a) Built-ins affecting the operator table, character con-
version and Prolog flags: op/3 , current op/3 ,
char conversion/2 , current char conversion/2 ,
set prolog flag/2 , and current prolog flag/2 ;

b) Built-in predicates that read or write terms:
read term/3 , write term/3, write term/2,
write/1, write/2, writeq/1, and writeq/2 .

6.4.3 Module name expansion

When the Prolog flagcolon sets calling context is
true an argumentX of a metapredicate goalMPwhich occurs
at a position corresponding to a ‘:’ in the metapredicate mode
indicator of MP shall be qualified with the module name of
the calling context whenMP is activated. An unqualified term
X appearing as a ‘:’ argument in a call of a predicateMP in
module M will be replaced by(M:X) in the activation ofMP.

When the Prolog flagcolon sets calling context is
true the meta-arguments in an unqualified termMP which
represents a metapredicate goal in the calling context of a
module CMshall be module qualified withCM. If the term MP
is module qualified then the meta-arguments shall be module
qualified with the qualifying module of the term.

When the Prolog flagcolon sets calling context is
false arguments of a metapredicate goal are not subject to
module qualification. An implementation defined method of
setting the calling context shall be provided.

6.4.4 Examples: Metapredicates

6.4.4.1 colonsetscalling context true

These examples on module qualification assume that the Prolog
flag lon sets calling context is true .

The following example illustrates the use of a metapredicate to
obtain context information for debugging purposes.

:- module(trace).
:- exports(#/1).
:- metapredicate(#(:)).

:- end_module(trace).
:- body(trace).

:- op(950, fx, #).

(# Goal) :-
Goal = Module : G,
inform_user(’CALL’, Module, G),
call(Goal),
inform_user(’EXIT’, Module, G).

(# Goal) :-
Goal = Module : G,
inform_user(’FAIL’, Module, Goal),
fail.

inform_user(Port, Module, Goal) :-
write(Port), write(’ ’), write(Module),
write(’ calls ’), writeq(Goal), nl.

:- end_body(trace).

:- module(sort_with_errors).
:- export(sort/2).

:- end_module(sort_with_errors).
:- body(sort_with_errors).

:- import(trace).
sort(List, SortedList) :-

sort(List, SortedList, []).
sort([], L,L).
sort([X|L], R0, R) :-

split(X,L,L1,L2),
sort(L1, R0, R1),
sort(L2, [X|R1], R).

split(_, [], [], []).
split(X, [Y|L], [Y |L1], L2):-

Y @< X, !,
split(X,L, L2, L2).

split(X, [Y | L], [Y |L1], L2):-
Y @< X, !,

split(X,L, L2, L2).
split(X, [Y | L], [Y |L1], L2):-

split(X, L, L2, L2).

:- end_body(sort_with_errors).
The goal:
sort([3,2,1], L).
fails, writing
CALL sort_with_errors calls split(3,[2,1],_A,_B)
FAIL sort_with_errors calls split(3,[2,1],_A,_B).

6.4.4.2 colonsetscalling context false

This example illustrates an alternate mechanism for setting the
calling context. Here@/2 is used to set the calling context.G
@ Mrepresents a call of the goalG in the calling context of the
module M.

:-module tools.
:-meta [interpret/1].
:-end_module tools.

:-begin_module tools.

interpret(Goal) :-
calling_context(Module),
inter(Goal, Module, Module, Module).

% inter(
% Goal,
% CallingContextOfCurrentClause,
% LookupContextOfGoal
% CallingContextOfGoal)

inter(true, _, _, _) :- !.
inter((G1,G2), CallingContext, Home, At) :- !,

inter(G1, CallingContext, Home, At),
inter(G2, CallingContext, Home, At).

inter((M:G), CallingContext, _, At) :- !,
inter(G, CallingContext, M, At).

inter((G@M), CallingContext, Home, _) :- !,
inter(G, CallingContext, Home, M).

inter(calling_context(M), CallingContext, _, _) :-
!,

M = CallingContext.
inter(G, _, Home, At):-

functor(G,N,A),
% next find defining module

current_visible(HomeModule, N/A) @ Home,
current_predicate(N/A) @ HomeModule, !,

% fails with BIPS
clause(G, Body) @ HomeModule,
inter(Body, At, HomeModule, HomeModule).

9ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

inter(G, _, Home, At) :-
call(Home:G) @ At.

:-end_module tools.

:-module programs.
:-export [mysort/2].
:-end_module programs.

:-begin_module programs.
% dynamic only for debugging reasons

:-dynamic([app/3,mysort/2,part/4]).

app([],L,L).
app([H|T],L,[H|G]):-

app(T,L,G).

mysort([],[]).
mysort([G|T],S):-

part(G,T,L,H),
mysort(L,LS),
mysort(H,HS),
app(LS,[G|HS],S).

part(_,[],[],[]).

part(J,[H|R],[H|L],U):-
H =< J,
!,
part(J,R,L,U).

part(J,[H|R],L,[H|U]):-
H > J,
!,
part(J,R,L,U).

:-end_module programs.

:-begin_module daten.
list([7,2,6,5,1]).
list([9,0,4,8,3]).
:-end_module daten.

/* module "user" */

:-import tools.
:-import programs.
:-import daten.

dosort:- interpret(sort).

sort:-
list(X),
write(’unsorted: ’), write(X), nl,
mysort(X,Y),
write(’sorted: ’), write(Y), nl,
fail.

sort.

6.5 Converting a term to a clause, and a clause to a
term

Prolog provides the ability to convert Prolog data to and from
code. However the argument of a goal is a term whereas
the complete database contains procedures with the user-defined
procedures being formed from clauses. Some procedures convert
a term to a clause, while others convert a clause to a
corresponding term. This clause defines how the conversion is
to be carried out in the presence of modules.

6.5.1 Converting a term to the head of a clause

A term T can be converted withM as calling context to a
predication which is the headH of a clause with defining
module MM:

a) The associated unqualified term (6.1.1.2)UT of (M:T) is
converted to a predicationH as in 7.6.1 of ISO/IEC 13211-1:

b) The defining moduleMM for the predication is the
qualifying module 6.1.1.3 of(M:T) .

6.5.2 Converting a module qualified term to a body

In the calling context of a moduleMwith given defining module
DMa termT is converted to the body of a clause in a sequence
of steps.

a) The termT is module qualified with the name of the
calling context to giveM:T;

b) The termM:T is simplified (6.5.2.1) to reduce repeated
module qualification giving a termRT.

c) The simplified termRT is converted to a bodyBT in the
calling context ofM with defining moduleDM(6.5.2.2).

d) The bodyBT is further simplified to remove redundant
module qualifications (6.5.2.3).

6.5.2.1 Simplifying a module qualified term

A module qualified termM:T is simplified to a reduced module
qualified termRT as follows:

a) If T is a variable thenRT is M:T,

b) Else if the principal functor ofT is ’:-/2’ or one
of the control constructs(,)/2 , (;)/2 or (- >)/2 , with
first argumentA and second argumentB, the simplified term
RT is the same functor (respectively, control construct) with
argumentsRA and RB obtained by simplifying the qualified
terms M:A and M:B respectively.

c) Else if the principal functor ofT is (:) , first argument
MM, second argumentTT, the term MM:TT is simplified to
give RT,

d) Else RT is M:T.

6.5.2.2 Converting a simplified term to a body

If the Prolog flag colon sets calling context has the
value true then in the calling context of a moduleCM with
defining moduleDMa simplified (qualified) termT is converted
to a goalG which is the body of a clause:

a) If T is one of the control constructs(,)/2 , (;)/2 or
(- >)/2 , then each argument ofT shall be converted to a
goal.

b) Else T is a term with principal functor(:)/2 with
first argumentM and second argumentTT, and T shall be
converted to a goalG as follows:

10 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

1) If TT is a variable thenG is the control construct
call with argumentM:TT.

2) Else if TT is a term whose principal functor is one of
the control constructs,true , fail , ! , or throw/1 then
G is the same control construct and the arguments (if any)
of G and TT are identical.

3) Else if TT is a term whose principal functor is
call/1 or catch/3 then G is M:G1 where G1 is the
corresponding control construct and the arguments ofG1
and TT are identical.

4) If TT is an atom or compound term whose principal
functor FT does not appear in table 9 of ISO/IEC 13211-1
then G is the goalM:G1 where G1 is a predication whose
predicate indicator isFT, and the arguments, if any, ofG1
and T are identical.

If the Prolog flag colon sets calling context has the
value false then in the calling context of a moduleCMwith
defining moduleDMa simplified (qualified) termT is converted
to a goalG which is the body of a clause:

a) If T is one of the control constructs(,)/2 , (;)/2 or
(- >)/2 , then each argument ofT shall be converted to a
goal.

b) Else T is a term with principal functor(:)/2 with
first argumentM and second argumentTT, and T shall be
converted to a goalG as follows:

1) If TT is a variable thenG is the control construct
call with argumentTT.

2) Else if TT is a term whose principal functor is one of
the control constructs,true , fail , ! , or throw/1 then
G is the same control construct and the arguments (if any)
of G and TT are identical.

3) Else if TT is a term whose principal functor iscall/1
or catch/3 then G is the same control control construct
and the arguments ofG and TT are identical.

4) If TT is an atom or compound term whose principal
functor FT does not appear in table 9 of ISO/IEC 13211-1
then G is the goalM:G1 where G1 is a predication whose
predicate indicator isFT, and the arguments, if any, ofG1
and T are identical.

NOTE — In this second case additional implementation specific
conversions (6.5.2.4c) are required to account for the explicit method
of setting the calling context.

6.5.2.3 Removing redundant module qualifications

A body which is a goalG in a defining moduleDM is reduced
to a goalRGwithout redundant module qualifications as follows:

a) If G is one of the control constructs(,)/2 , (;)/2
or (- >)/2 , then RG is the same control construct and the
arguments ofRG are obtained from those ofG be reducing
each argument for redundant module qualifications.

b) If G is a module qualified goalM:G1 and M is the
defining moduleDM then RG is G1,

c) Else RG is identical toRG.

6.5.2.4 Further implementation defined conversions

An implementation may perform additional conversions on a
goal, these may include:

a) Removing module qualifications of predications visible in
the defining module.

b) If the flag colon sets calling context has the
value true performing module qualification of the meta
arguments of metapredicates and/or the control constructs
call/1 and catch/3 .

c) If the flag colon sets calling context has the
value false performing conversions required by the im-
plementation specific method of setting the calling context.

6.5.3 Converting the body of a clause to a term

A goal G which is a predication with predicate indicatorP/N
in the body of a clause of a moduleM can be converted to a
term T:

a) If the principal functor ofG is not (:)/2 and if N is
zero, thenT is the atomP.

b) If G is a control construct which appears in table 9 of
ISO/IEC 13211-1, thenT is a term with the corresponding
principal functor. If the principal functor ofT is call/1 ,
catch/3 or throw/1 then the arguments ofG and T are
identical, else if the principal functor ofT is (,)/2 or
(;)/2 or (- >)/2 then each argument ofG shall also be
converted to a term.

c) If colon sets calling context is false and G
is an instance of the implementation specific construct that
sets the calling context thenG shall be converted to a termT
using to the implementation specific method for conversion.

d) If the principal functor of G is not (:)/2 and N is
not zero thenT is a renamed copy ofTT where TT is
the compound term whose principal functor isP/N and the
arguments ofG and TT are identical.

e) Else if the principal functor ofG is (:)/2 with first
argumentMMand second argumentGGthen G is converted to
the termMM:TT, where TT is obtained by convertingGG to
a term in the calling context ofMM.

The following examples are provided to illustrate the simplifi-
cation of module qualified terms and the conversion of terms to
goals.

Defining module = m, context module = foo.
This would arise in a goal such as
foo:asserta(m:bar(X) :- baz(X)).

In the case where the Prolog flag
colon_sets_calling context is true
the corresponding clause asserted into
module m would be
bar(X) :- foo:baz(X).

(i) Case colon_sets_calling_context true.

11ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

Module qualified term -- m:(:-(dm:h, (a,m1:b)))
Simplified term -- :- (dm:h , (m:a, m1:b))
Clause in dm -- h :- m:a, m1:b.

Module qualified term -- n:(’->’(X, throw(B))
Simplified term -- ’->’(n:X, n:throw(B))
Body -- ’->’(call(n:X), throw(B)).

Module qualified term -- m:(’,’(n:a, b))
Simplified term -- ’,’(n:a, m:b)
Body (defining module m) -- ’,’(n:a, b).

(ii) Case colon_sets_calling_context false.
@/2 sets the calling context.

Module qualified term -- m:(:- dm:h, (a @ q , m1:b)))
Simplified term -- :- (dm:h, (m:(a @ q), m1:b)))
Clause in dm -- h : - a @ q, m1:b.

Module qualified term -- n:(’->’(X, throw(B))
Simplified term -- ’->’(n:X, n:throw(B))
Body -- ’->’(call(X), throw(B)).

Module qualified term -- n:(’->’(X @ q, throw(B))
Simplified term -- ’->’(n:(X @ q), n:throw(B))
Body -- ’->’(call(X) @ q, throw(B)).

6.6 Executing a Prolog goal

This clause describes the flow of control through Prolog clauses as a
goal is executed in the presence of module qualification. It is based
on the stack model in clause 7.7 of ISO/IEC 13211-1.

6.6.1 Data types for the execution model

The execution model of module Prolog is based on an execution stack
S of execution statesES. It is an extension of the model in clause 7.7
of ISO/IEC 13211-1, where the extension adds module information.

ES is a structured data type with components:

S index – A value defined by the current number of components
of S.

decsglstk – A stack of decorated subgoals which defines a
sequence of activators that might be activated during execution.

subst – A substitution which defines the state of the instantiations
of the variables.

BI – Backtrack information: a value which defines how to
re-execute a goal.

The choicepoint for the execution stateESi+1 is ESi.

A decorated subgoalDS is a structured data type with components:

activator – A predicationP prepared for execution which must
be executed successfully in order to satisfy the goal.

contextmodule – An atom identifying the module in which
the activator is being called.

cutparent – A pointer to a deeper execution state that indicates
where control is resumed should a cut be re-executed.

currstate , the current execution state istop(S) . It contains:

a) An index which identifies its position inS, and

Table 2 — The execution stack after initialization with the
goal m:goal

S Decorated Substi- BI
index Subgoal Stack, tution

1 ((m:goal , user, 0),newstack DS) , fg nil

newstack ES

b) The current decorated subgoal stack, and

c) The current substitution, and

d) Backtracking information.

currdecgsgl , the current decorated subgoal, istop(decsglstk)
of currstate . It contains:

a) The current activator,curract , (this may be a qualified term,)

b) The current context modulecontextmodule , which gives the
context in which the current decorated subgoal is to be executed,
and

c) Its cutparent .

BI has value:

nil – Its initial value, or

ctrl – The procedure is a control construct, or

bip – The activated procedure is a built-in predicate, or

(DM, up(CL)) – CL is a list of the clauses of a user-defined
procedure whose predicate is identical tocurract , and which are
still to be executed, andDM is the module in whose body these
clauses appear.

6.6.2 Initialization

The method by which a user delivers a goal to the Prolog processor
shall be implementation defined.

A goal is prepared for execution by transforming it into an activator.
If the flag colon sets calling context is true true execution
of a metapredicate requires that all arguments of type ‘:’ be module
qualified (6.4.3) with the module name of the calling context prior to
execution (6.6.4f).

The initial value of the calling context isuser .

Table 2 shows the execution stack after it has been initialized and is
ready to executem:goal .

6.6.2.1 A goal succeeds

A goal is satisfied when the decorated subgoal stack ofcurrstate
is empty. A solution for the goalm:goal is represented by the
corresponding substitution�.

6.6.2.2 A goal fails

Execution fails when the execution stackS is empty.

12 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

6.6.2.3 Re-executing a goal

After satisfying an initial goal, execution may continue by trying to
satisfy it again.

Procedurally,

a) Pop currstate from S,

b) Continue execution at 6.6.5.

6.6.3 Searching the complete database

This clause describes how, with lookup modulem, the processor locates
a procedurep in the complete database whose predicate indicator
corresponds to a given (possibly module qualified) activator.

6.6.3.1 Searching the visible database

The procedure in the complete database corresponding to a procedure
p (whose principal functor is necessarily not(:)/2) in the visible
database deetermined by a modulem is located as follows:

a) If the principal functor ofp is a control construct or built-in
predicate thenp is the required procedure.

b) If there is a user-defined procedurep with the same principal
functor and arity asp defined inm then p is the required procedure.

c) The selective import, reexport and selective reexport directives
of m are examined; (1) if there is a directive namingp as imported
or re-exported from a modulen then search is carried out in the
visible database ofn for a procedurep which is exported byn;
(2) else if there is a directive naming a modulen as imported or
re-exported then search is carried out in the visible database ofn
for a procedurep which is exported byn.

d) Else the search fails.

Procedurally the search in the visible database of a modulem for a
user defined procedurep is carried out as follows:

a) If there is a user-defined procedurep with the same principal
functor and arity asp defined inm then p is the required procedure,

b) Else form two setsOpen and Closed each initially empty.

c) Add m to the setClosed .

d) If there is a selective import directiveimport(n,PI) or a
selective reexport directivereexport(n,PI) where PI includes
p replace Open by the set whose sole member isn,

e) Else create a listS of all the modules that are the subject of
import/1 or reexport/1 directives in m and replaceOpen by
the setS.

f) If Open is empty the search fails,

g) Else remove a modulen from Open and add it toClosed .

h) If there is a user defined procedureq with the same principal
functor and arity asq defined in n and exported byn then q is
the required procedure, and the search terminates,

i) Else if there is a import/2 directive or a reexport/2
directive in n naming p as imported from a modulenn and nn
is not on Closed replaceOpen by the set whose sole element is
nn ,

j) Else create the setS of all modules that are the subject of
import/1 or reexport/1 directives in n and add toOpen the
elements ofS that are on neitherOpen nor Closed .

k) Continue at 6.6.3.1f.

NOTES

1 Because a modulem may not make visible two different procedures
from the same database that would have the same unqualified predicate
indicator (6.2.2) inm no more than one such procedure can be found.

2 Because no more than one procedure can be found the choice of
module from the setOpen does not need to be specified.

3 Since importation is idempotent no module needs to be searched
more than once.

4 The provision of an explicit search algorithm in this subclause does
not prescribe that this algorithm shall be implemented by a conforming
processor rather it specifies only the effect of the algorithm.

6.6.3.2 Searching for a given procedure

The processor locates in the complete database with lookup modulem
a procedurep corresponding to a given termT.

a) Determine the unqualified termUT and qualifying moduleLT
associated to(m:T) .

b) If the principal functor ofUT is a control construct or built-in
procedurep then p is the required procedure.

c) If the principal functor of UT is a user-defined procedure
p (not a control construct or built-in predicate) then the visible
database (6.3.1) ofLT is searched for a procedurep. If no such
procedure exists the search fails.

6.6.4 Selecting a clause for execution

Execution proceeds in a succession of steps.

a) Using the visible database given by the modulecontextmod-
ule of the current decorated subgoalcurrdecsgl , the processor
searches the complete database (6.6.3.2) for a procedurep whose
(possibly module qualified) predicate indicator corresponds with the
(possibly qualified) identifier and arity ofcurract .

b) If no procedure is found in step 6.6.4a, then action depends
on the value of the flagunknown :

error – There shall be an error

existence error(procedure, M:PF)

where M is the lookup modulecontextmodule and PF is the
predicate indicator of the (possibly qualified)curract , or

warning – An implementation dependent warning shall be
generated and curract replaced by the control constructfail , or

fail – curract shall be replaced by the control construct
fail .

c) If curract identifies a user-defined predicate setDM to the
module name of the module in whose body the predicate is defined.

d) If the flag colon sets calling context is true set
contextmodule in the current decorated subgoal to the qualifying
module associated to(contextmodule:curract) and set
curract to the associated unqualified term.

13ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

e) If the flag colon sets calling context is false per-
form any implementation actions required to set the value of
contextmodule .

f) If the flag colon sets calling context is true ensure
that any meta-arguments ofcurract have been module qualified
(6.4.3).

g) If p is a control construct (true, fail, call, cut, conjunction,
disjunction, if-then, if-then-else, catch, throw) thenBI is set to
ctrl and execution continues according to the rules defined in
(6.7).

h) If p is a built-in predicateBP then BI is set to bip and
continue execution at 6.6.7.

i) If p is a user-defined procedure thenDM is set to the module
in which the procedure is defined andBI is set to (DM,up(CL)) ,
where CL is a list of the current clauses ofp of the procedure;
Continue execution at 6.6.6

NOTE — After the execution of these stepscurract is not module
qualified.

6.6.5 Backtracking

A procedure backtracks (1) if a goal has failed, or (2) if the initial
goal has been satisfied, and the processor is asked to re-execute it.

Procedurally, backtracking shall be executed as follows:

a) Examine the value ofBI for the new currstate .

b) If BI is (DM, up(CL)) then p is a user defined procedure
remove the head ofCL and continue at 6.6.6.

c) If BI is bip then p is a built-in predicate, continue execution
at 6.6.7.

d) If BI is ctrl the effect of re-executing it is defined in 6.7.

e) If BI is nil then the newcurract has not been executed,
continue execution at 6.6.4.

6.6.6 Executing a user-defined procedure:

Procedurally a user-defined procedure shall be executed as follows:

a) If there are no (more) clauses forp then BI has the value
(DM, up([])) and continue execution at 6.6.6.1,

b) Else consider clausec where BI has the value(DM, up([c
j CT])) with the calling contextDM.

c) If the head ofc and curract are unifiable then it is selected
for execution, and continue execution at 6.6.6 e,

d) Else BI is replaced by a value(DM, up(CT)) and continue
execution at 6.6.6 a.

e) Let c’ be a renamed copy of the clausec of up([c j]) .

f) Unify the head ofc’ and curract producing a most general
unifier MGU.

g) Apply the substitutionMGUto the body ofc’ .

h) Make a copyCCS of currstate . It contains a copy of the
current goal which is calledCCG.

i) Apply the substitutionMGUto CCG.

j) Replace the current activator ofCCGby the MGUmodified body
of c’ .

k) Set BI of CCS to nil .

l) Set the substitution onCCS to a composition of the substitution
of currstate and MGU.

m) Set cutparent of the new first subgoal of the decorated
subgoal stack ofCCS to the current choice point.

n) Set the contextmodule of the new first subgoal of the
decorated subgoal stack toDM.

o) PushCCS on to S. It becomes the newcurrstate and the
previous currstate becomes itschoicepoint .

p) Continue execution at 6.6.4.

6.6.6.1 Executing a user-defined procedure with no more
clauses

When a user-defined procedure has been selected for execution 6.6.4
but has no more clauses, i.e.BI has a value(DM, up([])) , it
shall be executed as follows:

a) Pop currstate from S.

b) Continue execution at 6.6.5.

6.6.7 Executing a built-in predicate

Procedurally a built-in predicate shall be executed as in section 7.7.12
of ISO/IEC 13211-1.

For the built-in predicates that have meta-arguments, the database
access and modification built-in predicates –clause(:,*), as-
serta(:), assertz(:), retract(:), abolish(:) , and
predicate property(:,*) , the logic and control built-in predicates
once(:) , \+(:) , and the all solutions predicatessetof(*,:,*),
bagof(*,:,*) , and findall(*,:,*) , the current decorated
subgoal gives access to the calling context.

For the builtin predicates which are context sensitive
(6.4.2) – op/3 , current op/3 , char conversion/2 ,
current char conversion/2 , set prolog flag/2 , cur-
rent prolog flag/2 , read term/3 , write term/3 ,
write term/2 , write/1 , write/2 , writeq/1 , and writeq/2 ,
the current decorated subgoal gives access to the calling context.

6.7 Executing a control construct

This clause describes the modifications required to the descriptions of
the execution model of ISO/IEC 13211-1. For all control constructs
not specifically described, the model is unchanged.

6.7.1 call/1

6.7.1.1 Description

call(G) is true in the calling context of moduleCM iff G represents
a goal which is true in the context ofCM. Procedurally, a control
construct call, denoted bycall(G) , shall be executed as follows:

a) Make a copyCCS of currstate .

14 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

b) Set BI of CCS to nil .

c) Pop currdecsgl (= (call(G), CM, CP)) from
currentgoal of CCS.

d) If the term G has as associated unqualified term a variable,
there shall be an instantiation error,

e) Else if the termG has as associated unqualified term a number,
there shall be a type error,

f) Else in the calling context of the moduleCM and defining
module CMconvert the termG to a goalGoal with calling context
M, the qualifying module of(CM:G) (6.5.2).

g) Let NN be the choice point ofcurrstate .

h) Push (Goal, M, NN) on to currentgoal of CCS.

i) Push CCS onto S.

j) Continue execution at 6.6.4.

k) Pop currstate from S.

l) Continue execution at 6.6.5.

call(G) is re-executable. On backtracking, continue at 6.7.1.1k.

6.7.1.2 Template and modes

call(+callable term) .

6.7.1.3 Errors

a) G is a variable
– instantiation error.

b) The qualifying module of(CM:G) cannot be determined (6.1.1).
– instantiation error.

c) G is neither a variable nor a callable term
– type error(callable, G).

d) G cannot be converted to a goal
– type error(callable, G).

6.7.1.4 Examples

call(m:X:foo).

type_error(callable, m:X:foo).

6.7.2 catch/3

The catch and throw control constructs enable execution to continue
after an error without intervention from the user.

6.7.2.1 Description

catch(G,C,R) is true in the calling context of moduleCM iff (1)
call(G) is true in the context ofCM, or (2) the call of G is
interrupted by a call ofthrow/1 whose argument unifies withC,
and call(R) is true in the context ofCM. Procedurally, a control
construct catch, denoted bycatch(G,C,R) is executed as follows:

a) Make a copyCCS of currstate .

b) Replacecurract of CCS by call(G) .

c) Set BI to nil .

d) PushCCS onto S.

e) Continue execution at 6.6.4.

f) Pop currstate from S.

g) Continue execution at 6.6.5.

catch(G,C,R) is re-executable. On backtracking, continue at
6.7.2.1f.

6.7.2.2 Template and modes

catch(?callable term, ?term, ?term)

6.7.2.3 Errors

a) G is a variable
– instantiation error.

b) The qualifying module of(CM:G) cannot be determined (6.1.1).
– instantiation error.

c) G is neither a variable nor a callable term
– type error(callable, G).

6.7.3 throw/1

6.7.3.1 Description

throw(B) is a control construct that is neither true nor false. It
exists only for its procedural effect of causing the normal flow of
control to be transferred back to an existing call ofcatch/3 (see
6.7.2).

Procedurally, a control construct throw, denoted bythrow(B) , shall
be executed as follows:

a) Make a renamed copyCA of curract , and a copyCP of
cutparent .

b) Pop currstate from S.

c) It shall be a system error (7.12.2j of ISO/IEC 13211-1) ifS
is now empty,

d) Else if (1) the newcurract is a call of the control construct
catch/3 , and (2) the argument ofCA unifies with the second
argument C of the catch with most general unifierMGU, and (3)
the cutparent is less thanCP, then continue at 6.7.3.1b.

e) Apply MGUto currentgoal .

f) Replacecurract by call(R) , whereR is the third argument
of the control constructcatch/3 from 6.7.3.1d.

g) Set BI to nil .

h) Continue execution at 6.6.4.

6.7.3.2 Template and modes

throw(+nonvar)

15ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

6.7.3.3 Errors

a) B is a variable
– instantiation error.

b) B does not unify with theC argument of any call ofcatch/3
– system error.

6.8 Predicate properties

The properties of procedures can be found using the built-in
predicate predicate property(Callable, Property) , where
Callable is the meta-argument termModule:Goal (7.2.2). The
predicate properties supported shall include:

static – The procedure is static.

dynamic – The procedure is dynamic.

public – The procedure is a public procedure.

private – The procedure is a private procedure.

built in – The procedure is a built-in predicate.

multifile – The procedure is the subject of a multifile directive.

exported - The moduleModule exports the procedure.

metapredicate(MPMI) – The procedure is a metapredicate,
and MPMI is its metapredicate mode indicator.

imported from(From) — The predicate is imported into
module Module from the moduleFrom.

defined in(DefiningModule) – The module with the name
DefiningModule is the defining module of the procedure.

A processor may support one of more additional predicate properties
as an implementation specific feature.

6.9 Flags

The following flag is added to those of 7.11 of ISO/IEC 13211-1.

6.9.1 Flag: colonsetscalling context

Possible value:true , false

Default value: Implementation defined

Changeable: No

Description: If the value of this flag istrue the operator (:) is used
to set the calling context of a metapredicate goal. Meta-arguments in
a metapredicate goal must be module qualified when the predicate is
activated, with the defining module of the procedure in whose body
they are found. If the value isfalse some other implementation
defined mechanism by which context sensitive predicates can access
their calling context must be provided.

6.10 Errors

The following errors are defined in addition to those defined in section
7.12 of ISO/IEC 13211-1.

6.10.1 Error classification

The following types are added to the classification of 7.12.2 of
ISO/IEC 13211-1.

a) The list of valid types is extended by the addition of
metapredicate mode indicator . (See 7.12.2 b of ISO/IEC
13211-1.)

b) The list of valid domains is extended by the addition of
predicate property . (See 7.12.2 c of ISO/IEC 13211-1.)

c) The list of object types is extended by the addition ofmodule .
(See 7.12.2 d of ISO/IEC 13211-1.)

d) The list of permission types is extended by the addition of
implicit . (See 7.12.2 e of ISO/IEC 13211-1.)

7 Built-in predicates

7.1 The format of built-in predicate definitions

The format of the built-in predicate definitions follows that of ISO/IEC
13211-1.

7.1.1 Type of an argument

The following additional argument types are required:

metapredicate mode indicator – as terminology.

predicate property – a procedure property (6.8).

prototype – as terminology.

qualified or unqualified clause – a clause or term whose
associated unqualified term is a clause.

7.2 Module predicates

The examples provided for these built-in predicates assume the complete
database has been created from the following module text. The flag
colon sets calling context is assumed to have the valuetrue .

:- module(foo).
:- export(p/1).
:- metapredicate(p(:)).

:- end_module(foo).

:- module(bar).
:- export(q/1).

:- end_module(bar).

:- module(baz).
:- export(q/1).

:- end_module(baz).

:- body(foo).
p(X) :- write(X).

:- end_body(foo).

:- body(bar).
:- import(foo, p/1).
q(X) :- a(X), p(X)
q(X) :- a(X), foo:p(2).
a(1).

:- end_body(bar).

16 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

:- body(baz).
:- import(bar, q/1).

:- end_body(baz).

7.2.1 current module/1

7.2.1.1 Description

current module(Module) is true iff Module unifies with the
name of an existing module.

Procedurallycurrent module(Module) is executed as follows:

a) Searches the complete database for all active modules and
creates a setS of all terms M such that there is a module whose
identifier unifies withModule .

b) If a non-empty set is found, then proceeds to 7.2.1.1d,

c) Else the goal fails.

d) Chooses an element ofS and the goal succeeds.

e) If all the elements ofS have been chosen then the goal fails,

f) Else chooses an element of the setS which has not already
been chosen and the goal succeeds.

current module(Module) is re-executable. On backtracking,
continue at 7.2.1.1e.

NOTE — current module(M) succeeds if the interface toM has
been loaded, whether or not any bodies ofM may have been prepared
for execution.

7.2.1.2 Template and Modes

current module(?atom)

7.2.1.3 Errors

a) Module is neither a variable nor an atom

— type error(atom, Module).

7.2.1.4 Examples

current_module(foo).
succeeds.

current_module(fred:sid).
type_error(atom, fred:sid).

7.2.2 predicateproperty/2

7.2.2.1 Description

predicate property(Prototype, Property) is true in the
calling context of a moduleM iff the procedure associated with the
argumentPrototype has predicate propertyProperty .

Procedurally predicate property(Prototype, Property) is
executed as follows:

a) Determines the qualifying module ofMMof (M:Prototype) .

b) Determines the unqualified termT with principal functor P of
arity N associated with(M:Prototype) . P/N is the associated
predicate indicator.

c) Searches the complete database and creates a setSetPP of
all terms PP such that P/N identifies a procedure in the visible
database ofMMwhich has predicate propertyPP and PP is unifiable
with Property .

d) If SetPP is non empty set is proceeds to 7.2.2.1f,

e) Else the predicate fails.

f) Chooses the first elementPPP of SetPP , unifies PPP with
Property and the predicate succeeds.

g) If all the elements ofSetPP have been chosen the predicate
fails,

h) Else chooses the first elementPPP of SetPP that has not
already been chosen, unifiesPPP with Property and the predicate
succeeds.

predicate property(Prototype, Property) is re-executable.
On backtracking, continue at 7.2.2.1g.

The order in which properties are found bypredicate property/2
is implementation dependent.

7.2.2.2 Template and modes

predicate property(+prototype, ?predicate property)

7.2.2.3 Errors

a) Prototype is a variable
– instantiation error .

b) The qualifying module of(M:Prototype) cannot be deter-
mined (6.1.1)
– instantiation error .

c) Prototype is neither a variable nor a callable term
– type error(callable, Prototype) .

d) Property is neither a variable nor a predicate property
– domain error(predicate property, Property) .

e) The module identified byMMdoes not exist
– existence error(module, MM) .

7.2.2.4 Examples

Goals attempted in the context of the module
bar.

predicate_property(q(X), exported).
succeeds, X is not instantiated.

predicate_property(p(X), defined_in(S)).
succeeds, S is unified with foo,
X is not instantiated.

predicate_property(foo:p(X), metapredicate(Y)).
succeeds, Y is unified with p(:),
X is not instantiated.

predicate_property(X:p(Y), exported).

17ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

ISO/IEC 13211-2:2000(E)

instantiation_error.

Goal attempted in the context of the module
baz.

predicate_property(foo:p(X), metapredicate(Y)).
succeeds, Y is unified with p(:),
X is not instantiated.

The following example assumes that the Prolog
flag colon_sets_calling_context has the value true.

bar:predicate_property(p(X), imported_from(Y)).
succeeds, Y is unified with foo,
X is not instantiated.

7.3 Clause retrieval and information

This clause describes the interaction of the built-in predicateclause/2
with the module system.

The examples provided for these built-in predicates assume that the
complete database has been created from the following module text.

:- module(mammals).
:- export(dog/0, cat/0, elk/1).

:- end_module(mammals).

:- body(mammals).

:- dynamic(cat/0).
cat.

:- dynamic(dog/0).

dog :- true.

:- dynamic(elk/1).
elk(X) :- moose(X).

:- dynamic(moose/1).

legs(4).

:- end_body(mammals).

:- module(insects)
:- export(ant/0, bee/0).

:- end_module(insects).

:- body(insects).
:- dynamic(ant/0).
ant.

:- dynamic(bee/0).
bee.

:- dynamic(legs/1).
legs(6).

body_type(segmented).

:- end_body(insects).

:- module(animals).
:- exports(limbs/1).

:- end_module(animals).

:- body(animals).
:- import(insects, [ant/0, bee/0]).
:- import(mammals, [dog/0, cat/0, elk/1]).

:- dynamic(horns/1).

limbs(X) :- insects:legs(X).
limbs(X) :- mammals:legs(X).

:- end_body(animals).

7.3.1 clause/2

7.3.1.1 Description

clause(Head, Body) is true in the calling context of a moduleM
iff:

– The associated unqualified term of(M:Head) is HH, (6.1.1.3),

– The procedure ofHH is public, and

– There is a clause in the qualifying moduleDM of (M:Head)
which corresponds to a termH:- B which unifies with HH :-
Body .

Procedurally, clause(Head, Body) is executed in the calling
context of a moduleM as follows:

a) Determines the qualifying moduleDM of (M:Head) (6.1.1.3)
to be searched for the clauses.

b) Determines the unqualified termHH associated with(M:Head) .

c) Searches sequentially through each public user-defined procedure
defined in the chosen module and creates a listL of all the terms
clause(H,B) such that:

1) DM contains a clause whose head can be converted with
calling context and defining moduleDM to a term H and whose
body can be converted with calling context and defining module
DM to a term B,

2) H unifies with HH, and

3) B unifies with Body .

d) If a non-empty list is found, then proceeds to 7.3.1.1f,

e) Else the goal fails.

f) Chooses the first element of the listL, and the goal succeeds.

g) If all the elements of the listL have been chosen then the
goal fails,

h) Else chooses the first element ofL that has not already been
chosen, and the goal succeeds.

clause/2 is re-executable. On backtracking, continue at 7.3.1.1g.

7.3.1.2 Template and modes

clause(+term, ?callable term)

7.3.1.3 Errors

a) Head is a variable
– instantiation error .

18 ISO/IEC 2000 – All rights reserved©

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 13
21

1-2
:20

00

https://iecnorm.com/api/?name=8ad6a4630bcc9b028ec8576d0c6d9d36

