INTERNATIONAL ISO/IEC
STANDARD 14496-1

First edition
1999-12-15

Information technology — Coding of
audio-visual objects —

Part 1:
Systems

Technologies de l'information<— Codage des objets audiovisugls —
Partie 1: Systemes

Reference number
ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +41 227341079

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Contents Page
0 L] Te VTt o] o RO PP PP PRP XiX
0.1 OVEIVIBW ...ttt ettt ettt etttk bttt e ettt e oottt e o4 a bttt e 4o a ket e e o ek b et e e ok bttt e eab b et e e e bbeeee +anbtbeeeabbeeeesnneeas XiX
0.2 ATCNITECIUIE ...ttt e et e e ekt e e et e e s et e e e e ane teesssreeesannreeenannne XiX
0.3 Terminal Model: Systems Decoder Model............ccccooi e XXi
0.3.1 TIMING MOGEL ... fen eennsfe XXi
0.3.2 BUFFEr MOGEI ... e e e (DR e es reeessfoeccie XXi
0.4 Multiplexing of Streams: The Delivery Layerccccccovoveeerniieeennnee NS XXi
0.5 Synchronization of Streams: The Sync Layer..........cccccceeeevei sl XXi
0.6 The Compression LAYETocvvveeiiieeeiiiiieeeniieee el e v ereeeee XXii
0.6.1 Object Description FrameWOrK..........cc.eeoiiiiiiiiiiiiiie S e e XXii
0.6.2 Scene DesCription StreaMS........uuuvvvvrriririnininine e eniiiiiiiiieeseeeeeeee e eeeeeeeeeereeeeeee e rereeeeeeeees e XXii
0.6.3 AUdio-ViSUAl SIFEAMSeeeiiiiiiieeiiiiee e B et srree e srneee e e XXiii
0.6.4 Upchannel StreamsS.........ooviviviiieieee e N B XXiii
1 S Tolo] o T PP PP UPPTPPRPPPPPPFPRRPPT ROPTRPPPRPTPR 1
2 NOIMALIVE REFEIENCES ...t ¥ eree ettt e e e e e e cerreee e 1
3 AdditioNal RefEIENCES (.5 i ittt snee e snne e snnes | eernrere s 2
4 D= (T 11 1[0 T O PR P PR UUPRPRPVRUUPRTY FOUPPTPR 2
5 Abbreviations.and SYMDOIS...........uuiiiiiiiiiii s fer eeeeeeeens 6
6 (O0] 01V =T o) (0] o LS SO PO PP P PUPRPTOUPRPUPUPRY RUPUPPTOTPPRN 7
7 SYSIEMS DECOAEr MOUEL.......oiiiiiiiiie et e e e e e snnnnnabeees ceeeeanaans 7
7.1 treduetor e e 7
7.2 Concepts of the Systems Decoder MOUE!c..uiiiiiiiiiii e 7
7.2.1 DMIF Application INtErface (DA ... s eeae s aesennnnnees 7
7.2.2 SL-Packetized SrEamM (SPS)uuiiii ittt ettt e et e e e e e s teearaeeena 8
7.2.3 ACCESS UNIS (AU i 8
7.2.4 [B2=ToloTo [TaTo l =101 1 =T g (D= T T PSPPI 8
7.2.5 Elementary StrEamS (ES)uuuuuuuiiiiiiiiiiiiiiiieieeeieeeieseseeeeeeeesseseeeeeeeeseeeeseeererererereearararrtrtaratereees rsrsrernrnnes 8
© ISO/IEC 1999 — Al rights reserved iii

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

7.2.6

7.2.7

7.2.8

7.2.9

7.2.10

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

7.4

7.4.1

7.4.2

7.4.3

8.1

8.2

8.2.1

8.2.2

8.2.3

8.3

8.3.1

8.3.2

8.4

8.4.1

8.4.2

8.5

Elementary Stream INterface (ESI)ooiiiiiiiii e rreeeea 8
=T oto T (=] OO PP PR POUPRPPUPPR 8
ComPOSItION UNILS (CU)..coiiiiiiiiiiiiiie ittt ettt ettt e e e s bbbt e e s aibr e e e s taaabneeesanneeas 8
(%o aaT Lo 1T (ToT o 1Y/ =10 o] YA (11,) IR 8
(0701171 0T 1] (o] SO SPP PP OUPPPTPIIN 9
TimiNg Model SPECIICALION.coiuiiieiiiiii e e e aabeeeeaaees 9
SYStemM TiIME BaASE (STB) ...uuuuuuiii s ssssnnnnnnnnnnnnnnnnnnnnn e [rerererererenns 9
Object TIMe Base (OTB) ...ccoiiiiiiiiiiiiiiiieriee e P Te s foviiieeen 9
Object Clock Reference (OCR)coooeeeiiii i O C e 9
Decoding Time Stamp (DTS)uuiiiiiiiieiiiiiee ettt e b AR 9
Composition TimMe StamP (CTS) ..uuuu e g T e s e e 10
Occurrence and Precision of Timing Information in Elementary-Streamscccccceeeeeens10
Time Stamps for Dependent Elementary StreamsS..........cce @y eeeeenriieeeeniieeeeniieeeesieeeeeseeneees |eieeen 10
Buffer Model SPecCifiCation..........cccooiiiiiiiiiiiiiiiciiccrc s sma ke Jenenrnnnnnnn 11
Elementary Decoder MOEloocuviiiiiiiiiiiioa Nttt sineeesseneeeesnnneees | eenniinees 11
TS [0] (o A PY IS 11
Managing Buffers: A Walkthrough ... (Zs: coeeeeo e v e 12
Object Description FrameWworK . se5ud. ..o e e e 13
INEFOTUCTION .. NN T ettt ettt et e e e e s e e e s snne e e s nnnneeesnnnnnenns snnneeenns Jonenninees 13
COMMON ALA STIUCTUFES ... veiee ittt ettt st e e s stne e e s snbreeessbneeeenns | breeesninns 14
OVEIVIEW .. ettt ettt ettt e e et e e s s e e e s snr e e e s nnnneeeens rneeesnnnees fonneeennnnnes 14
BaSEDESCIIPION......eeiii ettt e s snne e e s nnnees snneeesn Joe e 15
BaSECOMMANGooiiiiiiiiie ittt e e e e e e e e nnne e e nnnneeennne serenn Jo e 16
Intellectual Property Management and Protection (IPMP)............ccccccccoeiiiiiiiiiciicciieens e 16
OVEIVIBW ..ttt ettt ettt ettt e e oo a ket e e ook b et e ook bt e e e e a kbt e e e aa ket e e e anbbeeees beeeeeanbeeeeaanbeeeeannees 16
IPMP SITEAIMS ...ttt e s s r e et e e s s sbane oessarareeereessenanes 17
Object Content INFOrMation (OCI)uuiiiiiiieie et e s eenaene 18
OVEBIVIBW ..ttt ettt ettt ookt e oo R et e oo s b et oo ek et e e ek bt e e e e R et e e e ante e e e eans heeeeeanreeesannreeeeenres 18
O C] SIBAIMS ...ttt ettt ettt e e e e oo et e e e e e s b e et e e e s e e R e e et e e e e e s b b e be et e e e eaas feeeteeessannreneeeaenas 18
(0] o] [=Tol B TS ol g o] (o] GRS 11T 11 0 H PRSP PP PP 19

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

8.5.1

8.5.2

8.5.3

8.5.4

8.5.5

8.6

8.6.1

8.6.2

8.6.3

8.6.4

8.6.5

8.6.6

8.6.7

8.6.8

8.6.9

8.6.10

8.6.11

8.6.12

8.6.13

8.6.14

8.6.15

8.6.16

8.6.17

8.7

8.7.1

8.7.2

8.7.3

8.8

8.8.1

8.8.2

© ISO/IEC 1999 — All rights reserved

ISO/IEC 14496-1:1999(E)

Structure of the Object DeSCHPIOr SIrEAIMoii i .19
ACCESS UNIt DEFINILIONc.eviiiiiieceie et nres tanneeeneneenneas 19
Time Base for Object DeSCIPLOr SIFEAMSciii i iiiiiiee e ettt e e et e e e e e e e ee e e e e e e e e neeeeeeas 20
(@1 DT=ToTo o [T @ @10] 01T [- io] 1RSSR 20
OD Command SyntaxX and SEMANTICSoiiuueiiieiaaee ittt ee e e e ettt e e e e e e e e abeee e e e e e e s e e anreeeeeaaaaeaaannes 20
ODbject DesCriptor COMPONENTSuiiiiiiiie ettt e e e e ettt e e e e e e s e aeabee e e e e e e e e s e annsbeeeeeaeeeaaannrneeees aeeeans 22
OVEIVIEW ..ttt ettt e s nne e neneesneesnneeennneesnnenennneennneennn seeesd|rerenineeniennns 22
(@] o] 1=Toa 1 D= ot] o] (o (U EPPUURPUPRRPPRRURTRRI SN SUPNY FEUOPRRRRN 22
a1 E 1@ o T=Totd ML= ol]) (o] PSSR € S IO 23
ES_DESCIPLON ettt e e e e e e e Anre e e nnnneeees ceeees | 26
[D]=ToToTo [S1A @0] 0110 | BI=Tod £ o] (o] (SRR RERR RSSO 28
DecoderSPeCIfiCINTOvcci i Nt e S FO 29
SLCONFIGDESCIIPLONeeieiiiiee ettt £ Pttt e e e s S IR 30
IP_1dentificatioNDataSel.......ccuvieiiiiiiiiiieeie ik st e e e e e e e s st e e e e e e e e snnrnrneeeaeeaeanns o 30
ContentldentificatioNDESCHPLONuvrieiia it ee ettt e s e e riiere e e e e sineeeesnneeeen | eeerninees 30
SupplementaryContentldentificationDeSEHPIONcccceev i s e e e .32
[PI_DESCIPOINTET ...eiiiiiiiiiiiiiiiieee et et e e e e e ettt ee e e e e e s ettt e e e e e e s snttaee e e e e e s ssnnbneeeaaeessnne seeeeefoesnnrnnneenens 32
IPMP_DeSCrPtOrPOINTEN ... 58ttt snnee e nnneees Joeeiiiieee 33
1AV T CY o 1 0] (o USSR PSRRRI R 33
(0 o I T B LT Yol] o) (o] G PSPPSR PPPRRURTRUPNY FSUOTPRRTRN 34
| (=TR[]]I =Eod 1] o (o) SRR S A 35
ReQiStratiONDESCIIPIONviiieeiiiiee ettt rb e enes e 35
Object Content Information DESCHPLOISc..uviiiireeeiiiiiiiieee e e e e e s e e e e e e s e srrrrrreee e s s e snenreahereees ... 36
Rules for Usage of the Object Description Frameworkcccccccoovciiivneeeeeeiicciiieneee e e, 41
Aggregation of Elementary Stream Descriptors in a Single Object Descriptorccccvveeenee. 41
Linking Scene Description and ObjeCt DESCIPLOISoccvvviieiee e e e e rieree e e e e s s e srrrer e e e e e s snrneeeeee s 43
ISO/IEC 14496 CONENT ACCESS ...ceiiitiiieiitiieeeaitete e ettt e e ettt e e sttt e e s bb e e e e abb e e e e abr e e e e anbr e e e s abreeeaas eeeennnns 44
Usage of the IPMP SysStem INTEITACEoiiiiiiiiiiiieec e e s e e e e ..50
OWVEBIVIBW ...ttt ettt ettt a et o4kttt ookttt o4kttt e e 4o ke et 4o 4a ke e e a4 h b et e e ek be e e e abbee £eesnbneeesnbneeennnnneens 50
Association of an IPMP System with ISO/IEC 14496 CONENT..........cueeiiiiiiiieiiiiee et 50

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.8.3

8.8.4

8.8.5

8.8.6

9.1

9.1.1

9.1.2

9.1.3

9.2

9.2.1

9.2.2

9.2.3

9.3

9.3.1

9.3.2

9.3.3

9.34

9.3.5

9.3.6

9.3.7

9.3.8

9.4

94.1

9.4.2

10

10.1

10.2

10.2.1

10.2.2

Vi

IPMP Of ODbjeCt DESCIIPLON SLIEAIMSeviiiiiiiite ettt ettt ettt ettt e et e e e e e eeeane ereeas 51
IPMP Of Scene DesCriptioN StrEaMIS......ccoieieieieeeeeeee e e s s s nnnnnnennnnnnnnn eeee 51
Usage of URLs in managed and protected CONTENT.........coccuuiiiiiiiieeiiiiee et 51
LY =T o Lo [T T o 0oL 52
STotC o o T ol o] (o] o H P PP PP UTPPP 53
T oo [N Tt i o] o RO TSP PP OTT PP 53
ST ol0] o[PSP PP PPPPUUPPPPRRPPI oo N FUPPPPPRTPNS 53
Composition and RENAEIINGc.ooouiiiiiiiiiie e senee e PN T [reeeei 54
NSTeT=T L= I LT o o] o) o PP PRPPPPN. € SRUPPRPY IR 54
(O70] gTo1=T o] £ PP PP U PPUPTTPPUUPPPPRRN b SOUPPPPPPPRPPPPUPPRRPTY PPPTPPPIN 55
BIFS Elementary Streams ...t T e, 55
BIFS Scene Graph ... e e e 57
Sources of modification t0 the SCENEovi i O e e04
BIFS SYNEAX ...tiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiinineninesenensseese smrbesdenennnnnsnnnnnsnssnnssnssssssssssssssssssssees nnnrnnns]oniiiiinnnn 67
INEFOTUCTION e e et e et e e e sbne e e e snnneeesnnneees tesnnneeesss Joienniinens 67
Decoding tables, data structures and assaggiated functions..............ccccccvevvveveeeeeeen o 68

(O 1= g1 = 11 o] o FO o SRS URRUPRRSUPPRRRY RSSO 73
COMPENSALION PrOCESSvvveeeee ittt B I 82
2T S @] a1 Te U= 1 e] o P PP IS 83
BIFS COMMANA SYNEAX.ftetiiiiiiiiieiiiieeeiiiiee ettt e ire e e e ssneeeessnnneeesnnnneeesnnneeess Joceiniiinns 87
BIFS SCBNE.... g s e fee e 94
2L Y o3 SRR SOSUPPSRERRRRSROTY SRR 115
NOAESEMANTICSeveieeiiiiee ettt e e e s e e e s snnenenes eeeesfonenninns 121
LY = PP PP PP PPPPRPTPPPPPPTTPPPTY RTPRRR 121
N oTo [o =Tod | {Tor=1 (o] o PO PPTTPPPN 121
Synchronization of Elementary SIreamsS nanrnanannnne 192
a1 o [N Tt i o] o RO PSP PP TTPRT 192
5V [= Y= PP PRUPPPPIN 192
OVEIVIBW ...ttt ettt e ettt oottt e e 42k e et e e 4a b et e e e ah ket e e e ek b et e e e bbe e e e aabbeeees fbbeeeeanbaeeeeabneeene 192
SL PacKet SPECITICALION.......i.uiiiiiitiie ettt s eeeareee e e 193

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

10.2.3

10.2.4

10.2.5

10.2.6

10.2.7

10.3

10.4

11

111

11.2

1121

11.2.2

11.2.3

11.2.4

11.2.5

12

121

12.2

12.2.1

12.2.2

12.2.3

12.2.4

12.3

1231

12.3.2

12.3.3

12.3.4

12.3.5

12.3.6

12.3.7

ISO/IEC 14496-1:1999(E)

SL Packet Header CoNfigUIAtioNoooii ittt e e eiireeeeaaes aeeaans 193
SL Packet Header SPECITICALIONiiciiiiiiiiiiiie et e e e e e e s s e e e e e e s e nnne eeeennns 196
ClOCK REFEIENECE SIIEAM......iii ittt s e e et e e aae aabeeeeannes 199
Restrictions for elementary streams sharing the same object time baseccccccveveeiiins 199
Usage of configuration options for object clock reference and time stamp values.................. 200
Elementary Stream Interface (INFOrMatiVe).........oooiiiiiiiiiiiiie e 201
DMIF Application INtEITACE......cccceii et e e e ssrrne e e e e e s ssnnnnnneeeee e h] reeeininins 203
Multiplexing of Elementary SIreamsccccvevvieeeiiiiieenniiee e ssieee e B e b .203
Yoo [8 et o] o HE PSP ST PPRRTR PPN PPRN - VUPTPRRPPURPTOTE RUTRTPTR 203
FIEXMUX TOOI ..t ehe e e e ceees | 203
OVEIVIEW .ttt ettt sree e e e e e nnne e s lgfi s T e e nnneenneennnnnes sreeennnees|onenniennes 203
SIMPIE MOUE e e e e rrre e e e e e s e s buade e e e e e s e snntenneeaesssnnnnnns sesnnes]overeesnniins 203
MUXCOAE MOUE ..ot et e st e e s e e s snneeessnnne eesforneeenniiees 204
FlexMux packet SPeCIfiCationcceeiiiiiiiiiieressmtish e eee e e e siciieeee e e e s s sninnneneesssssnnnnnnenees | eeerninns 204
Usage Of MUXCOUE MOEcoouiiiiiiiiiiee e e st e e sinee e e e ssinne e e e e e snneeessnnneee s foe cvviieeas 206
Syntactic Description LAnQUAGE i e st e e e e e e s s sinnvnne e e e e e s s snnnrneneeee e s doinnns ...207
INErOAUCTION ...t 5 et e e e e srnee e snnee eeeessns e 207
Elementary Data TYPES........ 55t nneee] e 207
Constant-Length Direct.Representation Bit Fieldsccccooviiiviieeieiiiiciceee i s 207
Variable Length Direct Representation Bit Fieldsccccooiiiiiiiiiiniieeeeeceeeee e 208
Constant-Lengthrindirect Representation Bit Fields............ccccocveeeei i v, 208
Variable’l.ength Indirect Representation Bit Fieldscccccvviiiiiiniiieece e e 209
COMPOSILE DALA TYPES .vveeieiiiiiiieeiiiete sttt e sttt e s st e e s sbbe e e s sbbeeesssbeeesasbeeeessbeeesanbeeessnnns AR 210
(T T PP PP PP PPPPPPTPPTY PR 210
ADSITACT CIASSES ...t ettt ittt ettt ettt e e ekt e e e e st b e e e e st e e e e e sab e e e e s abbeeeeaabs eeeabneeeeanrreeenn 211
=TT = o Lo F= T Y PRSP 211
Parameter TYPESuiiiiiiiiiiiiiiiiii bbb e e a e e rare ebebererererererare 212
F N4 = 1T PSSP PTSPPPPPIN 212
PAITIAI ATTAYS ...ttt ettt e skttt e s bttt e e s bb et e e e b e et e e e br e e e aa taabeeeenaanreeeaannees 213
] ol [T Y £ 7= |2 SO PO PP PUPPPPPPPPP 213

© ISO/IEC 1999 — All rights reserved Vi

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

12.4 Arithmetic and LOgiCal EXPreSSIONSoiiiiiiiii ittt ..214
12.5 NON-Parsable VariabIEScoocuiiiiiii e aereee e 214
12.6 SYNEACHC FIOW CONIIOL ...ttt et et e e e as aaabeeeeananes 214
12.7 LU IO o= = (] = 216
12.8 SCOPING RUIES ...ttt e ekt e e ek bt e e e e bt e e ettt e e aans beeeesanbeeeeannes 216
13 L (0] {12 T PP TP PP PP PUPPRN 216
131 INEFOTUCTION ..ttt re e e snnnenennnnenens eeenre ek |rereennines 216
13.2 OD Profile DefiNitioNSccooiiiiiiiiiiiee e snnee e senees P ISV 216
13.2.1 OVEIVIBW ...ttt e ettt ettt e e e e sttt e e e e e e s nbabeeeeaeeeesnnbnneeeeeessannnnnneeeepabded) sennnnnnnneenes fonnnnnnnns 216
13.2.2 OD Profiles TOOISveiieiiiiiee et defbe e stnees eenrneesforrneeennns 216
13.2.3 OD ProOfil@S.....eeeee et g S e eennnee rreeesnnnees o 217
13.2.4 OD ProfileS@LEVEIScooiiiiiiiiiiiiee e g i e nnnee e e rneesforreeennes 217
13.3 Scene Graph Profile Definitionscceveiiiiiiiiiii 0 N eene| e 217
13.3.1 OVEIVIEW ...ttt e ettt e e e e e e s seiineee e e e eyl e e e e e e sibe e e e e e e s s s sinbneeeeeeeeans sesnnnneeeeees foonnnneens 217
13.3.2 Scene Graph Profiles TOOISooiiiiiiiiiiiira ettt essnneees Jereeenninns 217
13.3.3 SCENE Graph Profil@S.........ueeeeieii et e rneneaenrnenenenrnrnrnrnrnnns reeee]eerererenes 217
13.3.4 Scene Graph ProfileS@LEVEISc.@s e ssiireee e e e e snnnneeneees | evenees 220
13.4 Graphics Profile Definitions...... 55 e o 221
134.1 OVEIVIBW ...t e e sttt ettt e e e okttt et e e e e e e et bbbttt e e e s e aanbbe e e e e aeeeannsbbbneeaaesesnnn sennsnnnneeeees |rannnneens 221
13.4.2 Graphics Profiles TOOISeeiieiieiie e e S IO 221
13.4.3 (T =T o] T2 o) 1= PP R 221
13.4.4 Graphics PTOMIIES@LEVEIS........eeeeiiee et e e e e e e e e e e eeeeeeeeeanns I 222
Annex A (infgrmative)™ Bibliographyeooi e e e 225
Annex B (infdrmative) Time Base RECONSIIUCTION..............coiiiiuiiiiiiee it e e e e e eeeiieeeeeeeeeeesiereeeeeaeeeseeinneegreeaeens 226
B.1 TimMe BaSE RECONSIIUCTIONeiiiiiiiiie ittt et e e e e e e e ans eeeenaees 226
B.1.1 Adjusting the Receiving Terminal’S OTB............uuuuuuuuuiuiuiiieiiieieieieieieeree o —————————————————. 226
B.1.2 Mapping Time StampPs 10 the STBcoiiiiiiii et ..226
B.1.3 Adjusting the STB 10 an OTB.....ccccooiiii s e 227
B.1.4 System Operation without ODBJECt TIME BASEcccueiiiiiiiiiieiiii e 227
B.2 Temporal aliasing and audio reSAMPIINGcooviiiiiiiii e 227

Viii © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

B.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough ... 227
Annex C (normative) View Dependent Object Scalability............couveeiiiiiiiiiiiie e 229
C1 g oo VTt o] o RO PO TSP PPPOPPPPPPPPPT 229
c.2 BIESIIEAM SYNMIAX uiiiiiiiee i i i ittt e e e e s s st e e e e e e s s st e e e e eeesssste e e eeeaeessastsaaeeaeeessannssnneeees rsseeeseeesssnnns 229
Cc21 View Dependent ODJECL ettt e et e e e e e e s e et e e e e e e e e e aaaee eeeaaeeneees 229
C.3 BitSTreamM SEMANTICS.eiiiiiiiiiie ittt ettt e st et e sbb e e e e st ee breeesannees 230
C31 View Dependent ODJECTcuviiii i e e e e s sinee e s e e e s snnnnnneeesee e s ceeennnenens 230
C.3.2 View Dependent ODJECt LAYETcooviiiiiiiiiiaaiiiiiiieee e eesiiieeeee e seineneeeee e e B T e 230
Annex D (ipformative) Registration ProCEAUIEcviveeiiiiiiiiiieeee e ceciieeer e e e e ssiinreere e e e e ae S eeeeeeesnnnnnedreeesssiinns 232
D.1 Procedure for the request of a Registration ID (RID)coeovviiieerncne e 232
D.2 Responsibilities of the Registration AUthOritY...........coccvveveveeee o e, 232

D.3 Contact information for the Registration AUthOrity bl e, 232

D.4 Responsibilities of Parties Requesting @ RIDco i@ N i 232
D.5 Appeal Procedure for Denied AppPlICAtioNS..........cehdeeee e i e e serrree e e e heeeees 233
D.6 Registration ApPlICAtIoN FOIMooiiiiiii i ettt e b e e e e 233
D.6.1 Contact Information of organization requesting a RIDccccccveeeeiiiiciieeeeee e e 233
D.6.2 Request for @ SPeCIfiC RID...........oi @i eei it essnnee e nnne | eeennieees 233
D.6.3 Short description of RID that is\in use and date system was implemented..............cccccco.. e 233
D.6.4 Statement of an intentionto’ apply the assigned RID.........ccccccceviiviiiiieeeee e vcsciieieeee e e 233
D.6.5 Date of intended implementation of the RIDcccccoiiiiiiiiiiieiieee e [234
D.6.6 AULhONZEd rEPIESENTALIVEiviiie ittt et ee e srreee s streeessnnneeessnnneeeesnne | eesnineeennns 234
D.6.7 For officialuse of the Registration AUtNOFILY............coooiiiiiiiiiiie e b 2 34
Annex E (informative) The QoS Management Model for ISO/IEC 14496 Content.........cccccceveeeevviicnvnnnnsberiiiinnns 235
Annex F (ipfermative) Conversion Between Time and Date CONVeNtionS...........ccccoeecvvveeeecveeeenicinennnecforennnnn, 236
Annex G (normative) Adaptive Arithmetic Decoder for BIFS-ANIMcuoiiiiiiiiiiiiiiee e 238
Annex H (normative) NOAE COUING tADIES.uuiiiii i e s e e e e s e st r e e e e e s s s snraaeeeeeeas 2 40
H.1 N [oTo [=] [PRSP PPPPPTUOIN 240
H.1.1 AANCRIOT 1.ttt e s teebeeearereare e e 240
H.1.2 ANIMATIONSIIEAIMeiiiiiiii ettt e et bt e e et bt e e sttt e e e sbb e e e e sbbeeeeaabs tbneeessnrneeeean 240
H.1.3 APPEAIAINCE.......ueeiiiiieiitetet bbbt e et e et be e s e e e et st e e e s s et st e s e e et e s e e e e e e e e e e ee e e e s eeeneseeenne feeeeierereieieieieieies 241

© ISO/IEC 1999 — All rights reserved iX

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

H.1.4

H.1.5

H.1.6

H.1.7

H.1.8

H.1.9

H.1.10

H.1.11

H.1.12

H.1.13

H.1.14

H.1.15

H.1.16

H.1.17

H.1.18

H.1.19

H.1.20

H.1.21

H.1.22

H.1.23

H.1.24

H.1.25

H.1.26

H.1.27

H.1.28

H.1.29

H.1.30

H.1.31

H.1.32

H.1.33

AUGIOBUITET ...ttt sttt e s bbbt e skt e e e s abbeee taabeeeessnnneeesannneees 241
0 T [T 1 o PSPt 241
AUGIODEIAY ...ttt ettt e e e h bt e e e a bt e e e eees taabeeeeaaabreeennaaees 241
E U (o [0] 5 GO OO PP TP PPPPPPPPPPPRN 241
AUGIOMIX ..ttt e ettt e oo a b et e e e ab b et e e e a b bt e e e ea bt et e s aabb e e e s +eaabeeeeaaabeeeennaneeas 242
AUGIOSOUICE ...ttt ettt e ekttt e skttt e s kb e et e s bbb et e s bbbt e e aanee beeeesasnneeesannneeas 242
AUAIOSWITCR ..o e nnnees annneee By e e 242
2= 1o (o | (o]0 oo [ST OUP PR UUPPPRRUUPPPY - SUPTY FOUPPPN 242
Background2D.........cccceeiiiiii e, 243
BillDOAIceiiiieiee it A e s reeessnneee e e 243
2 1 = T APPSR ISP 243
0) S N ST PRTRPTPRPRPRTRURORY FOTPTPTPRTN 243
(O3] ol = O U e RO PP PUURPPOPPPPUUPPTPPUPPUTTOPPRY RUPPPRTN 243
COMlISION .. Ea P et e e s e e e s s nne e e s snneeesnne eennnneeessnrnees rorneeennns 243
(0] o] SH TP TP PP U PUUPPPPPPPPUPPPTPPPPPUTTOPPRN RUPPPRTN 244
(0201 [o] g 1) (=14 o L] F= 1o] CF . o PRSPPI AP 244
COMPOSItETEXIUIE2Deeiiiiiieieii e ettt ettt et et e et e e s sbbe e e e ssnneeessnnnee tneeefonrneeennns 244
COmMPOSItETEXIUIE3Deeeeiie e s snnee erees o 244
CONAILIONAL.....eeeee e T ettt e e s e e s s e e e s e e e s srneeesan snnneeessnrnees rorneeennns 244
0] 31 T ST PP PP UPPPPRRUPPPRPPPFPPRY RPRTP 245
COONAINALE ... T ettt ettt et e et e et e e e s n e e e s n et e e s snne e e e snneeeesnnneesans nneeessnrnees rorneeennns 245
(O Te] (o [T aT=1 =72 B PP PUUUPOPUPPPUORPUPRUOPIRN RUPPPRT 245
[OfeTe] s 115 =1 =]] (=14 o L0] F= Lo (P PPRPRPPPPPY ISP 245
CordinatelNterPOlatOr2Duuuuiiuiiiiiiiiieiiieiiieieieieieeeiereeeeereeereeeenrerernenrnrnrnrnrnrnrnrnrnrns eeeeferrerereees 245
CUIVE2D ...ttt oo oottt e et ettt et e e e e e e b e et et e e e e e e e e e es £aaenn e e e e e e e 245
(037711 o = S PSPPI 246
1031/ 1o 1= 6ST=T o Yo PP UPPPRPUPPPR 246
D 1T £=Tox 10 = | o | | 246
DL oS Lo PP PP PPTTPPR 246
S oAV (o] o[o PP TP P P TTPRP 247

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

H.1.34

H.1.35

H.1.36

H.1.37

H.1.38

H.1.39

H.1.40

H.1.41

H.1.42

H.1.43

H.1.44

H.1.45

H.1.46

H.1.47

H.1.48

H.1.49

H.1.50

H.1.51

H.1.52

H.1.53

H.1.54

H.1.55

H.1.56

H.1.57

H.1.58

H.1.59

H.1.60

H.1.61

H.1.62

H.1.63

ISO/IEC 14496-1:1999(E)

o] (511 (o] o I PP TS OPPRPPR 247
({01] o 1 PSP PR PURR PRI 247
B .t r e e e e s a e e et e e e e e n e e re e e e aane 248
FACEDEIMESI ...t ree s nre e 248
FACEDEITADIES ...t aeeee e 248
FACEDETTIANSTOMM ...ttt e st e s ab et e s tesaabneeesaanneeas 248
A P e rnrnnnnn e Ry e 248
]I PP PPPPPPUPPPUPUPPPPPPRPRY A7 SURPY FOTUTPTPTPRPRNt 250
O PP PPPPPPPPPRPPRRIY - SPTPRPTPRPRPRPRY FOTPRPTPRPRPRIN 250
oo PP PP PP URPTT TR PPUPPPTU b STPUUPTPPPPPPPPPRY PTTTTPPR 250
o] 1 1S3 1 [RUS PSSSURPSRRRRY SRR 250
FOIM T N e s e e 251
LT (00 o PP TP PP PPPPPPPPPPPPPPUPRPPY FOUPTPRTPR 251
IMAGETEXIUIE ..ottt Bas e et e e e e eerbn s e e s s s eennnnnnnees seeeeess]oiiinnnennnenns 251
INAEXEAFACESEL.....eeiiiiiiiiiiiee e ettt e e st e e e b e e e s snneeessnneee e s eeesnJoeeniiiiee s 251
INAEXEAFACESEIZDoviieiiiiiieeee e N et eennne neferenennne e 252
INAEXEALINESEL......cciiiiiiiiiiiiiee et ittt e e snne e e snneee e s eeeesnJoeee i 252
INAEXEdLINESEI2Deeeee e B et e e e e nne een e 252
1T T PP PP R PP PPRPORRTPRRTOE RRTTRPTR 252
I 5 T TTURPTPRRRPRTY FOTUROTPTPTPRN 253
(=N 02 B A e OSSP PUPUPRRRPPPPPPPPRTINY FOPPPPTPPPTPTS 253
[N =T] PP PP PP PPRPPRPPPPPUPPPPPRY FUPTPRTPPR 253
(=N L L PO PUPPPPPUPTRUPPPPUPPPTINY FOPUPPPPPPTPRS 253
L= 0] 0 1= L= PP ISR 254
LISTENINGPOINTeeee ittt e et e e st et e e s bb et e e sbbr e e e s aabeeeesannneeesannneeas 254
Y oY T | O PP PR PURR PRI 254
== AT 124 O PP P PP PPPRPTPIIN 254
IMIOVIETEXEUIE ...ttt ettt ettt etttk et e bt e e hb e e s a e e b et e sm b e e s abe e e abnee s tabeesaneeesnreenneeaa 254
N E V(o F=UiToT o1 o {o TR OO OPP PPN 255
N o]0 1= PO PP RPN 255

© ISO/IEC 1999 — All rights reserved Xi

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

H.1.64

H.1.65

H.1.66

H.1.67

H.1.68

H.1.69

H.1.70

H.1.71

H.1.72

H.1.73

H.1.74

H.1.75

H.1.76

H.1.77

H.1.78

H.1.79

H.1.80

H.1.81

H.1.82

H.1.83

H.1.84

H.1.85

H.1.86

H.1.87

H.1.88

H.1.89

H.1.90

H.1.91

H.1.92

H.1.93

Xii

NOIMAIINTETPOIALONeeeieiee ettt et s b eeaibee abeeesansbeeeeanees 255
L0 (0 1= =T o [0 U o TP 255
OrientatioNINLEIPOIALONcei ittt e et e et e e e sbrees aabeeeeesnbneeaean 255
PIXEITEXIUIE ...ttt et e e s e e s e e e enree seeessneeesanreeesanres 255
PlANE S ENSON ...ttt e e e e e e teeaaabeeeeanbe e e e 256
PlANESENSOI2D ..ottt ettt ettt e bt e bt a bt a b e e e e abe tabeeeeanbeeeeaares 256
PoiNtLIght.......coo o 256
POINESEL ... e e s snnnee e e enee B Tree e e e 256
POINESEIZ2D ...ttt reeeennerene o 256
POSItIONINEIPOIALONcciiiiiiiiiiiiie e b veeees e 257
PositionInterpolator2D...........ccooe e A T e e 257
ProXimitySENSOI2Dccovviiiiiiiiiieiieieeeieeeeeeeee ettt e e S ada s e aaaaaaaaaaaaaaaaaaaeaeaeees oovees]oniiiinnn 257
PrOXiMItYSENSONeeiiiiiiiieiiiiiee et et e s e e s sibeeees annneeesss Jonennins 257
QuaNtizatioNParameter ... e e 257
RECLANGIE .. I e ettt et st e st e e s e e e e ann breessnnneees e o e 258
Scalarinterpolator.............cccooe e N e 258
Lol] o P 7 PO PP TP PPPPUPPPPPRPUPPPTPPPPPUTTORPIN RUPPPRTN 259
SNAPE ... R e e e saree e s srnees e 259
L0 0] o PP PUURPPPPPRRSRTPPUPRROPP RUPRRRI 259
SOUNTZD ... B ettt ettt e sttt e e st bt e e e sbe e e e e sabbeeessabneeeesnns sabneeessnsnees roneeesnns 259
S 0 1= = e PSP SPPPPPPPUPPTPPPPRUPPRY ISP 259
S0l 1e] (o IST=T = o | O RO POUPRTTPPUPPPROPRPPRUUPPIN RUPRPRT 259
5] 01017 I o {5 | S EUUROUPRSOPUPRIY RO 260
(o P P P PP PPPPPTTTPPPPPPPTY RN 260
B IC=L 1 11O T o TP PP PP PPPPPPPPPPPR 260
TOXE et 260
TEXIUIECOONTINALEceiiitiiie ittt ettt et e e st e e e e s bbbt e e s bbb e e e aabbbe e e s teesssbeeeesannneeas 260
TEXIUMETIANSTOMT.....eeei ittt et et e st et e s et e s anrneee seeessnnneeesnnnnees 261
LR LEIST=T 0o PRSPPI 261
QLI 18 od 1 IST=T 0 o PSP PRI 261

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

H.1.94

H.1.95

H.1.96

H.1.97

H.1.98

H.1.99

H.1.100

H.2

H.2.1

H.2.2

H.2.3

H.2.4

H.2.5

H.2.6

H.2.7

H.2.8

H.2.9

H.2.10

H.2.11

H.2.12

H.2.13

H.2.14

H.2.15

H.2.16

H.2.17

H.2.18

H.2.19

H.2.20

H.2.21

H.2.22

ISO/IEC 14496-1:1999(E)

=T8S (0] 1 10 O TP PPPPPPPPN 261
B 1551 (0] 111124 PP PP PSP 261
[V 2= LU =1 o] TP PP PP OPPPPPUPPPRTN 262
Y222/ 0T o PSR 263
VAT o114 V2 1= g o T TP RRUP 263
VA ES{=T0 0P PP P P PP RRRR PR 263

WOIIAINTO . sren e nnn eees R e 263
Node Definition Type TableS........cuuiiiiiii e D T e eeeeees 263
ST Lo To [T PP PPPURRRPUPRIN, ¢ (IROUPRUPTE RTRRR 263
SF3DNOAE ...t e a e e e snneeeeeehe et eeeeae e e 2eesene e 264
Y oY o] o 1= T= L= LTt 1N (o Lo = . UEEPRRPRSRRY ISURPRRRR 265
SFAUdIONOGE ...t e e e e e e nnen e rees o 265
SFBacKgrouNd2DNOUEccoiuiiiieiiiiiieiiiieee e ettt e e e e e e e s snneeesene] areeeenninns 265
SFBackground3DNOGEccvviiiiiee e e B e ee e e e s e sstnee e e e e e s s ssnnnnneeseesssnsnnnnnneesees] rveeenninn 265
SFCOIOINOUE ...ttt e ettt ettt et e s st e e s snb e e e e enne snnneefeennbeeeeneees 266
SFCo0rdinate2DINOUEccuveeireeeiree e o et [ereennee s 266
SFCOOrdINAtENOUE.oiiiiiiiiei @ittt e s e e e s snres e fennreeeeniees 266
SFEXPreSSiONNOAEoeeee 85 e 266
ST oY o VLo [PSR PPPTPPPOPISPTE AR 266
SFEEDPNOUE ... e ettt e e e e sttt e e e e e e s e snnnbeeeeaeesssnnnnnneeenesssnan seennneJoeiieennniins 266
ST o 8 I o T L SRS PPRPPURRRRTE RTRRR 266
SFFACEDEMESNNOUEeiiiiiiiiiee et e e [e e e 266
SERACEDEfTADIESNOGE ... e [ereennee s 266
SFFaceDefTranSfOrMNOOE.ii et e e s e snneas A 266
ST o To (o o = O PP PP P PP PPPPPON 267
Y o a1] 3 1] Lo Yo [PSSP 267
SFGEOMELIYNOUE ...ttt e et e skt e e e s b b e e e sk et e s aabbe e e s ans beeeesnbeeeeannnes 267
Y o g T o o o =T 4 1 =TS N[o [T PUEPR 267
SFEMALETIAINOGE ...ttt e st e e s bt e e e aabe oabeeeeanbeeeeannes 267
SENaVIgatiONINTONOGE.eeiieiei et aee teeanabeeeeananes 267

© ISO/IEC 1999 — All rights reserved Xiii

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

H.2.23 SFENOIMEAINOGE ...ttt ettt e e bt e e sk b et e e s kb et e e s abbeeeeaas tesbaeeeesnrneeaens 267
H.2.24 S S 1= g 11 e | N (o o 1= 2 PP 268
H.2.25 SFETeXtUreCoOrdiNAIENOUE.eiiiiiiiii ettt e et e e et eaean aeanbneeaens 268
H.2.26 SETEXIUINENOUEceeiiiieie ettt s et e e skt e e s et et e e s snne e e e s anne e e e e teesarneeesnarneeenes 268
H.2.27 SETeXtUreTranSfOrMNOUE ..ot e e et eeeas aesnteeeeens 268
H.2.28 STl o] o]\ [o [PO PP PO U PP OPPPPPUPPPRT 268
H.2.29 SFVIEWPOINTNOGE........uuuiiiiiiiiiiiiii e eeansnsnsnsnsnsnnnsnsnnnnnnnnnnnnnnnnnnn seesboRe]eererereens 268
H.2.30 SFVISEMENOUEooiiiiiiie ettt e s sbne e e s snree e s dN T neee o 268
H.2.31 SFEWOITANOGE. ... e e nirnee e e e e e da) oo e ennreeneees|onnnnnnens 268
Annex | (infomative) MPEG-4 Audio TTS application with Facial Animations. W% o 271
Annex J (infofmative) Graphical representation of object descriptor and sync layet syntax...................... ..272

J.1 Length encoding of descriptors and CoOmMmMaNdS.........ccoooviivii i om S e, w272

J.2 Object Descriptor Stream and OD COMMANS........cooorureee @ Neeiiiiiee e sieeee e sneeee s e 272
J.3 [PMP SIr@amcociiiiiiiiiiiiiiicc e ir bl creeneees [273
J.4 OCT SIIEAM ..eeieiiiiiiiee it I e e e e e s s e e e e e s s sssnnreeereessesnnrnneeeneens sonsnnnnedieesnnniins 273
J.5 Object descriptor and itS COMPONENLS ... s e e e e e e e e ee e 2 73
J.6 OCI| DESCIIPLOIS ..ottt ettt ettt s e s sine e e eireeeens ereeessfoienii, 275
J.7 Sync layer configuration and SYRLBXceeoriiiiiiiiiiieiiiie e .278
Annex K (infgrmative) Patent StatementS iy e uierereiiiiiireiereieiererererererererererererererrrerersrerrrsrrrerrrrrrrnrsmnssrssss]oriiinns 2 80
Figures

Figure 1 - The¢ ISQO/IEC 14496 terminal arChit@CIUreccoooiioiiiiiicec s | eeeeeeeens XX
Figure 2 - Systems-BbeecesderMedel—rrrrrereereeee—— e 7
Figure 3 - Composition UNit aVailability.............ooiuiiiiiiii e arreee e 10
Figure 4 - Flow diagram for the Systems Decoder MOlooooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e A1
Figure 5 - Object descriptors linking scene description to elementary Streamscccevvvveeeiiiieeeeesieee e, 14
Figure 6 - Complex CONtENT EXAMPIEcciiiiiiiiecee ettt ettt e et et e e e e e eeeesseaeereraraaens teeeeeeaeseaeaeanas 48
Figure 7 - Requesting stream delivery through the DALcc.ooiiiiiiii e e 50
Figure 8 - IPMP system in the ISO/IEC 14496 terminal architecture...............cccooe oo, 52
Xiv © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

Figure 9 -
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14

Figure 15 -
Figure 16 -
Figure 17 -
Figure 18 -
Figure 19 -
Figure 20 -
Figure 21 -
Figure 22 -
Figure 23 -
Figure 24 -
Figure 25 -
Figure 26 -
Figure 27 -
Figure 28 -

Figure 29 -

Tables

Table 1 -
Table 2 -
Table 3 -
Table 4 -
Table 5 -

Table 6 -

© ISO/IEC 1999 — All rights reserved

ISO/IEC 14496-1:1999(E)

An example of an object-based MUItIMedia SCENEcoi i 5 3
- Logical structure of @XamMPIE SCENEciviii it e e e e e e e e r e e e e e s e snnrene eeeeeeeaans 54
- Media Start tiMeS @aNA CTS... oo e et e e s e e e s st e e e aae tabreeeesabneeeaans 57
- SCENE Graph EXAMPIE.eeieiiiie e e e e s e e e e e s e e e e e e e et raaeeaans eeseanrereeeeeeeaaannns 58
- 2D co-ordinate system (AR = ASPECE RALO)cciiiiiiiiiiiiiiiiia e ...59
- BIFS-COMMANA TYPES .ciiiiiiiiiiiie it e ettt e e e e ettt et e e e e e s e bt tteeeeaa e e e s nnbeseeeeaaaeesanbnneee taanssseeeeaeesesnnns 66
A CompositeTexture2D example. The 2D scene is projcted onto the 3D cube.c3 s 134
A CompositeTexture2D exXxample. ... e P T e 134
CompositeTexture3D example. The 3D view of the earth is projected onto the'3D cube |........ 135
CUIVe NOAE EXAMPIEeeiiiiiiiiiie ittt W et siree e s e 140
An arbitrary motion trajectory is approximated as a piece-wise lineaf,0n€.cccccveeeen s 144
A FIG @XAMPIE...eiiiiiii ettt e e s e e S e e e e e e e s s snnnnrnnneeaees taeeeennnnfornee e 151
Visual result of the Form node example ... @b e 157
IndexedFaceSet2D default texture mapping coordinates for a simple shapec......... f 160
Three Layer2D and Layer3D examples compased in & 2D SPaCE........cccvvevvvveeernieeeennciidevnineeen 164
Cap and join style for LiNeProperties o s i r e e e e s snrrnneee s fe e 167
Valuator fUNCHONAIIYoooiiiiiei @it see annneees fene e 189
THE SYNC LAYE ..o B e eeennineee s fee 192
Structure of FlexMux packetiin simple Mode.........ccvveeveeei i e .204
Structure of FlexMuxipacket in MUXCode MOdecc.eeveiiiiiieiniiiee e e 204
Example for a FlexMux packet in MUXCode MOAE.........ceveeeiiiiiiiiiiiiiee e ciiniieee e e e e e sseinnnneeee e ab e 206
List of Class Tags fOr DESCIPIOIScciiiuiiiieiiiiee ettt ettt et e e nbreeeaas eerbeeeeaaanes 15
List of Class Tags fOr COMMEANGASuuuuuuiriiieiiiiiiieieeeaeeeree s aeeeeeeesens 16
ODProfileLevellNdiCation VAIUES.............oiiiiiiie ettt ettt e e rbreeees aabeeeeeannneeeeaas 24
sceneProfileLevellndiCation ValUES............oooiiiiiiiiie e reeessnneeeaas 24
audioProfileLevellNdiCatioN VAIUEScoiiiiiiiiiiiie e siee breeeeanineee e 25
visualProfileLevellNdiCation ValUES.............oociiiiiiiiiiciec e nres aevnneeesnnees 25
XV

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 7 - graphicsProfileLevellNdiCation VAIUESc..eiiiiiiiii e eerbeee e 26
Table 8 - 0bjeCtTypPelNICAtION VAIUES...........vuiiiiiieiiieieieieteeeeeeeeeeeeete e eeteeeeaesesesessesssssssesessssssnrsrssnrnnss sesssssssssssssrnsnnns 28
Table 9 - Sre@MTYPE VAIUES.oo ittt e e e et e e e bt e e aaibee beeesannbeeeeasbeeesannnes 29
Table 10 - CONENITYPE VAIUESuuuuiiiiiiiiiiiiiiiii e eaaaeaeaeasessessssnsnsssssssssssssnsnsnss sessssssssnsssnssnnnnnnnns 31
Table 11 - contentldentifierTYPE VAIUESoiiiiiiiie e abe abeeeeanbeeeeaenes 31
Table 12 - Predefined QOS PrOfilSeiiiiiiiiiiii et e e e e e e e e e e e aaee nteeeeeaeessannneeeees 34
Table 13 - Stfndard 310 £ PSP PPUPTPPURRRPPIT e N USRI 62
Table 14 — Aldio-SPecific BIFS NOUESciiiiiiiiiiiiiiie e senee e B 7 e | 64
Table 15 — Return values of getNDCOMPuuii e e S e enennnnnnnee foneniniiinnns 71
Table 16 - Rqturn values of getNDBOUNASoccviiiiiiiiii e b o 73
Table 17 - QUantization CategOrieScccieveieie e ee e s ss s s s s s s s s s s s e s e s e s e e iTen e e e enenenenennns vnennnensJoniinnnnnn 73
Table 18 - Cgndition for setting isQuantized L0 J8 { U S S Y 74
Table 19 - Vdlue of nbBits depending on qUANTTYPE ..eeeviiiiiiee e L e foe e 75
Table 20 - Vdlue of floatMin , depending on quantType andyfieldType ...ccccoovviiiiviiieiniiieencie o, 75
Table 21 - Value of floatMax , depending on quantType ¢«and fieldType ..o e, 76
Table 22 - Vdlue of intMin , depending on qUANTTYPEN ...uuuiiiururiirieinieinieierernrnrerernrnrrrsrsrnrersssssssresssssssssss]ornnnmn. 76
Table 23 — ANIMALioON CAtEJOIIESvvvieiiiiieee i f ettt e e sbnees aesnrnees foreee s e 77
Table 24 - Vdlue of nbBits , depending on, @aliMTYPEccccvuruiuimimimimininrirninierernrerrrrrrrnrerrrersrrmessrsssssses o, 77
Table 25 - Vdlue of floatMin |, depending on aniMTYPEccccccurururuimrmimrernrnrnrnrnrennrnrernrereesssnsmnssrsssmsses o, 78
Table 26 - Value of floatMax , depending on aniMTYPEcoociiiiiiiiieiiiiiee e snee e feee e 78
Table 27 - Vdlue of intMin . ,'depending 0N aniMTYPEccccccvuruuuumimrmrmrnrerernrnrnrsrnrnrnesrsrsrsessssssssessssssssses o, 79
Table 28 - Qyantizationsand inverse quUaNtiZation PrOCESSc.uuiiiiiiiiieiiiiie ettt e e nreeee e . v 79
Table 29 - CAMPENSALION PrOCESS. .. .eeeteeeti ittt e e e e ettt et e e e e e s abbbeeeeeaesesabbbreeeeeeesssnbbsreeeeaeeeaannes anrreeeesfeesnninneens 83
Table 30 - Vertexdisplatemments s e 144
Table 31 - AlIgNMeENt CONSIIAINTS........cccooii i e, 156
Table 32 - Distribution CONSIIAINTScoiiiiiiiiiriie et e e eanrreeesaneeesannes 156
Table 33 - HNESTYIE AESCHIPIIONciiiiiiie ettt e e e b bt e e e b b e e e e e bb e e e e anes eeeeannns 167
Table 34 - Semantics of value, dependent 0N CapPabilitycccoiiiiiiiiiiiii .. 182
Table 35 - Semantics of value for Capability=0 ... e 182
Table 36 - Semantics of value for capability=1 ... e 183

XVi © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

Table 37 -

Table 38 -

Table 39 -

Table 40 -

Table 41 -

Table 42 -

ISO/IEC 14496-1:1999(E)

Semantics of value for capability=2

Semantics of value for capability=3

Semantics of value for capability=32

Semantics of value for capability=33

Semantics of value for capability=34

Semantics of value for capability=64

Table 43 -

Table 44 -

Table 45 -

Table 46 -

Table 47 -

Table 48 -

Table 49 -

Table 50 -

Table 51 -

Table 52 -

Table 53 -

Table 54 -

Semantics of value for capability=65

Simple typecasting conversion from other data types to float

Simple typecasting conversion from float to other data types.cccccevveeevevvceen e,

ValUBS ... W e,

Overview of predefined SLConfigDescriptor

Detailed predefined SLConfigDescriptor values

SLConfigDescriptor parameter values for a ClockReferenceStream

OD Profiles

Scene graph profiles

BIFS nodes for audio objects

BIFS nodes for visual objects

Restrictions for Simple 2D scene graph;profile at Level 1

Graphics profiles

© ISO/IEC 1999 — All rights reserved

XVili

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in

liaison with 1S
International
In the field of
Draft Internat

Publication a

Attention is d
patent rights.

International
technology, S

ISO/IEC 144¢
Part1: §
Part 2: U
Part 3: A
Part 4: G
Part 5: R
Part 6: O

Annexes C,
information o

OandEC atso take part i thrework:

Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
information technology, ISO and IEC have established a joint technical committéee, ISO
onal Standards adopted by the joint technical committee are circulated to natiohal bodies

5 an International Standard requires approval by at least 75 % of the national’bodies casting

Fawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the
ISO and IEC shall not be held responsible for identifying any or all’stich patent rights.

Standard ISO/IEC 14496-1 was prepared by Joint Technical“Committee ISO/IEC JTC 1,
ubcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

6 consists of the following parts, under the general titleyCoding of audio-visual objects:
ystems

isual

Ldio

onformance testing

eference software

elivery Multimedia Integration Framework (DMIF)

b and H form a normative part of this part of ISO/IEC 14496. Annexes A, B, D, E, F, I, Jand
nly.

Xviii

ECJTC 1.
for voting.
a vote.

subject of

nformation

K are for

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

0

ISO/IEC 14496-1:1999(E)

Introduction

0.1 Overview

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. This specification

includes th

e following elements:

1. the coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D,
can be manifested audibly and/or visually (audio-visual objects) (specified in part 1,2 and 3 of ISO/

the coded representation of the spatio-temporal positioning of audio-visual objects as well.as the

responge to interaction (scene description, specified in this part of ISO/IEC 14496);

the co
identifig
4. agene
The overal
At the sen
informatiorj
transmitted
visual obje
the end us
processed
the bitstres
This part o

— aterm

— a codsg
BIFS);

a cod
elemen

a code

an inte

objects that
EC 14496);

ir behavior in

ed representation of information related to the management of data streams (sypchronization,

ation, description and association of stream content, specified in this part of ISO/IEC 14496
ic interface to the data stream delivery layer functionality (specified\n/part 6 of ISO/IEC 144
operation of a system communicating audio-visual scenes can’be paraphrased as follows:
ding terminal, the audio-visual scene information is eompressed, supplemented with sy
and passed to a delivery layer that multiplexes itinto one or more coded binary stre
or stored. At the receiving terminal, these streams are demultiplexed and decompresse
cts are composed according to the scene description and synchronization information and
er. The end user may have the option to interact with this presentation. Interaction inforn
locally or transmitted back to the sending-terminal. ISO/IEC 14496 defines the syntax and
ms that convey such scene information, as-well as the details of their decoding processes.
f ISO/IEC 14496 specifies the following tools:
nal model for time and buffer.management;
d representation of interactive audio-visual scene description information (Binary Format
bd representation\.of metadata for the identification, description and logical depends
ary streams (Qbject descriptors and other Descriptors);

d representation of descriptive audio-visual content information (object content information

rfaceto intellectual property management and protection (IPMP) systems;

;and

96).

nchronization
ams that are
1. The audio-
presented to
hation can be
semantics of

for Scenes —

ncies of the

L OCl);

a cod

a multi

renresentation of svnchronization-information (svne-laver
et RaHoR-01-SYReRFoRZaHOR-HHOHRaHo R SYHRciayes

plexed representation of individual elementary streams in a single stream (FlexMux).

These various elements are described functionally in this subclause and specified in the normative clauses that

follow.

0.2 Architecture

The information representation specified in ISO/IEC 14496-1 describes the means to create an interactive audio-
visual scene in terms of coded audio-visual information and associated scene description information. The entity
that composes and sends, or receives and presents such a coded representation of an interactive audio-visual
scene is generically referred to as an "audio-visual terminal” or just “terminal”. This terminal may correspond to a
standalone application or be part of an application system.

© ISO/IEC 1999 — All rights reserved

XiX

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Display and
User
Interaction
Interactive Atrdliovisual 7
el V2
il
Composition and Rendering
{ { {I |
I
(S d <« I t
&> 6 $ D Upstream | Compression
- o Infotmation Layer
Object Scene i
Descrintor Description AV Object
P Information data
A A A A A A A A
Eleméptary Streams Elementary Stream Interface
[stf[st][st] [stf[st] [st]... Sync
7 W \ X 7 R\ X y
|:5E| Layer
SL-Packetized Streams
~ - ~ ~ - DMIF Application Interface
I I I I]
FlexMux | FlexMux | FlexMux
X X
N r” W r v v Delivery
Layer
M(F}?Eg?z (5;? AAL2 H223 DAB y
TS P ATM PSTN Mux
A *) Multiplexed Streams
Y A\ Y
Transmission/Storage Medium

Figure 1 - The ISO/IEC 14496 terminal architecture

The basic operations performed by such a receiver terminal are as follows. Information that allows access to
content complying with ISO/IEC 14496 is provided as initial session set up information to the terminal. Part 6 of
ISO/IEC 14496 defines the procedures for establishing such session contexts as well as the interface to the
delivery layer that generically abstracts the storage or transport medium. The initial set up information allows, in a
recursive manner, to locate one or more elementary streams that are part of the coded content representation.
Some of these elementary streams may be grouped together using the multiplexing tool described in ISO/IEC
14496-1.

Elementary streams contain the coded representation of either audio or visual data or scene description
information. Elementary streams may as well themselves convey information to identify streams, to describe logical

XX © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

dependencies between streams, or to describe information related to the content of the streams. Each elementary
stream contains only one type of data.

Elementary streams are decoded using their respective stream-specific decoders. The audio-visual objects are
composed according to the scene description information and presented by the terminal’s presentation device(s).
All these processes are synchronized according to the Systems Decoder Model (SDM) using the synchronization

information provided at the synchronization layer.

These basi

c operations are depicted in Figure 1, and are described in more detail below.

0.3 Terminal Model: Systems Decoder Model

The systegms decoder model provides an abstract view of the behavior of a terminal o
ISO/IEC 14496-1. Its purpose is to enable a sending terminal to predict how the receiving terminal
terms of buiffer management and synchronization when reconstructing the audio-visual information th
the presentation. The systems decoder model includes a systems timing model and a systems buffel
are descried briefly in the following subclauses.

031 Ti

ing Model

mplying with
vill behave in
at comprises
model which

The timing model defines the mechanisms through which a receiving termipnal-establishes a notiop of time that

enables it| to process time-dependent events. This model also allows\‘thé receiving terminal

mechanis

interaction
transmitted
ISO/IEC 1
receiving t
or compos

0.3.2 Bu
The buffer
decode ed|
terminal by
it is capab
informatior
appropriate

0.4 Mul

The term d
transmit ar
ISO/IEC 14
(DAI) speg
also for si
delivery m

s to maintain synchronization both across and within particular‘audio-visual objects as we
events. In order to facilitate these functions at the receiving‘términal, the timing model red
data streams contain implicit or explicit timing information~Two sets of timing information
1496-1: clock references and time stamps. The former_convey the sending terminal’s tim
erminal, while the latter convey a notion of relative tirhe)for specific events such as the des
tion time for portions of the encoded audio-visual.information.

ffer Model

model enables the sending terminal to, monitor and control the buffer resources that &
ch elementary stream in a presentation. The required buffer resources are conveyed to
means of descriptors at the beginning of the presentation. The terminal can then decide v
e of handling this particular pres€ntation. The buffer model allows the sending terminal to
may be removed from these buffers and enables it to schedule data transmission
 buffers at the receiving terminal do not overflow or underflow.

iplexing of Streams; The Delivery Layer

elivery layer is used’as a generic abstraction of any existing transport protocol stack that m
d/or store content complying with ISO/IEC 14496. The functionality of this layer is not withit

to establish
| as with user
uires that the
are defined in
P base to the
red decoding

re needed to
the receiving
hether or not
specify when
so that the

ay be used to
the scope of
tion Interface

1496-1, and)only the interface to this layer is considered. This interface is the DMIF Applic3
ified in ISQHEC 14496-6. The DAI defines not only an interface for the delivery of strea

for transm

ing data, but

jnaling-information required for session and channel set up as well as tear down. A wjde variety of
bchanisms exist below this interface, with some of them indicated in Figure 1. These mechanisms serve
ssion as well as storage of streaming data, i.e., a file is considered to be a particular jnstance of a

delivery layer. For applications where the desired transport facility does not fully address the needs of a service
according to the specifications in ISO/IEC 14496, a simple multiplexing tool (FlexMux) with low delay and low
overhead is defined in ISO/IEC 14496-1.

0.5 Synchronization of Streams: The Sync Layer

Elementary streams are the basic abstraction for any streaming data source. Elementary streams are conveyed as
sync layer-packetized (SL-packetized) streams at the DMIF Application Interface. This packetized representation
additionally provides timing and synchronization information, as well as fragmentation and random access
information. The sync layer (SL) extracts this timing information to enable synchronized decoding and,
subsequently, composition of the elementary stream data.

© ISO/IEC 1999 — All rights reserved XXi

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

0.6 The Compression Layer

The compression layer receives data in its encoded format and performs the necessary operations to decode this
data. The decoded information is then used by the terminal’'s composition, rendering and presentation subsystems.

0.6.1 Object Description Framework

The purpose of the object description framework is to identify and describe elementary streams and to associate
them appropriately to an audio-visual scene description. Object descriptors serve to gain access to ISO/IEC 14496
content. Object content information and the interface to intellectual property management and protection systems
are also part of this framework.

An object degcriptor is a collection of one or more elementary stream descriptors that provide the configyration and
other information for the streams that relate to either an audio-visual object or a scene desgription. Object
descriptors are themselves conveyed in elementary streams. Each object descriptor is assigned identifier
(object descriptor ID), which is unique within a defined name scope. This identifier is used to associate gudio-visual
objects in the scene description with a particular object descriptor, and thus the elementary(streams related to that
particular objgct.

Elementary sfream descriptors include information about the source of the stream data,in form of a uniq
identifier (the elementary stream ID) or a URL pointing to a remote source for,'the stream. Element
descriptors also include information about the encoding format, configuration _information for the decodi

lle numeric
ary stream
hg process

Etream and
blementary

and the sync|layer packetization, as well as quality of service requirements.faor' the transmission of the
intellectual pfoperty identification. Dependencies between streams can“also be signaled within the
stream descr]ptors. This functionality may be used, for example, in scalable audio or visual object reprg¢sentations
logical dependency of a stream containing enhancément information, to a stream corftaining the
base informalion. It can also be used to describe alternative representations for the same content (e.g. the same
speech content in various languages).

0.6.1.1 Intdllectual Property Management and Protection
nsists of a
The IPMP
part of an
Sociated to

The intellectyal property management and protection, (IPMP) framework for ISO/IEC 14496 content cg
normative inferface that permits an ISO/IEC 14496" terminal to host one or more IPMP Systems.
interface congists of IPMP elementary streams and IPMP descriptors. IPMP descriptors are carried ag
object descriptor stream. IPMP elementary streams carry time variant IPMP information that can be as
multiple objegt descriptors.

The IPMP S
protection fu
streams and
choose not tg

bment and
blementary
Cation may

ystem itself is a non-nermative component that provides intellectual property manag
hctions for the terminal.- The IPMP System uses the information carried by the IPMP
descriptors to make protected ISO/IEC 14496 content available to the terminal. An appli
use an IPMP System, thereby offering no management and protection features.

0.6.1.2 Object Contentynformation

Object content information (OCI) descriptors convey descriptive information about audio-visual objects| The main
content desdriptors) ‘are: content classification descriptors, keyword descriptors, rating descriptors] language
descriptors, textdal descnptors and descnptors about the creat|on of the content OCI descnptors can be included
directly in theTe f be carried in
an elementary stream by itself. An OCI stream is organlzed in a sequence of small, synchronlzed entities called
events that contain a set of OCI descriptors. OCI streams can be associated to multiple object descriptors.

0.6.2 Scene Description Streams

Scene description addresses the organization of audio-visual objects in a scene, in terms of both spatial and
temporal attributes. This information allows the composition and rendering of individual audio-visual objects after
the respective decoders have reconstructed the streaming data for them. For visual data, ISO/IEC 14496-1 does
not mandate particular composition algorithms. Hence, visual composition is implementation dependent. For audio
data, the composition process is defined in a normative manner in 9.2.2.13 and ISO/IEC 14496-3.

XXii © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 1449

6-1:1999(E)

The scene description is represented using a parametric approach (BIFS - Binary Format for Scenes). The
description consists of an encoded hierarchy (tree) of nodes with attributes and other information (including event
sources and targets). Leaf nodes in this tree correspond to elementary audio-visual data, whereas intermediate
nodes group this material to form audio-visual objects, and perform grouping, transformation, and other such
operations on audio-visual objects (scene description nodes). The scene description can evolve over time by using
scene description updates.

In order to facilitate active user involvement with the presented audio-visual information, ISO/IEC 14496-1 provides
support for user and object interactions. Interactivity mechanisms are integrated with the scene description
information, in the form of linked event sources and targets (routes) as well as sensors (special nodes that can
trigger events based on specific conditions). These event sources and targets are part of scene description nodes,

and thus

allow close coupling of dynamic and interactive behavior with the specific sce

e at hand.

ISO/IEC 14
(e.g., keyb

Such an in
client-servg
specific do

0.6.3 Au

The code
ISO/IEC 14
for potentia

0.6.4 Ug

Downchan
to the sern
elementary
specified i
upchannel

}496-1, however, does not specify a particular user interface or a mechanism that maps
pbard key presses or mouse movements) to such events.

teractive environment may not need an upstream channel, but ISO/IEC 14496 also provid
br interactive sessions with the ability to set up upstream elementary streams;’and asso,
wnstream elementary streams.

dio-visual Streams

d representations of audio and visual information are described in ISO/IEC]
}496-2, respectively. The reconstructed audio-visual data are made available to the compo
| use during the scene rendering.

channel Streams

hel elementary streams may require upchannel information to be transmitted from the recs
ding terminal (e.g., to allow for client-server Jinteractivity). Figure 1 indicates the flo
stream from the receiving terminal to the_Sending terminal. The content of upchann
N the same part of the specification that.defines the content of the downstream data.

control streams for video downchannel elementary streams are defined in ISO/IEC 14496-2.

user actions

es means for
Ciate them to

4496-3 and
Sition process

iving terminal
wpath for an
b| streams is
FFor example,

© ISO/IEC 1999 — All rights reserved

XXiii

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

INTERNATIONAL STANDARD

ISO/IEC 1449

6-1:1999(E)

Information technology — Coding of audio-visual objects —

e audio-visual

PD) or three-

ir behavior in

Part 1:
Systems
1 Scope
This part df ISO/IEC 14496 specifies system level functionalities for the communication of interactive
scenes. More specifically:
1. system|level description of the coded representation of natural or synthetic, two~dimensional (
dimens|onal (3D) objects that can be manifested audibly and/or visually (audio-visual objects);
2. the coded representation of the spatio-temporal positioning of audio-visualobjects as well as the
responge to interaction (scene description); and
3. the cogled representation of information related to the management of data streams (sypchronization,

2 Nornpative References

The follow
this part d
publication
investigate
undated rdg
maintain re

[1]
(2]

[3]

[4]

[5]

[6]

[7]

[8]

identifid

ISO

ISO
Cou

ISOJIEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character

Part

ITUA
cont

ation, description and association of stream content).

ng normative documents contain provisions Which, through reference in this text, constitute
f ISO/IEC 14496. For dated references;<subsequent amendments to, or revisions of,
5 do not apply. However, parties to agréements based on this part of ISO/IEC 14496 are §
the possibility of applying the most.récent editions of the normative documents indicate
ferences, the lastest edition of the normative document referred to applies. Members of
gisters of currently valid International Standards.

639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code.
3166-1:1997, Codes.\for the representation of names of countries and their subdivisi
hiry codes.

1: Architetttre and Basic Multilingual Plane.

T Rec.\T.81 (1992)|ISO/IEC 10918-1:1994, Information technology — Digital compression
indous-tone still images: Requirements and guidelines.

provisions of
any of these
ncouraged to
d below. For
ISO and IEC

bns — Part 1:

Set (UCS) —

hnd coding of

ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 2: Video.

ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 3: Audio.

ITU-T Rec. H.262 (1995)[ISO/IEC 13818-2:1996, Information technology — Generic coding of moving
pictures and associated audio information: Video.

ISO/IEC 13818-3:1998, Information technology — Generic coding of moving pictures and associated audio
information — Part 3: Audio.

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9]

information — Part 7: Advanced Audio Coding (AAC).

(10]

Reality Modeling Language — Part 1: Functional specification and UTF-8 encoding.

(11]

(12]

3 Additio

ISO/IEC 16262:1998, Information technology — ECMAScript language specification.

IEEE Std 754-1985, Standard for Binary Floating-Point Arithmetic.

al References

ISO/IEC 13818-7:1997, Information technology — Generic coding of moving pictures and associated audio

ISO/IEC 14772-1:1998, Information technology — Computer graphics and image processing — The Virtual

None cited.

4 Definiti

4.1 Access
An individuall
which timing

4.2 Alpha
The represen

4.3 Audio-
A represental
corresponds
with zero or n

4.4 Audio-
A set of aud
attributes incl

4.5 Binary
A coded repr

4.6 Buffer
A model that
to decode a

pNS

Unit (AU)
y accessible portion of data within an elementary stream. An access unit is the smallest d3
nformation can be attributed.

Map
tation of the transparency parameters associated with a texture map.

isual Object

ion of a natural or synthetic object that has an audio“and/or visual manifestation. The rep
0 a node or a group of nodes in the BIFS scenedéscription. Each audio-visual object is
hore elementary streams using one or more objéct descriptors.

isual Scene (AV Scene)
o-visual objects together with scene description information that defines their spatial an
Lding behaviors resulting from objectand user interactions.

Format for Scene (BIFS)
bsentation of a parametric scene description format.

Model

resentation.

47 Byte A
A position in

4.8

igned
coded bit'stream with a distance of a multiple of 8-bits from the first bit in the stream.

Clock Reference

A special tim¢ stamp that conveys a reading of a time base.

ta entity to

Ffesentation
associated

d temporal

defines how a terminakcomplying with ISO/IEC 14496 manages the buffer resources that are needed

4.9

Composition

The process of applying scene description information in order to identify the spatio-temporal attributes and
hierarchies of audio-visual objects..

4,10 Composition Memory (CM)
A random access memory that contains composition units.

4.11 Composition Time Stamp (CTS)

An indication

of the nominal composition time of a composition unit.

4.12 Composition Unit (CU)

An individuall

y accessible portion of the output that a decoder produces from access units.

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

4.13 Compression Layer
The layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded
representation of an elementary stream and its decoded representation. It incorporates the decoders.

4.14 Decoder
An entity that translates between the coded representation of an elementary stream and its decoded
representation.

4.15 Decoding buffer (DB)
A buffer at the input of a decoder that contains access units.

4.16 Decoder configuration
The configuration of a decoder for processing Iits elementary stream data by using information ,cgntained in its
elementary stream descriptor.

4.17 Decpding Time Stamp (DTS)
An indicatipn of the nominal decoding time of an access unit.

4.18 Deliyery Layer
A generic jabstraction for delivery mechanisms (computer networks, etc.) able to“store or transmit{a number of
multiplexed elementary streams or FlexMux streams.

4.19 Desgriptor
A data structure that is used to describe particular aspects of an elementary stream or a coded audio-yisual object.

4.20 DMIF Application Interface (DAI)
An interface specified in ISO/IEC 14496-6. It is used here to modelthe exchange of SL-packetized stream data and
associated| control information between the sync layer and thedelivery layer.

4.21 Elementary Stream (ES)
A consecutive flow of mono-media data from a single s@urce entity to a single destination entity on thel compression
layer.

4.22 Elementary Stream Descriptor
A structurg contained in object descriptors that'describes the encoding format, initialization information, sync layer
configuratipn, and other descriptive information about the content carried in an elementary stream.

4.23 Elementary Stream Interface (ESY)
An interfage modeling the exchange-of elementary stream data and associated control information| between the
compressipn layer and the sync layer.

4.24 FlexMux Channel (FME)
A label to|differentiate. between data belonging to different constituent streams within one FlexMyix Stream. A
sequence [of data in{@ne FlexMux channel within a FlexMux stream corresponds to one single $L-packetized
stream.

4.25 FlexMux Packet
The smallgst\data entity managed by the FlexMux tool. It consists of a header and a payload.

4.26 FlexMux Stream
A sequence of FlexMux Packets with data from one or more SL-packetized streams that are each identified by their
own FlexMux channel.

4.27 FlexMux tool
A tool that allows the interleaving of data from multiple data streams.

4.28 Graphics Profile

A profile that specifies the permissible set of graphical elements of the BIFS tool that may be used in a scene
description stream. Note that BIFS comprises both graphical and scene description elements.

© ISO/IEC 1999 — All rights reserved 3

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

A mode for coding parameters that uses previously coded parameters to construct a prediction.

A mode for coding parameters that does not make reference to previously coded parameters to perform the

4.29 Inter
4.30 Intra
encoding.
4.31

Initial Object Descriptor

A special object descriptor that allows the receiving terminal to gain initial access to portions of content encoded
according to ISO/IEC 14496. It conveys profile and level information to describe the complexity of the content.

4.32

Intellectual Property Identification (IP1)

A unique ide
objects.

4.33 Intelleg
A generic ter|
systems is ng

4.34 Object
A clock refersd

4.35 Object
Additional inf
individual ele

4.36 Object

A descriptor that aggregates one or more elementary streams by means of their elementary stream desd

defines their

4.37 Object

A command that identifies the action to be taken on a list.of object descriptors or object descriptor IDs, €

or remove.

4.38 Object
A profile that

4.39 Object
An elementar

4.40 Object
A time base
via object clo

4.41 Param
A set of tool

ntification of one or more elementary streams corresponding to parts of one or more-§

tual Property Management and Protection (IPMP) System
m for mechanisms and tools to manage and protect intellectual property. Only.the interfg
rmatively defined.

Clock Reference (OCR)
nce that is used by a decoder to recover the time base of the encodet_of an elementary strg

Content Information (OCI)

mentary stream descriptors or is itself conveyed as an elententary stream.
Descriptor (OD)

ogical dependencies.

Descriptor Command

Descriptor Profile
specifies the configurations of thesobject descriptor tool and the sync layer tool that are allo

Descriptor Stream
y stream that conveys object descriptors encapsulated in object descriptor commands.

Time Base (OTB)
ck references. All time stamps relating to this object’'s decoding process refer to this time ba

btric Audio)Decoder
5 for fepresenting and decoding speech signals coded at bit rates between 6 Kbps ang

according to lhe specifications in ISO/IEC 14496-3.

udio-visual

ce to such

eam.

brmation about content conveyed through one or more elemgntary streams. It is either aggregated to

riptors and

.g., update

ved.

alid for a given(elementary stream, and hence for its decoder. The OTB is conveyed to the decoder

Se.

16 Kbps,

4.42 Quality of Service (Qo0S)
The performance that an elementary stream requests from the delivery channel through which it is transported.
QoS is characterized by a set of parameters (e.g., bit rate, delay jitter, bit error rate, etc.).

4.43 Random Access
The process of beginning to read and decode a coded representation at an arbitrary point within the elementary

stream.

4.44 Reference Point
A location in the data or control flow of a system that has some defined characteristics.

4.45 Rendering
The action of transforming a scene description and its constituent audio-visual objects from a common
representation space to a specific presentation device (i.e., speakers and a viewing window).

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

4.46 Rendering Area
The portion of the display device’s screen into which the scene description and its constituent audio-visual objects
are to be rendered.

4.47 Scene Description

Information that describes the spatio-temporal positioning of audio-visual objects as well as their behavior resulting
from object and user interactions. The scene description makes reference to elementary streams with audio-visual
data by means of pointers to object descriptors.

4.48 Scene Description Stream
An elementary stream that conveys scene description information.

4.49 Sceme Graph Elements
The elemgnts of the BIFS tool that relate only to the structure of the audio-visual scene (spatio-temgoral temporal
positioning| of audio-visual objects as well as their behavior resulting from object and user interactions) excluding
the audio, yisual and graphics nodes as specified in clause 13.

4.50 Scee Graph Profile
A profile that defines the permissible set of scene graph elements of the BIFS toolithat may be us¢d in a scene
description| stream. Note that BIFS comprises both graphical and scene description‘elements.

451 SL-RBacketized Stream (SPS)
A sequencg of sync layer Packets that encapsulate one elementary streant.

4.52 Struftured Audio
A method ¢f describing synthetic sound effects and music as defined'by ISO/IEC 14496-3.

453 Syn¢ Layer (SL)
A layer to adapt elementary stream data for communicationsacross the DMIF Application Interface, prpviding timing
and synchionization information, as well as fragmentatiorixand random access information. The sync layer syntax is
configurable and can be configured to be empty.

4.54 Syn¢ Layer Configuration
A configurption of the sync layer syntax for a‘particular elementary stream using information coptained in its
elementary stream descriptor.

455 Syn¢ Layer Packet (SL-Packet)
The small¢st data entity managed by the sync layer consisting of a configurable header and a payload. The
payload maiy consist of one complete access unit or a partial access unit.

4.56 Synfactic Description ltanguage (SDL)
A language¢ defined by ISO/IEC 14496-1 that allows the description of a bitstream’s syntax.

4.57 Systems DecoderModel (SDM)
A model that provides an abstract view of the behavior of a terminal compliant to ISO/IEC 14496. It cpnsists of the
buffer model and‘the timing model.

458 SystemTime Base (STB)
The time base of the terminal. Its resolution is implementation-dependent. All operations in the terminal are
performed according to this time base.

459 Terminal
A system that sends, or receives and presents the coded representation of an interactive audio-visual scene as
defined by ISO/IEC 14496-1. It can be a standalone system, or part of an application system complying with
ISO/IEC 14496.

4.60 Time Base
The notion of a clock; it is equivalent to a counter that is periodically incremented.

© ISO/IEC 1999 — All rights reserved 5

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

4.61 Timing Model

A model that specifies the semantic meaning of timing information, how it is incorporated (explicitly or implicitly) in

the coded representation of information, and how it can be recovered at the receiving terminal.

4.62 Time Stamp
An indication of a particular time instant relative to a time base.

5 Abbreviations and Symbols

AU
AV
BIFS
CM
CTS
Cu
DAI
DB
DTS
ES
ESI
ESID
FAP
FAPU
FDP
FIG
FIT
FMC
FMOD

IP

IPI
IPMP
NCT
NDT
NINT
OCI
OCR
oD
ODID
oTB
PLL
QoS
SAOL
SASL
SDL
SDM
SL
SL-Packet
SPS
STB
TTS
URL
VOP
VRML

Access Unit

Andiovdctial

Binary Format for Scene

Composition Memory

Composition Time Stamp

Composition Unit

DMIF Application Interface (see ISO/IEC 14496-6)

Decoding Buffer

Decoding Time Stamp

Elementary Stream

Elementary Stream Interface

Elementary Stream Identifier

Facial Animation Parameters

FAP Units

Facial Definition Parameters

FAP Interpolation Graph

FAP Interpolation Table

FlexMux Channel

The floating point modulo (remainder) operatorwhich returns the remainder of x/y such tha
Fmod(x/y) = x — k*y, where kis an integer,
sgn(fmod(x/y)) = sgn(x)xand
abs(fmod(x/y)) < abs(¥)

Intellectual Property

Intellectual Property Identification

Intellectual Property Management'and Protection

Node Coding Tables

Node Data Type

Nearest INTeger value

Object Content Information

Object Clock Reference

Object Descriptor

Object Deseriptor Identifier

Object TimeBase

Phase‘Locked Loop

Quality. of Service

Structured Audio Orchestra Language

ot

Structured Audio-Score Language
Syntactic Description Language
Systems Decoder Model
Synchronization Layer
Synchronization Layer Packet
SL-Packetized Stream

System Time Base
Text-To-Speech

Universal Resource Locator
Video Object Plane

Virtual Reality Modeling Language

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

6 Conventions

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the
normative parts of ISO/IEC 14496 a syntactic description language is used. This language allows the specification
of the mapping of the various parameters in a binary format as well as how they are placed in a serialized
bitstream. The definition of the language is provided in clause 12.

7 Systems Decoder Model

7.1 Introduction

The purpope of the systems decoder model (SDM) is to provide an abstract view of the behavior|of a terminal
complying [with ISO/IEC 14496. It may be used by the sender to predict how the receiving terminal ill behave in
terms of bdiffer management and synchronization when decoding data received in the form jof elemerjtary streams.
The systems decoder model includes a timing model and a buffer model.

The systems decoder model specifies:

1. the intefface for accessing demultiplexed data streams (DMIF Application Interface),
2. decodirg buffers for coded data for each elementary stream,

3. the behpvior of elementary stream decoders,

4. compogition memory for decoded data from each decoder, and

5. the output behavior of composition memory towards the €ampositor.

These elements are depicted in Figure 2. Each elementary stream is attached to one single decoding buffer. More

than one glementary stream may be connected to a“single decoder (e.g., in a decoder of a scaleabl¢ audio-visual
object).

A Decoding] | Compositiof
DM IF Appli Buffer DB > Decoderl — Memory
cation Interfaci 1
Decoding] |, || Compositio
Buffer DB Memory
Decoder, .
Decoding] |, Compositor
"| Buffer DB,
Decoding] |, || Compositior
(encapsulates Buffer DB, Decodern Memory
B sl)
Bemtipiexer) [Elementay Stream Inteface]

Figure 2 - Systems Decoder Model
7.2 Concepts of the Systems Decoder Model

This subclause defines the concepts necessary for the specification of the timing and buffering model. The
sequence of definitions corresponds to a walk from the left to the right side of the SDM illustration in Figure 2.

7.2.1 DMIF Application Interface (DAI)

For the purposes of the systems decoder model, the DMIF Application Interface encapsulates the demultiplexer
and provides access to streaming data that is consumed by the decoding buffers. The streaming data received

© ISO/IEC 1999 — All rights reserved 7

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

through the DAI consists of SL-packetized streams. The required properties of the DAI are described in 10.4. The
DAI semantics are fully specified in ISO/IEC 14496-6.

7.2.2 SL-Packetized Stream (SPS)

An SL-packetized stream consists of a sequence of packets, according to the syntax and semantics specified in
10.2, that encapsulate a single elementary stream. The packets contain elementary stream data partitioned in
access units as well as side information, e.g., for timing and access unit labeling. SPS data enter the decoding

buffers.

7.2.3 Access Units (AU)

Elementary s
by the entity
data entity to
never refer tg
is not visible|
streams and
information (g

NOTE — An |
whole. It is fur

AUs may have

7.2.4 Deco
The decoding
and stores a
resources tha

7.25 Elem
Streaming d
elementary s
compression
elementary s
terminal.

7.2.6 Elem
The element
information b
output of the

7.2.7 Deco

ream data is partitioned into access units. The delineation of an access unit is completely
that generates the elementary stream (e.g., the compression layer). An access unit(s,
which timing information can be attributed. Two access units from the same elementary s
the same decoding or composition time. Any further partitioning of the data in an_element
for the purposes of the Systems Decoder Model. Access units are conveyed by SL-
are received by the decoding buffers. The decoders consume access units-with the necq
.g., time stamps) from the decoding buffers.

SO/IEC 14496-1 compliant terminal implementation is not required to progess’ each incoming accel

significance for improved error resilience.
ding Buffer (DB)

buffer is a buffer at the input of an elementary stream/decoder in the receiving terminal th
cess units. The Systems Buffer Model enables.the' sending terminal to monitor the deco
t are used during a presentation.

entary Streams (ES)

ta received at the output of a decading buffer, independent of its content, is considg
ream for the purpose of ISO/IEC 14496. The elementary streams are produced and consu
layer entities (encoders and decoders, respectively). ISO/IEC 14496 assumes that the int
ream is preserved from endAg-end, from the ESI of the sending terminal to the ESI of th
entary Stream Interface (ESI)

ary stream intérface models the exchange of elementary stream data and associa
btween the compression layer and the sync layer. At the receiving terminal the ESI is loc]

Hecoding hiffer. The ESI is specified in 10.3.

der

For the purpgses’of this model, the decoder extracts access units from the decoding buffer at precis

etermined
e smallest
ream shall
ary stream
packetized
ssary side

5S unit as a

hermore possible to split an access unit into several fragments for transmiission as specified in clayise 10. This
allows the sendling terminal to dispatch partial AUs immediately as they are generated during the encoding process.

Such partial

At receives
ding buffer

red as an
med by the
bgrity of an
P receiving

ed control
ated at the

bly defined

points in time and places composition units, the results of the decoding processes, in the composition memory. A

decoder may

be attached to several decoding buffers.

7.2.8 Composition Units (CU)

Decoders consume access units and produce composition units. An access unit corresponds to an integer number

of compositio

7.2.9

n units. Composition units reside in composition memory.

Composition Memory (CM)

The composition memory is a random access memory that contains composition units. The size of this memory is
not normatively specified.

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

7.2.10 Compositor

The compositor takes composition units out of the composition memory and either consumes them (e.g. composes
and presents them, in the case of audio-visual data) or skips them. The compositor is not specified in ISO/IEC
14496-1, as the details of this operation are not relevant within the context of the System Decoder Model.
Subclause 7.3.5 defines which composition units are available to the compositor at any instant of time.

7.3 Timing Model Specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by one or
more elementary streams. The concept of a clock with its associated clock references is used to convey the notion

of time to a receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving
terminal cgnsumes the access units in the decoding buffers or may access the composition unitsyresident in the
composition memory. The time stamps are therefore associated with access units and compositipn units. The
semantics |of the timing model are defined in the subsequent clauses. The syntax for conveying-timirjg information
is specified in 10.2.

NOTE — THhis timing model is designed for rate-controlled (“push”) applications.

7.3.1 Sygtem Time Base (STB)

The Systein Time Base (STB) defines the terminal’s notion of time. The resoldtion of the STB is impplementation

dependent] All actions of the terminal are scheduled according to this_time base for the purpose [of this timing
model.

NOTE — This does not imply that all terminals compliant with ISO/IEC 14496-Operate on one single STB.

7.3.2 Ohject Time Base (OTB)

The object|time base (OTB) defines the notion of time for a given data stream. The resolution of thig OTB can be
selected a$ required by the application or as defined by’a profile. All time stamps that the sending teyminal inserts
in a coded|data stream refer to this time base. The O¥B of a data stream is known at the receiving terminal either
by means ¢f object clock reference information insérted in the stream or by an indication that its time Qase is slaved
to a time bpse conveyed with another stream, as:specified in 10.2.3.

NOTE 1 — Elementary streams may be createdfor the sole purpose of conveying time base information.

NOTE 2 — Trhe receiving terminal’s System Time Base need not be locked to any of the available object time bades.

7.3.3 Ohject Clock Reference (OCR)

A special kind of time stamps, object clock references (OCR), are used to convey the OTB to the elementary
stream degoder. The value of the OCR corresponds to the value of the OTB at the time the sending terminal
generates [the object_elock reference time stamp. OCR time stamps are placed in the SL packpt header as
described fin 10.2.4. JThe receiving terminal shall extract and evaluate the OCR when its first byte enters its
decoding Quffer-

7.3.4 Dgcoding Time Stamp (DTS)

Each access unit has an associated nominal decoding time, the time at which it must be available in the decoding
buffer for decoding. The AU is not guaranteed to be available in the decoding buffer either before or after this time.
Decoding is assumed to occur instantaneously when the instant of time indicated by the DTS is reached.

This point in time can be implicitly specified if the (constant) temporal distance between successive access units is
indicated in the setup of the elementary stream (see 10.2.3). Otherwise a decoding time stamp (DTS) whose
syntax is defined in 10.2.4 conveys this point in time.

A decoding time stamp shall only be conveyed for an access unit that carries a composition time stamp as well,

and only if the DTS and CTS values are different. Presence of both time stamps in an AU may indicate a reversal
between coding order and composition order.

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

7.3.5 Composition Time Stamp (CTS)

Each composition unit has an associated nominal composition time, the time at which it must be available in the
composition memory for composition. The CU is not guaranteed to be available in the composition memory for
composition before this time. Since the SDM assumes an instantaneous decoding process, the CU is available to
the decoder, at that instant in time corresponding to the DTS of the corresponding AU, for further use (e.g. in
prediction processes).

This instant in time is implicitly known, if the (constant) temporal distance between successive composition units is
indicated in the setup of the elementary stream. Otherwise a composition time stamp (CTS) whose syntax is

defined in 10.

The current

2.4 conveys this instant in time.

U is instantaneously accessible by the compositor anytime between its composition i

1

e and the

composition time of the subsequent CU. If a subsequent CU does not exist, the current CU becomeS unavailable at

the end of theg

7.3.6 Occu
The frequenc
and drift are §

7.3.7 Time
An audio-visu
(see 8.7.1.5)
access units

EXAMPLE

The example

assumption of
sent the resp¢g
terminal never
corresponding
CU(s) arrive 0

10

lifetime of its elementary stream (i.e., when its elementary stream descriptor is removed).
rrence and Precision of Timing Information in Elementary Streams

y at which DTS, CTS and OCR values are to be inserted in the bitstream as.well as the pre
\pplication and profile dependent. Some usage considerations can be found in 10.2.7.

Stamps for Dependent Elementary Streams

al object may refer to multiple elementary streams that constitite a scaleable content rep
Such a set of elementary streams shall adhere to a single_object time base. Temporally
or such elementary streams are then identified by identicaF-DTS or CTS values.

the model (see 7.4.2 below), the arrival times correspond to the instants in time when the sending

ctive AUs. The sending terminal must selectxthis instant in time so that the Decoding Buffer at t
overflows or underflows. At the receiving_términal, an AU is instantaneously decoded, at that ing
to its DTS, and the resulting CU(s) are placed in the composition memory and remain there until the
the associated object descriptor is remeved.

Arriqu(AU 1)

Cision, jitter

fesentation
co-located

n Figure 3 illustrates the arrival of two access uhits at the Systems Decoder. Due to the comfstant delay

erminal has
e receiving
tant in time
subsequent

Arrival(AU DTS (AU
(0 (A DTS (AU,)
DeCOding AUO " E E B EEEEEEENEENEENEENEENEDEREEGBETSR
Buffer AU,

CompOSition CU " E E B EEEEEEENEENEENEENEENEDEREEGBETSR

Memory A CuU,
= available for
CTS (CUy) CTS (CYy) composition

Figure 3 - Composition unit availability

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

7.4 Buff

74.1

ISO/IEC 1449

er Model Specification

Elementary Decoder Model

6-1:1999(E)

Figure 4 indicates one branch of the Systems Decoder Model (Figure 2). This simplified model is used to specify
the buffer model. It treats each elementary stream separately and therefore, associates a composition memory with
only one decoder. The legend following Figure 4 elaborates on the symbols used in this figure.

Legend:

DB
CM
AU
Cu

34400

742 As

7421 (
Data trans
sending te
delay due
delivery lay
terminal.

Note that t
can cope
determineg

performang

7422 [

AU Cu Composition

Memory CM

Decoding

Buffer DB Compositer,

Decoder

Figure 4 - Flow diagram for the Systems Decoder.Model

ecoding buffer for the elementary stream.

omposition memory for the elementary stream.

he current access unit input to the Decoder.

he current composition unit input to the composition memory. CU results from decoding AU
ay be several composition units resulting fromcdecoding one access unit.

sumptions
onstant end-to-end delay
nitted in real time have a timing-model in which the end-to-end delay from the encode

o the encoding process, subsequent buffering, multiplexing at the sending terminal, the de
ers and the delay due to'the demultiplexing, decoder buffering and decoding processes at

vith the additional buffering needed. However, the temporal difference between two time|
the temporal distance between the associated AUs or CUs) has to be preserved
e.

emultiplexer

There

[input at the

minal, to the decoder output-atthe receiving terminal, is constant. This delay is equal to the sum of the

ay due to the
the receiving

ne receiving terminal is free to add a temporal offset (delay) to the absolute values of all time stamps if it

stamps (that
for real-time

The end-to-end delay between multiplexer output, at the sending terminal, and demultiplexer input, at the receiving

terminal, is

constant.

7.4.2.3 Decoding Buffer

The needed decoding buffer size is known by the sending terminal and conveyed to the receiving terminal as
specified in 8.6.5.

The size of the decoding buffer is measured in bytes.

The decoding buffer is filled at the rate given by the maximum bit rate for this elementary stream (if this information
is conveyed by the sending terminal), and with a zero rate otherwise. The maximum bit rate is conveyed by the

© ISO/IEC 1999 — All rights reserved

11

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

sending terminal as a part of the decoder configuration information during the set up phase for each elementary
stream (see 8.6.5).

Information is received from the DAI in the form of SL packets. The SL packet headers are removed at the input to

the decoding

buffers.

7.4.2.4 Decoder

The decoding processes are assumed to be instantaneous for the purposes of the Systems Decoder Model.

7.4.2.5 Composition Memory

The mappind of an AU to one or more CUs (by the decoder) Is known implicitly at both the sendipg and the

receiving terminals.

7.4.2.6 Compositor

The composi

7.4.3 Mandg

In this exam
content is to
they are nee
specified in IS

The behavior

— The sendi
delivery. T]
elementar
in bytes.

— The sendi

— Each dec
informatio

— At the ins
decoding

— At the inst
are put in

The current @
and the CTS
end of lifetimg

ion processes are assumed to be instantaneous for the purposes of the Systems Decoder
ging Buffers: A Walkthrough

ple, we assume that the model is used in a “push” scenario. Inapplications where no
be delivered, flow control by suitable signaling may be established\to request access units
led at the receiving terminal. The mechanisms for doing sofare application-dependent, g
bO/IEC 14496.

5 of the various elements in the SDM are modeled asAellows:

ng terminal signals the required decoding buffer résources to the receiving terminal before
his is done as specified in 8.6.5 either explicitly;-by requesting the decoding buffer sizes fa
y streams, or implicitly, by indicating a profile’(see clause 13). The decoding buffer size ig

ng terminal models the behavior of the*decoding buffers by making the following assumptio

pding buffer is filled at the maximum bitrate specified for its associated elementary str
N is available.

tant of time corresponding to its DTS, an AU is instantaneously decoded and remove
puffer.

ant of time corresponding to its DTS, a known amount of CUs corresponding to the just d
the compositioh' memory.

U is available to the compositor between instants of time corresponding to the CTS of the
of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavai
 Ofits data stream.

Viodel.

n-real time
at the time
nd are not

Starting the
r individual
measured

1S

pam if this

0 from the

pcoded AU

current CU
able at the

Using these assumptions on the buffer model, the sending terminal may freely use the space in the decoding
buffers. For example, it may deliver data for several AUs of a stream, for non real time usage, to the receiving
terminal, and pre-store them in the DB long before they have to be decoded (assuming sufficient space is
available). Subsequently, the full delivery bandwidth may be used to transfer data of a real time stream just in time.
The composition memory may be used, for example, as a reordering buffer. In the case of visual decoding, it may
contain the decoded P-frames needed by a video decoder for the decoding of intermediate B-frames, before the
arrival of the CTS of the latest P-frame.

12 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

8 Obje

8.1

ISO/IEC 14496-1:1999(E)

ct Description Framework

Introduction

The scene description (specified in clause 9) and the elementary streams that convey streaming data are the basic
building blocks of the architecture of ISO/IEC 14496-1. Elementary streams carry data for audio or visual objects as
well as for the scene description itself. The object description framework provides the link between elementary
streams and the scene description. The scene description declares the spatio-temporal relationship of audio-visual
objects, while the object description framework specifies the elementary stream resources that provide the time-
varying data for the scene. This indirection facilitates independent changes to the scene structure, the properties of
the elementary streams (e.g. its encoding) and their delivery.

The object
associate
identifiers,
Object deg
set of obje

Each obje
associated
scaleable

multiple qu

An elemen
identifier,
configure t
additional

requirements for its transmission or a language indication.” Both, object descriptors and elemg

descriptors
respectivel

The objed
protection
descriptor
descriptorg
operation ¢

Object cor
descriptors

allows the
Access to

through mg
description

description framework consists of a set of descriptors that allows to identify, describe
blementary streams to each other and to audio-visual objects used in the scene desErip,
called ObjectDescriptorIDs, associate object descriptors to appropriate nodes in_the.scen
criptors are themselves conveyed in elementary streams to allow time stamped changes tg
Ct descriptors to be made.

't descriptor is itself a collection of descriptors that describe one or more elementary stre
to a single node and that usually relate to a single audio or visual object. This allows
content representation as well as multiple alternative streams that’convey the same co
alities or different languages.

tary stream descriptor within an object descriptor identifies a'Single elementary stream W
alled ES_ID. Each elementary stream descriptor contains the information necessary t
he decoding process for the elementary stream, as welkas intellectual property identificatig
information may be associated to a single elementary stream, most notably quali

may use URLs to point to remote object descriptors or a remote elementary st
2

(IPMP) systems. IPMP information iSoconveyed both through IPMP descriptors as part
stream and through IPMP streams*that carry time variant IPMP information. The strug
and IPMP streams is specified”in’this clause while their internal syntax and semantics ary
f the IPMP system is outside-the scope of ISO/IEC 14496.

tent information allows.the” association of metadata with a whole presentation or with ing

Conveyance of time variant object content information.

ISO/IEC 14496 content is gained through an initial object descriptor that needs to be m
pans not'defined in ISO/IEC 14496. The initial object descriptor in the simplest case points
stream.and the corresponding object descriptor stream. The access scenario is outlined in

and properly
lion. Numeric
E description.
the available

ams that are
to indicate a
ntent, e.g., in

ith a numeric
D initiate and
n. Optionally,
y of service
ntary stream
eam source,

 description framework provides thetvthooks to implement intellectual property management and

of the object
ture of IPMP
d, hence, the

ividual object

or with elementary.stream descriptors. A set of OCI descriptors is defined that either fofm an integral
part of an pbject descriptor of elementary stream descriptor or are conveyed by means of a proper O

C| stream that

ade available
to the scene
8.7.3.

© ISO/IEC 1999 — All rights reserved

13

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

initial
ObjectDescriptor

ES_Descriptor|

ES_Descriptor|

Scene Description Stream

ES_ID

ObjectDescriptor

,,,,,,, Object Object -
Object Descripjor Stream. . © | Descriptor Descriptor ES_Descriptor .

$ ‘,"'ObjectDescriptorUpdate

H[eso) |-

Visual Stream fe.g. base layer) /

Visual Stream {e.g. temporal enhancement) %

Figure 5 - Object descriptors linking scene description to elementary streams

The remaindgr of this clause is structured in the following way:

— Subclausg 8.2 specifies the data structures on which«the object descriptor framework is based.

— Subclausg 8.3 specifies the concepts of the IPMP,elements in the object description framework.

— Subclause 8.4 specifies the object contentinformation elements in the object description framework.

— Subclausg 8.5 specifies the object.descriptor stream and the syntax and semantics of the commahd set that
allows the|update or removal of object descriptor components.

— Subclausg 8.6 specifies the syntax and semantics of the object descriptor and its component descriptprs.

— Subclausg 8.7 specifiesttules for object descriptor usage as well as the procedure to access contgnt through
object degcriptors.

— Subclausg 8.8 spetifies the usage of the IPMP system interface.

8.2 Commeondatastractures
8.2.1 Overview

The commands and descriptors defined in this subclause constitute self-describing classes, identified by unique
class tags. Each class encodes explicitly its size in bytes. This facilitates future compatible extensions of the
commands and descriptors. They may be expanded with additional syntax elements that are ignored by an OD
decoder that expects an earlier revision of a class. In addition, anywhere in a syntax where a set of tagged classes
is expected it is permissible to intersperse expandable classes with unknown class tag values. These classes shall
be skipped, using the encoded size information.

The remainder of this clause defines the syntax and semantics of the command and descriptor classes. Some

commands and descriptors contain themselves a set of component descriptors. They are said to aggregate a set of
component descriptors.

14 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.2.2 BaseDescriptor
8.2.2.1 Syntax

abstract aligned(8) expandable(2 %_1) class BaseDescriptor : bit(8) tag=0 {
/I empty. To be filled by classes extending this class.

8.2.2.2 Semantics

This class is an abstract base class that is extended by the descriptor classes specified in 8.6. Each descriptor
constitutes a self- descrlblng class identified by a unlque class tag This abstract base class establlshes a common

expandablg class the size of each class instance in bytes is encoded and acceSS|bIe through the.instance variable
sizeOfInstdnce (see 12.3.3).
A class that allows the aggregation of classes of type BaseDescriptor may actually aggregate any ¢f the classes
that extend BaseDescriptor.
NOTE — Uger private descriptors may have an internal structure, for example to identify the gountry or manufactdrer that uses a
specific dedcriptor. The tags and semantics for such user private descriptors may be managed by a registrafion authority if
required.
Table 1 - List of Class Tags for Descriptors

Tag value |Tag name

0x00 Forbidden

0x01 ObjectDescrTag

0x02 InitialObjectDescrTag

0x03 ES_DescrTag

0x04 DecoderConfigDescrTag

0x05 DecSpecificinfoTag

0x06 SLConfigDescrTag

0x07 ContentldentDescrTag

0x08 SupplContentldentDescrTag

0x09 IPI_DescrPointerTag

0x0A IPMP_DescrPointerTag

0x0B IPMP_DescrTag

0Ox0C QoS_DescrTag

0x0D RegistrationDescrTag

OxO0E-Ox3F | Reserved for ISO use (descriptors)

0x40 ContentClassificationDescrTag

0x41 KeyWordDescrTag

0x42 RatingDescrTag

0Ox43 | nngllngnhnchrTng

0x44 ShortTextualDescrTag

0x45 ExpandedTextualDescrTag

0x46 ContentCreatorNameDescrTag

0x47 ContentCreationDateDescrTag

0x48 OClICreatorNameDescrTag

0x49 OClICreationDateDescrTag

0x4A-0x5F | Reserved for ISO use (OCI extensions)

0x60-0xBF | Reserved for ISO use

0xCO0-OxFE | User private

OxFF Forbidden

© ISO/IEC 1999 — All rights reserved 15

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The following additional symbolic names are introduced:

ExtDescrTagStartRange = 0x80
ExtDescrTagEndRange = OxFE

OClDescrTagStartRange = 0x40
OClIDescrTagendRange = Ox5F

8.2.3 BaseCommand

8.2.3.1 Syntax

abstract aligned(8) expandable(2 2.1) class BaseCommand : bit(8) tag=0 {
/I empty. Ta be filled by classes extending this class

8.2.3.2 Semantics

This class is jan abstract base class that is extended by the command classes specified in-8:5.5. Eacl command
constitutes a jself-describing class, identified by a unique class tag. This abstract base classyestablishes|a common
name space ffor the class tags of these commands. The values of the class tags are.défined in Table 2. As an
expandable dlass the size of each class instance in bytes is encoded and accessible ‘through the instantce variable
sizeOfInstande (see 12.3.3).

A class that @llows the aggregation of classes of type BaseCommand may @ctually aggregate any of fhe classes
that extend BpseCommand.

NOTE — User|private commands may have an internal structure, for example to_identify the country or manufacture| that uses a
specific commpnd. The tags and semantics for such user private command may be managed by a registratior] authority if
required.

Table 2 - List of Class Tags-for Commands

Tag value |Tag name

0x00 forbidden

0x01 ObjectDescrUpdateTag
0x02 ObjectDescrRemoveTag
0x03 ES-DescrUpdateTag
0x04 ES_DescrRemoveTag
0x05 IPMP_DescrUpdateTag
0x06 IPMP_DescrRemoveTag

0x07:=0xBF | Reserved for ISO (command tags)
0X€E0-OxFE | User private
OxFF forbidden

8.3 Intelleftual Property Management and Protection (IPMP)

8.3.1 Overyiew

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. An IPMP System
is a non-normative component that provides intellectual property management and protection functions for the
terminal.

The IPMP interface consists of IPMP elementary streams and IPMP descriptors. The normative structure of IPMP
elementary streams is specified in this subclause. IPMP descriptors are carried as part of an object descriptor
stream and are specified in 8.6.13. The IPMP interface allows applications (or derivative application standards) to
build specialized IPMP Systems. Alternatively, an application may choose not to use an IPMP System, thereby
offering no management and protection features. The IPMP System uses the information carried by the IPMP
elementary streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. The
detailed semantics and decoding process of the IPMP System are not in the scope of ISO/IEC 14496. The usage of
the IPMP System Interface, however, is explained in 8.8.

16 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.3.2 IPMP Streams

8.3.2.1 Structure of the IPMP Stream

The IPMP stream is an elementary stream that passes time-varying information to one or more IPMP Systems.
This is accomplished by periodically sending a sequence of IPMP messages along with the content at a period
determined by the IPMP System(s).

8.3.2.2 Access Unit Definition

An IPMP access unit consists of one or more IPMP messages, as defined in 8.3.2.5. All IPMP messages that are to
be processed at the same instant in time shall constitute a single access unit. Access units in IPMP streams shall
be labeledant-time=stamped-by-sti is—shaltbe-do i e-retated-ftags—and empposition time
stamps, respectively, in the SL packet header (see 10.2.4). The composition time indicates the'pgint in time at
which an IPMP access unit becomes valid, i.e., when the embedded IPMP messages shall be evaluajed. Decoding

a Alcmmun a O

An access
required. |
the compl
the SL pac

unit does not necessarily convey or update the complete set of IPMP messages that|are currently
that case it just modifies the persistent state of the IPMP system. However,<if an accesq unit conveys
te set of IPMP messages required at a given point in time it shall set theprandomAccessPojntFlag in
et header to ‘1’ for this access unit. Otherwise, the randomAccessPaintFlag shall be s¢t to ‘0.

NOTE — An SL packet with randomAccessPointFlag=1 but with no IPMP messages in it indicates that at the current time
instant no IRMP messages are required for operation.

8.3.2.3 Tlime Base for IPMP Streams

The time bpse associated to an IPMP stream shall be indicated<y 'suitable means. This shall be done by means of
object clodk reference time stamps in the SL packet headérs (see 10.2.4) for this stream or by |ndicating the
elementary stream from which this IPMP stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized| IPMP stream refer to this time base.

8.3.2.4 IPMP Decoder Configuration

8.3.2.4.1 |Syntax

class IPMPDecoderConfiguration extends DetoderSpecificinfo : bit(8) tag=DecSpecificinfoTag {
/I IPMP| system specific configuration Ainformation

}

8.3.2.4.2 [Semantics

An IPMP system may require-information to initialize its operation. This information shall be conveyed| by extending
the decoderSpecificinfo class as specified in 8.6.6. If utilized, IPMPDecoderConfiguration shall be
conveyed in the ES_Descriptor declaring the IPMP stream.

8.3.2.5 IPMP message syntax and semantics

8.3.2.5.1 [Syntax

class IPMP_Message() extends ExpandableBaseClass
bit(16) IPMPS_Type;
if IPMPS_Type == 0) {
bit(8) URLString[sizeOfInstance-2];

} else {
bit(8) IPMP_data[sizeOflnstance-2];
}

}
8.3.2.5.2 Semantics

The IPMP_Message conveys control information for an IPMP System.

© ISO/IEC 1999 — All rights reserved 17

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

IPMPS_Type - the type of the IPMP System. A zero value does not correspond to an IPMP System, but indicates
the presence of a URL. A Registration Authority as designated by the ISO shall assign valid values for this field.

URLString[]

whose IPMP_

IPMP_data

- contains a UTF-8 [3] encoded URL that shall point to the location of a remote IPMP_Message

data shall be used in place of locally provided data.

- opaque data to control the IPMP System.

8.4 Object Content Information (OCI)

8.4.1

Overview

Audio-visual
additional ob
8.6.17. OCI
defined in 8.4

In order to ad
as well be d
streamType
8.7.1.3. The 1
8.4.2 OCI
8.4.2.1 Stry

The OCI stre

ODJECTS thal are associated with elementary stream data through an object descriptor
ect content information attached to them. For this purpose, a set of OCI descriptors.is
Hescriptors may directly be included as part of an ObjectDescriptor or ES, Bescr
A

commodate time variant OCI that is separable from the object descriptor stream; OCI desc
onveyed in an OCI stream. An OCI stream is referred to through anVES_Descripto

field set to OCI_Stream. How OCI streams may be aggregated to object descriptors is
tructure of the OCI stream is defined in this subclause.

Btreams
cture of the OCI Stream

hm is an elementary stream that conveys time-varying-object content information, termed ¢

Each OCI evént consists of a number of OCI descriptors.

8.4.2.2 Acd

An OCI acce
streams shal
and the comg
the point in ti
the list of eve|

ess Unit Definition

5S unit consists of one or more OCI_Events, as described in 8.4.2.5. Access units in OCI

be labelled and time stamped by suitable means. This shall be done by means of the rg
osition time stamp, respectively, in theZSL packet header (see 10.2.4). The composition tim
me when an OCI access unit becomes valid, i.e., when the embedded OCI events shall b

An access umit may or may not convey\or'update the complete set of OCI events that are currently V

latter case, i
complete set
packet heade

NOTE — An S
no valid OCl e

8.4.2.3 Tim

The time bas

just modifies the persistent state of the OCI decoder. However, if an access unit ¢
of OCI events valid at a given point in time it shall set the randomAccessPointFlag
r to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0'.

| packet with randomAccessPointFlag=1 but with no OCI events in it indicates that at the current

ents exist.
e Base-for OCI Streams

enassociated with an OCI stream shall be indicated by suitable means. This shall be done

may have
defined in
ptor as

iptors may
[, with the
defined in

Cl events.

blementary
lated flags
e indicates
e added to

hts. Decoding and composition time for an OCI access unit shall always have the same valuie.

alid. In the
bnveys the
in the SL

time instant

by the use

of object clo

kK Teference time Stamps M the ST packet neaders (see 1U.Z.4) 10T this Strearn or 9)Y i

icating the

elementary stream from which this OCI stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized OCI stream refer to this time base.

8.4.24 OC

| Decoder Configuration

8.4.2.4.1 Syntax

class OCIDecoderConfiguration extends DecoderSpecificinfo

. bit(8) tag=DecSpecificinfoTag {

const bit(8) versionLabel = 0x01;

18

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.4.2.4.2 Semantics

This information is needed to initialize operation of the OCI decoder. It shall be conveyed by extending the
decoderSpecificinfo class as specified in 8.6.6. OCIDecoderConfiguration shall be conveyed in the
ES Descriptor declaring the OCI stream.

versionLabel — indicates the version of OCI specification used on the corresponding OCI data stream. Only the
value 0x01 is allowed; all the other values are reserved.

8.4.2.5 OCI_Events syntax and semantics

8.4.25.1 Syntax

class OCI_Event extends ExpandableBaseClass {
bit(15) ¢ventID;
bit(1) bsoluteTimeFlag;
bit(32) gtartingTime;
bit(32) duration;
OCI_Dekcriptor OCI_Descr[1 .. 255];

}

8.4.2.5.2 [Semantics

eventID [~ contains the identification number of the described event that.issunique within the scope of this OCI
stream.

absoluteTimeFlag — indicates the time base for startingTime as described below.

startingTime — indicates the starting time of the event in hours, minutes, seconds and hundredth of seconds.

The formaj is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in|binary coded
decimal and the last two expressing hundredth of seconds.in-hexadecimal using 8 bits.

EXAMPLE 4+ 02:36:45:89 is coded as “0x023645” concatenated with “0b0101.1001” (89 in binary), resulting to “Ox02364559".

If absolute[TimeFlag is set to zero, startingTine is relative to the object time base of the qorresponding
object. In that case it is the responsibility of the\application to ensure that this object time base is conveyed such
that startingTime can be identified upambiguously (see 10.2.7). If absoluteTimeFlag q set to one,
startingTime is expressed as an absolute value, refering to wall clock time.

duration — contains the duration of the corresponding object in hours, minutes, seconds and |hundredth of
seconds. The format is 8 digits, the, first 6 digits expressing hours, minutes and seconds with 4 bits @ach in binary
coded decjmal and the last twoexpressing hundredth of seconds in hexadecimal using 8 bits.

OCI_Descf[] - an array of.one up to 255 OCI_Descriptor classes as specified in 8.6.17.2.

8.5 Object Descriptor Stream

8.5.1 St]:mture of the Object Descriptor Stream

Similar to the.stene description, object descriptors are transported in a dedicated elementary stream, fermed object
descriptor stream. Within such a stream, it is possible to dynamically convey, update and remove complete object
descriptors, or their component descriptors, the ES_Descriptors, and IPMP descriptors. The update mechanism
allows, for example, to advertise new elementary streams for an audio-visual object as they become available, or to
remove references to streams that are no longer available. Updates are time stamped to indicate the instant in time
they take effect.

This subclause specifies the structure of the object descriptor elementary stream including the syntax and
semantics of its constituent elements, the object descriptor commands (OD commands).

8.5.2 Access Unit Definition

An OD access unit consists of one or more OD commands, as described in 8.5.5. All OD commands that are to be
processed at the same instant in time shall constitute a single access unit. Access units in object descriptor
elementary streams shall be labelled and time stamped by suitable means. This shall be done by means of the

© ISO/IEC 1999 — All rights reserved 19

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

related flags and the composition time stamp, respectively, in the SL packet header (see 10.2.4). The composition
time indicates the point in time when an OD access unit becomes valid, i.e., when the embedded OD commands
shall be executed. Decoding and composition time for an OD access unit shall always have the same value.

An access unit may not convey or update the complete set of object descriptors that are currently required. In that
case it just modifies the persistent state of the object descriptor decoder. However, if an access unit conveys the

complete set of object descriptors required at a given point in time it shall set the randomAccessPointFlag
the SL packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag

NOTE — An SL packet with randomAccessPointFlag=1

shall be set

but with no OD commands in it indicates that at the

instant no valid object descriptors exist.

853 Time

The time bag
by means of
indicating the
time stamps i

854 0ODO

The object de
855 0D
8.5.5.1 Ove

Object descr
commands ¢
conveyed wi
descriptors, H

8.5.5.2 Obj
8.55.2.1 Sy

class ObjectD

in
to ‘0.

current time

[Base for Object Descriptor Streams

e associated to an object descriptor stream shall be indicated by suitable means. This-sh
object clock reference time stamps in the SL packet headers (see 10.2.4) for.this st
elementary stream from which this object descriptor stream inherits the time_base (see

h the SL-packetized object descriptor stream refer to this time base.

ecoder Configuration

scriptor decoder does not require additional configuration informatieh.
ommand Syntax and Semantics

rview

ptors and their components as defined in 8.6 shall-always be conveyed as part of one
pecified in this subclause. The commands descfibe” the action to be taken on the c
h the command, specifically ‘update’ or ‘remeve’. Each command affects one or m
S_Descriptors or IPMP descriptors.

pctDescriptorUpdate
ntax

bscriptorUpdate extends BaseCommand : bit(8) tag=ObjectDescrUpdateTag {

il be done
eam or by
10.2.3). All

of the OD
bmponents
ore object

ObjectDesdriptor OD[1 .. 255];
}
8.5.5.2.2 Se¢mantics
The ObjectDé¢scriptorUpdate class conveys a list of new or updated ObjectDescriptors. The conponents of
an already eXisting ObjectDescriptor shall not be changed by an update, but an ObjectDescriptorUpdate may
remove or add ES_Descriptors as components of the related object descriptor.
Removal of gn ES_Descriptor within an ObjectDescriptor conveyed by this command is acconpplished by
omitting it ffom (the array of ES_Descriptors aggregated to the ObjectDescriptor . Addifion of an
ES_Descriptqr.</ within an ObjectDescriptor conveyed by this command is accomplished by addipg it to the
array of ES_Deseriptors—aggregatet-to-the-Objectbeseriptor
To update the characteristics of an elementary stream, it is required that its original ES_Descriptor be removed

and the changed ES_Descriptor

OD[] —an ar
elements.

be conveyed.

ray of ObjectDescriptors

8.5.5.3 ObjectDescriptorRemove

8.5.5.3.1 Syntax

class ObjectDescriptorRemove extends BaseCommand : bit(8) tag=ObjectDescrRemoveTag {
bit(10) objectDescriptorld[(sizeOfinstance*8)/10];

}

20

© ISO/IEC 1999 — All ri

as defined in 8.6.2. The array shall have any number of one up to 255

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.5.5.3.2 Semantics

The ObjectDescriptorRemove class renders unavailable a set of object descriptors. The BIFS nodes
associated to these object descriptors shall have no reference any more to the elementary streams that have been
listed in the removed object descriptors. An objectDescriptorID that does not refer to a valid ObjectDescriptor is
ignored.

NOTE — It is possible that a scene description node references an OD_ID which does not currently have an associated OD.

ObjectDescriptorld]] — an array of ObjectDescriptoriDs that indicates the object descriptors that are
removed.

8.5.5.4 HS DescriptorUpdate

8.5.5.4.1 |Syntax

class ES_DescriptorUpdate extends BaseCommand : bit(8) tag=ES_DescrUpdateTag {
bit(10) ¢bjectDescriptorld;

ES_Desfriptor ESD[1 .. 30];
}

8.5.5.4.2 |Semantics

The ES_DescriptorUpdate class adds or updates references to elementary streams within the object descriptor
labeled ohjectDescriptoriD . Values of syntax elements of an“updated ES_Descriptor shall remain
unchanged.

To update fthe characterstics of an elementary stream, it is required that its original ES_Descriptor be|removed and
the changgqd ES_Descriptor be conveyed.

An elementary stream identified with a given ES_ID mmay be attached to more than one object descriptor. All

corresponding ES_Descriptors refering tol\“*this ES ID that are conveyed thrpugh either
ES_DescriptorUpdate or ObjectDescriptorUpdate commands shall have identical content.
objectDesgriptorID - identifies the ObjectDescriptor for which ES_Descriptors are updated. If the

objectDesgriptorID does not refer to any valid object descriptor, then this command is ignored.

ESD[] - fn array of ES_Descriptors as defined in 8.6.4. The array shall have any number of jone up to 30
elements.

8.5.5.5 HS_DescriptorRermove
8.5.5.5.1 [Syntax

class ES_DescriptorRemove extends BaseCommand : bit(8) tag=ES_DescrRemoveTag {
bit(10) ¢bjectDeseriptorld;
aligned [(8), bit(16) ES_ID[1..30];

}
8.5.5.5.2 Semantics

The ES_DescriptorRemove class removes the reference to an elementary stream from an ObjectDescriptor and
renders this stream unavailable for nodes referencing this ObjectDescriptor.

objectDescriptorID - identifies the ObjectDescriptor from which ES_Descriptors are removed. If the
objectDescriptorID does not refer to a valid object descriptor in the same scope, then this command is ignored.

ES ID[] - an array of streamCount ES IDs that labels the ES_Descriptors to be removed from
objectDescriptor|D . If any of the ES_IDs do not refer to an ES_Descriptor currently referenced by the OD,
then those ES_IDs are ignored.

© ISO/IEC 1999 — All rights reserved 21

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.5.5.6

IPMP_DescriptorUpdate

8.5.5.6.1 Syntax

class IPMP_DescriptorUpdate extends BaseCommand : bit(8) tag=IPMP_DescrUpdateTag {
IPMP_Descriptor ipmpDescr[1..255];

}

8.5.5.6.2 Semantics

rs An

mmand or

entify the

The [IPMP_DescriptorUpdate class conveys a list of new or updated IPMP_Descripto
IPMP_Descriptor identified by an IPMP_DescriptorID that already exists shall be replaced by the new
descriptor.
IPMP_Descriptors remain valid until they are replaced by another IPMP_DescriptorUpdate C(
removed.
ipmpDescr(] —an array of IPMP_Descriptor as specified in 8.6.13.
8.5.5.7 IPMP_DescriptorRemove
8.5.5.7.1 Syntax
class IPMP_DlescriptorRemove extends BaseCommand : bit(8) tag=IPMP_DescrRemoveTag {
bit(8) IPMP_DescriptorID[1..255];
8.5.5.7.2 Seémantics
The IPMP_DescriptorRemove class conveys a list\yof IPMP_DescriptorsiDs that id
IPMP_Descriptors that shall be removed.
IPMP_DescriptorlD[] - is a list of IPMP_DescriptoriDs
8.6 Object Descriptor Components
8.6.1 Overyiew

Object descr
elementary s
specified in t
their compon

8.6.2 Obje

8.6.2.1 Syr

ptors contain various additional descriptors as their components, in order to describg
freams and their properties. They shall always be conveyed as part of one of the OD
ne previous subclause. This subclause defines the syntax and semantics of object desc
PNt descriptors.

CtDescriptor

tax

individual
commands
Fiptors and

class ObjectD

bsciiptor extends BaseDescriptor : bit(8) tag=ObjectDescrTag {

bit(10) Obj

bit(1) URL._

ctbescriptortB;

Flag;

const bit(5) reserved=0b1111.1;
if (URL_Flag) {

bit(8) URLIength;

bit(8) URLstring[URLlength];

} else {

ES_Descriptor esDescr[1 ..
OCI_Descriptor ociDescr[0 ..
IPMP_DescriptorPointer ipmpDescrPtr[0 ..

}

30];
255];
255];

ExtensionDescriptor extDescr[0 .. 255];

22

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.2.2 Semantics
The ObjectDescriptor consists of three different parts.

The first part uniquely labels the object descriptor within its name scope (see 8.7.2.4) by means of an
objectDescriptorld. Nodes in the scene description use objectDescriptorlD to refer to the related
object descriptor. An optional URLstring indicates that the actual object descriptor resides at a remote location.

The second part consists of a list of ES_Descriptors , each providing parameters for a single elementary as well
as an optional set of object content information descriptors and pointers to IPMP descriptors for the contents for
elementary stream content described in this object descriptor.

The third partisasetofoptionat-descriptorsthat-supportthe-nctusiomof-futureextensions—as—wettag the transport
of private data in a backward compatible way.

objectDesgriptorld — This syntax element uniquely identifies the ObjectDescriptor within itsfname scope.
The value D is forbidden and the value 1023 is reserved.

URL_Flag| — a flag that indicates the presence of a URLstring
URLIlength| - the length of the subsequent URLstring in bytes.

URLstring]| — A string with a UTF-8 [3] encoded URL that shall point to angther ObjectDescriptor . Only the
content of this object descriptor shall be returned by the delivery entity upanjaccess to this URL. Within the current
name scope, the new object descriptor shall be referenced by the objectDescriptorld of the object descriptor
carrying the URLstring. On name scopes see 8.7.2.4. Permissible URLs may be constrained by profile and levels
as well as py specific delivery layers.

esDescr(] — an array of ES_Descriptors as defined in"8.6.4. The array shall have any numbef of one up to
30 elements.
ociDescr][] — an array of OCI_Descriptors , asdéfined in 8.6.17.2, that relates to the audio-visual object(s)

described by this object descriptor. The array shall have any number of zero up to 255 elements.

ipmpDescHPtr(] — an array of IPMP_DescriptorPointer , as defined in 8.6.12, that points to the
IPMP_Desgriptors related to the elementary(stream(s) described by this object descriptor. The array ghall have any
number of zero up to 255 elements.

extDescr(] — an array of Extensionbescriptors as defined in 8.6.15. The array shall have any number of
zero up to 55 elements.

8.6.3 InifialObjectDescriptar
8.6.3.1 §yntax

class InitialDbjectDescriptor extends BaseDescriptor : bit(8) tag=InitialObjectDescrTag {
bit(10) ®bjectDeseriptoriD;
bit(1) URL_FKlag;
bit(1) inpludelnlineProfileLevelFlag;
const bit(4) reserved=0b1111;
if (URL_Flag) {
bit(8) URLIlength;
bit(8) URLstring[URLIength];
} else {
bit(8) ODProfileLevellndication;
bit(8) sceneProfileLevellndication;
bit(8) audioProfileLevellndication;
bit(8) visualProfileLevellndication;
bit(8) graphicsProfileLevellndication;
ES_Descriptor ESD[1 .. 30];
OCI_Descriptor ociDescr[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];

}

ExtensionDescriptor extDescr[0 .. 255];

© ISO/IEC 1999 — All rights reserved 23

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.3.2 Semantics

The InitialObjectDescriptor is a variation of the ObjectDescriptor specified in the previous subclause
that allows to signal profile and level information for the content refered by it. It shall be used to gain initial access
to ISO/IEC 14496 content (see 8.7.3).

objectDescriptorld — This syntax element uniquely identifies the ObjectDescriptor within its name scope.
The value 0 is forbidden and the value 1023 is reserved.

URL_Flag - aflag that indicates the presence of a URLstring

includelnlineRrafilel evelFlag —a flag that_if set to one _indicates that the subsequent profile indications
take into accgunt the resources needed to process any content that might be inlined.

URLlength + the length of the subsequent URLstring in bytes.

=

URLstring[] — A string with a UTF-8 [3] encoded URL that shall point to another InitialObjectDescriptq .
Only the content of this object descriptor shall be returned by the delivery entity upon access to this URL. Within
the current name scope, the new object descriptor shall be referenced by the objectDescriptorld of the object
descriptor cafrying the URLstring. On name scopes see 8.7.2.4. Permissible URLS may be constrained by profile
and levels as|well as by specific delivery layers.

ODProfileLevellndication — an indication as defined in Table 3 of thé object descriptor profil¢ and level
required to process the content associated with this InitialObjectDescriptor

Table 3 - ODProfileLevellndication Values

Value Profile Level

0x00 Forbidden -
0xP1-0x7F reserved for ISO use -
0x$0-0xFD user private -
OxFE no OD profile specified -
OxFF no OD capability required -
NQTE — Usage of the value OxFE\indicates that the content described by this InitialObjectDescripto

dogs not comply to any OD profile\specified in ISO/IEC 14496-1. Usage of the value OxFF indicates thal
nome of the OD profile capabilities are required for this content.

sceneProfilelevellndication — an indication as defined in Table 4 of the scene graph profilg and level
required to process the contehtjassociated with this InitialObjectDescriptor

Table 4 - sceneProfileLevellndication Values

Value Profile Level
ox00 Reserved for ISO use -
0x01 Simple2D profile L1

0x02-0x7F reserved for ISO use -
0x80-0xFD user private -
OxFE no scene graph profile specified -
OxFF no scene graph capability required -

NOTE — Usage of the value OXFE indicates that the content described by this InitialObjectDescriptor
does not comply to any scene graph profile specified in ISO/IEC 14496-1. Usage of the value OxFF
indicates that none of the scene graph profile capabilities are required for this content.

audioProfileLevellndication — an indication as defined in Table 5 of the audio profile and level required to
process the content associated with this InitialObjectDescriptor

24 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

Table 5 - audioProfileLevellndication Values

ISO/IEC 14496-1:1999(E)

Value Profile Level
0x00 Reserved for ISO use -
0x01 Main Profile L1
0x02 Main Profile L2
0x03 Main Profile L3
0x04 Main Profile L4
0x05 Scalable Profile L1
0x06 Scalable Profile L2
Ox07 Scalable Profile 13
Dx08 Scalable Profile L4
Dx09 Speech Profile L1
DX0A Speech Profile L2
Dx0B Synthesis Profile L1
Dx0C Synthesis Profile L2
Dx0D Synthesis Profile L3
DXOE-OX7F reserved for ISO use -
Dx80-0xFD user private -
DXFE no audio profile specified 5
DxFF no audio capability required -

NOTE — Usage of the value OxFE indicates that the content described by this InitialObjectDescriptor
Hoes not comply to any audio profile specified in ISO/IEC 14496-3. Usage of the value OxFF indicqtes
hat none of the audio profile capabilities are required for this content.

visualProfi
to process

eLevellndication

Table 6 - visualProfileLevellndication Values

— an indication as defined in Table 6 of the visual profile and |evel required
the content associated with this InitialObjectDescriptor

Value Profile Level
Dx00 Reserved for ISQ.use -
Dx01 Simple L3
Dx02 Simple L2
Dx03 Simple L1
Dx04 Simple*Scalable L2
DXx05 Simple Scalable L1
DX06 Core L2
DXx07 Core L1
Dx08 Main L4
Dx09 Main L3
DXOA Main L2
OxX0B N=Bit 2
0x0C Hybrid L2
0x0D Hybrid L1
Ox0E Basic Animated Texture L2
OxO0F Basic Animated Texture L1
0x10 Scalable Texture L3
Ox11 Scalable Texture L2
0x12 Scalable Texture L1
0x13 Simple Face Animation L2
0x14 Simple Face Animation L1
0x15-0x7F reserved for ISO use -
0x80-0xFD user private -

© ISO/IEC 1999 — All rights reserved

25

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

OxFE

no visual profile specified

OxFF

no visual capability required

NOTE — Usage of the value OXFE indicates that the content described by this InitialObjectDescriptor
does not comply to any visual profile specified in ISO/IEC 14496-2. Usage of the value OxFF indicates
that none of the visual profile capabilities are required for this content.

graphicsProfi

leLevellndication

required to process the content associated with this InitialObjectDescriptor

Table 7 - graphicsProfileLevellndication Values

— an indication as defined in Table 7 of the graphics profile and level

Vajue Profile Level

0x00 Reserved for ISO use

0x01 Simple2D profile L1

0xP2-0x7F reserved for ISO use

0x$0-0xFD user private

OxFE no graphics profile specified

OxFF no graphics capability required

NQTE — Usage of the value OxFE may indicate that the content described by this InitialObjectDescripto
dog¢s not comply to any conformance point specified in ISO/IEC 14496-1) Usage of the value OxFH
indcates that none of the graphics profile capabilities are required for this.centent.

ESDJ]
elements.

ociDescr[]
that are desc

ipmpDescrPt
IPMP_Descri
number of ze

extDesctr]]
zero up to 25

8.6.4 ES_I

8.6.4.1 Syn

class ES_Des|
bit(16) ES]
bit(1) stred
bit(1) URL
const bit(1
bit(5) stred

array of ES_Descriptors as defined in 8.6.4. The array shall have any number of on

— an array of OCI_Descriptors as defined in 8:6,17.2 that relates to the set of audio-vis

1 — an array of IPMP_DescriptorPginter , as defined in 8.6.12, that poi
htors related to the elementary stream(s)described by this object descriptor. The array sha
[0 up to 255 elements.

— an array of ExtensionDescripters
b elements.

as defined in 8.6.15. The array shall have any|

escriptor
tax

Criptor extendst.BaseDescriptor :
 1D;
mDependeneeFlag;
| Flag;
reserved=1;
mPrigrity;

bit(8) tag=ES_DescrTag

e up to 30

ual objects

ibed by this initial object descriptor. The array shall have any number of zero up to 255 elefents.

nts to the
Il have any

number of

if (stream

ependenceFlaq)

bit(16)

dependsOn_ES _ID;

if (URL_Flag) {
bit(8) URLIlength;
bit(8) URLstring[URLIlength];

DecoderCo

nfigDescriptor decConfigDescr;

SLConfigDescriptor slConfigDescr;

IPI_DescrP

IP_ldentificationDataSet ipIDS[0 ..
IPMP_DescriptorPointer ipmpDescrPtr[0 ..

ointer ipiPtr[0 .. 1J;
255];

255];

LanguageDescriptor langDescr[0 .. 255];
QoS _Descriptor gosDescr[0 .. 1];
RegistrationDescriptor regDescr[0 .. 1];

ExtensionD

26

escriptor extDescr[0 .. 255];

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.4.2 Semantics
The ES_Descriptor conveys all information related to a particular elementary stream and has three major parts.

The first part consists of the ES_ID which is a unique reference to the elementary stream within its name scope
(see 8.7.2.4), a mechanism to describe dependencies of elementary streams within the scope of the parent
ObjectDescriptor and an optional URL string. Dependencies and usage of URLs are specified in 8.7.

The second part consists of the component descriptors which convey the parameters and requirements of the
elementary stream.

The third part is a set of optional extension descriptors that support the inclusion of future extensions as well as the
transport of private data in a backward compatible way.

ES ID - [This syntax element provides a unique label for each elementary stream within its-namg scope. The
values 0 and OXFFFF are reserved.

streamDegendenceFlag — If set to one indicates that a dependsOn_ES _ID will follow.

URL_Flag| —if set to 1 indicates that a URLstring will follow.

streamPrigrity — indicates a relative measure for the priority of this elementary stream. An elemgntary stream
with a higher streamPriority is more important than one with a lower (stseamPriority . The afsolute values
of streamPriority are not normatively defined.

dependsOp_ES ID —isthe ES_ID of another elementary stream on which this elementary stream flepends. The
stream with dependsOn_ES ID shall also be associated ta_ the same ObjectDescriptor ap the current
ES_Descriptor

URLIlength| - the length of the subsequent URLstring _ in"bytes.

URLstring]] — contains a UTF-8 [3] encoded URLthat shall point to the location of an SL-packetized stream by
name. The parameters of the SL-packetized.stream that is retrieved from the URL are fully spIcified in this
ES_Descriptor . See also 8.7.3.3. Permissible URLs may be constrained by profile and levels as well as by
specific dejivery layers.

decConfigbescr —is a DecoderConfigDescriptor as specified in 8.6.5.

slConfigDgscr —is an SLConfigDescriptor as specified in 8.6.7.

ipiPtr(] —an array of zero-of one IPl_DescrPointer as specified in 8.6.11.

ipIDS[] + an array of,zero or more IP_ldentificationDataSet as specified in 8.6.8.

Each ES_[Descriptar-shall have either one IP1_DescrPointer or one up to 255 IP_ldentificationDataSet

elements. This(allows to unambiguously associate an IP Identification to each elementary stream.

ipmpDescritrf —an—array—of tPMPDescriptorPointet —as—defined——8:6-12—that—points to the

IPMP_Descriptors related to the elementary stream described by this ES_Descriptor . The array shall have any
number of zero up to 255 elements.

langDescr[] — an array of zero or one LanguageDescriptor structures as specified in 8.6.17.6. It indicates
the language attributed to this elementary stream.

NOTE — Multichannel audio streams may be treated as one elementary stream with one ES_Descriptor by ISO/IEC 14496. In
that case different languages present in different channels of the multichannel stream are not identifyable with a
LanguageDescriptor.

gosDescr[] —an array of zero or one QoS_Descriptor as specified in 8.6.14.

extDescr[] — an array of ExtensionDescriptor structures as specified in 8.6.15.

© ISO/IEC 1999 — All rights reserved 27

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.5 DecoderConfigDescriptor

8.6.5.1 Syntax

class DecoderConfigDescriptor extends BaseDescriptor

bit(8) objectTypelndication;

bit(6) streamType;

bit(1) upStream;

const bit(1) reserved=1;

bit(24) bufferSizeDB;

bit(32) maxBitrate;

bit(32) avgBitrate;

DecoderSpecificinfo decSpecificinfo[0 .. 1];

: bit(8) tag=DecoderConfigDescrTag {

}
8.6.5.2 Semantics
The Decode

resources neg

whether it is

optional deco

a stream spe

Cific format that is opaque to this layer.

ConfigDescriptor provides information about the decoder type and-the* requirgd decoder
eded for the associated elementary stream. This is needed at the receiving, terminal to| determine
hble to decode the elementary stream. A stream type identifies the category of the stream while the
der specific information descriptor contains stream specific information forthe set up of the|ldecoder in

ObjectTypelndication — an indication of the object or scene descriptiontype that needs to be supported by

the decoder f
and visualStr

Table 8 - objectTypelndicatian“\alues

Dr this elementary stream as per the following table. For streamlype
bam, the objectTypelndication shall be set to OxFF, indicating that no object type is gpecified.

values other than alidioStream

streamType

28

Value ObjectTypelndication Description

0x00 Forbidden

0x01-Ox1F reserved for ISO use

0x20 Visual ISO/IEC 14496-2 *°

0x21-0x3F reserved for IS@’use

0x40 Audio ISO/IEC 14496-3 °

0x41-0x5F reserved for ISO use

0x60 VisualISO/IEC 13818-2 Simple Profile

0x61 Visual ISO/IEC 13818-2 Main Profile

0x62 Visual ISO/IEC 13818-2 SNR Profile

0x63 Visual ISO/IEC 13818-2 Spatial Profile

0x64 Visual ISO/IEC 13818-2 High Profile

0x65 Visual ISO/IEC 13818-2 422 Profile

0x66 Audio ISO/IEC 13818-7 Main Profile

OX67 Audio ISO/IEC 13818-7 LowComplexity Profile

0x68 Audio ISO/IEC 13818-7 SSR Profile

Ox69 Audio ISO/IEC 13818-3

Ox6A Visual ISO/IEC 11172-2

0Ox6B Audio ISO/IEC 11172-3

0x6C Visual ISO/IEC 10918-1

0x6D - OxBF reserved for ISO use

0xCO - OxFE user private

OxFF no profile specified

® The actual object types are defined in ISO/IEC 14496-2 and are conveyed in the
DecoderSpecificinfo as specified in ISO/IEC 14496-2, Annex K.

® The actual object types are defined in ISO/IEC 14496-3 and are conveyed in the
DecoderSpecificinfo as specified in ISO/IEC 14496-3 Section 1 subclause 1.6.2.1.

— conveys the type of this elementary stream as per this table.

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 9 - streamType Values

streamType value stream type description

0x00 forbidden

0x01 ObjectDescriptorStream (see 8.5)
0x02 ClockReferenceStream (see 10.2.5)
0x03 SceneDescriptionStream (see 9.2.1)
0x04 VisualStream

0x05 AudioStream

0x06 MPEG7Stream

OxOF IRMPSHearm{see-8-3-2)

0x08 ObjectContentinfoStream (see 8.4.2)
0x09 - Ox1F reserved for ISO use

0x20 - Ox3F user private

upStream | — indicates that this stream is used for upstream information.
bufferSizePB - is the size of the decoding buffer for this elementary stream in-byte.

maxBitrate — is the maximum bitrate in bits per second of this elementary’stream in any time window of one
second dufation.

avgBitrate — is the average bitrate in bits per second of this elementary stream. For streams|with variable
bitrate this|value shall be set to zero.

decSpecifiginfo[] — an array of zero or one decoder spetific information classes as specified in B.6.6.
8.6.6 DdcoderSpecificlnfo

8.6.6.1 Jyntax

abstract cldss DecoderSpecificinfo extends BaseDescriptor : bit(8) tag=DecSpecificinfoTag

/Il empty. To be filled by classes extending this class.

}

8.6.6.2 Semantics

The decoder specific information constitutes an opaque container with information for a specific mg¢dia decoder.
The exigtence and _ semantics of decoder specific information depends on the| values of
DecoderConfigDescripter,streamType and DecoderConfigDescriptor.objectTypelndication

For valueq of DecaderConfigDescriptor.objectTypelndication that refer to streams c@mplying with
ISO/IEC 14496-2 the syntax and semantics of decoder specific information are defined in Annex K of fhat part.

For valueq of“DecoderConfigDescriptor.objectTypelndication that refer to streams complying with
ISO/IEC 14496-3 the syntax and semantics of decoder specific information are defined in section 1, clause 1.6 of
that part.

For values of DecoderConfigDescriptor.objectTypelndication that refer to scene description streams
the semantics of decoder specific information is defined in 9.2.1.2.

For values of DecoderConfigDescriptor.objectTypelndication that refer to streams complying with
ISO/IEC 13818-7 the decoder specific information consists of the ADIF -header if it is present (or none if it is not
present) and an access unit is a ,raw_data_block()" as defined in ISO/IEC 13818-7 [9].

For values of DecoderConfigDescriptor.objectTypelndication that refer to streams complying with
ISO/IEC 13818-3 [8] the decoder specific information is empty since all necessary data is in the bitstream frames
itself. The access units in this case are the ,frame()" bitstream element as is defined in ISO/IEC 11172-3 [6].

© ISO/IEC 1999 — All rights reserved 29

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

For values of DecoderConfigDescriptor.objectTypelndication

ISO/IEC 10918-1 [4], the decoder specific information is:

class JPEG_DecoderConfig extends DecoderSpecificinfo

. bit(8) tag=DecSpecificinfoTag {

int(16) headerLength;
int(16) Xdensity;
int(16) Ydensity;

int(8) num

}

with

Components;

that refer to streams complying with

headerLengtl
image.

Xdensity and Ydensity

numCompon
8.6.7

This descript
this descripto

8.6.8 IP_Id
8.6.8.1 Syr

abstract class
: bit(8)

Il empty.]
}

8.6.8.2 Ser

This class is

SLCq

mdicatac-tha numbar of hhvdac to clan fram tha hacinnina af tha ctraqgm 0 find thao firct
rHetCate St e—o B yte Sto-Sikrp—r o e Begmtmg- o He-Strear—orro—e-—1irst

— specify the pixel aspect ratio.

nfigDescriptor

pr defines the configuration of the sync layer header for this eleméntary stream. The spe
I is provided together with the specification of the sync layer in 10.2.3.

entificationDataSet
tax

IP_ldentificationDataSet extends BaseDescriptor
tag=ContentldentDescrTag..SupplContentldentDescrlag

[o be filled by classes extending this class,

nantics

an abstract base class that is extended by the descriptor classes that implement IP iden

descriptor that allows to aggregate classes of type IP_ldentificationDataSet may actually aggregate

classes that {
8.6.9 Cont
8.6.9.1 Syr

class Content
. bit(8)

const bit(2
bit(1)

xtend IP_ldentificationDataSet.
entldentificationDeseriptor
tax

dentificationDescriptor extends |P_ldentificationDataSet
tag=ContenttdentDescrTag

compatibility=0;
contentTypeFlag;
1 lac

ixel of the

bnts — indicates whether the image has Y component only or is Y, Cr, Ch. It shallbe equal to 1 or 3.

ification of

ification. A
any of the

bit(1)
bit(1)
bit(3)

Ulltcnlluclltilicrl luu,
protectedContent;
reserved = 0bl11;

if (contentTypeFlag)

bit(8)
if (contentl
bit(8)
bit(8)
}
}

30

contentType;

dentifierFlag) {

contentldentifierType;
contentldentifier[sizeOflnstance-2-contentTypeFlag];

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

8.6.9.2 Semantics

ISO/IEC 14496-1:1999(E)

The content identification descriptor is used to identify content. All types of elementary streams carrying content
can be identified using this mechanism. The content types include audio, visual and scene description data.
Multiple content identification descriptors may be associated to one elementary stream. These descriptors shall
never be detached from the ES_Descriptor.

compatibility — must be set to 0.

contentTypeFlag

contentldentifierFlag

— flag to indicate if a definition of the type of content is available.

— flag to indicate presence of creation ID.

protecteddontent

terminal cgmpliant with the ISO/IEC 14496 specifications when processing such streams is undefined,

- if set to one indicates that the elementary streams that) Ttefer to this
IP_ldentifigationDataSet are protected by a method outside the scope of ISO/IEC 14496. The beghavior of the

contentTyge — defines the type of content using one of the values specified in the the-following tahle.

Table 10 - contentType Values

Audio-visual

Book

Serial

Text

Item or Contribution (e.g. article in book oy serial)

Sheet music

Sound recording or music video

Still Picture

O IN[O|OR|W[IN|FL|O

Musical Work

¢
N
ol
A

Reserved for ISO use

255

Others

contentldeptifierType — definesla type of content identifier using one of the values sp

following table.

Table 11 - contentldentifierType Values

pcified in the

0 ISAN International Standard Audio-Visual Number
1 ISBN International Standard Book Number

2 ISSN International Standard Serial Number

3 SICI Serial Iltem and Contribution Identifier

4 BICI Book Item and Component Identifier

5 ISMN International Standard Music Number

6 ISRC International Standard Recording Code

7 ISWC-T International Standard Work Code (Tunes)
8 ISWC-L International Standard Work Code (Literature)
9 SPIFF Still Picture ID

10 DOI Digital Object Identifier

11-255 | Reserved for ISO use

contentldentifier —
contentldentifierType

international code identifying the content according to the preceding

© ISO/IEC 1999 — All rights reserved

31

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.10 Supp

lementaryContentldentificationDescriptor

8.6.10.1 Syntax

class SupplementaryContentldentificationDescriptor extends

IP_ldentificationDataSet :

bit(8) tag= SupplContentldentDescrTag

bit(24) languageCode;

plContentldentifierTitleLength;
plContentldentifierTitle[supplContentldentifierTitleLength];
plContentldentifierValueLength;
plContentldentifierValue[supplContentldentifierValueLength];

{
bit(8) sup
bit(8) sup
bit(8) sup
bit(8) sup
}
8.6.10.2 Serf
The supplem
qualified by g

elementary sf

language co
of the langua

supplemental
supplemental

supplemental

hantics

entary content identification descriptor is used to provide extensible identifiers for conte
language code. Multiple supplementary content identification descriptors may.be associa
ream. These descriptors shall never be detached from the ES_Descriptor.

e — This 24 bits field contains the ISO 639-2:1998 [1] bibliographic three character lang
je of the following text fields.

q

yContentldentifierTitleLength indicates the of the

yContentldentifierTitle

length
in bytes.

yContentldentifierTitle — identifies the title ©f a’supplementary content identifie

be used whem a numeric content identifier (see 8.6.9) is not available.

supplementa
supplementa

supplementa
associated to

8.6.11 IPI_[Q

8.6.11.1 Syr

class IPI_Des
bit(16) 1P}

}

8.6.11.2 Ser

The IPI_De
IP_ldentificat
convey such

q

indicates the of the

yContentldentifierValueLength
yContentldentifierValue

length
in bytes.

yContentldentifierValue — identifies the value of a supplementary contet
the preceding supplementaryContentldentifierTitle

escrPointer

tax

CrPointer extends BaseDescriptor :
ES_Id;

bit(8) tag=IPI_DescrPointerTag {

nantics

EcrPointer class contains a reference to the elementary stream that ing
onDataSets that are valid for this stream. This indirect reference mechanism

nt that are
ited to one

uage code

ubsequent

r that may

ubsequent

t identifer

ludes the
allows to

déscriptors only in one elementary stream while making references to it from any ES_De

scriptor

that shares tt

ES_Descriptors
referred stream shall

& SarTe MoTTTatior:

for elementary streams that are intended to be accessible regardless of the avalil
explicitly include their IP_ldentificationDataSets instead of

IPI_DescrPointer

IPI_ES_Id

elementary stream. If the ES_Descriptor

—the ES_ID of the elementary stream whose ES_Descriptor contains the IP Information v
for IPI_ES_Id

stream is undefined.

32

© ISO/IEC 1999 — All ri

ability of a
using an

alid for this

is not available, the IPI status of this elementary

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.12 IPMP_DescriptorPointer

8.6.12.1 Syntax

class IPMP

_DescriptorPointer extends BaseDescriptor : bit(8) tag=IPMP_DescrPointerTag {

bit(8) IPMP_DescriptorID;

8.6.12.2 Semantics

IPMP_DescriptorID - ID of the referenced IPMP_Descriptor (see 8.6.13).
Presence pf-this dcouiptw H—an ijcutDceu;ptw irctcates—that—alt—streams—referred—to—
ES_Descriptors are subject to protection and management by the IPMP System specified in-th

IPMP_Des

Presence
subject to
IPMP_Des

8.6.13 IP

8.6.13.1 S

class IPMP]
bit(8) IA

unsignedl int(16) IPMPS_Type;

if (IPMA
bit(8
} else {
bit(8
}
}

8.6.13.2 S

The IPMP|
object des
in ObjectD
or ES De
referenced

IPMP_Des

IPMPS_Ty
indicate th{

criptor

bf this descriptor in an ES_Descriptor indicates that the stream associated with this|
intellectual property management and protection by the IPMP System specified in th
criptor

MP Descriptor
yntax

| Descriptor() extends BaseDescriptor : bit(8) IPMP_DescrTag {
MP_DescriptorID;

S_Type == 0) {

URLString[sizeOfInstance-3];

IPMP_data[sizeOfInstance-3];
emantics
| Descriptor conveys IPMP, information to an IPMP System. IPMP_Descriptors arg
Criptor streams via IPMP_DescriptorUpdates as specified in 8.5.5.6. They are not dir
Bscriptors or ES_Deéscriptors . IPMP_Descriptors are referenced by ObjectDe
Scriptors using IPMP_DescriptorPointers (see 8.6.12). An IPMP_Descriptor
by multiple ObjectDescriptors or ES_Descriptors
criptorlD sa.unique ID for this IPMP descriptor within its name scope (see 8.7.2.4).
pe - thetype of the IPMP System. A zero value does not correspond to an IPMP System

e presence of a URL. A Registration Authority designated by I1SO shall assign valid values f

y embedded
e referenced

descriptor is
e referenced

conveyed in
betly included
Scriptors

may be

but is used to
Dr this field.

URLString

I - contains a UTF-8 [3] encoded URL that points to the location of a remote IPMP_Des

criptor whose

IPMP_data shall be used in place of locally provided data.

IPMP_data - opaque data to control the IPMP System.

8.6.13.3 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC
in order to identify suitable organizations that will serve as the Registration Authority for the IPMPS_Type as
defined in this clause. The selected organization shall serve as the Registration Authority. The so-named
Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered

IPMPS_Ty

pe is hereafter referred to as the Registered Identifier (RID).

© ISO/IEC 1999 — All rights reserved

33

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) that will review appeals filed by organizations whose request for an RID to be used in conjunction with
ISO/IEC 14496 has been denied by the Registration Authority.

Annex D provides information on the procedure for registering a unique IPMPS_Type value.

8.6.14 QoS_Descriptor
8.6.14.1 Syntax

class QoS_Descriptor extends BaseDescriptor : bit(8) tag=QoS_DescrTag {
bit(8) predefined;
if (predefined==0) {
QoS_Qualifier qualifiers];
}

}
8.6.14.2 Semantics

The QoS_descriptor conveys the requirements that the ES has on the transport channel.and a description of the
traffic that thig ES will generate. A set of predefined values is to be determined; customized values can pe used by
setting the predefined field to O.

predefined — a value different from zero indicates a predefined QoS profile.according to the table below.

Table 12 - Predefined QoS Profiles

predefined value description

0x00 Custom

0x01 - Oxff Reserved
qualifier + an array of one or more QoS_Qualifiers

8.6.14.3 Qo$_Qualifier
8.6.14.3.1 Syntax

abstract class| QoS_Qualifier extends ExpandableBaseClass : bit(8) tag=0x01..0xff {
/I empty. To be filled by classes extending this class.

class QoS_Qualifier MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x01 {
unsigned int(32) MAX_DELAY;
}

class QoS_Qualifier_PREESMAX_DELAY extends QoS_Qualifier : bit(8) tag=0x02 {
unsigned int(32) PREE_MAX_DELAY;
}

class QoS_Qualifier LOSS PROB extends QoS_Qualifier : bit(8) tag=0x03 {
double(32)| LESS_PROB;
}

class QoS_Qualifier MAX_GAP_LOSS extends QoS_Qualifier : bit(8) tag=0x04 {
unsigned int(32) MAX_GAP_LOSS;
}

class QoS_Qualifier MAX_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x41 {
unsigned int(32) MAX_AU_SIZE;

class QoS_Qualifier AVG_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x42 {
unsigned int(32) AVG_AU_SIZE;

class QoS_Qualifier MAX_AU_RATE extends QoS_Qualifier : bit(8) tag=0x43 {
unsigned int(32) MAX_AU_RATE;
}

34 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.14.3.2 Semantics

QoS qualifiers are defined as derived classes from the abstract QoS_Qualifier class. They are identified by
means of their class tag. Unused tag values up to and including Ox7F are reserved for ISO use. Tag values from
0x80 up to and including OXFE are user private. Tag values 0x00 and OxFF are forbidden.

MAX_DELAY- Maximum end to end delay for the stream in microseconds.

PREF_MAX_ DELAY Preferred end to end delay for the stream in microseconds.

LOSS PROB- Allowable loss probability of any single AU as a fractional value between 0.0 and 1.0.

MAX_GAH _LOSS Maximum allowable number of consecutively lost AUs.
MAX_AU_BIZE- Maximum size of an AU in bytes.

AVG_AU_BIZE- Average size of an AU in bytes.

MAX_AU_RATE Maximum arrival rate of AUs in AUs/second.

8.6.15 ExtensionDescriptor

8.6.15.1 Jyntax

abstract cldss ExtensionDescriptor extends BaseDescriptor

: bit(8) tag| = ExtDescrTagStartRange .. ExtDescrTagEndRange {
/Il empty. To be filled by classes extending this class.

}

8.6.15.2 Semantics

This class |s an abstract base class that may be extended for defining additional descriptors in future. [The available
range of class tag values allow 1SO defined extensions as well as private extensions. A descriptor that allows to
aggregate [ExtensionDescriptor classes may actually aggregate any of the classes that extend ExtensjonDescriptor.
Extension flescriptors may be ignored by a terminal that conforms to ISO/IEC 14496-1.

8.6.16 RdgistrationDescriptor

The registfation descriptor provides a method to uniquely and unambiguously identify formats of private data
streams.

8.6.16.1 Yyntax

class RegidtrationDescfiptor extends BaseDescriptor : bit(8) tag=RegistrationDescrTag {
bit(32) fprmatldentifier;
bit(8) additionalidentificationinfo[sizeOflnstance-4];

}

8.6.16.2 Serrrartits

formatldentifier — is a value obtained from a Registration Authority as designated by ISO.
additionalldentificationInfo — The meaning of additionalldentificationinfo , if any, is defined
by the assignee of that formatldentifier , and once defined, shall not change.

The registration descriptor is provided in order to enable users of ISO/IEC 14496-1 to unambiguously carry
elementary streams with data whose format is not recognized by ISO/IEC 14496-1. This provision will permit
ISO/IEC 14496-1 to carry all types of data streams while providing for a method of unambiguous identification of
the characteristics of the underlying private data streams.

© ISO/IEC 1999 — All rights reserved 35

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

In the following subclause and Annex D, the benefits and responsibilities of all parties to the registration of private
data format are outlined.

8.6.16.2.1 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC
in order to identify suitable organizations that will serve as the Registration Authority for the formatlidentifier as
defined in this subclause. The selected organization shall serve as the Registration Authority. The so-named
Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered
private data formatldentifier is hereafter referred to as the Registered ldentifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) which| will review appeals filed by organizations whose request for an RID to be used in copjunction with
ISO/IEC 14496-1 has been denied by the Registration Authority.

Annex D proVides information on the procedure for registering a unique format identifier.
8.6.17 Obje¢t Content Information Descriptors
8.6.17.1 Ovgrview

This subclause defines the descriptors that constitute the object content information. These descriptors|may either
be included iph an OCI_Event in an OCI stream or be part of an ObjectDéstriptor or ES_Descliptor as
defined in 8.9.1.

8.6.17.2 OC]_Descriptor Class

8.6.17.2.1 Syntax

abstract class| OCI_Descriptor extends BaseDescriptor
. bit(8) tag= OCIDescrTagStartRange .. OClDescrTagEndRange

/I empty. To be filled by classes extending this class.

}
8.6.17.2.2 Sémantics

This class is| an abstract base class that'is extended by the classes specified in the subsequent clauses. A
descriptor or pn OCI_Event that allows.t6 aggregate classes of type OCI_Descriptor may actually aggregate any of
the classes that extend OCI_Descriptor.

8.6.17.3 Conptent classification ‘descriptor

8.6.17.3.1 Syntax

class Content{lassificationDescriptor extends OCI_Descriptor
. (bit(8) tag= ContentClassificationDescrTag {
bit(32) clagsificationEntity;

bit(16) clagsificationTable;

bit(8) contentClassificationData[sizeOflnstance-6];

}
8.6.17.3.2 Semantics

The content classification descriptor provides one or more classifications of the event information. The
classificationEntity field indicates the organization that classifies the content. The possible values have to
be registered with a registration authority to be identified.

classificationEntity — indicates the content classification entity. The values of this field are to be defined by
a registration authority to be identified.

36 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

classificationTable — indicates which classification table is being used for the corresponding
The classification is defined by the corresponding classification entity. 0x00 is a reserved value.

contentClassificationData]]

classification table.

8.6.17.4 Key Word Descriptor

8.6.17.4.1

Syntax

class KeyWordDescriptor extends OCI_Descriptor : bit(8) tag=KeyWordDescrTag {

int i;

classification.

— this array contains a classification data set using a non-default

bit(24) |pnguageCode,
bit(1) isYTF8_string;

aligned(

B) unsigned int(8) keyWordCount;

for (i=0; i<keyWordCount; i++) {
unsigned int(8) keyWordLength[[i]];
if (ISUTF8_string) then {

bjt(8) keyWord[[i]][keyWordLength[i]];
} elgi(l{ﬁ) keyWord[[i]][keyWordLength[i]];
} : |
8.6.17.4.2 | Semantics

The key word descriptor allows the OCI creator/provider to indicate a set of key words that ch
content. The choice of the key words is completely free but eachtime the key word descriptor appe
words given are for the language indicated in languageCode * This means that, for a certain event,

descriptor

must appear as many times as the number of languages for which key words are to be proy

languagedode - contains the ISO 639-2:1998 [1] hibliographic three character language code of th
the following text fields.

isUTF8_stling — indicates that the subsequent string is encoded with one byte per character (UTH

two byte p

r character.

keyWordCpunt — indicates the number of key words to be provided.

keyWordLength — specifies theMength in characters of each key word.

keyWord[]

— a Unicode [3)encoded string that specifies the key word.

8.6.17.5 Rating Descriptor

8.6.17.5.1

Syntax

racterize the
s, all the key
the key word
ided.

b language of

--8). Else it is

class RatingDesScriptor extends OCI_Descriptor : bit(8) tag=RatingDescrTag {
bit(32) ratingEntity;
bit(16) ratingCriteria;

bit(8)
}

8.6.17.5.2

ratingInfo[sizeOfInstance-6];

Semantics

This descriptor gives one or more ratings, originating from corresponding rating entities, valid for a specified

country. The ratingEntity

field indicates the organization which is rating the content. The possible values have

to be registered with a registration authority to be identified. This registration authority shall make the semantics of
the rating descriptor publicly available.

© ISO/IEC 1999 — All rights reserved

37

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

ratingEntity
be identified.

ratingCriteria

— indicates the rating entity. The values of this field are to be defined by a registration authority to

— indicates which rating criteria are being used for the corresponding rating entity. The value

0x00 is reserved.

ratingInfo[]

— this array contains the rating information.

8.6.17.6 Language Descriptor

8.6.17.6.1 Syntax

class Langua

gj)eDescriptor extends OCI_Descriptor
bit(24) languageCode;

. bit(8) tag=LanguageDescrTag {

}

8.6.17.6.2 Se¢mantics

This descript¢r identifies the language of the corresponding audio/speech or text object that'is being desg¢ribed.
languageCode — contains the 1SO 639-2:1998 [1] bibliographic three character language code of the

correspondin

8.6.17.7 Shd

8.6.17.7.1 Sy

class ShortTe

bit(24) languageCode;

bit(1) isUT
aligned(8)

if (iSUTF8,

bit(8) ¢
unsigng
bit(8) e
} else {
bit(16)
unsigng
bit(16)

}
8.6.17.7.2 S
The short tex

languageCod
the following

) audio/speech or text object that is being described.
rt Textual Descriptor
ntax

tualDescriptor extends OCI_Descriptor : bit(8) tag=ShortTextualDescrTag {
8 string;

unsigned int(8) nameLength;

string) then {

ventName[nameLength];

d int(8) textLength;

ventText[textLength];

eventName[nameLength];

d int(8) textLength;
eventText[textLength];

bmantics
ual descriptor-provides the name of the event and a short description of the event in text form.

e —.contains the ISO 639-2:1998 [1] bibliographic three character language code of the language of
ext fields.

iSUTF8_string

- (= -) ol I o - . I I W) L b i) - L H H
= MMUILALTS Uial e SUNSTYUTTIU SUTTTY 1S CTICUUTU WILIT UTTE UylE P Llldractet (UTr=0). E|Se itis

two byte per character.

nameLength
eventName|[]
textLength

eventText(]

38

— specifies the length in characters of the event name.
— a Unicode [3] encoded string that specifies the event name.
— specifies the length in characters of the following text describing the event.

—a Unicode [3] encoded string that specifies the text description for the event.

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.17.8 Expanded Textual Descriptor

8.6.17.8.1

Syntax

class ExpandedTextualDescriptor extends OCI_Descriptor : bit(8) tag=ExpandedTextualDescrTag {

int i;

bit(24) languageCode;
bit(1) iSUTF8_string;
aligned(8) unsigned int(8) itemCount;

for (i=0;

i<itemCount; i++){

unsigned int(8) itemDescriptionLengthl[i]];

it (is
b

UTF8_string) then {
it(8) itemDescription[[i]][itemDescriptionLength[i];

} el

}
unsigned int(8) itemLength[[i]];

{
t(16) itemDescription[[i]][itemDescriptionLength[i]];

if (iIUTF8_string) then {
t(8) itemText[[i]][itemLengthl[i]];
} el
t(16) itemText[[i]][itemLength[i]];
}
}
unsigned int(8) textLength;
int nonlfemTextLength=0;
while(tgxtLength == 255) {
nonlfemTextLength += textLength;
bit(8] textLength;
}
nonltem[rextLength += textLength;
if (isUTIF8_string) then {
bit(8] nonltemText[nonltemTextLength];
} else {
bit(1§) nonltemText[nonltemTextLength];
}
}
8.6.17.8.2 [Semantics
The expanded textual descriptor provides-a detailed description of an event, which may be used in addition to, or
independeptly from, the short event.descriptor. In addition to direct text, structured information in terfns of pairs of
description| and text may be provided. An example application for this structure is to give a cast ljst, where for
example the item description fieldumight be “Producer” and the item field would give the name of the pfoducer.
languagedode - contain$ the ISO 639-2:1998 [1] bibliographic three character language code of the language of
the following text fields.
isUTF8_stling ~.ndicates that the subsequent string is encoded with one byte per character (UTK-8). Else it is
two byte pér character.
itemCount|_“~specifies the number of items to follow (itemised text)
itemDescriptionLength — specifies the length in characters of the item description.
itemDescription][] —a Unicode [3] encoded string that specifies the item description.
itemLength - specifies the length in characters of the item text.
itemText[] —a Unicode [3] encoded string that specifies the item text.
textLength — specifies the length in characters of the non itemised expanded text. The value 255 is used as an

escape code, and it is followed by another textLength

lengths greater than 511 a third field is used, and so on.

© ISO/IEC 1999 — All rights reserved

field that contains the length in bytes above 255. For

39

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

nonltemText][]

—a Unicode [3] encoded string that specifies the non itemised expanded text.

8.6.17.9 Content Creator Name Descriptor

8.6.17.9.1 Syntax

class ContentCreatorNameDescriptor extends OCI_Descriptor

int i;

. bit(8) tag= ContentCreatorNameDescrTag {

unsigned int(8) contentCreatorCount;
for (i=0; i<contentCreatorCount; i++){

bit(24)

bit(1) iSUTES string[[i]]:

languageCodel[[i]];

aligned(8) unsigned int(8) contentCreatorLengthl[i]];
if (isUTIF8_string|[[i]]) then {
bit(d) contentCreatorName[[i]][contentCreatorLength[i]];

} else
bit(
}
}
}
8.6.179.2 S

The content
may be inad

contentCreat
languageCod

the following
needed in Un

iISUTF8_string

two byte per
contentCreat
contentCreat
8.6.17.10 Cor

8.6.17.10.1 5y
class Content

bit(40) con
}

6) contentCreatorName[[i]][contentCreatorLength[i]];

bmantics

Creator name descriptor indicates the name(s) of the content-creator(s). Each content crg
ifferent language.

prCount — indicates the number of content creatorinames to be provided.
e
text fields. Note that for languages that only,.use Latin characters, just one byte per ¢
icode [3].

— indicates that the subsequent string is encoded with one byte per character (UTF-8

tharacter.

prLength([i]] — specifies\the length in characters of each content creator name.
brName([[i]][] — a/Jnicode [3] encoded string that specifies the content creator nam
tent Creation Date Descriptor

ntax

CreationDateDescriptor extends OCI_Descriptor
. bit(8) tag= ContentCreationDateDescrTag {
tentCreationDate;

ator name

— contains the ISO 639-2:1998 [1] bibliographic‘three character language code of the language of

haracter is

). Else it is

D

8.6.17.10.2S

Waata¥atJPa¥al

T TtaCS

This descriptor identifies the date of the content creation.

contentCreati

onDate

— contains the content creation date of the data corresponding to the event in question,

in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see Annex F). This field is coded as 16 bits
giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal
(BCD). If the content creation date is undefined all bits of the field are set to 1.

40

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.6.17.11 OCI Creator Name Descriptor
8.6.17.11.1Syntax

class OClICreatorNameDescriptor extends OCI_Descriptor
. bit(8) tag=OCICreatorNameDescrTag {
int i;
unsigned int(8) OCICreatorCount;
for (i=0; i<OCICreatorCount; i++) {
bit(24) languageCodel[i]];
bit(1) isUTF8_string;
aligned(8) unsigned int(8) OCICreatorLength[[il];
if (isUTF8_string) then {
bjt(8) OCICreatorNamel[[i]][OCICreatorLength];
} else {
bjt(16) OCICreatorName[[i]][OCICreatorLength];

}
}
}

8.6.17.11.2Semantics

The name|of OCI creators descriptor indicates the name(s) of the OCI desetiption creator(s). Eacl OCI creator
name may|be in a different language.

OCICreatorCount — indicates the number of OCI creators.

languagedode[[i]] — contains the 1SO 639-2:1998 [1] bibliegraphic three character languagg code of the
language gf the following text fields.

iSUTF8_stiing — indicates that the subsequent string is. encoded with one byte per character (UTK-8). Else it is
two byte per character.

OClCreatorLength[[i]] — specifies the length.in characters of each OCI creator name.
OCICreatofName][[i]] —a Unicode [3] encoded string that specifies the OCI creator name.
8.6.17.12 @CI Creation Date Descriptor

8.6.17.12.1Syntax

class OCldreationDateDescriptor,‘€xtends OCI_Descriptor
. bit(8) tag=O€iCreationDateDescrTag {
bit(40) (QClICreationDate;

8.6.17.12.2Semanties

This descriptor jdentifies the creation date of the OCI description.

OClCreationDate - This 40-bit field contains the OCI creation date for the OCI data corresponding to the event
in question, in Co-ordinated Universal Time (UTC) and Modified Julian Date (MJD) (see Annex F). This field is
coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary
Coded Decimal (BCD). If the OCI creation date is undefined all bits of the field are set to 1.

8.7 Rules for Usage of the Object Description Framework

8.7.1 Aggregation of Elementary Stream Descriptors in a Single Object Descriptor

8.7.1.1 Overview

An object descriptor shall aggregate the descriptors for the set of elementary streams that is intended to be
associated to a single node of the scene description and that usually relate to a single audio-visual object. The set

© ISO/IEC 1999 — All rights reserved 41

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

of streams may convey a scaleable content representation as well as multiple alternative content representations,
e.g., multiple qualities or different languages. Additional streams with IPMP and object content information may be
attached.

These options are described by the ES_Descriptor syntax elements streamDependenceFlag,
dependsOn_ES_ID , as well as streamType . The semantic rules for the aggregation of elementary stream
descriptors within one ObjectDescriptor (OD) are specified in this subclause.

8.7.1.2 Aggregation of Elementary Streams with the same streamType

An OD may aggregate multiple ES_Descriptors with the same streamType of either visualStream, audioStream or
SceneDescripfianfrnnm However, docr‘rir\fnrc for streams with two of these types shall not be mixed within one

OD.

8.7.1.3 Aggregation of Elementary Streams with Different streamTypes
In the following cases ESs with different streamType may be aggregated:

— An OD may aggregate zero or one additional ES_Descriptor with streamType = QbjéctContentinfoStream (see
8.4.2). This ObjectContentinfoStream shall be valid for the content conveyed through the other visual, audio or
scene degcription streams whose descriptors are aggregated in this OD.

— An OD may aggregate zero or one additional ES_Descriptors with streamType = ClockReferenceStream (see
10.2.5). This ClockReferenceStream shall be valid for the ES within theé name scope that refer to the ES_ID of
this ClockReferenceStream in their SLConfigDescriptor.

— An OD may aggregate zero or more additional ES_Descriptorswvith streamType = IPMPStream (see 8.3.2).
This IPMRStream shall be valid for the content conveyed:through the other visual, audio or scene [description
streams whose descriptors are aggregated in this OD.

8.7.1.4 Aggregation of scene description streams and.object descriptor streams

An object degcriptor that aggregates one or more ES_Descriptors of streamType = SceneDescriptiongtream may
aggregate any number of additional ES_Descriptors with streamType = ObjectDescriptorStream. ES_Descriptors
of streamTyge = ObjectDescriptorStream shall not be aggregated in object descriptors that do not contain
ES_Descriptqrs of streamType = SceneDescriptionStream.

This means that scene description and object descriptor streams are always combined within one object|descriptor.
The dependehcies between theséistreams are defined in 8.7.1.5.2.

8.7.1.5 Elementary Stream'Bependencies
8.7.1.5.1 Independent€lementary streams

ES_Descriptqrs within one OD with the same streamType of either audioStream, visualtream or

SceneDescriptionStream that have streamDependenceFlag=0 refer to independent elementary streams. Such
independenthmwmmﬁhaﬂ-mm—dmmmﬁﬁm?WGWmue of these

representations shall be selected for use in the scene.

NOTE — Independent ESs should be ordered within an OD according to the content creator’s preference. The ES that is first in
the list of ES aggregated to one object descriptor should be preferable over an ES that follows later. In case of audio streams,
however, the selection should for obvious reasons be done according to the prefered language of the receiving terminal.

8.7.1.5.2 Dependent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream,
SceneDescriptionStream or ObjectDescriptorStream that have streamDependenceFlag=1 refer to dependent
elementary streams. The ES_ID of the stream on which the dependent elementary stream depends is indicated by
dependsOn_ES ID . The ES_Descriptor with this ES_ID shall be aggregated to the same OD. One independent

42 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

elementary stream per object descriptor and all its dependent elementary streams may be selected for concurrent
use in the scene.

Stream dependencies are governed by the following rules:

— For dependent ES of streamType equal to either audioStream or visualStream the dependent ES shall have

the same streamType

as the ES on which it depends. This implies that the dependent stream contains

enhancement information to the one it depends on. The precise semantic meaning of the dependencies is

opaque

— An ES

at this layer.

with a streamType

of SceneDescriptionStream shall only depend on an ES with streamType

of

Scenel}

— Depend
descrip

— Depend
informa
Objectl

— An ES
Scenel

— Only if
stream]|
first Sc
second

— An ES
depend
tothed

— The availability of the dependent stream is-undefined if an ES_Descriptor for the stream it depend

accrintionSiraam or OhiactPacerintorStiraam
CSErptorOt et PectEStrptorotreatts

ency on an ObjectDescriptorStream implies that the ObjectDescriptorStream contair
ors that are refered to by this SceneDescriptionStream.

ency on a SceneDescriptionStream implies that the dependent streamcontains
tion to the one it depends on. The dependent SceneDescriptionStream \shall depend
escriptorStream on which the other SceneDescriptionStream depends.

with a streamType of ObjectDescriptorStream shall only depend’on an ES with a str
escriptionStream. This dependency does not have implications for\the object descriptor strg

a second stream with streamType of SceneDescriptionStream depends on this
[ype = ObjectDescriptorStream, it implies that the secoAd SceneDescriptionStream de
bneDescriptionStream. The object descriptors in the/ObjectDescriptorStream shall only bd
SceneDescriptionStream.

that flows upstream, as indicated by DecoderConfigDescriptor.upStream 1
upon another ES that has the upStream .flag set to zero. This implies that this upstream
pwnstream it depends on.

s the object

enhancement
on the same

bamType of
bam.
stream with

bends on the
valid for the

shall always
is associated

S upon is not

available.
8.7.2 Liking Scene Description and-Object Descriptors
8.7.2.1 Associating Object Descriptors to BIFS Nodes
Some BIF$ nodes contain an.url field. Such nodes are associated to their elementary stream resourges (if any) via
an object descriptor. The “association is established by means of the objectDescriptorID , a$ specified in
9.3.7.18.2.|The name,scope for this ID is specified in 8.7.2.4.
Each BIFY node.fequires a specific streamType (audio, visual, inlined scene description, etc.) for its associated
elementary streams. The associated object descriptor shall contain ES_Descriptors with this streamType. The
behavior of the’terminal is undefined if an object descriptor contains ES_Descriptors with stream types that are
incompatibtewiththe associated BIFS Tode:

Note that commands adding or removing object descriptors need not be co-incident in time with the addition or
removal of BIFS nodes in the scene description that refer to such an object descriptor. However, the behavior of
the terminal is undefined if a BIFS node in the scene description references an object descriptor that is no longer
valid.

The terminal shall gracefully handle references from the scene description to object descriptors that are not
currently available.

© ISO/IEC 1999 — All rights reserved 43

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

8.7.2.2 Multiple scene description and object description streams

An object descriptor that is associated to an Inline node of the scene description or that represents the primary
access to content compliant with the ISO/IEC 14496 specifications (initial object descriptor) aggregates as a
minimum, one scene description stream and the corresponding object descriptor stream (if additional elementary
streams need to be referenced).

However, it is permissible to split both the scene description and the object descriptors in multiple streams. This
allows a bandwidth-scaleable encoding of the scene description. Each stream shall contain a valid sequence of
access units as defined in 9.2.1.3 and 8.5.2, respectively. All resulting scene description streams and object
descriptor streams shall remain aggregated in a single object descriptor. The dependency mechanism shall be

used to indic

te how the streams depend on each other

All streams g
respectively.
order of acce

NOTE — This
the scene desq

8.7.2.3 Scq

The BIFS sce
Each Inline
stream as wg
example for g

8.7.2.4 Nai

The scope o
descriptors, €
is based on
aggregated i

— Two obje
belong to
of either G

NOTE 1 — H
description in

scope while an

NOTE 2 — Thi

not carried in the same ObjectDescriptorStream.

8.7.25 Rel

hall continue to be processed by a single scene description and object descriptor decadin

5S units.

form of partitioning of the scene description and the object descriptor streams in multiple streams is
ription itself.

ne and Object Description in Case of Inline Nodes

node is associated to an object descriptor that points to atZJeast one additional scene
Il as another object descriptor stream (if additional elemgntary streams need to be refer
uch a hierarchical scene description can be found in Figure 6.

he Scope of Identifiers

the objectDescriptorID, ES_ID and_IPMP_DescriptorID identifiers that label
lementary stream descriptors and IPMP descriptors, respectively, is defined as follows. Th
the restriction that associated scene description and object descriptor streams shall
a single object descriptor, as specified;in 8.7.1.4. The following rule defines the name scoy

tDescriptorID , ES_ID or {PMP_DescriptorID as well as nodelD and ROUTEIL
he same name scope if and phly if these identifiers occur in elementary streams with a str
bjectDescriptorStream or.SceneDescriptionStream that are aggregated in a single object d

ence, the difference between the two methods specified in 8.7.2.2 and 8.7.2.3 above to partiti
multiple streams is that.the first method allows multiple scene description streams that refer to the
Inline node opens a hew name scope.

5 implies that @ URL in an object descriptor opens a new name scope since it points to an object desd

se of-identifiers

For reasons

g process,

The time stamps of the access units in different streams shall be used to re-establish the original

not visible in

ne description allows to recursively partition a scene through the use of Inline nodes (se¢ 9.4.2.52).

description
enced). An

the object
s definition
always be
e:

D identifiers
pamType
bscriptor.

on a scene
Ssame name

riptor that is

pferror resilience, it is recommended not to reuse objectDescriptorlD and ES 1D g

entifiers to

identify more than one object or elementary stream, respectively, within one presentation. That means, if an object
descriptor or elementary stream descriptor is removed by means of an OD command and later on reinstalled with
another OD command, then it shall still point to the same content item as before.

8.7.3 ISO/IEC 14496 Content Access

8.7.3.1 Introduction

In order to access ISO/IEC 14496 compliant content it is a pre-condition that an initial object descriptor to such
content is known through means outside the scope of ISO/IEC 14496. The subsequent content access procedure
is specified conceptually, using a number of walk throughs. Its precise definition depends on the chosen delivery
layer.

44 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

For applications that implement the DMIF Application Interface (DAI) specified in ISO/IEC 14496-6 which abstracts
the delivery layer, a mapping of the conceptual content access procedure to calls of the DAI is specified in 8.7.3.9.

The content access procedure determines the set of required elementary streams, requests their delivery and
associates them to the scene description. The selection of a subset of elementary streams suitable for a specific
ISO/IEC 14496 terminal is possible, either based on profiles or on inspection of the set of object descriptors.

8.7.3.2 The Initial Object Descriptor

Initial object descriptors convey information about the profiles required by the terminal compliant with ISO/IEC
14496 specifications to be able to process the described content. This profile information summarizes the

complexity of the content referenced directly or indirectly through this initial object descriptor, i.e., it indicates the

overall terminal capabilities required to decode and present this content. Therefore initial obje¢t descriptors

constitute $elf-contained access points to content compliant with ISO/IEC 14496 specifications.

There are fwo constraints to this general statement:

— If the igcludelnlineProfileLevelFlag of the initial object descriptor is not'set, the complexity of any
inlined ¢ontent is not included in the profile indications.

— In addifjon to the elementary streams that are decodable by the terminal/.conforming to the indigated profiles,
alternate content representations might be available. This is further explained in 8.7.3.4.

An initial pbject descriptor may be conveyed by means not definedCin~ISO/IEC 14496. The coijtent may be

accessed s$tarting from the elementary streams that are described by this initial object descriptor, U
more sceng description streams and zero or more object descriptor streams.

sually one or

Content reffered to by an initial object descriptor may itself be ‘referenced from another piece of 1I3O/IEC 14496

content. Infthis case, the initial object descriptor will be conveyed in an object descriptor stream.

Ordinary dbject descriptors may be used as well to_describe scene description and object descri
However, since they do not carry profile information;ithey can only be used to access content if that
either not nequired by the terminal or is obtained by:ether means.

ptor streams.
nformation is

8.7.3.3 sage of URLs in the Object Descriptor Framework

URLs in the object description framewerk serve to locate either inlined ISO/IEC 14496 content or th
stream dath associated to individual-atdio-visual objects.

e elementary

URLs in EIS_Descriptors locate \elementary stream data that shall be delivered as SL-packetized
delivery entity associated to the ‘current name scope. The complete description of the stream (its ES
available Igcally.

URLs in dbject des¢riptors locate an object descriptor at a remote location. Only the content
descriptor ghall be returned by the delivery entity upon access to this URL. This implies that the des
resources [for the.associated BIFS node or the inlined content is only available at the remote Id

dgtream by the
_|Descriptor) is

Df this object
Cription of the
cation. Note,

escriptor, the

however, that. depending on the value of mcludeInImeProflIeLeveIFIag in the initial object @
global resdure :

8.7.3.4 Selection of Elementary Streams for an Audio-Visual Object

Elementary streams are attached through their object descriptor to appropriate BIFS nodes which, in most cases,
constitute the representation of a single audio-visual object in the scene. The selection of one or more ESs for each
BIFS node may be governed by the profile indications that are conveyed in the initial object descriptor. All object
descriptors shall at least include one elementary stream with suitable object type to satisfy the initially signaled
profiles.

Additionally, object descriptors may aggregate ES_Descriptors for elementary streams that require more computing
or bandwidth resources. Those elementary streams may be used by the receiving terminal if it is capable of
processing them.

© ISO/IEC 1999 — All rights reserved 45

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

In case initial object descriptors do not indicate any profile and level or if profile and level indications are
disregarded, an alternative to the profile driven selection of streams exists. The receiving terminal may evaluate the
ES_Descriptors of all available elementary streams for each BIFS node and choose by some non-standardized
way for which subset it has sufficient resources to decode them while observing the constraints specified in this

subclause.

NOTE — Some restrictions on the selection of and access to elementary streams might exist if a set of elementary streams
shares a single object time base (see 10.2.6).

8.7.3.5 Content access in “push” and “pull” scenarios

In an interactive, or “pull” scenario, the receiving terminal actively requests the establishment of sessions and the

delivery of cd
receiver. Thig
cases and ar

In a broadca
requests for 9
associates E
ISO/IEC 1444
gain access

ntent, 1.e., streams. This usually InvoIves a session and channel set up protocol between
protocol is not specified here. However, the conceptual steps to be performed are the
b specified in the subsequent clauses.

it, or “push” scenario, the receiving terminal passively processes what it receives. Insteag
ession or channel set up the receiving terminal shall evaluate the relevant déseriptive infor
5_IDs to their transport channel. The syntax and semantics of this information is outside th
6, however, it needs to be present in any delivery layer implementation. This allows the
b the elementary streams forming part of the content.

8.7.3.6 Co

8.7.3.6.1 PTe

— An object

— The objed
stream(s)

tent access through a known Object Descriptor
-conditions
fescriptor has been acquired. This may be an initial object descriptor.

t descriptor contains ES_Descriptors pointing torobject descriptor stream(s) and scene
using ES_IDs.

— A commuinication session to the source of these streams is established.

— A mechan
8.736.2 C
The content 3

1. The objec

Requests
as paramg

The chanr

Requests

sm exists to open a channel that takes’user data as input and provides some returned dat3
bntent Access Procedure
ccess procedure shall beequivalent to the following:

descriptor is evaluated and the ES_ID for the streams that are to be opened are determing

ter.
el set up mechanism shall return handles to the streams that correspond to the requested |

for,delivery of the selected ESs are made.

bender and
same in all

of issuing
mation that
e scope of
terminal to

description

as output.

d.

for opening the 'selected ESs are made, using a suitable channel set up mechanism with the ES_IDs

st of ESs.

Interactive

A A e <

H IH £ ot Y I H L + L HM
SLETIAlUS. DUIIVUIy Ul StUcaitis stdlrts. AII SLCTIAlUS. TI 1S SUCAlllis TTUW DELUITIE ALLTESSIUIT.

Scene description and object descriptor stream are evaluated.

Further streams are opened as needed with the same procedure, starting at step 1.

8.7.3.7 Content access through a URL in an Object Desciptor

8.7.3.7.1 Pre-conditions

— A URL to an object descriptor or an initial object descriptor has been acquired.

— A mechanism exists to open a communication session that takes a URL as input and provides some returned
data as output.

46

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

8.7.3.7.2

ISO/IEC 14496-1:1999(E)

Content access procedure

The content access procedure shall be equivalent to the following:

1. A connection to the source of the URL is made, using a suitable service set up call.

2. The service set up call shall return data consisting of a single object descriptor.

3. Continue at step 1in 8.7.3.6.2.

8.7.3.8 Content access through a URL in an elementary stream descriptor

8.7.3.8.1

— An ES
specifig

— A mech
8.7.3.8.2

The conter
1. Reques
2. The cha

3. Requeq

4. Interactjve scenarios: Delivery of stream starts. All scenarios: The stream now becomes accessiblg.

EXAMPLE -

The exampl
accessed th
is inlined an
scene. UtiliZ
scene may
and an aud
streams. TH
Note that th
need to be i

Pre-conditions

Descriptor pointing to a stream through a URL has been aquired. (Note that the ES_D
S the configuration of the stream.)

anism exists to open a channel that takes a URL as input and provides somg'returned datal
Content access procedure

t access procedure shall be equivalent to the following:

t to open the stream is made, using a suitable channel set up /mechanism with the URL as
innel set up mechanism shall return a handle to the stream-that corresponds to the request

ts for delivery of the selected stream are made.

— Access to Complex Content

P in Figure 6 shows a complex piece of ISO/IEC 14496 content, consisting of three parts. The upper
rough its initial object descriptor. It contains, among others a visual and an audio stream. A second p4
d accessed through its initial object<descriptor that is pointed to (via URL) in the object descriptor str|
ation of the initial object descriptor-allows the signaling of profile information for the second scene
hlso be used without the first'seene. The second scene contains, among others, a scaleably encodd
io object. A third scene is\inlined and accessed via the ES_IDs of its object descriptor and sce
ese ES_IDs are known,from an object descriptor conveyed in the object descriptor stream of the
is third scene is not_accessed through an initial object descriptor. Therefore the profile information
ncluded in the profile information for the second scene.

pscriptor fully

as output.

barameter.

pd URL.

part is a scene
rt of the scene
bam of the first
Therefore this
d visual object
ne description
second scene.
for this scene

© ISO/IEC 1999 — All rights reserved

47

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

48

~. |Audio Strfam

.Audio Slrﬁam /

initial

ObjectDescriptdr,

5"‘ BIFS Command (Replace Scene)
ES_ID}

Scene Description \Stream

ES_ID! \ QbfectDescriptorI D

[ObijectDescriptor)

ES_Descriptor

ES_ID

isual Strea/

Scene Description\Stream

S ID

isual Strear}((e.g. %\se layer)

/ /

isual Stre%m (e.% temporal enhancement)

[[

Scene Qescription

Description Stream §

Q

ES_ID

ObjectDescriptorUpdate

ObjectDescriptor

ES_Descriptor

ES_ID

Audio Stream

Figure 6 - Complex content example

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 1449

8.7.3.9 Mapping of Content Access Procedure to DAI calls

6-1:1999(E)

The following two DAI primitives, quoted from ISO/IEC 14496-6, subclause 10.4, are required to implement the
content access procedure described in 8.7.3.6 to 8.7.3.8:

DA_ServiceAttach (IN: URL, uuDatalnBuffer, uuDatalnLen;

DA_Chann

OUT: response, serviceSessionld, uuDataOutBuffer, uuDataOutLen)

elAdd (IN: serviceSessionld, loop(qosDescriptor, direction, uuDatalnBuffer, uuDatalnLen);
OUT: loop(response, channelHandle, uuDataOutBuffer, uuDataOutLen))

DA_ServiceAttach is used to implement steps 1 and 2 of 8.7.3.7.2. The URL shall be passed to the IN: URL

parameter
this URL. |

DA_Chann
service seg
QosDescri
channels &
of this ES |
the access

DA_Chann
service seg
QosDescri
channels ¢
of this ES |
the access

NOTE1 —
uuDatalnBu

NOTE2 —
implemente

The set

SceneDes
ObjectDes
parameter
as parame

Additional
subsequen
further aud

uDataOutBuffer shall contain a single object descriptor.
elAdd is used to implement steps 2 and 3 of 8.7.3.6.2. serviceSessionld shall be .the idg

btor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate)upstream o
ccording to the DecoderConfigDescriptor.upstream flag. UuDatalnBuffer shall cont
Descriptor. On successful return, channelHandle shall contain a valid,-however, not norm
ble stream.

elAdd is used to implement steps 1 and 2 of 8.7.3.8.2. serviceSessionld shall be the idq

btor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream o
ccording to the DecoderConfigDescriptor.upstream flag. UuDatalnBuffer shall con

ble stream.

t is a duty of the service to discriminate between-the two cases with either ES_ID or URL as
ffer in DA_ChannelAdd.

Step 4 in 8.7.3.6.2 and step 3 in 8.7.3.8,2-are currently not mapped to a DAI call in a normative
1 using the DA_UserCommand() primitive:

up example in the following“figure conveys an initial object descriptor that pd
CriptionStream, an optional ObjectDescriptorStream and additional optional SceneDescripti
CriptorStreams. The first fequest to the DAI will be a DA_ServiceAttach() with the content
This call will return an injtial object descriptor. The ES_IDs in the contained ES_Descriptor|
fers to a DA_ChannelAdd() that will return handles to the corresponding channels.

streams (if any)\that are identified when processing the content of the object descriptor
tly opened using the same procedure. The object descriptor stream is not required to be
io- or visual streams or inlined scene description streams form part of the content.

UuDatalnBuffer shall remain empty. The returned serviceSessionld shall be kept for futurg reference to

ntifier for the

sion that has supplied the object descriptor that includes the ES_Descriptor that’is currenfly processed.

downstream
in the ES_ID
ive handle to

ntifier for the

sion that has supplied the object descriptor that includes the ES_Descriptor that is currenfly processed.

downstream
tain the URL

Descriptor. On successful return, channelHandle shall contain a valid, however, not normative handle to

parameters to

vay. It may be

ints to one
bnStreams or
address as a
5 will be used

Stream(s) are
present if no

© ISO/IEC 1999 — All rights reserved

49

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

/ Content Address
I nitial ES_descriptor (optional)
Object for ObjectDescriptorStream

Descriptor ES_descriptor
for SceneDescriptionStream
D L4 °
L4 °
o °

A £ _1U_d ES_descriptor (optional)
for SceneDescriptionStream

or ObjectDescriptorStream

/.

I
ESIDb/
} handle for
/ / ObjectDescriptorStream
} handle for

SceneDescriptionStream

A'D—X handle for

P ScereDescriptionStream or
ObjectDescriptorStream

Figure 7 - Requesting stream delivery through the DAI
8.8 Usaggq of the IPMP System interface

8.8.1 Overyiew

IPMP elementary streams and descriptors may be used in a variety of ways. For instance, IPMP Elementary
streams may| convey time-variant IPMP_ipformation such as keys that change periodically. An IPMP plementary
stream may |be associated with a given elementary stream or set of elementary streams. Similprly, IPMP
descriptors may be used to convey.time-invariant or slowly changing IPMP information associated wjth a given
elementary sfream or set of elementary streams. This subclause specifies methods how to associate an IPMP
system to an jelementary streani or-a set of elementary streams.

8.8.2 Assotiation of an [PMP System with ISO/IEC 14496 content

8.8.2.1 Asgociation in)the initial object descriptor

An IPMP Sygtem\may be associated with ISO/IEC 14496 content in the initial object descriptor. In that case the
initial object descriptor shall aggregate in addition to the ES_Descriptors for scene description and object descriptor
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the elementary streams that are described through this initial object descriptor are governed by the one or more
IPMP Systems that are identified within the one or more IPMP streams.

8.8.2.2 Association in other object descriptors
An IPMP System may be associated with ISO/IEC 14496 content in an object descriptor in three ways:

In the first case, the object descriptor aggregates in addition to the ES_Descriptors for the content elementary
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the content elementary streams described through this object descriptor are governed by the one or more IPMP
Systems that are identified within the one or more IPMP streams. Note that an ES_Descriptor that describes an
IPMP stream may contain references to IPMP_Descriptors.

50 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The second method is to include one or more IPMP_DescriptorPointers in the object descriptor. This implies that all
content elementary streams described by this object descriptor are governed by the IPMP System(s) that is/are
identified within the referenced IPMP descriptor(s).

The third method is to include IPMP_DescriptorPointers in the ES_Descriptors embedded in this object descriptor.

This implies that the elementary stream referenced by such an ES_Descriptor is controlled by an IPMP System.

8.8.3 IPMP of Object Descriptor streams

Object Descriptor streams shall not be affected by IPMP Systems, i.e., they shall always be available without
protection.

An IPMP_Descriptor associated with an object descriptor stream through an IPMP_DescriptorPoinptgr implies that

an IPMP Slystem controls all elementary streams that are referred to by this object descriptor stream:

8.8.4 IPIMP of Scene Description streams

Scene desgription streams are treated like any media stream, i.e. they may be managed-by an IPMP $ystem.

An IPMP_Descriptor associated with a scene description stream implies that the IPMP System contrpls this scene
description| stream.

There are|two ways to protect part of a scene description (or to apply)'different IPMP Systemp to different
componenis of a given scene):

The first miethod exploits the fact that it is permissible to have maore than one scene description stregm associated
with one opject descriptor (see 8.7.2.2). Such a split of the scene description can be freely designed by a content
author, for[example, putting a basic scene description into thefirst stream and adding one or more adflitional scene
description| streams that enhance this basic scene using BIES. updates.

The second method is to structure the scene using ong’or more Inline nodes (see 9.4.2.52). Each|Inline node
refers to ome or more additional scene description streams, each of which might use a different IPMP $ystem.

8.8.5 Usdage of URLs in managed and protected content

8.8.5.1 URLs in the BIFS Scene Description

ISO/IEC 14496 does not specify compliance points for content that uses BIFS URLs that do not point to an object
descriptor.| Equally, no normative ‘way to apply an IPMP System to such links exists. The behavion of an IPMP-
enabled tefminal that encounters\such links is undefined.

8.8.5.2 URLs in Object Descriptors

URLs in opject descriptors point to other remote object descriptors. This merely constitutes an indirection and
should not| adversely’ affect the behavior of the IPMP System that might be invoked through this femote object
descriptor.

NOTE — The nnl\/ difference is that while the nrlmnal site mlnht he trusted _the referred one mlnh'r nat_Further calrective actions

to guard against thls condition are not in the scope of ISO/IEC 14496.

8.8.5.3 URLs in ES_Descriptors

URLs in ES descriptors are used to access elementary streams remotely. This merely constitutes an indirection
and therefore does not adversely affect the behavior of the IPMP System that might be invoked through this remote
object descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective actions
to guard against this condition are not in the scope of ISO/IEC 14496.

© ISO/IEC 1999 — All rights reserved 51

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 144

96-1:1999(E)

8.8.6 IPMP Decoding Process
Elementary Strgam Interface
DMIF . Audio .
» Audio DB|—|@» —@» Audio CB—@——
Decode
@)
-) Py
\/ideo DB|— Video —@» Video CB—@—» 731 » 35
pecode o Q.
n D
= =
(9]
oD
OD DB
—> Decode |_ '[
A
BIFS Decoded
. 0 BIFS Tree
BIFS DB Decode @ BIES
A ?
IPMP-Ds ;
IPMP DB IPMP-ES Possible IPMP
IPMP SyStem(S) Contrpl Points
@
Figure 8 - IPMP system in thelISO/IEC 14496 terminal architecture
Figure 8 depigts the injection of an IPMP System with respect to the MPEG-4 terminal. IPMP System specific data
is supplied tp the IPMP System via IPMR-streams and/or IPMP descriptors, and the IPMP systemn releases
protected corltent after the sync layer.
Each elementary stream under the, control of an IPMP System has the conceptual element of a dtream flow
controller. Stjeam flow control ¢an‘take place between the the SyncLayer decoder and the decoder buffer. As the
figure indicatgs, elements of IPMP control may take place at other points in the terminal including, aftdr decoding
(as with some watermarking systems) or in the decoded BIFS stream, or after the composition buffers|have been
written, or in|the BIFS §cene tree. Stream flow controllers either enable or disable processing of an plementary
stream in a npn-normative way that depends on the status information provided by the IPMP System.
Finally, the IHMP,System must at a minimum:

1. Process the IPMP stream and descriptor

2. Appropriately manage (e.g. decrypt and release) protected elementary streams.
The initialization process of the IPMP System is not specified except that it shall not unduly delay the content

access proce

52

ss as specified in 8.7.3.

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9 Scene Description

9.1 Introduction
9.1.1 Scope

ISO/IEC 14496 addresses the coding of audio-visual objects of various types: natural video and audio objects as
well as textures, text, 2- and 3-dimensional graphics, and also synthetic music and sound effects. To reconstruct a
multimedia scene at the terminal, it is hence not sufficient to transmit the raw audio-visual data to a receiving
terminal. Additional information is needed in order to combine this audio-visual data at the terminal and construct
and present to the end user a meanlngful multlmedla scene. ThIS mformatlon called scene descrlptlon determines
the place : Py 2d objects as
illustrated |n Figure 9. Note that the scene descrlptlon onIy descrlbes the structure of the scene/'he action of
assembling these objects in the same representation space is called composition. The action of{ttansforming these
audio-visu@l objects from a common representation space to a specific presentation device.(i:e., speakers and a
viewing window) is called rendering.

audiovisual

W
iovisuah\

resentation

multiplexed
downstream control / dat

2D béckgrounl

multiplexel
upstream control / d%
- 3D objects 7 i
z user e_\/,enté" B
video audio
composito ; composit
projection - P
plane ; I 1o
| |
.
h pothet:cal iewer © © ©
y ical view O| s
play O
speak user inp

Figure 9 - An example of an object-based multimedia scene

Independent coding of different objects may achieve higher compression, and also brings the ability to manipulate
content at the terminal. The behaviors of objects and their response to user inputs can thus also be represented in
the scene description.

The scene description framework used in ISO/IEC 14496-1 is based largely on ISO/IEC 14772-1:1998 (Virtual
Reality Modeling Language — VRML) [10].

© ISO/IEC 1999 — All rights reserved 53

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.1.2 Composition and Rendering

ISO/IEC 14496-1 defines the syntax and semantics of bitstreams that describe the spatio-temporal relationships of
audio-visual objects. For visual data, particular composition algorithms are not mandated since they are
implementation-dependent; for audio data, subclause 9.2.2.13 and the semantics of the AudioBIFS nodes
normatively define the composition process. The manner in which the composed scene is presented to the user is
not specified for audio or visual data. The scene description representation is termed “Blnary Format for Scenes”
(BIFS).

9.1.3 Scene Description

In order to facilitate the development of authoring, editing and interaction tools, scene descriptions are coded
independently from the audio-visual media that form part of the scene. This permits modification .of| the scene
without having to decode or process in any way the audio-visual media. The following clauses detaill the scene
description capabilities that are provided by ISO/IEC 14496-1.

9.1.3.1 Grqguping of audio-visual objects

A scene desgription follows a hierarchical structure that can be represented as a graph.”Nodes of the graph form
audio-visual pbjects, as illustrated in Figure 10. The structure is not necessarily static; nodes may |be added,
deleted or be|modified.

scene
person 2D background furniture audiovisual
/ \ / presentation
voice sprite

Figure 10 - Logical structure of example scene

9.1.3.2 Sp4gtio-Temporal positioning of objects

Audio-visual DbjeCtS have both a spat|al and a temporal extent. Complex audlo V|sual objects are con>tructed by
combining approp S = Aug S ¢ located in
2D or 3D space Each aud|o V|sual object has a Iocal co- ordlnate system A Iocal co- ordmate system is one in
which the audio-visual object has a pre-defined (but possibly varying) spatio-temporal location and scale (size and
orientation). Audio-visual objects are positioned in a scene by specifying a co-ordinate transformation from the
object’s local co-ordinate system into another co-ordinate system defined by a parent node in the scene graph.

9.1.3.3 Attributes of audio-visual objects

Scene description nodes expose a set of parameters through which aspects of their appearance and behavior can
be controlled.

EXAMPLE — the volume of a sound; the color of a synthetic visual object; the source of a streaming video.

54 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.1.3.4 Behavior of audio-visual objects

ISO/IEC 14496-1 provides tools for enabling dynamic scene behavior and user interaction with the presented
content. User interaction can be separated into two major categories: client-side and server-side. Client-side
interaction is an integral part of the scene description described herein. Server-side interaction is not dealt with.

Client-side interaction involves content manipulation that is handled locally at the end-user’s terminal. It consists of
the modification of attributes of scene objects according to specified user actions.

EXAMPLE — A user can click on a scene to start an animation or video sequence. The facilities for describing such interactive
behavior are part of the scene description, thus ensuring the same behavior in all terminals conforming to ISO/IEC 14496-1.

9.2 Corfcepis
9.2.1 BIFS Elementary Streams
9.2.1.1 Qverview

BIFS is a gompact binary format representing a pre-defined set of audio-visual objects, their behaviprs, and their
spatio-temporal relationships. The BIFS scene description may, in general, be time-varying. Consefjuently, BIFS
data is cafried in a dedicated elementary stream and is subject to the provisions of the systems decoder model
(see claude 7). Portions of BIFS data that become valid at a given pqQint in time are contajned in BIFS
CommandFramesor AnimationFrames and are delivered within time-stamped access units. Note that the initial
BIFS scenge is sent as a BIFS-Command, although it is not required,<in general, that a BIFS CgmmandFrame
contains ajcomplete BIFS scene description.

9.2.1.2 BIFS Decoder Configuration

BIFS configuration information is contained in a BIFSConfig: (see 9.3.5.2) syntax structure, which |s transmitted
as DecodgrSpecificinfo for the BIFS elementary stream in the corresponding object descriptgr (see 8.6.6).
This gives|basic information that must be known by the-terminal in order to parse the BIFS elementary stream. In
particular, [t indicates whether the stream consists of BIFS-Command or BIFS-Anim entities.

9.2.1.3 BIFS Access Units

A BIFS datta access unit consists of one_BIFS CommandFrameor AnimationFrame , as defined ip 9.3.6.2 and
9.3.8.2, reppectively. The BIFS CommandFrame or AnimationFrame shall convey all the data fthat is to be
processed|at any given instant in\tilme. Access units in BIFS streams shall be labelled and timg-stamped by
suitable me¢ans. This shall be done via the related flags and the composition time stamps (CTS), respéctively, in the
SL packet|header (see 10.24).~The composition time indicates the point in time at which the ComrmandFrameor
Animationframe embedded’in a BIFS access unit shall become valid. This means that any changes to audio-
visual objects that are déscribed in the BIFS access unit will become visible or audible at precisely this time in an
ideal compositor, unl€ss: a different behavior is specified by the fields of their nodes. Decoding and composition
time for a BIFS access unit shall always have the same value.

An access|unit'does not necessarily convey a complete scene. In that case it just modifies the persistent state of
the scene geéscription. However, if an access unit conveys a complete scene as required at a given point in time it
shall set the randomAccessPointFlag in the SL packet header to ‘1’ for this access unit. Otherwise, the
randomAccessPointFlag shall be set to ‘0.

9.2.1.4 Time base for BIFS streams

The time base associated to a BIFS stream shall be indicated by suitable means. This shall be done by means of
object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this BIFS stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized BIFS stream refer to this time base.

© ISO/IEC 1999 — All rights reserved 55

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.2.1.5 Multiple BIFS streams

Scene description data may be conveyed in more than one BIFS elementary streams. Two distinct mechanisms
exist to associate a set of BIFS elementary streams to a single scene.

The first method uses Inline nodes (see 9.4.2.52) in a BIFS scene description. Each such node refers to further
BIFS elementary streams. In this case, multiple BIFS streams have a hierarchical dependency. Each Inline node

opens a new name scope for
objectDescriptorID

the identifiers used to label BIFS elements (nodelD ,
). Therefore, it is not possible to pass events between parts of a scene that re

different Inline nodes.

LDRICCS ot

ROUTEIDQ
side below

EXAMPLE 1
originate from
the scene.

The second inethod to associate multiple BIFS elementary streams to a single scene is to group their

stream descr
scope for the

partitioned info multiple streams.

EXAMPLE 2 —
different comp
simple one, raf

9.2.1.6 Tim
9.21.6.1 Ti

The semanti
dependent n
loop apply o
to the time ¢
AudioBuffe

9.2.1.6.2 Ti
Several BIFS
parameter va
contain time
duration.

As defined in

the BIFS st;le

cycleTime

The semantid

An—anilieatian f iararalioso P =S~ A1 [TR P-V- BRI T TP | £ Hae—G Q. ek
T oppTtat o O e Trarcrntar o o StreartiS— 15— oot oSt virtoa CormeTrernemyg—sSeentT—wncre

Hifferent sources. Usually, it is neither possible nor useful to specify interaction between two such dis

ptors in a single object descriptor (see 8.7.2.2). In this case, these BIFS streams sharg
identifiers they use (nodelD , ROUTEID objectDescriptorID). This allows a single §

- An application may offer a presentation with different levels of detail, corfesponding to different dal
Litational complexity. By sharing the same name scope, the more detailed”scene description can
her than sending the entire scene again.

e
me-dependent nodes

cs of the loop, startTime and stopTime exposedFields and the isActive eventO
pdes are as described in ISO/IEC 14772-1:1998, subclause 4.6.9 [10]. startTime , stop|
hly to the local start, pause and restart of media and do not affect the delivery of the strea
ependent node. ISO/IEC 14496-1 has the following time-dependent nodes: Animation
I, AudioClip , AudioSource , MpvieTexture and TimeSensor .

me fields in BIFS nodes
nodes have fields of type SETime that identify a point in time at which an event occurs (O

lue, start of a media stream, etc). Depending on the individual field semantics, these
alues that refer either to.an absolute position on the time line of the BIFS stream or that dq

am. This~determines unambiguously durations expressed by relative SFTime valug
eld of the“\imeSensor node.

s of'some SFTime fields is such that the time values shall represent an absolute position

sub-scenes
oint parts of

blementary
the same
cene to be

ta rates and
build on the

It in time-
Time and
M attached
Stream

hange of a
fields may
fine a time

9.2.1.4, the speed of the flow of time for events in a BIFS stream is determined by the tine base of

s like the

bNn the time

line of the BIH

S.stfeam (e.g. startTime in MovieTexture). This absolute position is defined as follows:

p.

Each node in the scene description has an associated point in time at which it is inserted in the scene graph or at
which an SFTime field in such a node is updated through a CommandFramein a BIFS access unit (see 9.2.1.3).
The value in the SFTime field is the positive offset from this point in time in seconds. Negative values are not
permitted. The absolute position on the time line shall therefore be calculated as the sum of the CTS value of the
BIFS access unit and the value of the SFTime field.

NOTE 1 — Absolute time in ISO/IEC 14772-1:1998 is defined slightly differently. Due to the non-streamed nature of the scene
description in that case, absolute time corresponds to wallclock time in [10].

NOTE 2 — The SFTime fields that define the start or stop of a media stream are relative to the BIFS time base. If the time base
of the media stream is a different one, it is not generally possible to set a startTime that corresponds exactly to the
composition time of a composition unit of this media stream.

56 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

EXAMPLE — The example in Figure 11 shows a BIFS access unit that is to become valid at CTS. It conveys a node that has an
associated media elementary stream. The startTime of this node is set to a positive value At. Hence, startTime will occur At
seconds after the CTS of the BIFS access unit that has incorporated this node (or the value of the startTime field) in the scene

graph.
OCRstream | focr] locr| locr| locr| JocR| |
BIFS time line —+—+—jr—+—+——"F—t+4—+—"+—"F—"1T-—"+—+—"F—"F+—"F+—"F—"71
> 0
At
CTS CTS+At
BIFS diream | [piFs ad] [BiFs AU |
. . . | | | | | | | | | | | I0 | | | | | | |
Medialtime line I I I I I I I I I I I I I I I I I I I
Medialstream LLcullcu[[cu[[cu[[eu[[cu[[@][cu[[cu[[cu[cu[[etif]cu [[cu[cu[[cu |
Figure 11 - Media start times and CFS
9.2.2 BIFS Scene Graph
9.2.2.1 Structure of the BIFS scene graph
Conceptudlly, BIFS scenes represent (as in ISO/IEC.14772-1:1998 [10]) a set of visual and auflio primitives
distributed|in a directed acyclic graph, in a 3D space("However, BIFS scenes may fall into several spb-categories
representing particular cases of this conceptual model. In particular, BIFS scene descriptions suypport scenes

composed
— 2D prin
— 3D prim
— A comb
— Audio p
In scenes

— Complg

of:

itives (only)

itives (only)

ination of 2D and 3D primitives

rimitives (only)

ombining 2D and 3D primitives, the following possibilities exist:

te 2D.'and 3D scenes layered in a 2D space with depth

— 2D and

3B'scenes used as texture maps for 2D or 3D primitives

— 2D scenes drawn in the local X-Y plane of the local co-ordinate system in a 3D scene

Figure 12 describes a typical BIFS scene structure.

A BIFS scene shall start with a one of the following nodes: OrderedGroup , Group, Layer2D, Layer3D. When the
profile used enables visual elements to be composed, the first node indicates the co-ordinate system and context

(2D or 3D)

to be used for the children of that node. The following rules apply:

— Scene starts with a Layer2D or OrderedGroup node: A 2D co-ordinate system and context is assumed.

— Scene starts with a Layer3D or Group node : A 3D co-ordinate system and context is assumed.

© ISO/IEC 1999 — All rights reserved

57

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

root
2DLayer

|
2D Layer-1
2D Scene-1

| 3D Scene-2
o InWaY Vi)
s/ Il
(50 oby] ST
Pointer to 2D sc--éne.________. _
Layers 3D 2D
Sceneagraph Scengyraph Scenegfaph

The hierarch
graphs comb
3D Layer-1, 4
a texture nod

9.222 2D

The origin of
right, and the

The width of
axis in the po
distance is €
screen, whe
Composite]

Figure 12 - Scene graph example.

of three different scene graphs is shown: a 2D graphics scene graph and two 3D grap
ned with the 2D scene via layer nodes. As shown itvthe picture, the 3D Layer-2 is the sam
ut the viewpoint may be different. The 3D Obj-3:s.an Appearance node that uses the 2D

a)

Co-ordinate System

he 2D co-ordinate system is positioned in the center of the rendering area, the x-axis is pos
y-axis is positive upwards.

he rendering area represents =1.0 to +1.0 (meters) on the x-axis (see Figure 13). The exte]
Sitive and negative directions'is determined by the aspect ratio of the rendering area so tha
qual in both directions: The rendering area is either the entire screen, or window on &
h viewing a single\2D scene, or the rectangular area defined by the texture

flexture2D node,jor a Layer2D node that contains a subordinate 2D scene description

hics scene
e scene as
bcene-1 as

itive to the

nt of the y-
the unit of
| computer
sed in a

58

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

e

J

9.2.2.3

The 3D co
described
ordinate sy

9.224 N

— A singld

— 2D prin
plane,

— 2D and
This is
insert ir

— 2D ang

Comp
perform

Figure 13 - 2D co-ordinate system (AR = Aspect Ratio)
D Co-ordinate System
Lordinate system is as described in ISO/IEC 14772%1:1998, subclause 4.4.5 [10]. When 2
n a 3D space, they are drawn in the local (x,y).plane (z=0), and the units used are those
stem for the x and y directions.

flixing 2D and 3D scenes
BIFS scene may contain both 2D and 3D elements. The following methods exist:

itives may be placed in a 3D seene graph. In this cased, the 2D primitives are drawn in
nd use the local coordinaté.system, restricted to this (x,y) plane.

3D scenes may be_éeniposed and overlapped on the screen using Layer2D and Lay
iseful, for instance, when it is desirable to have 2D interfaces to 3D worlds ("head up" dis
a 2D scene.

3D scenés-‘may be mapped onto any given geometry using the CompositeText
psiteTexture3D nodes. For instance, 2D scenes may be mapped onto animated 30
special effects.

9.2.25

D objects are
of the 3D co-

he local (x,y)

er3D nodes.
blay), or a 3D

ire2D and
geometry to

rawing Order

It is possible to specify the drawing order of elements of the scene, using the OrderedGroup node. This feature
may be used for 2D or 3D scenes. 2D scenes are considered to have zero depth. Nonetheless, it is important to be
able to specify the order in which 2D objects are composed, in order to describe their apparent depths. 3D scenes
may use the drawing order facility to solve conflicts of coplanar polygons or other rendering optimizations.

The following rules determine the drawing order, including conflict resolution for objects having the same drawing

order:

1. The object having the lowest drawing order shall be drawn first (taking into account negative values).

2. Objects having the same drawing order shall be drawn in the order in which they appear in the scene
description.

© ISO/IEC 1999 — All rights reserved

59

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.2.2.6 Pixel and Meter metrics

In addition to meter-based metrics, it is also possible to use pixel-based metrics. In this case, 1 meter is set to be
equal to the distance between two pixels. This applies to both the horizontal (x-axis) and vertical (y-axis) directions.

The selection of the appropriate metrics is performed by the content creator. In particular, it is controlled by the

BIFSConfig

9.2.2.7

syntax (see 9.3.5.2): when pixelMetric is set to 1, pixel metrics shall be used for the en

Nodes and fields

9.2.2.7.1 Nodes

tire scene.

The BIFS scene description consists of a collection of nodes that describe the scene structure. An.du
cene is described by one or more nodes, which may be grouped together (using a_grouping node).

object in the
Nodes are g
field.

An audio-visu
may also re
AudioSourd
elementary
1:1998, subc
content that d

9.2.2.7.2 Fi
See ISO/IEC

0.2.2.8 Intg
ISO/IEC 1444
be one of se
attributes in
described in
compositor,
behaviour of

data; that is, {hey shall behave as if theirinternal representation is as defined herein.

However, wh
appropriately
the precision
9.4. The bina
1is provided

9.2.28.1 Bi

rEuped into node data types (NDTs) and the exact type of the node is specified using a

uire elementary stream data from one or more audio-visual objectsixe.g. MovieTe
e . In the latter case, the node includes a reference to an object-descriptor that indic
fream(s) is (are) associated with the node, or directly to a URL<{description (see 1SO/I
ause 4.5.2 [10]). With the exception of the Anchor and Script\nodes, a url field may o
onforms to a valid profile and level for the terminal.

elds and Events
14772-1:1998, subclause 5.1 [10].
rnal, ASCII and Binary Representation of Scenes

D6-1 describes the attributes of audio-visual ebjects using node structures and fields. Thesg
veral types (see 9.2.2.7.2). To facilitate animation of the content and modification of t
ime, within the terminal, it is necessary to use an internal representation of nodes an
he node specifications (see 9.4). This is essential to ensure deterministic behaviour in thd
or instance when applying RQUTEs or differentially coded BIFS-Anim frames. The
compliant terminals shall not be affected by the way in which they internally represent anc

bn encoding the BIFSiscene description, different attributes may need to be quantized or ¢
Thus, the binaryrepresentation of fields may differ according to the types of fields, or a
needed to repreSent a given audio-visual object's attributes. The semantics of nodes are d
'y syntax which, represents the binary format as transported in streams conforming to 1SO/I
in 9.3 anddses the node coding parameters provided in Annex H.

hary Syntax Overview

dio-visual

nodeType

al object may be completely described within the BIFS information, e.g. Box-with Appearance , or

xture or
ates which
EC 14772-
nly refer to

p fields can
ne objects’
J fields as
terminal’'s
pbservable
transform

bmpressed
ccording to
pscribed in
EC 14496-

9.2.2.8.1.1

Scene Description

The entire scene is represented by a binary encoding of the scene graph. This encoding restricts the VRML
grammar as defined in ISO/IEC 14778-1:1997, Annex A [10], but still enables the representation of any scene that
can be generated by this grammar.

EXAMPLE — One example of the grammatical differences is the fact that all ROUTEs are represented at the end of a BIFS
scene, and that a global grouping node is required at the top level of the scene.

9.2.2.8.1.2 Node Description

Node types are encoded according to the context of the node. This improves efficiency by exploiting the fact that
not all nodes are valid at all places in the scene graph. In many instances, only one of a subset of all BIFS nodes is
valid at a particular place in the scene graph, and hence in the bitstream.

60 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.2.2.8.1.3 Fields description

Fields may be quantized to improve compression efficiency. Several aspects of the inverse quantization process
can be controlled by adjusting the parameters of the QuantizationParameter node.

9.2.2.8.1.4 ROUTE description

All ROUTEs are described at the end of the scene. This improves bit efficiency by grouping these elements in a
single location in the bitstream and removes the need for switches in the syntax to allow ROUTEs and nodes to be
described in a mixed format.

9.2.2.9 Basic Data Types

There are fwo general classes of fields and events: fields/events that contain a single value (e.goa-gingle number
or a vector), and fields/events that contain multiple values. Multiple-valued fields/events have names that begin with
MF, whereps single valued begin with SF.

9.2.2.9.1 [Numerical data and string data types
9.2.2.9.1.1 Introduction

For each basic data type, single field and multiple field data types are defined.in/ISO/IEC 14772-1:1998, subclause
5.2 [10]. Spme further restrictions are described herein.

9.2.2.9.1.2 SFInt32/MFInt32

When rout|ng values between two SFInt32s note shall be taken~of the valid range of the destination. If the value
being conyeyed is outside the valid range, it shall be clipped {0 be equal to either the maximum or minimum value
of the valid range, as follows:

if ¥ > max, X := max
if ¥ < min, X :=min
9.2.2.9.1.3] SFTime

The SFTinje field and event specifies a single time value. Time values shall consist of 64-bit floating point numbers
indicating p duration in seconds or-the’number of seconds elapsed since the origin of time as defined in the
semantics for each SFTime field.

9.2.2.9.2 [Node data types

Nodes in the scene arealso represented by a data type, namely SFNode and MFNode types. ISQ/IEC 14496-1
also defings a set ofrsub-types, such as SFColorNode, SFMaterialNode. These node data types [NDTs) allow
efficient blnary representation of BIFS scenes, taking into account the usage context to a¢hieve better
compressipn. However, the generic SFNode and MFNode types are sufficient for internal representdtions of BIFS
scenes.

9.2.2.10 Aftaching nodelDs 1o nodes

Each node in a BIFS scene graph may have a nodelD associated with it, to be used for referencing. ISO/IEC
14772-1:1998, subclause 4.6.2 [10], describes the DEF statement which is used to attach names to nodes. In BIFS
scenes, an integer value is used for the same purpose for nodelDs . The number of bits used to represent these
integer values is specified in the BIFSConfig syntax (see 9.3.5.2).

The following restrictions apply:
a) Nodes are identified by the use of nodelDs , which are binary numbers conveyed in the BIFS bitstream.
b) The scope of nodelDs is givenin 9.2.1.5.

c) No two nodes in the scene graph may have the same nodelD at any point in time.

© ISO/IEC 1999 — All rights reserved 61

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Nodes that have been assigned a nodelD may be re-used, as described in ISO/IEC 14772-1:1998, subclause
4.6.3 [10]. Note that this mechanism results in a scene description that is a directed acyclic graph, rather than a
simple tree.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodelDs (see 9.2.2.10).
9.2.2.11 Standard Units

As described in ISO/IEC 14772-1:1998, subclause 4.4.5 [10], the standard units used in the scene description are
the following:

-
I

ol ao oo ! ! -
adUl€ Lo = olaliualu urits

Category Unit

Distance Meter

Color Space RGB [0,1] [0,1] [0,1]
Time Seconds

Angle Radians

9.2.2.12 Maypping of Scenes to Screens

BIFS scenes
native dimen
screen-aligne

may contain still images and videos that are to be pixel-copied’/to the rendering device
Sions as produced at the output of their terminals. The Bitmap node (see 9.4.2.14)
d geometry that has the pixel dimensions of the texture thabis mapped onto it.

using their
provides a

NOTE — Whep Bitmap is used, the same scene will appear differently’on screens with different resolutions. BIFS scenes

that do not usg the Bitmap node are independent from the screen-gn which they are viewed.

9.2.2.12.1 THansparency of visual objects

Content complying with ISO/IEC 14496-1 may include still images or video sequences with represenfations that

include alpha values. These values provide transpafrency information and are to be treated as specified|in ISO/IEC

14772-1:1998, subclause 4.14 [10]. For video sequences represented according to ISO/IEC 14496-2, transparency

is handled as|specified in ISO/IEC 14496-2.

9.2.2.13 Spdcial considerations for audio.

9.2.2.13.1 Adudio sub-graphs

Audio nodes|are used to build audio scenes in the terminal from audio sources coded with tools g4pecified in

ISO/IEC 14496-3. The audioscene description capabilities provide two functionalities:

— “Physical modelling” composition for virtual-reality applications, where the goal is to recreate the acoustic space
of a real of virtual.environment.

— “Post-production” composition for traditional content applications, where the goal is to apply high-quality signal

processing transformations.

Audio may be included in either 2D or 3D scene graphs. In a 3D scene, the audio may be spatially presented to
sound as though it originates from a particular 3D direction, according to the positions of the object and the listener.

The Sound node is used to attach audio to 3D scene graphs and the Sound2D node is used to attach audio to
2D scene graphs. As with visual objects, an audio object represented by one of these nodes has a position in
space and time, and is transformed by the spatial and grouping transforms of nodes hierarchically above it in the
scene.

The nodes below the Sound /Sound2D nodes, however, constitute an audio sub-graph. This sub-graph is used
to describe a particular audio object through the mixing and processing of several audio streams. Rather than
representing a hierarchy of spatio-temporal transformations, the nodes within the audio sub-graph represent a

62 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

signal flow graph that describes how to create the audio object from the audio coded in the AudioSource
streams. That is, each audio sub-graph node (AudioSource , AudioMix , AudioSwitch , AudioFX,
AudioClip , AudioBuffer , AudioDelay) accepts one or several channels of input audio, and describes how
to turn these channels of input audio into one or more channels of output. The only sounds presented in the audio-
visual scene are those which are the output of audio nodes that are children of a Sound /Sound2D node (that is,
the “highest” outputs in the audio sub-graph). The remaining nodes represent “intermediate results” in the sound
computation process and the sound represented therein is not presented to the user.

The normative semantics of each of the audio sub-graph nodes describe the exact manner in which to compute the

output audio the input audio for each node based on its parameters.

nnnnnn oo

9.2.2.13.2

TCS

This subcl
describes
node giver

huse describes the concepts for normative calculation of the audio objects in the scene
he normative procedure for calculating the audio signal which is the output of a.'Sound
the audio signals which are its input.

Recall thaf the audio nodes present in an audio sub-graph do not each represent a sound to be prg
scene. Rather, the audio sub-graph represents a signal-flow graph which computes a single (p
channel) ajudio object based on a set of audio inputs (in AudioSource nodeS),and parametric tra
The only spunds which are presented to the listener are those which are the ‘odtput” of these audio s
connected|to a Sound /Sound2D node. This subclause describes the proper computation of th
graph and fesulting audio object.

As each aydio source is decoded, it produces data that is stored jn composition memory (CM). At a §
instant in the scene, the compositor shall receive from each audio,decoder a CM such that the decod
first audio sample of the CM for each audio source is the sam@’(that is, the first sample is synchronize
instant). Each CM will have a certain length, depending on the sampling rate of the audio source and

of the systém. In addition, each CM has a certain number<gf’channels, depending on the audio source).

Each nodelin the audio sub-graph has an associated‘input buffer and output buffer, except for the A
node whigh has no input buffer. The CM for;the audio source acts as the input buffer of
AudioSolirce with which the decoder is associated. As with CM, each input and output buffer for e
a certain lgngth, and a certain number of channels.

As the signal-flow graph computation;proceeds, the output buffer of each node is placed in the inpd
parent node, as follows:

If an audio|node, N, has n children, and each of the children produces k(i) channels of output, for 1 <

the node, N, shall have k(1)'+/k(2) + ... + k(n) channels of input, where the first k(1) channels [num
k(1)] shall pe the channels“ef the first child, the next k(2) channels [number k(1)+1 through k(1)+k(2
channels df the secondchild, and so forth.

Then, the gutput.buffer of the node is calculated from the input buffer based on the particular rules for

9.2.2.13.2.l.Sample-rate conversion

in detail, and
/Sound2D

sented in the
Dssibly multi-
hsformations.
Ib-graphs, as
is signal-flow

articular time
bd time of the
d at this time
the clock rate

ioSource

by
udio for the

hch node has

t buffer of its

= /<= n, then
ber 1 through
| shall be the

that node.

If the various children of a Sound /Sound2D node do not produce output at the same sampling rate, then the
lengths of the output buffers of the children do not match, and the sampling rates of the children’s’ output must be
brought into alignment in order to place their output buffers in the input buffer of the parent node. The sampling rate
of the input buffer for the node shall be the fastest of the sampling rates of the children. The output buffers of the
children shall be resampled to be at this sampling rate. The particular method of resampling is hon-normative, but
the quality shall be close in accuracy to the DAC that the signal is targeted for, i.e. according to the rule dB SNR
6 * (nbits -1) , Where nbits is the number of bits corresponding to the maximum bit depth of any of the
signals being so converted and/or composited. Aliasing artifacts may be at this level of signal-to-noise ratio. The
noise level due to arithmetic accuracy and other uncorrelated noise sources should be below the rule dB SNR
6* nbits

© ISO/IEC 1999 — All rights reserved 63

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The output sampling rate of a node shall be the output sampling rate of the input buffers after this resampling
procedure is applied.

Content authors are advised that content which contains audio sources operating at many different sampling rates,
especially sampling rates which are not related by simple rational values, may produce scenes with a high
computational complexity.

EXAMPLE — Suppose that node N has children M1 and M2, all three audio nodes, and that M1 and M2 produce output at S1
and S2 sampling rates respectively, where S1 > S2. Then if the decoding frame rate is F frames per second, then M1's output
buffer will contain S1/F samples of data, and M2’s output buffer will contain S2/F samples of data. Then, since M1 is the faster
of the children, its output buffer values are placed in the input buffer of N. The output buffer of M2 is resampled by the factor
S1/S2 to be S1/F samples long, and these values are placed in the input buffer of N. The output sampling rate of N is S1.

9.2.2.13.2.2 Number of output channels

If the numChan field of an audio node, which indicates the number of output channels, differs from the| number of
channels profluced according to the calculation procedure in the node description, or if the.numChan |field of an
AudioSourge node differs in value from the number of channels of an input audio stream, then the humChan
field shall takg precedence when including the source in the audio sub-graph calculation, as follows:

a) If the vallie of the numChan field is strictly less than the number of channéls produced, then only the first
numChah channels shall be used in the output buffer.

b) If the value of the numChan field is strictly greater than the numberCefChannels produced, then|the “extra”
channels|shall be set to all O’s in the output buffer.

9.2.2.13.3 Adldio-specific BIFS Nodes

In the followirng table, nodes that are related to audio scene description are listed.

Table 14 — Audio-Spécific BIFS Nodes

Node Purpose Subclause
AudioBuffer Interactivelytrigger snippets of sound 9.4.2.4
AudioClip Insert anaudio clip into a scene 9.4.25
AudioDelay Adddelay to sound 9.4.2.6
AudioMix Mix'sounds 9.4.2.8
AudioSource Define audio source input to a scene 9.4.2.9
AudioFX Apply post-production effects to sound 9.4.2.7
AudioSwitch Switching of audio sources in a scene 9.4.2.10
ListeningPoint | Define listening point in a scene 9.4.2.57
Sound, Define properties of sound 9.4.2.82,
Sound2D 9.4.2.83

9.2.3 Sourgesof modification to the scene

9.2.3.1 Interactivity and behaviors

To describe interactivity and behavior of scene objects, the event architecture defined in ISO/IEC 14772-1:1998,
subclause 4.10 [10], is used. Sensors and routes describe interactivity and behaviors. Sensor nodes generate
events based on user interaction or a change in the scene. These events are routed to interpolator or other nodes
to change the attributes of these nodes. If routed to an interpolator, a new parameter is interpolated according to
the input value, and is finally routed to the node which must process the event

9.2.3.1.1 Attaching ROUTEIDSs to routes

ROUTEIDs may be attached to routes using the DEF mechanism, described in ISO/IEC 14772-1:1998, subclause
4.6.2 [10]. This allows routes to be subsequently referenced in BIFS-Command structures. ROUTEIDs are integer

64 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

values and the namespace for routes is distinct from that of nodelDs . The number of bits used to represent these
integer values is specified in the BIFS DecoderConfigDescriptor

The scope of ROUTEIDsis defined in see 9.2.1.5. The following restrictions apply:

a) Routes are identified by the use of ROUTEIDs which are binary numbers conveyed in the BIFS bitstream.
b) The scope of ROUTEIDsis given in 9.2.1.5.

c) No two routes in the scene graph may have the same ROUTEIDat any point in time.

The mechanisms-thatallow-modifications—teo-the-BH-S-seenre—also-depend-on see 9.2.2.10).
The USE mechanism shall not be used with routes.

9.2.3.1.2 |Conditional node

The Con(1itional node (see 9.4.2.22) allows BIFS-Commands to be described in the~Scene which|shall only be
applied to the scene graph when an event is received on one of the Conditional nede's inputs.

9.2.3.2 Hxternal modification of the scene: BIFS-Commands
The BIFS-Command mechanism enables the change of properties of the seene graph, its nodes and hehaviors.

EXAMPLE 1+ Transform nodes can be modified to move objects in space; Material nodes can be changgd to modify an
object’s appearance, and fields of geometric nodes can be totally or partially changed to modify the geometry of dbjects.

9.2.3.2.1 [Overview
BIFS-Commands are used to modify a set of properties of-the scene at a given time instant in time. Cbmmands are
grouped info CommandFrames (see 9.3.6.2) in order toche able to send several commands in a singl¢ access unit.
The following four basic commands are defined:
1. Replacément of an entire scene

2. Insertioh
3. Deletio

4. ReplacIment
The first of|these commands jallows the replacement of the entire BIFS scene. The replacement of the entire scene

requires a|scene graph. representing a valid BIFS scene to be transmitted. The SceneReplace command is the
only randofn access point in the BIFS stream.

The other three-c@émmands can be used to update the following structures:

1. Anode

2. An eventln, exposedField or an indexed value in an MFField
3. AROUTE

In order to modify the scene the sender must transmit a BIFS CommandFramethat contains one or more update
commands. A single source of BIFS-Commands is assumed. The identification of a node in the scene is provided
by a nodelD . Note that it is the sender’s responsibility to provide this nodelD , which must be unique (see 9.2.1.5).
The identification of a node's fields is provided by sending the INid of the field (see Annex H).

© ISO/IEC 1999 — All rights reserved 65

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Index
Node: nodelD <EBegin >NodeValue
End

Index
Insert IdxValue: nodeID— FieldNb <E Begin > Value
End

ROUTE: nodelD+— Fieldl — nodelD2—> Field2

/ Node: nodelD Index
Delete IdxValue: nodelb—— FieldNb <E Beg|n > Value

2 ROUTE: routelD

/

IFS
pdate Node:nodelD — NodeValue

Cl'ﬂ

Field: nodeID — FieldNb — FieldValu€

Index
IdxValue: nodelD— FieldNb <E Begin> Value
End

ROUTE: routeID—/ nodelD1—> Field1— nodelD2—> Field

Replace

%)

Replace

— Scene: SceneValue
Scene

Figure 14 - BIFS-Command Types
9.2.3.2.2 Mpdification of indexed values

Insertion of an indexed value in a field implies that all later values in the field have their indices incremented and
the length of the field increases accordingly. Appending.a value to an indexed value field also increaseq the length
of the field but the indices of existing values in the field*do not change.

Deletion of ap indexed value in a field implies¢that all later values in the field have their indices decremented and
the length of the field decreases accordingly;

9.2.3.2.3 Timing of BIFS-Commands

The time at which a BIFS-Command is applied shall be the composition time stamp of the access unit ifn which the
command is ¢ontained, as defined in the sync layer (see 10.2).

9.2.3.3 External animatien of the scene: BIFS-Anim

BIFS-Anim piovides for.the continuous update of the certain fields of nodes in the scene graph. BIFS-Afgim is used
to integrate djfferentkinds of animation, including the ability to animate face models as well as meshes, [2D and 3D
positions, rotations; scale factors and color attributes. AIthough BIFS-Anim and BIFS- Command havg the same
elementary s B A information is
conveyed in a separate elementary stream from that WhICh carries BIFS-Command elements

9.2.3.3.1 Overview

BIFS-Anim elementary streams consist of a sequence of AnimationFrames . The AnimationMask , which is
required to interpret these AnimationFrames , is transmitted in the DecoderSpecificinfo for the BIFS-Anim
elementary stream in the corresponding object descriptor (see 8.6.6).

9.2.3.3.2 BIFS-Anim configuration

The AnimationMask contains one ElementaryMask for each node that is to be animated. These
ElementaryMasks specify the fields that are contained in the AnimationFrames for a given animated node, and
their associated quantization parameters. Only eventin or exposedField fields that have an animation method (see

66 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Annex H and 9.2.3.3.3) can be modified using BIFS-Anim. Such fields are called dynamic fields. In addition, the
animated field must be part of an updateable node; that is, a node that has been assigned a nodelD . The
AnimationMask is composed of several elementary masks defining these parameters.

9.2.3.3.3 BIFS-Anim animation parameters

Animation parameters are transmitted as a sequence of AnimationFrames . AnimationFrames specify the
values of the dynamic fields of updateable nodes that are being animated in BIFS-Anim streams. An
AnimationFrame contains the new values of all animated parameters at a specified time, unless if it is specified
that, for some frames, these parameters are not sent. The parameters can be sent in Intra (the absolute value is
sent) and Predictive modes (the difference between the current and previous values is sent).

Animation parameters can be applied to any eventln or exposedField of any updateable node of a ségne which has
an assigngd animation method (see Annex H).

NOTE — S¢me node tables in Annex H contain an eventln or exposedField that has an animation method but fof which there is
no associated dynID . This is the case when only one exposedField or eventln in a node has afcanimation njethod. In such
cases, it is jot necessary for the field to have a dynID since the terminal can assume that BIFS$Anim animationq for this type of
node refer tp the only dynamic field of the node.
The types pf dynamic fields are:

— SFInt34/MFInt32

— SFFloaf/MFFloat

— SFRotation/MFRotation

— SFColof/MFColor

— SFVeci3fIMFVec?2f

— SFVec3f/IMFVec3f

9.2.3.4 Order of application of modifications to the scene

Where mofifications to the scene graph; resulting from the use of more than one of the permitted njethods, must
be applied|simultaneously, the following order of application shall be observed:

1. BIFS-Apim
2. Condifional node
3. BIFS-Cpmmand

9.3 BIFpH Syntax

9.3.1 Introduction

BIFS data consists of two distinct elements in the multiplexed bitstream. Terminal configuration information is first
sent in the object descriptor. The remaining BIFS information is sent in a separate elementary stream.

The syntax and semantics of the terminal configuration is described in 9.3.5.2. Two different kinds of session can
take place: a BIFS-Command session or a BIFS-Anim session.

If the session is a BIFS-Command session, a sequence of commands to modify the scene is sent. The syntax and
semantics of these commands are described in 9.3.6.

If the session is a BIFS-Anim session, a sequence of animation data to change the values of specific fields in the
scene is sent. The syntax and semantics of this session is described in 9.3.8.

© ISO/IEC 1999 — All rights reserved 67

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.2 Decoding tables, data structures and associated functions

9.3.2.1 Function of decoding tables, data structures and functions

This subclause describes tables and data structures used to contain necessary data, along with the associated
functions, for decoding the BIFS elementary streams. These are not syntax elements but are descriptions, often in
code or pseudo-code, of data and functions that are required to decode the bitstream. The tables and data
structures may be known a priori at the terminal or may be constructed from data parsed from the bitstream. They
are referenced throughout the syntax.

NOTE — The code or pseudo-code for the non-syntax data elements is purely notational and does not imply a normative

requirement to

use these code fragments in implementations.

Coding of ind
anode are p
9.3.2.2 Nod

Identification
accepts nodg
data type tab

A field of typg
are provided

Identification
always reser

EXAMPLE —

vidual nodes and field values is very regular, and follows a depth-first order (children or.sy
esent in the bitstream before its siblings).

e Data Type Tables

of nodes and fields within a BIFS scene graph is context-dependent. Each.field of a BIFS
s as fields can only accept a specific set of nodes. Each of these sets’ef nodes is stored
e and is referenced by a node data type (NDT).

n Annex H and identify the various nodes and node types they-contain.

of a particular node depends on the context of the NDT ‘specified for its parent field. The
ed for future extensions.

\nchor is identified by the 5-bit code 0b0000.1 when'thé context of its parent’s field is SF2DNode,

7-bit code 0b0(00.001 is used when the context of its parent’s field<is’SFWorldNode.

b-nodes of

node that
in a node

SFNode is fully described by its NDT. Each node belongs to gne.or more NDT tables. These tables

value O is

Whereas the

9.3.2.3 Node Coding Tables and field indexing

The syntactic|description of fields is context-dependent. For a given node, its fields are indexed using a ¢ode called
a fieldID . This fieldID is not unique for each field of a node but varies according to the “mode” i which the
field is referepced. There are five modes in which a field may be referenced and, thus, five types of fieldlID . For
each field of ¢ach node, the binary values ©f‘the fieldiIDs for each mode are defined in the node coding tables.
deflD

The deflDs [refer to the fieldIDs «-\for those fields that may have a value when nodes are declared. They refer to
fields of type pxposedField and'field. This indexing scheme is further referred to as the “def” mode.

inlD

The inIDs rgfer to thefieldIDs for those events and fields that can be modified from outside the mode. They
refer to fields|of type exposedField and eventin types. This indexing scheme is further referred to as the {in” mode.
outlD

The outlDs ‘'refer-to-the—fietcibs for-those—events—and-fields—thatcan—be ottptt from—thenode—H ey refer to
fields of type exposedField and eventOut types. This indexing scheme is further referred to as the “out” mode.
dyniD

The dynIDs refer to the fieldIDs for those fields that can be animated using the BIFS-Anim scheme. They refer
to a subset of the fields designated by inIDs . This indexing scheme is further referred to as the “dyn” mode.

alllb

The alllDs refer to all events and fields of the node. That is, there is an alllD for each field of a node. This

indexing scheme is further referred to as the “all” mode.

The length of each of the fieldID

node.

68

© ISO/IEC 1999 — All ri

types for each node depends on the number of fields of that type for the given

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

EXAMPLE — The AnimationStream node has four fields of type defID. Therefore, three bits are required to code the

deflDs for this node. The Appearance node , however, has just three fields of type deflD. Therefore, two bits are sufficient
to code the deflDs for this node.

9.3.2.4 BIFSConfig

This data structure is a global data structure referred to in every BIFS access unit. The data contained in the
BIFSConfig data structure is transmitted in the syntax element of the same name (see 9.3.5.2).

class BIFSConfig extends DecoderSpecificinfo :
bit(8) tag=DecSpecificinfoTag{

int nodelDbits; The number of bits used to encode the nodelDs .
int routglDbit; The number of bits used to encode the routelDs
boolean| randomAccess; The randomAccess boolean is set in the

BIFSConfig to distinguish between BIFS-Anim
elementary streams in which support random access
at any intra frame, and those where random access
may not be possible at all intra frames. In the-latter
case, greater compression efficiency may be \@chieved
because a given intra frame may re-usg- quantization
settings and statistics from the previous-intra frame.
AnimatignMask animMask; The AnimationMask used for BIES:Anim

9.3.2.5 AnimationMask

The AnimationMask structure contains all the relevant information to describe a BIFS-Anim gession. It is

constructedl, upon receipt of the BIFSConfig syntax element, during the configuration of the BIFS [decoder, and
updated fof every received AnimationFrame

Class AnimationMask {

int numNodes; The number of nodes to be animated

NodeDafa animNode[numNodes]; The array of animated nodes.

boolean| isintra; The status of the current frame: intra if isintra is true,
predictive otherwise.

boolean| isActive[numNodes]; The mask of active animated node for the currenf frame.

If the node is not animated in the current frame, the
boolean shall be false.

9.3.2.6 NodeData

This data dtructure.s-built to decode the relevant information for one node. It is created from the node|coding tables
in Annex H. The following functions support relevant operations on this data structure:

NodeData MakeNaode(int nadeType)

This function creates a NodeData structure from the node coding table matching the given nodeType .

NodeData GetNodeFromID (int nodelD)

This function returns the NodeData structure matching the given nodelD .

class NodeData {

int nodeType; The nodeType of the node.

FieldData field[]; The fields of this node whose construction is described below.
This array is indexed in “all” mode.

boolean isAnimField[]; The mask of animated fields for the entire BIFS-Anim session,

indexed in “dyn” mode. This array is only used in BIFS-Anim.

© ISO/IEC 1999 — All rights reserved 69

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The following data describes the indexing of the fields in “in”,
“out”, “def”, “dyn” and “all” modes

int nDEFbits; The number of bits used for “def” field codes (the width of the
codewords in the 2™ column of the node coding tables).

int nINbits; The number of bits used for “in” field codes (the width of the
codewords in the 3" column of the node coding tables).

int nOUTDbits; The number of bits used for “out” field codes (the width of the
codewords in the 4™ column of the node coding tables).

int numDEFfields; The number of “def” fields available for this node

int numDYNfields; The number of “dyn” fields available for this node.

int in2allf]; T e ds of eventins—and-—exposedFietds i att*Tode, inmdexed
with the ids in “in” mode.

int def2allf); The ids of fields and exposedFields in “all” mode, indexed |with

the ids in “def” mode.
The ids of dynamic fields in “all” mode, indexed with the ids in
“dyn” mode.

int dyn2alll];

9.3.2.7 FieldData

This data structure is built to decode the relevant information for one field. At\is’ created from the field's ¢ntry in the
relevant nodq coding table (see Annex H).

Class FieldData {

int fieldTyge; The type of the figld)(e.g., SFInt32Type). This is given by
the “Field Type™“column of the node coding table for [the
node to which\it belongs.
int quantType; The type of quantization used for the field. This is given| by
the “Qucelumn of the node coding table of the nodd to
which.it belongs. Types refer to Table 17 in 9.3.3.1.1.
int animType; The&’animation method for the field. This is given by the ['A”
column of the node coding table. Types refer to animation
type in Table 23 in 9.3.3.2.1.
boolean ugeEfficientCoding; Set to true if the efficient coding is to be used. This valug is
FALSE by default. If there is a Iqcal
QuantizationParameter node this value is the same
as its useEfficientCoding field.

The following data structures are used in the quantization

process:
FieldCodingTable fct; This field is determined from the node coding table|as
o described in 9.3.2.9.
AnimFieldQP aqp; This field is only used in BIFS-Anim. It references|an
AnimFieldQP stucture described in 9.3.2.10
QuantizationParameter Igp; This field points to the local QuantizationParameter
node.
boolean isQuantized; Set to true if the corresponding field is quantized, false
_ _ otherwise.
int nbBits; The number of bits used for the quantization of the field.
float floatMin(]; The minimum bounds for the quantization of vector fields.

These values are obtained from the FieldCodingTable
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
animField (for BIFS-Anim).

float floatMax(]; The maximum bounds for the quantization of vector fields.
These values are obtained from the FieldCodingTable

70 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

int intMin[];

}

ISO/IEC 14496-1:1999(E)

(described in 9.3.2.9)
QuantizationParameter

animField (for BIFS-Anim).
The minimum bounds for integers (SFInt32 and MFI

and the c
node (for BIFS-Scene)

urrent
or the

nt32).

These values are obtained from the FieldCodingTable

(described in 9.3.2.9)
QuantizationParameter
animField (for BIFS-Anim).

and the c
node (for BIFS-Scene)

It is assumed that the following functions are available:

urrent
or the

int isSF(FigdldData field)

Returns 1

int getNbC
Returns th

f the field's fieldType corresponds to a single field and O otherwise.

mp(FieldData field)
e number of quantized components for the field as given below:

Table 15 — Return values of getNbComp

fieldType quantType animType Value-returned
SFFloat any 6,7,8 1

SFInt32 13

SFVec2f any 2,12 2

SFVec3f 9 9

SFVec3f 1=9 1,440 3
SFRotation any 10

The numb
for SFVec}

9.3.2.8 N

The followi

int GetNod
Returns th
node is its

int GetNDT]
Returns th
in the last

int GetNDT]
Returns th
children

br of quantized components is the same as the' natural number of components (three for
f, and so on) except for normals (2) and rotations (3) because of the quantization process

ode Data Type Table Parameters

hg functions provide access to thé_node data type tables (described in Annex H):

bType(int nodeDataType, int<localNodeType)
b nodeType of the node'indexed by localNodeType
ndex in the SFWorldNode NDT Table.

in the node data type table. The ng

nbBits(int nodeDataType)

tolumn of thefirst row of the node data type table).

FromID(int-1d)
e nodeDataType for the children field of the node identified by the nodelD , id . No

indicated ir

SFVec3f, two
see 9.3.3.3).

deType of a

b number of bits.used to index the nodes of the matching node data type table (this numbgr is indicated

des having a
de types are

field-may have restrictions on the types of node that may occupy the field. These no

rthie node senmantics (See 94 anmd tSOAEC 14772-171998 Table 24-31107):

9.3.2.9 Field Coding Table

This data structure contains parameters relating to the quantization of the field. It is created from the field’s entry in
the relevant node coding table (Annex H).

Class FieldCodingTable {

float floatMin([];

float floatMax(];

SFVec3f. These values are obtained from the “[m, M]” column
node coding table.

SFVec3f. These values are obtained from the “[m, M]” column
node coding table.

© ISO/IEC 1999 — All rights reserved

The minimum default bounds for fields of type SFFloat, SFVec2f and

of the

The minimum default bounds for fields of type SFFloat, SFVec2f and

of the

71

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

float intMinf]; The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

float intMax(]; The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

int defaultNbBits; The number of bits used by default for each field. Only used when the

guantization category of the field is 13. For quantization category 13,
the number of bits used for coding is also specified in the node coding
(e.g “13 16" in the node coding table means category 13 with 16 bits).

}

9.3.2.10 AnimFieldQP

This data strdcture contains the necessary quantization parameters and information for the animationof fa field. It is
updated throyghout the BIFS-Anim session.

class AnimFie]dQP {

int animType; The animation method for the field. This is given by thé~'A” column of
the node coding table for each node. Types refer to.animation type in
Table 23in 9.3.3.2.1.
boolean ugeDefault; If this bit is set to TRUE, then the bounds used-in intra mode are thpse
specified in the “[m, M]” column of the node’ ceding table. The default
value is FALSE.

boolean isfrotal; If the field is a multiple field and if this-boolean is set to TRUE, all the
components of the multiple field are, animated.

int numElgment; The number of elements being animated in the field. This is 1 fon all
single fields, and equal to or greater than 1 for multiple fields.

int indexLigt[]; If the field is a multiple field-and if isTotal s false, this is the lisf of

the indices of the animated“SFFields . For instance, if the field is|an
MFField with elements)3,4 and 7 being animated, the valusel of
indexList will be {34,7}.
float]] Imin The minimum values for bounds of the field in intra mode. This valug is
obtained from .the “[m, M]’ column of the node coding table| (if
useDefault is TRUE), the InitialAnimQP (if useDefault is
FALSE and the last intra did not hold any new AnimQP), or [the
AnimQP.

float[] Imax; The maximum values for bounds of the field in intra mode. This vglue
is(gbtained from the “[m, M]” column of the semantics table| (if
useDefault is TRUE), the InitialAnimQP (if useDefault is
FALSE and if the last intra did not hold any new AnimQP), or [the
AnimQP.

int[] Iminin; The minimum value for bounds of variations of integer fields in iptra
mode. This value is obtained from the InitialAnimQP (if the last
intra did not hold any new AnimQP) or AnimQP structure.

int[] Pmin; The minimum value for bounds of variations of the field in predicfive
mode. This value is obtained from the InitialAnimQP (if the last
intra did not hold any new AnimQP) or AnimQP.

int INDbBits; The number of bits used in intra mode for the field. This value is
obtained from the InitialAnimQP or AnimQP.

int PNDbBits; The number of bits used in predictive mode for the field. This value is

obtained from the InitialAnimQP (if the last intra did not hold any
new AnimQP) or AnimQP structure.

}

It is assumed that the following function is available :

int getNbBounds(AnimFieldQP aqgp)
Returns the number of set of bounds matching the animation type (see 9.3.2.3), as follows :

72 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 16 - Return values of getNbBounds

agp.animType value
returned

4,6,7,8 1

9,10

11,12,13

2 2

1 3

Note that only Position2D and Position3D have specific sets of bounds for each of their com

ponents. The

number off bounds is also the number of independent models used in predictive mode during-tHe BIFS-Anim
session.
9.3.3 Qyantization
In BIFS sgenes, the values of the fields may be quantized. BIFS-Anim data is always.guantized. This subclause
describes [this quantization process. A number of parameters control the quantization of a field] Here, these
parameters are used to construct a notational data structure called FieldData . In this subclause, thg semantics of
how to determine these parameters for BIFS scenes and BIFS-Anim are first described, followed by a|description of
the actual fjuantization process.
9.3.3.1 Quantization of BIFS scenes
9.3.3.1.1 [Quantization categories
Single fields are coded according to the type of the field. The fields have a default syntax that spgcifies a non-
guantized encoding. When quantization is used, the quantization parameters are obtained from a|special node
called QuantizationParameter . The following quantization categories are specified, providing suitable
guantizatign procedures for the various types of quantities represented by the various fields of the BIFS nodes.
Table 17 €Quantization Categories

Category) |Description

0 None

1 3D position

2 2D positions

3 Drawing order

4 SFColor

5 Texture Coordinate

6 Angle

7 Scale

8 Interpolator keys

9 Normals

10 Rotafions

11 Object Size 3D (1)

12 Object Size 2D (2)

13 Linear Scalar Quantization

14 CoordIndex

15 Reserved
Each field that may be quantized is assigned to one of the quantization categories (see Annex H). Along with
guantization parameters, minimum and maximum values are specified for each field of each node.

© ISO/IEC 1999 — All rights reserved

73

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.3.1.2 Determining the quantization parameters for a given field

The scope of quantization is constrained to a single BIFS access unit. A field is quantized when:

— The field is of type SFInt32, SFFloat, SFRotation, SFVec2f or SFVec3f.

— The quantization category of the field is not 0.

— The node to which the field belongs has a QuantizationParameter (see 9.4.2.77) node in its context

— The quantization for this type of field is activated (by setting the corresponding boolean to TRUE in the
QuantizationParameter nade

The isQuantized , nbBits, floatMin, floatMax and intMin fields of the FieldData strueture pertain to
the quantization of the field. The values of these fields are determined from the local QuantizationPafameter
(Igp) and thg FieldCodingTable (fct) stored in the FieldData . This is done in the following way:
isQuantized
isQuantized | is setto true when the three following conditions are met :

— Igp!=0 (there is a QuantizationParameter node in the scope of thefield)

— quantType !=0 (the field value is of a type that may be quantized), ‘and

— the followiphg condition is met for the relevant quantization type:

Table 18 - Condition for setting. . \\isQuantized to true

quantType Condition

1 Igp.position3DQuant == TRUE
2 Igp.position2DQuant == TRUE
3 Igp-drawOrderQuant == TRUE
4 Igp.colorQuant == TRUE
5 Igp.textureCoordinateQuant == TRUE

6 Igp.angleQuant == TRUE
7 Igp.scaleQuant == TRUE
8 Igp.keyQuant == TRUE
9 Igp.normalQuant == TRUE
10 Igp.normalQuant == TRUE
11 Igp.sizeQuant == TRUE
12 Igp.sizeQuant == TRUE
13 Always TRUE

14 Always TRUE

15 Always TRUE

nbBits

In the BIFS scene quantization process, nbBits is set in the following way :

74 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

Table 19 - Value of nbBits

ISO/IEC 14496-1:1999(E)

depending on quantType

quantType

nbBits

Igp.

position3DNbBits

Igp.

position2DNbBits

Igp.

drawOrderNbBits

Igp.

colorNbBits

Igp.

textureCoordinateNbBits

Igp.

angleNbBits

Igp.

scaleNbBits

Igp.

keyNbBits

floatMin[]

Igp.normalNbBits

Iqp.sizeNbBits

fct.defaultNbBits

This value is set according to the number

of

coord field of the node. Let N that number;
then:

nb

where the function Ceil _réturns the
smallest integer greater than-its’argument

points received in the last received

Bits= Ceil(log, (N))

15

0

In the BIFS scene quantization process, floatMin

Table 20 - Value of floatMin

is set inithe following way:

, depending on quantType and fieldType

quantType ieldType flogtMin
1 SFVec3fType gp.position3Dmin
2 SFVec2fType gp.position2Dmin
3 SFFloatType max(fct.min[0],Igp.drawOrderMin)
4 SFFloatFype Ifyp.colorMin
SFColorType gp.colorMin, Igp.colorMin, Igp.colorMin
5 SFVec2fType gp-textureCoordinateMin
6 SEFloatType Max(fct.min[0],Igp.angleMin)
7 SFFloatType Ifgp.scaleMin
SFVec2fType lgp.scaleMin, Igp.scaleMin
SFVec3fType lgp.scaleMin, Igp.scaleMin, Igp.scaleMin
8 SFFloatType Max(fct.min[0],Iqp.keyMin)
9 SFVec3fType D.0
16 SHRetationTyp 6-6
e
11,12 SFFloatType Ifp.sizeMin
SFVec2fType lgp.sizeMin, Igp.sizeMin
SFVec3fType lgp.sizeMin, Igp.sizeMin, Igp.sizeMin
13,14,15 NULL

floatMax(]

In the BIFS scene quantization process, floatMax is set in the following way:

© ISO/IEC 1999 — All rights reserved

75

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 21 - Value of floatMax

, depending on quantType

quantType ieldType flogtMax
1 SFVec3fType gp.position3Dmax
2 SFVec2fType gp.position2Dmax
3 SFFloatType min(fct.max[0],Igp.drawOrderMax)
4 SFFloatType Igp.colorMax
SFColorType gp.colorMax, Igp.colorMax, Igp.colorMax
5 SFVec2fType gp-textureCoordinateMax
6 SFFloatType min(fct.max[0],Igp.angleMax)
7 SFFloatType lgp.scaleMax
SFVec2fType Igp.scaleMax, Igp.scaleMax
SFVec3fType lgp.scaleMax, Igp.scaleMax, Igp.scaleMax
8 SFFloatType min(fct.max[0],Igp.keyMax)
9 SFVec3fType 1.0
10 SFRotationType 1|0
11§12 SFFloatType Ifgp.sizeMax
SFVec2fType Igp.sizeMax, Igp.sizeMax
SFVec3fType lgp.sizeMax, Igp.sizeMax, lqgp.sizeMax
13)14,15 NULL
intMin[]
In the BIFS s¢ene quantization process, intMin is set in the following way:

Table 22 - Value of intMin

, depending on quantType

quantType ntMin
1,2,3,4,5,6,7,8 NULL
9,10,11,12

13,14 fct.intMin[0]
15 NULL

9.3.3.2 Quantization of BIFS-Anim

93321 A

The fields are

himation Categories

grouped in thevfollowing categories for animation:

76

© ISO/IEC 1999 — All rights reserved

and fieldType

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 23 — Animation Categories

Category Description
0 None
1 Position 3D
2 Positions 2D
3 Reserved
4 Color
5 Reserved
6 Angle
Z Elaat
8 BoundFloat
9 Normals
10 Rotation
11 Size 3D
12 Size 2D
13 Integer
14 Reserved
15 Reserved
9.3.3.2.2 | Determining the quantization parameters for a given field
The isQuantized , nbBits, floatMin, floatMax and intMin fields of the FieldData strucfure pertain to
the quantization of the field. The values of these fields are determined from the local AnimFieldQP {agp) and the
FieldCodingTable (fct) stored in the FieldData . This.s*done in the following way:
isQuantizefd
In the BIFS-Anim quantization process, isQuantized™ is always TRUE.
nbBits
In the BIFS-Anim quantization process;'nbBits is set in the following way :
Table 24 - Value of nbBits , depending on animType
animType nbBits
1,2,4,6,7,8,9 animType.INbBits
10,11,12,13
floatMin[]
|I’1 the B”:f.. 'AI I;III yudai It;Lat;UII MITULT OO, ﬂuatrvﬂll ;D act ;II thc fU”UVViI gy vwday.

© ISO/IEC 1999 — All rights reserved

77

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 25 - Value of floatMin , depending on animType

animType agp.useDefau floatMin
It

4 Color true ct.min[0], fct.min[0], fct.min[O]
false agp.IMin[0], agp.IMin[0],

aqgp.IMin[0]

8 BoundFloat true ct.min[0]
false aqp.IMin[0]

1 Position false agp.IMin

3D
2 Position false aqp.IMin
2D
11 Size 3D false aqp.IMin[0], agp.IMin[0]
12 Size 2D false agp.IMin[0], aqgp.IMin[O}
agp.IMin[0]

7 Float fialse agp.IMin[0]

6 Angle false 0.0

9 Normal

10 Rotation

13 Integer false NULL

1411 Reseved NULL

5

floatMax([]

In the BIFS-Anim quantization process, floatMax is set in thefollowing way:

Table 26 - Value of floatMax " , depending on animType

animType agp.useDefau floatMax
It
4 Color true ct.max[0], fct.max[0], fct.max[0]
false agp.IMax[0], aqp.IMax[0], agp.IMax[0]
8 BoundFloat true ct.max|[0]
false aqgp.IMax|[0]
1 Position false aqp.IMax
3D
2 Position false aqp.IMax
2D
11 Size J3D false agp.IMax[0], agp.IMax[0]
12 Size 2D false agip.IMax[0], agp.IMax[0], agp.IMax[0]
7 Float false agp.IMax|[0]
6 Angte fatse 2P
9 Normal false 1.0
10 Rotation
13 Integer false NULL
14,1 Reseved NULL
5

intMin(]

In the BIFS-Anim quantization process, intMax is set in the following way:

78 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 27 - Value of intMin , depending on animType

animType intMin
1,2,4,6,7,8 NULL
9,10,11,12

13 agp.Iminint[0]
14,15 NULL

9.3.3.3 Quantization process

Let V, (t) be the value decoded from the bitstream at an instant t. Then, the inverse-quantized value at time tis:

v(t) = Ianuan{vq (t))
The linear guantization and inverse gquantization are:

int quantizg (float Vmin, float Vmax, float v, int Nb)

V-V,
which retufns v, = ——mn_ (2N _q)
v~V

max min

float invQuantize (float Vmin,float Vmax,int vq, int Nb)

v=V_ +vV Vmax _Vmin
. min q 2max(Nb,1) 1
which retufns -

If isQuantized s true, the quantization/inverse quantization process is the following :

Table 28 - Quantization and inverse quantization process

quan{Type animType Quantization/Inverse Quantization Process
1,213,4,5 1,24 For each component of the vector, the float quantization is applied:
67,8 . . - T .
1112 6.78 Vg [i1 = quantizefloatMin[i], floatMaxi], v[i], nbBits)
11,12 For the inverse quantization:

V[i] = invQuantizefloatMin[i], floatMaxi], V,4[i], nbBits)

9110 9,10 For normals and rotations, the quantization method is as follows.

Normals are first renormalized :

n y n
0= —F"o—— Ml=—fp—on—-oo, V2=—p——% >
YN +n+n, YN +n,S+n, Yn“+n“+n,

Rotations (axis N, angle «) are first written as quaternions :

n, . o Ny a _n, . g
\/[O]:cos(%) v[l]:ﬂ.sm(a) v[2]_”ﬁ”.sm(2) v[3]_”ﬁ”.sm(

r
4

The number of reduced components is defined to be N: 2 for normals, and
3 for rotations. Note that V is then of dimension N+1. The compression
and quantization process is the same for both :

© ISO/IEC 1999 — All rights reserved 79

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

80

quantType

animType

Quantization/Inverse Quantization Process

The orientation K of the unit vector V is determined by the largest
component in absolute value: k:argMaX{V[i]D. This is an integer
between 0 and N that is encoded using two bits.

The direction of the unit vector V is 1 or —1 and is determined by the sign
of the component k] .Note that this value is not written for rotations

(because of the properties of quaternions).

The N components of the compressed vector are computed by mgpping

VK]

i
the square on the unit sphere {V 0< M Sl} into a Nndimengional

square :

v,[i] =itanl(v[(i il k+3[r;]od(N +1)]j '=0,...,N
T

If nbBits=0, the process is complete) Otherwise, each component pf V,
(which lies between —1 and 1) is quantized as a signed integer as follpws :

vglil = 2" + quantizéfloatMin[0], floatMax{ 0], v, [i], nbBits—1)

The value encoded in‘the bitstream is

.nbBits-1 .
2™ 4y [

The decading process is the following :

Thewalue decoded from the stream is converted to a signed value

; .nbBits-1
Vq ['] = Vdecoded ™ 2

The inverse quantization is performed

V¢[i] = invQuantizefloatMin[0], floatMin[0], v, [i], nbBits—1)

After extracting the orientation (k) and direction (dir) , the inverse mapping
can be performed :

1

\/1+ %tan il [I]

{[K] = dir.

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

quantType

animType

Quantization/Inverse Quantization Process

7 7i]

(i +k+1) mod(N +1)] = tar(Tjﬁ[k] i=0,..,N

If the object is a rotation, Vcan be either used directly or converted back

from a quaternion to a SFRotation :

a = 2.cos ™ (V[0]) nx=\7[—1]l noo_ A .‘7[3]

ittt 2y it 2 st/ 2)

J;I I\M

-5

ol
L=l

The entire compression process therefore consists in projecting a yector of
the unit sphere onto the face of a cube inscribed inside the sphere, and
transmitting separately the face's index (orientation;”x, y or 7 — and
direction : + or -) and the coordinates on the face.

EXAMPLE — How two different normals are encoded in the case nbBits=3. The
compensation process (described in 9.3.4) is alsd illustrated.

x (ori=0)

Ny,
>

1
[

[

[

[

[

[

i

[

4
2

7

| inv=+1, defta=[+1,+2] |

Ve

J

/o'rizo, dir=+1vq=[-2,+2]
A
®

[J
z (ori=2) ‘ori:2, dir=+1,vg=[+2,-1] ‘

Note that two guaternions that lie in opposite directions on the unit sphere

actually represent the same rotation. This is the reason why the direction is
not coded for rotations.

13,14

13

Fobrs_integers, the quantized value is the integer shifted to fit the interval [O,
2n Its _1]

Vv, =Vv-intMin
The inverse quantization process in then :

v =intMin + v,

© ISO/IEC 1999 — All rights reserved

81

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

quantType animType Quantization/Inverse Quantization Process
fieldType For SFIimage types, the width and height of the image are sent.
numComponents defines the image type. The following four types are
SFIimage enabled:
If the value is ‘00’, then a grey scale image is defined.
If the value is ‘01’, a grey scale with alpha channel is used.
If the value is ‘10’, then an RGB image is used.
e vatue st themam RG B mage wittratpia charmmet s used]
9.3.4 Compensation process

This subclaus
In other word
value. For ve
care has to
sessions.

Let v; be th
addition. The

Vé and V° a
A quantized

orientation ar

A delta value
whose value

The size of th

The result VS

e describes the mechanism used to compensate a quantized value for a given'‘FieldData
s, how to add a delta to a quantized value to yield the result of addition,which is anothe
Ctorial types, this is simply an addition component by component, but for hgrmals and rotati
be taken when performing this addition. This process is used in(predictive mode in

e initial quantized value, v’ be the delta value and Vs be-the quantized value resultin
general inverse compensation process is :

2 _ Ny,0
v, = AddDelty,v")
re interpreted as follows:

value Vq contains an array of integers;vq[]. Additionally, for normals and rotations, V; d
d, for normals only, a direction (see 9.3.3.3).

s-1orl.

ese arrays is that returned by the function getNbComp(field) , as described in 9.3.2.7.

is then computed in the following way :

structure.
quantized
bNns special
BIFS-Anim

g from the

ontains an

v° contains an array of integers vDelta[]. Additionnally, for normals, it contains an integer inverse

82

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 29 - Compensation process

animType

Compensation Process

1,2,4,6,7,8

11,12,13

The components of V02| are:
vg2[i] = vql[i] + vDelta]i]

9,10

The addition is first performed component by component and stored in a temporary array:
vql[i] + vDeltali].
- 2max(0,anits—l) -1

vqTemp[i] =
Let scale

Let Nthe number of reduced components (2 for normals, 3 for rotations)

There are themm three Cases are to De CoNnSidered:

For every index
|1

|vgTempli] < scale

Vg is defined by,

vQ2[i] =

orientation2= orientationl

direction2

vqTempli]

= directionl * inverse

There is one
and only one
index Kk such
that

|vgTemp[k] > scak

q

Letinv =1if vqTemplk]>= 0-and -1 else

Let dOri =k+1

The components of vg2 are computed as follows

V2 is rescaled as if gliding on the faces of the mapping cube.

0<i< N-dOri

vg2[i]

= inv*vqTemp[(i+dOri) mod N]

i=N-dOd

vg2[i]

= inv*2*scale—vqTemp[dOri—1]

N-dOri<i<N

vg2[i]

inv*vgTemp[(i+dOri-1) mod N]

ofientation2 = (orientationl + dOri) mod (N+1)

direction2

= directionl * inverse * inv

There are
several indices
k‘such that

|vgTemp[k] > scak

The result is undefined

9.3.5

9.35.1

Overview

BIFS Configuration

This subclause describes the terminal configuration for the BIFS elementary stream. It is encapsulated within the

specificlnfo

DecoderConfigDescriptor

fields of the general DecoderSpecificinfo
that is carried in ES_Descriptors

structure (see 8.6.6), which is contained in the
. If the session is a BIFS-Anim session, the

BIFS configuration contains some specific information to describe the animation mask, which specifies the
elements of the scene to be animated.

© ISO/IEC 1999 — All rights reserved

83

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.5.2

BIFSConfig

9.3.5.2.1 Syntax

class BIFSConfig extends DecoderSpecificinfo :

bit(8) tag=DecSpecificinfoTag {

unsigned int(5) nodelDbits;
unsigned int(5) routelDbits;
bit(1) isCommandStream;
ifisCommandStream) {

bit(1) p
bit(1) h

ixelMetric;
asSize;

if(hasSize) {

unsi

gned int(16) pixelWidth;

uns

}

else {
bit(1)
Animati
}
}

93522 S

BIFSConfig
specificlnfo
DecoderConf

The paramet
the number o

The boolean
stream. If the
contained in

— The boole|

— The boolg|
pixelWidth
dimension

If isCommangd

— The randd
to perform
arithmetic
parameter
be more e

ned MTI6) PIREHegnT;

randomAccess;
bnMask animMask();

bmantics

is the terminal configuration for the BIFS elementary stream. It is encapsulated
fields of the general DecoderSpecificinfo structure~(see 8.6.6), which is contal
gDescriptor that is carried in ES_Descriptors

br nodelDbits sets the number of bits used to represent nodelDs . Similarly, routelDb
f bits used to represent ROUTEIDs

isCommandStream identifies whether the BIFS-stream is a BIFS-Command stream or a
BIFS-Command stream is selected (isCommandStream set to TRUE), the following para
BIFSConfig

AN isPixelMetric indicates whether'pixel metrics or meter metrics are used.

an hasSize indicates whether, a*desired scene size (in pixels) is specified. If hasSize is
and pixelHeight provide to the receiving terminal the desired horizontal al

s (in pixels) of the scene.

Stream is false, thesfallowing information is contained in BIFSConfig

mAccess bopleah signals the mode of the BIFS-Anim stream. If the bit is set to TRUE, it
random access in the BIFS-Anim stream at any intra frame. At each intra frame, the stati
decodershall be reset. New quantization parameters shall be coded in the bistream or
s sent in‘the BIFS-Anim mask are used. If the randomAccess bit is set to FALSE, comprs
fficient; but random access may not be possible at each intra frame. See 9.3.8 for detailed §

within the
ned in the

ts sets

BIFS-Anim
meters are

set to true,
hd vertical

is possible
Stics of the
the default
bSSion may
emantics.

— The Anim&

tionhMacl cnacifiac tha animatinn naramatarc nf thao RICS A nim alamantary ctragm
HEHYaSK SpecHHesS e atohpataheters-oteero-AH-eie e htaty-Saeath-

9.3.5.3 AnimationMask

9.3.5.3.1 Syntax

class AnimationMask() {

int numNodes

do {

0;

ElementaryMask elemMask();
numNodes++;

bit(1)
} while (m

84

moreMasks;
oreMasks);

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.5.3.2 Semantics

The AnimationMask

help decode their values. It consists of a list of ElementaryMasks

If the boolean moreMasks is TRUE, another ElementaryMask

shall be present.

9.3.5.4 Elementary mask

9.3.54.1 Syntax

Class ElementaryMask() {

bit(BIFS
Nodd
switch
case|
breal
case|
breal
case|
breal
default:
Initial
}

}

9.3.5.4.2
The Eleme
The intege

If the node

NOTE — T
syntax switg

If any othe
9.355 |

9.3.5.5.1
class Initial
for(i=0;
bit(1

int i;
for(i=0;

Config.nodelDbits) nodelD;
UpdateField node
hode.nodeType) {

= GetNodeFromID(nodelD);
FaceType:
’BodyType:

’IndexedFaceSetZDType:

FieldsMask initMask(node);

Semantics

ntaryMask describes how to animate the elements,of'a node.

 nodelD identifies the animated node.

s nodeType is FDP, BDP or IndexedFaceSet2D , no further information is expected.

he BDP node ("case BodyType") istnot specified in ISO/IEC 14496 nor in ISO/IEC 14772-1:
h has been provided to allow supportfor future extensions.

case, an InitialFieldsMask shall be present.

nitialFieldsMask

Syntax

FieldsMask(NodeUpdateField node) {

<node.numDYNfields; i++)
node.isAnimField[i];

<node,numDYNfields; i++) {

if (n

=

bdedsAnimField[i])

describes the nodes and fields to be animated, along with the quantization parameters to

998 [10]. This

IdNata fiald — o~ da SalAlA~AA Ao
criooata cTan TOTCTITCTO Ot Oy Tz

AnimFieldQP agp = field.aqp;

if

(lisSF(field) {
bit(1) agp.isTotal;
if (lagp.isTotal) {
unsigned int(5) nbBits;
do {
int(nbBits) aqp.indexListlagp.numElement++];
bit(1) morelndices;
} while (morelndices);

}
InitialAnimQP QPJi](field.agp);

}
}
}

© ISO/IEC 1999 — All rights reserved

85

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.5.5.2 Semantics
The InitialFieldsMask specifies which fields of a given node are animated.
The array of booleans isAnimField describes whether the fields (indexed with dynIDs) are animated.

If a multiple field is animated and if the boolean isTotal is TRUE, all the of the field’s individual elements are
animated.

If a multiple field is animated and if the boolean isTotal is FALSE, the indices of the animated individual field are
sent and stored in aqgp.indexList[] . The number of bits used to encode them is specified by nbBits . If the
b00|ean more |ndiges 'S FRL |E, anr\thnr mndex ehall ha prncnht_

An InitialAnimQP shall then be expected.
9.3.5.6 InitiplAnimQP

9.3.5.6.1 Syntax

InitialAnimQP(fnimFieldQP agp) {

aqgp.useDefault=FALSE;
switch(agpjanimType) {

casg¢ 4: /I Color
cas¢ 8: /I BoundFloats
bit(1) aqgp.useDefault

casg¢ 1: /I Position 3D
cas¢ 2: /I Position 2D
cas¢ 11: /I Size 3D
casg¢ 12: /Il Size 2D
casg¢ 7: /I Floats

if (lagp.useDefault) {

for (i=0;i<getNbBounds(agp);i++) {
bit(1) useEfficientCoding
GenericFloat agp.Imin[i](useEfficientCoding);

}
for (i=0;i<getNbBounds(agp);i++) {
bit(1) useEfficientCoding
GenericFloat agp.Imax]i](useEfficientCoding);
}
3
break;
cas¢ 13: /I Integers
int(32) agp-Iminint[0];
bredk;
}
unsigned int(5) agp.INbBits;

for (i=0;i<getiNbBoundstaqp)i++—
int(INbBits+1) vq
agp.Pmin[i] = vg-2*aqp.INbBits;
}

unsigned int(4) agp.PNbBits;
}
9.3.5.6.2 Semantics

The InitialAnimQP specifies the field’s default quantization parameters.

86 © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The quantization bounds are first coded. For animTypes that have default finite bounds (Colors , BoundFloats),
the default bounds of the field coding tables data structures can optionally be used by setting useDefautBounds

to TRUE. For all other animTypes , this boolean is set to FALSE. For all vectorial animTypes (Position3D
Position2D
guantization
usekEfficientCoding
animTypes Angle

The number of bits used in the quantization process, aqp.INbBits

, Size3D , Size2D , Float , BoundFloat , Color), if useDefaultBounds is FALSE, the
bounds aqgp.Imin[] and agp.Imax[] are coded. Depending on the value of
, these bounds are coded using GenericFloat as floats of 32 bits or less. For the

, Normal and Rotation , no quantization bounds are coded.

, is then coded. The quantization

9.3.3.3) is used in intra mode only.

The numb
9.3.4) is ug

9.3.6 BI

9.3.6.1 (

This subcl
and deletid
command
deletion, o

9.3.6.2 (

9.3.6.2.1

class Comr
do {

Com

bit(1

} while

}
9.3.6.2.2

A CommahdFrame is a collection of BIFS-Commands, and corresponds to one access unit. A

commands

current ong.

9.3.6.3 (
9.3.6.3.1

class Comr

integer using INbBits +1 bits and has the value PMin +2

INbBits

coded. Pm

INbBits

br of bits used for the predictive values, aqp.PNbBits
ed in predictive mode only.

, iIs then coded. The compensation

S Command Syntax
verview

huse describes the commands that can be sent to act on the scene. They allow insertion,
n of elements of the scene (new scenes, nodes, fields). AIl'BIFS information is encapsu
frames. Each frame may contain commands that perform<a number of operations, such
modification of scene nodes, their fields, or routes.

ommand Frame
Syntax
handFrame() {
mand command();

continue;
(continue);

Semantics

may be sent. Thé boolean value continue

h

ommand
Syntax
hand() {

process (see

dictive mode,
coded as an

process (see

modification,
lated in BIFS
as insertion,

sequence of

, when TRUE, indicates that another commad follows the

bit(2) co

switch (
case O:

ol
Ce,

code) {

InsertionCommand insert();
break;

case 1:

DeletionCommand delete();
break;

case 2:

ReplacementCommand replace();
break;

case 3:

SceneReplaceCommand sceneReplace();
break;

© ISO/IEC 1999 — All rights reserved

87

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.6.3.2 Semantics

For each Command the 2-bit flag, code , signals one of the four basic commands: insertion, deletion, replacement,
and scene replacement.

9.3.6.4 Insertion Command
9.3.6.4.1 Syntax

class InsertionCommand() {
bit(2) parameterType ;
switch parameterType {
case O:
Nodelnsgertion nodelnsert();
break;
case 2:
IndexedValuelnsertion idxInsert();
break;
case 3:
ROUTHInsertion ROUTEInsert();
break ;

}

}

9.3.6.4.2 Se¢mantics
There are four basic insertion commands, signaled by the 2-bit flag parameterType
If parameterTlype is 0, a Nodelnsertion is expected.
If parameterTlype is 2, an IndexedValuelnsertion is expected.
If parameterTlype is 3, a ROUTElInsertion is expected:
9.3.6.5 Node Insertion
9.3.6.5.1 Syntax
class Nodelnsertion() {

bit(BIFSCopfig.nodelDbits) nodelD ;

int ndt3GetNDTFromID(nodelD);

bit(2) inseftionPosition;

switch (insgertionPosition) {

case O: /Il insertion at a specified position

bit (8) |position;
SFNod¢ node(ndt);

break;
case 2: [Jinsertion at the beginning of the field
SFNod¢ ‘néde(ndt);
break;
case 3: /I insertion at the end of the field
SFNode node(ndt);
break;

}
}

9.3.6.5.2 Semantics
The insertion of a node may be performed on a node that has an MFNode children field. Inserting a node adds the

node at the desired position in the children multiple field. The command is thus valid only if the node referred to by
nodelD contains a children field of type MFNode.

88 © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

A node may be inserted in the children field of a grouping node. The nodelD of this grouping node is first coded.

The NDT of the inserted node can be determined from the NDT of the children field in which the node is inserted.

The position in the children field where the node shall be inserted, insertionPosition is then coded on two bits :

— If the insertionPosition

— If the insertionPosition

— If the insertionPosition

is 0, the node is inserted at a specified position coded on 8 bits.
is 2, the node is inserted at the beginning of the field.

is 3, the node is inserted at the end of the field.

The node is then coded.
9.3.6.6 IhdexedValue Insertion
9.3.6.6.1 [Syntax
class IndexXedValuelnsertion() {
bit(BIFSConfig.nodelDbits) nodelD;
NodeUppateField node=GetNodeFromID(nodelD);
int(node|nINbits) inID;
bit(2) inpertionPosition;
switch (jnsertionPosition) {
case 0:|// insertion at a specified position
bit (16) position;
SFField value(node.field[node.in2all[inID]]);
break;
case 2: /I insertion at the beginning of the <field
SFField value(node.field[node.in2all[inID]]);
break;
case 3: /I insertion at the end of thexfield
SFField value(node.field[node.in2all[inID]]);
break;
}
}
9.3.6.6.2 [Semantics
The IndexpdValuelnsertion syntax allows the insertion of a new value in a multiple field at the desired
position.
The nodellD of the nodeiin whose field the value is to be inserted is first coded.
The field i which-the value is inserted must be a multiple field type. The field is signaled with an inllp . The inIlD
is parsed lsing.the table for the node type of the node in which the value is inserted. The node|type may be
determined from the nodelD
The position in the children field where the node shall be inserted, insertionPosition , iIs then coded:
— If the insertionPosition is 0, the node is inserted at a specified position coded using 16 bits.
— If the insertionPosition is 2, the node is inserted at the beginning of the field.
— If the insertionPosition is 3, the node is inserted at the end of the field.
The node is then coded.
© ISO/IEC 1999 — All rights reserved 89

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.6.7 ROUTE Insertion
9.3.6.7.1 Syntax

class ROUTEInsertion() {
bit(1) isUpdatable;
if (isUpdatable)
bit(BIFSConfig.routelDbits) routelD;

bit(BIFSConfig.nodelDbits) departureNodelD;

NodeData nodeOUT=GetNodeFromID(departureNodelD);
int(nodeOUT.nOUTbits) departurelD;
bit(BIFSConfig.nodelDbits) arrivalNodelD;

NodeD4qta nodelN=GetNodeFromID(arrivalNodelD);
int(nodelN.hINbits) arrivallD;

}

9.3.6.7.2 Sémantics
The ROUTE |nsertion syntax permits the addition of a new ROUTE in the list of ROUTEs for the current $cene.
A ROUTE is inserted in the list of ROUTES by specifying a new ROUTE.
If the boolear] isUpdatable is TRUE, aroutelD is coded to allow the ROUTE to be referenced.
The nodelD pf the route’s departure, departureNodelD |, is first coded:
The outlD of the departure field in the departure node, departurelB* ,is then coded.
The nodelD pf the route’s arrival, arrivalNodelD , is then coded.
The inID of the arrival field in the arrival node, arrivallD .., is then coded.
9.3.6.8 Delption Command
9.3.6.8.1 Syntax
class DeletionCommand() {
bit(2) parapeterType ;
switch (pafameterType) {
case O:
NodeDgletion nodeDelete();
break ;
case 2:
IndexedValueDeletion~idxDelete();
break ;
case 3:

ROUTHDeletion ROUTEDelete();
break ;

}
}

9.3.6.8.2 Semantics

There are three types of deletion commands, signalled by the 2-bit flag parameterType
If parameterType is 0, a NodeDeletion is expected.

If parameterType is 2, an IndexedValueDeletion is expected.

If parameterType is 3, a ROUTEDeletion is expected.

90 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.6.9 Node Deletion
9.3.6.9.1 Syntax

class NodeDeletion() {
bit(BIFSConfig.nodelDbits) nodelD;
}

9.3.6.9.2 Semantics

The NodeDeletion syntax permits the deletion of a node with a specific nodelD . The node deletion deletes the

node and all its instances, if it was referenced elsewhere in the scene with a USE statement.

The node clieletion is signalled by the nodelD of the node to be deleted. When deleting a node, allig

deleted, aq well as all ROUTEs related to the node or its fields.
9.3.6.10 IndexedValue Deletion

9.3.6.10.1 [Syntax

class IndexedValueDeletion() {
bit(BIFSConfig.nodelDbits) nodelD;
Nod¢Data node=GetNodeFromID(nodelD);
int(node|nINbits) inID;
bit(2) de¢letionPosition;
switch (deletionPosition) {
case 0:|// deletion at a specified position
bit(16) position;
break;
case 2: /I deletion at the beginning of the field
break;
case 3: /I deletion at the end of the field
break;
}

}
9.3.6.10.2 | Semantics

The IndexgdValueDeletion syntax permits the deletion of an element of a multiple value field.

The nodellD of the node to be deleted is first coded.
The inID pf the field to be deleted is then coded.

The positign in the children field from where the value shall be deleted, deletionPosition

— If the inpertionPg@sition is 0, the value at specified position, coded using 16 bits, shall be dele

— If the inpertionPosition is 2, the value at the beginning of the field shall be deleted.

, is then

Ids shall also

coded:

ed.

— If the insertionPosition is 3, the value at the end of the field shall be deleted.

9.3.6.11 ROUTE Deletion

9.3.6.11.1 Syntax

class ROUTEDeletion() {
bit(BIFSConfig.routelDbits) routelD;
}

© ISO/IEC 1999 — All rights reserved

91

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.6.11.2 Semantics

The ROUTEDeletion syntax permits the deletion of a ROUTE with a given routelD from the list of active
ROUTEs.

Deleting a ROUTE is performed by specifying its routelD . This is similar to the deletion of a node.
9.3.6.12 Replacement Command

9.3.6.12.1 Syntax

class ReplacementCommand() {
bit(2) parafeterType ;
switch (pafameterType) {
case O:
NodeRg¢placement nodeReplace();
break;

case 1:
FieldReplacement fieldReplace();
break;

case 2:
IndexedValueReplacement idxReplace();
break ;

case 3:
ROUTHReplacement ROUTEReplace();
break;

}
}

9.3.6.12.2 Sé¢mantics

There are 4 replacement commands, signalled by the'2-bit flag parameterType
If parameterTlype is 0, a NodeReplacement ~is expected.

If parameterTlype is 1, a FieldReplacement is expected.

If parameterTlype is 2, a IndexedValueReplacement is expected.

If parameterTlype is 3, a ROUTEReplacement is expected.

9.3.6.13 Node Replacement

9.3.6.13.1 Syntax

class NodeReplacement() {
bit(BIFSCohfig.nodelDbits) nodelD;

SFNode node(SFWorldNode);

}
9.3.6.13.2 Semantics

The NodeReplacement syntax permits the deletion of an existing node and its replacement with a new node. All
ROUTES pointing to the deleted node as well as any instances of the node created through the USE mechanism
shall be deleted.

The node to be replaced is signalled by its nodelD . The new node is encoded with the SFWorldNode node data

type, which is valid for all BIFS nodes, in order to avoid necessitating the NDT of the replaced node to be
established.

92 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.6.14 Field Replacement
9.3.6.14.1 Syntax

class FieldReplacement() {
bit(BIFSConfig.nodelDbits) nodelD ;
NodeData node = GetNodeFromID(nodelD);
int(node.nINbits) inID;
Field value(node.field[node.in2all[inID]]);

}
9.3.6.14.2 Semantics

This FieldReplacement syntax permits the modification of the value of a field of an existing node| The existing
value shalllbe deleted and replaced with the new value.

The nodellD of the node whose field is to be modified is first coded
The inID pf the field to be modified is then coded

The new figld is then coded

9.3.6.15 IpdexedValueReplacement

9.3.6.15.1 [Syntax

class IndexedValueReplacement() {
bit(BIFSConfig.nodelDbits) nodelD;
Nod¢Data node = GetNodeFromID(nodelD);
int(node|nINbits) inID;
bit(2) replacementPosition;
switch (replacementPosition) {
case 0:|// replacement at a specified position
bit (16) position;
SFField value(node.field[node.in2all[inID]));

break;

case 2:|// replacement at the heginning of the field
SFField value(node.field[node.in2all[intD]]);
break;

case 3:|// replacement at the end of the field
SFField value(node.field[nede.in2all[inID]]);
break;

}
}

9.3.6.15.2 | Sematrities

The Index¢dValueReplacement syntax permits the modification of the value of an element of a [multiple field.
As for any mtitiptefretd—accessitispossibtetoreptaceat-thebeginmingtheendorata—specifiedposition in the
multiple field.

The nodelD of the node whose field is to be modified is first coded

The inID of the field whose value is to be modified is then coded

The position in the children field where value has to be modified, replacementPosition , is then coded:
— If the insertionPosition is 0, the value at specified position, coded using 16 bits, is modified.
— If the insertionPosition is 2, the value at the beginning of the field is modified.

© ISO/IEC 1999 — All rights reserved 93

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

— If the insertionPosition

The new valu

is 3, the value at the end of the field is modified.

e is then coded as a SFField.

9.3.6.16 ROUTE Replacement

9.3.6.16.1 Syntax

class ROUTEReplacement() {
bit(BIFSConfig.routelDbits) routelD;
bit(BIFSConfig.nodelDbits) departureNodelD;
NodeData nodeOUT = GetNodeFromID(nodelD);

int(nodeOU

I LTkt

bit(BIFSCo

NodeD3
int(nodelN.

}
9.3.6.16.2 S

Replacing a A

o -l Nl 4. TmY
I.IIV\JIUII.\J, UCPLAII.UICII.IY
hfig.nodelDbits) arrivalNodelD;
ita nodelN = GetNodeFromID(nodelD);
NINDbits) arrivallD;

bmantics

The routelD | of the ROUTE to be replaced is first coded.
The nodelD pf the new route’s departure, departureNodelD , is then coded.
The outlD of the departure field in the departure node, departurelD¢, ,'is then coded.
The nodelD pf the route’s arrival, arrivalNodelD , is then caded.
The inID of the arrival field in the arrival node, arrivallD _ %S then coded.
9.3.6.17 Scgne ReplaceCommand
9.3.6.17.1 Syntax
class SceneRgeplaceCommand() {
BIFSSceng scene();
}
9.3.6.17.2 Sé¢mantics
Replacing a $cene results infthe entire BIFS scene being replaced with a new BIFSScene scene. Wh
the context ¢f an Inline«.node, this corresponds to replacement of the sub-scene (previously assu
empty). In a BIFS eleméntary stream, the SceneReplacement commands are the only random access
9.3.7 BIFS|Scene
9.3.7.1 BIFSScene

ROUTE deletes the replaced ROUTE and replaces it with the new ROUTE:

en used in
med to be
points.

9.3.7.1.1 Syntax

class BIFSScene() {
bit(8) reserved,;
SFNode nodes(SFTopNode);
bit(1) hasROUTEs;
if (hasROUTES) {
ROUTEs routes();

}
}

94

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.1.2 Semantics
The integer reserved may be used in future extensions. It shall be set to 0.

The BIFSScene structure represents the global scene. A BIFSScene is always associated to a ReplaceScene
BIFS-Command message. The BIFSScene s structured in the following way:

The nodes of the scene are described first as an SFNode. The first node in the scene shall be of type SFTopNode
(see Annex H).

ROUTESs are described after all nodes

All BIFS enes shall hnrJn with a node of type QI:Tnpl\Indn This imlr_\linc that the top node may be one of

Layer2D | OrderedGroup , Group or Layer3D.

9.3.7.2 9FNode
9.3.7.2.1 |Syntax

class SFNdde(int nodeDataType) {
bit(1) isReused ;
if (isRedsed) {
bit(B|FSConfig.nodelDbits) nodelD;
}

else {
bit(GetNDTnbBits(nodeDataType)) localNodeType;
nodgType = GetNodeType(nodeDataType,localNodeType);
bit(1] isUpdateable;
if (isUpdateable) {
bjt(BIFSConfig.nodelDbits) nodelD;
}

bit(1] MaskAccess;
if (MaskAccess) {
MaskNodeDescription mnode(MakeNode(nodeType));

}
else |{

LjstNodeDescription Inode(MakeNode(nodeType));
}

}
}

9.3.7.2.2 |Semantics

The SFNofle syntax representsta generic node. The encoding depends on the context of the parept field of the
node. This|context is described by the parent field's node data type (NDT).

If isReused is TRUE then this node is a reference to another node, identified by its nodelD . This is|equivalent to
the use of the USE(statement in ISO/IEC 14772-1:1998 [10].

If isReusedl ,is.FALSE, then a complete node is provided in the bitstream. This requires that the nodeType be
inferred frgm\the node data type. The node is referenced by its localNodeType in the node data typg table. Then,
this information is converted into the node’s nodeType (e.g. its localNodeType inthe SFWorldNode NDT table).

The isUpdatable flag enables the assignment of a nodelD to the node. This is equivalent to the DEF statement
of ISO/IEC 14772-1:1998 [10].

The node definition follows using either a MaskNodeDescription , or a ListNodeDescription

The nodeType is a number that represents the type of the node. This nodeType is coded using a variable number
of bits for efficiency reasons. The exact type of node may be determined from the nodeType as follows:

1. The data type of the field parsed indicates the node data type. The root node is always of type SFTopNode.

2. From the node data type expected and the total humber of nodes type in the category, the number of bits
representing the nodeType is obtained (this number is given in the node data type tables in Annex H).

© ISO/IEC 1999 — All rights reserved 95

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

3. The nodeType gives the nature of the node to be parsed.

EXAMPLE — The Shape node has 2 fields defined as:

exposedField SFAppearanceNode Appearance NULL
exposedField SFGeometry3DNode geometry NULL

When decoding a Shape node, if the first field is transmitted, a node of type SFAppearanceNode is expected.
The only node with SFAppearanceNode type is the Appearance node, and hence the nodeType can be coded
using 0O bits. When decoding the Appearance node, the following fields can be found:

exposedField SFMaterialNode Material NULL
exposedFigld SFTextureNode texture NULL
exposedFigld SFTextureTransformNode TextureTransform NULL

9.3.7.3 MaskNodeDescription
9.3.7.3.1 Syntax

class MaskNogeDescription(NodeData node) {
for (i=0; iqnode.numDEFfields; i++) {
bit(1) Mask;
if (Mask)
Fielgd value(node.field[node.def2all[i]]);
}
}

9.3.7.3.2 Sémantics

In the MaskNodeDescription , a mask indicates, for each “def’ mode field (those having a defID) gf this node
type, if the figld value is specified. Fields are sent in the ordérindicated in Annex H. The field types are fhus known
and permit the field’s value to be decoded.

9.3.7.4 ListNodeDescription
9.3.7.4.1 Syntax

class ListNodgDescription (NodeData node) ({
bit(1) endHlag;
while (EndFlag){
int(nodq.nDEFbits) fieldRef;
Field vglue(node.field[nodedef2all[i]]);
bit(1) enhdFlag;
}
}

9.3.7.4.2 Sémantics

In the ListNogleDescription , fields are directly addressed by their field reference, fieldRef . The reference is
sent as a deflD—andHtsparsing-depends-onthe-rode e

9.3.7.5 Field

9.3.7.5.1 Syntax

class Field(FieldData field) {
if (isSF(field))
SFField svalue(field);
else
MFField mvalue(field);

96 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.3.7.5.2 Semantics

ISO/IEC 14496-1:1999(E)

A field is encoded according to its type: single (SFField) or multiple (MFField). A multiple field is a collection of

single fields.

9.3.7.6 MFField

9.3.7.6.1 Syntax

class MFField(FieldData field) {

bit(1) reserved;
if (Ireserved) {

bit(1)}—stistBeseription:
if (isListDescription)
MFListDescription [field(field);
else
MFVectorDescription vfield(field);
}

}
9.3.7.6.2 |Semantics

The bit reserved is reserved for future extension. The bit shall be set to 0.

MFField types can be encoded with a list (MFListDescription) or vector (MFVectorDe

description.
9.3.7.7 NIFListDescription

9.3.7.7.1 |Syntax

class MFListDescription(FieldData field) {
bit(1) endFlag;
while (‘¢ndFlag) {
SFField field(field);
bit(1] endFlag;
}
}

9.3.7.7.2 [Semantics

The MFFigld type is encoded as.a list of single fields.
9.3.7.8 NIFVectorDescription

9.3.7.8.1 [Syntax

class MFVectorDescription(FieldData field) {

int(5) NpBits;
int(NbBits)\ ““humberOfFields;

Scription

SFField Tield[numberOTFierds|(field);

}
9.3.7.8.2 Semantics

The MFField type is encoded as a vector of fields whose dimension is specified.

)

The number of bits, NbBits , used to specify the dimension of the vector is first coded. The actual dimension is

then coded as an unsigned integer using NbBits . The fields are then coded in order.

© ISO/IEC 1999 — All rights reserved

97

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.9 SFField
9.3.7.9.1 Syntax

class SFField(FieldData field) {
switch (field.fieldType) {

case SFNodeType:
SFNode nValue(field.fieldType);
break;

case SFBoolType:
SFBool bValue;
bredk;

case SFColorType:
SF olor cValue(field);

bredk;

case SFRotationType:
SFHotation rValue(field);
bredk;

case SFStringType:
SFdtring sValue;
bredk;

case SFTimeType:
SFTlime tValue;

case SFUrlType:
SFUrl uValue;
bredk;

case SFVec2fType:
SFec2f v2Value(field);
bredk;

case SFVec3fType:
SF ec3f v3Value(field);

case SFCommandBufferType:
SFCommandBuffer commandValue(field);
break;

case SFScriptType:

SFScript scriptValue();
break;

98 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.9.2 Semantics

Each field is encoded according to its fieldType

9.3.7.10 GenericFloat

9.3.7.10.1 Syntax

class GenericFloat(boolean useEfficientCoding) {
if (luseEfficientCoding)

float(32) value;

else {
EfficientEloat \IQIIID;

}
9.3.7.10.2 | Semantics

If the parpmeter useEfficientCoding is true, the float is coded using the EfficientFloat scheme.
Otherwise | the IEEE 32 bit format for float coding is used.

9.3.7.11 HfficientFloat
9.3.7.11.1 [Syntax

class EfficigntFloat {
unsignedl int(4) mantissaLength;
if (mant|ssaLength '= 0) {
int(3] exponentLength;
int(1] mantissaSign;
int(mantissaLength-1) mantissa;
if (exponentLength != 0) {
int(1) exponentSign;
int(exponentLength-1) exponent;
}
}
}

9.3.7.11.2 | Semantics

For floating point values it is possible t0 use a more economical representation than the standard 324bit format, as
specified ip the EfficientFloat Structure. This representation separately encodes the size of the exponent
(base 2) apd mantissa of the number.

If the mantjssaLength .is\Q] the decoded value is 0 and further parameters are not coded.

If the mantissaLength is not 0, the exponentLength , mantissaSign and mantissa arg coded. The
mantissa sjgn is 1'when the mantissa is negative, otherwise it is 0.

The mantj]ssa, syntax element contains the actual mantissa with the leading 1 removed,| hence only

(mantissalength——=1)bits-areneededtoencode-it:

If the exponentLength is O then exponent is not parsed, and the decoded exponent is set, by default, to O.
Otherwise, the sign is read, with exponentSign =1 used to denote a negative exponent. The leading 1 of the
exponent is not coded, so that exponent can be encoded using exponentLength -1 bits.

(2 mantissaLength-1

The actual mantissa and exponent are, respectively, + mantissa) and

(2 wonentiength-l | ayponent), thus in all other cases the decoded value shall be:

. . i - . _ B exponentLegth-1
(1- 2.mantiss8&ign).(2"anissatedtn-l | mantissy,2(1-2-exponertign).2 +exponen}

© ISO/IEC 1999 — All rights reserved 99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.12 SFBool

9.3.7.12.1 Syntax

class SFBool

{

bit(1) value;

9.3.7.12.2 Semantics

If value is1

the decoded boolean is set to TRUE. If value

is 0, the decoded boolean is set to FALSE.

9.3.7.13 SFGeler

9.3.7.13.1 Sy

class SFColor
if (field.isQ
Quantiz

else {
Generid
Generid
Generid

}
}

9.3.7.132 S

If the field's id
of the SFCold

9.3.7.14 SFH

9.3.7.14.1 Sy

class SFFloat
if (field.isQ
Quantiz

else
Generid

}
9.3.7.142 S

If the field’s i

coded using the Generi¢Float

9.3.7.15 SFI

ntax

FieldData field) {
uantized)
edField qvalue(field);

Float rValue(field.useEfficientCoding);
Float gValue(field.useEfficientCoding);
Float bValue(field.useEfficientCoding);

bmantics

Quantized bit is TRUE, the QuantizedField
r is coded using the GenericFloat scheme.
Float

ntax

FieldData field) {
uantized)
edField qvalue(field);

Float value(field.useEfficientCoding);

9.3.7.151 S

bmantics

5Quantized . \bit is TRUE, the QuantizedField
scheme.

Nt32

ntax

scheme shall be used. Otherwise each

Component

scheme shall be used. Otherwise the|SFFloat is

class SFInt32(FieldData field) {

if (field.isQ
Quantiz
else
int(32)

uantized)
edField qvalue(field);

value;

9.3.7.15.2 Semantics

If the field’s isQuantized

bit is TRUE, the QuantizedField

coded as a signed value using 32 bits.

100

scheme shall be used. Otherwise the SFInt32 is

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.16 SFRotation
9.3.7.16.1 Syntax

class SFRotation(FieldData field) {

if (field.isQuantized)
QuantizedField gvalue(field);

else {
GenericFloat xAxis(field.useEfficientCoding);
GenericFloat yAxis(field.useEfficientCoding);
GenericFloat zAxis(field.useEfficientCoding);
GenericFloat angle(field.useEfficientCoding);

}

}
9.3.7.16.2 | Semantics

If the field's isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise eaqg
of the SFRptation is coded indepedently using the GenericFloat scheme.

9.3.7.17 §FString

9.3.7.17.1 [Syntax

unsigned int(5) lengthBits;
unsignedl int(lengthBits) length;
char(8) |value[length];

class SFStting {

}
9.3.7.17.2 | Semantics

The SFString is coded as an array of characters whese' length is first specified.
lengthBits is the number of bits used to encode the string length.
length is|the length of the string coded using lengthBits

All charactgrs are coded using the UTE<8 character encoding [3].
9.3.7.18 $FTime

9.3.7.18.1 [Syntax

class SFTime {
double(§4) value;
}

9.3.7.18.2 | SEmantics

The SFTime value is coded as a 64-bit double.
9.3.7.19 SFUrl
9.3.7.19.1 Syntax

class SFUrl {
bit(1) isOD;
if (isOD)
bit(10) ODid;
else
SFString urlValue;

© ISO/IEC 1999 — All rights reserved

h component

101

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.19.2 Semantics

If the SFUrl refers to an object descriptor, the ObjectDescriptoriD

URL is sent as an SFString

9.3.7.20 SFVec2f

9.3.7.20.1 Syntax

class SFVec2f(FieldData field) {
if (field.isQuantized)

Quantiz

edField qvalue(field);

is coded as a 10-bit integer. Otherwise the

else {
Generid
Generid

}
}

9.3.7.20.2 S

If the field's id
of the SFVec

9.3.7.21 SF

9.3.7.21.1 Sy

class SFVec3

Float valuel;
Float value2;

bmantics

Quantized
Pf is coded using the GenericFloat

bit is TRUE, the QuantizedField

ec3f
ntax

(FieldData field) {

scheme.

scheme shall be used."Otherwise each

Component

Component

if (field.isQuantized)
QuantizedField gvalue(field);
else {
GeneridFloat valuel(field.useEfficientCoding);
GenerigFloat value2(field.useEfficientCoding);
GeneridFloat value3(field.useEfficientCoding);
}
}
9.3.7.21.2 Sé¢mantics
If the field’s i$Quantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each
of the SFVecgf is coded using the GenericFloat scheme.
9.3.7.22 SFImage
9.3.7.22.1 Syntax
class SFImagg¢ {
unsigned iht(12)~ \width;
unsigned int@2)~" height;
bit(2) numCemponents;
bit(8) pixels[(numComponents+1)*width*height];

}

9.3.7.22.2 Semantics

The width and height

in pixels of the image are coded as 12-bit unsigned integers.

numComponents defines the image type. The following types are permitted:

— If the value is ‘00’, then a grey scale image shall be decoded.

— If the value is ‘01, then a grey scale with alpha channel shall be decoded.

102

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

— If the value is ‘10’, then an RGB image shall be decoded.
— If the value is ‘11, then an RGB image with alpha channel shall be decoded.

Pixels shall be decoded as unsigned char, 8-bit encoded pixel values.

9.3.7.23 SFCommandBuffer
9.3.7.23.1 Syntax

class SFCommandBuffer {

ISO/IEC 14496-1:1999(E)

unsigned_int(5) lengthBits;
unsigneli int(lengthBits) length;
bit(8) value[length];

}

9.3.7.23.2 | Semantics

The SFCommandBuffer syntax element is coded as an array of bytes whose length is first specif

lengthBits is the number of bits used to encode the buffer length.

length is|the length of the buffer coded using lengthBits

value is dn array of bytes of length length . It shall contain a CommandFrame padded if necessar

the last byte.

9.3.7.24 QuantizedField
9.3.7.24.1 | Syntax

class QuantizedField(FieldData field) {
switch (field.quantType) {

case| 9:
int(1) direction
case| 10:
int(2) orientation
defagilt:
break;
}
for (i=Q;i<getNbComp(field);i++)
int(field.nbBits) vq[il
}

9.3.7.24.2 | Semaintics

The value |s.g0antized using the quantization process described in 9.3.3.

ed.

y to complete

For normals, the direction and orientation values specified in the quantization process are first coded. For rotations,

only the orientation value is coded.

The compressed components, vq[i] , of the field’s value are then coded in sequence as unsigned integers using

the number of bits specified in the field data structure.

© ISO/IEC 1999 — All rights reserved

103

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.25 SFScript

9.3.7.25.1 Syntax

class SFScript() {
bit(1) isListDescription;

if (isListDe
ScriptFi

else
ScriptFi

scription)
eldsListDescripion();

eldsVectorDescripion();

bit(1) EncodeURL;
if(lEncodeURL)

MFURL

URLstring;

else
SFNodd

}
9.3.7.25.2 S

The Script
description, d
read as a reg
syntax for E|
ECMAScript
bitstream can

9.3.7.26 Scr
9.3.7.26.1 S}

class ScriptFig
bit(1) endH

while (EndFlag) {

ScriptFi
bit(1) &
}
}

9.3.7.26.2 S

ScriptFieldsL
value 1, the li

9.3.7.27 Scr

9.3.7.27.1 Sy

class ScriptFig
bit(4) fieldt

EncodedScript();

bmantics

class is used to represent a Script node. This can be done as a list.description or 3
epending on the value in isListDescription . If EncodeURL is TRUE, the URLStrin
ular URL. Otherwise, the URLString field shall contain a script, which is encoded using th
hcodedScript , given below. This bitstream is a tree representation of the BNF gr
11]. Each node determines the parse decision selected in parsing the script, and thus th
be used to interpret the script directly.

ptFieldsListDescription
ntax

IdsListDescription() {
lag; /I List description of the fields

eld();
hdFlag;

bmantics

stDescription reads a list description of the fields in the Script node. When en
5t has ended and ng'more values are read.

ptFieldsVectorDescription
ntax

IdsVectorDescription() {
Bits:# /1 Number of bits for number of fields

bit(fieldBits

s a vector
g field is
b bitstream
pmmar for
e resulting

iFlag has

numFields:; // Number of fields in the script

for (i=0; i<numkFields; ++i) {
ScriptField();

}
}

9.3.7.27.2 Semantics

ScriptFieldsVectorDescription

reads a value numFields , to determine how many fields

are in the

Script node, and these are read sequentially. The number of bits used to give the number of fields is first read as
4 bits in fieldBits

104

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.28 ScriptField

9.3.7.28.1

Syntax

class ScriptField() {
bit(2) eventType;
bit(6) fieldType;
if (eventType == FIELD) {
bit(1) haslnitialValue;
if (haslnitialValue){
NodeData node = makeNode(ScriptNodeType);
Field(node field[fieldType]) value;

}

}
}

9.3.7.28.2

The Script
0, 1, and
holds the 4

When the
haslnitialV
the Field
fieldType

9.3.7.29 E

9.3.7.29.1

class Enco

bit(1) hasFunction

while (h
Fung
bit(1

}

}

9.3.7.29.2
A script is
9.3.7.30 H

9.3.7.30.1

class Func
Identifie

Semantics

Field contains one field for the Script node. The eventType specifies the-type of fiel
P representing fields, eventins and eventOuts, respectively. The fieldType is an inted
ame value as the nodeData structure’s fieldType . This determines thetype of the field.

event is a field, it may have a default value. This presefice of this value is
hlue being 1. In this case, the field value is read using the Field class. In order to 4
class, a node of type NodeData is created which then\has the appropriate field va
(the fieldType index can be used to reference field structures of the appropriate type).

ncodedScript
Syntax
HedScript {

asFunction) {
tion function;
hasFunction

Semantics
h collection of functions, listed sequantially while hasFunction is TRUE.
unction

Syntax

ion_ {
identifier;

Arguments>arguments;

Stateme

}
9.3.7.30.2

H, with values
er value that

indicated by
e able to use
llue for each

ntBlock statementBlock;

Semantics

Each function consists of an identifier , a list of arguments , and a statementBlock which

script state

ments executed when the function is called.

© ISO/IEC 1999 — All rights reserved

contains the

105

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.31 Arguments

9.3.7.31.1 Syntax

class Arguments {
bit(1) hasArgument
while (hasArgument) {
Identifier identifier;

bit(1) h
}
}

asArgument

9.3.7.31.2 Semantics

The argumer
identifier

9.3.7.32 Sta

9.3.7.32.1 Sy

class Stateme
bit(1) isCo

if (isComp
bit(1) hi

t list is of arbitrary length, and terminates when hasArgument is 0. Each argument.cong

ementBlock
ntax

ntBlock {
mpoundStatement
pundStatement) {
AasStatement

while (pasStatement) {

Statement statement;
bit(l) hasStatement
else {
Statement statement;
}
}
}
9.3.7.32.2 Sé¢mantics
A statementBlock consists of either a compoundStatement , which holds several script statements,
statement, inflicated by the value of is€ampoundStatement . When the statementBlock consists

statements, the hasStatement

bit is used to signal either the end of the list or the existance of another

9.3.7.33 Stajement

9.3.7.33.1 Syntax

class Statem

t{

bit(3) statgmentrype
switch statementType {
case ifptatementType:

ists of one

or a single
of several
Statement.

|IFStatement ifStatemernt,
break;

case forStatementType:
FORStatement forStatement;
break;

case whileStatementType:
WHILEStatement whileStatement;
break;

case returnStatementType:
RETURNStatement returnStatement;
break;

case compoundExpressionType:
CompoundExpression compoundExpression;
break;

case breakStatementType:

106

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

case continueStatementType:
break;

}
}

9.3.7.33.2 Semantics
A Statement may consist of one of the following specific statement types:
— ifStatement

— forStatement

— whileStatement
— returnStatement
— compoyndExpression
— breakS{atement
— continugStatement
These statement types are indicated by a value from 0-6, respectively, called statementType
9.3.7.34 IFStatement
9.3.7.34.1 [Syntax
class IFStafement {

CompoundExpression compoundExpression;

StatemeptBlock statementBlock;

bit(1) hasELSEStatement

if (hasELSEStatement) {

StatgmentBlock statementBlock;

}
}
9.3.7.34.2 [Semantics

An |FStafement is used\” for conditional execution of a statementBlock . It comsists of a
CompoundExpression followed by a statementBlock . The statementBlock is interpret¢gd when the
CompoundExpression . \evaluates to a non-zero or non-empty value. The IFStatement hagq an optional
additional | statementBleckwhich is included when hasElseStatement is 1. This secgnd, optional
compoundBtatement’ is interpreted when the CompoundExpression evaluates to a zero or empty yalue.

9.3.7.35 HORStatement

9.3.7.35.1 Syntax

class FORStatement {
OptionalExpression optionalExpression;
OptionalExpression optionalExpression;
OptionalExpression optionalExpression;
StatementBlock statementBlock;

}
9.3.7.35.2 Semantics

A FORStatement is used to iterate over values, stopping when a conditional expression fails. The first

optionalExpression shall be executed when the statement is interpretted. The second
optionalExpression shall then be evaluated, and if it returns a non-zero or non-empty value, the

© ISO/IEC 1999 — All rights reserved 107

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

statementBlock shall be executed. The third optionalExpression shall then be executed. After this process
shall repeat starting with the execution of the second optionalExpression again, the statementBlock , and
the third optionalExpression

9.3.7.36 WHILEStatement
9.3.7.36.1 Syntax
class WHILEStatement {

CompoundExpression compoundExpression;
StatementBlock statementBlock;

}
9.3.7.36.2 S

bmantics

The WHILEBtatement statementBlock for lon

bression

is used to conditionally execute a SO j as the

compoundEx
9.3.7.37 RE]
9.3.7.37.1 Sy
class RETUR

bit(1) retur
if (returnV4

}

CompoyindExpression compoundExpression;

}
9.3.7.37.2 S

The RETUR
returnValue
compoundEx|

9.3.7.38 Cor

9.3.7.38.1 Sy

class Compo(
do {

Express

bit(1) H

} while (ha

evaluates to a non-zero or non-empty value.
[URNStatement

ntax

NStatement {

hValue
lue) {

bmantics

NStatement is used to return a value from a function. When a function has no re
shall be 0. Otherwise, the returned value shall be the last value eva
bression

npoundExpression
ntax

ndExpression {

ion expression;

AsExpression
AsExpression);

urn value,
uated for

}

9.3.7.38.2 Sémanties

A CompoundExpression s a list of expressions , terminated when hasExpression has value 0. The value of

the compound expression shall be the value of the last evaluated expression.

9.3.7.39 optionalExpression
9.3.7.39.1 Syntax

class optionalExpression {
bit(1) hasCompoundExpression
if (hasCompoundExpression) {
CompoundExpression compoundExpression;
}
}

108 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.39.2 Semantics

An optionalExpression may be an empty expression, containing no executable statements, or a
compoundExpression . This is indicated by the value of hasCompoundExpression

9.3.7.40 Expression

9.3.7.40.1 Syntax

class Expression {
bit(6) expressionType
switch expressionType {
casercurvedExpressiontype: H—{compoundExpression)
ompoundExpression compoundExpression;

eak;
case| negativeExpressionType: I/l -expression
case| notExpressionType: Il lexpression
case| onescompExpressionType: /I ~expression
case| incrementExpressionType: /I ++expression
case| decrementExpressionType: I/l --expression
case| postincrementExpressionType: I/l expression++
case| postDecrementExpressionType: /I expression--

Xpression expression;

eak;

case| conditionExpressionType: // expression ? expression : expression
Xpression expression;

Xpression expression;

Xxpression expression;

eak;

case| numberExpressionType:

umber number;

eak;

case| variableExpressionType:

Identifier identifier;

eak;

case| functionCallExpressionType:

case| objectConstructExpressionType:

Identifier identifier;

arams params;

eak;

case| objectMemberAccessExpressionType:

Xxpression expression;

Identifier identifier;

eak;

case| objectMethedCallExpressionType:

Xpression-expression;

Identifier \identifier;

ardms” params;

eaki

case arrayDereferenceExpressionType:
Expression expression;
CompoundExpression compoundExpression;

break;
default: // =, +=, -=, *=, |7, %=, &=, |5, "=, <<=, >>=, >>>=;
Il ==, 1=, <, <=, > >=, +, -, * [, %, &&, ||, & |,

" << >> >>>
Expression expression;
Expression expression;
break;

© ISO/IEC 1999 — All rights reserved 109

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.40.2 Semantics

An expression may contain one of a number of possible executed statements, specified by the value in

expressionType

curvedExpress

. These are listed below, according the value of expressionType

ionType=0:

The expression consists of a compoundExpression

NegativeExpressionType=1:

An expression

shall be evaluated and the value returned shall be negated.

NotExpressionType=2:

An expressio|
empty, zero \

OnescompEXxp|
An expressio
shall be bitwi

IncrementEXxpr|
An expressio
shall increme

DecrementExp
An expressio
shall be decrg¢

Postincrement
An expressio
shall be increg
applied.

PostDecremen
An expressio
shall be decr¢
applied.

h shall be evaluated and its returned value shall be logically negated (empty values
alues return non-zero, and vice-versa).

essionType=3:
N
be negated.

bpssionType=4:
N
hted by 1.

ressionType=5:
N
emented by 1.

ExpressionType=6:
N shall be evaluated numerically (string values.will yield an undefined result) and its retd
mented by 1. The returned value of this expression shall be the value prior to the incre

tExpressionType=7:
N shall be evaluated numerically (string values will yield an undefined result) and its retd
bmented by 1. The returned value-of this expression shall be the value prior to the decre

ConditionExpréssionType=8:

Three expres
returned valu
this expressig

StringExpressq
The expressi

NumberExpres

sions shall be evaluated. If the first expression returns a non-zero or non-empty valu
b of this expression.Sshall be the value of the second expression . Otherwise, the return
n shall be the-value of the third expression

nType=9:

bn contajns a string.
sionType=10:
b /is a number.

eturn non-

shall be evaluated numerically (string values will yield an undefined result)-and the valjie returned

shall be evaluated numerically (string values will yield an undefinedresult) and the valdie returned

shall be evaluated numerically (string values will yield an undefined result) and the valjie returned

rned value
ment being

rned value
ment being

e, then the
ed value of

The expressi

VariableExpressionType=11:

The expression

is a variable and shall return the value held by the variable determined by identifier

FunctionCallExpressionType=12:

An identifier

by value. The returned value of the expression

determines which function shall be evaluated. The params shall be passed to the

returnStatement

ObjectConstructExpressionType=13:
A new object shall be created (using a ‘new’ statement in the script) and the object shall be held in the variable

determined by identifier

110

© ISO/IEC 1999 — All ri

function

shall be the value returned by the function in its

. A list of params shall be passed to any constructors that exist for the object.

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

ObjectMemberAccessExpressionType=14:

A member variable of an object shall be accessed and the returned value of the expression shall be the value in
this member variable. Normally, the first expression will evaluate to a node in the scene graph (which is
accessed through a script variable). This means that the first expression will normally evaluate to an
identifier reference. The following identifier will then refer to a field of the node.

ObjectMethodCallExpressionType=15:

A method of an object shall be evaluated. The first expression shall evaluate to an object. The following
identifier shall specify a method of this object. The following params shall be passed to the method. The value
of this expression shall be the value returned by the method.

ArrayDereferenceExpressionType=16:
The expregsion shall be an array element reference. The first expression shall evaluate to an@rfay reference.
The followjng compoundExpression shall evaluate to a number that shall then be used to index the array. The
returned value of this expression shall be the value held in the referenced array element.

The following binary operands evaluate two expressions and return a value based on @ binary operation of these
two expregsions. The binary operation and value of expressionType s listed below for each bingary operation.
Unless explicitely stated, a string value for either of the expressions will yield an undefined result.

BinaryOpergand(=) = 17:
The first gxpression shall evaluate to an identifier which shall /bg “assigned the value of the second
expression

BinaryOpergand(+=) = 18:
The first expression shall evaluate to an identifier . If the valte held by the variable is numerica], the variable
value shal| be incremented by the value of the second expression , which shall also evaluate tg a numerical
value. If the variable is a string, then its new value shall be, its original value with the second expression (which
shall be a $tring) appended.

BinaryOpergnd(-=) = 19:
The first ekpression shall evaluate to an identifier whose value shall be decremented by the value of the
second expression

BinaryOper@nd(*=) = 20:
The first expression shall evaluate tocafridentifier whose value shall be set to its current valug multiplied by
the value df the second expression

BinaryOpergnd(/=) = 21:
The first expression shall evaluate to an identifier whose value shall be set to its current valpe divided by
the value df the second expression

BinaryOperand(%=) =<22:
The first expression./ shall evaluate to an identifier whose value shall be set to its current valye modulo the
value of th¢ second expression . The expressions shall both evaluate to integer values.

BinaryOperand(&=) = 23
The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise ANDed with the value of the second expression

BinaryOperand(|=) = 24:
The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise ORed with the value of the second expression.

BinaryOperand(®=) = 25:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise EXCLUSIVE-ORed with the value of the second expression.

© ISO/IEC 1999 — All rights reserved 111

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

BinaryOperand(<<=) = 26:
The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the left a number of bits specified by the second expression

BinaryOperand(>>=) = 27:
The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the right a number of bits specified by the second expression.

BinaryOperand(>>>=) = 28:
The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the right (with the least significant bits looped) a number of bits specified by the second expression

BinaryOperand(==) = 29:
This expression shall return a non-zero value when the first and second expression are identical\Otherwise, the
result of this ¢xpression shall be zero.

BinaryOperand(!'=) = 30:
This expression shall return a non-zero value when the first and second expression are-not identical. |Otherwise,
the result of this expression shall be zero.

BinaryOperand(<) = 31:
This express|on shall return a non-zero value when the first expression is numerically or lexicographically less
than the secgnd. Otherwise, the result of this expression shall be zero.

BinaryOperand(<=) = 32:
This express|on shall return a non-zero value when the first expression” is numerically or lexicographically less
than or equallto the second. Otherwise, the result of this expressiof shall be zero.

BinaryOperand(>) = 33:
This expressipn shall return a non-zero value when the first expression is numerically or lexicographichlly greater
than the secgnd. Otherwise, the result of this expressionshall be zero.

BinaryOperan(p=) = 34:
This expressipn shall return a non-zero value when-the first expression is numerically or lexicographichlly greater
than or equal|to the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(+) = 35:
This expression shall return the sum of the first and second expressions . If both expressions are sjrings, then
the result shgll be the first string .concatenated with the second.

BinaryOperand(-) = 36:
This expressipn shall return. the’difference of the first and second expressions

BinaryOperand(*) = 37;
This expressipn shallhreturn the product of the first and second expressions

BinaryOperand(/)X.=,38:

Th|s expreSS| nchall ratuirne tha aniatiant nf tha firet and cacand avnracscions
[SH-SHeetdHRStHe-quoHe o HeHStaRaSEecoRaexpreSSIohs

BinaryOperand(%) = 39:
This expression shall return the value of the first expression modulo the second expression

BinaryOperand(&&) = 40:
This expression shall return the logical AND of the first and second expressions

BinaryOperand(]|) = 41:
This expression shall return the logical OR of the first and second expressions

BinaryOperand(&) = 42:
This expression shall return the logical bitwise AND of the first and second expressions

112 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

BinaryOperand(]) = 43:
This expression shall return the logical bitwise OR of the first and second expressions

BinaryOperand(®) = 44:
This expression shall return the logical bitwise XOR of the first and second expressions

BinaryOperand(<<) = 45:
This expression shall return the value of the first expression shifted to the left by the number of bits specified as
the value of the second expression

BinaryOperand(>>) = 46:
Returns the value of the first expression shifted to the right by the number of bits specified as the value of the
second expression

BinaryOpergand(>>>) = 47:
This expression shall return the value of the first expression shifted to the right (with the least [significant bit
looped to the most significant bit) by the number of bits specified as the value of the second/expression

9.3.7.41 Rarams

9.3.7.41.1 [Syntax

class Parats {
bit(1) hasParam
while(hasParam) {
Exprgssion expression;
bit(1] hasParam
}
}

9.3.7.41.2 | Semantics

The Paranjs class consists of a (possibly empty) list of expressions . The hasParam bit indicates ¢ither the end
of the list, ¢r the existance of another expression

9.3.7.42 Identifier

9.3.7.42.1 [Syntax

class Identifier {

bit(1) received

if (receiyed) {

bit(ngm) identifierCode_J/ num is calculated by counting

/] number of distinguished identifiers
/| received so.far
}
else {

String string;
}

}
9.3.7.42.2 Semantics

An identifier is used to identify a variable. If the identifier has not occured before in the script, a String
is sent holding the name of the identifier. This is indicated by the received bit. If the identifier has occured
before in the script, then an identifierCode value is sent using num bits. The value of num, that is, the number
of bits needed to send the index of the identifier in a list of all previousy occuring identifiers, is variable and is
determined by the minimum number of bits needed to specify the length of the list of all previously occuring
identifiers.

© ISO/IEC 1999 — All rights reserved 113

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.7.43 String

9.3.7.43.1 Syntax

class String {
bit(8) char
while (char!=0) {
bit(8) char
}
}

9.3.7.43.2 Semantics

A String type consist of a null-terminated list of 8 bit characters.
9.3.7.44 Number

9.3.7.44.1 Syntax

class Number| {
bit(1) isInt¢ger
if (isintegef) {
bit(5) numbits // number of bits the integer is represented
bit(numpits) value // integer value

else {
bit(4) flpatChar // 0-9, ., E, END_SYMBOL
while (floatChar!'=END_SYMBOL) {
bit(4) floatChar
}

}
}

9.3.7.44.2 S¢mantics

A number shall be represented as an integer;'dndicated by isinteger , or as a list of 4 bit pharacters,
represending|(in order) the characters 0,1 ,2 ,3,4',5,6,7,8,9,0,., E, END-SYMBOL. The END-SYMBOL value
is used to sighal the end of the float value list:The list of characters shall result in a human readable flgat value in
scientific notgtion.

9.3.7.45 ROUTEs
9.3.7.45.1 Syntax

class ROUTES$() {
bit(1) ListQescription;
if (ListDesgription)
ListROUTEs lrautes();
else
VectorRQUTEs vroutes();

}

9.3.7.45.2 Semantics

ROUTEsmay be encoded with a list (ListROUTES) or vector (VectorROUTES) description.
9.3.7.46 ListROUTEs
9.3.7.46.1 Syntax
class ListROUTEs() {
do {

ROUTE route();
bit(1) moreROUTEs;

}

114 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

while (moreROUTES);
}

9.3.7.46.2 Semantics

The ROUTEsS are coded as a list, with the moreROUTESsflag used to indicate the end of the list (when set to false).

9.3.7.47 VectorROUTEsS

9.3.7.47.1 Syntax

class VectorROUTES() {
int(5) nBits;

int(nBits) length;
ROUTE | route[length]();

}
9.3.7.47.2 | Semantics

The ROUTIEs are coded as a vector whose dimension, length , is first specified.
9.3.7.48 ROUTE

9.3.7.48.1 [Syntax

class ROUTE() {
bit(1) isUpdateable;
if (isUpdateable)
bit(B|FSConfig.routelDbits) routelD;

bit(BIFSConfig.nodelDbits) outNodelD;

NodgData nodeOUT = GetNodeFromID(outNodelD);
int(nodePUT.nOUTbits) outFieldRef;
bit(BIFS[onfig.nodelDbits) inNodelD;

NodgData nodelN = GetNodeFromID(inNodelb);
int(node|N.nINbits) inFieldRef;

}
9.3.7.48.2 | Semantics

This is the|basic syntax element used to represent a ROUTE. If isUpdateable is TRUE (‘1’) then @ routelD is
sent to enable further reference te this route. The ROUTE description is then sent. The nodelD of the target node
is coded, Lollowed by the target field’'s outlD . The nodelD of the source node is then coded, followed by the
source fieldl’s inID .

9.3.8 BIFS-Anim

9.3.8.1 Qveryiew

The BIFS-Anim session has two parts: the AnimationMask and the AnimationFrames The AnithationMask
specifies the nodes and fields to be animated. It is sent in BIFS configuration, in the object descriptor for the BIFS
elementary stream. The animation frames are sent in a separate BIFS stream. When parsing the BIFS-Anim
stream, the node structure and related functions as described in Annex H are known at the receiving terminal. The
decoding data structure AnimationMask (see 9.3.2.5) is constructed when the AnimationMask syntax is read,
and further used in the decoding process of the BIFS-Anim frames.

AnimationFrames contain update information for thevalues of the animated fields described in the
AnimationMask . They are the access units of the BIFS-Anim stream. An AnimationFrame can send information
in intra or in predictive mode. In intra mode, the values are quantized and coded directly. In predictive mode, the
difference between the quantized value of the current and the last transmitted value of the field are coded. The
encoding is performed using an adaptative arithmetic coder described in Annex G.

© ISO/IEC 1999 — All rights reserved 115

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The use of the adaptive arithmetic coder is as follows:

At the beginning of each predictive frame, the adaptive arithmetic coder is reset. At the end of each frame, it is
flushed.

Each animated field has its own set of models. At each intra frame, if the stream has been declared in random
access mode (see 9.3.5.2), the models are reset to the uniform statistics. If the stream is not in random access
mode, the models are not reset unless the decoding structures (AnimQP) are modified.

9.3.8.2 AnimationFrame

9.3.8.2.1 Syntax

class AnimatignFrame() {
AnimationHrameHeader header(BIFSConfig.animMask);
AnimationHrameData data(BIFSConfig.animMask);

}
9.3.8.2.2 Sémantics

The AnimatignFrame is the access unit of the BIFS-Anim stream. It containscthe AnimationFrameHeader
which speciflfes timing, and specifies which nodes are animated in the [list,of animated nodeq, and the
AnimationFragmeData , which contains the data for all nodes being animateg:

9.3.8.3 AnimationFrameHeader

9.3.8.3.1 Syntax

class AnimatignFrameHeader(AnimationMask mask) {
bit(23)* nekt;

if (next==(0

bit(32) |AnimationStartCode;

bit(1) mask.isintra;
bit(1) mask.isActive[mask.numNodes];
if (isIntra) [
bit(1) igFrameRate;
if (isFrgmeRate)
FrampeRate rate;
bit(1) igTimeCode;
if (isTimeCode)
unsigned int(18) timeCaode;

}
bit(1) hasSkipFrames;
if (hasSkipFrames)
SkipFrames skip;
}

9.3.8.3.2 Sémantics

In the AnimationFrameHeader , a start code may be sent at each intra or prdictive frame to enable
resynchronization. The first 23 bits are read ahead, and stored as the integer next .

If next is O (in other words, the first 23 bits if the AnimationFrame are 0), the first 32 bits of the
AnimationFrame shall be read and interpreted as a start code that precedes the AnimationFrame

If the boolean isIntra is TRUE, the current animation frame contains intra-coded values, otherwise it is a
predictive frame.

The array of booleans isActive specifies which nodes shall be animated for this frame. isActive shall contain
one boolean for each node in the AnimationMask . The boolean is set to TRUE if the node is to be animated;
FALSE otherwise.

116 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

In intra mode, some additional timing information is also specified. The timing information obeys the syntax of the

Facial Animation specification in ISO/IEC 14496-2. Finally, it is possible to skip a number of AnimationFrames

using the FrameSkip syntax specified in ISO/IEC 14496-2.

9.3.8.4 FrameRate

9.3.84.1

Syntax

class FrameRate {
unsigned int(8) frameRate;
unsigned int(4) seconds;
bit(1) frequencyOffset;

by

9.3.8.4.2
frame_rate

seconds |
follows:

frequency |

offset of 1000/1001. This bit would typically be set when frame_rate

frame rate
(frequency}

[«

f.

9.3.8.5
9.3.8.5.1

class SkipH

int nFral
do {

bit(4

nFra]

} while

}
9.3.8.5.2

number_of
number_of
up to 29 fn
word shall
increments

9.3.8.6

Semantics
is an 8-bit unsigned integer indicating the reference frame rate of the sequence:

5 a 4-bit unsigned integer indicating the fractional reference frame rate. The«ffame rate is

frame rate = (frame_rate + seconds /18):

offset is a 1-bit flag which when set to ‘1’ indicates that’tfie’ frame rate uses the NT
= 24, 30 or 60, in which cass
would be 23.97, 29.94 or 59.97 respectively. When_set’to ‘0’ no frequency offset is f

| offset ==1), frame rate =(1000/1001) * (framesrate + seconds /16).
kipFrame

Syntax

rame {
me = O;

number_of_frames_to_skip;
me number_of frames_to_skip._+ nFrame;
(number_of_frames_to_skip ==.0b1111);

Semantics

| frames_to_skip is a 4-bit unsigned integer indicating the number of frames sK
| frames_to.skip is equal to 15 (pattern “1111") then another 4-bit word follows alloy
ames (pattern “11111110") to be specified. If the 8-bits pattern equals “11111111", then
follow.and so on, and the number of frames skipped is incremented by 30. Each 4-bit pa
the(total number of frames to skip with 15.

computed as

S5C frequency
the resulting
resent, i.e. if

ipped. If the
ving a skip of
nother 4-bits
tern of ‘1111’

Haa-a-ki = Dat
mmrmradaurimrTarniCrualda

9.3.8.6.1

Syntax

class AnimationFrameData (AnimationMask mask) {

int i;
for (i=0;

i<mask.numNodes; i++) {

if (mask.isActive[i]) {

NodeData node

mask.animNodel[i]

switch (node.nodeType) {
case FaceType:

FaceFrameData fdata;
break;

case BodyType:

© ISO/IEC 1999 — All rights reserved

117

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

BodyFrameData bdata;
break;
case IndexedFaceSet2DType:
Mesh2DframeData mdata;
break;
default
int j;
for(j=0; j<node.numDY Nfields; j++) {

if (node.isAnimField[j])
AnimationField AField(node.field[node.dyn2all[j]],mask.isIntra);

}
}
}
}

}

9.3.8.6.2 Sémantics

The AnimatignFrameData corresponds to the field data for the nodes being animated. In the ¢
IndexedFa¢eSet2D , a Face, or a Body node, the syntax used is that defined,ISO/IEC 14496-

cases, for ea

NOTE — The
syntax switch h

In predictive

initiated by resetting the adaptive arithmetic coder in the way defined\by the procedure decoder_resg

Annex G. Th
models.

9.3.8.7 Ani

9.38.7.1 S

class Animatig
AnimFieldQ

if (isIntra)
bit(1]
if(hg

/
}

int

for
i

} else {

int {

for
i

ch field declared as an animated field is the AnimationMask , the AnimationField

Body node ("case BodyType") is not specified in ISO/IEC 14496 ndcin ISO/IEC 14772-1:199
as been provided to allow support for future extensions.

mode, at the beginning of the AnimationFrameData ,anh adaptive arithmetic coder

mationField
ntax

nField(FieldData field, boolean isintra).{
P agp = field.aqgp;

{
) hasQP;

sQP) {

ANiMQP QP (aqp);

,i:O; i<agp.numElements; i++)
(agp.indexList[i])
AnimlIValue_ivalue(field);

’i=0; i<agp.numElements; i++)
(agp.indexList[i])

ase of an
?. In other

is sent.

8 [10]. This

session is

() in

bn, the animated values are sent using this adaptive-arithmetic coder, using and updating their own

AnimPValue pvalue(field);

}
}

9.3.8.7.2 Semantics

In an AnimationField

predictive frame follows.

, if in intra mode, a new animation quantization parameter value may be sent. The intra or

In intra mode, if hasQP is TRUE, a new AnimQP is sent, it shall be valid until the next intra frame is received. If
hasQP is FALSE, the value of the randomAccess boolean shall be considered.

— If randomAccess

118

is set to TRUE, then the InitialAnimQP shall be used until the next intra frame.

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

— If randomAccess is set to FALSE, then the AnimQP that was valid at the previous intra frame shall be used. In
this case, no random access is possible ato this particular frame.

In intra mode, if BIFSConfig.randomAccess is TRUE , the field’s predictive models shall then be reset to be
uniform models as defined by the procedure model_reset(PNbBits) in Annex G. If
BIFSConfig.randomAccess is FALSE, the field’s models are reset only if a new AnimQP is received.

The value is then sent: in intra mode, an AnimlValue is expected, in predictive mode an AnimPValue is
expected.

9.3.8.8 AnimQP

9.3.8.8.1 |Syntax
class AnimPP(AnimFieldQP agp) {

bit (1) MinMax ;
if (IMinMax) {

agp.usegDefault=FALSE;
switch(app.animType) {

hse 4. // Color

hse 8: // BoundFloats
bit(1) aqp.useDefault
cpse 1. /I Position 3D
cpse 2: /I Position 2D
cpse 11: // Size 3D
c
c

O 0

hse 12: /I Size 2D
hse 7: /Il Floats
if (lagp.useDefault) {
for (i=0;i<getNbBounds(agp);i++) {
bit(1) useEfficientCoding
GenericFloat agp.Imin[i](useEfficientCoding);

}

for (i=0;i<getNbBounds(aqgp);i++)
bit(1) usekEfficientCoding
GenericFloat agp.Imax[il(useEfficientCoding);

}

break;

O

hse 13: // Integers
int(32) aqp.Iminint[O];
break;

}

bit (1) IhasINbBits;
if (hasINDbBits)
unsigned int(5) agp.INbBits;

bit (1) PMinMax ;
if (PMinMax) {
for (i=0;i<getNbBounds(agp);i++) {
int(INbBits+1) vq
agp.Pmin[i] = vg-2*aqp.INbBits;
}
}

bit (1)hasPNbBits;

if (hasPNbBIts)
unsigned int(4) aqgp.PNbBits;

© ISO/IEC 1999 — All rights reserved 119

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.8.8.2 Semantics

The AnimQP specifies the quantization parameters that shall be used until the next intra frame is received. AnimQP

is identical to InitialAnimQP

may not be sent.

If BIFSConfig.randomAccess
InitialAnimQP

If BIFSConfig.randomAccess
latest AnimQP (or InitialAnimQP

in the AnimationMask is used by default.

is FALSE and if the parameter is not coded, then the parameter def
if this parameter was never modified) is used.

(subclause 9.3.5.6) with the exception that each quantization parameter may or

is TRUE and if the parameter is not coded, then the parameter defined in the

ined in the

9.3.8.9 Ani

9.3.89.1 Sy

class AnimlV4

switch (fiel
case

int(2

case 1

int(2

bred

default:

bred

}
for (j=0;j<d
int(f
}

9.3.89.2 S

The AnimlVa
process desc|

For normals {
only the orier

miValue
ntax

lue(FieldData field) {
d.animType) {

D: // Normal

) direction
D: // Rotation

) orientation
k;

k;

etNbComp(field);j++)
eld.nbBits) vq[j];

bmantics

ue represents the quantized intra value*of a field. The value is coded according to the
Fibed in 9.3.3.3.

he direction and orientation values, specified in the quantization process are first coded. F
tation value is coded. If the hit representing the direction is 0, the normal’s direction is set

bit is 1, the ngrmal’s direction is set to —1..The value of the orientation is coded as an unsigned integer u

The compres|
the number o

The decoding
9.3.8.10 Ani

9.3.8.10.1 Sy

sed components vq[i], ° of the field's value are then coded as a sequence of unsigned intg
f bits specified in thesfield data structure.

process in intrasmode computes the animation values by applying the inverse quantization
mPValue

ntax

class AnimPV|

uantization

Dr rotations
to 1, if the
ing 2 bits.

gers using

process.

hlue(FieldData field) {

switch (field.animType) {

case 9: /I Normal
int(1) inverse
break;

default:
break;

}
for (j=0;j<getNbComp(field);j++)
int(aacNbBits) vgDelta]j];

}

120

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.3.8.10.2 Semantics

The AnimPValue represents the difference between the previously received quantized value and the current
guantized value of a field. The value is coded using the compensation process AddDelta described in 9.3.4.

The values are decoded from the adaptive arithmetic coder bitstream with the procedure
V,aac=aa_decode(model) defined in Annex G. The model is updated with the procedure

model_update(model, Vaac).

For normals the inverse value is decoded through the adaptive arithmetic coder with a uniform, non-updated model.
If the bit is 0, then inverse __is setto 1, the bititis 1, inverse _is set to —1.

The compegnsation values vgDelta]i] are then decoded in sequence. Let V, (t—1) be the-gupntized value

decoded g the previous frame and V_,.(t) be the value decoded by the frame’s adaptive. arithmetic decoder at
instant t with the field’'s models. The value a time tis obtained from the previous value as.follows:

V; (1) = Vv .. (t) + PMin

v, (t) = AddDelta(v, (t - 1), v, (t))

v(t) = Ianuan(vq (t))

The field’'s|models are updated each time a value is decoded through-the adaptive arithmetic coder.

If the animType is 1 (Position3D) or 2 (Position2D), each/component of the field's value is psing its own
model and|offset PMin[i]. In all other cases the same modeltand offset PMin[0] is used for all the Fomponents.

aacNbBits| is the variable number of bits needed for;the adaptive arithemtic coder to decode thg symbol (see
Annex G).

9.4 Node Semantics
9.4.1 O\erview

The BIFS |nodes include nodes that\have been defined in ISO/IEC 14772-1:1998 [10]. For these nodes, the
semantic imformation is given by normative reference with any restrictions defined herein.

9.4.2 Ndde specifications
9.4.2.1 Anchor

9.4.2.1.1 |Node interface

Anchor {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children I
exposedField SFString description
exposedField MFString parameter I
exposedField MFString url I
}

NOTE — For the binary encoding of this node see Annex H.1.1.

© ISO/IEC 1999 — All rights reserved 121

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.1.2 Functionality and semantics

The semantics of the Anchor node are specified in ISO/IEC 14772-1:1998, subclause 6.2 [10]. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize). Constraints on URLs are defined
by profiles and levels.

9.4.2.2 AnimationStream
9.4.2.2.1 Node interface

AnimationStream {

exposedField SFBool loop FALSE
exposedHeld SFFloat speed 1.0
exposedHeld SFTime startTime 0
exposedHeld SFTime stopTime 0
exposedHeld MFString url ™1
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.2.

9.4.2.2.2 F\rnctionality and semantics
The AnimatlonStream node is designed to implement control parameters for a BIFS-Anim stream.

The loop, startTime , and stopTime exposedFields and the isActive eventOut, and their effects on the
AnimationStream node are described in 9.2.1.6.1.

The semantids of the speed exposedField are identical to those for the MovieTexture node (see 9.4.p.61).

The url field [specifies the data source to be used. The data source referred to shall be a BIFS-Anim sfream (see
also 9.2.3.3).

9.4.2.3 Appearance
9.4.2.3.1 Npde interface

Appearance {

exposedHeld SFNode material NULL
exposedHeld SFNode texture NULL
exposedHeld SFNode textureTransform NULL

}

NOTE — For the binary eneoding of this node see Annex H.1.3.

9.4.2.3.2 Flinctipnality and semantics

The semantids of the Appearance node are specified in ISO/IEC 14772-1:1998, subclause 6.3 [10]

The material field, if non-NULL, shall contain either a Material node or a Material2D node depending on the
type of geometry node used in the geometry field of the Shape node that contains the Appearance node. The
list below shows the geometry nodes that require a Material node, those that require a Material2D node and
those where either may apply:

— Material2D only: Circle, Curve2D, IndexedFaceSet2D, IndexedLineSet2D, PointSet2D,
Rectangle ;

— Material only: Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet,
IndexedLineSet, PointSet, Sphere;

— Material2D or Material : Bitmap, TermCap, Text.

122 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.4.2.4 AudioBuffer

9.4.2.4.1 Node interface

AudioBuffer {

ISO/IEC 14496-1:1999(E)

exposedField SFBool loop FALSE
exposedField SFFloat length 0.0
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFNode children 1
exposepttetet SHnt fremehan T
exposedField MFInt phaseGroup [1]
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — Fqr the binary encoding of this node see Annex H.1.4.

9.4.2.4.2 [Functionality and semantics

The AudigBuffer node provides an interface to short snippets of sound fojbe used in an interactive

EXAMPLE 4 Sounds triggered as “auditory icons” upon mouse clicks.

It buffers the audio generated by its children to support random-restart capability upon interaction ev

from the A

— Audiok
cannot

— Audiol
rather t

The loop
Animatio

The semar

The length
the node, 3

The pitch
resampling
is negative
proceeding

LUdioClip node in the following ways:

be retrieved interactively

Buffer can be used to trigger sounds*made from processed sound (ie, with the other
phan only raw sound data as transmitted in the elementary stream

startTime , and stopTime. eXposedFields and the isActive eventOut, and their e
NStream node are described in 9.2.1.6.1.

tics of the speed exposedField are identical to those for the MovieTexture node (see 9

iInd whenever thelength field changes.

; thatispa pitch-shift of 2 corresponds to playing the sound twice as fast and an octave hi
, the buffer is played backwards at the indicated speed, beginning at the last sample in t
to‘the first, then returning to the last sample if loop is TRUE.

scene.

ents. It differs

Buffer can be used in broadcast and other one-way applications in which URLs from remote locations

sound nodes)

ffects on the

14.2.61).

field specifies(the-length in seconds of the audio buffer. Audio shall be buffered at the ifstantiation of

field specifies a pitch-shift to apply to the output sound. The pitch-shift is calculat¢d by simple

bher. If pitch
he buffer and

The children field specifies the child nodes that provide the sound for this node. Each child shall be an AudioBIFS
node; that is, one of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX ,
AudioClip or AudioBuffer .

An event shall be generated via the duration_changed

field whenever a change is made to the startTime or

stopTime fields. An event shall also be triggered if these fields are changed simultaneously, even if the duration
does not actually change.

The numChan field specifies the number of output channels of this node. If there are more output channels than
input channels, the “extra” channels shall contain all Os; if there are more input channels than output channels, the

“extra” cha

nnels shall be ignored.

© ISO/IEC 1999 — All rights reserved

123

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The phaseGroup field specifies phase relationships in the output of the node, see 9.2.2.13 and 9.4.2.9.

The output of this node is not calculated based on the current input values, but according to the startTime event,
the pitch field and the contents of the clip buffer. When the startTime is reached (that is, the current scene time
is greater than or equal to startTime), the sound output shall begin at the beginning of the clip buffer and
isActive shall be set to TRUE. At each time step thereafter, the value of the output buffer shall be the value of the
next portion of the clip buffer, upsampled or downsampled as necessary according to pitch . When the end of the
clip buffer according to the value of length is reached, if loop is TRUE, the audio shall begin again from the
beginning of the clip buffer; if loop is FALSE, the playback shall cease. This playback shall be continued until
stopTime is reached. When the current scene time is greater than or equal to stopTime , the node shall cease to
produce sound.

The clip buff
changed, the
That is, after
buffer is set t
rate of this n
that are recei

When the plalyback is not active, the audio output of the node is all Os.

9.4.25 Aud
9.4.251 N

AudioClip {
exposedF
exposedF
exposedF
exposedF
exposedF
exposedF
eventOut
eventOut

}
NOTE — For t

ved when isActive is TRUE shall be ignored.

ioClip

bde interface

eld SFString description

eld SFBool loop

eld SFFloat pitch

eld SFTime startTime

eld SFTime stopTime

eld MFString url
SFTime duration_changed
SFBool isActive

he binary encoding of this node see Annex H.1.5.

9.4.2.5.2 Fdinctionality and semantics

The semantid

The loop, s
AudioClip

The url field

hode are-déscribed in 9.2.1.6.1.

specifies the data source to be used (see 9.2.2.7.1).

9.4.2.6 Auch

FALSE
1.0

s of the Audioclip-/ node are specified in ISO/IEC 14772-1:1998, subclause 6.4 [10].

er shall be calculated as follows. When the node is instantiated, or whenever the lendth field is
first length seconds of the audio input to the AudioBuffer
seconds, where t < length, audio sample number t * S of channel i (where 0 <= i <pumChan) in the
D contain the audio sample corresponding to time t of channel i of the input, where S is the sampling
bde. After the first length seconds, the input to this node has no effect. Changes to the lgngth field

node shall be copied to.the(clip buffer.

tartTime ,-and stopTime exposedFields and the isActive eventOut, and their effefts on the

9.4.2.6.1 Node interface

AudioDelay {
eventin
eventin
exposedF
exposedF
field
field

}

MFNode addChildren
MFNode removeChildren
ield MFNode children
ield SFTime delay
SFInt32 numChan
MFInt32 phaseGroup

NOTE — For the binary encoding of this node see Annex H.1.6.

124

e I e @ O s |

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.4.2.6.2

ISO/IEC 14496-1:1999(E)

Functionality and semantics

The AudioDelay node allows sounds to be started and stopped under temporal control. The start time and stop

time of the

child sounds are delayed or advanced accordingly.

The addChildren eventln specifies a list of nodes that shall be added to the children field.

The removeChildren eventln specifies a list of nodes that shall be removed from the children field.

The children array specifies the nodes affected by the delay. Each child shall be an AudioBIFS node; that is, one
of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX , AudioClip or
AudioBuffer

The delay
The num(
The phasgq

Implement
delay in s¢

field specifies the delay to apply to each child node.
han field specifies the number of channels of audio output by this node.
Group field specifies the phase relationships among the various output channels; see 9.2

htion of the AudioDelay node requires the use of a buffer of size d #S * n, where diis the
conds, S is the sampling rate of the node, and n is the number of Output channels from

scene sta:lup, a multichannel delay line of length d and width nis initialized-to r€side in this buffer.

At each ti

time step i
number of
the numbe|

The output
that this de

If the dela
result. If th
to the new
the output
immediate

e step, the k * S audio samples in each channel of the input\buffer, where k is the length
n seconds, are inserted into this delay line. If the numberyof input channels is strictly gre
output channels, the extra input channels are ignored;_if.the number of input channels is str
I of output channels, the extra channels of the delay-line shall be taken as all 0's.

buffer of the node is the k * S audio samples which fall off the end of the delay line in this
finition holds regardless of the relationship between k and d.

y field is updated during playback, discontinuties (audible artefacts or “clicks”) in the outp
b delay field is updated to a greater. value than the current value, the delay line is immedia
length, and zero values inserted at-the beginning, so that d * S seconds later there will be
of the node. If the delay field<is’updated to a lesser value than the current value, the
y shortened to the new length, truncating the values at the end of of the line, so thg

1.6.1.

length of the
this node. At

Df the system
ater than the
ctly less than

process. Note

it sound may
tely extended
h short gap in
delay line is
t there is an

immediate|discontinuity in sound output. Manipulation of the delay field in this manner is not recommended
unless the [audio is muted within the‘terminal or by appropriate use of an AudioMix node at the same time, since
it gives rise to impaired sound guality.
9.4.2.7 AudioFX
9.4.2.7.1 [Node interface
AudioFX {

eventin MFNode addChildren

eventin MFENode removeChildren

exposedField MFNode children 1

exposedField SFString orch

exposedField SFString score

exposedField MFFloat params I

field SFInt32 numChan 1

field MFInt32 phaseGroup 0

}

NOTE — For the binary encoding of this node see Annex H.1.7.

© ISO/IEC 1999 — All rights reserved

125

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.7.2 Functionality and semantics

The AudioFX node is used to allow arbitrary signal-processing functions defined using structured audio tools to

be included al

nd applied to its children (see ISO/IEC 14496-3 section 5, clause 5.15).

The addChildren eventln specifies a list of nodes that shall be added to the children field.

The removeChildren eventin specifies a list of nodes that shall be removed from the children field.

The children array contains the nodes operated upon by this effect. Each child shall be an AudioBIFS node; that
is, one of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX , AudioClip

or AudioBu

fer If this array is empty the node has no function (the node may naot be used to

reate new

synthetic aud

The orch str
Language). T
bitstream syn

The score s
Language). 1
instrument in
score_file

The params
values of pa|
ISO/IEC 1444

The numcha
The phaseG
The node is ¢
14496-3, sec
of input soun
the second d
phaseGroup
the input_bus
The orchestra

The output b

sounds, as described in ISO/AEC 14496-3 section 5, subclauses 5.7.3.

9.4.2.8 Audg

94281 N

o in the middle of a scene graph).

ng contains a tokenised block of signal-processing code written in SAOL (Structured. Audid
his code block shall contain an orchestra header and some instrument definitionsand con|
tax of the orchestra class as defined in ISO/IEC 14496-3 section 5 subclause 5:5.2.2 and c

ring may contain a tokenized score for the given orchestra written in SASL (Structured A
his score may contain control operators to adjust the parameters, of the orchestra, or
stantiations. A score is not required. If present it shall conform te the bitstream syr
class as defined in ISO/IEC 14496-3 section 5 subclause 5.5.2 and-Clause 5.11.

fams are available to the FX orchestra as the global @rray global ksig params[128]
6-3 section 5 clause 5.15.

n field specifies the number of channels of audiaroutput by this node.

oup field specifies the phase relationships asmmong the various output channels; see 9.2.1.

bvaluated according to the semantics of.the orchestra code contained in the orch field. Sg

ion 5, for the normative description-of’this process. Within the orchestra code, the multipl

H are placed on the global bus, input_bus; first, all channels of the first child, then all the ¢

hild, and so on. The orchestracheader shall ‘send’ this bus to an instrument for proce
arrays of the children are made available as the inGroup variable within the instrument(

is sent.

L code block shall not ‘contain the spatialize statement.

uffer of this node)is the sound produced as the final output of the orchestra applied t

ioMix

pde interface

Orchestra
form to the
ause 5.8.

udio Score
even new
tax of the

field allows BIFS commands and events to affect the sound-generation process in the orchestra. The

, See

b.1.

pe ISO/IEC
e channels
hannels of
ssing. The
5) to which

b the input

AudioMix {
eventin
eventin
exposedF
exposedF
exposedF
field
field

}

MFNode addChildren
MFNode removeChildren
ield MFNode children 0
ield SFInt32 numlnputs 1
ield MFFloat matrix 0
SFInt32 numChan 1
MFInt32 phaseGroup 1

NOTE — For the binary encoding of this node see Annex H.1.8.

126

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.4.2.8.2

ISO/IEC 14496-1:1999(E)

Functionality and semantics

This node is used to mix together several audio signals in a simple, multiplicative way. Any relationship that may be
specified in terms of a mixing matrix may be described using this node.

The addChildren eventin specifies a list of nodes that shall be added to the children field.

The removeChildren eventln specifies a list of nodes that shall be removed from the children field.

The children field specifies which nodes’ outputs to mix together. Each child shall be an AudioBIFS node; that is,
one of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX , AudioClip or
AudioBuffer .

The numlr
children.

The matri

numlinput$

numChan
numlinput
next numil

That is, if t

[abcdef.

The numc
The phass

The value
output cha

matrix [(0) * numChan +i]*input[1]}x] +

mg
mg

where inp

t
indexed stIrting from 1.

puts field specifies the number of input channels. It shall be the sum of the number pf-ch

X array specifies the mixing matrix which relates the inputs to the outputs. ,matrix i
X numChan matrix which describes the relationship between numlinputs input

output channels. The numlnputs * numChan values are in row-majer order. Tha

b values are the scaling factors applied to each of the inputs to produce 'the first output

hputs values produce the second output channel, and so forth.

p

a b c
e desired mixing matrix is {d ; } , specifying a “2 into 37_mix, the value of the matrix
e

nan field specifies the number of channels of audie”output by this node.
Group field specifies the phase relationshipscamong the various output channels; see 9.2

of the output buffer for an AudioMix wnode is calculated as follows. For each sample
hnel i, 1 <= i<=numChan , the value of.that sample is

trix [(1) * numChan +i]*input[2][x] + ...
trix [(numinputs — 1) *pumChan +i]* inputinumlinputs][x],

[1[j] represents thégth sample of the ith channel of the input buffer, and the matrix

annels of the

5 an unrolled
hannels and
t is, the first
channel; the

field shall be

1.6.1.

number x of

elements are

9.4.2.9 AudioSource

9.4.2.9.1 |Node.ihterface

AudioSourfe'f
eventl MNotde addChidren
eventin MFNode removeChildren
exposedField MFNode children 1
exposedField MFString url 1
exposedField SFFloat pitch 1.0
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
field SFInt32 numChan 1
field MFInt32 phaseGroup 1

}

NOTE — For the binary encoding of this node see Annex H.1.9.

© ISO/IEC 1999 — All rights reserved

127

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.9.2 Functionality and semantics

This node is

used to add sound to a BIFS scene. See ISO/IEC 14496-3 for information on the various audio tools

available for coding sound.

The addChildren eventln specifies a list of nodes that shall be added to the children field.

The removeChildren eventin specifies a list of nodes that shall be removed from the children field.

The children

decoding process. Only AudioBuffer

where url in

field allows buffered AudioBuffer data to be used as sound samples within a structured audio
nodes shall be children to an AudioSource node, and only in the case

icates a structured audio bitstream

The pitch fig
is specified a
the given rat
ISO/IEC 144
adjust the pit

The speed f
is specified a
by the given
audio decodg
use of this fie
be controlled
appropriate o

The startTin
9.2.1.6.1.

The numChs

The phaseG
channels of g
“stereo pair” -
repeated “sp
groups; if ph
the phaseGr

The url field

The audio ou
scene time 9
value of star
buffer for this

Id controls the playback pitch for the structured audio and the parametric speech (HVXC) |decoder. It
S a ratio, where 1 indicates the original bitstream pitch, values other than 1 indicate pitchtshifting by
0. This field is available through the getttune() core opcode in the structured'audio defoder (see
D6-3, section 5). The structured audio is the only decoder that may be contréliled in this manner; to
h of other decoder types, use the AudioFX node with an appropriate effec¢ts-orchestra.

eld controls the playback speed for the structured audio decoder (see-ISO/IEC 14496-3, section 5). It
5 a ratio, where 1 indicates the original speed; values other than ldndicate multiplicative time-scaling
ratio (i.e. 0.5 specifies twice as fast). The value of this field shall be'made available to thg structured
r indicated by the url field. ISO/IEC 14496-3, section 5, subclause 5.7.3.3.6, list item 8, describe the
Id to control the structured audio decoder. The structured audie’decoder is the only decoder that may

in this manner; to adjust the speed of other decoder types, use the AudioFX no
Fchestra.

e and stopTime exposedFields and their effects on the AudioSource node are d

n field describes how many channels of audio are in the decoded bitstream.

roup array specifies whether or notdhere are important phase relationships between t
udio. If there are such relationships for example, if the sound is a multichannel spatializ
- it is in general dangerous to do.anything more complex than scaling to the sound. Furthe
tialization” will destroy these-relationships. The values in the array divide the channels of
seGroup[i] = phaseGroup]j] then channel i and channel j are phase-related. Channel
bup Vvalue is 0 are not related to any other channel.

Epecifies the data source to be used (see 9.2.2.7.1).

tput from the_decoder according to the bitstream(s), referenced in the specified URL, at
placed in(the output buffer for this node, unless the current scene time is earlier than
Time or later than the current value of stopTime , in which case 0 values are placed in
node-for'the current scene time.

For audio so

e with an

bscribed in

ne multiple
Pd set or a
filtering or
audio into
5 for which

the current
the current
the output

irceS decoded using the main object of the structured audio decoder (ISO/IEC 14496-3,

section 5),

several variables from the scene description must be mapped into standard names in the orchestra. See ISO/IEC
14496-3, section 5, clause 5.15 and subclause 5.8.6.8.

If AudioClip children are provided for a structured audio decoder, the audio data buffered in the AudioClip (s)
must be made available to the decoding process. See Subclause ISO/IEC 14496-3, section 5, subclause 5.10.2.

128

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.10 AudioSwitch

9.4.2.10.1

Node interface

AudioSwitch {

eventln
eventln
expose
expose
field
field

addChildren
removeChildren
children
whichChoice
numChan
phaseGroup

MFNode
MFNode
MFNode
MFInt32
SFInt32

MFInt32

dField
dField

s R e s s

}

NOTE — Fg
9.4.2.10.2
The Audid
The addC
The remo

The childn
following:

r the binary encoding of this node see Annex H.1.10.

Functionality and semantics

Switch node is used to select a subset of audio channels from the child nedes specified
nildren eventln specifies a list of nodes that shall be added to the chitdren field.
eChildren eventln specifies a list of nodes that shall be removedfrom the children field

en field specifies a list of child options. Each child shall he-an AudioBIFS node; that
AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX, Au

AudioBuffer .

The which

Choice field specifies which channels shall be.passed through. If whichChoice[i] is 1

child chanmnel shall be passed through.

The numc
the passed

The phasgq
The values

For each s
the same

nan field specifies the number of channels-of audio output by this node; ie, the number ¢
child.

Group field specifies the phase relationships among the various output channels; see 9.2
for the output buffer are calculated as follows:

pmple number x of channel;number / of the output buffer, 1 <= /<= numChan , the value i
hs the value of sample' number x in the jth channel of the input, where j is the least va

s, one of the
lioClip or

then the i-th

f channels in

1.6.1.

n the buffer is
lue such that

whichChojce[0] + whichChoiee[1] + ... + whichChoice[j =1

9.4.2.11 Background

9.4.2.11.1 [Node interface

Background {
eventin SFBool set_bind
exposel Eield MEEloat groundAngle []
exposedField MFColor groundColor I
exposedField MFString backURL I
exposedField MFString bottomURL I
exposedField MFString frontURL I
exposedField MFString leftURL 1
exposedField MFString rightURL 1
exposedField MFString topURL 1
exposedField MFFloat skyAngle 1
exposedField MFColor skyColor 0,0,0
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.11.

© ISO/IEC 1999 — All rights reserved

129

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.11.2 Functionality and semantics

The semantics of the Background node are specified in ISO/IEC 14772-1:1998, subclause 6.5 [10].

The backUrl , bottomURL , frontUrl , leftUrl , rightUrl , topUrl fields specify the data sources to be used (see

9.2.2.7.1).

9.4.2.12 Background2D

9.4.2.12.1 Node interface

Background2D {
eventin SFBool set_bind
exposedHeld SFColor backColor 000
exposedHeld MFString url 1
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.12.

9.4.2.12.2 Fdinctionality and semantics

There exists
The Backgr
node can al

implementatipns.

If set_bind
the Backgrg
top again.

The isBound
backdrop.

The url field
The backCol

This is not a
regardless of

EXAMPLE —

Group {
children [

DEF T

a Background2D stack, in which the top-most background(is)the current active backg
pund2D node allows a background to be displayed behind’a 2D scene. The function
50 be accomplished using other nodes, but use of this. node may be more efficien

s set to TRUE the Background2D
und2D

is moved to\the top of the stack.If set_bind is set
is removed from the stack so the previous background which is contained in the

event is sent as soon as the backdrop”is put at the top of the stack, so becoming

specifies the data source to be used (see 9.2.2.7.1).

or field specifies a colour.to.be used as the background.

the current transformation. Scaling and/or rotation do not have any effect on this node.

Changing the background for 5 seconds.

S {rimeSensor {

star

round one.
hlity of this
t in some

to FALSE,
stack is on

he current

geometry node and the top-left corner of the image is displayed at the top-left corner of the screen,

Time 5.0

stop

Time 10.0

}
DEF BG1 Background2D {

}
]

}
ROUTE TIS.isActive TO BG1.set_bind

130

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.13 Billboard

9.4.2.13.1 Node interface
Billboard {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField SFVec3f axisOfRotation 0,1,0
exposedField MFNode children 1
}

NOTE — For the binary encoding of this node see Annex H.1.13.

9.4.2.13.2

The sema

14496-1 dges not support the bounding box parameters (bboxCenter and bboxSize).

9.4.2.14 Bitmap

9.4.2.14.1

Bitmap {
expose
}

NOTE — Fqr the binary encoding of this node see Annex H.1.14.

9.4.2.14.2

Bitmap i
aligned reg
of its parer
the image
performed

The scale
be strictly
dimension
texture thal

Bitmap s

Geometry
pixels of th

Functionality and semantics

htics of the Billboard node are specified in ISO/IEC 14772-1:1998, subclause” 6.6

Node interface

dField SFVec2f scale 11

Functionality and semantics

5 a geometry node, to be placed in the geémetry field of a Shape node. In general, i
tangle with the dimensions of the texture that is mapped onto it, as specified in the Appe
t Shape node. However, the effective-geometry of Bitmap is defined by the non-transp
pr video that is mapped onto it. Whenho scaling is specified, a trivial texture-mapping (piX

field specifies a scaling of thesgeometry in the x and y dimensions, respectively. The scalg
positive or equal to -1. A scale value of -1 indicates that no scaling shall be applied in
The special case where both scale dimensions are -1 indicates that the natural dime|
| is mapped onto thé'Bitmap shall be used.

hall not be rotated but may be subject to translation.

sensors shall respond to the effective geometry of the Bitmap , which is defined by the no
e texture-that is mapped onto it.

Example —

10]. ISO/IEC

is a screen-
rance node
rent pixels of
el copying) is

values shall
the relevant
hsions of the

n-transparent

Ta‘specify semi-transparent video:

Shape {
appeara
textu

nce Appearance {
re MovieTexture { // Visual object

material Material2D {
transparency 0.5 /I semi-transparent

}
}

geometry Bitmap {}

}

© ISO/IEC 1999 — All rights reserved

131

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.15 Box
9.4.2.15.1 Node interface
Box {
field SFVec3f size 2,2,2
}
NOTE — For the binary encoding of this node see Annex H.1.15.

9.4.2.15.2 Functionality and semantics

The semantids of the BOX node are specified in ISO/IEC 14772-1:1998, subclause 6.7 [10].

9.4.2.16 Cirgle

9.4.2.16.1 N¢de interface

Circle {
exposedHeld SFFloat radius 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.16.

9.4.2.16.2 Fdyinctionality and semantics

This node spgcifies a circle centred at (0,0) in the local coordinate-system. The radius field specifies th

the circle and shall be greater than 0.
9.4.2.17 Colfision

9.4.2.17.1 Nopde interface

Collision {
eventln MFNode addChildren
eventin MFNode removeChildren
exposedHeld MFNode children 0
exposedHeld SFBool collide TRUE
field SFNode proxy NULL
eventOut SFTime collideTime

}

NOTE — For the binary encading of this node see Annex H.1.17.

9.4.2.17.2 Hunctionality and semantics

The semantigs of\the Collision node are specified in ISO/IEC 14772-1:1998, subclause 6.8 [10]. ISO/IH

does not supportthe bounding box parameters (bboxCenter and bboxSize).

9.4.2.18 Color
9.4.2.18.1 Node interface
Color {
exposedField MFColor color 0
}

NOTE — For the binary encoding of this node see Annex H.1.18.

e radius of

C 14496-1

132 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.4.2.18.2

ISO/IEC 14496-1:1999(E)

Functionality and semantics

The semantics of the Color node are specified in ISO/IEC 14772-1:1998, subclause 6.9 [10].

9.4.2.19 Colorinterpolator

9.4.2.19.1 Node interface
ColorInterpolator {
eventin SFFloat set_fraction
exposedField MFFloat key 1
exposedField MFColor keyValue 1
eventOut SFColor value_changed
}
NOTE — Fqr the binary encoding of this node see Annex H.1.19.
9.4.2.19.2 | Functionality and semantics
The semaitics of the Colorinterpolator node are specified in ISO/IEC 14772-1:1998, subclause §.10 [10].
9.4.2.20 (ompositeTexture2D
9.4.2.20.1 [Node interface
Composite[Texture2D {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children I
exposedField SFInt32 pixelWidth -1
exposedField SFInt32 pixelHeight -1
exposedField SFNode background NULL
exposefdField SFNode viewport NULL
}
NOTE — Fqr the binary encoding of this node,see Annex H.1.20.
9.4.2.20.2 [Functionality and semantics
The ComppositeTexture2D «.noede represents a texture that is composed of a 2D scene, which mgy be mapped
onto another object.
This node may only betused as the texture field of an Appearance node. All behaviors and user ifteraction are

enabled wipen using-alCompositeTexture2D .

The addC

The remoy

nildren™ eventin specifies a list of nodes that shall be added to the children field.
ol 41 M Lot £ 2l ot laall £ +lo lailel £l
CcOoITmmurciIiI CVTTIUNT SPTUITITS A TIol UT TIUUT S Ual otidin UT TTTTTUOVTU TTUTTT UTC LTTutTTrh - 11ITiu.

The children field contains a list of 2D children nodes that define the 2D scene that is to form the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an
undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The semantics of the background and viewport fields are identical to the semantics of the Layer2D (see
9.4.2.53) fields of the same name.

© ISO/IEC 1999 — All rights reserved

133

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Figyre 15- A CompositeTexture2D example. The 2D scene is projcted ontg'the 3D cube.

Figure 16 - A CompositeTexture2D example.

Here the 2D scene as defined in Figure 15 composed of an image, a logo, and a text, is textured on a rectangle n
in the local X,Y plane of the back wall. A similar effect may be obtained by simply placing the 2D objects in the (3D)
Transform . However, CompositeTexture2D and CompositeTexture3D shall be used when maping
onto non-flat geometries.

9.4.2.21 CompositeTexture3D
9.4.2.21.1 Node interface

CompositeTexture3D {

eventln MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children 1

134 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

expose
expose
expose
expose
expose
expose

}

ISO/IEC 14496-1:1999(E)

dField SFInt32 pixelWidth -1
dField SFInt32 pixelHeight -1
dField SFNode background

dField SFNode fog

dField SFNode navigationinfo

dField SFNode viewpoint

NOTE — For the binary encoding of this node see Annex H.1.21.

9.4.2.21.2

Functionality and semantics

The Com
scene.

Behaviors
navigation
Composi

an Appearance node.

The addC
The remo
The childr

The pixel\
undefined

The background , fog, navigationinfo and viewpoint fields represent the current values of

children ng
All behavid

positeTexture3D node represents a texture mapped onto a 3D object that is comp

and user interaction are enabled when using a CompositeTexture3D . However, the
on the textured scene is disabled. Instead, sensors contained in the (s¢ene whig
feTexture3D may be used to define behaviours. This node may only be tsed as a te

nildren eventln specifies a list of nodes that shall be added to the chifdren field.

eChildren eventln specifies a list of nodes that shall be remeved from the children field

Vidth and pixelHeight fields specify the ideal size inpixels of this map. The default valug
Size being used. This is a hint for the content creator\to define the quality of the texture map

des used in the 3D scene. This node may.@hly be used as the texture field of an Appea
rs and user interaction are enabled when,using a CompositeTexture2D .

bn field is the list of 3D children nodes that define the 3D scene that forms the texture mapg.

psed of a 3D

standard user
h forms the
ture field of

S result in an
ping.

the bindable
ance node.

Figure 17 - CompositeTexture3D example. The 3D view of the earth is projected onto the 3D cube

© ISO/IEC 1999 — All rights reserved

135

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.22 Conditional

9.4.2.22.1 Node interface

Conditional {
eventin
eventin
exposedF
eventOut

}

SFBool activate
SFBool reverseActivate

ield SFString buffer
SFBool isActive

NOTE — For the binary encoding of this node see Annex H.1.22.

9.4.2.22.2 F\Ilnctionality and semantics

The Conditi
to trigger nod
had just been

Upon recepti
FALSE on t
CommandFrg
assuming a z

EXAMPLE —

grouping node
the activate eV
the “mouse-do

9.4.2.23 Cor
9.4.2.231 N

Cone {
field
field
field
field

}

NOTE — Fort

bnal node interprets a buffered bit string of BIFS-Commands when it is activated, This all
e updates, deletions, and other modifications to the scene. The buffered bit string is interpr|
received.

bn of either an SFBool event of value TRUE on the activate eventln, or an SFBool eve
ne reverseActivate
me(see 9.3.6.2). These updates are not time-stamped; they are’exéecuted at the time of]
pro-decoding time.

\ typical use of this node is for the implementation of the action ofia button. The button geometry is &
which also contains a TouchSensor node. The isActive €ventOut of the TouchSensor

entln of Conditional C1 and to the reverseActivate eventin of Conditional C2; C1 then
n” action and C2 implements the “mouse-up” action.

e
bde interface
SFFloat bottomRadius 1.0
SFFloat height 2.0
SFBool side TRUE
SFBool bottom TRUE

he binary encoding-of this node see Annex H.1.23.

9.4.2.23.2 Flinctionality and 'semantics

The semantid

9.4.2.24 Coq

s of theNEone node are specified in ISO/IEC 14772-1:1998, subclause 6.11 [10].

rdinate

DWS events
pted as if it

nt of value

eventln, the contents of the buffer field ;shall be interpreted as a BIFS

the event,

hclosed in a
is routed to
implements

9.4.2.24.1 Node interface

Coordinate {
exposedF
}

ield MFVec3f point

NOTE — For the binary encoding of this node see Annex H.1.24.

9.4.2.24.2 Functionality and semantics

The semantics of the Coordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.12 [10].

136

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.25 Coordinate2D
9.4.2.25.1 Node interface
Coordinate2D {
exposedField MFVec2f point I
}
NOTE — For the binary encoding of this node see Annex H.1.25.

9.4.2.25.2 Functionality and semantics

This node flefines a set of 2D coordinates to be Used In the coord Tield of geometry nodes.
The point |field contains a list of points in the 2D coordinate space (see 9.2.2.2).

9.4.2.26 (oordinatelnterpolator

9.4.2.26.1 [Node interface

CoordinatgInterpolator {

eventin SFFloat set_fraction

exposefdField MFFloat key 1
exposegdField MFVec3f keyValue [
eventOut MFVec3f value_changed

}

NOTE — Fqr the binary encoding of this node see Annex H.1.26.

9.4.2.26.2 | Functionality and semantics

The semaitics of the Coordinatelnterpolator “node are specified in ISO/IEC 14772-1:1998, sybclause 6.13
[10].

9.4.2.27 (oordinatelnterpolator2D
9.4.2.27.1 [Node interface

Coordinatginterpolator2D {

eventin SFFloat set_fraction

exposedField MFFloat key 1
exposedField MFVec2f keyValue 1
eventOut MEVec2f value_changed

}

NOTE — Fqr the binary encoding of this node see Annex H.1.27.

9.4.2.27.2 |Functionality and semantics

Coordinatelnterpolator2D is the 2D equivalent of Coordinatelnterpolator (see 9.4.2.26).
9.4.2.28 Curve2D

9.4.2.28.1 Node interface

Curve2D {
exposedField SFNode point NULL
exposedField SFInt32 fineness 0
exposedField MFInt32 type 1

}

NOTE — For the binary encoding of this node see Annex H.1.28.

© ISO/IEC 1999 — All rights reserved 137

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.28.2 Functionality and semantics

This node is used to describe the Bezier approximation of a polygon in the scene at an arbitrary level of precision. It
behaves as other “lines”, which means it is sensitive to modifications of line width and “dotted-ness”, and can be

filled or not.

The given parameters are a control polygon and a parameter setting the quality of approximation of the curve.
Internally, another polygon of fineness points is computed on the basis of the control polygon. The coordinates of
that internal polygon are given by the following formula:

where x[j] is the jth x coordinate of the internal polygon, n is the number of points in the contro| polygon,

i™ x coordina
points in the i

The point fie

The finenesg
means that th
be drawn bet]
The amount
edges appea|
as follows: th
segments, deg
the curve pas
field define th

The point fie
contain token

pseudo-code):

(n—1)! (Hi (1 j\n—l—i

n
=Ny
2%

dil
']

ifn-1-i) "\ f) " f)

=0

e of the control polygon and fis short for the above fineness parameter which is also the
nternal polygon. A similar formula yields the y coordinates.

Id shall list the vertices of the control polygon.

parameter is an SFFloat value that indicates how finely to tessellate the Bezier curves. A
e curve shall be fine enough that no edges are visible. A value/0f'0 indicates that a straig
wween the two points of the curve. The default value of 0.5 gives an intermediate level of s
Df tessellation may be adjusted according to scale of the ‘shape, making it possible to a
[ing when the shape is zoomed. When the field type is specified, the above functionality i
e curve is now defined piecewise either with the abeve.equation or as straight segments
pending on the values in type. The point field is(now taken to contain all key-points (pq
ses) and control-points (points defining the aspeet.of the curve around them). The values
e semantics of the elements of point .

Id contains a Coordinate2D field with the list of points. If the type field is non-empty, t
s indicating how the point list is to be-interpreted, according to the following algorithm (e

xcli] is the
number of

value of 1
ht line shall
noothness.
oid visible
5 extended
or as non-
ints where
n the type

hen it shall
pressed in

SFInt32 i =0
SFInt32 j = 0;
SFVec2f cur = point[i++];
SFVec2f fifst = cur;
SFVec2f clrectl;
while (i < [point.length)
SFInt3 |2 t = 0;
if (type|length > j) t = type[j++];
switch(f) {
cas¢ O: // '‘move, use 1 point
if (@S filed) draw_line(cur, point[i]);
ur= pointfi];
i++;
break;

case 1: // line, use 1 point
draw_line(cur, point[i]);

cur

point[i];

i++;
break;

case 2: /| bezier curve, use 3 points
draw_curve(cur, point[i], point[i+1], point[i+2]);

cur = point[i+2];
curctl =point[i+1];
i += 3;
break;

138

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

c

}
}
it (is_fill

ISO/IEC 14496-1:1999(E)

ase 3: // tangent curve, use 2 points
SFVec?2f tanctl;
tanctl.x 2*cur.x — curctl.x;
tanctly = 2*cur.y — curctly;
draw_curve(cur, tanctl, point[i], point[i+1]);

cur = point[i+1];
curctl = point][i];
i += 2;
break;

ed) draw_line(cur, first);

In the abo
Bezier cur
move com

closed by drawing a straight line from the last point in the segment to the first. Shapes are filled using

winding fill
shapes wit

The first cd
be applied
curve segn
the current

The permitted values of type are:

0 = M
start al

element in type.

1 =Lin

2 =CU
first cg
contro

(N).

3 = N¢g

coordiate pair specifies the,control point for the end of the curve segment (C,), and the second

ending
the preg
point G
contro

The formu

ve pseudo-code, draw_line(a,b) draws a line from a to b and draw_curve(a,b,c,d)
e from a to d, using b as the control point for a and c as the control point for d. Note that; b
mand (type = 0) multiple disjoint segments are possible. In the case of a filled shapg, ead

rule. If one segment is contained within another, the inside of the inner shage is not f
h holes.

ordinate pair in point is the starting point of the curve. The first value,in type describes th
to the subsequent coordinate pairs. At any time, a value in type describes the characteristi

nent. If P is the starting point or the last point of the previous segment of the curve; N the e
curve segment; C; the control point on the side of P and C, the'control point on the side of

pain at N. Sequences of two or more MoveTos shall not occur. MoveTo shall not occ
eTo: One coordinate pair in the point list isscensumed, defining N. A straight line is drawn

ordinate pair specifies the control point the start of this curve segment (C,), the second
point for end of the curve segmeént (C,) and the third specifies the ending point of the ¢

XtCurveto: Two coordinate pairs in the point list are consumed, defining C, and N in this g
point of the curve-segment (N). The control point C, for the start of the curve segment is
vious control point-f the previous segment was formed with CurveTo or NextCurveTo, th
1 is symmetrieal;to the end control point C, of the previous curve segment with respect to|

type shall ,not:occur immediately following a MoveTo or LineTo.

a for aptaining the coordinates of C; in the case of a NextCurveTo is:

draws a
pcause of the
h segment is
the odd-even
lled, allowing

b treatment to
cs of the next
nding point of
N.

veTo: One coordinate pair in the point list is consumed, defining N. P ends the curve. The curve shall

r as the first

rom P to N.

rveTo: Three coordinate pairs in the point list are consumed, defining C;, C, and N respectively. The

specifies the
irve segment

rder. The first
specifies the
derived from
p start control
point P. This

Cyx=2.P,—Cpand Cyy=2.P,—C)y

The first point in point , as the first point in the curve, is implicitly a MoveTo.

For CurveTo and NextCurveTo, the piece of curve is constructed using the above formula as applied to a polygon
constructed from four points, that is the starting point P, the first control point C,, the second control point C, and
the end point N, which is the next point in the point list.

The curve shall be continuous except at points tagged with MoveTo. The tangent of the curve is only continuous at
points tagged with NextCurveTo, or at points where the previous second control point C ,, the key point P and the
next first control point C, are aligned.

If there are more values in point than specified by type, then the unused points shall describe a curve as if no
type was defined.

© ISO/IEC 1999 — All rights reserved

139

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

EXAMPLE —

geometry Curve2D {
point Coordinate2D {
point s [0 0 0 100 200 100 200 200 210 200 220 200]

}
type [2 0 1]

The first segment of curve starts at 0,0 goes to 200,200 and control points are 0,100 and 200,100. The Bezier curve drawn is
the one with the polygon [0 0 0 100 200 100 200 200] (represented in dotted gray) when types=null, with the same fineness.
When types is specified, the fineness parameter is applied to each curve segment. Then we have a "move to", from 200,200 to
210,200. Then we have a "line to", from 210,200 to 220,200 (small segment in upper right corner).

In Figure 18, the curve is drawn in wide black, and the control polygon is drawn in dotted gray. The curvechas|two connex
components.

Figure 18 - Curve nodée example

9.4.2.29 Cylinder

9.4.2.29.1 N¢pde interface

Cylinder {
field SFBool bottom TRUE
field SFFloat height 2.0
field SFFloat radius 1.0
field SFBool side TRUE
field SFBool top TRUE
}

NOTE — For the binary encoding of this node see Annex H.1.29.

9.4.2.29.2 Flinctionality and semantics

The semantigs ofthe Cylinder node are specified in ISO/IEC 14772-1:1998, subclause 6.14 [10].

9.4.2.30 CylinderSensor
9.4.2.30.1 Node interface

CylinderSensor {

exposedField SFBool autoOffset TRUE
exposedField SFFloat diskAngle 0.262
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1.0
exposedField SFFloat minAngle 0.0
exposedField SFFloat offset 0.0
eventOut SFBool isActive

140 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

eventOut
eventOut

}

SFRotation

SFVec3f

ISO/IEC 14496-1:1999(E)

rotation_changed
trackPoint_changed

NOTE — For the binary encoding of this node see Annex H.1.30.

9.4.2.30.2 Functionality and semantics

The semantics of the CylinderSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.15 [10].

9.4.2.31 DiscSensor

9.4.2.31.1 [Node interface

DiscSensof {
exposedField
exposedField
exposedField
exposedField
exposedField
eventOut
eventOut
eventOut

}

NOTE — Fqr the binary encoding of this node see Annex H.1.31.

9.4.2.31.2 |Functionality and semantics

SFBool
SFBool
SFFloat
SFFloat
SFFloat
SFBool
SFFloat
SFVec?2f

autoOffset TRUE
enabled TRUE
maxAngle -1.0
minAngle -1.0
offset 0.0
isActive

rotation_changed
trackPoint_changed

This sensqr enables the rotation of an object in the 2D plane around an axis specified in the lodal coordinate

system. THe semantics are as similar to those for CyliriderSensor , but restricted to a 2D case.

9.4.2.32 DirectionalLight

9.4.2.32.1 |Node interface

Directionallight {
exposedField
exposegdField
exposefdField
exposegdField
exposefdField

}

NOTE — Fqr the binary’encoding of this node see Annex H.1.32.

9.4.2.32.2 | Functionality and semantics

SFFloat

SFColor
SFVec3f
SFFloat

SFBool

ambientintensity 0.0
color 1,1,1
direction 0,0, -1
intensity 1.0
on TRUE

The semantics of the DirectionalLight node are specified in ISO/IEC 14772-1:1998, subclause 6.16 [10].

9.4.2.33 ElevationGrid

9.4.2.33.1 Node interface

ElevationGrid {
eventin
exposedField
exposedField
exposedField
field
field

© ISO/IEC 1999 — All rights reserved

MFFloat
SFNode
SFNode
SFNode
MFFloat
SFBool

set_height

color NULL
normal NULL
texCoord NULL
height 1]
ccw TRUE

141

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

field
field
field
field
field
field
field
field

}

SFBool colorPerVertex TRUE
SFFloat creaseAngle 0.0
SFBool normalPerVertex TRUE
SFBool solid TRUE
SFInt32 xDimension 0
SFFloat xSpacing 1.0
SFInt32 zDimension 0
SFFloat zSpacing 1.0

NOTE — For the binary encoding of this node see Annex H.1.33.

9.4.2.33.2 Fiinctionality and semantics

The semantid

9.4.2.34 EX(
942341 N
Expression {
field
field
field
field
field
field
}
NOTE — For t

ression

pde interface

SFInt32 expression_selectl 0
SFInt32 expression_intensityl 0
SFInt32 expression_select2 0]
SFInt32 expression_intensity2 Q
SFBool init_face FALSE
SFBool expression_def FALSE

he binary encoding of this node see Annex H.1.34«

9.4.2.34.2 Flinctionality and semantics

The Expres
standard set

The expre
expression_|

If init_face i

If expressio

9.4.2.35 Ext

9.4.2.351 N

5ion node is used to define the expression of the face as a combination of two expressio
Df expressions defined ISO/IEC 14496-2, Annex C, Table C-3.

Esion_selectl and expression_select2
intensityl and expression_intensity2

fields specify the expression ty
fields specify the corresponding expression int

5 set, a neutral fage fnay be modified before applying FAPs 1 and 3-68.

_def is set, current FAPs are used to define an expression and store it.

usion

bde‘interface

s of the ElevationGrid node are specified in ISO/IEC 14772-1:1998, subclause 6.17 [10].

s from the

pes. The
bnsities.

Extrusion {
eventin
eventin
eventin
eventin
field
field
field
field
field
field
field
field

142

MFVec?2f set_crossSection

MFRotation set_orientation

MFVec2f set_scale

MFVec3f set_spine

SFBool beginCap TRUE
SFBool ccw TRUE
SFBool convex TRUE
SFFloat creaseAngle 0.0
MFVec2f crossSection 1,1,1,-1,-1,-1,-1,1,1,1
SFBool endCap TRUE
MFRotation orientation 0,0,1,0
MFVec2f scale 1,1

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

field
field

}

ISO/IEC 14496-1:1999(E)

SFBool solid TRUE
MFVec3f spine 0,0,0,0,1,0

NOTE — For the binary encoding of this node see Annex H.1.35.

9.4.2.35.2

Functionality and semantics

The semantics of the Extrusion node are specified in ISO/IEC 14772-1:1998, subclause 6.18 [10].

with a facial
e assigned a
s sent in the

9.4.2.36 Face
9.4.2.36.1 (Nodemterface
Face {
exposegdField SFNode fit NULL
exposefdField SFNode fdp NULL
exposefdField SFNode fap NULL
exposefdField SFNode ttsSource NULL
exposedField MFNode renderedFace NULL
}
NOTE — Fqr the binary encoding of this node see Annex H.1.36.
9.4.2.36.2 | Functionality and semantics
The Face| node is used to define and animate a face in the s€ene. In order to animate the face)
animation tream, ut us necessary to link the Face node to,a\BIFS-Anim stream. The node shall 4
nodelD, through the DEF mechanism. Then, as for any..BIFS-Anim stream, an animation mask
object desgriptor of the BIFS-Anim stream (specificlnfo field). The animation mask points to th¢ Face node

using its ngdelD . The terminal shall then connect the facial animation decoder to the appropriate Fag

The FAP

The FDP
points or al
used.

The FIT fie
non-NULL
mesh.

ield, which defines the particularJook of a face by means of downloading the position of f
N entire model, is optional. If the'FDP field is not specified, the default face model of the ter

Id, when specified, allows a set of FAPs to be defined in terms of another set of FAPs. Wh
the terminal shalluse FIT to compute the maximal set of FAPs before using the FAPs tg

The ttsSo

from an addio TTS_source (see ISO/IEC 14496-3, section 6). In this case the ttsSource field sh
AudioSolirce~node and the face shall be animated using the phonemes and bookmarks received
See also Annext.

rce fieldshall only be non-NULL if the facial animation is to determine the facial animatig

e node.

ield shall contain a FAP node, describing the facial animation parameters (FAPs). Eaclh Face node
shall contaJn a non-NULL FAP field.

ace definition
minal shall be

bn this field is
compute the

n parameters

rll contain an
r

om the TTS.

renderedFace is the scene graph of the face after it is rendered (all FAP’s applied).

9.4.2.37 FaceDefMesh

9.4.2.37.1

Node interface

FaceDefMesh {

field

field

field

field
}

SFNode faceSceneGraphNode NULL
MFInt32 intervalBorders 1
MFInt32 coordindex 1
MFVec3f displacements 1

NOTE — For the binary encoding of this node see Annex H.1.37.

© ISO/IEC 1999 — All rights reserved

143

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.37.2 Functionality and semantics

The FaceDefMesh node allows for the deformation of an IndexedFaceSet as a function of the amplitude of
a FAP as specified in the related FaceDefTable node. The FaceDefMesh node defines the piece-wise linear
motion trajectories for vertices of the faceSceneGraphNode field, which shall contain an IndexedFaceSet
node. This IndexedFaceSet node belongs to the scenegraph of the faceSceneGraph field of the FDP node.

The intervalBorders field specifies interval borders for the piece-wise linear approximation in increasing order.
Exactly one interval border shall have the value 0.

The coordindex field shall contain a list of indices into the Coordinate node of the IndexedFaceSet node

For each verfex indexed in the coordIindex field, displacement vectors are given in the displacenmients field for
the intervaly defined in the intervalBorders field. There must be exactly (num(intervalBorders)-
1)*num(coorglindex) values in this field.

In most casep, the animation generated by a FAP cannot be specified by updating a Transform node. Thus, a
deformation ¢f an IndexedFaceSet node needs to be performed. In this case,thie FaceDefTables shall
define which|IndexedFaceSets are affected by a given FAP and how the coord fields of these|nodes are
updated. Thig is done by means of tables.

If a FAP affefts an IndexedFaceSet , the FaceDefMesh shall specify’a table of the following foriat for this
IndexedFag¢eSet :

Table 30 - Vertex displacements

Vertex np. 1st Interval [11, 12] 2nd.Interval [12, 13]
Index 1 Displacement D11 Displacement D12
Index 2 Displacement D21 Displacement D22

Exactly one ifterval border I, must have the value O:
[Il! IZ]! [|21 |3]- ---[Ik-ly 0], [0, Ik+l]! [Ik+l! |k+2]y ---[Imax—ly Imax]

During animdtion, when the terminal‘receives a FAP, which affects one or more IndexedFaceSets [of the face
model, it shall piece-wise lingarly approximate the motion trajectory of each vertex of thg affected
IndexedFag¢eSets by using the appropriate table.

Figure 19 - An arbitrary motion trajectory is approximated as a piece-wise linear one.
If Py, is the position of the m™ vertex in the IndexedFaceSet in neutral state (FAP = 0), P’, the position of the
same vertex after animation with the given FAP and D, the 3D displacement in the k™ interval, the following
algorithm shall be applied to determine the new position P’,.

Determine, in which of the intervals listed in the table the received FAP is lying.

If the received FAP is lying in the jth interval [Ij, 1j+1] and 0=Ik < lj, the new vertex position P’'m of the mth vertex of
the IndexedFaceSet is given by:

144 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

P'm = FAPU * ((Ik+2-0) * Dk + (Iks2-lks1) * D kss + oo + (I = ;1) * D jo + (FAP-1) * Dpy) + Pp. (Eq. 1)
If FAP > |y, then P’y is calculated by using equation Eq. 1 and setting the index j = max.

If the received FAP is lying in the jth interval [l;, I;:1] and l;, < 1,=0, the new vertex position P’ is given by:
P'm=FAPU * ((ljs1 - FAP) * Dy j + (liv2 = lj+1) * D, jea + +oo # (k1 = Ie2) * D k2 + (0 - lk1) * D, k1) + Prm (Eg. 2)
If FAP < I, then P’ is calculated by using equation Eq. 1 and setting the index j+1 = 1.

If for a given FAP and IndexedFaceSet the table contains only one interval, the motion is strictly linear:

P'm = FAPU * FAP * Dm1 + Pm.
EXAMPLE 4+

FaceDefMegh {

objectDgscriptorID UpperLip

intervalBorders [-1000, 0, 500, 1000]

coordindex [50, 51]

displacements [1 0 0, 09 00, 1504, 0800, 0700 , 20 0]
}

This FacePefMesh defines the animation of the mesh “UpperLip”. For the gieeewise-linear motion function| three intervals
are defined| [-1000, 0], [0, 500] and [500, 1000]. Displacements are givenc¢forthe vertices with the indices 50 and 51. The
displacements for the vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements for vertex 51 are (0.8 0 0), (0.7 0 0) and
(2 0 0). Givgn a FAPValue of 600, the resulting displacement for vertex 50.would be:

displacement(vertex 50) = 500%(0.9 0 0)" + 100 * (1.5 0 4)" = (600 0.4@0)".

If the FAPValue is outside the given intervals, the boundary intervals are extended to +I or -1, as appropriate.
9.4.2.38 HaceDefTables

9.4.2.38.1 |Node interface

FaceDefTgbles {
field SFInt32 faplD 0
field SFInt32 highLevelSelect 0
exposefdField MFNode faceDefMesh 1
exposefdField MFNode faceDefTransform]
}

NOTE — Fqr the binary ehcoding of this node see Annex H.1.38.

9.4.2.38.2 | Functionality and semantics

The Face|DéfTables node defines the behavior of a facial animation parameter FAP on a downloaded face
model in fé ucSucchlaph by opcuify;llg the d;apla\.’C|||C| -vectorsformoved-verticesinside-trdexedFaceSet
objects as a function of the FAP fapID and/or specifying the value of a field of a Transform node as a function
of FAP fapID.

The FaceDefTables node is transmitted directly after the BIFS bitstream of the FDP node. The
FaceDefTables lists all FAPs that animate the face model. The FAPs animate the downloaded face model by
updating the Transform or IndexedFaceSet nodes of the scene graph in faceSceneGraph . For each listed
FAP, the FaceDefTables node describes which nodes are animated by this FAP and how they are animated. All
FAPs that occur in the bitstream have to be specified in the FaceDefTables node. The animation generated by
a FAP can be specified either by updating a Transform node (using a FaceDefTransform), or as a
deformation of an IndexedFaceSet (using a FaceDefMesh).

© ISO/IEC 1999 — All rights reserved 145

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The FAPUs shall be calculated by the terminal using the feature points that shall be specified in the FDP. The
FAPUs are needed in order to animate the downloaded face model.

9.4.2.38.3 Semantics

The faplD field specifies the FAP, for which the animation behavior is defined in the faceDefMesh and
faceDefTransform fields.

If fapID has value 1 or 2, the highLevelSelect field specifies the type of viseme or expression. In other cases

this field has

no meaning and shall be ignored.

The faceDefMesh field shall contain a FaceDefMesh node.

The faceDef[fransform field shall contain a FaceDefTransform node.

9.4.2.39 FadeDefTransform

9.4.2.39.1 N¢pde interface

FaceDefTrangform {
field SFNode faceSceneGraphNode NULL
field SFInt32 fieldld 1
field SFRotation rotationDef 0,0, 150
field SFVec3f scaleDef 1, 1.1
field SFVec3f translationDef 0, 0y0

}

NOTE — For the binary encoding of this node see Annex H.1.39.

9.4.2.39.2 Fdinctionality and semantics

The FaceDé

(faceScene(
parameter, a
translation |

The faceSce
shall be part

pfTransform node defines which field (rotation , scale or translation) of a Transf
braphNode) of faceSceneGraph (defined in an FDP node) is updated by a facial
nd how the field is updated. If the faceyis in its neutral position, the faceSceneGraphNo
scale, and rotation fields set to the neutral values (O,O,O)T, (1,1,1)T, (0,0,1,0), respective

neGraphNode field specifies-the Transform node for which the animation is defined
bf faceScenegraph as defined in the FDP node.

The fieldld field specifies which field in the Transform node, specified by the faceSceneGraphNoq

updated by th
— If fieldID {
— If fieldID {

— If fieldID 3

e FAP during animation. Possible fields are translation , rotation , scale.
=1, rotation.\shall be updated using rotationDef and FAPValue .
=2, scale)shall be updated using scaleDef and FAPValue .

=3, translation shall be updated using translationDef and FAPValue .

Drm node
animation
e has its

V.
The node

e field, is

The rotationDef field is of type SFRotation. With rotationDef =(r,,r,,r,,0), the new value of the rotation field of
the Transform node faceSceneGraphNode is:

The scaleDef field is of type SFVec3f. The new value of the scale field of the Transform

faceSceneG

rotation : =(ry,r.r,,0*FAPValue *AU) [AU is defined in ISO/IEC 14496-2]

raphNode is:

scale := FAPValue *scaleDef

node

The translationDef field is of type SFVec3f. The new value of the translation field of the Transform node

faceSceneG

146

raphNode is:

translation := FAPValue *translationDef

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.4.2.40 FAP

9.4.2.40.1 Node interface

FAP {
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

ISO/IEC 14496-1:1999(E)

exposedField
exposegdField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposegdField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

© ISO/IEC 1999 — All rights reserved

SFNode viseme NULL
SFNode expression NULL
SFInt32 open_jaw +
SFInt32 lower_t_midlip +
SFInt32 raise_b_midlip +
SFInt32 stretch_|_corner +
SFInt32 stretch_r_corner +|
SFInt32 lower_t_lip_Im +
SFInt32 lower_t_lip_rm +l
SFInt32 lower_b_lip_Im +l
SFInt32 lower_b_lip_rm +l
SFInt32 raise_|_cornerlip +l
SFInt32 raise_r_cornerlip +l
SFInt32 thrust_jaw +|
SFInt32 shift_jaw +
SFInt32 push_b_lip +
SFInt32 push_t_lip +
SFInt32 depress_chin +
SFInt32 close_t | eyelid %]
SFInt32 close_t_r_eyelid +|
SFInt32 close_b_| _eyelid +l
SFInt32 close_b_r_eyelid +l
SFInt32 yaw_|_eyeball +l
SFInt32 yaw_r_eyeball +l
SFInt32 pitch_I_eyeball +l
SFInt32 pitch_r_eyeball +
SFInt32 thrust_I_eyeball +|
SFInt32 thrust_r._eyeball +|
SFInt32 dilate_i\pupil +
SFInt32 dilate r_pupil +
SFInt32 raise | _i_eyebrow +l
SFInt32 raise_r_i_eyebrow +l
SFInt32 raise_|_m_eyebrow +l
SFInt32 raise_r_m_eyebrow +l
SFInt32 raise_|_o_eyebrow +l
SFInt32 raise_r_o_eyebrow +l
SFINt32 squeeze_| _eyebrow +|
SEInt32 squeeze_r_eyebrow +l
SFInt32 puff_| _cheek +|
SFInt32 puff_r _cheek +|
SFInt32 lift_l_cheek +|
SFInt32 lift r cheek +|
SFInt32 shift_tongue_tip +l
SFInt32 raise_tongue_tip +l
SFInt32 thrust_tongue_tip +l
SFInt32 raise_tongue +l
SFInt32 tongue_roll +l
SFInt32 head_pitch +l
SFInt32 head_yaw +|
SFInt32 head_roll +|
SFInt32 lower_t_midlip_o +
SFInt32 raise_b_midlip_o +
SFInt32 stretch_|_cornerlip +
SFInt32 stretch_r_cornerlip_o +l
SFInt32 lower_t lip_Im_o +l

147

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

exposedField SFInt32 lower_t_lip_rm_o +|
exposedField SFInt32 raise_b_lip_Im_o +|
exposedField SFInt32 raise_b_lip_rm_o +|
exposedField SFInt32 raise_|_cornerlip_o +l
exposedField SFInt32 raise_r_cornerlip_o +l
exposedField SFInt32 stretch_|_nose +|
exposedField SFInt32 stretch_r_nose +|
exposedField SFInt32 raise_nose +|
exposedField SFInt32 bend_nose +|
exposedField SFInt32 raise_|_ear +|
exposedField SFInt32 raise_r_ear +l
exposedFjeld SFInt32 pull | ear +|
exposedHeld SFInt32 pull_r_ear +

}

NOTE — For the binary encoding of this node see Annex H.1.40.

9.4.2.40.2 FInctionaIity and semantics

This node d

controlled sy
14496-2, Ann

The viseme

The express

The semantic

ex C.
field shall contain a Viseme node.

on field shall contain an Expression node.

fines the current look of the face by means of expressions and EAPs and gives a hint to TTS
stems on which viseme to use. For a definition of the facial animation parameters sgde ISO/IEC

s for the remaining fields are described in the ISO/IEC 14496-2, Annex C and in particulpr in Table

C-1.

A FAP of valye +I shall be interpreted as indicating that the-particular FAP is uninitialized.

9.4.2.41 FDP

9.4.2.41.1 N¢de interface

FDP {
exposedHeld SFNode featurePointsCoord NULL
exposedHeld SFNode textureCoords NULL
exposedHeld SFBool useOrthoTexture FALSE
exposedHeld MFNode faceDefTables 1
exposedHeld MFNode faceSceneGraph 1

}

NOTE — For the binagy:éncoding of this node see Annex H.1.41.

9.4.2.41.2 Ftlnnctionality and semantics

The FDP node defines the face model to be used at the terminal. Two options are supported:

1.

If faceDefTables is NULL, calibration information is downloaded, so that the proprietary face of the terminal
can be calibrated using facial feature points and, optionally, the texture information. In this case, the
featurePointsCoord field shall be set. featurePointsCoord contains the coordinates of facial feature
points, as defined in ISO/IEC 14496-2, Annex C, Figure C-1, corresponding to a neutral face. If a coordinate of
a feature point is set to +l, the coordinates of this feature point shall be ignored. The textureCoord field, if set,
is used to map a texture on the model calibrated by the feature points. The textureCoord points correspond to
the feature points. Tthat is, each defined feature point shall have corresponding texture coordinates. In this
case, the faceSceneGraph shall contain exactly one texture image, and any geometry it might contain shall
be ignored. The terminal shall interpret the feature points, texture coordinates, and the faceSceneGraph in
the following way:

148 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

— Feature points of the terminal’s face model shall be moved to the coordinates of the feature points supplied in

feature

— If textu

PointsCoord , unless a feature point is to be ignored, as explained above.

reCoord

is set, the texture supplied in the faceSceneGraph shall be mapped onto the terminal's

default face model. The texture coordinates are derived from the texture coordinates of the feature points
supplied in textureCoords . The useOrthoTexture field provides a hint to the decoding terminal that, when

FALSE,

useOrthoTexture

A face

indicates that the texture image is best obtained by cylindrical projection of

model as described in the faceSceneGraph

the face. If

is TRUE, the texture image is best obtained by orthographic projection of the face.

is decoded. This face model replaces the terminal's

default face model in the terminal. The faceSceneGraph shall contain the face in its neutral position (all FAPs

=0). If
way in

informal
functior
faceSc
size of
the facq
units of
FAPs:

stretchi
causes

which the faceSceneGraph shall be modified, as a function of the FAPs, shall also be
tion is described by faceDefTables that define how the faceSceneGraph is to-be
of each FAP. By means of faceDefTables , IndexedFaceSets and Transform
eneGraph can be animated. Since the amplitude of FAPs is defined in units that\are dep
he face model, the featurePointsCoord field defines the position of facial-features on
described by faceSceneGraph . From the location of these feature points, the terminal
the FAPs. Generally, only two node types in the scene graph of a decoded face model a
ndexedFaceSet and Transform nodes. If a FAP causes a deformation of an o

a movement which can be described with a Transform node“(e.g. FAP 23, yaw_| eye

approp

has its [rotation , scale, and translation fields set to neutral values if the face is in its neutr
unique jhodeld shall be assigned via the DEF statement to all IndexedFaceSet and Trans

which

The featuePointsCoord
of the terninal's default face. The coordinates are specified in the point field of the Coordinate

prescribed
naumber.

EXAMPLE -

The textu
points. Th
feature poi

The useO
better inte
FALSE, th
useOrtho7
of the face

The faceD

iate fields in this Transform node shall be updated. It shalibe assumed that this Tran

re affected by FAPs so that they can be accessed unambiguously during animation.
field shall contain a Coordinate node that specifies feature points for {

order, that a feature point with a lower lapel"number is listed before a feature point with

— Feature point 3.14 before feature point4.1

b coordinates are listed janthe point field in the Coordinate node in the prescribed
ht with a lower label is listed before a feature point with a higher label.

thoTexture field-may contain a hint to the terminal as to the type of texture image, in
polation of texture”coordinates for the vertices that are not feature points. If useOrth
P terminal may, assume that the texture image was obtained by cylindrical projection d
[exture is)l,the terminal may assume that the texture image was obtained by orthograp

efTables field shall contain FaceDefTables nodes. The behavior of FAPs is defined i

defining the
ecoded. This
odified as a
nodes of the
ndent on the
he surface of
computes the
e affected by
pject (e.g. lip

ng), then the coordinate positions in the affected IndexedFacéSets shall be updated. If a FAP

pall), then the
sform node
pal position. A
form nodes

he calibration
node in the
h higher label

eCoords field shall containla Coordinate node that specifies texture coordinates for the feature

order, that a

prder to allow
DTexture is
f the face. If
hic projection

h this field for

the face in

faceSceneGraph .

The faceSceneGraph field shall contain a Group node. In the case of option 1 (above), this may be used to
contain a texture image as described above. In the case of option 2, this shall be the grouping node for the face
model rendered in the compositor and shall contain the face model. In this case, the effect of facial animation
parameters is defined in the faceDefTables field.

© ISO/IEC 1999 — All rights reserved

149

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.42 FIT

9.4.2.42.1 Node interface

FIT {
exposedField MFInt32 FAPs 0
exposedField MFInt32 graph 1
exposedField MFInt32 numeratorTerms 0
exposedField MFInt32 denominatorTerms 1
exposedField MFInt32 numeratorExp 1
exposedField MFInt32 denominatorExp 1
exposedField MFInt32 numeratorimpulse 1
exposedHeld MFFloat numeratorCoefs 1
exposedHeld MFFloat denominatorCoefs 1

}

NOTE — For the binary encoding of this node see Annex H.1.42.

9.4.2.42.2 Flinctionality and semantics

The FIT nod
determine th
rational polyn

EXAMPLE —

b allows a smaller set of FAPs to be sent during a facial animation. Fhis’small set can then
b values of other FAPs, using a rational polynomial mapping between parameters. In a
omials are used to specify interpolation functions.

[he top inner lip FAPs can be sent and then used to determine the top outer lip FAPS. Another ex3

be used to
FIT node,

mple is that

only viseme and/or expression FAPs are sent to drive the face. In this caSe, low-level FAPs are interpolated fron these two

high-level FAP

To make the
sets that spe
node contain
can be interp
be interpolats

InaFIG, aF
parent nodes
process, if th
parent node &

An example
indicates the

>.

scheme general, sets of FAPs are specified, along with a FAP interpolation graph (FIG) b
Cifies which sets are used to determine which other sets. The FIG is a graph with directed
b a set of FAPs. Each link from a parent nodée’to a child node indicates that the FAPs in the
plated from the parent node. Expression- (FAP#1) or Viseme (FAP #2) and their fielg
d from other FAPs.

\P may appear in several nodes,@nd a node may have multiple parents. For a node that h
, the parent nodes are ordered as 1st parent node, 2nd parent node, etc. During the in
s child node needs to be inferpolated, it is first interpolated from 1st parent node if all F
ire available. Otherwise, it is interpolated from 2nd parent node, and so on.

pf FIG is shown in-Eigure 20. Each node has a nodelD . The numerical label on each in
prder of these links:

btween the
inks. Each
child node
s shall not

as multiple
terpolation
\Ps in that

oming link

150

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

2 top_inner_lip FAPs
(4)

lower_t_midlip . 1
2 2
/ I top_outer_lip FAPS
G

@
(1)
bottom_inner_lip FAP
6
2
2 .
bottom_outer_lip FAP
7 A

1
raise_b_midlip
3

Figure 20 - A FIG example

The interpglation process based on the FAP interpolation graph is/described using pseudo-C code as follows:

do {
interpolgtion_count = O;
for (all Node_i) { // from Node_1 to Node_N
for (prdered Node_i's parent Node k) {
iff (FAPs in Node_i need interpolation and
FAPs in Node_k have been interpolated or are available) {
interpolate Node_i from Node_k; //using interpolation function
H table here
interpolation_count ++;
break;
}
}

} while (interpolation_count != 0);

Each diregted link in a,FIG is a set of interpolation functions. Suppose Fi, F», ..., F, are the FAPs i} a parent set
and fy, f,, .|., f, are the.FAPs in a child set.

Then, ther¢ are minterpolation functions denoted as:

f1 = y(F1, Pr==+5)

f2 = |2(F1, F2, vey Fn)

m= Im(Flv F2! ey Fn)

Each interpolation function I, () is in a rational polynomial form if the parent node does not contain viseme FAP or
expression FAP.

i=0 =1

|(Fr o Fa) = 5 (6 Fn[F”)/Z(b fE™)

© ISO/IEC 1999 — All rights reserved 151

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Otherwise, an impulse function is added to each numerator polynomial term to allow selection of expression or
viseme.

CR D

1
> 5(F,
j=L

K_
|(F,FaiFn) =)
i=

n P-1
_a)(c TTF,")/z
=1 i—0

In both equations, K and P are the numbers of polynomial products, ¢ and b; are the coefficient of the ith product.
l and my; are the power of F; in the ith product. An impulse function equals 1 when FS1 = g, otherwise, equals 0.

FS1 can only be viseme_selectl, viseme_select2, expression_selectl, and expression_select2. g; is an integer

that ranges from 0 to 6 when I—Si Is expression_selectl or expression_select2, ranges 0 to 14 wh

viseme_seleqg

K,P,g,s,

To aid in the
each set has
points from th

The FAPs fie
set of FAP in
them being

viseme_sele
FAP (FAR
expression_|
indices, 69, 7
FAP, four ind

The graph fjeld shall contain a list of pairs of integets,” specifying a directed links between sets of

integers refel
one direct lin
precedence ¢
directed links

The numerat
the rational fu
above). Each
FAP. The ord
order that the

The denomir
the rational fu

t1 or viseme_select2. The encoder shall send an interpolation function tablecwhic
G.b Il ,m; tothe terminal.

explanation below, it is assumed that there are N different sets of FAPs with)index 1 to
e FAP set with index P; to the FAP set with index C;, fori=1, .., L

d shall contain a list of FAP-indices specifying which animation patameters form sets of R
lices is terminated by —1. There shall be a total of N + n; + n, £1..)+ ny numbers in this fiel
1. FAP#1 to FAP#68 are of indices 1 to 68. Fields ,of the Viseme FAP (FAP#]
ctl , viseme_select2 , viseme_blend , are of indicesfrom 69 to 71. Fields of the Ex
#2), namely, expression_selectl expression_select2 expression_in
intensity2 are of indices from 72 to 75. When_the/parent node contains a Viseme
0, 71, shall be included in the node (but not index.1). When a parent node contains an Ex
ces, 72,73,74,75, shall be included in the node.(but not index 2).

to the indices of the sets specified in the FAPs field, and thus range from 1 to N. When
k terminates at the same set, that is,“when the second value in the pair is repeated, the
etermined by their order in this field:* This field shall have a total of 2L numbers, correspor
between the parents and children-in the FIG.

nctions used to interpolae“parameter values. Each element in the list corresponds to K in
link i (that is, the ith.integer pair) in the graph field must have nc; values specified, one for
er in the numeratorTerms list shall correspond to the order of the links in the graph fi¢
child FAP appears in the FAPs field. There shall be nci + Nz + ... + g numbers in this fie

atorTerms~field shall contain a list of the number of terms in the polynomials of the den
nctions.controlling the parameter value. Each element in the list corresponds to P in equat

en FS is

N contains

N, and that

n;, i=1,..,N parameters. It is also assumed that there are L directed links imxthe FIG and that each link

APs. Each
i, with N of
), namely,
pression

ensityl
AP, three
pression

FAPs. The
more than
links have
ding to the

orTerms field shall be a-list containing the number of terms in the polynomials of the numerators of

equation 1
each child
eld and the
Id.

bminator of
on 1. Each
FAP. The

link i (that is,
order in the d

the jthunteger pair) in the graph field must have n¢; values specified, one for each chilg
nominatorTerms list corresponds to the order of the links in the graph field and the or

Ter that the
child FAP appears in the FAPs field. There shall be ng; + nee + ... + ne numbers in this field

The numeratorimpulse field shall contain a list of impulse functions in the numerator of the rational function for
links with the Viseme or Expression FAP in parent node. This list corresponds to the 5(Fg — ;) . Each entry

inthe listis (S, &).

The numeratorExp field shall contain a list of exponents of the polynomial terms in the numerator of the rational
function controlling the parameter value. This list corresponds to I . For each child FAP in each link i, ns*K values

need to be specified. The order in the numeratorExp list shall correspond to the order of the links in the graph
field and the order that the child FAP appears in the FAPs field.

NOTE — K may be different for each child FAP.

152 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The denominatorExp field shall contain a list of exponents of the polynomial terms of the denominator of the
rational function controlling the parameter value. This list corresponds to m; . For each child FAP in each link i,

ne*P values need to be specified. The order in the denominatorExp list shall correspond to the order of the links
in the graph field and the order that the child FAP appears in the FAPs field.

NOTE — P may be different for each child FAP.

The numeratorCoefs field shall contain a list of coefficients of the polynomial terms of the numerator of the
rational function controlling the parameter value. This list corresponds to ¢ . The list shall have K terms for each

child parameter that appears in a link in the FIG, with the order in numeratorCoefs corresponding to the order in
graph and FAPs.

NOTE — K |s dependent on the polynomial, and is not a fixed constant.

The denominatorCoefs field shall contain a list of coefficients of the polynomial terms in-the numerator of the
rational furpction controlling the parameter value. This list corresponds to b, . The list shall.have P terms for each

child parameter that appears in a link in the FIG, with the order in denominatorCoefs, ‘“corresponding to the order
in graph gnd FAPs.

NOTE — P |s dependent on the polynomial, and is not a fixed constant.

EXAMPLE {— Suppose a FIG contains four nodes and 2 links. Node 1 contains FAP#3, FAP#3, FAP#5. Node 2 contains
FAP#6, FAR#7. Node 3 contains an expression FAP, which means contains FAP#72, FAP#73, FAP#74, and FAP#75. Node 4
contains FAP#12 and FAP#17. Two links are from node 1 to node 2, and. ffom node 3 to node 4. For thg first link, the
interpolatior] functions are

Fo = (F3 | 2F4 + 3F5 + 4F3F) /(5F5 + 6F3F, Fs)
Fr=Fy
For the secgnd link, the interpolation functions are

F12 = 6(f72 —6)(0.6F74) + 6 (F73 - 6)(06F75)

Fi7 = 6(F72 — 6)(-1.5F74) + 6(R73=6)(-1.5F5)

The second|link simply says that-when the expression is surprise (FAP#72=6 or FAP#73=6), for FAP#12, the value is 0.6 times
of expressidn intensity FAP#74 oLFAP#75; for FAP#17, the value is —1.5 tims of FAP#74 or FAP#75.

After the F|T node given:below, we explain each field separately.

FIT {

FAPs [345-167-17273 7475 -1 12 17 -1]

graph [12 34

numeratprierms [412 2]

denominatorTerms [2 1 1 1]

numeratorExp [LOO 010 001 120 010
0010 0001 0010 00O01]

denominatorExp [001 111 00O
0000 0000O0]

numeratorimpulse [72 6 73 6 726 73 6]

numeratorCoefs [1234 1 06 06 -15-15]

denominatorCoefs [56 1 1 1]
}

FAPs [345 -167-1727374 75 -1 12 17 -1]
Four sets of FAPs are defined, the first with FAPs number 3, 4, and 5, the second with FAPs number 6 and 7, the third with
FAPs number 72, 73, 74, 75, and the fourth with FAPs number 12, 17.

© ISO/IEC 1999 — All rights reserved 153

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

graph

[12 3 4]

The first set is made to be the parent of the second set, so that FAPs number 6 and 7 will be determined by FAPs 3, 4, and 5.
Also, the third set is made to be the parent of the fourth set, so that FAPs number 12 and 17 will be determined by FAPs 72, 73,

74, and 75.

numeratorTerm s [4 1 2 2]
The rational functions that define F6 and F7 are selected to have 4 and 1 terms in their numerator, respectively. Also, the
rational functions that define F12 and F17 are selected to have 2 and 2 terms in their numerator, respectively.

denominatorTerm s [2 1 1 1]
The rational functions that define F6 and F7 are selected to have 2 and 1 terms in their denominator, respectively. Also, the
rational functions that define F12 and F17 are selected to both have 1 term in their denominator.

numeratorEx

The numerato
terms, leading
for each FAP).

denominatorE
The denomina

p[100 010 001 120 010 0010 0001 0OO0O1O0 O0Of0
selected for the rational function defining F6 is F3 + 2F4 + 3 F5 + 4F3F42. There are 3 parent-H
fo 12 exponents for this rational function. For F7, the numerator is just F4, so there are three expone
Values for F12 and F17 are derived in the same way.

p[001 111 000 O0OO0OO0OO0 O0O0O0OQ]
or selected for the rational function defining F6 is 5F5+ 6F3F4F5 , so there are 3 parent FAPs and

hence, 6 expoments for this rational function. For F7, the denominator is just 1, so there are three’exponents only (

FAP). Values f
numeratorimpt
For the second

numeratorCoe
There is one ¢

denominatorC
There isone ¢

9.4.2.43 Fog

9.4.2.43.1 N

Fog {
exposedF
exposedF
exposedF
eventin
eventOut

}

NOTE — For tl

Dr F12 and F17 are derived in the same way.

se 126 736 726 73 6]
6(F72-6) (F73-6)

link, all four numerator polynomial terms contain impulse function

s[1234 1 0.6 0.6 -1.5 -1.5]
befficient for each term in the numerator of each rational funetion.

ef s[56 1 11]
efficient for each term in the denominator of each rational function.

bde interface
eld SFColor color 111
eld SFString fogFype "LINEAR"
eld SFFloat visibilityRange 0.0
SFBool set_bhind
SFBool isBound

he binary eneoding of this node see Annex H.1.43.

9.4.2.43.2 Flinctionality and semantics

D 1]
APs, and 4
ts only (one

P terms and
ne for each

The semanti

s of the Izng node are. cpnr‘ifinrl NISONEC 14772-1 ;1998 subclause 6.19 [1 ﬂ]

9.4.2.44 FontStyle

9.4.2.44.1 Node interface

FontStyle {
field
field
field
field
field
field

154

MFString family ['SERIF"]
SFBool horizontal TRUE
MFString justify ['BEGIN"]
SFString language

SFBool leftToRight TRUE
SFFloat size 1.0

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

field
field
field

}

ISO/IEC 14496-1:1999(E)

SFFloat spacing 1.0
SFString style "PLAIN"
SFBool topToBottom TRUE

NOTE — For the binary encoding of this node see Annex H.1.44.

9.4.2.44.2

Functionality and semantics

The semantics of the FontStyle node are specified in ISO/IEC 14772-1:1998, subclause 6.20 [10].

9.4.2.45 Form
9.4.2.45.1 |Node interface
Form {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedField MFNode children 1
exposedField SFVec2f size -1,-1
exposegdField MFInt32 groups 1
exposefdField MFInt32 constraints I
exposegdField MFInt32 groupsindex 1
}
NOTE — Fqr the binary encoding of this node see Annex H.1.45.
9.4.2.45.2 |Functionality and semantics
The Form| node specifies the placement of its children according to relative alignment and distributio
Distribution spreads objects regularly, with an equal spacing between them.
The children field shall specify a list of nodes that'are to be arranged. The children’s position is imp
is importart.
The size fleld specifies the width and height of the layout frame.
The groupjs field specifies the list af groups of objects on which the constraints can be applied. The ¢
Form node are numbered from 1 to n, 0 being reserved for a reference to the form itself. A group is

indices, tetjminated by a -1.

The const]
constraint
groupsind
groupsind

Constraint

raints and the'groupsindex fields specify the list of constraints. One constraint is co
ype from théteonstraints field, coupled with a set of group indices terminated by a —1 co
ex field~<There shall be as many strings in constraints as there are —1-termin
ex . Then-th constraint string shall be applied to the n-th set in the groupsindex field.

belong to two categories: alignment and distribution constraints.

N constraints.

icit and order

hildren of the

a list of child

Nstituted by a
htained in the
ated sets in

Components referred to in the tables below are components whose indices appear in the list following the
constraint type. When rank is mentioned, it refers to the rank in that list.

The semantics of the <S>, when present in the name of a constraint, is the following. It shall be a number, integer
when the scene uses pixel metrics, and float otherwise, which specifies the space mentioned in the semantics of
the constraint.

© ISO/IEC 1999 — All rights reserved

155

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Table 31 - Alignment Constraints

edges by gpecified space

Alignment Constraints Type Effect
Index

AL: Align Left edges “AL” The xmin of constrained components becomes equal to the xmin
of the left-most component.

AH: Align centers “AH" The (xmin+xmax)/2 of constrained components becomes equal to

Horizontally the (xmin+xmax)/2 of the group of constrained components as
computed before this constraint is applied.

AR: Align Right edges “AR” The xmax of constrained components becomes equal to the xmax
of the right-most component.

AT: Align Topedges “AT THe—ymaxof attTonstramed—tompornents tecomes equal to the
ymax of the top-most component.

AV: Align ¢enters Vertically | “AV” The (ymin+ymax)/2 of constrained components becomes pqual to
the (ymin+ymax)/2 of the group of constrained ‘components as
computed before this constraint is applied.

AB: Align Bottom edges “AB” The ymin of constrained components becomes equal to the ymin
of the bottom-most component.

ALspace: Align Left edges | “AL <s>” The xmin of the second and following components beconje equal

by specifigd space to the xmin of the first component plus-the specified space.

ARspace: Align Right “AR <s>" | The xmax of the second and following components becomés equal

edges by gpecified space to the xmax of the first component minus the specified spage.

ATspace: Align Top edges | “AT <s>" The ymax of the second andfollowing components becomés equal

by specifigd space to the ymax of the first component minus the specified spage.

ABspace: Align Bottom “AB <s>" | The ymin of the second and following components become equal

to the ymin of the firsteomponent plus the specified space.

The purpose pof distribution constraints is to specify the space-between components, by making such pa
equal either tp a given value or to the effect of filling available space.

Table 32 -.Distribution Constraints

Vertically by specified
space

Distributioph Constraints Type Effect
Index

SH: Spread Horizontally “SH” The differences between the xmin of each component and the
xmax of the previous one all become equal. The first and |the last
component shall be constrained horizontally already.

SHin: Spread Horizontally (™SHin” The differences between the xmin of each component and the

in containgr xmax of the previous one all become equal.
References are the edges of the layout.

SHspace: [Spread “SH <s>" | The difference between the xmin of each component and the xmax

Horizontally by specified of the previous one all become equal to the specified space. The

space first component is not moved.

SV: Spread. Vertically “SV” The differences between the ymin of each component and the
yax of-the pi'c‘v'iqu one-al-beeceme chal. Fhe-first-and-the last
component shall be constrained vertically already.

SVin: Spread Vertically in “Svin” The differences between the ymin of each component and the

container ymax of the previous one all become equal.

References are the edges of the layout.
SVspace: Spread “SV <s>" | The difference between the ymin of each component and the ymax

of the previous one all become equal to the specified space. The
first component is not moved.

All objects start at the center of the Form

EXAMPLE — Laying out five 2D objects.

156

. The constraints are then applied in sequence.

© ISO/IEC 1999 — All rights reserved

rwise gaps

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

Shape {

Geometry2D Rectangle { size 50 55 } // draw the Form’s frame.
VisualProps use VPSRect

}

Transform2D {
translation 10 10 {
children [

Form {

children [
Shape2D { use OBJ1 }
Shape2D { use OBJ2 }
Shape2D { use OBJ3 }

ISO/IEC 14496-1:1999(E)

group s [1
constraints

}
]
}
}

The above
— spread ¢
— spread ¢
— align the
— align thg
— align thg
— align the
— align thg
— align thg

— align the

Stape2b—use— OB
Shape2D { use OBJ5 }
]
size 50 55
-12-13-14-15-11 3 -1]
[‘SH” “SV” “AR” “AB” “AB 6"
“AB 7" AL 7" “AT -2" "AR -2"]
groupsindex [6 -1 1 - 102-102-103-1
04-104-105-105 -1]

onstraints specify the following operations:

roup 6 (objects 1 and 3) horizontally in container (object Q)

roup 1 (object 1) vertically in container

right edges of groups 0 (container) and 2 (object2)

bottom edges of the container and group 2.(object 2)

bottom edges of the container and group 3 (object 3) with spacing of size 6
bottom edges of the container ahd-group 4 (object 4) with spacing of size 7
left edges of the container and group 4 (object 4) with spacing of size 7

top edges of the container and group 5 (object 5) with spacing size of -2

right edges of the.container and group 5 (object 5) with spacing size of -2

Figure 21 - Visual result of the Form node example

© ISO/IEC 1999 — All rights reserved

157

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.46 Gro

up

9.4.2.46.1 Node interface

Group {
eventin
eventin
exposedF

}

MFNode addChildren
MFNode removeChildren
ield MFNode children 0

NOTE — For the binary encoding of this node see Annex H.1.46.

9.4.2.46.2 F

nctionality and semantics

The semantig
does not sup

Where multip|
sounds shall

9.4.2.47 Ima
9.4.2471 N

ImageTexturg
exposedH
field
field

}
NOTE — Fort

s of the Group node are specified in ISO/IEC 14772-1:1998, subclause 6.21 [10]. ISO/IE
port the bounding box parameters (bboxCenter and bboxSize).

e sub-graphs containing audio content (i.e. Sound nodes) occur as childrencef’a Group
be combined as described in 9.4.2.82.

geTexture

bde interface

{
eld MFString url 1
SFBool repeatS TRUE
SFBool repeatT TRUE
he binary encoding of this node see Annex H.1.47.

9.4.2.47.2 Flinctionality and semantics

The semantid

s of the ImageTexture node are spegified in ISO/IEC 14772-1:1998, subclause 6.22 [10].

The url field pecifies the data source to be used (see 9.2.2.7.1).

9.4.2.48 Indg¢xedFaceSet

9.4.2.48.1 Npde interface

IndexedFacepet {
eventin MFInt32 set_colorindex
eventin MFInt32 set_coordindex
eventin MFInt32 set_normallndex
eventin MFint32 set_texCoordIindex
exposedHeld «SFNode color NULL
exposedHeld _)SFNode coord NULL
exposedHeld” SFNode normal NULL
exposedField SHFNode texCoord NULL
field SFBool ccw TRUE
field MFInt32 colorindex 1
field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordindex 1
field SFFloat creaseAngle 0.0
field MFInt32 normalindex 1
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field MFInt32 texCoordIindex 1

}

NOTE — For the binary encoding of this node see Annex H.1.48.

158

C 14496-1

node, the

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.48.2 Functionality and semantics

The semantics of the IndexedFaceSet node are specified in ISO/IEC 14772-1:1998, subclause 6.23 [10]. Some
restrictions on these semantics are described below.

The IndexedFaceSet node represents a 3D polygon mesh formed by constructing faces (polygons) from points
specified in the coord field. If the coordindex field is not NULL, IndexedFaceSet uses the indices in its
coordindex field to specify the polygonal faces by connecting together points from the coord field. An index of -1
shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1.
IndexedFaceSet shall be specified in the local coordinate system and shall be affected by parent
transformations.

The coord| field specifies the vertices of the face set and is specified by Coordinate node.
If the coondindex field is not NULL, the indices of the coordindex field shall be used to.'specify] the faces by
connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and
the next orje begins. The last face may be followed by a -1.

If the coorflindex field is NULL, the vertices of the coord field are laid out in theirrespective order §o specify one
face.

If the colpr field is NULL and there is a Material node defined~far the Appearance fffecting this
IndexedHaceSet , then the emissiveColor of the Material node shall"be used to draw the faceg.

9.4.2.49 IndexedFaceSet2D
9.4.2.49.1 |Node interface

IndexedFareSet2D {

eventin MFInt32 set_colorindex

eventin MFInt32 set_coordindex

eventin MFInt32 set_texCoordindex

exposedField SFNode color NULL
exposedField SFNode coord NULL
exposefdField SFNode texCoord NULL
field MFInt32 cotorindex 1

field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordindex 1

field MFInt32 texCoordIindex 1

}

NOTE — Fqr the binary:encoding of this node see Annex H.1.49.

9.4.2.49.2 |Funetionality and semantics

The IndeXedEaceSet2D node is the 2D equivalent of the IndexedFaceSet node as defined inl9.4.2.48. The
IndexedFaceSet2D node represents a 2D shape formed by constructing 2D faces (polygons) from 2D vertices
(points) specified in the coord field. The coord field contains a Coordinate2D node that defines the 2D
vertices, referenced by the coordindex field. The faces of an IndexedFaceSet2D node shall not overlap each
other.

The detailed semantics are identical to those for the IndexedFaceSet node (see 9.4.2.48), restricted to the 2D
case, and with the additional differences described here.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local 2D coordinate
system bounding box of the 2D shape, as follows. The X dimension of the bounding box defines the S coordinates,
and the Y dimension defines the T coordinates. The value of the S coordinate ranges from 0 to 1, from the left end
of the bounding box to the right end. The value of the T coordinate ranges from 0 to 1, from the lower end of the

© ISO/IEC 1999 — All rights reserved 159

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

bounding box to the top end. Figure 22 illustrates the default texture mapping coordinates for a simple
IndexedFaceSet2D shape consisting of a single polygonal face.

A 'V\
(xO+Xsize, yO+Ysize)
(s=1.0,t=1.0)
Ysize
c = (v.xyO\/Xciza
S—={x-xQ)Xsize
v t = (y-y0)/Ysize
(x0, y0) < >
(s=0.0, t=0.0) Xsize

Fighre 22 - IndexedFaceSet2D default texture mapping coordinates for a'simple shape
9.4.2.50 IndéxedLineSet
9.4.2.50.1 Npde interface

IndexedLineSet {

eventin MFInt32 set_colorindex

eventin MFInt32 set_coordindex

exposedHeld SFNode color NULL
exposedHeld SFNode coord NULL
field MFInt32 colorindex 1

field SFBool colorPerVertex TRUE
field MFInt32 coordindex 1

}

NOTE — For the binary encoding of this node see Ahnex H.1.50.
9.4.2.50.2 Flinctionality and semantic$

The semantids of the IndexedLineSet node are specified in ISO/IEC 14772-1:1998, subclause 6.24 [[10].
9.4.2.51 IndéxedLineSet2D
9.4.2.51.1 Nopde interface

IndexedLineSet2D {

eventin MFInt32 set_colorlndex

eventin MHRE32 set—coerdirdex

exposedField SFNode color NULL
exposedField SFNode coord NULL
field MFInt32 colorindex 1

field SFBool colorPerVertex TRUE
field MFInt32 coordlndex 1

}

NOTE — For the binary encoding of this node see Annex H.1.51.
9.4.2.51.2 Functionality and semantics

The IndexedLineSet2D node specifies a collection of lines or polygons.

160 © ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The coord field shall list the vertices of the lines. When coordindex is empty, the order of vertices shall be
assumed to be sequential in the coord field. Otherwise, the coordindex field determines the ordering of the
vertices, with an index of -1 representing an end to the current polyline.

If the color field is not NULL, it shall contain a Color node, and the colors are applied to the line(s) as with the
IndexedLineSet node (see 9.4.2.50).

9.4.2.52 Inline
9.4.2.52.1 Node interface
Inline {

exposedField MFString url I
}

NOTE — Fqr the binary encoding of this node see Annex H.1.52.

9.4.2.52.2 [Functionality and semantics

The semaiftics of the Inline node are specified in ISO/IEC 14772-1:1998, subclause 6.25 [10]. ISOJIEC 14496-1
does not spipport the bounding box parameters (bboxCenter and bboxSize)

The url figld specifies the data source to be used (see 9.2.2.7.1). The external source must contain a valid BIFS
scene, and may include BIFS-Commands and BIFS-Anim frames

9.4.2.53 layer2D

9.4.2.53.1 |Node interface

Layer2D {
eventin MFNode addChildren
eventin MFNode removeChildren
exposegdField MFNode children NULL
exposefdField SFVec2f size -1,-1
exposefdField SFNode background NULL
exposefdField SFNode viewport NULL
}

NOTE — Fqr the binary encoding of this node see Annex H.1.53.

9.4.2.53.2 | Functionality and'‘semantics

The Laye[2D node jista transparent rendering rectangle region on the screen where a 2D scene is drawn. The
rectangle flways faceés the viewer of the scene. Layer2D and Layer3D nodes enable the cpmposition of
multiple 20) and 3D.sCenes (see Figure 23).

EXAMPLE 4-<This allows users to have 2D interfaces to a 2D scene, or 3D interfaces to a 2D scene, or to view a|3D scene from
different vie V|JU;I He-nthe-same-scene:

The addChildren eventln specifies a list of 2D nodes that shall be added to the Layer2D’s children field.

The removeChildren eventln specifies a list of 2D nodes that shall be removed from the Layer2D's children
field.

The children field may contain any 2D children nodes that define a 2D scene. Layer nodes are considered to be
2D objects within the scene. The layering of the 2D and 3D layers is specified by any relevant transformations in
the scene graph. The Layer2D node is composed with its center at the origin of the local coordinate system and
shall not be present in 3D contexts (see 9.2.2.1).

© ISO/IEC 1999 — All rights reserved 161

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The size parameter shall be a floating point number that expresses the width and height of the layer in the units of
the local coordinate system. In case of a layer at the root of the hierarchy, the size is expressed in terms of the
default 2D coordinate system (see 9.2.2.2). A size of -1 in either direction, means that the Layer2D node is not
specified in size in that direction, and that the size is adjusted to the size of the parent layer, or the global rendering
area dimension if the layer is on the top of the hierarchy. In the case where a 2D scene or object is shared between
several Layer2D nodes, the behaviours are defined exactly as for objects that are multiply referenced using the
DEF/USE mechanism. A sensor triggers an event whenever the sensor is triggered in any of the Layer2D in
which it is contained. The behaviors triggered by the shared sensors as well as other behaviors that apply on
objects shared between several layers apply on all layers containing these objects.

A Layer2D stores the stack of bindable children nodes that can affect the children scene of the layer. All relevant

bindable chilg
fields take th
node. Initially
defined. If the
binding meck
containing th
scenes acros
all layers cor
Backgroun

All the 2D ob
considered b
parent of two
between B ar

Layers are trn

b value of the currently bound bindable children node for the scene that is a child ofcthe

field is undefined, the first bindable children node defined in the child scene will be.bound

taining a given bindable children node. For 2D scenes, the background field specifies
12D node. The viewport field is reserved for future extensions fop 2D'scenes.

d C unless D is added as a child of A.

frer odes ave a correspondingexposedFietd i the tayer2D—TodeDuringpresemntgtion, these

Layer2D

, the bound bindable children node is the corresponding field value of the Layer2D rfode if it is

When the

anism of the bindable children node is used (set_bind field set to TRUE);.all the pafent layers
s node set the corresponding field to the current bound node value. It is therefore possibje to share
5 layers, and to have different bound nodes active, or to trigger a change of bindable childr¢n node for

the bound

ects contained in a single Layer2D node form a single composed object. This composed object is
y other elements of the scene to be a single object. In other-words, if a Layer2D nodg, A, is the
objects, B and C, layered one on top of the other, it will-hot be possible to insert a new

object, D,

ansparent to user input, which means that if two layers are overlapping at a given locagion on the

screen, a usgr input will affect both layers, regardless of which is drawn on top of the other. For instgnce, if two

buttons place
also affect th
layers.

EXAMPLE —
initially viewed

d in two different layers are overlapping, the click of the user at the location of the topmost

button will

e putton contained in the layer behind. Authors should carefully design behaviors in the gverlapping

n the following example, the same scene is used in two different Layer2D nodes. However, dne scene is
with background b1, the other withsbackground b2. When the user clicks on the buttonl object, all Igyers are set

with backgrour|d b3.
OrderedGroup:
children [
Transform2 D { # A set ofi\‘ransforms to translate and scale the layer
children [
Layer2D {
background*DEF bl Background2D {...}
#_|t is' possible to define the bindable children node directly in
#-the corresponding field
children [
DEF MYSCENE Transform2D {
Udean [
CHarer—T
DEF b3 Background2D {... } # A shared background
DEF TS TouchSensor{}
DEF buttonl Shape{..} @ # The button 1
The objects of my scene
]
}
]
}

]

162

Transform2D {
Another set of transforms to translate and scale the layer
children [
Layer2D {

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

]
}
]
}

children [

DEF b2 Background2D{...} # It is possible to define the bindable
children node in the children field.
b2 is initially bound sicne it is the
first background 2D in the children

field OF the parent Layer2d

Transform2D USE MYSCENE

]

ISO/IEC 14496-1:1999(E)

ROUTE TS
9.4.254 |

9.4.2.54.1

Layer3D {
eventln
eventln
expose
expose
expose
expose
expose
expose

}

NOTE — F(
9.4.2.54.2

The Laye
node may
screen fac|

.isActive TO b3.set_bind
ayer3D

Node interface

MFNode
MFNode
dField MFNode
dField SFVec2f
dField SFNode
dField SFNode
dField SFNode
dField SFNode

addChildren
removeChildren
children

size
background

fog
navigationinfo
viewpoint

r the binary encoding of this node see Annex H.1.54:

Functionality and semantics

NULL
-1, A
NULE
NULL
NULL
NULL

'3D node is a transparent, rectangular rendering region where a 3D scene is drawn. The Layer3D
be composed in the same mannerias any other 2D node. It represents a rectangular fegion on the
ng the viewer. The basic Layer3D semantics are identical to those for Layer2D (see|9.4.2.53) but

with 3D (rather than 2D) children. In general, Layer3D nodes shall not be present in 3D co-ordinate systems. The

permitted ¢
9.2.2.1).

The followi
— backgr

— fog for

Fog nodes

— naviga

hg fields specify bindable children nodes for Layer3D :

bund for Bagkground nodes

iorlnfo for NavigationInfo nodes

bxception to this in whenarLayer3D node is the "top" node that begins a 3D scene ol context (see

— viewpoint for Viewpoint nodes

The viewpoint field can be used to allow the viewing of the same scene with several viewpoints.

NOTE — The rule for transparency to behaviors is also true for navigation in Layer3D . Authors should carefully design the

various Layer3D nodes in a given scene to take account of navigation. Overlapping several Layer3D with navigation
turned on may trigger strange navigation effects which are difficult to control by the user. Unless it is a feature of the content,

navigation can be easily turned off using the Navigationinfo

superimposed.

© ISO/IEC 1999 — All rights reserved

type field, or Layer3D’s can be designed not to be

163

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

(@) reeeeeeeeeees

(c

Figure 23 - Three Layer2D and Layer3D examples composed in a.2D space.

Layer2D’s |are indicated by a continuous line; Layer3D’s by a dashed ling. fmage (a) shows a|Layer3D
containing a 8D view of the earth on top of a Layer2D composed of a videosa\logo and a text. Image (b) shows a
Layer3D offthe earth with a Layer2D containing various icons on top, {mage (c) shows 3 views of 3 3D scene
with 3 non-overlapping Layer3D .

9.4.2.55 Layput

9.4.2.55.1 N¢de interface

Layout {
eventin MFNode addChildren
eventin MFNode removeChildren
exposedHeld MFNode children 0
exposedHeld SFBool wrap FALSE
exposedHeld SFVec2f size -1,-1
exposedHeld SFBool horizaontal TRUE
exposedHeld MFString justify ["BEGIN"]
exposedHeld SFBool leftToRight TRUE
exposedHeld SFBool topToBottom TRUE
exposedHeld SFFloat spacing 1.0
exposedHeld SFBool smoothScroll FALSE
exposedHeld SFBoel loop FALSE
exposedHeld SEBgol scrollVertical TRUE
exposedHeld _SEFloat scrollRate 0.0

}

NOTE — For the'hinary encoding of this node see Annex H 1 55

9.4.2.55.2 Functionality and semantics

The Layout node specifies the placement (layout) of its children in various alignment modes as specified. For text
children, this is by their fontStyle fields, and for non-text children by the fields horizontal , justify , leftToRight ,
topToBottom and spacing present in this node. It also provides the functionality of scrolling its children
horizontally or vertically.

The children field shall specify a list of nodes that are to be arranged. Note that the children’s position is implicit
and that order is important.

The wrap field specifies whether children are allowed to wrap to the next row (or column in vertical alignment
cases) after the edge of the layout frame is reached. If wrap is set to TRUE, children that would be positioned

164 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

across or past the frame boundary are wrapped (vertically or horizontally) to the next row or column. If wrap is set
to FALSE, children are placed in a single row or column that is clipped if it is larger than the layout.

When wrap is TRUE, if text objects larger than the layout frame need to be placed, these texts shall be broken
down into pieces that are smaller than the layout. The preferred places for breaking text are spaces, tabs, hyphens,
carriage returns and line feeds. When there is no such character in the texts to be broken, the texts shall be broken

at the last character that is entirely placed in the layout frame.

The size field specifies the width and height of the layout frame.

The horizontal , justify , leftToRight , topToBottom and spacing fields have the same meaning as in the

FontStyl

node (see 9.4.2.44).

The scroll
scrolling

a(]
The smodthScroll

When TRU

The loop

have scrol
continuoug
the layout
area, then
loop is TH
top of the |

The scroll
scrolling rg
towards th
positive rat

Objects ar
the horizg
objects are
object is th

Rate field specifies the scroll rate in meters per second. When scrollRate is zero,-thg

d the remaining scroll-related fields are ignored.

E, smooth scroll is applied.
ield specifies continuous looping of children when set to TRUE. When loop is FALSE, ch

ly, wrapping around when they have scrolled out of the layout area.Mf the set of children is
Area, some empty space will be scrolled with the children. If the_set of children is bigger th
only some of the children will be displayed at any point jmfime. When scrollVertical
UE and scrollRate is negative (top-to-bottom scrolling) then the bottom-most object wil
hyout frame as soon as the top-most object has scrolled. entirely into the layout frame.

Vertical field specifies whether the scrolling is doge vertically or horizontally. When set
te shall be interpreted as a vertical scrolling rate*and a positive rate shall be interprete
e top. When set to FALSE, the scrolling rate shall be interpreted as a horizontal scrollif
e shall mean scrolling to the right.

b placed one by one, in the order they.are given in the children list. Text objects are placed
ntal , justify , leftToRight , topTeBottom and spacing fields of their FontStyle
placed according to the same figlds of the Layout node. The reference point for the plg
e reference point as left by theplacement of the previous object in the list.

In the case of vertical alignment, objects may be placed with respect to their top, bottom, center or

baseline of

Spacing sh
field). The
height and
sequence

the vertica

non-text objects is the.same as their bottom.

all be coherent(nly within sequences of objects with the same orientation (same value g
notions of topedge, bottom edge, base line, vertical center, left edge, right edge, horizont
row width/shall have a single meaning over coherent sequences of objects. This mear
Df objects where horizontal is TRUE, topToBottom is TRUE and spacing has the san
size.of the lines is computed as follows:

— maxAs(

n there is no

field selects between smooth and line-by-line/character-by-charaCter scrolling of children.

Id nodes that

ed out of the scroll layout frame will be deleted. When loop is TRUE, then the set of children scrolls

smaller than
an the layout
is TRUE and
reappear on

to TRUE, the
] as scrolling
g rate and a

according to
node. Other
cement of an

baseline. The

f horizontal

bl center, line
s that over a
e value, then

entvis the maximum of the ascent on all text objects.

— maxDescent is the maximum of the descent on all text objects.

— maxHei

ght is the maximum height of non-text objects.

If the minor mode in the justify field of the layout is FIRST (baseline alignment), then the non-text objects shall be

aligned on

the baseline, which means the vertical size of the line is:

size = max(maxAscent, maxHeight) + maxDescent

If the minor mode in the justify field of the layout is any other value, then the non-text objects shall be aligned with
respect to the top, bottom or center, which means the size of the line is:

© ISO/IEC 1999 — All rights reserved

165

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

size = max(maxAscent+maxDescent, maxHeight)

The first line is placed with its top edge flush to the top edge of the layout; the base line is placed maxAscent units
lower, and the bottom edge is placed maxDescent units lower. The center line is in the middle, between the top and
bottom edges. The top edges of subsequent lines are placed at regular intervals of value spacing x size.

The other cases can be inferred from the above description. When the orientation is vertical, then the baseline,
ascent and descent are not useful for the computation of the width of the rows. All objects only have a width.

Column size is the maximum width over all objects.

EXAMPLE —

If wrap is FALSE:

a) |If horizontal is TRUE, then objects are placed in a single line. The layout direction is given by the leftToRight field.
Horizontal| alignment in the row is done according to the first argument in justify (major mode = flush left| flush right,
centered),| and vertical alignment is done according to the second argument in justify (minog. mode = flugh top, flush
bottom, flysh baseline, centered). The topToBottom field is meaningless in this configuration.

b) If horizontpl is FALSE, then objects are placed in a single column. The layout direction is given by the topToBpttom field.
Vertical alignment in the column is done according to the first argument in justify (majorrmode), and horizontal jalignment is
done accgrding to the second argument in justify (minor mode).

If wrap is TRUE:

a) |If horizontpl is TRUE, then objects are placed in multiple lines. The layoutdirection is given by the leftToRight field. The
wrapping irection is given by the topToBottom field. Horizontal alignment in the lines is done according to the first
argument |n justify (major mode), and vertical alignment is done accerding to the second argument in justify (minor mode).

b) If horizontal is FALSE, then objects are placed in multiple column, The layout direction is given by the topToBpttom field.

The wrapping direction is given by the leftToRight field. Veftical alignment in the columns is done according to the first

argument fin justify (major mode), and horizontal alignment;is done according to the second argument in justify (minor
mode).
If scrollRate |s zero, then the Layout is static and pgsitions change only when children are modified.
If scrollRate |s non-zero, then the position of the<children is updated according to the values of scrollVertical , $crollRate ,
smoothScroll| and loop .

If scrollVertic

If scrollVertic

9.4.2.56 Ling¢Properties

bl is TRUE, then if scrollRate) is positive, then the scrolling direction is left-to-right, and vice-versa.

h| is FALSE, then if.serollRate is positive, then the scrolling direction is bottom-to-top, and vice-vers

9.4.2.56.1 Nopde interface

LinePropertigs {
exposedHeld’, SFColor lineColor 0,0,0
exposedFett—SHn®t32 HeStyte o
exposedField SFFloat width 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.56.

9.4.2.56.2 Functionality and semantics

The LineProperties node specifies line parameters used in 2D and 3D rendering.

The lineColor field specifies the color with which to draw the lines and outlines of 2D geometries.

The lineStyle field shall contain the line style type to apply to lines. The allowed values are:

166

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

The termin

ISO/IEC 14496-1:1999(E)

Table 33 - lineStyle description

lineStyle Description

solid

dash

dot

dash-dot
dash-dash-dot
dash-dot-dot

Gh|WIN|F|O

al shall draw each line style in a manner that is distiguishable from each other line style.

The width
depends o

The cap ar
the lines. T

9.4.2.57 L

h the local transformation.

d join style to be used are as follows. The wide lines should end with a squarecform flush w
he join style is described in Figure 24.

Figure 24 - Cap-and join style for LineProperties

isteningPoint

9.4.2.57.1 |Node interface

ListeningPpint {
eventin SFBoal set_bind
exposefdField SFBool jump TRUE
exposefdField SFERotation orientation 0,0,1,0
exposegdField . (SFVec3f position 0,0,10
field SFString description
eventOut SFTime bindTime
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.57.

9.4.2.57.2

Functionality and semantics

field determines the width, in the local coordinate system, of rendered lines. The a;luparent width

ith the end of

The ListeningPoint node specifies the reference position and orientation for spatial audio presentation. If there
is no ListeningPoint given in a scene, the apparent listener position is slaved to the active ViewPoint .

The semantics are identical to those of the Viewpoint node (see 9.4.2.97).

© ISO/IEC 1999 — All rights reserved

167

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.58 LOD

9.4.2.58.1 Node interface

LOD {
exposedField MFNode level 0
field SFVec3f center 0,0,0
field MFFloat range 1

}

NOTE — For the binary encoding of this node see Annex H.1.58.

9.4.2.58.2 F{inctionality and semantics
The semantids of the LOD node are specified in ISO/IEC 14772-1:1998, subclause 6.26 [10].
9.4.2.59 Material

9.4.2.59.1 N¢pde interface

Material {
exposedHeld SFFloat ambientintensity 0.2
exposedHeld SFColor diffuseColor 0.8, 0(8)0.8
exposedHeld SFColor emissiveColor 0, 050
exposedHeld SFFloat shininess 0:2
exposedHeld SFColor specularColor 0/0,0
exposedHeld SFFloat transparency 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.59.

9.4.2.59.2 Fdinctionality and semantics

The semantigs of the Material node are specifiediin ISO/IEC 14772-1:1998, subclause 6.27 [10].
9.4.2.60 Matferial2D

9.4.2.60.1 N¢de interface

Material2D {
exposedHeld SFColor emissiveColor 0.8,0.8,0.8
exposedHeld SFBool filled FALSE
exposedHeld SFNode lineProps NULL
exposedHeld SEFloat transparency 0.0

}

NOTE — For thedinary encoding of this node see Annex H.1.60.

9.4.2.60.2 Functionality and semantics

The Material2D node specifies the characteristics of a rendered 2D Shape. Material2D shall be used as the
material field of an Appearance node in certain circumstances (see 9.4.2.3.2)

The emissiveColor field specifies the color of the 2D Shape.

The filled field specifies whether rendered nodes are filled or drawn using lines. This field affects
IndexedFaceSet2D , Circle and Rectangle nodes.

The lineProps field contains information about line rendering in the form of a LineProperties node. If the field

is null the line properties take on a default behaviour identical to the default settings of the LineProperties node
(see 9.4.2.56) for more information.

168 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

The transparency field specifies the transparency of the 2D Shape.

9.4.2.61 MovieTexture

9.4.2.61.1 Node interface

MovieTexture {

ISO/IEC 14496-1:1999(E)

exposedField SFBool loop FALSE

exposedField SFFloat speed 1.0

exposedField SFTime startTime 0

exposedField SFTime stopTime 0

exposepFietdt—ivFString ot ft

field SFBool repeatS TRUE

field SFBool repeatT TRUE

eventOut SFTime duration_changed

eventOut SFBool isActive
}
NOTE — Fqr the binary encoding of this node see Annex H.1.61.
9.4.2.61.2 [Functionality and semantics
The loop | startTime , and stopTime exposedFields and the isActive’ eventOut, and their effects on the
MovieTexture node, are described in 9.2.1.6.1.
The speed exposedField controls playback speed. It does nat-affect the delivery of the stream atfached to the
MovieTexture node. For streaming media, value of speed<other than 1 shall be ignored.
A MovieTlexture shall display frame or VOP 0 if speé&d-is 0. For positive values of speed, the frame or VOP
that an actjve MovieTexture will display at time now«Corresponds to the frame or VOP at movie time (i.e., in the
movie’s logal time base with frame or VOP 0 at time Oyat speed = 1):

fmod (now - startTime , duration/speed)
If speed ig negative, then the frame or VOP-to display is the frame or VOP at movie time:

duratipn + fmod(now - startTinie,; duration/speed).

A MovieTexture node is inactive before startTime is reached. If speed is non-negative, then [the first VOP
shall be uged as texture, if it\is/already available. If speed is negative, then the last VOP shall be usged as texture,
if it is already available.
When a MovieTexture becomes inactive, the VOP corresponding to the time at which the MoyieTexture
became inactive shall persist as the texture. The speed exposedField indicates how fast the mlpovie shall be
played. A $peed of 2 indicates the movie plays twice as fast. Note that the duration_changed e\entOut is not
affected by the speed exposedField. set_speed events shall be ignored while the movie is playing.

The url fie

Id specifies the data source to be used (see 9.2.2.7.1).

9.4.2.62 Navigationinfo

9.4.2.62.1 Node interface

NavigationInfo {
eventin SFBool set_bind
exposedField MFFloat avatarSize [0.25, 1.6, 0.75]
exposedField SFBool headlight TRUE
exposedField SFFloat speed 1.0
exposedField MFString type ["'WALK", "ANY"]

© ISO/IEC 1999 — All rights reserved

169

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

exposedF
eventOut

}

ield SFFloat
SFBool

visibilityLimit 0.0
isBound

NOTE — For the binary encoding of this node see Annex H.1.62.

9.4.2.62.2 Functionality and semantics

The semantics of NavigationInfo are specified in ISO/IEC 14772-1:1998, subclause 6.29 [10].

9.4.2.63 Normal

9.4.2.63.1 N

Normal {
exposedH
}

NOTE — Fort

bde Interface

eld MFVec3f

vector (0

he binary encoding of this node see Annex H.1.63.

9.4.2.63.2 Flinctionality and semantics

The semantid
9.4.2.64 Nor

9.4.2.64.1 N

mallnterpolator

bde interface

s of the Normal node are specified in ISO/IEC 14772-1:1998, Subclause 6.30 [10].

Normalinterpplator {
eventin SFFloat set_fraction
exposedHeld MFFloat key 1
exposedHeld MFVec3f keyValue 1
eventOut MFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.64.

9.4.2.64.2 Flinctionality and semantics

The semantigs of the Normallnterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6|
9.4.2.65 OrderedGroup
9.4.2.65.1 N¢de interface
OrderedGroup {
eventin MFNode addChildren
eventin MENode removeChildren
exposedField MFNode children 1
exposedField MFFloat order 0

}

NOTE — For the binary encoding of this node see Annex H.1.65.

9.4.2.65.2 Functionality and semantics

31 [10].

The OrderedGroup node controls the visual layering order of its children. When used as a child of a Layer2D
node, it allows the control of which shapes obscure others. When used as a child of a Layer3D node, it allows
content creators to specify the rendering order of elements of the scene that have identical z values. This allows

conflicts between coplanar or close polygons to be resolved.

170 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The addChildren eventln specifies a list of objects that shall be added to the OrderedGroup node.

The removeChildren eventin specifies a list of objects that shall be removed from the OrderedGroup node.

The children field is the current list of objects contained in the OrderedGroup node.

When the order field is empty (the default) children are layered in order, first child to last child, with the last child
being rendered last. If the order field contains values, one value is assigned to each child. Entries in the order
field array match the child in the corresponding element of the children field array. The child with the lowest order
value is rendered before all others. The remaining children are rendered in increasing order. The child
corresponding to the highest order value is rendered last.

Since 2D ¢
the Order
order of th
regardless
the viewer
between c

NOTE — G

hapes have no z value, this is the sole determinant of the visual ordering of the shapes.(H
edGroup node is used with 3D shapes, its ordering mechanism shall be used in place o
e shapes themselves. The resultant image shall show the shape with the highest'order

of its z value. However, the resultant z-buffer contains a z value corresponding 1o the sha
at that pixel. The order shall be used to specify which geometry should be drawn first, to &
bplanar or close polygons.

ontent authors must use this functionality carefully since, depending on the Viewpoint , 3D sh

pwever, when
the natural z
value on top,
\pe closest to
void conflicts

apes behind a

bclause 6.32

given object in the natural z order may appear in front of this object.

9.4.2.66 Qrientationinterpolator

9.4.2.66.1 [Node interface

Orientatior{Interpolator {
eventin SFFloat set_fraction
exposedField MFFloat key 1
exposedField MFRotation keyValue 1
eventOut SFRotation value_changed

}

NOTE — Fqr the binary encoding of this node see Annex H.1.66.

9.4.2.66.2 | Functionality and semantics

The semantics of the Orientationinterpolator node are specified in ISO/IEC 14772-1:1998, s

[10].

9.4.2.67 RixelTexture

9.4.2.67.1 [Node interface

PixelTextufe {
exposedField) " SFImage image 000
field SFBool repeatS TRUE
field SFBoOl repeatl TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.67.

9.4.2.67.2

Functionality and semantics

The semantics of the PixelTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.33 [10].

© ISO/IEC 1999 — All rights reserved

171

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.68 PlaneSensor

9.4.2.68.1 Node interface

PlaneSensor {

}

exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition -1-1
exposedField SFVec2f minPosition 00
exposedField SFVecf3f offset 000
eventOut SFBool isActive

eventOut SFVec3f trackPoint changed

eventOut SFVec3f translation_changed

9.4.2.68.2 Fnctionality and semantics

The semantid
9.4.2.69 Pla

9.4.2.69.1 N

PlaneSensorgD {

eventOut
eventOut
eventOut
}
NOTE — For t

exposedHeld
exposedHeld
exposedHeld
exposedHield
exposedHield

neSensor2D

pde interface

SFBool
SFBool
SFVec2f
SFVec2f
SFVec2f
SFBool
SFVec2f
SFVec2f

autoOffset

enabled
maxPosition
minPosition

offset

isActive
trackPoint_changed
translation_changed

he binary encoding of this node see Annex H.1.68.

9.4.2.69.2 Fdinctionality and semantics

s of the PlaneSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.34 [10].

TRUE
TRUE
0,0
0,0
0,0

This sensor detects pointer device dragging and enables the dragging of objects on the 2D rendering plane.

The semantigs of PlaneSensar2D are a restricted case for 2D of the semantics for the PlaneSer{sor node

(see 9.4.2.68).

9.4.2.70 Poi
9.4.2.70.1 N

PointLight {

}

ntLight

bde interface

exposedField
exposedField
exposedField
exposedField
exposedField
exposedField
exposedField

SFFloat
SFVec3f
SFColor
SFFloat
SFVec3f
SFBool
SFFloat

ambientintensity
attenuation
color

intensity
location

on

radius

NOTE — For the binary encoding of this node see Annex H.1.69.

172

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.4.2.70.2

ISO/IEC 14496-1:1999(E)

Functionality and semantics

The semantics of the PointLight node are specified in ISO/IEC 14772-1:1998, subclause 6.35 [10].

9.4.2.71 PointSet

9.4.2.71.1

PointSet {

exposedField
exposedField

Node interface

NULL
NULL

color
coord

SFNode
SFNode

}

NOTE — Fd

9.4.2.71.2

The semar

9.4.2.72 H
9.4.2.72.1

PointSet2[
expose
expose

}

NOTE — Fd

9.4.2.72.2

This is a 2
node.

9.4.2.73 H
9.4.2.73.1

Positionlint
eventlin
expose|
expose|
eventO

}

r the binary encoding of this node see Annex H.1.70.
Functionality and semantics

tics of the PointSet node are specified in ISO/IEC 14772-1:1998, subclause6.36 [10].

ointSet2D

Node interface

{
dField SFNode color NULL
dField SFNode coord NULL

r the binary encoding of this node see Annex H.1.7 X,
Functionality and semantics

D equivalent of the PointSet node(see 9.4.2.71), with semantics that are the 2D restriction of that

ositionInterpolator

Node interface

erpolator {

SFFloat set_fraction
dField M#fFloat key I
dField (MFVec3f keyValue I
Lt SFVec3f value_changed

NOTE — For the binary encoding of this node see Annex H.1.72.

9.4.2.73.2

The semantics of the PositionInterpolator

Functionality and semantics

node are specified in ISO/IEC 14772-1:1998, subclause 6.37 [10].

9.4.2.74 Positioninterpolator2D

9.4.2.74.1

Node interface

Positioninterpolator2D {

eventln
expose

© ISO/IEC 1999 — All rights reserved

SFFloat
MFFloat

set_fraction

dField key

173

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

MFVec2f
SFVec2f

exposedField
eventOut

keyValue
value_changed

}
NOTE — For the binary encoding of this node see Annex H.1.73.

9.4.2.74.2 Functionality and semantics

This is a 2D equivalent of the PositionInterpolator
restriction of that node.

9.4.2.75 ProximitySensor

node (see 9.4.2.73) with semantics that are the 2D

9.4.2.75.1 Node interface
ProximitySengsor {
exposedHeld SFVec3f center
exposedHeld SFVec3f size
exposedHeld SFBool enabled
eventOut SFBool isActive
eventOut SFVec3f position_changed
eventOut SFRotation orientation_changed
eventOut SFTime enterTime
eventOut SFTime exitTime
}
NOTE — For the binary encoding of this node see Annex H.1.74.

9.4.2.75.2 Fdyinctionality and semantics
The semantigs of the ProximitySensor

9.4.2.76 ProkimitySensor2D

9.4.2.76.1 N¢de interface
ProximitySengor2D {
exposedHeld SFVec2f center
exposedHeld SFVec2f size
exposedHeld SFBool enabled
eventOut SFBool isActive
eventOut SFVec2f position_changed
eventOut SFFloat orientation_changed
eventOut SETime enterTime
eventOut SKTime exitTime

}
NOTE — For the-birary-encoding-of-this-rode-see-AnnexH-1-+5-

node are specified in ISO/IEC 14772-1:1998, subclause 6.38

400
Mmoo

[10].

9.4.2.76.2 Functionality and semantics

This is the 2D equivalent of the ProximitySensor
of the that node.

9.4.2.77 QuantizationParameter
9.4.2.77.1 Node interface

QuantizationParameter {

field SFBool isLocal
field SFBool position3DQuant
174

node (see 9.4.2.75) with semantics that are the 2D restriction

FALSE
FALSE

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

field

SFVec3f

ISO/IEC 14496-1:1999(E)

position3DMin -0, -00, -00
field SFVec3f position3DMax +00, +00, +00
field SFInt32 position3DNbBits 16
field SFBool position2DQuant FALSE
field SFVec2f position2DMin -0, -0
field SFVec2f position2DMax +00, +o0
field SFInt32 position2DNbBits 16
field SFBool drawOrderQuant TRUE
field SFVec3f drawOrderMin -0
field SFVec3f drawOrderMax +00
field SFInt32 drawOrderNbBits 8
field SFBoot cotorQuant TRUE
field SFFloat colorMin 0.0
field SFFloat colorMax 1.0
field SFInt32 colorNbBits 8
field SFBool textureCoordinateQuant TRUE
field SFFloat textureCoordinateMin 0.0
field SFFloat textureCoordinateMax 1.0
field SFInt32 textureCoordinateNbBits 16
field SFBool angleQuant TRUE
field SFFloat angleMin 0.0
field SFFloat angleMax 21
field SFInt32 angleNbBits 16
field SFBool scaleQuant FALSE
field SFFloat scaleMin 0.0
field SFFloat scaleMax +00
field SFInt32 scaleNbBits 8
field SFBool keyQuant TRUE
field SFFloat keyMin 0.0
field SFFloat keyMax 1.0
field SFInt32 keyNbBits 8
field SFBool normalQuant TRUE
field SFInt32 normalNbBits 8
field SFBool sizeQuant FALSE
field SFFloat sizeMin 0.0
field SFFloat sizeMax +00
field SFInt32 sizeNbBits 8
field SFBool useEfficientCoding FALSE

}

NOTE — Fqr the binary encoding of this node see Annex H.1.76.

9.4.2.77.2 |Functionality'and semantics

The QuantizationParameter node describes the quantization values to be applied on sifgle fields of
numerical fyp€s. For each of identified categories of fields, a minimal and maximal value is given|as well as a
number of 'bitsterepresentthegiver—class-of-fields—Additionalty,itispossibte-to-set thet+stocal—fietld to apply the

guantization only to the node following the QuantizationParameter node. The use of a node structure for
declaring the quantization parameters allows the application of the DEF and USE mechanisms that enable reuse of
the QuantizationParameter node. Also, it enables the parsing of this node in the same manner as any other
scene information.

The QuantizationParameter node may only appear as a child of a grouping node. When a
QuantizationParameter node appears in the scene graph, the quantization is set to TRUE, and will apply to
subsequent nodes as follows:

If the isLocal boolean
QuanitzationParameter

is set to FALSE, the quantization applies to all
node, and thus to all their children as well.

siblings following the

© ISO/IEC 1999 — All rights reserved 175

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

If the isLocal boolean is set to TRUE, the quantization only applies to the following sibling node in the children list
of the parent node. If no sibling is following the QuantizationParameter node declaration, the node has no
effect.

In all cases, the quantization is applied only in the scope of a single BIFS command. That is, if a command in the
same access unit, or in another access unit inserts a node in a context in which the quantization was active, no
guantization will be applied, except if a new QuantizationParameter node is defined in this new command.

The information contained in the QuantizationParameter node fields applies within the context of the node
scope as follows. For each category of fields, a boolean sets the quantization on or off, the minimal and maximal
values are set, as well as the number of bits for the quantlzatlon This mformatlon comblned W|th the node coding
table, enable
applied as exp

If the useEff
according to

cientCoding boolean is set to FALSE, the encoding of floats shall be performed usi
EEE Std 754-1985 [12].

hg 32 bits,

If the useEfficientCoding boolean is set to TRUE, the encoding of floats shall usé,the syntax dé¢scribed in
9.3.7.11. The|scope of the use of the efficient coding is the same as that of the QuantizationParamejer node.
This means that the values of the fields of the current QuantizationParameter node are not $ent in the
efficient coding mode unless the context is within the scope of a previously.sént QuantizationPafameter
whose useEfficientCoding bit was set to true.
9.4.2.78 Regtangle
9.4.2.78.1 N¢de interface
Rectangle {

exposedHeld SFVec2f size 2,2
}
NOTE — For the binary encoding of this node see Annex H:1.77.
9.4.2.78.2 Fdinctionality and semantics
This node spécifies a rectangle. The size field specifies the horizontal and vertical size of the rendered rectangle.
9.4.2.79 Scdlarinterpolator
9.4.2.79.1 Nopde interface
Scalarinterpdglator {

eventin SFFloat set_fraction

exposedHeld MFFloat key 1

exposedHeld _<MFFloat keyValue 1

eventOut SFFloat value_changed
}

NOTE — For the binary encoding of this node see Annex H.1.78.

9.4.2.79.2 Functionality and semantics

The semantics of the Scalarinterpolator

9.4.2.80 Script

9.4.2.80.1 Node interface

node are specified in ISO/IEC 14772-1:1998, subclause 6.39 [10].

Script {
exposedField MFString url 0
field SFBool directOutput FALSE
176 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

field SFBool mustEvaluate FALSE
Any number of the following may then follow:

eventin eventType eventName

field fieldType fieldName initialValue
eventOut eventType eventName

}

NOTE — For the binary encoding of this node see Annex H.1.79.

9.4.2.80.2

Functionality and semantics

The Script_node is used to describe behaviour in a programmtic way in a scene. Script nodes typically

— signify Ji change or user action

— receive
— contain
— effectc

Each Scri

events from other nodes
a program module that performs some computation
nange somewhere else in the scene by sending events

pt node has associated programming language code, referenced\by the url field, that i

carry out the Script node's function. That code is referred to as the "script-in the rest of this descript

9.4.2.80.2.

The sema
exception.

1 Detailed Semantics

htics of this node are as defined in ISO/IEC 14772-1:1998, subclause 6.40 [10], with
The interface functions CreateVRMLFromString() and CreateVRMLFromURL() are n

The terminjal shall support JavaScript.

EXAMPLE 4 The following scene contains two spheres that'exchange colors when they are clicked with the mo

is used to h

bld the current color state (in the variable num). The script variables colorl and color2 are used to

that are flipged back and forth between the two spheres, The script variable color is used to hold the last color
sphere, and|this color is routed to the second sphere\ The first sphere color is set directly in the script.

Group {
children

[

Viewpoint {

fi
}

e|dOfView 0.785398

DiregtionalLight {

C

}

blor 1 11

Shape {

}

geometry Sphere { radius 0.5} # first sphere...
appearance~Appearance {

madterial DEF COLOR Material {diffuseColo rl10 0}

5 executed to
on.

the following
ot supported.

use. The script
hold the colors
tate of the first

Transform {
translation -2 0 0

children [
Shape {
geometry Sphere { radius 1.0} #second sphere...
appearance Appearance {
material DEF COLOR2 Material {diffuseColo rl11}
}
DEF TS TouchSensor{} #clicking on the 2 nd sphere will activate the script
]
}
DEF SC Script {

eventln SFBool touch

© ISO/IEC 1999 — All rights reserved

177

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

field SFNode node USE COLOR
field SFColor color 1010 # constant color for sphere
field SFColor color 200 1# same as above
field SFInt32 num 1 # holds the current color state
eventOut SFColor color # holds the last color in COLOR
url "javascript:
function touch (value, tp) {
color = node.diffuseColor;

if (num==1) {
node.diffuseColor = colorl;
num = 2;

} else {
node.diffuseColor = color2;
momT——1;

}

))
}
]
ROUTE TS.isfictive TO SC.touch # activates the script when sensor is touched

ROUTE SC.color TO COLOR2.diffuseColor # routes the last color of COLOR to COLORZ2
9.4.2.81 Shape

9.4.2.81.1 N¢de interface

Shape {
exposedHeld SFNode appearance NULL
exposedHeld SFNode geometry NULL
}

NOTE — For the binary encoding of this node see Annex H.1.80;

9.4.2.81.2 Fdinctionality and semantics

The semantigs of the Shape node are specifiedin ISO/IEC 14772-1:1998, subclause 6.41 [10].
9.4.2.82 Soynd

9.4.2.82.1 N¢de interface

Sound {
exposedHeld SFVec3f direction 0,0,1
exposedHeld SFFloat intensity 1.0
exposedHeld SFYec3f location 0,0,0
exposedHeld SFFloat maxBack 10.0
exposedHeld ~<SFFloat maxFront 10.0
exposedHeld, ' SFFloat minBack 1.0
exposedHeld” SFFloat minFront 1.0
exposedField SFFloat priority 0.0
exposedField SFNode source NULL
field SFBool spatialize TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.81.

9.4.2.82.2 Functionality and semantics

The Sound node is used to attach sound to a scene, thereby giving it spatial qualities and relating it to the visual
content of the scene.

178 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The Sound node relates an audio BIFS sub-graph to the rest of an audio-visual scene. By using this node, sound
may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the
node. By using the functionality of the audio BIFS nodes, sounds in an audio scene dscribed using ISO/IEC

14496-1 m

ay be filtered and mixed before being spatially composited into the scene.

The semantics of this node are as defined in ISO/IEC 14472-1:1997, subclause 6.42, with the following exceptions
and additions.

The source field allows the connection of an audio sub-graph containing the sound.

The spatialize field determines whether the Sound shall be spatialized. If this flag is set, the sound shall be

presented
comes frof
of spatiali
sophisticat|

If there arg
to the pha
to other ch
passed th
represente
remaining

If the spat
presented
output by t

As with the
grouping o

Affine tran
spatialized

If a particu
presentatig
sound, or

spatially according to the local coordinate system and current listeningPoint _ so that
N a source located at the location point, facing in the direction given by direction . The
ration is implementation-dependant, but implementators are encouraged to provide t
on possible depending on terminal resources.

multiple channels of sound output from the child sound, they may or may notdbe spatializ
EeGroup properties of the child, as follows. Any individual channels, that is;,channels not

ough this node unchanged. The sound presented in the scene is~thus a single spati
d by the sum of the individual channels, plus an “ambient” sound-represented by ma
Channels into the presentation system as described in 9.2.2.13.2.2,

alize field is not set, the audio channels from the child are“passed through unchanged, 4
in the scene due to this node is an “ambient” sound represented by mapping all the au
ne child into the presentation system as described in 9.2:2.13.2.2.

visual objects in the scene, the Sound node may be included as a child or descendant
I transform nodes. For each of these nodes, the.sound semantics are as follows.

sformations presented in the grouping and\transform nodes affect the apparant spatializati
sound. They have no effect on “ambient’,sounds.

ar grouping or transform node has multiple Sound nodes as descendants, then they are
n as follows. Each of the Souné:-hodes may be producing a spatialized sound, a multicha
poth. For all of the spatialized;sounds in descendant nodes, the sounds are linearly com

simple summation from presentation: For multichannel ambient sounds, the sounds are linearly comb

it apparently
bxact manner
ne maximum

ed, according
bhase-related

annels, are summed linearly and then spatialized. Any phase-grouped channels are not spatialized, but

hlized sound,
pping all the

nd the sound
dio channels

of any of the

DN position of

combined for
\nnel ambient
bined through
ned channel-

sound al[1-5].
S1 and S2 are
the spatialized

by-channe| for presentation.

EXAMPLE +- Sound node S1 génerates a spatialized sound s1 and five channels of multichannel ambient
Sound nqde S2 generates‘aspatialized sound s2 and two channels of multichannel ambient sound a2[1-2].
grouped unfler a single GFOUP node. The resulting sound is the superposition of the spatialized sound s1,
sound s2, apd the five-cHannel ambient multichannel sound represented by a3[1-5], where

a3[1] = al[1] + a2[1]

a3[2] = al[2 +a2[2]

a3[3] = al[3]

a3[4] = al[4]

a3[5] = al[5]

9.4.2.83 Sound2D

9.4.2.83.1

Sound2D {

exposedField
exposedField

Node interface

SFFloat
SFVec?2f

1.0
0,0

intensity
location

© ISO/IEC 1999 — All rights reserved

179

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

exposedF
field

}

ield SFNode

SFBool

NULL
TRUE

source
spatialize

NOTE — For the binary encoding of this node see Annex H.1.82.

9.4.2.83.2 Functionality and semantics

The Sound2D node relates an audio BIFS sub-graph to the other parts of a 2D audio-visual scene. It shall not be
used in 3D contexts (see 9.2.2.1). By using this node, sound may be attached to a group of visual nodes. By using
the functionality of the audio BIFS nodes, sounds in an audio scene may be filtered and mixed before being

spatially com

posed into the scene.

The intensity
factor that is

The location
The source

The spatialiZ
shall be spati
one meter be
of —45° and H

The same ru
(see 9.4.2.82
channels of t

be performed.

As with the vi
or descendat|
follows.

Affine transfo
spatialized sq

If a transforni
described in
way accordin

field adjusts the loudness of the sound. Its value ranges from 0.0 to 1.0, and this value
ised during the playback of the sound.

field specifies the location of the sound in the 2D scene.

ield connects the audio source to the Sound2D node.
e field specifies whether the sound shall be spatialized on the 2D screen. If this flag is set
alized with the maximum sophistication possible. The 2D sound is'spatialized assuming a

fween the user and a 2D scene of size 2m x 1.5m, giving the minimum and maximum azin
45°, and the minimum and maximum elevation angles of -37%and +37 °.

es for multichannel audio spatialization apply to the Seund2D node as to the Sound
. Using the phaseGroup flag in the AudioSourc€e,) node it is possible to determine W
ne source sound contain important phase relations,»and that spatialization at the terminal

t of any of the grouping or transform nodes. For each of these nodes, the sound seman

rmations presented in the grouping and transform nodes affect the apparent spatialization
und.

node has multiple Sound2D nodes as descendants, then they are combined for pres
D.4.2.82. If Sound «and Sound2D nodes are both used in a scene, all shall be treateq
j to these semantics.

ere

pde interface

specifies a

the sound
distance of
uth angles

(3D) node
hether the
should not

sual objects in the scene (and for the Sound node), the Sound2D node may be included as a child

tics are as

position of

entation as
the same

SFEFloat Radius 1.0

9.4.2.84 Sph

9.4.2.84.1 N

Sphere {
field

}

NOTE — For the binary encoding of this node see Annex H.1.83.

9.4.2.84.2 Functionality and semantics

The semantics of the Sphere node are specified in ISO/IEC 14772-1:1998, subclause 6.43 [10].

180

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

9.4.2.85 SphereSensor
9.4.2.85.1 Node interface

SphereSensor {
exposedField SFBool
exposedField SFBool
exposedField SFRotation

eventOut SFBool
eventOut SFRotation
eventOut SFVec3f

}

autoOffset
enabled
offset
isActive

rotation_changed
trackPoint_changed

TRUE
TRUE
0100

ISO/IEC 14496-1:1999(E)

NOTE — Fqr the binary encoding of this node see Annex H.1.84.

9.4.2.85.2 | Functionality and semantics

The semaijtics of the SphereSensor node are specified in ISO/IEC 14772-1:1998, stibclause 6.44 [10].

9.4.2.86 HpotLight
9.4.2.86.1 |Node interface

SpotLight {
exposefdField SFFloat
exposefdField SFVec3f
exposefdField SFFloat
exposefdField SFColor
exposefdField SFFloat
exposefdField SFVec3f
exposefdField SFFloat
exposefdField SFVec3f
exposefdField SFBool
exposefdField SFFloat

}

NOTE — Fqr the binary encoding of this node see Annex H.1.85.

ambientintensity

attenuation
beamWidth
color
cutOffAngle
direction
intensity
location

on

radius

9.4.2.86.2 | Functionality and semantics

The semaitics of the SpotLight node are specified in ISO/IEC 14772-1:1998, subclause 6.45 [10].

9.4.2.87 Switch
9.4.2.87.1 |Node interface

Switch {
expose Field MENode

chaice

0.0
1,0,0
1.5708
1,1,1
0.785398
0,0, -1
1.0
0,0,0
TRUE
100.0

N

exposedField SFInt32
}

NOTE — For the binary encoding of this node see Annex H.1.86.

whichChoice

9.4.2.87.2 Functionality and semantics

=]

The semantics of the Switch node are specified in ISO/IEC 14772-1:1998, subclause 6.46 [10], with the following

restrictions.

If some of the child sub-graphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are switched on and off according to the value of the whichChoice field. That is, only sound that corresponds to
Sound nodes in the whichChoice’th subgraph of this node are played. The others are muted.

© ISO/IEC 1999 — All rights reserved

181

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.88 TermCap

9.4.2.88.1 Node interface

TermCap {
eventin SFTime
field SFInt32
eventOut SFInt32
}

evaluate

capability 0

value

NOTE — For the binary encoding of this node see Annex H.1.87.

9.4.2.88.2 F{inctionality and semantics

The TermCap node is used to query the resources of the terminal. By ROUTEing the result to.a’Switch node,
simple adaptive content may be authored using BIFS.

When this nogde is instantiated, the value of the capability field shall be examined by the\system and|the value
eventOut gerjerated to indicate the associated system capability. The value eventOut,is updated and| generated
whenever anlevaluate eventln is received.

The capability field specifies a terminal resource to query. The semantics of\the’ value field vary depending on
the value of this field. The capabilities which may be queried are:

The exact seJ:wantics differ depénding on the value of the capability field, as follows.

capability : ¢ (frame rate)

Table 34 - Semantics of value, dependenton capability

capability | Semantics of value

0 frame rate

1 color depth

2 screen.size

3 graphies hardware

32 audio output format

33 maximum audio sampling
rate

34 spatial audio capability

64 CPU load

65 memory load

For this valug of capability , the current rendering frame rate is measured. The exact method of measyrement not

specified.

182

Table 35 - Semantics of value for capability=0

value

Semantics

unknown or can’t determine

less than 5 fps

5-10 fps

10-20 fps

20-40 fps

Gh|WIN|F|O

more than 40 fps

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

For the breakpoint between overlapping values between each range (i.e. 5, 10, 20, and 40), the higher value of
value shall be used (ie, 2, 3, 4, and 5 respectively). This applies to each of the subsequent capability-value
tables as well.

capability : 1 (color depth)

For this value of capability , the color depth of the rendering terminal is measured. At the time this node is
instantiated, the value field is set to indicate the color depth as follows:

Table 36 - Semantics of value for capability=1

value Semantics

0 unknown or can’t determine
1 bit/pixel

grayscale

color, 3-12 bit/pixel

color, 12-24 bit/pixel

color, more than 24 bit/pixel

G| WIN|F

capability|: 2 (screen size)

For this vaJue of capability , the window size (in horizontal lines) of thesoutput window of the renderipng terminal is
measured:

Table 37 - Semantics of valuefor capability=2

value | Semantics

unknown or can’t determine
less than 200 lines

200-400 lines

400-800 lines

800-1600 lines

1600 or more lines

AW INIFLIO

capability|: 3 (graphics hardware)

For this vplue of capability) the available of graphics acceleration hardware of the rendering terminal is
measured.|At the time this nade is instantiated, the value field is set to indicate the available graphicg hardware:

Table 38 - Semantics of value for capability=3

value | Semantics

0 unknown or can’t determine
1 no acceleration

2 matrix multiplication

3 matrix multiplication +

texture mapping (less than 1M memory)

4 matrix multiplication +
texture mapping (less than 4M memory)
5 matrix multiplication +

texture mapping (more than 4M memory)

© ISO/IEC 1999 — All rights reserved 183

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

capability : 32 (audio output format)

For this value of capability , the audio output format (speaker configuration) of the rendering terminal is measured.
At the time this node is instantiated, the value field is set to indicate the audio output format.

Table 39 - Semantics of value for capability=32

value | Semantics

unknown or can’t determine
mono

stereo speakers

stereo headphones
five-channel surround

more than five speakers

Q| WIN|RFL[O

capability : 33 (maximum audio sampling rate)

For this valug of capability , the maximum audio output sampling rate of the rendering terminal is mgasured. At
the time this pode is instantiated, the value field is set to indicate the maximum audiq output sampling rate.

Table 40 - Semantics of value for capability=33

value | Semantics

unknown or can’t detérmine
less than 16000 Hz
16000-32000 Hz
32000-44100°Hz
44100-48000 Hz

48000 Hzor more

Gh|WIN|FL|O

capability : 34 (spatial audio capability)

For this valug¢ of capability , the spatial audio capability of the rendering terminal is measured. At thie time this
node is instantiated, the value field is set to'indicate the spatial audio capability.

Table'41 - Semantics of value for capability=34

value | Semantics

0 unknown or can’t determine
1 no spatial audio

2 panning only

3 azimuth only

4

full 3-D spatial audio

capability : 64 (CPU load)

For this value of capability , the CPU load of the rendering terminal is measured. The exact method of
measurement is not specified. The value of the value eventOut indicates the available CPU resources as a
percentage of the maximum available; that is, if all of the CPU cycles are being consumed, and no extra calculation
can be performed without compromising real-time performance, the indicated value is 100%; if twice as much
calculation as currently being done can be so performed, the indicated value is 50%.

184 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

capability : 65 (RAM available)

Table 42 - Semantics of value for capability=64

value

Semantics

unknown or can’t determine

less than 20% loaded

20-40% loaded

40-60% loaded

60-80% loaded

Gh|WIN|F|O

80-100% loaded

ISO/IEC 14496-1:1999(E)

For this vJIue of capability , the available memory of the rendering terminal is measured. The_exact method of

measurement is not specified.

9.4.2.89 Text

9.4.2.89.1 |Node interface

Text {
exposefdField MFString
exposegdField MFFloat
exposefdField SFNode
exposefdField SFFloat

}

Table 43 - Semantics of value for capability=65

value | Semantics

0 unknown or can’t determine

1 less than 100 KB free

2 100 KB — 500 KB free

3 500 KB — 2 MB free

4 2 MB — 8 MB free

5 8 MB — 32 MB free

6 32 MB — 200 MB.free

7 more than 200°MB free
string 1
lepgth 1
fontStyle NULL
maxExtent 0.0

NOTE — Fqr the binary encoding of this node see Annex H.1.88.

9.4.2.89.2 [Functionality-and semantics

The semantics of'the Text node are specified in ISO/IEC 14772-1:1998, subclause 6.47 [10].

9.4.2.90 TextureCoordinate

9.4.2.90.1 Node interface

TextureCoordinate {

exposedField MFVec?2f
}

point

NOTE — For the binary encoding of this node see Annex H.1.89.

9.4.2.90.2 Functionality and semantics

The semantics of the TextureCoordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.48 [10].

© ISO/IEC 1999 — All rights reserved

185

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.91 TextureTransform
9.4.2.91.1 Node interface

TextureTransform {

exposedField SFVec2f center 0,0
exposedField SFFloat rotation 0.0
exposedField SFVec2f scale 1,1
exposedField SFVec2f translation 0,0

}

NOTE — For the binary encoding of this node see Annex H.1.90.

9.4.2.91.2 F\Ilnctionality and semantics
The semantigs of the TextureTransform node are specified in ISO/IEC 14772-1:1998, subglause 6.49 [10].
9.4.2.92 TimeSensor

9.4.2.92.1 No¢de interface

TimeSensor {

exposedHeld SFTime cyclelnterval 1
exposedHeld SFBool enabled TRUE
exposedHeld SFBool loop FALSE
exposedHeld SFTime startTime 0]
exposedHeld SFTime stopTime 0
eventOut SFTime cycleTime

eventOut SFFloat fraction_changed

eventOut SFBool isActive

eventOut SFTime time

}

NOTE — For the binary encoding of this node see AnnexH.1.91.

9.4.2.92.2 Fdinctionality and semantics

The semantids of the TimeSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.50 [10].
9.4.2.93 ToychSensor

9.4.2.93.1 Nopde interface

TouchSenson{

exposedHeld SEBool enabled TRUE
eventOut SFVec3f hitNormal_changed

eventOut SFVec3f hitPoint_changed

eventOut SEVec2f hitTexCoord changed

eventOut SFBool isActive

eventOut SFBool isOver

eventOut SFTime touchTime

}
NOTE — For the binary encoding of this node see Annex H.1.92.

9.4.2.93.2 Functionality and semantics

The semantics of the TouchSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.51 [10].

186 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.94 Transform
9.4.2.94.1 Node interface

Transform {

eventin MFNode addChildren
eventin MFNode removeChildren
exposedField SFVec3f center 0,0,0
exposedField MFNode children 1
exposedField SFRotation rotation 0,0,1,0
exposedField SFVec3f scale 1,1,1
exposedField SFRotation scaleQOrientation 0,0,1,0
exposedField SFVec3f translation 0,0,0
}
NOTE — Fqr the binary encoding of this node see Annex H.1.93.
9.4.2.94.2 | Functionality and semantics
The semaftics of the Transform node are specified in ISO/IEC 14772-1:1998, subclause 6.52 [10]. ISO/IEC
14496-1 dges not support the bounding box parameters (bboxCenter and bboxSize).
If some of the child subgraphs contain audio content (i.e., the subgraphs_dontain Sound nodes), thg child sounds

are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the T¥fansform node applies to the log
system of the Sound nodes to alter the apparent spatial location and direction. If the children are
presented [but have equal numbers of channels, the Transform node has no effect on the child
After any such transformation, the combination of sounds:is performed as described in 9.4.2.82.

If the children are not spatially presented but have:egual numbers of channels, the Transform

al coordinate
not spatially
'ens’ sounds.

node has no

effect on the childrens’ sounds. The child sounds are summed equally to produce the audio output at this node.

If some chjldren are spatially presented and_some not, or all children do not have equal numbers of

channels, the

Transform2D {
eventl MFNede addChildren
eventl MENode removeChildren
exposefdField (SFVec2f center 0,0
exposefdField<—MFNode children 1
exposefdField) SFFloat rotationAngle 0.0
exposedField SFVec2f scale 1,1
exposedField SFFloat scaleOrientation 0.0
exposedField SFVec2f translation 0,0

}

NOTE — For the binary encoding of this node see Annex H.1.94.
9.4.2.95.2 Functionality and semantics

The Transform2D node allows the translation, rotation and scaling of its 2D children objects.

The rotation field specifies a rotation of the child objects, in radians, which occurs about the point specified by

center.

© ISO/IEC 1999 — All rights reserved

187

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

The scale field specifies a 2D scaling of the child objects. The scaling operation takes place following a rotation of
the 2D coordinate system that is specified, in radians, by the scaleOrientation field. The rotation
ordinate system is notional and purely for the purpose of applying the scaling and is undone before any further
actions are performed. No permanent rotation of the co-ordinate system is implied.

The translati

on field specifies a 2D vector which translates the child objects.

The scaling, rotation and translation are applied in the following order: scale, rotate, translate.

of the co-

The children field contains a list of zero or more children nodes which are grouped by the Transform2D node.

The addChildren _and removeChildren _eventlns are used to add or remove child nodes from the chi

dren field

of the node.
implications @

If some of thd
are transform

If each of the
system of thg
presented bu
After any suc

If the childre
effect on the

If some child
semantics arg

Children are added to the end of the list of children and special note should be(ta
f this for implicit drawing orders.

ed and mixed as follows.

child sounds is a spatially presented sound, the Transform node applies to the local

b Sound nodes to alter the apparent spatial location and direction/If the children are n
t have equal numbers of channels, the Transform node has no’effect on the childrer
h transformation, the combination of sounds is performed as described in 9.4.2.82.

" are not spatially presented but have equal numbers of<«channels, the Transform ng
Children’s sounds. The child sounds are summed equally to_produce the audio output at this

en are spatially presented and some not, or all chifdren do not have equal numbers of ch
e not defined.

ken of the

child subgraphs contain audio content (i.e., the subgraphs contain Sound nodés), the child sounds

coordinate
ot spatially
s’ sounds.

de has no
node.

annels, the

9.4.2.96 Valyator

9.4.2.96.1 N¢de interface

Valuator {
eventin SFBool inSFBoal
eventin SFColor inSFEColor
eventin MFColor inMEColor
eventln SFFloat inSFFloat
eventin MFFloat inMFFloat
eventin SFInt32 inSFInt32
eventin MFInt32 inMFInt32
eventln SFRatation inSFRotation
eventin MFERe6tation inMFRotation
eventin SEString inSFString
eventin MFEString inMFString
eventin SFTime inSFTime
eventin SEVec2f inSEVec2f
eventin MFVec2f inMFVec2f
eventln SFVec3f inSFVec3f
eventin MFVec3f inMFVec3f
eventOut SFBool outSFBool
eventOut SFColor outSFColor
eventOut MFColor outMFColor
eventOut SFFloat outSFFloat
eventOut MFFloat outMFFloat
eventOut SFInt32 OoutSFInt32
eventOut MFInt32 outMFInt32
eventOut SFRotation outSFRotation
eventOut MFRotation outMFRotation
eventOut SFString OUtSFString

188

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

eventOut MEString OutMFString

eventOut SFTime OUtSFTime

eventOut SFVec?2f outSFVec2f

eventOut MFVec2f outMFVec2f

eventOut SFVec3f outSFVec3f

eventOut MFVec3f outMFVec3f

exposedField SFFloat factorl 1.0
exposedField SFFloat factor2 1.0
exposedField SFFloat factor3 1.0
exposedField SFFloat factor4 1.0
exposedField SFFloat offsetl 0.0
exposedFEield SFFloat offset2 0.0
exposedField SFFloat offset3 0.0
exposedField SFFloat offset4 0.0
exposedField SFBool sum FALSE

}

NOTE — Fqr the binary encoding of this node see Annex H.1.95.

9.4.2.96.2

Functionality and semantics

A Valuatgr node can receive an event of any type, and on reception of sueh’an event, will trigger[eventOuts of

many diffefent types. Upon reception of an event on any of its eventins, on_each eventOut connecteg
an event Will be generated. The value of this event is governed by,the~equation below. This nods

simple typg¢ casting method.

Each outpyit value is dependent on the input value with the following relationship:

output value = factoer * x + offset

to a ROUTE
serves as a

In the above equation, factor is one of the exposedFieldvalues and offset is one of the eventOut valugs specified in

the node inteface. All values specified in the above equation are floating point values.

© ISO/IEC 1999 — All rights reserved

Summing
flag

Figure 25 - Valuator functionaliy

Factor Offsetl Output
value
Type castto | >
> > output type
Offset2 output
Factor value
2
X /_» Type cast to — »
_ output type
Factor Offset3 Output
’ / value
X ~ > Typecastto |
+ ouinut ype
Factor Offset4 Output
4 value
Type castto | >
R \——> output type

189

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Referring to the above figure, there are input paths each catering to an input value. Depending on the data type,
there may be one to four input values. For example the SFRotation will require four input paths but the SFInt32 will
only require the first input path. Each input path will operate identically.

Table 44 - Simple typecasting conversion from other data types to float.

From Conversion to float
integer Direct conversion.
(1to 1.0)
Boolean true — 1.0
false — 0.0
double Truncate to 32-bit precision

Table 45 - Simple typecasting conversion from float to other data types.

To Conversion from float
integer Truncate floating point.
eg(1.11t0 1)
Boolean 0.0 to False
Any other values to true
double Direct conversion

Each input value is converted to a floating-point value using a simple‘\typecasting rule as illustrated i Table 45.
After conversjon, the values are multiplied by the corresponding factor value and added to the corresponding offset
value. Depending on whether the summer is enabled, either{the summed value or the individual yalues are

presented at fhe output.

Depending gn the output data type required, the corrésponding number of output values are retfieved and
converted to the output types according to Table 44.

In the event that the input value is of a multi-valued“type and the output is of a single value type, the fifst value of

the multi-valued input is used.

EXAMPLE — [rhe Valuator node can be séen as an event type adapter. One use of this node is the modifi¢ation of the
SFInt32 whichChoice field of a Swit€h)*node by an event. There is no interpolator or sensor node with|a SFInt32
eventOut. Thus, if a two-state button is described with a Switch containing the description of each state in choig¢es 0 and 1.
The triggering event of any type canbe routed to a Valuator node whose SFInt32 field is routed to the whichChoice field

of the Switch .
9.4.2.97 Vieywpoint

9.4.2.97.1 N¢de interface

Viewpoint {
eventin SFBOoOoI set_bind
exposedField SFFloat fieldOfView 0.785398
exposedField SFBool jump TRUE
exposedField SFRotation orientation 0,0,1,0
exposedField SFVec3f position 0,0,10
field SFString description
eventOut SFTime bindTime
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.96.

190

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.97.2 Functionality and semantics
The semantics of the Viewpoint node are specified in ISO/IEC 14772-1:1998, subclause 6.53 [10].
9.4.2.98 Viseme

9.4.2.98.1 Node interface

Viseme {

field SFInt32 viseme_selectl 0

field SFInt32 viseme_select2 0

field SFInt32 viseme blend 0

field SFBool viseme_def FALSE
}

NOTE — Fqr the binary encoding of this node see Annex H.1.97.

9.4.2.98.2 | Functionality and semantics

The Viselne node defines a blend of two visemes from a standard set of 14 Visemes as defindd in ISO/IEC
14496-2, Annex C, Table C-5.

The viseme_selectl field specifies viseme 1.

The viseme_select2 field specifies viseme 2.

The viseme_blend field specifies the blend of the two visemes:

If viseme_|def is TRUE, the current FAPs shall be used todefine a viseme and store it.
9.4.2.99 \isibilitySensor

9.4.2.99.1 [Node interface

VisibilitySensor {

exposefdField SFVec3f center 000
exposefdField SFBool enabled TRUE
exposedField SFVec3f size 000
eventOpt SFTime enterTime

eventOpt SFTime exitTime

eventOut SFBool isActive

}

NOTE — Fqr the binaryrencoding of this node see Annex H.1.98.

9.4.2.99.2 [Funetienality and semantics

The semantics of the \/iQihiIinyQnQnr node are specified in ISOQAEC 14772-1:1998 subclause 6 34 [10].

9.4.2.100 WorldInfo

9.4.2.100.1Node interface

WorldInfo {
field MFString info 1
field SFString title
}

NOTE — For the binary encoding of this node see Annex H.1.99.

© ISO/IEC 1999 — All rights reserved 191

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

9.4.2.100.2Functionality and semantics

The semantics of the WorldInfo node are specified in ISO/IEC 14772-1:1998, subclause 6.55 [10].

10 Synchronization of Elementary Streams

10.1 Introduction

This subclause defines the tools to maintain temporal synchronisation within and among elementary streams. The
conceptual elements that are required for this purpose, namely time stamps and clock reference information, have
already beeni i i iving terminal
are embodie pf different
types of ele

in the sync layer, specified in 10.2. This syntax is configurable to adapt to the needs
ntary streams. The required configuration information is specified in 10.2.3.

On the sync |ayer, an elementary stream is mapped into a sequence of packets, called an.SL*packetired stream
(SPS). Packgtization information has to be exchanged between the entity that generates anrelementary gtream and
. This relation is best described by a conceptual interface between\both layers, termed the
ream interface (ESI). The ESI is a reference point that need not be accessible in an implementation. It

=

is described i

SL-packetize
This delivery
specified in |

n 10.3.

] streams are conveyed through a delivery mechanism that is outside the scope of ISO/IE
mechanism is only described in terms of the DMIF Application,nterface (DAI) whose sen
BO/IEC 14496-6. It specifies the information that needs to he ‘exchanged between the syn

C 14496-1.
hantics are
C layer and

the delivery mechanism. The basic data transport feature that this delivery mechanism shall provide is {he framing
of the data ppckets generated by the sync layer. The DAI is a reference point that need not be accegsible in an
implementatipn. The required properties of the DAI are described inv10.4.

The items specified in this clause are depicted in Figure 26 below.

Elementary Streams Elementary Stream Interface

Svnc Layer

SL-Packetized Streams DMIF Application Interface

Figure 26 - The sync layer

10.2 Sync lLayer

10.2.1 Owver

ew

The sync layer (SL) specifies a syntax for the packetization of elementary streams into access units or parts
thereof. Such a packet is called SL packet. The sequence of SL packets resulting from one elementary stream is
called an SL-packetized stream (SPS). Access units are the only semantic entities at this layer that need to be
preserved from end to end. Their content is opaque. Access units are used as the basic unit for synchronisation.

An SL packet consists of an SL packet header and an SL packet payload. The SL packet header provides means
for continuity checking in case of data loss and carries the coded representation of the time stamps and associated
information. The detailed semantics of the time stamps are specified in 7.3 that defines the timing aspects of the
Systems Decoder Model. The SL packet header is configurable as specified in 10.2.3. The SL packet header itself
is specified in 10.2.4.

192 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

An SL packet does not contain an indication of its length. Therefore, SL packets must be framed by a suitable lower
layer protocol using, e.g., the FlexMux tool specified in 11.2. Consequently, an SL-packetized stream is not a self-
contained data stream that can be stored or decoded without such framing.

An SL-packetized stream does not provide identification of the ES_ID associated to the elementary stream (see
8.6.4) in the SL packet header. This association must be conveyed through a stream map table using the
appropriate signalling means of the delivery mechanism.

10.2.2 SL Packet Specification

10.2.2.1 Syntax

class SL_Packet (SCConfigDescriptor SL) {
aligned(8) SL_PacketHeader slPacketHeader(SL);
aligned(8) SL_PacketPayload slPacketPayload;

}

10.2.2.2 Yemantics

In order to |properly parse an SL_Packet , it is required that the SLConfigDescripton for the elemegntary stream
to which the SL_Packet belongs is known, since the SLConfigDescriptor conveys the configliration of the
syntax of the SL packet header.

slPacketH¢ader — an SL_PacketHeader element as specified in 10.274.
slPacketP3yload — an SL_PacketPayload that contains an opaque payload.
10.2.3 Sl Packet Header Configuration

10.2.3.1 Yyntax

class SLCdnfigDescriptor extends BaseDescriptor : bit(8) “tag=SLConfigDescrTag {
bit(8) predefined;
if (predgfined==0) {
bit(1] useAccessUnitStartFlag;
bit(1] useAccessUnitEndFlag;
bit(1] useRandomAccessPointFlag;
bit(1) hasRandomAccessUnitsOnlyFRiag;
bit(1] usePaddingFlag;
bit(1] useTimeStampsFlag;
bit(1) useldleFlag;
bit(1] durationFlag;
bit(32) timeStampResolution;
bit(32) OCRResolution;
bit(8) timeStampkength; / must be < 64
bit(8] OCRLength; /I must be 64
bit(8] AU_Length; /I must be 32
bit(8] instantBitrateLength;
bit(4] -d€gradationPriorityLength;
bit(5)—AUseqiNumtengti, 7 must—be =16
bit(5) packetSeqNumLength; // must be < 16
bit(2) reserved=0b11;
if (durationFlag) {
bit(32) timeScale;
bit(16) accessUnitDuration;
bit(16) compositionUnitDuration;

IN A

if (luseTimeStampsFlag) {
bit(timeStampLength) startDecodingTimeStamp;
bit(timeStampLength) startCompositionTimeStamp;

}

}
aligned(8) bit(1) OCRstreamFlag;
const bit(7) reserved=0b1111.111;

© ISO/IEC 1999 — All rights reserved 193

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

if (OCRstreamFlag)
bit(16) OCR_ES Id;

10.2.3.2 Semantics

The SL packet header may be configured according to the needs of each individual elementary stream. Parameters
that can be selected include the presence, resolution and accuracy of time stamps and clock references. This
flexibility allows, for example, a low bitrate elementary stream to incur very little overhead on SL packet headers.

For each elementary stream the configuration is conveyed in an SLConfigDescriptor

associated ES_Descriptor

within an object descriptor.

, Which is part of the

The configurible parameters in the SL packet header can be divided in two classes: those that apply’{o each SL
packet (e.g. |[OCR, sequenceNumber) and those that are strictly related to access units (e/g)time stamps,
accessUnitLgngth, instantBitrate, degradationPriority).

predefined — allows to default the values from a set of predefined parameter sets as détaited below.
NOTE — This fable will be updated by amendments to ISO/IEC 14496 to include predefined configurations as requifed by future
profiles.
Table 46 - Overview of predefined SLConfigDescriptor values

Predefined field value Description

0x00 Custom

0x01 null SL packet header.

0x02 - OxFF Reserved for IS©.use

Table 47 — Detailed predefinedSLConfigDescriptor values

predefined field value

0x01

useAccessUnitStartFlag

useAccessUnitEndFlag

useRandomAccessPointFlag

usePaddingFlag

useTimeStampsFlag

useldleFlag

o|lo|o|o|o|o

durationFlag

timeStampResolution

OCRResolution

timeStampLength

OCRIength

AU_length

ol

instantBitrateLength

degradationPriorityLength

AU_segNumLength

packetSegqNumLength

o|o|o]!

timeScale

accessUnitDuration

compositionUnitDuration

startDecodingTimeStamp

startCompositionTimeStamp

useAccessUnitStartFlag
this elementary stream.

194

— indicates that the accessUnitStartFlag

is present in each SL packet header of

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

useAccessUnitEndFlag

ISO/IEC 14496-1:1999(E)

— indicates that the accessUnitEndFlag

elementary stream.

If neither useAccessUnitStartFlag

nor useAccessUnitEndFlag

corresponds to a complete access unit.

useRandomAccessPointFlag —

indicates that the RandomAccessPointFlag

header of this elementary stream.

hasRandomAccessUnitsOnlyFlag
that case the randomAccessPointFlag

need not be used.

is present in each SL packet header of this

are set this implies that each SL packet

is present in each SL packet

— indicates that each SL packet corresponds to a random access point. In

usePaddin
Sstream.

useTimeSt
are convey
startDecod
configurati

useldleFla

durationFI3
stream is S

timeStamp
OCRResol

timeStamp
values bet

OCRIlength
that no o
OCRLengt

AU_Length
AU_Length

instantBitrg
stream.

degradatio
this eleme

gFlag — indicates that the paddingFlag is present in each SL packet header ofith
ampsFlag - indicates that time stamps are used for synchronisation of this elementary
ed in the SL packet headers. Otherwise, the parameters accessUnitRate ¢ composition|

ingTimeStamp and startCompositionTimeStamp
bn shall be used for synchronisation.

conveyed in*this SL ps

—indicates that idleFlag is used in this elementary stream.

Y

g — indicates that the constant duration of access unitstand composition units for th
ubsequently signaled.

Resolution —is the resolution of the time stampsdnclock ticks per second.

ution — is the resolution of the object time baselin cycles per second.

Length — is the length of the time stamp-fields in SL packet headers. timeStampLength
veen zero and 64 bit.

— is the length of the objectClockReference field in SL packet headers. A length of
bjectClockReferences are(present in this elementary stream. If OCRstreamF
h shall be zero. Else OCRIlength shall take values between zero and 64 bit.

— is the length of the accessUnitLength
shall take values between zero and 32 bit.

fields in SL packet headers for this eleme

iteLength — 1S the length of the instantBitrate field in SL packet headers for th

hPriorityl.ength
htary, stream.

— is the length of the degradationPriority field in SL packse

AU_segN

s elementary

stream. They
UnitRate ,
cket header

s elementary

shall take

rero indicates
ag is set,

ntary stream.

s elementary

t headers for

mkength — is the length of the AU sequenceNumber field in SL packet headers for th

s elementary

stream.

packetSeq

NumLength - is the length of the packetSequenceNumber

elementary stream.

timeScale
timeScale

accessUnitDuration

compositio

1/timeScale

field in SL packet headers for this

— used to express the duration of access units and composition units. One second is evenly divided in

parts.
— the duration of an access unit is accessUnitDuration * 1/timeScale

nUnitDuration
seconds.

© ISO/IEC 1999 — All rights reserved

— the duration of a composition unit is compositionUnitDuration

seconds.

195

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

startDecodingTimeStamp — conveys the time at which the first access unit of this elementary stream shall be
decoded. It is conveyed in the resolution specified by timeStampResolution

startCompositionTimeStamp — conveys the time at which the composition unit corresponding to the first
access unit of this elementary stream shall be decoded. It is conveyed in the resolution specified by
timeStampResolution

OCRstreamFlag - indicates that an OCR_ES_ID syntax element will follow.

OCR_ES_ID - indicates the ES_ID of the elementary stream within the name scope (see 8.7.2.4) from which the
time base for this elementary stream is derived.

10.2.4 SL Pqcket Header Specification

10.2.4.1 Syrtax

aligned(8) clags SL_PacketHeader (SLConfigDescriptor SL) {
if (SL.useAccessUnitStartFlag)
bit(1) alccessUnitStartFlag;
if (SL.useAccessUnitEndFlag)
bit(1) alccessUnitEndFlag;
if (SL.OCHLength>0)
bit(1) QCRflag;
if (SL.useldlleFlag)
bit(1) idleFlag;

bit(
if (OC
bit(

L.packetSegNumLength) packetSequenceNumber;
flag)
L.OCRLength) objectClockReference;

if (acc
if (

ssUnitStartFlag) {
bL.useRandomAccessPointFlag)

Dit(SL.timeStampLength) decodingTimeStamp;
if (dompositionTimeStampFlag)
Dit(SL.timeStampLength) compositionTimeStamp;
L ALl length > Q)
bit(SL.AU_Length) accessUnitLength;
if (instantBitrateFlag)
bit(SL.instantBitrateLength) instantBitrate;
if (SL.degradationPriorityLength>0)
bit(SL.degradationPriorityLength) degradationPriority;

if (

}
}
}

10.2.4.2 Semantics
accessUnitStartFlag — when set to one indicates that an access unit starts in this SL packet. If this syntax

element is omitted from the SL packet header configuration its default value is known from the previous SL packet
with the following rule:

196 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

accessUnitStartFlag

accessUnitEndFlag

ISO/IEC 14496-1:1999(E)

= (previous-SL packet has accessUnitEndFlag ==1)?1:0.

— when set to one indicates that an access unit ends in this SL packet.

If this syntax

element is omitted from the SL packet header configuration its default value is only known after reception of the
subsequent SL packet with the following rule:

accessUnitEndFlag

If neither AccessUnitStartFlag

= (subsequent-SL packet has accessUnitStartFlag ==1)?1:0.

nor AccessUnitEndFlag

accessUnitEndFlag = 1

are configured into the SL packet header this
implies that each SL packet corresponds to a single access unit, hence both accessUnitStartFlag

NOTE — W
accessUnitl]
is received.

OCRflag A
is zero.

idleFlag
of time. T
subsequer]

paddingFla

paddingBit
zero.

If paddingff

consists of
be set if p3

If paddingH
followed by

packetSeq
counter. A
be signalle
continuity ¢

Duplicatior
may use d

hen the SL packet header is configured to use accessUnitStartFlag but neither accessUnitEy]
ength , itis not guaranteed that the terminal can determine the end of an access unit beforejthe §

- when set to one indicates that an objectClockReference will follow. The-default valueg

— indicates that this elementary stream will be idle (i.e., not produce-data) for an undete
nis flag may be used by the decoder to discriminate between déliberate and erroneou

t SL packets.

g - indicates the presence of padding in this SL packet. The“default value for paddingFlg
5 — indicate the mode of padding to be used in this-SL packet. The default value for pad
lag is set and paddingBits is zero, thiscindicates that the subsequent payload of t

padding bytes only. accessUnitStartFlag, -randomAccessPointFlag
ddingFlag s set and paddingBits is zere:

lag is set and paddingBits is greater than zero, this indicates that the payload of thid
paddingBits of zero stuffing bits for byte alignment of the payload.

uenceNumber - if present, it shall be continuously incremented for each SL packet
discontinuity at the decoder corresponds to one or more missing SL packets. In that case,
d to the sync layer user. If this syntax element is omitted from the SL packet header
hecking by the synciayer cannot be performed for this elementary stream.

of SL packets ™ elementary streams that have a sequenceNumber field in their SL p3

original. The packetSequenceNumber of duplicated SL packets shall have the same value and eaq

original SL
shall enco

packet-shall be duplicated, with the exception of an objectClockReference
e a valid value for the duplicated SL packet.

field, if p

dFlag nore
ubsequent one

for OCRflag

mined period
5 absence of

D

g s zero.

dingBits is

nis SL packet

and OCR{lag shall not

SL packet is

as a modulo
an error shall
configuration,

cket headers

uplication of“SL packets for error resilience. The duplicated SL packet(s) shall immediately follow the

h byte of the
resent, which

objectCloc

kReference — contains an Object Clock Reference time stamp. The OTB tim

reconstructed from this OCR time stamp according to the following formula:

t=

where k is the number of times that the objectClockReference

objectClockReference

(objectClockReference/SL.OCRResolution)+ k*(2S-OCRLength /5] OCRResolution
counter has wrapped around.

is only present in the SL packet header if OCRflag is set.

NOTE — It is possible to convey just an OCR value and no payload within an SL packet.

e value t is

)

The following is the semantics of the syntax elements that are only present at the start of an access unit when

explicitly si

gnaled by accessUnitStartFlag in the bitstream:

© ISO/IEC 1999 — All rights reserved

197

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

randomAccessPointFlag — when set to one indicates that random access to the content of this elementary
stream is possible here. randomAccessPointFlag shall only be set if accessUnitStartFlag is set. If this
syntax element is omitted from the SL packet header configuration, its default value is the value of
SLConfigDescriptor.hasRandomAccessUnitsOnlyFlag for this elementary stream.

AU_sequenceNumber — if present, it shall be continuously incremented for each access unit as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing access units. In that case, an error
shall be signalled to the sync layer user. If this syntax element is omitted from the SL packet header configuration,
access unit continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of access units : elementary streams that have a AU_sequenceNumber field in their SL packet
headers mayrtase-gapheation Rrtts—Fhe } 2% imrrediately w-the original.
The AU_seqlienceNumber of such access units shall have the same value and each byte of the origjnal one or
more SL packets shall be duplicated, with the exception of an objectClockReference field, ib\pregent, which
shall encode g valid value for the duplicated access unit.

decodingTimgStampFlag - indicates that a decoding time stamp is present in this packet.
compositionTimeStampFlag — indicates that a composition time stamp is present in this packet.
accessUnitLgngthFlag — indicates that the length of this access unit is presentin this packet.
instantBitrateflag — indicates that an instantBitrate is present.ifirthis packet.

decodingTimgStamp - is a decoding time stamp as configured insthe’associated SLConfigDescripto . The

decoding time td of this access unit is reconstructed from this decading time stamp according to the formula:

=

- td= [decodingTimeStamp /SL.timeStampResolution.+ k *
2StumeSamplength /g) timeStampResolution

where k is th¢ number of times that the decodingTimeStamp counter has wrapped around.
compositionTlimeStamp — is a compesition time stamp as configured in the [associated
SLConfigDesgriptor. The composition tithé tc of the first composition unit resulting from this acdess unit is

reconstructed from this composition time stamp according to the formula:

~_td= [compositionTimeStamp /SL.timeStampResolution + k *
2SttimeStamplength /g timeStampResolution

where k is theé number of times that the compositionTimeStamp counter has wrapped around.

accessUnitLgngth —<s-the length of the access unit in bytes. If this syntax element is not present|or has the
value zero, the length'of/the access unit is unknown.

instantBitrate = is the instantaneous bit rate of this elementary stream until the next instantBitrate field is
found.

degradationPriority — indicates the importance of the payload of this access unit. The streamPriority
defines the base priority of an ES. degradationPriority defines a decrease in priority for this access unit
relative to the base priority. The priority for this access unit is given by:

AccessUnitPriority = streamPriority — degradationPriority
degradationPriority remains at this value until its next occurrence. This indication is used for graceful

degradation by the decoder of this elementary stream. The relative amount of complexity degradation among
access units of different elementary streams increases as AccessUnitPriority decreases.

198 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

10.2.5 Clock Reference Stream

An elementary stream of streamType = ClockReferenceStream may be declared by means of the object
descriptor. It is used for the sole purpose of conveying Object Clock Reference time stamps. Multiple elementary
streams in a name scope may make reference to such a ClockReferenceStream by means of the OCR_ES_ID
syntax element in the SLConfigDescriptor to avoid redundant transmission of Clock Reference information.

On the sync layer a ClockReferenceStream is realized by configuring the SL packet header syntax for this SL-
packetized stream such that only OCR values of the required OCRresolution and OCRIlength are present in
the SL packet header.

There Sh IL_nat he nn\J/ (o] pnr\lznf pn\/lnnrl prncnnf mn _an <l pnr\lzofwori stream af ctr amType =

ClockRefefenceStream.
A ClockReferenceStream shall set the hasRandomAccessUnitsOnlyFlag to one.

The following indicates recommended values for the SLConfigDescriptor of a ClockyReference Sfream:

Table 48 — SLConfigDescriptor parameter values for a ClockReferenceStream

useAccessUnitStartFlag
useAccessUnitEndFlag
useRandomAccessPointFlag
usePaddingFlag
useTimeStampsFlag
useldleFlag

durationFlag
timeStampResolution
timeStampLength
AU_length
degradationPriorityLength
AU_seqNumLength

o

O|O|O|O|O|O|Oo|Oo|o|O|o

10.2.6 Rdgstrictions for elementary streaths sharing the same object time base

While it is|possible to share an objett time base between multiple elementary streams through QCR_ES IQ a
number of festrictions for the aceess to and processing of these elementary streams exist as follows:

1. When deveral elementary;streams share a single object time base, the elementary streams withgqut embedded
object ¢lock reference_information shall not be used by the player, even if accessible, until the elementary
stream |carrying the_object clock reference information becomes accessible (see 8.7.3 for the sfream access
procedyre).

2. If an el¢mentary stream without embedded object clock reference information is made available tp the terminal
at a laterpoint in time than the elementary stream carrying the object clock reference informatign, it shall be
delivered in synchronization with the other stream(s). Note that this implies that such a stream might not start
playing from its beginning, depending on the current value of the object time base.

3. When an elementary stream carrying object clock reference information becomes unavailable or is otherwise
manipulated in its delivery (e.g., paused), all other elementary streams which use the same object time base
shall follow this behavior, i.e., become unavailable or be manipulated in the same way.

4. When an elementary stream without embedded object clock reference information becomes unavailable this
has no influence on the other elementary streams that share the same object time base.

© ISO/IEC 1999 — All rights reserved 199

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

10.2.7 Usag

e of configuration options for object clock reference and time stamp values

10.2.7.1 Resolution of ambiguity in object time base recovery

Due to the limited length of objectClockReference
time value can be reconstructed each time an objectClockReference

values these time stamps may be ambiguous

packet according to the following formula:

tOTB_reconstructed

=(objectClockReference/SL.OCRResolution)+k*(2S-0CRLength /5] OCRResolution

. The OTB

is transmitted in the headers of an SL

)

with k being an integer value denoting the number of wrap-arounds. The resulting time base tors reconstructed IS

measured in

econds

When the firs
For each sub

The terminal

Each time an
sampled. Thg

tors_rec(K)| Sh
objecttime b

The applicati
length and re
objectClockR
jitter for SL p
terminal.

10.2.7.2 Res

Due to the linpited length of decodingTimeStamp

become amb
tis(m)=(TimeS

with TimeSta
value denotin

The correct v
Each time a
evaluated for

yield the corr

The applicati

t objectClockReference
sequent occurence of objectClockReference

for an elementary stream is acquired, the value k shall-be
the value k is estimated as follows:

hall implement a mechanism to estimate the value of the object time base for.any time inst

objectClockReference
N, tors_rec(K) is evaluated for different values of k. The value k that minimizes the term | tq
Il be assumed to yield the correct value of torg_reconstructed- ThiS Valuéamay be used as new
se estimation mechanism.

Set to one.

ant.

is received, the current estimated value ofthe OTB torg_esimgied Shall be

TB_estimated ~

nput to the

bn shall ensure that this procedure yields an unambiguous\value of k by selecting an
solution of the objectClockReference
eference values in the elementary stream. The choices for these values depend on
ackets as well as the anticipated maximum drift between the clocks of the transmitting an

olution of ambiguity in time stamp recovery

and compositionTimeStamp values these time s

guous according to the following formula:

tamp/SL.timeStampResolution)+m*(2St-imeStampLength g timeStampResolution

mp being either a decodingTimeStamp
g the number of wrap-arounds.

or a compositionTimeStamp and m being

plue timestamp Of the time stamp can be estimated as follows:

[imeStamp _<s\received, the current estimated value of the OTB torg_esimatea Shall be sampl
different values of m. The value m that minimizes the term | torg_estimated — tis(M)| shall be &
pCt value\of timestamp-

ppropriate
element and @)sufficiently high frequency of ‘Esertion of

e delivery
1 receiving

famps may

an integer

bd. tis(M) is
ssumed to

stamps so a

bn{may choose, separately for every individual elementary stream, the length and resolution of time
WMEWWWM i i itioni j i i ds on the

maximum time that an SL packet with a TimeStamp may be sent prior to the point in time indicated by the
TimeStamp as well as the required precision of temporal positioning.

10.2.7.3 Usage considerations for object clock references and time stamps

The time line of an object time base allows to discriminate two time instants separated by more than

1/SL.OCRResolution. OCRResolution

the applicatio

should be chosen sufficiently high to match the accuracy
n to synchronize a set of elementary streams.

needed by

The decoding and composition time stamp allow to discriminate two time instants separated by more than

1/SL.timeStampResolution.

timeStampResolution should be chosen sufficiently high to

match the

accuracy needed by the application in terms of positioning of access units for a given elementary stream.

200

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

A TimeStampResolution higher than the OCRResolution will not achieve better discrimination between
events. If TimeStampResolution is lower than the OCRResolution, events for this specific stream cannot be
positioned with the maximum precision possible with this given OCRResolution.

The parameter OCRLength is signaled in the SL header configuration. 25-0CRtength /5| OCRResolution is the
time interval covered by the objectClockReference counter before it wraps around. OCRLength should be
chosen sufficiently high to match the application needs for unambiguous positioning of time events from a set of
elementary streams.

When an application knows the value k defined in 10.2.7.1, the OTB time line is unambiguous for any time value.

When the appllcatlon cannot reconstruct the k factor as for example in any applrcatlon that permits random access

without adgh esolution
Therefore,|any time stamp referlng to this OTB is amblguous Therefore, any time stamp refenng tp this OTB is
ambiguouq. It may, however, be considered unambiguous within an application environment threugh knowledge
about the maximum expected delivery jitter and constraints on the time by which an access unit'ean bg sent prior to
its decoding time.

Note that glementary streams that choose the time interval 25-tmestamplength - /g) timeStampResolution higher
than 2S-ORtendth /S| OCRResolution can still only position time events unambigudusly in the smaller of the two
intervals.

In cases, |where k and m can not be estimated correctly, the buffer~model may be violated| resulting in
unpredictaple performance of the decoder.

EXAMPLE |— Let's assume an application that wants to synchronize “elementary streams with a precigion of 1 ms.
OCRResolution should be chosen equal to or higher than 1000 (the time between two successive ticks of thhe OCR is then

equal to 1m

The applical
adjusted at
assume tha

The applica
is therefore

Let’'s assum
TimeStamp
TimeStamp

The applica
timeStampl

ZSL.timeStampL

5). Let's assume OCRResolution =2000.

ion assumes a drift between the STB and the OTB ©f0:1% (i.e. 1ms every second). The clocks need
east every second (i.e. in the worst case, the clgeks will have drifted 1ms which is the precision ¢
objectClockReference are sent every 1s

ion wants to have an unambiguous OTB time line of 24h without need to reconstruct the k factor. T
chosen accordingly such that 25-CCRtendth js) OCRResolution=24h.

e now that the application wants'te-synchronize events within a single elementary stream with a pred
Resolution should be chesen equal to or higher than 100 (the time between two successi
is then equal to 10ms). Let's.assume TimeStampResolution=200.

ion wants to be able-to;send access units at maximum 1 minute ahead of their decoding or compo
ength is therefore\chosen as

ngth

/SL.timeStampResolution 2 minutes.

10.3 Ele

entary.Stream Interface (Informative)

therefore to be
nstraint). Let’s

he OCRLength

ision of 10 ms.
e ticks of the

ition time. The

e exchanged

and sync layers cannot onIy |nclude compressed medla but requires addltlonal information such as time codes,
length of access units, etc.

An implementation of ISO/IEC 14496-1, however, does not have to implement the elementary stream interface. It is
possible to integrate parsing of the SL-packetized stream and media data decompression in one decoder entity.
Note that even in this case the decoder receives a sequence of packets at its input through the DMIF Application
Interface (see 10.4) rather than a data stream.

The interface to receive elementary stream data from the sync layer has a number of parameters that reflect the
side information that has been retrieved while parsing the incoming SL-packetized stream:

© ISO/IEC 1999 — All rights reserved 201

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

ESl.receiveData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp,
compositionTimeStamp, accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag,

accessUnitLength, degradationPriority, errorStatus)

ESdata - a number of datalength data bytes for this elementary stream

datalLength - the length in byte of ESdata

idleFlag — if set to one it indicates that this elementary stream will not produce further data for an undetermined
period of time.

objectClockReference — contains a reading of the object time base valid for the point in time when the first byte of

ESdata enter
decodingTim
composition’T
accessUnitSt
randomAcces
accessUnitE
accessUnitLe
degradationH

errorStatus -
the current E

A similar intg
subsequently]

ESl.sendDat{

ESdata - a n
datalLength -

idleFlag — if

period of timg.

objectClockR]
ESdata enter

5 the decoder buffer.

pStamp - the decoding time for the access unit to which this ESdata belongs

imeStamp - the composition time for the access unit to which this ESdata belongs

artFlag - indicates that the first byte of ESdata is the start of an access unit

sFlag - indicates that the first byte of ESdata is the start of an access'unit allowing for rand
pdFlag - indicates that the last byte of ESdata is the end of an agcess unit

ngth - the length of the access unit to which this Esdata belongs in byte

riority - indicates the degradation priority for this access, unit

indicates whether ESdata is error free, possibly;erroneous or whether data has been losf
Sdata bytes

rface to send elementary stream data to“\the sync layer requires the following paramete
be encoded on the sync layer:

\ (ESdata, datalength, idleFlag, objectClockReference, decodingTimeStamp, compositionT
accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, accessUnitLength,
degradationPriority)

mber of datalength data bytes for this elementary stream

the length in byte of ESdata

bet to one it«ndicates that this elementary stream will not produce further data for an un

eference — contains a reading of the object time base valid for the point in time when the
5 the decoder buffer.

DM access

preceding

rs that will

imeStamp,

Hetermined

irst byte of

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

degradationPriority - indicates the degradation priority for this access unit

202

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

10.4 DMIF Application Interface

The DMIF Application Interface is a conceptual interface that specifies which data need to be exchanged between
the sync layer and the delivery mechanism. Communication between the sync layer and the delivery mechanism
includes SL-packetized data as well as additional information to convey the length of each SL packet.

An implementation of ISO/IEC 14496-1 does not have to expose the DMIF Application Interface. A terminal
compliant with ISO/IEC 14496-1, however, shall have the functionality described by the DAI to be able to receive
the SL packets that constitute an SL-packetized stream. Specifically, the delivery mechanism below the sync layer
shall supply a method to frame or otherwise encode the length of the SL packets transported through it.

data delivery
. The DAI has data primitives to receive and send data, which include indication of the-data size. With
this interfage, each invocation of a DA_Data or a DA_DataCallback shall transfer one SL packet between the sync
layer and the delivery mechanism below.

11 Multiplexing of Elementary Streams

11.1 Intr@duction

Elementary stream data encapsulated in SL-packetized streams are sent/received through the DMIF Application
Interface, as specified in clause 10. Multiplexing procedures and the architecture of the delivery protorol layers are
outside th¢ scope of ISO/IEC 14496-1. However, care has been ‘taken to define the sync layer syntax and
semantics such that SL-packetized streams can be easily embedded‘in various transport protocol stagks.

The analysis of existing transport protocol stacks has shown“that, for stacks with fixed length packets (e.qg.,
MPEG-2 Tlransport Stream) or with high multiplexing overhead (e.g., RTP/UDP/IP), it may be adVantageous to
have a generic, low complexity multiplexing tool that allows’interleaving of data with low overhead and low delay.
This is particularly important for low bit rate application§> Such a multiplex tool is specified in this cladise. Its use is
optional.

11.2 FlexMux Tool

11.2.1 Oyerview

The FlexMux tool is a flexible multiplexer that accommodates interleaving of SL-packetized streams with varying
instantanepus bit rate. The basic data entity of the FlexMux is a FlexMux packet, which has a variablg length. One
or more Sk packets are embedded in a FlexMux packet as specified in detail in the remainder of this clause. The
FlexMux tpol provides identification of SL packets originating from different elementary streams [oy means of
FlexMux dhannel numbers..Each SL-packetized stream is mapped into one FlexMux Channel. FlexMux packets
with data from differentiSL-packetized streams can therefore be arbitrarily interleaved. The sequenge of FlexMux
packets that are interléaved into one stream are called a FlexMux Stream.

ying layer for
M - The FlexMux
also requires rellable error detect|on by the underlylng Iayer ThIS deS|gn has been chosen acknowledgmg the fact
that framing and error detection mechanisms are in many cases provided by the transport protocol stack below the
FlexMux.

Two different modes of operation of the FlexMux providing different features and complexity are defined. They are
called Simple Mode and MuxCode Mode. A FlexMux Stream may contain an arbitrary mixture of FlexMux packets
using either Simple Mode or MuxCode Mode. The syntax and semantics of both modes are specified below.

11.2.2 Simple Mode

In the simple mode one SL packet is encapsulated in one FlexMux packet and tagged by an index which is equal
to the FlexMux Channel number as indicated in Figure 27. This mode does not require any configuration or
maintenance of state by the receiving terminal.

© ISO/IEC 1999 — All rights reserved 203

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

FlexMux-PDU

index | Iength| SL-PDU

| Header Payload

Figure 27 - Structure of FlexMux packet in simple mode

11.2.3 MuxCode mode

In the MuxCode mode one or more SL packets are encapsulated in one FlexMux packet as indicated in Figure 28.

This mode re
how FlexMu
dereference
FlexMux Chal

11.2.4 FlexNux packet specification

11.2.4.1 Syn

class FlexMuX
unsigned i
bit(8) lengt
if (index>2,
bit(4) vi
const H
multiple
} else {
SL_Padg

}

}

11.2.4.2 Sern

The two mod
specified belg

quires configuration and maintenance of state by the receiving terminal. The configuration

packets are shared between multiple SL packets. In this mode the index value
configuration information that defines the allocation of the FlexMux packet payload
nnels.

FlexMux-PDU
index [length|version SL-PDU| SL-PDU | SL-PDU
H | PayldH|Payload H Payload

Figure 28 - Structure of FlexMux packet indMuxCode mode

tax

Packet {
Nt(8) index;

=3

1

B9) {
prsion;
it(4) reserved=0b1111;
| SL_Packet mPayload,;

ket sPayload;

nantics

es of the_FlexMux, Simple Mode and MuxCode Mode are distinguished by the value of
W.

index

— if index

describes
s used to
o different

index as

js-smaller than 240 then

FlexMux Channel = index

This range of values corresponds to the Simple Mode. If index

has a value in the range 240 to 255

then the MuxCode Mode is used and a MuxCode is referenced as

MuxCode = index

MuxCode is used to associate the payload

- 240

to FlexMux Channels as described in 11.2.3.

(inclusive),

NOTE — Although the number of FlexMux Channels is limited to 256, the use of multiple FlexMux streams allows virtually any
number of elementary streams to be provided to the terminal.

204

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

length - the length of the FlexMux packet payload in bytes. This is equal to the length of the single
encapsulated SL packet in Simple Mode and to the total length of the multiple encapsulated SL packets in
MuxCode Mode.

version —indicates the current version of the MuxCodeTableEntry referenced by MuxCode. Version is used
for error resilience purposes. If this version does not match the version of the referenced MuxCodeTableEntry
that has most recently been received, the FlexMux packet cannot be parsed. The implementation is free to either
wait until the required version of MuxCodeTableEntry becomes available or to discard the FlexMux packet.

sPayload - asingle SL packet (Simple Mode)

mPayload ore-ormore-Skpackets{MuxCede-Mede)
11.2.4.3 Configuration for MuxCode Mode

11.2.4.3.1 | Syntax

aligned(8) ¢lass MuxCodeTableEntry {
int i} k;
bit(8) lehgth;
bit(4) MuxCode;
bit(4) vdrsion;
bit(8) sybstructureCount;
for (i=0j i<substructureCount; i++) {
bit(5] slotCount;
bit(3] repetitionCount;
for (k=0; k<slotCount; k++){
bjt(8) flexMuxChannell[il][[k]];
bjt(8) numberOfBytes[[il][[K]];
}
}
}

11.2.4.3.2 | Semantics

The configuration for MuxCode Mode is signaled by MuxCodeTableEntry messages. The trapsport of the
MuxCodeTlableEntry shall be defined,during the design of the transport protocol stack that makgs use of the
FlexMux tpol. Part 6 of this Internatiohal Standard defines a method to convey this informatipn using the
DN_TransmuxConfig primitive.

The basic |requirement for thewtransport of the configuration information is that data arrives reliably in a timely
manner. However, no specific)performance bounds are required for this control channel since vergion numbers
allow to dptect FlexMux packets that cannot currently be decoded and, hence, trigger suitable Jaction in the
receiving términal.

length the length’in bytes of the remainder of the MuxCodeTableEntry following the length glement.

MuxCode + the number through which this MuxCode table entry is referenced.

version — indicates the version of the MuxCodeTableEntry . Only the latest received version of a
MuxCodeTableEntry s valid.

substructureCount — the number of substructures of this MuxCodeTableEntry.

slotCount — the number of slots with data from different FlexMux Channels that are described by this
substructure.

repetitionCount — indicates how often this substructure is to be repeated. A repetitionCount zero
indicates that this substructure is to be repeated infinitely. repetitionCount zero is only permitted in the last
substructure of a MuxCodeTableEntry.

© ISO/IEC 1999 — All rights reserved 205

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

flexMuxChannel[i][k]

numberOfBytesi][k]

— the FlexMux Channel to which the data in this slot belongs.

— the number of data bytes in this slot associated to flexMuxChannel[i][k]

number of bytes corresponds to one SL packet.

11.2.5 Usage of MuxCode Mode

The MuxCodeTableEntry

describes how a FlexMux packet is partitioned into slots that carry data fro

. This

m different

FlexMux Channels. This is used as a template for parsing FlexMux packets. If a FlexMux packet is longer than the
template, parsing shall resume from the beginning of the template. If a FlexMux packet is shorter than the template,
the remainder of the template is ignored.

Note that the]
have a const
mode might b

Note further {
packets with

EXAMPLE —

In this examplg
The exact parg

substructureCq
slotCount

(i

repetitionCoun

We further as
(numberOfBytd

FMC1 (Bytesl
FMC3 (Bytes3

FMC6 (Bytes6

The layout of the corresponding FlexMux packet would be as shown in Figure 29.

hnt length. Given the overhead for an update of the associated MuxCodeTableEntry,-usag

both simple mode and MuxCode mode.

usage of MuxCode mode may not be efficient if SL packets for a given elementary strg
e more efficient.

hat data for a single FlexMux channel may be conveyed through an arbitrary sequence

meters are as follows:
unt =3

=2, 3, 2 (for the corresponding substructure)
=3, 2, 1 (for the corresponding substructure)

(i

sume that each slot configures channel number FMCn (flexMuxChannel) with a number of b
s). This configuration would result in a splitting of the FlexMux packet payload to:
, FMC2 (Bytes2) repeated 3 times, then
, FMC4 (Bytes4), FMC5 (Bytesbh) repeated 2 times, then

, FMC7 (Bytes7) repeated once

am do not
b of simple

Df FlexMux

we assume the presence of three substructures. Each one has a different slot count as well as repgtition count.

ytes Bytesn

FlexMux-PDU

X ® QS —

o—~Q S o —
SO0 —wnw =~ 0o<
RO
NMNOZST
RO
NOST
RO
NOST
wO<ST
~AOZST
a0
wO<ST
AOZT
a0
o0O<ZT

~NO<S T

206

Figure 29 - Example for a FlexMux packet in MuxCode mode

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

12 Syntactic Description Language

12.1 Introduction

This subclause describes the mechanism with which bitstream syntax is documented in ISO/IEC 14496. This
mechanism is based on a Syntactic Description Language (SDL), documented here in the form of syntactic
description rules. It directly extends the C-like syntax used in ISO/IEC 11172:1993 and ISO/IEC 13818:1996 into a
well-defined framework that lends itself to object-oriented data representations. In particular, SDL assumes an
object-oriented underlying framework in which bitstream units consist of “classes.” This framework is based on the
typing system of the C++ and Java programming languages. SDL extends the typing system by providing facilities
for defining bitstream-level quantities, and how they should be parsed.

The elemgntary constructs are described first, followed by the composite syntactic constructs, and’grithmetic and
logical exgressions. Finally, syntactic control flow and built-in functions are addressed. Syntactie flow control is
needed to fake into account context-sensitive data. Several examples are used to clarify the structure.
12.2 Elementary Data Types

The SDL uges the following elementary data types:

1. Constant-length direct representation bit fields or Fixed Length Codes —*FLCs. These describe| the encoded
value exactly as it is to be used by the appropriate decoding process.

2. Variablg length direct representation bit fields, or parametric FLCs; These are FLCs for which the|actual length
is determined by the context of the bitstream (e.g., the value of anaother parameter).

3. Constant-length indirect representation bit fields. These 4eguire an extra lookup into an approgriate table or
variablg to obtain the desired value or set of values.

4. Variabl¢-length indirect representation bit fields (e.g.¢Huffman codes).
These elementary data types are described in more\detail in the clauses to follow immediately.

All quantities shall be represented in the hitstream with the most significant byte first, and also \ith the most
significant pit first.

12.2.1 Cdnstant-Length Direct Représentation Bit Fields

Constant-l¢ngth direct representation bit fields shall be represented as:

Rule E.1: Elementary DatalTypes
[alighed] type {(length)] element_name [= value]; /| C++-style comments allowed

The type |may-be any of the following: int for signed integer, unsigned int for unsigned integef, double for
floating po|nt,.and bit for raw binary data. The length attribute indicates the length of the element ip bits, as it is
actually stored in the bitstream. Note that a data type equal to double shall only use 32 or 64 bit lengths. The
value attribute shall be present only when the value is fixed (e.g., start codes or object IDs), and it may also
indicate a range of values (i.e., ‘'Ox01..0xAF’). The type and the optional length attributes are always present,
except if the data is non-parsable, i.e., it is not included in the bitstream. The keyword aligned indicates that the
data is aligned on a byte boundary. As an example, a start code would be represented as:

aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned(32), may be used to signify alignment on other than byte boundary.
Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value ‘0’. An entity
such as temporal reference would be represented as:

unsigned int(5) temporal_reference;

© ISO/IEC 1999 — All rights reserved 207

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

where unsigned int(

data shall be

5) indicates that the element shall be interpreted as a 5-bit unsigned integer.
represented with the most significant bit first, and the most significant byte first.

By default,

The value of parsable variables with declarations that fall outside the flow of declarations (see 12.6) shall be set to

0.

Constants sh

EXAMPLE —

all be defined using the keyword const .

const int SOME_VALUE=255; // non-parsable constant

const bit(3) B

To designate
(*Ymay be o

In several ins
consuming th
modify the p3

IT_PATTERN=1; // this is equivalent to the bit string “001”

fances, it may be desirable to examine the immediately following bits in the bitstream, with

rse size semantics.

binary values, the 0Ob prefix shall be used, similar to the Ox prefix for hexadecimal number
ptionally placed after every four digits for readability. Hence OxOF is equivalent to 0bQ000.1]

ese bits. To support this behavior, a *’ character shall be placed after the parse size parg

S. A period
11,

but actually
ntheses to

Rule E.2: Lod

[aligne

k-ahead parsing
1] type (length)* element _name;

For example,
the current pq

aligned unsig

12.2.2 Varia

This case is

the value of next 32 bits in the bitstream can be checked te’be an unsigned integer without
sition in the bitstream using the following representation:

ed int (32)* next_code;
ble Length Direct Representation Bit Fields

overed by Rule E.1, by allowing the length attribute to be a variable included in the bitstre

parsable variable, or an expression involving such-variables.

EXAMPLE —

unsigned int(3
int(precision)

12.2.3 Cons

Indirect repre
through the u
which the fing

precision;
DC;

tant-Length Indirect.Representation Bit Fields
Sentation indicates that the actual value of the element at hand is indirectly specified by th

se of a table ‘@r map. In other words, the value extracted from the bitstream is an index to a
| desiredvalue is extracted. This indirection may be expressed by defining the map itself:

advancing

Bm, a non-

b bitstream
table from

Rule E.3: Ma
map M

DS

hplName (output_type) {

index, { value_1, ... value_M} ,

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input type of
a map (the index specified in the first column) shall always be bit . The output type entry shall be either a
predefined type or a defined class (classes are defined in 12.3.1). The map is defined as a set of pairs of such
indices and values. Keys are binary string constants while values are output type constants. Values shall be
specified as aggregates surrounded by curly braces, similar to C or C++ structures.

208

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

EXAMPLE —

class YUVblocks {// classes are fully defined later on
int Yblocks;
int Ublocks;
int Vblocks;

}

/I a table that relates the chroma format with the number of blocks
/I per signal component
map blocks_per_component (YUVblocks) {

0b00,{4, 1, 1}, /1 4:2.0

0b01,{4, 2, 2}, /] 4:2:2

0b10,{4[&3}y T 7%
}

The next riile describes the use of such a map.

Rule E.4: Mapped Data Types
type (MapName) name;

The type pf the variable shall be identical to the type returned from the map.
EXAMPLE +

YUVblocks(plocks_per_component) chroma_format;

Using the above declaration, a particular value of the map may be accessed using the construct: chroma_format.
12.2.4 Vdriable Length Indirect Representation Bit Fields

For a variaple length element utilizing a Huffman orwariable length code table, an identical specificatig
length cas¢ shall be used:

class val {
unsigned int foo;
int bar;

}

map sample_vic_map (val) {
0b0000.p01, {0, 5},

0b0000.p001, {1, -14}
}

The only d|fferenceris that the indices of the map are now of variable length. The variable-length code
before) binary strings, expressed by default in ‘Ob’ or ‘0Ox’ format, optionally using the period ('.") every
readability

Ublocks

n to the fixed

vords are (as
four digits for

Very often, variable Tengih code tables are partially defined. Due 1o the large number of possible entr
inefficient to keep using variable length codewords for all possible values. This necessitates the u

es, it may be
se of escape

codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To allow for such

exceptions, parsable type declarations are allowed for map values.

EXAMPLE — This example uses the class type ‘val’ as defined above.

map sample_map_with_esc (val) {
0b0000.001, {0, 5},
0b0000.0001, {1, -14},
0b0000.0000.1, {5, int(32)},
0b0000.0000.0, {0, -20}

}

© ISO/IEC 1999 — All rights reserved

209

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first element
(val.foo). The following 32 bits are parsed and assigned as the value of the second element (val.bar). Note that, in case
more than one element utilizes a parsable type declaration, the order is significant and is the order in which elements are
parsed. In addition, the type within the map declaration shall match the type used in the class declaration associated with the
map's return type.

12.3 Composite Data Types

12.3.1 Classes

Classes are the mechanism with which definitions of composite types or objects is performed. Their definition is as
follows.

Rule C.1: Classes

[alignefl][abstract][expandable [(maxClassSize)]]class object name [extends parent ¢lass] [:

bit(| /ength) [id_name=] object _id | id_range] {
[elefment; ...] /] zero or more elements

}

The differenf elements within the curly braces are the definitions of the .e€lementary bitstream cpmponents
discussed in [L12.2 or control flow elements that will be discussed in a subsequent subclause.

The optional keyword extends specifies that the class is “derived” fram*another class . Derivation implies that
all information present in the base class is also present in the derived-Class , and that, in the bitstream, all such
information pfecedes any additional bitstream syntax declarations §pecified in the new class

The optional pttribute id_name allows to assign an object_id, and, if present, is the key demultiplexing gntity which
allows differentiation between base and derived objects. It isvalso possible to have a range of possible palues: the
id_range is specified as start _id .. end_id, inclusive of beth“bounds.

If the attribute id_name is used, a derived class may appear at any point in the bitstream where its basg class is
specified in the syntax. This allows to express polymorphism in the SDL syntax description. The actual class to be
parsed is detgermined as follows:

 The basg class declaration shall assigh a constant value or range of values to object id.

« Each derjved class declaration shall assign a constant value or ranges of values to object _id. This value or

set of vallies shall correspondto legal object_id value(s) for the base class
NOTE 1 — Ddrivation of classes-is possible even when object_ids are not used. However, in that case derived classes may not
replace their bgse class in.the bitstream.

NOTE 2 — Derived _classes may use the same object id value as the base class . In that case classes ¢an only be
discriminated through context information.

EXAMPLE —

class slice: aligned bit(32) slice_start_code=0x00000101 .. 0x000001AF {
/I here we get vertical_size_extension, if present
if (scalable_mode==DATA_PARTITIONING) {
unsigned int(7) priority_breakpoint;
}

}

class foo {
int(3) a;

210 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

class bar extends foo {
int(5) b; // this b is preceded by the 3 bits of a
int(10) c;

}

The order of declaration of the bitstream components is important: it is the same order in which the elements appear in the

bitstream. In the above examples, bar.b immediately precedes bar.c in the bitstream.

Objects may also be encapsulated within other objects. In this case, the elementin Rule C.1 is an object itself.

12.3.2 Abstract Classes

When the gbstract keyword is used in the class declaration, it indicates that only derived classes

shall be present in the bitstream. This implies that the derived classes may use the entire range-of
The declarption of the abstract class requires a declaration of an ID, with the value 0.
EXAMPLE +
abstract cldss Foo : bit(1) id=0 { // the value O is not really used
}
/I derived ¢lasses are free to use the entire range of IDs
class FooO| extends Foo : bit(1) id=0 {
}
class Fool| extends Foo : bit(1) id=1 {
}
class Exaniple {
Foo f; [// can only be FooO or Fool, not Foo
}
12.3.3 Expandable classes
When the gxpandable keyword is used'in the class declaration, it indicates that the class may c
arrays or findefined trailing data, called the "expansion”. In this case the class encodes its own

explicitly. This may be used for classes that require future compatible extension or that may include p
legacy deice is able to decode_ an expandable class up to the last parsable variable that has been
given revidion of this class_(_Wsing the size information, the parser shall skip the class data follg
known syntax element. Anywhere in the syntax where a set of expandable classes with object id is
permissible to intersperse’ expandable classes with unknown object id values. These classes sha
using the dize information.

The size ehcoding precedes any parsable variables of the class . If the class has an object _id, the

of this class
Ds available.

bntain implicit
size in bytes
rivate data. A
defined for a
wing the last
expected it is
| be skipped,

e encoding of
eeded for the

the object |id precedes the S|ze encoding. The size information shaII not include the number of bytes
size and the—ob

onding to an

integer number of bytes. The size information is accessible within the class as class instance variable

sizeOflnstance

If the expandable keyword has a maxClassSize attribute, then this indicates the maximum permissible size of this

class in bytes, including any expansion.

The length encoding is itself defined in SDL as follows:
int sizeOflnstance =
bit(1) nextByte;
bit(7) sizeOfInstance;
while(nextByte) {
bit(1) nextByte;

0;

© ISO/IEC 1999 — All rights reserved

211

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

bit(7) sizeByte;
sizeOfInstance = sizeOflnstance<<7 | sizeByte;

}

12.3.4 Parameter types

A parameter type defines a class with parameters. This is to address cases where the data struc
class depends on variables of one or more other objects. Since SDL follows a declarative approach, references to
other objects, in such cases, cannot be performed directly (none is instantiated). Parameter types provide
placeholders for such references, in the same way as the arguments in a C function declaration. The syntax of a
class definition with parameters is as follows.

ture of the

Rule C.2: Class Parameter Types

[aligned

[eleynent; ...]1 /] zero or more elements

}

] [abstract] class object name [(parameter list) | [extends parent class]
[: bit(length) [id_name=] object_id | id_“rang

D
—
—~

The parametgr list is a list of type names and variable name pairs separated, by commas. Any elen
bitstream, or lvalue derived from the bitstream with a variable-length codeword,"Or“a constant, can be p

parameter.

A class tha

simple variables. When instantiating such a class into an object, the parameters have to be instantiateq
their correspgnding classes or types.

EXAMPLE —

class A {

/I class bqdy

Jnsigned int(4) format;

}

class B (A a,

if(a.forma
.
-
class C {
int(2) i

A a;
B foo(a, [I)

int i) { /I B uses paraméter types
unsigned int(i) bar;

uses parameter types is dependent on the objects in itsXparameter list, whether class

== SOME_FORMAT ,) {

nent of the
hssed as a

objects or
objects of

;s Mlsinstantiated parameters are required

}
12.3.5 Arrays

Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can depend on
run-time parameters such as other bitstream values or expressions that involve such values. The array declaration
is applicable to both elementary as well as composite objects.

Rule A.1: Arrays
typespec name [length] ;

212

© ISO/IEC 1999 — All ri

ghts reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

typespec is a type specification (including bitstream representation information, e.g. ‘int(2)’). The attribute
name is the name of the array, and length is its length.

EXAMPLE —

unsigned int(4) a[5];
int(10) b;
int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an unsigned
integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as well. The parsing
order from the-bitstream—corresponds—to-scanning—the—array-by—incrementing—first-the—righi-mestindex—of-the-array, then the

second, and so on .

12.3.6 Paftial Arrays

In several [situations, it is desirable to load the values of an array one by one, in orderto check, for example, a
terminating or other condition. For this purpose, an extended array declaration isyallowed in whiich individual
elements df the array may be accessed.

Rule A.2: Rartial Arrays
typeppec namel[index]] ;

Here indeX is the element of the array that is defined. Several such partial definitions may be given, put they shall
all agree op the type specification. This notation is also valid fot multidimensional arrays.

EXAMPLE }—

int(4) a[[3]1|[5]];

indicates th¢ element a(5, 3) of the array (the element,inthe 6" row and the 4" column), while

int(4) a[3][[$Il;

indicates the entire sixth column of the array; and

int(4) a[[3]]15];

indicates th¢ entire fourth row of’the array, with a length of 5 elements.

NOTE — a|5] means that the-array has five elements, whereas a[[5]] implies that there are at least six.

12.3.7 Implicit Arrays

When a sqgries'of polymorphic classes is present in the bitstream, it may be represented as an array of the same
type as thgt'efthe base class . Let us assume that a set of polymorphic classes is defined, derived from the base
class Foo (may or may not be abstract):

class Foo : int(16) i d =0 {
}

For an array of such objects, it is possible to implicitly determine the length by examining the validity of the class
ID. Objects are inserted in the array as long as the ID can be properly resolved to one of the IDs defined in the
base (if not abstract) or its derived classes. This behavior is indicated by an array declaration without a length
specification.

© ISO/IEC 1999 — All rights reserved 213

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

EXAMPLE 1 —

class Example {

Foo f[];

/I length implicitly obtained via ID resolution

To limit the minimum and maximum length of the array, a range specification may be inserted in the specification of the length.

EXAMPLE 2 —

class Example {

Foo f[1 ..
}

255]; /I at least 1, at most 255 elements

In this examplg
12.4 Arithm
All standard 3
12.5 Non-A

In order to a
from the bitst

strictly of local scope to the class

same way as
computed.

unsigned int(6
int(4) array[siz

int i: // this i
for (i=0, n=0;

if (array[[il]
n++;

}

int(3) coefficig
/I read as m{

12.6 Synta

The syntactiq
repetitive par
corresponds

, ‘f may have at least 1 and at most 255 elements.

etic and Logical Expressions

rithmetic and logical operators of C++ are allowed, including their precedence’iules.
arsable Variables

ccommodate complex syntactic constructs, in which context information cannot be direct
Feam but only as a result of a non-trivial computation, non-parsable variables are allowed.

5ing. The familiar-C/C++ if-then-else construct is used for testing conditions. Similarly to d
o false, andyAon-zero corresponds to true.

y obtained
These are

they are defined in. They may be used in expressions and condifions in the

bitstream-level variables. In the following example, the number of non-zero elements of @n array is
size;
el;
a temporary, non-parsable variable
i<size; i++) {
1=0)
hts[n];
ny coefficients as there are.hon-zero elements in array
ctic Flow Control
flow control prevides constructs that allow conditional parsing, depending on context, [as well as

/C++, zero

Rule FC.1: FI
if (cd

pw Control Using If-Then-Else
ndition) {

} [else T

condition) {

}[else {

1

EXAMPLE 1 —

class conditional_object {
unsigned int(3) foo;

bit(1) bar_flag;
if (bar_flag) {

214

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 1449

unsigned int(8) bar;

unsigned int(32) more_foo;

Here the presence of the entity ‘bar’ is determined by the ‘bar_flag’.

EXAMPLE 2 —

class conditional_object {
unsigned int(3) foo;
bit(1) bar_flag;
if (bar_flag) {

unsigned int(8) bar;

6-1:1999(E)

} else
unsigned int(some_vic_table) bar;
}
unsigned int(32) more_foo;
}
Here we allpw two different representations for ‘bar’, depending on the value of ‘bar_flag’. We*could equally we]l have another
entity instegd of the second version (the variable length one) of ‘bar’ (another object, or anothér variable). Note that the use of a
flag necessftates its declaration before the conditional is encountered. Also, if a variable appears twice (as In the example
above), the fypes shall be identical.
In order to [facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.
Rule FC.2:[Flow Control Using Switch
swit¢h (condition) {
[case labell: ...]
[default:]
}
The same fcategory of context-sensitive objects\also includes iterative definitions of objects. These simply imply the
repetitive yse of the same syntax to parse the bitstream, until some condition is met (it is the conditignal repetition
that implies context, but fixed repetitions_are obviously treated the same way). The familiar strudqtures of ‘for’,
‘while’, and ‘do’ loops can be used forthis purpose.
Rule FC.3:|Flow Control Using For
for | (expressionl; expression2, expression3) {
}
expression1 is @xecuted prior to starting the repetitions. Then expressionZ is evaluated, and if it is npn-zero (true)

the declathions within the braces are executed, followed by the execution of expression3. The prg

cess repeats

until EprEool.UI 1Z2-evattatesto-zero(fatse):

Note that it is not allowed to include a variable declaration in expression1 (in contrast to C++).

Rule FC.4: Flow Control Using Do
do {
}while (condition) ;

Here the block of statements is executed until condition evaluates to false. Note that the block will be executed at

least once.

© ISO/IEC 1999 — All rights reserved

215

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Rule FC.5: Flow Control Using While
while (condition) {

}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).
12.7 Built-In Operators

The following built-in operators are defined.

Rule O.1: lengthof() Operator
lengthaf(variable)

This operator| returns the length, in bits, of the quantity contained in parentheses. The length is the number of bits
that was modt recently used to parse the quantity at hand. A return value of 0 means‘that no bits were|parsed for
this variable.
12.8 Scoping Rules

All parsable Variables have class scope, i.e., they are available as class4nember variables.
For non-parspble variables, the usual C++/Java scoping rules are)followed (a new scope is introducg¢d by curly

braces: {' angl ‘}"). In particular, only variables declared in class scope are considered class member vanjables, and
are thus available in objects of that particular type.

13 Profiles
13.1 Introdliction
This clause defines profiles and levels far the usage of the tools defined in this part of ISO/IEC 14496. Bach profile

at a given level constitutes a subset of1ISO/IEC 14496-1 to which system manufacturers and content cfeators can
claim confornpance in order to ensure interoperability.

The object descriptor profiles (OD“profiles) specify the allowed configurations of the object descriptor tpol and the
sync layer togl. The scene graph profiles specify the allowed scene graph elements of the BIFS tool. The graphics
profiles specify the graphies.elements of the BIFS tool that are allowed.

Profile definifions, by.themselves, are not sufficient to provide a full characterization of a receiving terminal’s
capabilities apd the\resources needed for a presentation. For this reason, levels are defined within each profile.
Levels constrpin’the values of parameters in a given profile in order to specify an upper complexity bountli.

13.2 OD Profile Definitions

13.2.1 Overview

The object descriptor profiles (OD profiles) specify the configurations of the object descriptor tool and the sync layer
tool that are allowed. The object descriptor tool provides a structure for all descriptive information. The sync layer
tool provides the syntax to convey, among others, timing information for elementary streams. object descriptor
profiles are used, in particular, to reduce the amount of asynchronous operations as well as the amount of
permanent storage.

13.2.2 OD Profiles Tools

The following tools are available to construct OD profiles:

216 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

— Object descriptor (OD) tool as defined in 8.5.

— Sync layer (SL) tool as defined in 10.2.

— Object content information (OCI) tool as defined in 8.4.

— Intellectual property management and protection (IPMP) tool as defined in 8.3.

13.2.3 OD Profiles

The OD profiles are defined in the following table. Currently, only one profile is defined, comprising all the tools. No

additional

rofiles are foreseen at the moment, but the possibility of adding Profiles through amen

ments is left

open.

Decoders that claim compliance to a given profile shall implementall the tools with an ‘X’ entry for that

13.2.4 Ol
13.24.1 L

No levels
means of g

13.3 Sce
13.3.1 O\

The scene
provide th
behaviors
the memo
behaviors

13.3.2 Sq

The followi

Table 49 - OD Profiles

OD Profiles
OD Tools Core
SL X
oD X
OCl X
IPMP X

) Profiles@Levels
evels for the Core Profile

bre defined yet for the OD Core profile, Ruture definition of Levels is anticipated; this W
n amendment to this part of the standard:

he Graph Profile Definitions

erview

graph profiles specify‘the scene graph elements of the BIFS tool that are allowed. Th
b means to describe.'the spatio-temporal locations, the hierarchical dependencies as
bf audio-visual objects in a scene. Profiling of scene graph elements of the BIFS tool ser
juring the composition and rendering processes.

ene Graph' Profiles Tools

ng\tools are available to construct the definitions for scene graph profiles:

profile.

ill happen by

pse elements
well as the
es to restrict

y requirements ‘and computational complexities of scene graph traversal and processing of specified

— BIFS nodes related to scene description as defined in Table 50.

— BIFS commands and BIFS animation as defined in 9.3.6 and 9.3.8, respectively.

— BIFS ROUTES as defined in 9.3.7.45.

13.3.3 Scene Graph Profiles

The followi

ng table defines the scene graph profiles:

© ISO/IEC 1999 — All rights reserved

217

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

218

Table 50 - Scene graph profiles

Scene Graph Profiles

Scene Graph Tools

Audio

Simple 2D

(

Complete 2D

Complete

Anchor

X

X

AudioBuffer

AudioDelay

AudioFX

AudioMix

AudioSwitch

XXX [X] X

XXX [X] X

Mooard

ollision

omposite2DTexture

x

omposite3DTexture

orm

Qlolalololm

roup

mline

ayer2D

X X[XX

ayer3D

@yout

<

isteningPoint

x

OD

avigationinfo

rderedGroup

uantizationParameter

ound

ound2D

witch

ransform

ransform2D

X

iewpoint

VorldInfo

ode Update

oute Update

cene Update

nimationStream

cript

olorinterpalator

onditional

ootdinatelnterpolator2D

XX X[XX | X[XX

AlalalolunlelnlplzisliSidldlpnlninlololzicclicicli e —

oordinatelnterpolator

CylinderSensor

DiscSensor

Normalinterpolator

Orientationinterpolator

PlaneSensor2D

PlaneSensor

Positioninterpolator

Positioninterpolator2D

ProximitySensor

ProximitySensor2D

ROUTE

X XXX X X XXX X XX PR X XXX X X XX X X XX X X X XX X X XX X X XXX 3K XXX X X X XX X

© ISO/IEC 1999 — All rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

Scalarinterpolator X X
SphereSensor X
TermCap X X
TimeSensor X X
TouchSensor X X
VisibilitySensor X
Valuator X X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

13.3.3.1 BIES nades for audio ohjects

The presence of AudioClip and AudioSource nodes in BIFS scene graph depends on the selected |Audio profile.
The following table describes what nodes are allowed in the BIFS scene graph depending on the Audip profile.

Table 51 - BIFS nodes for audio objects

Audio Profiles Allowed Audio Object Nodes
Main AudioClip, AudioSource
Scalable AudioClip, AudioSource
Speech AudioClip, AudioSource

Low Rate Synthesis AudioClip, AudioSource

13.3.3.2 BIFS nodes for visual objects

The presenhce of ImageTexture, Background2D, Background, MovieTexture, Face, Expression, FAP, FDP, FIT,
FaceDefMgsh, FaceDefTable, FaceDefTransform, Viseme nodes in a BIFS scene graph depends or the selected
Visual profile. The following table describes what nodes are allowed in the BIFS scene graph depgnding on the

choice of the Visual profile.

Table 52 - BIFS nodes for visual objects

Visual Profiles

Allowed visual object nodes

Simple ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
Core ImageTexture, Background2D, Background, MovieTexture
Main ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
N-Bit ImageTexture, Background2D, Background, MovieTexture
Hybrid ImageTexture, Background2D, Background, MovieTexture,

Face, Expression, FAP, FDP, FIT, FaceDefMesh,
FaceDefTable, FaceDefTransform, Viseme

Basic Animated Texture

ImageTexture, Background2D, Background, Face, Expression

FAP, FDP, FIT, FaceDetMesh, FaceDeftTable,
FaceDefTransform, Viseme

Scaleable Texture

ImageTexture, Background2D, Background

Simple Face

Face, Expression, FAP, FDP, FIT, FaceDefMesh,
FaceDefTable, FaceDefTransform, Viseme

If the terminal complies with a 2D graphics profile only, the terminal may choose to ignore the contents of the FDP,
FIT, FaceDefMesh, FaceDefTable, FaceDefTransform nodes.

© ISO/IEC 1999 — All rights reserved

219

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

ISO/IEC 14496-1:1999(E)

13.3.4 Scene Graph Profiles@Levels
13.3.4.1 Levels for the Audio Scene Graph Profile
13.3.4.1.1 Functionalities provided

The Audio scene graph profile provides for a set of BIFS scene graph elements for usage in audio only
applications. The Audio scene graph profile supports applications like broadcast radio.

13.3.4.1.2 Levels

No levels are yet defined for the Audio scene graph profile. Future definition of Levels is anticipated; this will
happen by mfans of an amendment to thiS part of the standard.

13.3.4.2 Lewels for the Simple 2D Scene Graph Profile
13.3.4.2.1 Fy{nctionalities provided

The Simple 2D scene graph profile provides for only those BIFS scene graph elements_necessary to place one or
more audio-Visual objects in a scene. The Simple 2D scene graph profile allows™pfesentation of gudio-visual
content with potential update of the complete scene but no interaction capabilitiésy The Simple 2D s¢ene graph
profile suppoits applications like broadcast television.
13.3.4.2.2 Lgvel 1

The following|restrictions apply for the Simple 2D scene graph profile,atlbevel 1:

Table 53 - Restrictions for Simple 2D scene/graph profile at Level 1

Transform2D

Field name

addChildren Ignored
removeChildren Ignored
children X.
center Ignored
rotationAngle 0

scale 1,1
scaleOrientation 0
translation X

X =allowed;

else:*default value

The metric shall bethe pixel metrics. BIFSConfig.isPixel=1.

A cascade of|Transform2D nodes is not allowed. Children nodes of a Transform2D node shall not be Transform2D
nodes. Only one initial update to convey the complete scene graph is allowed.

13.3.4.3 Levels for the Complete 2D Scene Graph Profile
13.3.4.3.1 Functionalities provided
The Complete 2D scene graph profile provides for all the 2D scene description elements of the BIFS tool. It

supports features such as 2D transformations and alpha blending. The Complete 2D scene graph profile enables
2D applications that require extensive and customized interactivity.

220 © ISO/IEC 1999 — Al rights reserved

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

