
Reference number
ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999

INTERNATIONAL
STANDARD

ISO/IEC
14496-1

First edition
1999-12-15

Information technology — Coding of
audio-visual objects —

Part 1:
Systems

Technologies de l'information — Codage des objets audiovisuels —

Partie 1: Systèmes

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 1999 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved iii

Contents Page

0 Introduction .................................................................................................................. ......................xix

0.1 Overview .................................................................................................................... .........................xix

0.2 Architecture ................................................................................................................ ........................xix

0.3 Terminal Model: Systems Decoder Model.......................................................................................xxi

0.3.1 Timing Model ............................................................................................................... .......................xxi

0.3.2 Buffer Model ............................................................................................................... ........................xxi

0.4 Multiplexing of Streams: The Delivery Layer ..................................................................................xxi

0.5 Synchronization of Streams: The Sync Layer.................................................................................xxi

0.6 The Compression Layer ......................................................................................................... ..........xxii

0.6.1 Object Description Framework................................................................................................ ........xxii

0.6.2 Scene Description Streams................................................................................................... ...........xxii

0.6.3 Audio-visual Streams ....................................................................................................... ...............xxiii

0.6.4 Upchannel Streams.......................................................................................................... ................xxiii

1 Scope......................................................................................................................... .............................1

2 Normative References ........................................................................................................... ...............1

3 Additional References .......................................................................................................... ................2

4 Definitions................................................................................................................... ...........................2

5 Abbreviations and Symbols....................................................................................................... ..........6

6 Conventions ................................................................................................................... .......................7

7 Systems Decoder Model........................................................................................................... ............7

7.1 Introduction ................................................................................................................ ...........................7

7.2 Concepts of the Systems Decoder Model ..........................................................................................7

7.2.1 DMIF Application Interface (DAI) ............................................................................................. ............7

7.2.2 SL-Packetized Stream (SPS).................................................................................................. ..............8

7.2.3 Access Units (AU) ........................................................................................................... ......................8

7.2.4 Decoding Buffer (DB)........................................................................................................ ....................8

7.2.5 Elementary Streams (ES) ..................................................................................................... ................8

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

iv © ISO/IEC 1999 – All rights reserved

7.2.6 Elementary Stream Interface (ESI) ............................................................................................ ..........8

7.2.7 Decoder ................................................................................................................... ...............................8

7.2.8 Composition Units (CU)...................................................................................................... ..................8

7.2.9 Composition Memory (CM) ..................................................................................................... .............8

7.2.10 Compositor ............................................................................................................... .............................9

7.3 Timing Model Specification.................................................................................................... ..............9

7.3.1 System Time Base (STB)....................................................................................................... ...............9

7.3.2 Object Time Base (OTB) ....................................................................................................... ................9

7.3.3 Object Clock Reference (OCR) ................................................................................................. ...........9

7.3.4 Decoding Time Stamp (DTS).................................................................................................... ............9

7.3.5 Composition Time Stamp (CTS) ................................................................................................. .......10

7.3.6 Occurrence and Precision of Timing Information in Elementary Streams ...................................10

7.3.7 Time Stamps for Dependent Elementary Streams...........................................................................10

7.4 Buffer Model Specification.................................................................................................... .............11

7.4.1 Elementary Decoder Model .................................................................................................... ............11

7.4.2 Assumptions............................................................................................................... .........................11

7.4.3 Managing Buffers: A Walkthrough .............................................................................................. ......12

8 Object Description Framework .................................................................................................... ......13

8.1 Introduction ................................................................................................................ .........................13

8.2 Common data structures........................................................................................................ ............14

8.2.1 Overview .................................................................................................................. ............................14

8.2.2 BaseDescriptor............................................................................................................ ........................15

8.2.3 BaseCommand ............................................................................................................... .....................16

8.3 Intellectual Property Management and Protection (IPMP)..............................................................16

8.3.1 Overview .................................................................................................................. ............................16

8.3.2 IPMP Streams ............................................................................................................... .......................17

8.4 Object Content Information (OCI)............................................................................................... .......18

8.4.1 Overview .................................................................................................................. ............................18

8.4.2 OCI Streams................................................................................................................ .........................18

8.5 Object Descriptor Stream...................................................................................................... .............19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved v

8.5.1 Structure of the Object Descriptor Stream...................................................................................... .19

8.5.2 Access Unit Definition ...................................................................................................... ..................19

8.5.3 Time Base for Object Descriptor Streams........................................................................................ 20

8.5.4 OD Decoder Configuration.................................................................................................... .............20

8.5.5 OD Command Syntax and Semantics............................................................................................... 20

8.6 Object Descriptor Components.................................................................................................. .......22

8.6.1 Overview .................................................................................................................. ............................22

8.6.2 ObjectDescriptor .......................................................................................................... .......................22

8.6.3 InitialObjectDescriptor................................................................................................... .....................23

8.6.4 ES_Descriptor ............................................................................................................. ........................26

8.6.5 DecoderConfigDescriptor ................................................................................................... ...............28

8.6.6 DecoderSpecificInfo ....................................................................................................... ....................29

8.6.7 SLConfigDescriptor ........................................................................................................ ....................30

8.6.8 IP_IdentificationDataSet .................................................................................................. ...................30

8.6.9 ContentIdentificationDescriptor ........................................................................................... .............30

8.6.10 SupplementaryContentIdentificationDescriptor ............................................................................. .32

8.6.11 IPI_DescrPointer ......................................................................................................... ........................32

8.6.12 IPMP_DescriptorPointer ................................................................................................... ..................33

8.6.13 IPMP Descriptor ........................................................................................................... .......................33

8.6.14 QoS_Descriptor........................................................................................................... ........................34

8.6.15 ExtensionDescriptor ...................................................................................................... .....................35

8.6.16 RegistrationDescriptor ................................................................................................... ....................35

8.6.17 Object Content Information Descriptors ...................................................................................... ....36

8.7 Rules for Usage of the Object Description Framework ..................................................................41

8.7.1 Aggregation of Elementary Stream Descriptors in a Single Object Descriptor ...........................41

8.7.2 Linking Scene Description and Object Descriptors ........................................................................43

8.7.3 ISO/IEC 14496 Content Access................................................................................................. .........44

8.8 Usage of the IPMP System interface............................................................................................... ..50

8.8.1 Overview .................................................................................................................. ............................50

8.8.2 Association of an IPMP System with IS0/IEC 14496 content..........................................................50

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

vi © ISO/IEC 1999 – All rights reserved

8.8.3 IPMP of Object Descriptor streams............................................................................................. ......51

8.8.4 IPMP of Scene Description streams............................................................................................. .....51

8.8.5 Usage of URLs in managed and protected content.........................................................................51

8.8.6 IPMP Decoding Process ....................................................................................................... ..............52

9 Scene Description .............................................................................................................. .................53

9.1 Introduction ................................................................................................................ .........................53

9.1.1 Scope..................................................................................................................... ...............................53

9.1.2 Composition and Rendering ................................................................................................... ...........54

9.1.3 Scene Description .......................................................................................................... .....................54

9.2 Concepts .................................................................................................................... ..........................55

9.2.1 BIFS Elementary Streams ..................................................................................................... .............55

9.2.2 BIFS Scene Graph............................................................................................................ ...................57

9.2.3 Sources of modification to the scene ........................................................................................... ....64

9.3 BIFS Syntax .................................................................................................................. .......................67

9.3.1 Introduction .............................................................................................................. ...........................67

9.3.2 Decoding tables, data structures and associated functions..........................................................68

9.3.3 Quantization.............................................................................................................. ...........................73

9.3.4 Compensation process ....................................................................................................... ...............82

9.3.5 BIFS Configuration......................................................................................................... .....................83

9.3.6 BIFS Command Syntax......................................................................................................... ..............87

9.3.7 BIFS Scene................................................................................................................. ..........................94

9.3.8 BIFS-Anim ................................................................................................................. .........................115

9.4 Node Semantics ............................................................................................................... .................121

9.4.1 Overview .................................................................................................................. ..........................121

9.4.2 Node specifications ........................................................................................................ ..................121

10 Synchronization of Elementary Streams ........................................................................................192

10.1 Introduction ............................................................................................................... ........................192

10.2 Sync Layer .................................................................................................................. .......................192

10.2.1 Overview ................................................................................................................. ...........................192

10.2.2 SL Packet Specification.................................................................................................... ................193

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved vii

10.2.3 SL Packet Header Configuration .............................................................................................. .......193

10.2.4 SL Packet Header Specification .............................................................................................. ........196

10.2.5 Clock Reference Stream..................................................................................................... ..............199

10.2.6 Restrictions for elementary streams sharing the same object time base ..................................199

10.2.7 Usage of configuration options for object clock reference and time stamp values..................200

10.3 Elementary Stream Interface (Informative)..................................................................................... 201

10.4 DMIF Application Interface................................................................................................... ............203

11 Multiplexing of Elementary Streams .............................................................................................. .203

11.1 Introduction ............................................................................................................... ........................203

11.2 FlexMux Tool ................................................................................................................ .....................203

11.2.1 Overview ................................................................................................................. ...........................203

11.2.2 Simple Mode ............................................................................................................... .......................203

11.2.3 MuxCode mode .............................................................................................................. ...................204

11.2.4 FlexMux packet specification ............................................................................................... ...........204

11.2.5 Usage of MuxCode Mode ....................................................................................................... ..........206

12 Syntactic Description Language ................................................................................................. ....207

12.1 Introduction ............................................................................................................... ........................207

12.2 Elementary Data Types........................................................................................................ .............207

12.2.1 Constant-Length Direct Representation Bit Fields .......................................................................207

12.2.2 Variable Length Direct Representation Bit Fields .........................................................................208

12.2.3 Constant-Length Indirect Representation Bit Fields.....................................................................208

12.2.4 Variable Length Indirect Representation Bit Fields ......................................................................209

12.3 Composite Data Types ......................................................................................................... ............210

12.3.1 Classes.................................................................................................................. .............................210

12.3.2 Abstract Classes .......................................................................................................... .....................211

12.3.3 Expandable classes ........................................................................................................ ..................211

12.3.4 Parameter types ........................................................................................................... .....................212

12.3.5 Arrays ................................................................................................................... ..............................212

12.3.6 Partial Arrays............................................................................................................ .........................213

12.3.7 Implicit Arrays ........................................................................................................... ........................213

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

viii © ISO/IEC 1999 – All rights reserved

12.4 Arithmetic and Logical Expressions ............................................................................................ ...214

12.5 Non-Parsable Variables ...................................................................................................... ..............214

12.6 Syntactic Flow Control ....................................................................................................... ..............214

12.7 Built-In Operators.......................................................................................................... ....................216

12.8 Scoping Rules ............................................................................................................... ....................216

13 Profiles ..................................................................................................................... ..........................216

13.1 Introduction ............................................................................................................... ........................216

13.2 OD Profile Definitions ....................................................................................................... ................216

13.2.1 Overview ................................................................................................................. ...........................216

13.2.2 OD Profiles Tools .......................................................................................................... ....................216

13.2.3 OD Profiles............................................................................................................... ..........................217

13.2.4 OD Profiles@Levels ........................................................................................................ ..................217

13.3 Scene Graph Profile Definitions ............................................................................................... .......217

13.3.1 Overview ................................................................................................................. ...........................217

13.3.2 Scene Graph Profiles Tools .................................................................................................. ...........217

13.3.3 Scene Graph Profiles....................................................................................................... .................217

13.3.4 Scene Graph Profiles@Levels ................................................................................................ .........220

13.4 Graphics Profile Definitions................................................................................................. ............221

13.4.1 Overview ................................................................................................................. ...........................221

13.4.2 Graphics Profiles Tools.................................................................................................... ................221

13.4.3 Graphics Profiles......................................................................................................... ......................221

13.4.4 Graphics Profiles@Levels.................................................................................................. ..............222

Annex A (informative) Bibliography ................................................................................................................... ....225

Annex B (informative) Time Base Reconstruction................................................................................................226

B.1 Time Base Reconstruction...................................................................................................... .........226

B.1.1 Adjusting the Receiving Terminal’s OTB........................................................................................ 226

B.1.2 Mapping Time Stamps to the STB ................................................................................................. ..226

B.1.3 Adjusting the STB to an OTB.................................................................................................... .......227

B.1.4 System Operation without Object Time Base ................................................................................227

B.2 Temporal aliasing and audio resampling .......................................................................................227

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved ix

B.3 Reconstruction of a Synchronised Audio-visual Scene: A Walkthrough ...................................227

Annex C (normative) View Dependent Object Scalability....................................................................................229

C.1 Introduction ................................................................................................................ .......................229

C.2 Bitstream Syntax............................................................................................................. ..................229

C.2.1 View Dependent Object ....................................................................................................... .............229

C.3 Bitstream Semantics.......................................................................................................... ...............230

C.3.1 View Dependent Object ....................................................................................................... .............230

C.3.2 View Dependent Object Layer .................................................................................................. .......230

Annex D (informative) Registration procedure .....................................................................................................232

D.1 Procedure for the request of a Registration ID (RID) ....................................................................232

D.2 Responsibilities of the Registration Authority...............................................................................232

D.3 Contact information for the Registration Authority ......................................................................232

D.4 Responsibilities of Parties Requesting a RID ................................................................................232

D.5 Appeal Procedure for Denied Applications....................................................................................233

D.6 Registration Application Form ................................................................................................. .......233

D.6.1 Contact Information of organization requesting a RID .................................................................233

D.6.2 Request for a specific RID.................................................................................................... ............233

D.6.3 Short description of RID that is in use and date system was implemented ...............................233

D.6.4 Statement of an intention to apply the assigned RID....................................................................233

D.6.5 Date of intended implementation of the RID ..................................................................................234

D.6.6 Authorized representative.................................................................................................. ..............234

D.6.7 For official use of the Registration Authority.................................................................................2 34

Annex E (informative) The QoS Management Model for ISO/IEC 14496 Content..............................................235

Annex F (informative) Conversion Between Time and Date Conventions .........................................................236

Annex G (normative) Adaptive Arithmetic Decoder for BIFS-Anim....................................................................238

Annex H (normative) Node coding tables..............................................................................................................2 40

H.1 Node Tables.................................................................................................................. .....................240

H.1.1 Anchor.................................................................................................................... ............................240

H.1.2 AnimationStream ........................................................................................................... ...................240

H.1.3 Appearance................................................................................................................ ........................241

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

x © ISO/IEC 1999 – All rights reserved

H.1.4 AudioBuffer............................................................................................................... .........................241

H.1.5 AudioClip ................................................................................................................. ..........................241

H.1.6 AudioDelay................................................................................................................ .........................241

H.1.7 AudioFX................................................................................................................... ...........................241

H.1.8 AudioMix .................................................................................................................. ..........................242

H.1.9 AudioSource ............................................................................................................... .......................242

H.1.10 AudioSwitch.............................................................................................................. .........................242

H.1.11 Background ............................................................................................................... ........................242

H.1.12 Background2D............................................................................................................. ......................243

H.1.13 Billboard................................................................................................................ .............................243

H.1.14 Bitmap ................................................................................................................... .............................243

H.1.15 Box...................................................................................................................... ................................243

H.1.16 Circle ................................................................................................................... ...............................243

H.1.17 Collision ................................................................................................................ .............................243

H.1.18 Color .................................................................................................................... ...............................244

H.1.19 ColorInterpolator ........................................................................................................ .......................244

H.1.20 CompositeTexture2D ....................................................................................................... .................244

H.1.21 CompositeTexture3D ....................................................................................................... .................244

H.1.22 Conditional.............................................................................................................. ...........................244

H.1.23 Cone ..................................................................................................................... ..............................245

H.1.24 Coordinate ............................................................................................................... ..........................245

H.1.25 Coordinate2D............................................................................................................. ........................245

H.1.26 CoordinateInterpolator ................................................................................................... ..................245

H.1.27 CoordinateInterpolator2D................................................................................................. ................245

H.1.28 Curve2D.................................................................................................................. ............................245

H.1.29 Cylinder ................................................................................................................. .............................246

H.1.30 CylinderSensor........................................................................................................... .......................246

H.1.31 DirectionalLight ......................................................................................................... ........................246

H.1.32 DiscSensor............................................................................................................... ..........................246

H.1.33 ElevationGrid ............................................................................................................ .........................247

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved xi

H.1.34 Expression............................................................................................................... ..........................247

H.1.35 Extrusion................................................................................................................ ............................247

H.1.36 Face ....................................................................................................................................................248

H.1.37 FaceDefMesh .............................................................................................................. .......................248

H.1.38 FaceDefTables............................................................................................................ .......................248

H.1.39 FaceDefTransform ......................................................................................................... ...................248

H.1.40 FAP .....................................................................................................................................................248

H.1.41 FDP .....................................................................................................................................................250

H.1.42 FIT .......................................................................................................................................................250

H.1.43 Fog...................................................................................................................... ................................250

H.1.44 FontStyle................................................................................................................ ............................250

H.1.45 Form ..................................................................................................................... ..............................251

H.1.46 Group.................................................................................................................... ..............................251

H.1.47 ImageTexture............................................................................................................. ........................251

H.1.48 IndexedFaceSet........................................................................................................... ......................251

H.1.49 IndexedFaceSet2D ......................................................................................................... ...................252

H.1.50 IndexedLineSet........................................................................................................... .......................252

H.1.51 IndexedLineSet2D ......................................................................................................... ....................252

H.1.52 Inline ................................................................................................................... ................................252

H.1.53 LOD.....................................................................................................................................................253

H.1.54 Layer2D .................................................................................................................. ............................253

H.1.55 Layer3D .................................................................................................................. ............................253

H.1.56 Layout................................................................................................................... ..............................253

H.1.57 LineProperties ........................................................................................................... ........................254

H.1.58 ListeningPoint ........................................................................................................... ........................254

H.1.59 Material................................................................................................................. ..............................254

H.1.60 Material2D ............................................................................................................... ...........................254

H.1.61 MovieTexture ............................................................................................................. ........................254

H.1.62 NavigationInfo ........................................................................................................... ........................255

H.1.63 Normal ................................................................................................................... .............................255

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

xii © ISO/IEC 1999 – All rights reserved

H.1.64 NormalInterpolator ....................................................................................................... .....................255

H.1.65 OrderedGroup............................................................................................................. .......................255

H.1.66 OrientationInterpolator .................................................................................................. ...................255

H.1.67 PixelTexture ............................................................................................................. ..........................255

H.1.68 PlaneSensor.............................................................................................................. .........................256

H.1.69 PlaneSensor2D ............................................................................................................ ......................256

H.1.70 PointLight............................................................................................................... ............................256

H.1.71 PointSet................................................................................................................. .............................256

H.1.72 PointSet2D ............................................................................................................... ..........................256

H.1.73 PositionInterpolator ..................................................................................................... .....................257

H.1.74 PositionInterpolator2D................................................................................................... ...................257

H.1.75 ProximitySensor2D ........................................................................................................ ...................257

H.1.76 ProximitySensor.......................................................................................................... ......................257

H.1.77 QuantizationParameter .................................................................................................... .................257

H.1.78 Rectangle ................................................................................................................ ...........................258

H.1.79 ScalarInterpolator....................................................................................................... .......................258

H.1.80 Script ................................................................................................................... ...............................259

H.1.81 Shape.................................................................................................................... ..............................259

H.1.82 Sound .................................................................................................................... .............................259

H.1.83 Sound2D.................................................................................................................. ...........................259

H.1.84 Sphere ................................................................................................................... .............................259

H.1.85 SphereSensor ............................................................................................................. .......................259

H.1.86 SpotLight................................................................................................................ ............................260

H.1.87 Switch................................................................................................................... ..............................260

H.1.88 TermCap.................................................................................................................. ...........................260

H.1.89 Text ..................................................................................................................... ................................260

H.1.90 TextureCoordinate ........................................................................................................ ....................260

H.1.91 TextureTransform......................................................................................................... .....................261

H.1.92 TimeSensor............................................................................................................... .........................261

H.1.93 TouchSensor .............................................................................................................. .......................261

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved xiii

H.1.94 Transform................................................................................................................ ...........................261

H.1.95 Transform2D.............................................................................................................. ........................261

H.1.96 Valuator ................................................................................................................. .............................262

H.1.97 Viewpoint ................................................................................................................ ...........................263

H.1.98 VisibilitySensor ......................................................................................................... ........................263

H.1.99 Viseme................................................................................................................... .............................263

H.1.100 WorldInfo ............................................................................................................... .........................263

H.2 Node Definition Type Tables.................................................................................................... ........263

H.2.1 SF2DNode .................................................................................................................. ........................263

H.2.2 SF3DNode .................................................................................................................. ........................264

H.2.3 SFAppearanceNode .......................................................................................................... ................265

H.2.4 SFAudioNode ............................................................................................................... .....................265

H.2.5 SFBackground2DNode........................................................................................................ .............265

H.2.6 SFBackground3DNode........................................................................................................ .............265

H.2.7 SFColorNode ............................................................................................................... ......................266

H.2.8 SFCoordinate2DNode ........................................................................................................ ...............266

H.2.9 SFCoordinateNode.......................................................................................................... ..................266

H.2.10 SFExpressionNode ......................................................................................................... ..................266

H.2.11 SFFAPNode ................................................................................................................ .......................266

H.2.12 SFFDPNode ................................................................................................................ .......................266

H.2.13 SFFITNode ................................................................................................................ .........................266

H.2.14 SFFaceDefMeshNode ........................................................................................................ ...............266

H.2.15 SFFaceDefTablesNode ...................................................................................................... ...............266

H.2.16 SFFaceDefTransformNode................................................................................................... ............266

H.2.17 SFFogNode ................................................................................................................ ........................267

H.2.18 SFFontStyleNode .......................................................................................................... ....................267

H.2.19 SFGeometryNode........................................................................................................... ...................267

H.2.20 SFLinePropertiesNode ..................................................................................................... ................267

H.2.21 SFMaterialNode ........................................................................................................... ......................267

H.2.22 SFNavigationInfoNode..................................................................................................... .................267

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

xiv © ISO/IEC 1999 – All rights reserved

H.2.23 SFNormalNode ............................................................................................................. .....................267

H.2.24 SFStreamingNode .......................................................................................................... ...................268

H.2.25 SFTextureCoordinateNode.................................................................................................. .............268

H.2.26 SFTextureNode............................................................................................................ ......................268

H.2.27 SFTextureTransformNode................................................................................................... .............268

H.2.28 SFTopNode ................................................................................................................ ........................268

H.2.29 SFViewpointNode.......................................................................................................... ....................268

H.2.30 SFVisemeNode ............................................................................................................. .....................268

H.2.31 SFWorldNode.............................................................................................................. .......................268

Annex I (informative) MPEG-4 Audio TTS application with Facial Animation ...................................................271

Annex J (informative) Graphical representation of object descriptor and sync layer syntax..........................272

J.1 Length encoding of descriptors and commands...........................................................................272

J.2 Object Descriptor Stream and OD commands...............................................................................272

J.3 IPMP stream.................................................................................................................. .....................273

J.4 OCI stream ................................................................................................................... ......................273

J.5 Object descriptor and its components ...........................................................................................2 73

J.6 OCI Descriptors .............................................................................................................. ...................275

J.7 Sync layer configuration and syntax ............................................................................................. .278

Annex K (informative) Patent statements ..............................................................................................................2 80

Figures

Figure 1 - The ISO/IEC 14496 terminal architecture .................................................................................... ..........xx

Figure 2 - Systems Decoder Model .................................................................................................... .......................7

Figure 3 - Composition unit availability............................................................................................ ......................10

Figure 4 - Flow diagram for the Systems Decoder Model ................................................................................... .11

Figure 5 - Object descriptors linking scene description to elementary streams ...............................................14

Figure 6 - Complex content example .................................................................................................. ....................48

Figure 7 - Requesting stream delivery through the DAI .................................................................................. .....50

Figure 8 - IPMP system in the ISO/IEC 14496 terminal architecture....................................................................52

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved xv

Figure 9 - An example of an object-based multimedia scene ..............................................................................5 3

Figure 10 - Logical structure of example scene ........................................................................................ ............54

Figure 11 - Media start times and CTS................................................................................................. ...................57

Figure 12 - Scene graph example..................................................................................................... .......................58

Figure 13 - 2D co-ordinate system (AR = Aspect Ratio) ................................................................................... ....59

Figure 14 - BIFS-Command Types ..................................................................................................... .....................66

Figure 15 - A CompositeTexture2D example. The 2D scene is projcted onto the 3D cube. ..........................134

Figure 16 - A CompositeTexture2D example. .....................................................................................................134

Figure 17 - CompositeTexture3D example. The 3D view of the earth is projected onto the 3D cube ..........135

Figure 18 - Curve node example .................................................................................................................... .......140

Figure 19 - An arbitrary motion trajectory is approximated as a piece-wise linear one. ................................144

Figure 20 - A FIG example........................................................................................................... ...........................151

Figure 21 - Visual result of the Form node example ...................................................................................... .....157

Figure 22 - IndexedFaceSet2D default texture mapping coordinates for a simple shape ............................160

Figure 23 - Three Layer2D and Layer3D examples composed in a 2D space.................................................164

Figure 24 - Cap and join style for LineProperties ...............................................................................................167

Figure 25 - Valuator functionaliy .................................................................................................. .........................189

Figure 26 - The sync layer.......................................................................................................... ............................192

Figure 27 - Structure of FlexMux packet in simple mode.................................................................................. .204

Figure 28 - Structure of FlexMux packet in MuxCode mode ..............................................................................204

Figure 29 - Example for a FlexMux packet in MuxCode mode...........................................................................206

Tables

Table 1 - List of Class Tags for Descriptors ........................................................................................... ...............15

Table 2 - List of Class Tags for Commands.............................................................................................. .............16

Table 3 - ODProfileLevelIndication Values.......................................................................................... ...................24

Table 4 - sceneProfileLevelIndication Values....................................................................................... .................24

Table 5 - audioProfileLevelIndication Values ....................................................................................... .................25

Table 6 - visualProfileLevelIndication Values...................................................................................... ..................25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

xvi © ISO/IEC 1999 – All rights reserved

Table 7 - graphicsProfileLevelIndication Values .................................................................................... ...............26

Table 8 - objectTypeIndication Values.............................................................................................. ......................28

Table 9 - streamType Values........................................................................................................ ............................29

Table 10 - contentType Values ...................................................................................................... ..........................31

Table 11 - contentIdentifierType Values ............................................................................................ .....................31

Table 12 - Predefined QoS Profiles .................................................................................................. .......................34

Table 13 - Standard units .......................................................................................................... ...............................62

Table 14 – Audio-Specific BIFS Nodes ................................................................................................ ...................64

Table 15 – Return values of getNbComp .................................................................................................................71

Table 16 - Return values of getNbBounds .............................................................................................. ...............73

Table 17 - Quantization Categories................................................................................................. ........................73

Table 18 - Condition for setting isQuantized to true.........................................................................................74

Table 19 - Value of nbBits depending on quantType ........................................................................................75

Table 20 - Value of floatMin , depending on quantType and fieldType .......................................................75

Table 21 - Value of floatMax , depending on quantType and fieldType .......................................................76

Table 22 - Value of intMin , depending on quantType ........................................................................................76

Table 23 – Animation Categories .................................................................................................... ........................77

Table 24 - Value of nbBits , depending on animType ..........................................................................................77

Table 25 - Value of floatMin , depending on animType ......................................................................................78

Table 26 - Value of floatMax , depending on animType ......................................................................................78

Table 27 - Value of intMin , depending on animType ..........................................................................................79

Table 28 - Quantization and inverse quantization process .............................................................................. ....79

Table 29 - Compensation process.................................................................................................... .......................83

Table 30 - Vertex displacements .................................................................................................... .......................144

Table 31 - Alignment Constraints................................................................................................... .......................156

Table 32 - Distribution Constraints ................................................................................................ .......................156

Table 33 - lineStyle description.................................................................................................................... .........167

Table 34 - Semantics of value, dependent on capability ....................................................................................182

Table 35 - Semantics of value for capability=0 ...................................................................................................182

Table 36 - Semantics of value for capability=1 ...................................................................................................183

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved xvii

Table 37 - Semantics of value for capability=2 ...................................................................................................183

Table 38 - Semantics of value for capability=3 ...................................................................................................183

Table 39 - Semantics of value for capability=32 .................................................................................................184

Table 40 - Semantics of value for capability=33 .................................................................................................184

Table 41 - Semantics of value for capability=34 .................................................................................................184

Table 42 - Semantics of value for capability=64 .................................................................................................185

Table 43 - Semantics of value for capability=65 .................................................................................................185

Table 44 - Simple typecasting conversion from other data types to float. .......................................................190

Table 45 - Simple typecasting conversion from float to other data types. .......................................................190

Table 46 - Overview of predefined SLConfigDescriptor values...................................................................194

Table 47 – Detailed predefined SLConfigDescriptor values............................................................................. ..194

Table 48 – SLConfigDescriptor parameter values for a ClockReferenceStream .............................................199

Table 49 - OD Profiles............................................................................................................. ................................217

Table 50 - Scene graph profiles..................................................................................................... ........................218

Table 51 - BIFS nodes for audio objects ............................................................................................... ...............219

Table 52 - BIFS nodes for visual objects.............................................................................................. ................219

Table 53 - Restrictions for Simple 2D scene graph profile at Level 1 ...............................................................220

Table 54 - Graphics profiles....................................................................................................... ............................221

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

xviii © ISO/IEC 1999 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 14496-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 14496 consists of the following parts, under the general title Coding of audio-visual objects:

� Part 1: Systems

� Part 2: Visual

� Part 3: Audio

� Part 4: Conformance testing

� Part 5: Reference software

� Part 6: Delivery Multimedia Integration Framework (DMIF)

Annexes C, G and H form a normative part of this part of ISO/IEC 14496. Annexes A, B, D, E, F, I, J and K are for
information only.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved xix

0 Introduction

0.1 Overview

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. This specification
includes the following elements:

1. the coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D) objects that
can be manifested audibly and/or visually (audio-visual objects) (specified in part 1,2 and 3 of ISO/IEC 14496);

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in
response to interaction (scene description, specified in this part of ISO/IEC 14496);

3. the coded representation of information related to the management of data streams (synchronization,
identification, description and association of stream content, specified in this part of ISO/IEC 14496); and

4. a generic interface to the data stream delivery layer functionality (specified in part 6 of ISO/IEC 14496).

The overal operation of a system communicating audio-visual scenes can be paraphrased as follows:

At the sending terminal, the audio-visual scene information is compressed, supplemented with synchronization
information and passed to a delivery layer that multiplexes it into one or more coded binary streams that are
transmitted or stored. At the receiving terminal, these streams are demultiplexed and decompressed. The audio-
visual objects are composed according to the scene description and synchronization information and presented to
the end user. The end user may have the option to interact with this presentation. Interaction information can be
processed locally or transmitted back to the sending terminal. ISO/IEC 14496 defines the syntax and semantics of
the bitstreams that convey such scene information, as well as the details of their decoding processes.

This part of ISO/IEC 14496 specifies the following tools:

� a terminal model for time and buffer management;

� a coded representation of interactive audio-visual scene description information (Binary Format for Scenes –
BIFS);

� a coded representation of metadata for the identification, description and logical dependencies of the
elementary streams (Object descriptors and other Descriptors);

� a coded representation of descriptive audio-visual content information (object content information – OCI);

� an interface to intellectual property management and protection (IPMP) systems;

� a coded representation of synchronization information (sync layer – SL); and

� a multiplexed representation of individual elementary streams in a single stream (FlexMux).

These various elements are described functionally in this subclause and specified in the normative clauses that
follow.

0.2 Architecture

The information representation specified in ISO/IEC 14496-1 describes the means to create an interactive audio-
visual scene in terms of coded audio-visual information and associated scene description information. The entity
that composes and sends, or receives and presents such a coded representation of an interactive audio-visual
scene is generically referred to as an "audio-visual terminal" or just "terminal". This terminal may correspond to a
standalone application or be part of an application system.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

xx © ISO/IEC 1999 – All rights reserved

Multiplexed Streams

Interactive Audiovisual
Scene

Elementary Streams

Composition and Rendering

Display and
User

Interaction

Transmission/Storage Medium

(RTP)
UDP

IP

H223
PSTN

DAB
Mux

Delivery
Layer

FlexMux FlexMux

DMIF Application Interface

SL SLSL SL ... Sync
Layer

Elementary Stream Interface

AV Object
data

Scene
Description
Information

Object
Descriptor

... Compression
Layer

SL

SL-Packetized Streams

(PES)
MPEG-2

TS

AAL2
ATM

Upstream
Information

SL

SL

FlexMux

...

Figure 1 - The ISO/IEC 14496 terminal architecture

The basic operations performed by such a receiver terminal are as follows. Information that allows access to
content complying with ISO/IEC 14496 is provided as initial session set up information to the terminal. Part 6 of
ISO/IEC 14496 defines the procedures for establishing such session contexts as well as the interface to the
delivery layer that generically abstracts the storage or transport medium. The initial set up information allows, in a
recursive manner, to locate one or more elementary streams that are part of the coded content representation.
Some of these elementary streams may be grouped together using the multiplexing tool described in ISO/IEC
14496-1.

Elementary streams contain the coded representation of either audio or visual data or scene description
information. Elementary streams may as well themselves convey information to identify streams, to describe logical

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved xxi

dependencies between streams, or to describe information related to the content of the streams. Each elementary
stream contains only one type of data.

Elementary streams are decoded using their respective stream-specific decoders. The audio-visual objects are
composed according to the scene description information and presented by the terminal’s presentation device(s).
All these processes are synchronized according to the Systems Decoder Model (SDM) using the synchronization
information provided at the synchronization layer.

These basic operations are depicted in Figure 1, and are described in more detail below.

0.3 Terminal Model: Systems Decoder Model

The systems decoder model provides an abstract view of the behavior of a terminal complying with
ISO/IEC 14496-1. Its purpose is to enable a sending terminal to predict how the receiving terminal will behave in
terms of buffer management and synchronization when reconstructing the audio-visual information that comprises
the presentation. The systems decoder model includes a systems timing model and a systems buffer model which
are described briefly in the following subclauses.

0.3.1 Timing Model

The timing model defines the mechanisms through which a receiving terminal establishes a notion of time that
enables it to process time-dependent events. This model also allows the receiving terminal to establish
mechanisms to maintain synchronization both across and within particular audio-visual objects as well as with user
interaction events. In order to facilitate these functions at the receiving terminal, the timing model requires that the
transmitted data streams contain implicit or explicit timing information. Two sets of timing information are defined in
ISO/IEC 14496-1: clock references and time stamps. The former convey the sending terminal’s time base to the
receiving terminal, while the latter convey a notion of relative time for specific events such as the desired decoding
or composition time for portions of the encoded audio-visual information.

0.3.2 Buffer Model

The buffer model enables the sending terminal to monitor and control the buffer resources that are needed to
decode each elementary stream in a presentation. The required buffer resources are conveyed to the receiving
terminal by means of descriptors at the beginning of the presentation. The terminal can then decide whether or not
it is capable of handling this particular presentation. The buffer model allows the sending terminal to specify when
information may be removed from these buffers and enables it to schedule data transmission so that the
appropriate buffers at the receiving terminal do not overflow or underflow.

0.4 Multiplexing of Streams: The Delivery Layer

The term delivery layer is used as a generic abstraction of any existing transport protocol stack that may be used to
transmit and/or store content complying with ISO/IEC 14496. The functionality of this layer is not within the scope of
ISO/IEC 14496-1, and only the interface to this layer is considered. This interface is the DMIF Application Interface
(DAI) specified in ISO/IEC 14496-6. The DAI defines not only an interface for the delivery of streaming data, but
also for signaling information required for session and channel set up as well as tear down. A wide variety of
delivery mechanisms exist below this interface, with some of them indicated in Figure 1. These mechanisms serve
for transmission as well as storage of streaming data, i.e., a file is considered to be a particular instance of a
delivery layer. For applications where the desired transport facility does not fully address the needs of a service
according to the specifications in ISO/IEC 14496, a simple multiplexing tool (FlexMux) with low delay and low
overhead is defined in ISO/IEC 14496-1.

0.5 Synchronization of Streams: The Sync Layer

Elementary streams are the basic abstraction for any streaming data source. Elementary streams are conveyed as
sync layer-packetized (SL-packetized) streams at the DMIF Application Interface. This packetized representation
additionally provides timing and synchronization information, as well as fragmentation and random access
information. The sync layer (SL) extracts this timing information to enable synchronized decoding and,
subsequently, composition of the elementary stream data.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

xxii © ISO/IEC 1999 – All rights reserved

0.6 The Compression Layer

The compression layer receives data in its encoded format and performs the necessary operations to decode this
data. The decoded information is then used by the terminal’s composition, rendering and presentation subsystems.

0.6.1 Object Description Framework

The purpose of the object description framework is to identify and describe elementary streams and to associate
them appropriately to an audio-visual scene description. Object descriptors serve to gain access to ISO/IEC 14496
content. Object content information and the interface to intellectual property management and protection systems
are also part of this framework.

An object descriptor is a collection of one or more elementary stream descriptors that provide the configuration and
other information for the streams that relate to either an audio-visual object or a scene description. Object
descriptors are themselves conveyed in elementary streams. Each object descriptor is assigned an identifier
(object descriptor ID), which is unique within a defined name scope. This identifier is used to associate audio-visual
objects in the scene description with a particular object descriptor, and thus the elementary streams related to that
particular object.

Elementary stream descriptors include information about the source of the stream data, in form of a unique numeric
identifier (the elementary stream ID) or a URL pointing to a remote source for the stream. Elementary stream
descriptors also include information about the encoding format, configuration information for the decoding process
and the sync layer packetization, as well as quality of service requirements for the transmission of the stream and
intellectual property identification. Dependencies between streams can also be signaled within the elementary
stream descriptors. This functionality may be used, for example, in scalable audio or visual object representations
to indicate the logical dependency of a stream containing enhancement information, to a stream containing the
base information. It can also be used to describe alternative representations for the same content (e.g. the same
speech content in various languages).

0.6.1.1 Intellectual Property Management and Protection

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. The IPMP
interface consists of IPMP elementary streams and IPMP descriptors. IPMP descriptors are carried as part of an
object descriptor stream. IPMP elementary streams carry time variant IPMP information that can be associated to
multiple object descriptors.

The IPMP System itself is a non-normative component that provides intellectual property management and
protection functions for the terminal. The IPMP System uses the information carried by the IPMP elementary
streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. An application may
choose not to use an IPMP System, thereby offering no management and protection features.

0.6.1.2 Object Content Information

Object content information (OCI) descriptors convey descriptive information about audio-visual objects. The main
content descriptors are: content classification descriptors, keyword descriptors, rating descriptors, language
descriptors, textual descriptors, and descriptors about the creation of the content. OCI descriptors can be included
directly in the related object descriptor or elementary stream descriptor or, if it is time variant, it may be carried in
an elementary stream by itself. An OCI stream is organized in a sequence of small, synchronized entities called
events that contain a set of OCI descriptors. OCI streams can be associated to multiple object descriptors.

0.6.2 Scene Description Streams

Scene description addresses the organization of audio-visual objects in a scene, in terms of both spatial and
temporal attributes. This information allows the composition and rendering of individual audio-visual objects after
the respective decoders have reconstructed the streaming data for them. For visual data, ISO/IEC 14496-1 does
not mandate particular composition algorithms. Hence, visual composition is implementation dependent. For audio
data, the composition process is defined in a normative manner in 9.2.2.13 and ISO/IEC 14496-3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved xxiii

The scene description is represented using a parametric approach (BIFS - Binary Format for Scenes). The
description consists of an encoded hierarchy (tree) of nodes with attributes and other information (including event
sources and targets). Leaf nodes in this tree correspond to elementary audio-visual data, whereas intermediate
nodes group this material to form audio-visual objects, and perform grouping, transformation, and other such
operations on audio-visual objects (scene description nodes). The scene description can evolve over time by using
scene description updates.

In order to facilitate active user involvement with the presented audio-visual information, ISO/IEC 14496-1 provides
support for user and object interactions. Interactivity mechanisms are integrated with the scene description
information, in the form of linked event sources and targets (routes) as well as sensors (special nodes that can
trigger events based on specific conditions). These event sources and targets are part of scene description nodes,
and thus allow close coupling of dynamic and interactive behavior with the specific scene at hand.
ISO/IEC 14496-1, however, does not specify a particular user interface or a mechanism that maps user actions
(e.g., keyboard key presses or mouse movements) to such events.

Such an interactive environment may not need an upstream channel, but ISO/IEC 14496 also provides means for
client-server interactive sessions with the ability to set up upstream elementary streams and associate them to
specific downstream elementary streams.

0.6.3 Audio-visual Streams

The coded representations of audio and visual information are described in ISO/IEC 14496-3 and
ISO/IEC 14496-2, respectively. The reconstructed audio-visual data are made available to the composition process
for potential use during the scene rendering.

0.6.4 Upchannel Streams

Downchannel elementary streams may require upchannel information to be transmitted from the receiving terminal
to the sending terminal (e.g., to allow for client-server interactivity). Figure 1 indicates the flowpath for an
elementary stream from the receiving terminal to the sending terminal. The content of upchannel streams is
specified in the same part of the specification that defines the content of the downstream data. For example,
upchannel control streams for video downchannel elementary streams are defined in ISO/IEC 14496-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


INTERNATIONAL STANDARD ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 1

Information technology — Coding of audio-visual objects —

Part 1:
Systems

1 Scope

This part of ISO/IEC 14496 specifies system level functionalities for the communication of interactive audio-visual
scenes. More specifically:

1. system level description of the coded representation of natural or synthetic, two-dimensional (2D) or three-
dimensional (3D) objects that can be manifested audibly and/or visually (audio-visual objects);

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their behavior in
response to interaction (scene description); and

3. the coded representation of information related to the management of data streams (synchronization,
identification, description and association of stream content).

2 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 14496. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this part of ISO/IEC 14496 are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the lastest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.

[1] ISO 639-2:1998, Codes for the representation of names of languages – Part 2: Alpha-3 code.

[2] ISO 3166-1:1997, Codes for the representation of names of countries and their subdivisions – Part 1:
Country codes.

[3] ISO/IEC 10646-1:1993, Information technology – Universal Multiple-Octet Coded Character Set (UCS) –
Part 1: Architecture and Basic Multilingual Plane.

[4] ITU-T Rec. T.81 (1992)|ISO/IEC 10918-1:1994, Information technology – Digital compression and coding of
continuous-tone still images: Requirements and guidelines.

[5] ISO/IEC 11172-2:1993, Information technology – Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s – Part 2: Video.

[6] ISO/IEC 11172-3:1993, Information technology – Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s – Part 3: Audio.

[7] ITU-T Rec. H.262 (1995)|ISO/IEC 13818-2:1996, Information technology – Generic coding of moving
pictures and associated audio information: Video.

[8] ISO/IEC 13818-3:1998, Information technology – Generic coding of moving pictures and associated audio
information – Part 3: Audio.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

2 © ISO/IEC 1999 – All rights reserved

[9] ISO/IEC 13818-7:1997, Information technology – Generic coding of moving pictures and associated audio
information – Part 7: Advanced Audio Coding (AAC).

[10] ISO/IEC 14772-1:1998, Information technology – Computer graphics and image processing – The Virtual
Reality Modeling Language – Part 1: Functional specification and UTF-8 encoding.

[11] ISO/IEC 16262:1998, Information technology – ECMAScript language specification.

[12] IEEE Std 754-1985, Standard for Binary Floating-Point Arithmetic.

3 Additional References

None cited.

4 Definitions

4.1 Access Unit (AU)
An individually accessible portion of data within an elementary stream. An access unit is the smallest data entity to
which timing information can be attributed.

4.2 Alpha Map
The representation of the transparency parameters associated with a texture map.

4.3 Audio-visual Object
A representation of a natural or synthetic object that has an audio and/or visual manifestation. The representation
corresponds to a node or a group of nodes in the BIFS scene description. Each audio-visual object is associated
with zero or more elementary streams using one or more object descriptors.

4.4 Audio-visual Scene (AV Scene)
A set of audio-visual objects together with scene description information that defines their spatial and temporal
attributes including behaviors resulting from object and user interactions.

4.5 Binary Format for Scene (BIFS)
A coded representation of a parametric scene description format.

4.6 Buffer Model
A model that defines how a terminal complying with ISO/IEC 14496 manages the buffer resources that are needed
to decode a presentation.

4.7 Byte Aligned
A position in a coded bit stream with a distance of a multiple of 8-bits from the first bit in the stream.

4.8 Clock Reference
A special time stamp that conveys a reading of a time base.

4.9 Composition
The process of applying scene description information in order to identify the spatio-temporal attributes and
hierarchies of audio-visual objects..

4.10 Composition Memory (CM)
A random access memory that contains composition units.

4.11 Composition Time Stamp (CTS)
An indication of the nominal composition time of a composition unit.

4.12 Composition Unit (CU)
An individually accessible portion of the output that a decoder produces from access units.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 3

4.13 Compression Layer
The layer of a system according to the specifications in ISO/IEC 14496 that translates between the coded
representation of an elementary stream and its decoded representation. It incorporates the decoders.

4.14 Decoder
An entity that translates between the coded representation of an elementary stream and its decoded
representation.

4.15 Decoding buffer (DB)
A buffer at the input of a decoder that contains access units.

4.16 Decoder configuration
The configuration of a decoder for processing its elementary stream data by using information contained in its
elementary stream descriptor.

4.17 Decoding Time Stamp (DTS)
An indication of the nominal decoding time of an access unit.

4.18 Delivery Layer
A generic abstraction for delivery mechanisms (computer networks, etc.) able to store or transmit a number of
multiplexed elementary streams or FlexMux streams.

4.19 Descriptor
A data structure that is used to describe particular aspects of an elementary stream or a coded audio-visual object.

4.20 DMIF Application Interface (DAI)
An interface specified in ISO/IEC 14496-6. It is used here to model the exchange of SL-packetized stream data and
associated control information between the sync layer and the delivery layer.

4.21 Elementary Stream (ES)
A consecutive flow of mono-media data from a single source entity to a single destination entity on the compression
layer.

4.22 Elementary Stream Descriptor
A structure contained in object descriptors that describes the encoding format, initialization information, sync layer
configuration, and other descriptive information about the content carried in an elementary stream.

4.23 Elementary Stream Interface (ESI)
An interface modeling the exchange of elementary stream data and associated control information between the
compression layer and the sync layer.

4.24 FlexMux Channel (FMC)
A label to differentiate between data belonging to different constituent streams within one FlexMux Stream. A
sequence of data in one FlexMux channel within a FlexMux stream corresponds to one single SL-packetized
stream.

4.25 FlexMux Packet
The smallest data entity managed by the FlexMux tool. It consists of a header and a payload.

4.26 FlexMux Stream
A sequence of FlexMux Packets with data from one or more SL-packetized streams that are each identified by their
own FlexMux channel.

4.27 FlexMux tool
A tool that allows the interleaving of data from multiple data streams.

4.28 Graphics Profile
A profile that specifies the permissible set of graphical elements of the BIFS tool that may be used in a scene
description stream. Note that BIFS comprises both graphical and scene description elements.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

4 © ISO/IEC 1999 – All rights reserved

4.29 Inter
A mode for coding parameters that uses previously coded parameters to construct a prediction.

4.30 Intra
A mode for coding parameters that does not make reference to previously coded parameters to perform the
encoding.

4.31 Initial Object Descriptor
A special object descriptor that allows the receiving terminal to gain initial access to portions of content encoded
according to ISO/IEC 14496. It conveys profile and level information to describe the complexity of the content.

4.32 Intellectual Property Identification (IPI)
A unique identification of one or more elementary streams corresponding to parts of one or more audio-visual
objects.

4.33 Intellectual Property Management and Protection (IPMP) System
A generic term for mechanisms and tools to manage and protect intellectual property. Only the interface to such
systems is normatively defined.

4.34 Object Clock Reference (OCR)
A clock reference that is used by a decoder to recover the time base of the encoder of an elementary stream.

4.35 Object Content Information (OCI)
Additional information about content conveyed through one or more elementary streams. It is either aggregated to
individual elementary stream descriptors or is itself conveyed as an elementary stream.

4.36 Object Descriptor (OD)
A descriptor that aggregates one or more elementary streams by means of their elementary stream descriptors and
defines their logical dependencies.

4.37 Object Descriptor Command
A command that identifies the action to be taken on a list of object descriptors or object descriptor IDs, e.g., update
or remove.

4.38 Object Descriptor Profile
A profile that specifies the configurations of the object descriptor tool and the sync layer tool that are allowed.

4.39 Object Descriptor Stream
An elementary stream that conveys object descriptors encapsulated in object descriptor commands.

4.40 Object Time Base (OTB)
A time base valid for a given elementary stream, and hence for its decoder. The OTB is conveyed to the decoder
via object clock references. All time stamps relating to this object’s decoding process refer to this time base.

4.41 Parametric Audio Decoder
A set of tools for representing and decoding speech signals coded at bit rates between 6 Kbps and 16 Kbps,
according to the specifications in ISO/IEC 14496-3.

4.42 Quality of Service (QoS)
The performance that an elementary stream requests from the delivery channel through which it is transported.
QoS is characterized by a set of parameters (e.g., bit rate, delay jitter, bit error rate, etc.).

4.43 Random Access
The process of beginning to read and decode a coded representation at an arbitrary point within the elementary
stream.

4.44 Reference Point
A location in the data or control flow of a system that has some defined characteristics.

4.45 Rendering
The action of transforming a scene description and its constituent audio-visual objects from a common
representation space to a specific presentation device (i.e., speakers and a viewing window).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 5

4.46 Rendering Area
The portion of the display device’s screen into which the scene description and its constituent audio-visual objects
are to be rendered.

4.47 Scene Description
Information that describes the spatio-temporal positioning of audio-visual objects as well as their behavior resulting
from object and user interactions. The scene description makes reference to elementary streams with audio-visual
data by means of pointers to object descriptors.

4.48 Scene Description Stream
An elementary stream that conveys scene description information.

4.49 Scene Graph Elements
The elements of the BIFS tool that relate only to the structure of the audio-visual scene (spatio-temporal temporal
positioning of audio-visual objects as well as their behavior resulting from object and user interactions) excluding
the audio, visual and graphics nodes as specified in clause 13.

4.50 Scene Graph Profile
A profile that defines the permissible set of scene graph elements of the BIFS tool that may be used in a scene
description stream. Note that BIFS comprises both graphical and scene description elements.

4.51 SL-Packetized Stream (SPS)
A sequence of sync layer Packets that encapsulate one elementary stream.

4.52 Structured Audio
A method of describing synthetic sound effects and music as defined by ISO/IEC 14496-3.

4.53 Sync Layer (SL)
A layer to adapt elementary stream data for communication across the DMIF Application Interface, providing timing
and synchronization information, as well as fragmentation and random access information. The sync layer syntax is
configurable and can be configured to be empty.

4.54 Sync Layer Configuration
A configuration of the sync layer syntax for a particular elementary stream using information contained in its
elementary stream descriptor.

4.55 Sync Layer Packet (SL-Packet)
The smallest data entity managed by the sync layer consisting of a configurable header and a payload. The
payload may consist of one complete access unit or a partial access unit.

4.56 Syntactic Description Language (SDL)
A language defined by ISO/IEC 14496-1 that allows the description of a bitstream’s syntax.

4.57 Systems Decoder Model (SDM)
A model that provides an abstract view of the behavior of a terminal compliant to ISO/IEC 14496. It consists of the
buffer model and the timing model.

4.58 System Time Base (STB)
The time base of the terminal. Its resolution is implementation-dependent. All operations in the terminal are
performed according to this time base.

4.59 Terminal
A system that sends, or receives and presents the coded representation of an interactive audio-visual scene as
defined by ISO/IEC 14496-1. It can be a standalone system, or part of an application system complying with
ISO/IEC 14496.

4.60 Time Base
The notion of a clock; it is equivalent to a counter that is periodically incremented.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

6 © ISO/IEC 1999 – All rights reserved

4.61 Timing Model
A model that specifies the semantic meaning of timing information, how it is incorporated (explicitly or implicitly) in
the coded representation of information, and how it can be recovered at the receiving terminal.

4.62 Time Stamp
An indication of a particular time instant relative to a time base.

5 Abbreviations and Symbols

AU Access Unit
AV Audio-visual
BIFS Binary Format for Scene
CM Composition Memory
CTS Composition Time Stamp
CU Composition Unit
DAI DMIF Application Interface (see ISO/IEC 14496-6)
DB Decoding Buffer
DTS Decoding Time Stamp
ES Elementary Stream
ESI Elementary Stream Interface
ESID Elementary Stream Identifier
FAP Facial Animation Parameters
FAPU FAP Units
FDP Facial Definition Parameters
FIG FAP Interpolation Graph
FIT FAP Interpolation Table
FMC FlexMux Channel
FMOD The floating point modulo (remainder) operator which returns the remainder of x/y such that:

Fmod(x/y) = x – k*y, where k is an integer,
sgn( fmod(x/y) ) = sgn(x), and
abs( fmod(x/y) ) < abs(y)

IP Intellectual Property
IPI Intellectual Property Identification
IPMP Intellectual Property Management and Protection
NCT Node Coding Tables
NDT Node Data Type
NINT Nearest INTeger value
OCI Object Content Information
OCR Object Clock Reference
OD Object Descriptor
ODID Object Descriptor Identifier
OTB Object Time Base
PLL Phase Locked Loop
QoS Quality of Service
SAOL Structured Audio Orchestra Language
SASL Structured Audio Score Language
SDL Syntactic Description Language
SDM Systems Decoder Model
SL Synchronization Layer
SL-Packet Synchronization Layer Packet
SPS SL-Packetized Stream
STB System Time Base
TTS Text-To-Speech
URL Universal Resource Locator
VOP Video Object Plane
VRML Virtual Reality Modeling Language

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 7

6 Conventions

For the purpose of unambiguously defining the syntax of the various bitstream components defined by the
normative parts of ISO/IEC 14496 a syntactic description language is used. This language allows the specification
of the mapping of the various parameters in a binary format as well as how they are placed in a serialized
bitstream. The definition of the language is provided in clause 12.

7 Systems Decoder Model

7.1 Introduction

The purpose of the systems decoder model (SDM) is to provide an abstract view of the behavior of a terminal
complying with ISO/IEC 14496. It may be used by the sender to predict how the receiving terminal will behave in
terms of buffer management and synchronization when decoding data received in the form of elementary streams.
The systems decoder model includes a timing model and a buffer model.

The systems decoder model specifies:

1. the interface for accessing demultiplexed data streams (DMIF Application Interface),

2. decoding buffers for coded data for each elementary stream,

3. the behavior of elementary stream decoders,

4. composition memory for decoded data from each decoder, and

5. the output behavior of composition memory towards the compositor.

These elements are depicted in Figure 2. Each elementary stream is attached to one single decoding buffer. More
than one elementary stream may be connected to a single decoder (e.g., in a decoder of a scaleable audio-visual
object).

Decoding
Buffer DB

1

Decoder

(encapsulates
Demultiplexer)

DMIF Appli-
cation Interface

Decoding
Buffer DBn

Decoding
Buffer DB

2 Decoder
Memory

2

Compositor

Elementary Stream Interface

Decoding
Buffer DB

3

Memory
1

Composit ion

Composit ion

Memory
n

Composit ion
Decoder

1

2

n

Figure 2 - Systems Decoder Model

7.2 Concepts of the Systems Decoder Model

This subclause defines the concepts necessary for the specification of the timing and buffering model. The
sequence of definitions corresponds to a walk from the left to the right side of the SDM illustration in Figure 2.

7.2.1 DMIF Application Interface (DAI)

For the purposes of the systems decoder model, the DMIF Application Interface encapsulates the demultiplexer
and provides access to streaming data that is consumed by the decoding buffers. The streaming data received

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

8 © ISO/IEC 1999 – All rights reserved

through the DAI consists of SL-packetized streams. The required properties of the DAI are described in 10.4. The
DAI semantics are fully specified in ISO/IEC 14496-6.

7.2.2 SL-Packetized Stream (SPS)

An SL-packetized stream consists of a sequence of packets, according to the syntax and semantics specified in
10.2, that encapsulate a single elementary stream. The packets contain elementary stream data partitioned in
access units as well as side information, e.g., for timing and access unit labeling. SPS data enter the decoding
buffers.

7.2.3 Access Units (AU)

Elementary stream data is partitioned into access units. The delineation of an access unit is completely determined
by the entity that generates the elementary stream (e.g., the compression layer). An access unit is the smallest
data entity to which timing information can be attributed. Two access units from the same elementary stream shall
never refer to the same decoding or composition time. Any further partitioning of the data in an elementary stream
is not visible for the purposes of the Systems Decoder Model. Access units are conveyed by SL-packetized
streams and are received by the decoding buffers. The decoders consume access units with the necessary side
information (e.g., time stamps) from the decoding buffers.

NOTE — An ISO/IEC 14496-1 compliant terminal implementation is not required to process each incoming access unit as a
whole. It is furthermore possible to split an access unit into several fragments for transmission as specified in clause 10. This
allows the sending terminal to dispatch partial AUs immediately as they are generated during the encoding process. Such partial
AUs may have significance for improved error resilience.

7.2.4 Decoding Buffer (DB)

The decoding buffer is a buffer at the input of an elementary stream decoder in the receiving terminal that receives
and stores access units. The Systems Buffer Model enables the sending terminal to monitor the decoding buffer
resources that are used during a presentation.

7.2.5 Elementary Streams (ES)

Streaming data received at the output of a decoding buffer, independent of its content, is considered as an
elementary stream for the purpose of ISO/IEC 14496. The elementary streams are produced and consumed by the
compression layer entities (encoders and decoders, respectively). ISO/IEC 14496 assumes that the integrity of an
elementary stream is preserved from end to end, from the ESI of the sending terminal to the ESI of the receiving
terminal.

7.2.6 Elementary Stream Interface (ESI)

The elementary stream interface models the exchange of elementary stream data and associated control
information between the compression layer and the sync layer. At the receiving terminal the ESI is located at the
output of the decoding buffer. The ESI is specified in 10.3.

7.2.7 Decoder

For the purposes of this model, the decoder extracts access units from the decoding buffer at precisely defined
points in time and places composition units, the results of the decoding processes, in the composition memory. A
decoder may be attached to several decoding buffers.

7.2.8 Composition Units (CU)

Decoders consume access units and produce composition units. An access unit corresponds to an integer number
of composition units. Composition units reside in composition memory.

7.2.9 Composition Memory (CM)

The composition memory is a random access memory that contains composition units. The size of this memory is
not normatively specified.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 9

7.2.10 Compositor

The compositor takes composition units out of the composition memory and either consumes them (e.g. composes
and presents them, in the case of audio-visual data) or skips them. The compositor is not specified in ISO/IEC
14496-1, as the details of this operation are not relevant within the context of the System Decoder Model.
Subclause 7.3.5 defines which composition units are available to the compositor at any instant of time.

7.3 Timing Model Specification

The timing model relies on clock references and time stamps to synchronize audio-visual data conveyed by one or
more elementary streams. The concept of a clock with its associated clock references is used to convey the notion
of time to a receiving terminal. Time stamps are used to indicate the precise time instants at which the receiving
terminal consumes the access units in the decoding buffers or may access the composition units resident in the
composition memory. The time stamps are therefore associated with access units and composition units. The
semantics of the timing model are defined in the subsequent clauses. The syntax for conveying timing information
is specified in 10.2.

NOTE — This timing model is designed for rate-controlled (“push”) applications.

7.3.1 System Time Base (STB)

The System Time Base (STB) defines the terminal’s notion of time. The resolution of the STB is implementation
dependent. All actions of the terminal are scheduled according to this time base for the purpose of this timing
model.

NOTE — This does not imply that all terminals compliant with ISO/IEC 14496 operate on one single STB.

7.3.2 Object Time Base (OTB)

The object time base (OTB) defines the notion of time for a given data stream. The resolution of this OTB can be
selected as required by the application or as defined by a profile. All time stamps that the sending terminal inserts
in a coded data stream refer to this time base. The OTB of a data stream is known at the receiving terminal either
by means of object clock reference information inserted in the stream or by an indication that its time base is slaved
to a time base conveyed with another stream, as specified in 10.2.3.

NOTE 1 — Elementary streams may be created for the sole purpose of conveying time base information.

NOTE 2 — The receiving terminal’s System Time Base need not be locked to any of the available object time bases.

7.3.3 Object Clock Reference (OCR)

A special kind of time stamps, object clock references (OCR), are used to convey the OTB to the elementary
stream decoder. The value of the OCR corresponds to the value of the OTB at the time the sending terminal
generates the object clock reference time stamp. OCR time stamps are placed in the SL packet header as
described in 10.2.4. The receiving terminal shall extract and evaluate the OCR when its first byte enters its
decoding buffer.

7.3.4 Decoding Time Stamp (DTS)

Each access unit has an associated nominal decoding time, the time at which it must be available in the decoding
buffer for decoding. The AU is not guaranteed to be available in the decoding buffer either before or after this time.
Decoding is assumed to occur instantaneously when the instant of time indicated by the DTS is reached.

This point in time can be implicitly specified if the (constant) temporal distance between successive access units is
indicated in the setup of the elementary stream (see 10.2.3). Otherwise a decoding time stamp (DTS) whose
syntax is defined in 10.2.4 conveys this point in time.

A decoding time stamp shall only be conveyed for an access unit that carries a composition time stamp as well,
and only if the DTS and CTS values are different. Presence of both time stamps in an AU may indicate a reversal
between coding order and composition order.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

10 © ISO/IEC 1999 – All rights reserved

7.3.5 Composition Time Stamp (CTS)

Each composition unit has an associated nominal composition time, the time at which it must be available in the
composition memory for composition. The CU is not guaranteed to be available in the composition memory for
composition before this time. Since the SDM assumes an instantaneous decoding process, the CU is available to
the decoder, at that instant in time corresponding to the DTS of the corresponding AU, for further use (e.g. in
prediction processes).

This instant in time is implicitly known, if the (constant) temporal distance between successive composition units is
indicated in the setup of the elementary stream. Otherwise a composition time stamp (CTS) whose syntax is
defined in 10.2.4 conveys this instant in time.

The current CU is instantaneously accessible by the compositor anytime between its composition time and the
composition time of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at
the end of the lifetime of its elementary stream (i.e., when its elementary stream descriptor is removed).

7.3.6 Occurrence and Precision of Timing Information in Elementary Streams

The frequency at which DTS, CTS and OCR values are to be inserted in the bitstream as well as the precision, jitter
and drift are application and profile dependent. Some usage considerations can be found in 10.2.7.

7.3.7 Time Stamps for Dependent Elementary Streams

An audio-visual object may refer to multiple elementary streams that constitute a scaleable content representation
(see 8.7.1.5). Such a set of elementary streams shall adhere to a single object time base. Temporally co-located
access units for such elementary streams are then identified by identical DTS or CTS values.

EXAMPLE

The example in Figure 3 illustrates the arrival of two access units at the Systems Decoder. Due to the constant delay
assumption of the model (see 7.4.2 below), the arrival times correspond to the instants in time when the sending terminal has
sent the respective AUs. The sending terminal must select this instant in time so that the Decoding Buffer at the receiving
terminal never overflows or underflows. At the receiving terminal, an AU is instantaneously decoded, at that instant in time
corresponding to its DTS, and the resulting CU(s) are placed in the composition memory and remain there until the subsequent
CU(s) arrive or the associated object descriptor is removed.

Composition
Memory

Decoding
Buffer

AU0

AU1

CU0

CU1

Arrival(AU 0)
Arrival(AU 1)

DTS (AU0)
DTS (AU1)

CTS (CU0) CTS (CU1)
= available for

composition

...................

...................

Figure 3 - Composition unit availability

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 11

7.4 Buffer Model Specification

7.4.1 Elementary Decoder Model

Figure 4 indicates one branch of the Systems Decoder Model (Figure 2). This simplified model is used to specify
the buffer model. It treats each elementary stream separately and therefore, associates a composition memory with
only one decoder. The legend following Figure 4 elaborates on the symbols used in this figure.

CUAUDecoding
Buffer DB Decoder

Composition
Memory CM

Compositor

Figure 4 - Flow diagram for the Systems Decoder Model

Legend:

DB Decoding buffer for the elementary stream.
CM Composition memory for the elementary stream.
AU The current access unit input to the Decoder.
CU The current composition unit input to the composition memory. CU results from decoding AU. There

may be several composition units resulting from decoding one access unit.

7.4.2 Assumptions

7.4.2.1 Constant end-to-end delay

Data transmitted in real time have a timing model in which the end-to-end delay from the encoder input at the
sending terminal, to the decoder output at the receiving terminal, is constant. This delay is equal to the sum of the
delay due to the encoding process, subsequent buffering, multiplexing at the sending terminal, the delay due to the
delivery layers and the delay due to the demultiplexing, decoder buffering and decoding processes at the receiving
terminal.

Note that the receiving terminal is free to add a temporal offset (delay) to the absolute values of all time stamps if it
can cope with the additional buffering needed. However, the temporal difference between two time stamps (that
determines the temporal distance between the associated AUs or CUs) has to be preserved for real-time
performance.

7.4.2.2 Demultiplexer

The end-to-end delay between multiplexer output, at the sending terminal, and demultiplexer input, at the receiving
terminal, is constant.

7.4.2.3 Decoding Buffer

The needed decoding buffer size is known by the sending terminal and conveyed to the receiving terminal as
specified in 8.6.5.

The size of the decoding buffer is measured in bytes.

The decoding buffer is filled at the rate given by the maximum bit rate for this elementary stream (if this information
is conveyed by the sending terminal), and with a zero rate otherwise. The maximum bit rate is conveyed by the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

12 © ISO/IEC 1999 – All rights reserved

sending terminal as a part of the decoder configuration information during the set up phase for each elementary
stream (see 8.6.5).

Information is received from the DAI in the form of SL packets. The SL packet headers are removed at the input to
the decoding buffers.

7.4.2.4 Decoder

The decoding processes are assumed to be instantaneous for the purposes of the Systems Decoder Model.

7.4.2.5 Composition Memory

The mapping of an AU to one or more CUs (by the decoder) is known implicitly at both the sending and the
receiving terminals.

7.4.2.6 Compositor

The composition processes are assumed to be instantaneous for the purposes of the Systems Decoder Model.

7.4.3 Managing Buffers: A Walkthrough

In this example, we assume that the model is used in a “push” scenario. In applications where non-real time
content is to be delivered, flow control by suitable signaling may be established to request access units at the time
they are needed at the receiving terminal. The mechanisms for doing so are application-dependent, and are not
specified in ISO/IEC 14496.

The behaviors of the various elements in the SDM are modeled as follows:

� The sending terminal signals the required decoding buffer resources to the receiving terminal before starting the
delivery. This is done as specified in 8.6.5 either explicitly, by requesting the decoding buffer sizes for individual
elementary streams, or implicitly, by indicating a profile (see clause 13). The decoding buffer size is measured
in bytes.

� The sending terminal models the behavior of the decoding buffers by making the following assumptions :

� Each decoding buffer is filled at the maximum bitrate specified for its associated elementary stream if this
information is available.

� At the instant of time corresponding to its DTS, an AU is instantaneously decoded and removed from the
decoding buffer.

� At the instant of time corresponding to its DTS, a known amount of CUs corresponding to the just decoded AU
are put in the composition memory.

The current CU is available to the compositor between instants of time corresponding to the CTS of the current CU
and the CTS of the subsequent CU. If a subsequent CU does not exist, the current CU becomes unavailable at the
end of lifetime of its data stream.

Using these assumptions on the buffer model, the sending terminal may freely use the space in the decoding
buffers. For example, it may deliver data for several AUs of a stream, for non real time usage, to the receiving
terminal, and pre-store them in the DB long before they have to be decoded (assuming sufficient space is
available). Subsequently, the full delivery bandwidth may be used to transfer data of a real time stream just in time.
The composition memory may be used, for example, as a reordering buffer. In the case of visual decoding, it may
contain the decoded P-frames needed by a video decoder for the decoding of intermediate B-frames, before the
arrival of the CTS of the latest P-frame.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 13

8 Object Description Framework

8.1 Introduction

The scene description (specified in clause 9) and the elementary streams that convey streaming data are the basic
building blocks of the architecture of ISO/IEC 14496-1. Elementary streams carry data for audio or visual objects as
well as for the scene description itself. The object description framework provides the link between elementary
streams and the scene description. The scene description declares the spatio-temporal relationship of audio-visual
objects, while the object description framework specifies the elementary stream resources that provide the time-
varying data for the scene. This indirection facilitates independent changes to the scene structure, the properties of
the elementary streams (e.g. its encoding) and their delivery.

The object description framework consists of a set of descriptors that allows to identify, describe and properly
associate elementary streams to each other and to audio-visual objects used in the scene description. Numeric
identifiers, called ObjectDescriptorIDs, associate object descriptors to appropriate nodes in the scene description.
Object descriptors are themselves conveyed in elementary streams to allow time stamped changes to the available
set of object descriptors to be made.

Each object descriptor is itself a collection of descriptors that describe one or more elementary streams that are
associated to a single node and that usually relate to a single audio or visual object. This allows to indicate a
scaleable content representation as well as multiple alternative streams that convey the same content, e.g., in
multiple qualities or different languages.

An elementary stream descriptor within an object descriptor identifies a single elementary stream with a numeric
identifier, called ES_ID. Each elementary stream descriptor contains the information necessary to initiate and
configure the decoding process for the elementary stream, as well as intellectual property identification. Optionally,
additional information may be associated to a single elementary stream, most notably quality of service
requirements for its transmission or a language indication. Both, object descriptors and elementary stream
descriptors may use URLs to point to remote object descriptors or a remote elementary stream source,
respectively.

The object description framework provides the hooks to implement intellectual property management and
protection (IPMP) systems. IPMP information is conveyed both through IPMP descriptors as part of the object
descriptor stream and through IPMP streams that carry time variant IPMP information. The structure of IPMP
descriptors and IPMP streams is specified in this clause while their internal syntax and semantics and, hence, the
operation of the IPMP system is outside the scope of ISO/IEC 14496.

Object content information allows the association of metadata with a whole presentation or with individual object
descriptors or with elementary stream descriptors. A set of OCI descriptors is defined that either form an integral
part of an object descriptor or elementary stream descriptor or are conveyed by means of a proper OCI stream that
allows the conveyance of time variant object content information.

Access to ISO/IEC 14496 content is gained through an initial object descriptor that needs to be made available
through means not defined in ISO/IEC 14496. The initial object descriptor in the simplest case points to the scene
description stream and the corresponding object descriptor stream. The access scenario is outlined in 8.7.3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

14 © ISO/IEC 1999 – All rights reserved

100

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

e.g. Movie
Texture

Scene Description

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptor

:

ES_Descriptor

ES_Descriptor

initial
ObjectDescriptor

:

ES_Descriptor

ES_Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_D
ES_D

ES_D

... ...

......

BIFS Command (Replace Scene)

e.g.Audio
Source

Audio Stream

Figure 5 - Object descriptors linking scene description to elementary streams

The remainder of this clause is structured in the following way:

� Subclause 8.2 specifies the data structures on which the object descriptor framework is based.

� Subclause 8.3 specifies the concepts of the IPMP elements in the object description framework.

� Subclause 8.4 specifies the object content information elements in the object description framework.

� Subclause 8.5 specifies the object descriptor stream and the syntax and semantics of the command set that
allows the update or removal of object descriptor components.

� Subclause 8.6 specifies the syntax and semantics of the object descriptor and its component descriptors.

� Subclause 8.7 specifies rules for object descriptor usage as well as the procedure to access content through
object descriptors.

� Subclause 8.8 specifies the usage of the IPMP system interface.

8.2 Common data structures

8.2.1 Overview

The commands and descriptors defined in this subclause constitute self-describing classes, identified by unique
class tags. Each class encodes explicitly its size in bytes. This facilitates future compatible extensions of the
commands and descriptors. They may be expanded with additional syntax elements that are ignored by an OD
decoder that expects an earlier revision of a class. In addition, anywhere in a syntax where a set of tagged classes
is expected it is permissible to intersperse expandable classes with unknown class tag values. These classes shall
be skipped, using the encoded size information.

The remainder of this clause defines the syntax and semantics of the command and descriptor classes. Some
commands and descriptors contain themselves a set of component descriptors. They are said to aggregate a set of
component descriptors.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 15

8.2.2 BaseDescriptor

8.2.2.1 Syntax

abstract aligned(8) expandable(2 28-1) class BaseDescriptor : bit(8) tag=0 {
// empty. To be filled by classes extending this class.

}

8.2.2.2 Semantics

This class is an abstract base class that is extended by the descriptor classes specified in 8.6. Each descriptor
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common
name space for the class tags of these descriptors. The values of the class tags are defined in Table 1. As an
expandable class the size of each class instance in bytes is encoded and accessible through the instance variable
sizeOfInstance (see 12.3.3).

A class that allows the aggregation of classes of type BaseDescriptor may actually aggregate any of the classes
that extend BaseDescriptor.

NOTE — User private descriptors may have an internal structure, for example to identify the country or manufacturer that uses a
specific descriptor. The tags and semantics for such user private descriptors may be managed by a registration authority if
required.

Table 1 - List of Class Tags for Descriptors

Tag value Tag name

0x00 Forbidden
0x01 ObjectDescrTag
0x02 InitialObjectDescrTag
0x03 ES_DescrTag
0x04 DecoderConfigDescrTag
0x05 DecSpecificInfoTag
0x06 SLConfigDescrTag
0x07 ContentIdentDescrTag
0x08 SupplContentIdentDescrTag
0x09 IPI_DescrPointerTag
0x0A IPMP_DescrPointerTag
0x0B IPMP_DescrTag
0x0C QoS_DescrTag
0x0D RegistrationDescrTag
0x0E-0x3F Reserved for ISO use (descriptors)
0x40 ContentClassificationDescrTag
0x41 KeyWordDescrTag
0x42 RatingDescrTag
0x43 LanguageDescrTag
0x44 ShortTextualDescrTag
0x45 ExpandedTextualDescrTag
0x46 ContentCreatorNameDescrTag
0x47 ContentCreationDateDescrTag
0x48 OCICreatorNameDescrTag
0x49 OCICreationDateDescrTag
0x4A-0x5F Reserved for ISO use (OCI extensions)
0x60-0xBF Reserved for ISO use
0xC0-0xFE User private
0xFF Forbidden

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

16 © ISO/IEC 1999 – All rights reserved

The following additional symbolic names are introduced:

ExtDescrTagStartRange = 0x80
ExtDescrTagEndRange = 0xFE
OCIDescrTagStartRange = 0x40
OCIDescrTagEndRange = 0x5F

8.2.3 BaseCommand

8.2.3.1 Syntax

abstract aligned(8) expandable(2 28-1) class BaseCommand : bit(8) tag=0 {
// empty. To be filled by classes extending this class.

}

8.2.3.2 Semantics

This class is an abstract base class that is extended by the command classes specified in 8.5.5. Each command
constitutes a self-describing class, identified by a unique class tag. This abstract base class establishes a common
name space for the class tags of these commands. The values of the class tags are defined in Table 2. As an
expandable class the size of each class instance in bytes is encoded and accessible through the instance variable
sizeOfInstance (see 12.3.3).

A class that allows the aggregation of classes of type BaseCommand may actually aggregate any of the classes
that extend BaseCommand.

NOTE — User private commands may have an internal structure, for example to identify the country or manufacturer that uses a
specific command. The tags and semantics for such user private command may be managed by a registration authority if
required.

Table 2 - List of Class Tags for Commands

Tag value Tag name

0x00 forbidden
0x01 ObjectDescrUpdateTag
0x02 ObjectDescrRemoveTag
0x03 ES_DescrUpdateTag
0x04 ES_DescrRemoveTag
0x05 IPMP_DescrUpdateTag
0x06 IPMP_DescrRemoveTag
0x07-0xBF Reserved for ISO (command tags)
0xC0-0xFE User private
0xFF forbidden

8.3 Intellectual Property Management and Protection (IPMP)

8.3.1 Overview

The intellectual property management and protection (IPMP) framework for ISO/IEC 14496 content consists of a
normative interface that permits an ISO/IEC 14496 terminal to host one or more IPMP Systems. An IPMP System
is a non-normative component that provides intellectual property management and protection functions for the
terminal.

The IPMP interface consists of IPMP elementary streams and IPMP descriptors. The normative structure of IPMP
elementary streams is specified in this subclause. IPMP descriptors are carried as part of an object descriptor
stream and are specified in 8.6.13. The IPMP interface allows applications (or derivative application standards) to
build specialized IPMP Systems. Alternatively, an application may choose not to use an IPMP System, thereby
offering no management and protection features. The IPMP System uses the information carried by the IPMP
elementary streams and descriptors to make protected ISO/IEC 14496 content available to the terminal. The
detailed semantics and decoding process of the IPMP System are not in the scope of ISO/IEC 14496. The usage of
the IPMP System Interface, however, is explained in 8.8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 17

8.3.2 IPMP Streams

8.3.2.1 Structure of the IPMP Stream

The IPMP stream is an elementary stream that passes time-varying information to one or more IPMP Systems.
This is accomplished by periodically sending a sequence of IPMP messages along with the content at a period
determined by the IPMP System(s).

8.3.2.2 Access Unit Definition

An IPMP access unit consists of one or more IPMP messages, as defined in 8.3.2.5. All IPMP messages that are to
be processed at the same instant in time shall constitute a single access unit. Access units in IPMP streams shall
be labeled and time-stamped by suitable means. This shall be done via the related flags and the composition time
stamps, respectively, in the SL packet header (see 10.2.4). The composition time indicates the point in time at
which an IPMP access unit becomes valid, i.e., when the embedded IPMP messages shall be evaluated. Decoding
and composition time for an IPMP access unit shall always have the same value.

An access unit does not necessarily convey or update the complete set of IPMP messages that are currently
required. In that case it just modifies the persistent state of the IPMP system. However, if an access unit conveys
the complete set of IPMP messages required at a given point in time it shall set the randomAccessPointFlag in
the SL packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no IPMP messages in it indicates that at the current time
instant no IPMP messages are required for operation.

8.3.2.3 Time Base for IPMP Streams

The time base associated to an IPMP stream shall be indicated by suitable means. This shall be done by means of
object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this IPMP stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized IPMP stream refer to this time base.

8.3.2.4 IPMP Decoder Configuration

8.3.2.4.1 Syntax

class IPMPDecoderConfiguration extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
// IPMP system specific configuration information

}

8.3.2.4.2 Semantics

An IPMP system may require information to initialize its operation. This information shall be conveyed by extending
the decoderSpecificInfo class as specified in 8.6.6. If utilized, IPMPDecoderConfiguration shall be
conveyed in the ES_Descriptor declaring the IPMP stream.

8.3.2.5 IPMP message syntax and semantics

8.3.2.5.1 Syntax

class IPMP_Message() extends ExpandableBaseClass
{

bit(16) IPMPS_Type;
if (IPMPS_Type == 0) {

bit(8) URLString[sizeOfInstance-2];
} else {

bit(8) IPMP_data[sizeOfInstance-2];
}

}

8.3.2.5.2 Semantics

The IPMP_Message conveys control information for an IPMP System.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

18 © ISO/IEC 1999 – All rights reserved

IPMPS_Type - the type of the IPMP System. A zero value does not correspond to an IPMP System, but indicates
the presence of a URL. A Registration Authority as designated by the ISO shall assign valid values for this field.

URLString[] - contains a UTF-8 [3] encoded URL that shall point to the location of a remote IPMP_Message
whose IPMP_data shall be used in place of locally provided data.

IPMP_data - opaque data to control the IPMP System.

8.4 Object Content Information (OCI)

8.4.1 Overview

Audio-visual objects that are associated with elementary stream data through an object descriptor may have
additional object content information attached to them. For this purpose, a set of OCI descriptors is defined in
8.6.17. OCI descriptors may directly be included as part of an ObjectDescriptor or ES_Descriptor as
defined in 8.6.1.

In order to accommodate time variant OCI that is separable from the object descriptor stream, OCI descriptors may
as well be conveyed in an OCI stream. An OCI stream is referred to through an ES_Descriptor, with the
streamType field set to OCI_Stream. How OCI streams may be aggregated to object descriptors is defined in
8.7.1.3. The structure of the OCI stream is defined in this subclause.

8.4.2 OCI Streams

8.4.2.1 Structure of the OCI Stream

The OCI stream is an elementary stream that conveys time-varying object content information, termed OCI events.
Each OCI event consists of a number of OCI descriptors.

8.4.2.2 Access Unit Definition

An OCI access unit consists of one or more OCI_Events, as described in 8.4.2.5. Access units in OCI elementary
streams shall be labelled and time stamped by suitable means. This shall be done by means of the related flags
and the composition time stamp, respectively, in the SL packet header (see 10.2.4). The composition time indicates
the point in time when an OCI access unit becomes valid, i.e., when the embedded OCI events shall be added to
the list of events. Decoding and composition time for an OCI access unit shall always have the same value.

An access unit may or may not convey or update the complete set of OCI events that are currently valid. In the
latter case, it just modifies the persistent state of the OCI decoder. However, if an access unit conveys the
complete set of OCI events valid at a given point in time it shall set the randomAccessPointFlag in the SL
packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OCI events in it indicates that at the current time instant
no valid OCI events exist.

8.4.2.3 Time Base for OCI Streams

The time base associated with an OCI stream shall be indicated by suitable means. This shall be done by the use
of object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this OCI stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized OCI stream refer to this time base.

8.4.2.4 OCI Decoder Configuration

8.4.2.4.1 Syntax

class OCIDecoderConfiguration extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
const bit(8) versionLabel = 0x01;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 19

8.4.2.4.2 Semantics

This information is needed to initialize operation of the OCI decoder. It shall be conveyed by extending the
decoderSpecificInfo class as specified in 8.6.6. OCIDecoderConfiguration shall be conveyed in the
ES_Descriptor declaring the OCI stream.

versionLabel – indicates the version of OCI specification used on the corresponding OCI data stream. Only the
value 0x01 is allowed; all the other values are reserved.

8.4.2.5 OCI_Events syntax and semantics

8.4.2.5.1 Syntax

class OCI_Event extends ExpandableBaseClass {
bit(15) eventID;
bit(1) absoluteTimeFlag;
bit(32) startingTime;
bit(32) duration;
OCI_Descriptor OCI_Descr[1 .. 255];

}

8.4.2.5.2 Semantics

eventID – contains the identification number of the described event that is unique within the scope of this OCI
stream.

absoluteTimeFlag – indicates the time base for startingTime as described below.

startingTime – indicates the starting time of the event in hours, minutes, seconds and hundredth of seconds.
The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary coded
decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

EXAMPLE � 02:36:45:89 is coded as “0x023645” concatenated with “0b0101.1001” (89 in binary), resulting to “0x02364559”.

If absoluteTimeFlag is set to zero, startingTime is relative to the object time base of the corresponding
object. In that case it is the responsibility of the application to ensure that this object time base is conveyed such
that startingTime can be identified unambiguously (see 10.2.7). If absoluteTimeFlag is set to one,
startingTime is expressed as an absolute value, refering to wall clock time.

duration – contains the duration of the corresponding object in hours, minutes, seconds and hundredth of
seconds. The format is 8 digits, the first 6 digits expressing hours, minutes and seconds with 4 bits each in binary
coded decimal and the last two expressing hundredth of seconds in hexadecimal using 8 bits.

OCI_Descr[] – an array of one up to 255 OCI_Descriptor classes as specified in 8.6.17.2.

8.5 Object Descriptor Stream

8.5.1 Structure of the Object Descriptor Stream

Similar to the scene description, object descriptors are transported in a dedicated elementary stream, termed object
descriptor stream. Within such a stream, it is possible to dynamically convey, update and remove complete object
descriptors, or their component descriptors, the ES_Descriptors, and IPMP descriptors. The update mechanism
allows, for example, to advertise new elementary streams for an audio-visual object as they become available, or to
remove references to streams that are no longer available. Updates are time stamped to indicate the instant in time
they take effect.

This subclause specifies the structure of the object descriptor elementary stream including the syntax and
semantics of its constituent elements, the object descriptor commands (OD commands).

8.5.2 Access Unit Definition

An OD access unit consists of one or more OD commands, as described in 8.5.5. All OD commands that are to be
processed at the same instant in time shall constitute a single access unit. Access units in object descriptor
elementary streams shall be labelled and time stamped by suitable means. This shall be done by means of the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

20 © ISO/IEC 1999 – All rights reserved

related flags and the composition time stamp, respectively, in the SL packet header (see 10.2.4). The composition
time indicates the point in time when an OD access unit becomes valid, i.e., when the embedded OD commands
shall be executed. Decoding and composition time for an OD access unit shall always have the same value.

An access unit may not convey or update the complete set of object descriptors that are currently required. In that
case it just modifies the persistent state of the object descriptor decoder. However, if an access unit conveys the
complete set of object descriptors required at a given point in time it shall set the randomAccessPointFlag in
the SL packet header to ‘1’ for this access unit. Otherwise, the randomAccessPointFlag shall be set to ‘0’.

NOTE — An SL packet with randomAccessPointFlag=1 but with no OD commands in it indicates that at the current time
instant no valid object descriptors exist.

8.5.3 Time Base for Object Descriptor Streams

The time base associated to an object descriptor stream shall be indicated by suitable means. This shall be done
by means of object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by
indicating the elementary stream from which this object descriptor stream inherits the time base (see 10.2.3). All
time stamps in the SL-packetized object descriptor stream refer to this time base.

8.5.4 OD Decoder Configuration

The object descriptor decoder does not require additional configuration information.

8.5.5 OD Command Syntax and Semantics

8.5.5.1 Overview

Object descriptors and their components as defined in 8.6 shall always be conveyed as part of one of the OD
commands specified in this subclause. The commands describe the action to be taken on the components
conveyed with the command, specifically ‘update’ or ‘remove’. Each command affects one or more object
descriptors, ES_Descriptors or IPMP descriptors.

8.5.5.2 ObjectDescriptorUpdate

8.5.5.2.1 Syntax

class ObjectDescriptorUpdate extends BaseCommand : bit(8) tag=ObjectDescrUpdateTag {
ObjectDescriptor OD[1 .. 255];

}

8.5.5.2.2 Semantics

The ObjectDescriptorUpdate class conveys a list of new or updated ObjectDescriptors. The components of
an already existing ObjectDescriptor shall not be changed by an update, but an ObjectDescriptorUpdate may
remove or add ES_Descriptors as components of the related object descriptor.

Removal of an ES_Descriptor within an ObjectDescriptor conveyed by this command is accomplished by
omitting it from the array of ES_Descriptors aggregated to the ObjectDescriptor . Addition of an
ES_Descriptor within an ObjectDescriptor conveyed by this command is accomplished by adding it to the
array of ES_Descriptors aggregated to the ObjectDescriptor .

To update the characteristics of an elementary stream, it is required that its original ES_Descriptor be removed
and the changed ES_Descriptor be conveyed.

OD[] – an array of ObjectDescriptors as defined in 8.6.2. The array shall have any number of one up to 255
elements.

8.5.5.3 ObjectDescriptorRemove

8.5.5.3.1 Syntax

class ObjectDescriptorRemove extends BaseCommand : bit(8) tag=ObjectDescrRemoveTag {
bit(10) objectDescriptorId[(sizeOfInstance*8)/10];

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 21

8.5.5.3.2 Semantics

The ObjectDescriptorRemove class renders unavailable a set of object descriptors. The BIFS nodes
associated to these object descriptors shall have no reference any more to the elementary streams that have been
listed in the removed object descriptors. An objectDescriptorID that does not refer to a valid ObjectDescriptor is
ignored.

NOTE — It is possible that a scene description node references an OD_ID which does not currently have an associated OD.

ObjectDescriptorId[] – an array of ObjectDescriptorIDs that indicates the object descriptors that are
removed.

8.5.5.4 ES_DescriptorUpdate

8.5.5.4.1 Syntax

class ES_DescriptorUpdate extends BaseCommand : bit(8) tag=ES_DescrUpdateTag {
bit(10) objectDescriptorId;
ES_Descriptor ESD[1 .. 30];

}

8.5.5.4.2 Semantics

The ES_DescriptorUpdate class adds or updates references to elementary streams within the object descriptor
labeled objectDescriptorID . Values of syntax elements of an updated ES_Descriptor shall remain
unchanged.

To update the characterstics of an elementary stream, it is required that its original ES_Descriptor be removed and
the changed ES_Descriptor be conveyed.

An elementary stream identified with a given ES_ID may be attached to more than one object descriptor. All
corresponding ES_Descriptors refering to this ES_ID that are conveyed through either
ES_DescriptorUpdate or ObjectDescriptorUpdate commands shall have identical content.

objectDescriptorID - identifies the ObjectDescriptor for which ES_Descriptors are updated. If the
objectDescriptorID does not refer to any valid object descriptor, then this command is ignored.

ESD[] – an array of ES_Descriptors as defined in 8.6.4. The array shall have any number of one up to 30
elements.

8.5.5.5 ES_DescriptorRemove

8.5.5.5.1 Syntax

class ES_DescriptorRemove extends BaseCommand : bit(8) tag=ES_DescrRemoveTag {
bit(10) objectDescriptorId;
aligned (8) bit(16) ES_ID[1..30];

}

8.5.5.5.2 Semantics

The ES_DescriptorRemove class removes the reference to an elementary stream from an ObjectDescriptor and
renders this stream unavailable for nodes referencing this ObjectDescriptor.

objectDescriptorID - identifies the ObjectDescriptor from which ES_Descriptors are removed. If the
objectDescriptorID does not refer to a valid object descriptor in the same scope, then this command is ignored.

ES_ID[] – an array of streamCount ES_IDs that labels the ES_Descriptors to be removed from
objectDescriptorID . If any of the ES_IDs do not refer to an ES_Descriptor currently referenced by the OD,
then those ES_IDs are ignored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

22 © ISO/IEC 1999 – All rights reserved

8.5.5.6 IPMP_DescriptorUpdate

8.5.5.6.1 Syntax

class IPMP_DescriptorUpdate extends BaseCommand : bit(8) tag=IPMP_DescrUpdateTag {
IPMP_Descriptor ipmpDescr[1..255];

}

8.5.5.6.2 Semantics

The IPMP_DescriptorUpdate class conveys a list of new or updated IPMP_Descriptors . An
IPMP_Descriptor identified by an IPMP_DescriptorID that already exists shall be replaced by the new
descriptor.

IPMP_Descriptors remain valid until they are replaced by another IPMP_DescriptorUpdate command or
removed.

ipmpDescr[] – an array of IPMP_Descriptor as specified in 8.6.13.

8.5.5.7 IPMP_DescriptorRemove

8.5.5.7.1 Syntax

class IPMP_DescriptorRemove extends BaseCommand : bit(8) tag=IPMP_DescrRemoveTag {
bit(8) IPMP_DescriptorID[1..255];

}

8.5.5.7.2 Semantics

The IPMP_DescriptorRemove class conveys a list of IPMP_DescriptorsIDs that identify the
IPMP_Descriptors that shall be removed.

IPMP_DescriptorID[] - is a list of IPMP_DescriptorIDs .

8.6 Object Descriptor Components

8.6.1 Overview

Object descriptors contain various additional descriptors as their components, in order to describe individual
elementary streams and their properties. They shall always be conveyed as part of one of the OD commands
specified in the previous subclause. This subclause defines the syntax and semantics of object descriptors and
their component descriptors.

8.6.2 ObjectDescriptor

8.6.2.1 Syntax

class ObjectDescriptor extends BaseDescriptor : bit(8) tag=ObjectDescrTag {
bit(10) ObjectDescriptorID;
bit(1) URL_Flag;
const bit(5) reserved=0b1111.1;
if (URL_Flag) {

bit(8) URLlength;
bit(8) URLstring[URLlength];

} else {
ES_Descriptor esDescr[1 .. 30];
OCI_Descriptor ociDescr[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];

}
ExtensionDescriptor extDescr[0 .. 255];

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 23

8.6.2.2 Semantics

The ObjectDescriptor consists of three different parts.

The first part uniquely labels the object descriptor within its name scope (see 8.7.2.4) by means of an
objectDescriptorId. Nodes in the scene description use objectDescriptorID to refer to the related
object descriptor. An optional URLstring indicates that the actual object descriptor resides at a remote location.

The second part consists of a list of ES_Descriptors , each providing parameters for a single elementary as well
as an optional set of object content information descriptors and pointers to IPMP descriptors for the contents for
elementary stream content described in this object descriptor.

The third part is a set of optional descriptors that support the inclusion of future extensions as well as the transport
of private data in a backward compatible way.

objectDescriptorId – This syntax element uniquely identifies the ObjectDescriptor within its name scope.
The value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring .

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 [3] encoded URL that shall point to another ObjectDescriptor . Only the
content of this object descriptor shall be returned by the delivery entity upon access to this URL. Within the current
name scope, the new object descriptor shall be referenced by the objectDescriptorId of the object descriptor
carrying the URLstring. On name scopes see 8.7.2.4. Permissible URLs may be constrained by profile and levels
as well as by specific delivery layers.

esDescr[] – an array of ES_Descriptors as defined in 8.6.4. The array shall have any number of one up to
30 elements.

ociDescr[] – an array of OCI_Descriptors , as defined in 8.6.17.2, that relates to the audio-visual object(s)
described by this object descriptor. The array shall have any number of zero up to 255 elements.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer , as defined in 8.6.12, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

extDescr[] – an array of ExtensionDescriptors as defined in 8.6.15. The array shall have any number of
zero up to 255 elements.

8.6.3 InitialObjectDescriptor

8.6.3.1 Syntax

class InitialObjectDescriptor extends BaseDescriptor : bit(8) tag=InitialObjectDescrTag {
bit(10) ObjectDescriptorID;
bit(1) URL_Flag;
bit(1) includeInlineProfileLevelFlag;
const bit(4) reserved=0b1111;
if (URL_Flag) {

bit(8) URLlength;
bit(8) URLstring[URLlength];

} else {
bit(8) ODProfileLevelIndication;
bit(8) sceneProfileLevelIndication;
bit(8) audioProfileLevelIndication;
bit(8) visualProfileLevelIndication;
bit(8) graphicsProfileLevelIndication;
ES_Descriptor ESD[1 .. 30];
OCI_Descriptor ociDescr[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];

}
ExtensionDescriptor extDescr[0 .. 255];

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

24 © ISO/IEC 1999 – All rights reserved

8.6.3.2 Semantics

The InitialObjectDescriptor is a variation of the ObjectDescriptor specified in the previous subclause
that allows to signal profile and level information for the content refered by it. It shall be used to gain initial access
to ISO/IEC 14496 content (see 8.7.3).

objectDescriptorId – This syntax element uniquely identifies the ObjectDescriptor within its name scope.
The value 0 is forbidden and the value 1023 is reserved.

URL_Flag – a flag that indicates the presence of a URLstring .

includeInlineProfileLevelFlag – a flag that, if set to one, indicates that the subsequent profile indications
take into account the resources needed to process any content that might be inlined.

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – A string with a UTF-8 [3] encoded URL that shall point to another InitialObjectDescriptor .
Only the content of this object descriptor shall be returned by the delivery entity upon access to this URL. Within
the current name scope, the new object descriptor shall be referenced by the objectDescriptorId of the object
descriptor carrying the URLstring. On name scopes see 8.7.2.4. Permissible URLs may be constrained by profile
and levels as well as by specific delivery layers.

ODProfileLevelIndication – an indication as defined in Table 3 of the object descriptor profile and level
required to process the content associated with this InitialObjectDescriptor .

Table 3 - ODProfileLevelIndication Values

Value Profile Level

0x00 Forbidden -
0x01-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no OD profile specified -
0xFF no OD capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any OD profile specified in ISO/IEC 14496-1. Usage of the value 0xFF indicates that
none of the OD profile capabilities are required for this content.

sceneProfileLevelIndication – an indication as defined in Table 4 of the scene graph profile and level
required to process the content associated with this InitialObjectDescriptor .

Table 4 - sceneProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use -
0x01 Simple2D profile L1
0x02-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no scene graph profile specified -
0xFF no scene graph capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any scene graph profile specified in ISO/IEC 14496-1. Usage of the value 0xFF
indicates that none of the scene graph profile capabilities are required for this content.

audioProfileLevelIndication – an indication as defined in Table 5 of the audio profile and level required to
process the content associated with this InitialObjectDescriptor .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 25

Table 5 - audioProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use -
0x01 Main Profile L1
0x02 Main Profile L2
0x03 Main Profile L3
0x04 Main Profile L4
0x05 Scalable Profile L1
0x06 Scalable Profile L2
0x07 Scalable Profile L3
0x08 Scalable Profile L4
0x09 Speech Profile L1
0x0A Speech Profile L2
0x0B Synthesis Profile L1
0x0C Synthesis Profile L2
0x0D Synthesis Profile L3
0x0E-0x7F reserved for ISO use -
0x80-0xFD user private -
0xFE no audio profile specified -
0xFF no audio capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any audio profile specified in ISO/IEC 14496-3. Usage of the value 0xFF indicates
that none of the audio profile capabilities are required for this content.

visualProfileLevelIndication – an indication as defined in Table 6 of the visual profile and level required
to process the content associated with this InitialObjectDescriptor .

Table 6 - visualProfileLevelIndication Values

Value Profile Level
0x00 Reserved for ISO use -
0x01 Simple L3
0x02 Simple L2
0x03 Simple L1
0x04 Simple Scalable L2
0x05 Simple Scalable L1
0x06 Core L2
0x07 Core L1
0x08 Main L4
0x09 Main L3
0x0A Main L2
0x0B N-Bit L2
0x0C Hybrid L2
0x0D Hybrid L1
0x0E Basic Animated Texture L2
0x0F Basic Animated Texture L1
0x10 Scalable Texture L3
0x11 Scalable Texture L2
0x12 Scalable Texture L1
0x13 Simple Face Animation L2
0x14 Simple Face Animation L1
0x15-0x7F reserved for ISO use -
0x80-0xFD user private -

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

26 © ISO/IEC 1999 – All rights reserved

0xFE no visual profile specified -
0xFF no visual capability required -

NOTE — Usage of the value 0xFE indicates that the content described by this InitialObjectDescriptor
does not comply to any visual profile specified in ISO/IEC 14496-2. Usage of the value 0xFF indicates
that none of the visual profile capabilities are required for this content.

graphicsProfileLevelIndication – an indication as defined in Table 7 of the graphics profile and level
required to process the content associated with this InitialObjectDescriptor .

Table 7 - graphicsProfileLevelIndication Values

Value Profile Level

0x00 Reserved for ISO use
0x01 Simple2D profile L1
0x02-0x7F reserved for ISO use
0x80-0xFD user private
0xFE no graphics profile specified
0xFF no graphics capability required

NOTE — Usage of the value 0xFE may indicate that the content described by this InitialObjectDescriptor
does not comply to any conformance point specified in ISO/IEC 14496-1. Usage of the value 0xFF
indicates that none of the graphics profile capabilities are required for this content.

ESD[] – an array of ES_Descriptors as defined in 8.6.4. The array shall have any number of one up to 30
elements.

ociDescr[] – an array of OCI_Descriptors as defined in 8.6.17.2 that relates to the set of audio-visual objects
that are described by this initial object descriptor. The array shall have any number of zero up to 255 elements.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer , as defined in 8.6.12, that points to the
IPMP_Descriptors related to the elementary stream(s) described by this object descriptor. The array shall have any
number of zero up to 255 elements.

extDescr[] – an array of ExtensionDescriptors as defined in 8.6.15. The array shall have any number of
zero up to 255 elements.

8.6.4 ES_Descriptor

8.6.4.1 Syntax

class ES_Descriptor extends BaseDescriptor : bit(8) tag=ES_DescrTag {
bit(16) ES_ID;
bit(1) streamDependenceFlag;
bit(1) URL_Flag;
const bit(1) reserved=1;
bit(5) streamPriority;
if (streamDependenceFlag)

bit(16) dependsOn_ES_ID;
if (URL_Flag) {

bit(8) URLlength;
bit(8) URLstring[URLlength];

}
DecoderConfigDescriptor decConfigDescr;
SLConfigDescriptor slConfigDescr;
IPI_DescrPointer ipiPtr[0 .. 1];
IP_IdentificationDataSet ipIDS[0 .. 255];
IPMP_DescriptorPointer ipmpDescrPtr[0 .. 255];
LanguageDescriptor langDescr[0 .. 255];
QoS_Descriptor qosDescr[0 .. 1];
RegistrationDescriptor regDescr[0 .. 1];
ExtensionDescriptor extDescr[0 .. 255];

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 27

8.6.4.2 Semantics

The ES_Descriptor conveys all information related to a particular elementary stream and has three major parts.

The first part consists of the ES_ID which is a unique reference to the elementary stream within its name scope
(see 8.7.2.4), a mechanism to describe dependencies of elementary streams within the scope of the parent
ObjectDescriptor and an optional URL string. Dependencies and usage of URLs are specified in 8.7.

The second part consists of the component descriptors which convey the parameters and requirements of the
elementary stream.

The third part is a set of optional extension descriptors that support the inclusion of future extensions as well as the
transport of private data in a backward compatible way.

ES_ID – This syntax element provides a unique label for each elementary stream within its name scope. The
values 0 and 0xFFFF are reserved.

streamDependenceFlag – If set to one indicates that a dependsOn_ES_ID will follow.

URL_Flag – if set to 1 indicates that a URLstring will follow.

streamPriority – indicates a relative measure for the priority of this elementary stream. An elementary stream
with a higher streamPriority is more important than one with a lower streamPriority . The absolute values
of streamPriority are not normatively defined.

dependsOn_ES_ID – is the ES_ID of another elementary stream on which this elementary stream depends. The
stream with dependsOn_ES_ID shall also be associated to the same ObjectDescriptor as the current
ES_Descriptor .

URLlength – the length of the subsequent URLstring in bytes.

URLstring[] – contains a UTF-8 [3] encoded URL that shall point to the location of an SL-packetized stream by
name. The parameters of the SL-packetized stream that is retrieved from the URL are fully specified in this
ES_Descriptor . See also 8.7.3.3. Permissible URLs may be constrained by profile and levels as well as by
specific delivery layers.

decConfigDescr – is a DecoderConfigDescriptor as specified in 8.6.5.

slConfigDescr – is an SLConfigDescriptor as specified in 8.6.7.

ipiPtr[] – an array of zero or one IPI_DescrPointer as specified in 8.6.11.

ipIDS[] – an array of zero or more IP_IdentificationDataSet as specified in 8.6.8.

Each ES_Descriptor shall have either one IPI_DescrPointer or one up to 255 IP_IdentificationDataSet
elements. This allows to unambiguously associate an IP Identification to each elementary stream.

ipmpDescrPtr[] – an array of IPMP_DescriptorPointer , as defined in 8.6.12, that points to the
IPMP_Descriptors related to the elementary stream described by this ES_Descriptor . The array shall have any
number of zero up to 255 elements.

langDescr[] – an array of zero or one LanguageDescriptor structures as specified in 8.6.17.6. It indicates
the language attributed to this elementary stream.

NOTE — Multichannel audio streams may be treated as one elementary stream with one ES_Descriptor by ISO/IEC 14496. In
that case different languages present in different channels of the multichannel stream are not identifyable with a
LanguageDescriptor.

qosDescr[] – an array of zero or one QoS_Descriptor as specified in 8.6.14.

extDescr[] – an array of ExtensionDescriptor structures as specified in 8.6.15.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

28 © ISO/IEC 1999 – All rights reserved

8.6.5 DecoderConfigDescriptor

8.6.5.1 Syntax

class DecoderConfigDescriptor extends BaseDescriptor : bit(8) tag=DecoderConfigDescrTag {
bit(8) objectTypeIndication;
bit(6) streamType;
bit(1) upStream;
const bit(1) reserved=1;
bit(24) bufferSizeDB;
bit(32) maxBitrate;
bit(32) avgBitrate;
DecoderSpecificInfo decSpecificInfo[0 .. 1];

}

8.6.5.2 Semantics

The DecoderConfigDescriptor provides information about the decoder type and the required decoder
resources needed for the associated elementary stream. This is needed at the receiving terminal to determine
whether it is able to decode the elementary stream. A stream type identifies the category of the stream while the
optional decoder specific information descriptor contains stream specific information for the set up of the decoder in
a stream specific format that is opaque to this layer.

ObjectTypeIndication – an indication of the object or scene description type that needs to be supported by
the decoder for this elementary stream as per the following table. For streamType values other than audioStream
and visualStream, the objectTypeIndication shall be set to 0xFF, indicating that no object type is specified.

Table 8 - objectTypeIndication Values

Value ObjectTypeIndication Description

0x00 Forbidden
0x01-0x1F reserved for ISO use
0x20 Visual ISO/IEC 14496-2 a

0x21-0x3F reserved for ISO use
0x40 Audio ISO/IEC 14496-3 b

0x41-0x5F reserved for ISO use
0x60 Visual ISO/IEC 13818-2 Simple Profile
0x61 Visual ISO/IEC 13818-2 Main Profile
0x62 Visual ISO/IEC 13818-2 SNR Profile
0x63 Visual ISO/IEC 13818-2 Spatial Profile
0x64 Visual ISO/IEC 13818-2 High Profile
0x65 Visual ISO/IEC 13818-2 422 Profile
0x66 Audio ISO/IEC 13818-7 Main Profile
0x67 Audio ISO/IEC 13818-7 LowComplexity Profile
0x68 Audio ISO/IEC 13818-7 SSR Profile
0x69 Audio ISO/IEC 13818-3
0x6A Visual ISO/IEC 11172-2
0x6B Audio ISO/IEC 11172-3
0x6C Visual ISO/IEC 10918-1
0x6D - 0xBF reserved for ISO use
0xC0 - 0xFE user private
0xFF no profile specified
a The actual object types are defined in ISO/IEC 14496-2 and are conveyed in the
DecoderSpecificInfo as specified in ISO/IEC 14496-2, Annex K.
b The actual object types are defined in ISO/IEC 14496-3 and are conveyed in the
DecoderSpecificInfo as specified in ISO/IEC 14496-3 Section 1 subclause 1.6.2.1.

streamType – conveys the type of this elementary stream as per this table.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 29

Table 9 - streamType Values

streamType value stream type description

0x00 forbidden
0x01 ObjectDescriptorStream (see 8.5)
0x02 ClockReferenceStream (see 10.2.5)
0x03 SceneDescriptionStream (see 9.2.1)
0x04 VisualStream
0x05 AudioStream
0x06 MPEG7Stream
0x07 IPMPStream (see 8.3.2)
0x08 ObjectContentInfoStream (see 8.4.2)
0x09 - 0x1F reserved for ISO use
0x20 - 0x3F user private

upStream – indicates that this stream is used for upstream information.

bufferSizeDB – is the size of the decoding buffer for this elementary stream in byte.

maxBitrate – is the maximum bitrate in bits per second of this elementary stream in any time window of one
second duration.

avgBitrate – is the average bitrate in bits per second of this elementary stream. For streams with variable
bitrate this value shall be set to zero.

decSpecificInfo[] – an array of zero or one decoder specific information classes as specified in 8.6.6.

8.6.6 DecoderSpecificInfo

8.6.6.1 Syntax

abstract class DecoderSpecificInfo extends BaseDescriptor : bit(8) tag=DecSpecificInfoTag
{

// empty. To be filled by classes extending this class.
}

8.6.6.2 Semantics

The decoder specific information constitutes an opaque container with information for a specific media decoder.
The existence and semantics of decoder specific information depends on the values of
DecoderConfigDescriptor.streamType and DecoderConfigDescriptor.objectTypeIndication .

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 14496-2 the syntax and semantics of decoder specific information are defined in Annex K of that part.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 14496-3 the syntax and semantics of decoder specific information are defined in section 1, clause 1.6 of
that part.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to scene description streams
the semantics of decoder specific information is defined in 9.2.1.2.

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 13818-7 the decoder specific information consists of the ADIF -header if it is present (or none if it is not
present) and an access unit is a „raw_data_block()“ as defined in ISO/IEC 13818-7 [9].

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 13818-3 [8] the decoder specific information is empty since all necessary data is in the bitstream frames
itself. The access units in this case are the „frame()“ bitstream element as is defined in ISO/IEC 11172-3 [6].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

30 © ISO/IEC 1999 – All rights reserved

For values of DecoderConfigDescriptor.objectTypeIndication that refer to streams complying with
ISO/IEC 10918-1 [4], the decoder specific information is:

class JPEG_DecoderConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
int(16) headerLength;
int(16) Xdensity;
int(16) Ydensity;
int(8) numComponents;

}

with

headerLength –indicates the number of bytes to skip from the beginning of the stream to find the first pixel of the
image.

Xdensity and Ydensity – specify the pixel aspect ratio.

numComponents – indicates whether the image has Y component only or is Y, Cr, Cb. It shall be equal to 1 or 3.

8.6.7 SLConfigDescriptor

This descriptor defines the configuration of the sync layer header for this elementary stream. The specification of
this descriptor is provided together with the specification of the sync layer in 10.2.3.

8.6.8 IP_IdentificationDataSet

8.6.8.1 Syntax

abstract class IP_IdentificationDataSet extends BaseDescriptor
: bit(8) tag=ContentIdentDescrTag..SupplContentIdentDescrTag

{
// empty. To be filled by classes extending this class.

}

8.6.8.2 Semantics

This class is an abstract base class that is extended by the descriptor classes that implement IP identification. A
descriptor that allows to aggregate classes of type IP_IdentificationDataSet may actually aggregate any of the
classes that extend IP_IdentificationDataSet.

8.6.9 ContentIdentificationDescriptor

8.6.9.1 Syntax

class ContentIdentificationDescriptor extends IP_IdentificationDataSet
: bit(8) tag=ContentIdentDescrTag

{
const bit(2) compatibility=0;
bit(1) contentTypeFlag;
bit(1) contentIdentifierFlag;
bit(1) protectedContent;
bit(3) reserved = 0b111;
if (contentTypeFlag)

bit(8) contentType;
if (contentIdentifierFlag) {

bit(8) contentIdentifierType;
bit(8) contentIdentifier[sizeOfInstance-2-contentTypeFlag];

}
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 31

8.6.9.2 Semantics

The content identification descriptor is used to identify content. All types of elementary streams carrying content
can be identified using this mechanism. The content types include audio, visual and scene description data.
Multiple content identification descriptors may be associated to one elementary stream. These descriptors shall
never be detached from the ES_Descriptor.

compatibility – must be set to 0.

contentTypeFlag – flag to indicate if a definition of the type of content is available.

contentIdentifierFlag – flag to indicate presence of creation ID.

protectedContent - if set to one indicates that the elementary streams that refer to this
IP_IdentificationDataSet are protected by a method outside the scope of ISO/IEC 14496. The behavior of the
terminal compliant with the ISO/IEC 14496 specifications when processing such streams is undefined.

contentType – defines the type of content using one of the values specified in the the following table.

Table 10 - contentType Values

0 Audio-visual
1 Book
2 Serial
3 Text
4 Item or Contribution (e.g. article in book or serial)
5 Sheet music
6 Sound recording or music video
7 Still Picture
8 Musical Work
9-254 Reserved for ISO use
255 Others

contentIdentifierType – defines a type of content identifier using one of the values specified in the
following table.

Table 11 - contentIdentifierType Values

0 ISAN International Standard Audio-Visual Number
1 ISBN International Standard Book Number
2 ISSN International Standard Serial Number
3 SICI Serial Item and Contribution Identifier
4 BICI Book Item and Component Identifier
5 ISMN International Standard Music Number
6 ISRC International Standard Recording Code
7 ISWC-T International Standard Work Code (Tunes)
8 ISWC-L International Standard Work Code (Literature)
9 SPIFF Still Picture ID
10 DOI Digital Object Identifier
11-255 Reserved for ISO use

contentIdentifier – international code identifying the content according to the preceding
contentIdentifierType .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

32 © ISO/IEC 1999 – All rights reserved

8.6.10 SupplementaryContentIdentificationDescriptor

8.6.10.1 Syntax

class SupplementaryContentIdentificationDescriptor extends
IP_IdentificationDataSet : bit(8) tag= SupplContentIdentDescrTag

{
bit(24) languageCode;
bit(8) supplContentIdentifierTitleLength;
bit(8) supplContentIdentifierTitle[supplContentIdentifierTitleLength];
bit(8) supplContentIdentifierValueLength;
bit(8) supplContentIdentifierValue[supplContentIdentifierValueLength];

}

8.6.10.2 Semantics

The supplementary content identification descriptor is used to provide extensible identifiers for content that are
qualified by a language code. Multiple supplementary content identification descriptors may be associated to one
elementary stream. These descriptors shall never be detached from the ES_Descriptor.

language code – This 24 bits field contains the ISO 639-2:1998 [1] bibliographic three character language code
of the language of the following text fields.

supplementaryContentIdentifierTitleLength – indicates the length of the subsequent
supplementaryContentIdentifierTitle in bytes.

supplementaryContentIdentifierTitle – identifies the title of a supplementary content identifier that may
be used when a numeric content identifier (see 8.6.9) is not available.

supplementaryContentIdentifierValueLength – indicates the length of the subsequent
supplementaryContentIdentifierValue in bytes.

supplementaryContentIdentifierValue – identifies the value of a supplementary content identifer
associated to the preceding supplementaryContentIdentifierTitle .

8.6.11 IPI_DescrPointer

8.6.11.1 Syntax

class IPI_DescrPointer extends BaseDescriptor : bit(8) tag=IPI_DescrPointerTag {
bit(16) IPI_ES_Id;

}

8.6.11.2 Semantics

The IPI_DescrPointer class contains a reference to the elementary stream that includes the
IP_IdentificationDataSets that are valid for this stream. This indirect reference mechanism allows to
convey such descriptors only in one elementary stream while making references to it from any ES_Descriptor
that shares the same information.

ES_Descriptors for elementary streams that are intended to be accessible regardless of the availability of a
referred stream shall explicitly include their IP_IdentificationDataSets instead of using an
IPI_DescrPointer .

IPI_ES_Id – the ES_ID of the elementary stream whose ES_Descriptor contains the IP Information valid for this
elementary stream. If the ES_Descriptor for IPI_ES_Id is not available, the IPI status of this elementary
stream is undefined.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 33

8.6.12 IPMP_DescriptorPointer

8.6.12.1 Syntax

class IPMP_DescriptorPointer extends BaseDescriptor : bit(8) tag=IPMP_DescrPointerTag {
bit(8) IPMP_DescriptorID;

}

8.6.12.2 Semantics

IPMP_DescriptorID - ID of the referenced IPMP_Descriptor (see 8.6.13).

Presence of this descriptor in an ObjectDescriptor indicates that all streams referred to by embedded
ES_Descriptors are subject to protection and management by the IPMP System specified in the referenced
IPMP_Descriptor .

Presence of this descriptor in an ES_Descriptor indicates that the stream associated with this descriptor is
subject to intellectual property management and protection by the IPMP System specified in the referenced
IPMP_Descriptor .

8.6.13 IPMP Descriptor

8.6.13.1 Syntax

class IPMP_Descriptor() extends BaseDescriptor : bit(8) IPMP_DescrTag {
bit(8) IPMP_DescriptorID;
unsigned int(16) IPMPS_Type;
if (IPMPS_Type == 0) {

bit(8) URLString[sizeOfInstance-3];
} else {

bit(8) IPMP_data[sizeOfInstance-3];
}

}

8.6.13.2 Semantics

The IPMP_Descriptor conveys IPMP information to an IPMP System. IPMP_Descriptors are conveyed in
object descriptor streams via IPMP_DescriptorUpdates as specified in 8.5.5.6. They are not directly included
in ObjectDescriptors or ES_Descriptors . IPMP_Descriptors are referenced by ObjectDescriptors
or ES_Descriptors using IPMP_DescriptorPointers (see 8.6.12). An IPMP_Descriptor may be
referenced by multiple ObjectDescriptors or ES_Descriptors .

IPMP_DescriptorID - a unique ID for this IPMP descriptor within its name scope (see 8.7.2.4).

IPMPS_Type - the type of the IPMP System. A zero value does not correspond to an IPMP System but is used to
indicate the presence of a URL. A Registration Authority designated by ISO shall assign valid values for this field.

URLString[] - contains a UTF-8 [3] encoded URL that points to the location of a remote IPMP_Descriptor whose
IPMP_data shall be used in place of locally provided data.

IPMP_data - opaque data to control the IPMP System.

8.6.13.3 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC
in order to identify suitable organizations that will serve as the Registration Authority for the IPMPS_Type as
defined in this clause. The selected organization shall serve as the Registration Authority. The so-named
Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered
IPMPS_Type is hereafter referred to as the Registered Identifier (RID).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

34 © ISO/IEC 1999 – All rights reserved

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) that will review appeals filed by organizations whose request for an RID to be used in conjunction with
ISO/IEC 14496 has been denied by the Registration Authority.

Annex D provides information on the procedure for registering a unique IPMPS_Type value.

8.6.14 QoS_Descriptor

8.6.14.1 Syntax

class QoS_Descriptor extends BaseDescriptor : bit(8) tag=QoS_DescrTag {
bit(8) predefined;
if (predefined==0) {

QoS_Qualifier qualifiers[];
}

}

8.6.14.2 Semantics

The QoS_descriptor conveys the requirements that the ES has on the transport channel and a description of the
traffic that this ES will generate. A set of predefined values is to be determined; customized values can be used by
setting the predefined field to 0.

predefined – a value different from zero indicates a predefined QoS profile according to the table below.

Table 12 - Predefined QoS Profiles

predefined value description

0x00 Custom
0x01 - 0xff Reserved

qualifier – an array of one or more QoS_Qualifiers .

8.6.14.3 QoS_Qualifier

8.6.14.3.1 Syntax

abstract class QoS_Qualifier extends ExpandableBaseClass : bit(8) tag=0x01..0xff {
// empty. To be filled by classes extending this class.

}

class QoS_Qualifier_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x01 {
unsigned int(32) MAX_DELAY;

}

class QoS_Qualifier_PREF_MAX_DELAY extends QoS_Qualifier : bit(8) tag=0x02 {
unsigned int(32) PREF_MAX_DELAY;

}

class QoS_Qualifier_LOSS_PROB extends QoS_Qualifier : bit(8) tag=0x03 {
double(32) LOSS_PROB;

}

class QoS_Qualifier_MAX_GAP_LOSS extends QoS_Qualifier : bit(8) tag=0x04 {
unsigned int(32) MAX_GAP_LOSS;

}

class QoS_Qualifier_MAX_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x41 {
unsigned int(32) MAX_AU_SIZE;

}

class QoS_Qualifier_AVG_AU_SIZE extends QoS_Qualifier : bit(8) tag=0x42 {
unsigned int(32) AVG_AU_SIZE;

}

class QoS_Qualifier_MAX_AU_RATE extends QoS_Qualifier : bit(8) tag=0x43 {
unsigned int(32) MAX_AU_RATE;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 35

8.6.14.3.2 Semantics

QoS qualifiers are defined as derived classes from the abstract QoS_Qualifier class. They are identified by
means of their class tag. Unused tag values up to and including 0x7F are reserved for ISO use. Tag values from
0x80 up to and including 0xFE are user private. Tag values 0x00 and 0xFF are forbidden.

MAX_DELAY– Maximum end to end delay for the stream in microseconds.

PREF_MAX_DELAY– Preferred end to end delay for the stream in microseconds.

LOSS_PROB– Allowable loss probability of any single AU as a fractional value between 0.0 and 1.0.

MAX_GAP_LOSS– Maximum allowable number of consecutively lost AUs.

MAX_AU_SIZE– Maximum size of an AU in bytes.

AVG_AU_SIZE– Average size of an AU in bytes.

MAX_AU_RATE– Maximum arrival rate of AUs in AUs/second.

8.6.15 ExtensionDescriptor

8.6.15.1 Syntax

abstract class ExtensionDescriptor extends BaseDescriptor
: bit(8) tag = ExtDescrTagStartRange .. ExtDescrTagEndRange {

// empty. To be filled by classes extending this class.
}

8.6.15.2 Semantics

This class is an abstract base class that may be extended for defining additional descriptors in future. The available
range of class tag values allow ISO defined extensions as well as private extensions. A descriptor that allows to
aggregate ExtensionDescriptor classes may actually aggregate any of the classes that extend ExtensionDescriptor.
Extension descriptors may be ignored by a terminal that conforms to ISO/IEC 14496-1.

8.6.16 RegistrationDescriptor

The registration descriptor provides a method to uniquely and unambiguously identify formats of private data
streams.

8.6.16.1 Syntax

class RegistrationDescriptor extends BaseDescriptor : bit(8) tag=RegistrationDescrTag {
bit(32) formatIdentifier;
bit(8) additionalIdentificationInfo[sizeOfInstance-4];

}

8.6.16.2 Semantics

formatIdentifier – is a value obtained from a Registration Authority as designated by ISO.

additionalIdentificationInfo – The meaning of additionalIdentificationInfo , if any, is defined
by the assignee of that formatIdentifier , and once defined, shall not change.

The registration descriptor is provided in order to enable users of ISO/IEC 14496-1 to unambiguously carry
elementary streams with data whose format is not recognized by ISO/IEC 14496-1. This provision will permit
ISO/IEC 14496-1 to carry all types of data streams while providing for a method of unambiguous identification of
the characteristics of the underlying private data streams.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

36 © ISO/IEC 1999 – All rights reserved

In the following subclause and Annex D, the benefits and responsibilities of all parties to the registration of private
data format are outlined.

8.6.16.2.1 Implementation of a Registration Authority (RA)

ISO/IEC JTC 1/SC 29 shall issue a call for nominations from Member Bodies of ISO or National Committees of IEC
in order to identify suitable organizations that will serve as the Registration Authority for the formatIdentifier as
defined in this subclause. The selected organization shall serve as the Registration Authority. The so-named
Registration Authority shall execute its duties in compliance with Annex H of the JTC 1 Directives. The registered
private data formatIdentifier is hereafter referred to as the Registered Identifier (RID).

Upon selection of the Registration Authority, JTC 1 shall require the creation of a Registration Management Group
(RMG) which will review appeals filed by organizations whose request for an RID to be used in conjunction with
ISO/IEC 14496-1 has been denied by the Registration Authority.

Annex D provides information on the procedure for registering a unique format identifier.

8.6.17 Object Content Information Descriptors

8.6.17.1 Overview

This subclause defines the descriptors that constitute the object content information. These descriptors may either
be included in an OCI_Event in an OCI stream or be part of an ObjectDescriptor or ES_Descriptor as
defined in 8.6.1.

8.6.17.2 OCI_Descriptor Class

8.6.17.2.1 Syntax

abstract class OCI_Descriptor extends BaseDescriptor
: bit(8) tag= OCIDescrTagStartRange .. OCIDescrTagEndRange

{
// empty. To be filled by classes extending this class.

}

8.6.17.2.2 Semantics

This class is an abstract base class that is extended by the classes specified in the subsequent clauses. A
descriptor or an OCI_Event that allows to aggregate classes of type OCI_Descriptor may actually aggregate any of
the classes that extend OCI_Descriptor.

8.6.17.3 Content classification descriptor

8.6.17.3.1 Syntax

class ContentClassificationDescriptor extends OCI_Descriptor
: bit(8) tag= ContentClassificationDescrTag {

bit(32) classificationEntity;
bit(16) classificationTable;
bit(8) contentClassificationData[sizeOfInstance-6];

}

8.6.17.3.2 Semantics

The content classification descriptor provides one or more classifications of the event information. The
classificationEntity field indicates the organization that classifies the content. The possible values have to
be registered with a registration authority to be identified.

classificationEntity – indicates the content classification entity. The values of this field are to be defined by
a registration authority to be identified.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 37

classificationTable – indicates which classification table is being used for the corresponding classification.
The classification is defined by the corresponding classification entity. 0x00 is a reserved value.

contentClassificationData[] – this array contains a classification data set using a non-default
classification table.

8.6.17.4 Key Word Descriptor

8.6.17.4.1 Syntax

class KeyWordDescriptor extends OCI_Descriptor : bit(8) tag=KeyWordDescrTag {
int i;
bit(24) languageCode;
bit(1) isUTF8_string;
aligned(8) unsigned int(8) keyWordCount;
for (i=0; i<keyWordCount; i++) {

unsigned int(8) keyWordLength[[i]];
if (isUTF8_string) then {

bit(8) keyWord[[i]][keyWordLength[i]];
} else {

bit(16) keyWord[[i]][keyWordLength[i]];
}

}
}

8.6.17.4.2 Semantics

The key word descriptor allows the OCI creator/provider to indicate a set of key words that characterize the
content. The choice of the key words is completely free but each time the key word descriptor appears, all the key
words given are for the language indicated in languageCode . This means that, for a certain event, the key word
descriptor must appear as many times as the number of languages for which key words are to be provided.

languageCode – contains the ISO 639-2:1998 [1] bibliographic three character language code of the language of
the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

keyWordCount – indicates the number of key words to be provided.

keyWordLength – specifies the length in characters of each key word.

keyWord[] – a Unicode [3] encoded string that specifies the key word.

8.6.17.5 Rating Descriptor

8.6.17.5.1 Syntax

class RatingDescriptor extends OCI_Descriptor : bit(8) tag=RatingDescrTag {
bit(32) ratingEntity;
bit(16) ratingCriteria;
bit(8) ratingInfo[sizeOfInstance-6];

}

8.6.17.5.2 Semantics

This descriptor gives one or more ratings, originating from corresponding rating entities, valid for a specified
country. The ratingEntity field indicates the organization which is rating the content. The possible values have
to be registered with a registration authority to be identified. This registration authority shall make the semantics of
the rating descriptor publicly available.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

38 © ISO/IEC 1999 – All rights reserved

ratingEntity – indicates the rating entity. The values of this field are to be defined by a registration authority to
be identified.

ratingCriteria – indicates which rating criteria are being used for the corresponding rating entity. The value
0x00 is reserved.

ratingInfo[] – this array contains the rating information.

8.6.17.6 Language Descriptor

8.6.17.6.1 Syntax

class LanguageDescriptor extends OCI_Descriptor : bit(8) tag=LanguageDescrTag {
bit(24) languageCode;

}

8.6.17.6.2 Semantics

This descriptor identifies the language of the corresponding audio/speech or text object that is being described.

languageCode – contains the ISO 639-2:1998 [1] bibliographic three character language code of the
corresponding audio/speech or text object that is being described.

8.6.17.7 Short Textual Descriptor

8.6.17.7.1 Syntax

class ShortTextualDescriptor extends OCI_Descriptor : bit(8) tag=ShortTextualDescrTag {
bit(24) languageCode;
bit(1) isUTF8_string;
aligned(8) unsigned int(8) nameLength;
if (isUTF8_string) then {

bit(8) eventName[nameLength];
unsigned int(8) textLength;
bit(8) eventText[textLength];

} else {
bit(16) eventName[nameLength];
unsigned int(8) textLength;
bit(16) eventText[textLength];

}
}

8.6.17.7.2 Semantics

The short textual descriptor provides the name of the event and a short description of the event in text form.

languageCode – contains the ISO 639-2:1998 [1] bibliographic three character language code of the language of
the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

nameLength – specifies the length in characters of the event name.

eventName[] – a Unicode [3] encoded string that specifies the event name.

textLength – specifies the length in characters of the following text describing the event.

eventText[] – a Unicode [3] encoded string that specifies the text description for the event.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 39

8.6.17.8 Expanded Textual Descriptor

8.6.17.8.1 Syntax

class ExpandedTextualDescriptor extends OCI_Descriptor : bit(8) tag=ExpandedTextualDescrTag {
int i;
bit(24) languageCode;
bit(1) isUTF8_string;
aligned(8) unsigned int(8) itemCount;
for (i=0; i<itemCount; i++){

unsigned int(8) itemDescriptionLength[[i]];
if (isUTF8_string) then {

bit(8) itemDescription[[i]][itemDescriptionLength[i];
} else {

bit(16) itemDescription[[i]][itemDescriptionLength[i]];
}
unsigned int(8) itemLength[[i]];
if (isUTF8_string) then {

bit(8) itemText[[i]][itemLength[i]];
} else {

bit(16) itemText[[i]][itemLength[i]];
}

}
unsigned int(8) textLength;
int nonItemTextLength=0;
while( textLength == 255 ) {

nonItemTextLength += textLength;
bit(8) textLength;

}
nonItemTextLength += textLength;
if (isUTF8_string) then {

bit(8) nonItemText[nonItemTextLength];
} else {

bit(16) nonItemText[nonItemTextLength];
}

}

8.6.17.8.2 Semantics

The expanded textual descriptor provides a detailed description of an event, which may be used in addition to, or
independently from, the short event descriptor. In addition to direct text, structured information in terms of pairs of
description and text may be provided. An example application for this structure is to give a cast list, where for
example the item description field might be “Producer” and the item field would give the name of the producer.

languageCode - contains the ISO 639-2:1998 [1] bibliographic three character language code of the language of
the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

itemCount – specifies the number of items to follow (itemised text).

itemDescriptionLength – specifies the length in characters of the item description.

itemDescription[] – a Unicode [3] encoded string that specifies the item description.

itemLength – specifies the length in characters of the item text.

itemText[] – a Unicode [3] encoded string that specifies the item text.

textLength – specifies the length in characters of the non itemised expanded text. The value 255 is used as an
escape code, and it is followed by another textLength field that contains the length in bytes above 255. For
lengths greater than 511 a third field is used, and so on.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

40 © ISO/IEC 1999 – All rights reserved

nonItemText[] – a Unicode [3] encoded string that specifies the non itemised expanded text.

8.6.17.9 Content Creator Name Descriptor

8.6.17.9.1 Syntax

class ContentCreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreatorNameDescrTag {

int i;
unsigned int(8) contentCreatorCount;
for (i=0; i<contentCreatorCount; i++){

bit(24) languageCode[[i]];
bit(1) isUTF8_string[[i]];
aligned(8) unsigned int(8) contentCreatorLength[[i]];
if (isUTF8_string[[i]]) then {

bit(8) contentCreatorName[[i]][contentCreatorLength[i]];
} else {

bit(16) contentCreatorName[[i]][contentCreatorLength[i]];
}

}
}

8.6.17.9.2 Semantics

The content creator name descriptor indicates the name(s) of the content creator(s). Each content creator name
may be in a different language.

contentCreatorCount – indicates the number of content creator names to be provided.

languageCode – contains the ISO 639-2:1998 [1] bibliographic three character language code of the language of
the following text fields. Note that for languages that only use Latin characters, just one byte per character is
needed in Unicode [3].

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

contentCreatorLength[[i]] – specifies the length in characters of each content creator name.

contentCreatorName[[i]][] – a Unicode [3] encoded string that specifies the content creator name.

8.6.17.10 Content Creation Date Descriptor

8.6.17.10.1Syntax

class ContentCreationDateDescriptor extends OCI_Descriptor
: bit(8) tag= ContentCreationDateDescrTag {

bit(40) contentCreationDate;
}

8.6.17.10.2Semantics

This descriptor identifies the date of the content creation.

contentCreationDate – contains the content creation date of the data corresponding to the event in question,
in Universal Time, Co-ordinated (UTC) and Modified Julian Date (MJD) (see Annex F). This field is coded as 16 bits
giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary Coded Decimal
(BCD). If the content creation date is undefined all bits of the field are set to 1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 41

8.6.17.11 OCI Creator Name Descriptor

8.6.17.11.1Syntax

class OCICreatorNameDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreatorNameDescrTag {

int i;
unsigned int(8) OCICreatorCount;
for (i=0; i<OCICreatorCount; i++) {

bit(24) languageCode[[i]];
bit(1) isUTF8_string;
aligned(8) unsigned int(8) OCICreatorLength[[i]];
if (isUTF8_string) then {

bit(8) OCICreatorName[[i]][OCICreatorLength];
} else {

bit(16) OCICreatorName[[i]][OCICreatorLength];
}

}
}

8.6.17.11.2Semantics

The name of OCI creators descriptor indicates the name(s) of the OCI description creator(s). Each OCI creator
name may be in a different language.

OCICreatorCount – indicates the number of OCI creators.

languageCode[[i]] – contains the ISO 639-2:1998 [1] bibliographic three character language code of the
language of the following text fields.

isUTF8_string – indicates that the subsequent string is encoded with one byte per character (UTF-8). Else it is
two byte per character.

OCICreatorLength[[i]] – specifies the length in characters of each OCI creator name.

OCICreatorName[[i]] – a Unicode [3] encoded string that specifies the OCI creator name.

8.6.17.12 OCI Creation Date Descriptor

8.6.17.12.1Syntax

class OCICreationDateDescriptor extends OCI_Descriptor
: bit(8) tag=OCICreationDateDescrTag {

bit(40) OCICreationDate;
}

8.6.17.12.2Semantics

This descriptor identifies the creation date of the OCI description.

OCICreationDate - This 40-bit field contains the OCI creation date for the OCI data corresponding to the event
in question, in Co-ordinated Universal Time (UTC) and Modified Julian Date (MJD) (see Annex F). This field is
coded as 16 bits giving the 16 least significant bits of MJD followed by 24 bits coded as 6 digits in 4-bit Binary
Coded Decimal (BCD). If the OCI creation date is undefined all bits of the field are set to 1.

8.7 Rules for Usage of the Object Description Framework

8.7.1 Aggregation of Elementary Stream Descriptors in a Single Object Descriptor

8.7.1.1 Overview

An object descriptor shall aggregate the descriptors for the set of elementary streams that is intended to be
associated to a single node of the scene description and that usually relate to a single audio-visual object. The set

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

42 © ISO/IEC 1999 – All rights reserved

of streams may convey a scaleable content representation as well as multiple alternative content representations,
e.g., multiple qualities or different languages. Additional streams with IPMP and object content information may be
attached.

These options are described by the ES_Descriptor syntax elements streamDependenceFlag,
dependsOn_ES_ID , as well as streamType . The semantic rules for the aggregation of elementary stream
descriptors within one ObjectDescriptor (OD) are specified in this subclause.

8.7.1.2 Aggregation of Elementary Streams with the same streamType

An OD may aggregate multiple ES_Descriptors with the same streamType of either visualStream, audioStream or
SceneDescriptionStream. However, descriptors for streams with two of these types shall not be mixed within one
OD.

8.7.1.3 Aggregation of Elementary Streams with Different streamTypes

In the following cases ESs with different streamType may be aggregated:

� An OD may aggregate zero or one additional ES_Descriptor with streamType = ObjectContentInfoStream (see
8.4.2). This ObjectContentInfoStream shall be valid for the content conveyed through the other visual, audio or
scene description streams whose descriptors are aggregated in this OD.

� An OD may aggregate zero or one additional ES_Descriptors with streamType = ClockReferenceStream (see
10.2.5). This ClockReferenceStream shall be valid for the ES within the name scope that refer to the ES_ID of
this ClockReferenceStream in their SLConfigDescriptor.

� An OD may aggregate zero or more additional ES_Descriptors with streamType = IPMPStream (see 8.3.2).
This IPMPStream shall be valid for the content conveyed through the other visual, audio or scene description
streams whose descriptors are aggregated in this OD.

8.7.1.4 Aggregation of scene description streams and object descriptor streams

An object descriptor that aggregates one or more ES_Descriptors of streamType = SceneDescriptionStream may
aggregate any number of additional ES_Descriptors with streamType = ObjectDescriptorStream. ES_Descriptors
of streamType = ObjectDescriptorStream shall not be aggregated in object descriptors that do not contain
ES_Descriptors of streamType = SceneDescriptionStream.

This means that scene description and object descriptor streams are always combined within one object descriptor.
The dependencies between these streams are defined in 8.7.1.5.2.

8.7.1.5 Elementary Stream Dependencies

8.7.1.5.1 Independent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream or
SceneDescriptionStream that have streamDependenceFlag=0 refer to independent elementary streams. Such
independent elementary streams shall convey alternative representations of the same content. Only one of these
representations shall be selected for use in the scene.

NOTE — Independent ESs should be ordered within an OD according to the content creator’s preference. The ES that is first in
the list of ES aggregated to one object descriptor should be preferable over an ES that follows later. In case of audio streams,
however, the selection should for obvious reasons be done according to the prefered language of the receiving terminal.

8.7.1.5.2 Dependent elementary streams

ES_Descriptors within one OD with the same streamType of either audioStream, visualStream,
SceneDescriptionStream or ObjectDescriptorStream that have streamDependenceFlag=1 refer to dependent
elementary streams. The ES_ID of the stream on which the dependent elementary stream depends is indicated by
dependsOn_ES_ID . The ES_Descriptor with this ES_ID shall be aggregated to the same OD. One independent

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 43

elementary stream per object descriptor and all its dependent elementary streams may be selected for concurrent
use in the scene.

Stream dependencies are governed by the following rules:

� For dependent ES of streamType equal to either audioStream or visualStream the dependent ES shall have
the same streamType as the ES on which it depends. This implies that the dependent stream contains
enhancement information to the one it depends on. The precise semantic meaning of the dependencies is
opaque at this layer.

� An ES with a streamType of SceneDescriptionStream shall only depend on an ES with streamType of
SceneDescriptionStream or ObjectDescriptorStream.

� Dependency on an ObjectDescriptorStream implies that the ObjectDescriptorStream contains the object
descriptors that are refered to by this SceneDescriptionStream.

� Dependency on a SceneDescriptionStream implies that the dependent stream contains enhancement
information to the one it depends on. The dependent SceneDescriptionStream shall depend on the same
ObjectDescriptorStream on which the other SceneDescriptionStream depends.

� An ES with a streamType of ObjectDescriptorStream shall only depend on an ES with a streamType of
SceneDescriptionStream. This dependency does not have implications for the object descriptor stream.

� Only if a second stream with streamType of SceneDescriptionStream depends on this stream with
streamType = ObjectDescriptorStream, it implies that the second SceneDescriptionStream depends on the
first SceneDescriptionStream. The object descriptors in the ObjectDescriptorStream shall only be valid for the
second SceneDescriptionStream.

� An ES that flows upstream, as indicated by DecoderConfigDescriptor.upStream = 1 shall always
depend upon another ES that has the upStream flag set to zero. This implies that this upstream is associated
to the downstream it depends on.

� The availability of the dependent stream is undefined if an ES_Descriptor for the stream it depends upon is not
available.

8.7.2 Linking Scene Description and Object Descriptors

8.7.2.1 Associating Object Descriptors to BIFS Nodes

Some BIFS nodes contain an url field. Such nodes are associated to their elementary stream resources (if any) via
an object descriptor. The association is established by means of the objectDescriptorID , as specified in
9.3.7.18.2. The name scope for this ID is specified in 8.7.2.4.

Each BIFS node requires a specific streamType (audio, visual, inlined scene description, etc.) for its associated
elementary streams. The associated object descriptor shall contain ES_Descriptors with this streamType. The
behavior of the terminal is undefined if an object descriptor contains ES_Descriptors with stream types that are
incompatible with the associated BIFS node.

Note that commands adding or removing object descriptors need not be co-incident in time with the addition or
removal of BIFS nodes in the scene description that refer to such an object descriptor. However, the behavior of
the terminal is undefined if a BIFS node in the scene description references an object descriptor that is no longer
valid.

The terminal shall gracefully handle references from the scene description to object descriptors that are not
currently available.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

44 © ISO/IEC 1999 – All rights reserved

8.7.2.2 Multiple scene description and object description streams

An object descriptor that is associated to an Inline node of the scene description or that represents the primary
access to content compliant with the ISO/IEC 14496 specifications (initial object descriptor) aggregates as a
minimum, one scene description stream and the corresponding object descriptor stream (if additional elementary
streams need to be referenced).

However, it is permissible to split both the scene description and the object descriptors in multiple streams. This
allows a bandwidth-scaleable encoding of the scene description. Each stream shall contain a valid sequence of
access units as defined in 9.2.1.3 and 8.5.2, respectively. All resulting scene description streams and object
descriptor streams shall remain aggregated in a single object descriptor. The dependency mechanism shall be
used to indicate how the streams depend on each other.

All streams shall continue to be processed by a single scene description and object descriptor decoding process,
respectively. The time stamps of the access units in different streams shall be used to re-establish the original
order of access units.

NOTE — This form of partitioning of the scene description and the object descriptor streams in multiple streams is not visible in
the scene description itself.

8.7.2.3 Scene and Object Description in Case of Inline Nodes

The BIFS scene description allows to recursively partition a scene through the use of Inline nodes (see 9.4.2.52).
Each Inline node is associated to an object descriptor that points to at least one additional scene description
stream as well as another object descriptor stream (if additional elementary streams need to be referenced). An
example for such a hierarchical scene description can be found in Figure 6.

8.7.2.4 Name Scope of Identifiers

The scope of the objectDescriptorID, ES_ID and IPMP_DescriptorID identifiers that label the object
descriptors, elementary stream descriptors and IPMP descriptors, respectively, is defined as follows. This definition
is based on the restriction that associated scene description and object descriptor streams shall always be
aggregated in a single object descriptor, as specified in 8.7.1.4. The following rule defines the name scope:

� Two objectDescriptorID , ES_ID or IPMP_DescriptorID as well as nodeID and ROUTEID identifiers
belong to the same name scope if and only if these identifiers occur in elementary streams with a streamType
of either ObjectDescriptorStream or SceneDescriptionStream that are aggregated in a single object descriptor.

NOTE 1 — Hence, the difference between the two methods specified in 8.7.2.2 and 8.7.2.3 above to partition a scene
description in multiple streams is that the first method allows multiple scene description streams that refer to the same name
scope while an Inline node opens a new name scope.

NOTE 2 — This implies that a URL in an object descriptor opens a new name scope since it points to an object descriptor that is
not carried in the same ObjectDescriptorStream.

8.7.2.5 Reuse of identifiers

For reasons of error resilience, it is recommended not to reuse objectDescriptorID and ES_ID identifiers to
identify more than one object or elementary stream, respectively, within one presentation. That means, if an object
descriptor or elementary stream descriptor is removed by means of an OD command and later on reinstalled with
another OD command, then it shall still point to the same content item as before.

8.7.3 ISO/IEC 14496 Content Access

8.7.3.1 Introduction

In order to access ISO/IEC 14496 compliant content it is a pre-condition that an initial object descriptor to such
content is known through means outside the scope of ISO/IEC 14496. The subsequent content access procedure
is specified conceptually, using a number of walk throughs. Its precise definition depends on the chosen delivery
layer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 45

For applications that implement the DMIF Application Interface (DAI) specified in ISO/IEC 14496-6 which abstracts
the delivery layer, a mapping of the conceptual content access procedure to calls of the DAI is specified in 8.7.3.9.

The content access procedure determines the set of required elementary streams, requests their delivery and
associates them to the scene description. The selection of a subset of elementary streams suitable for a specific
ISO/IEC 14496 terminal is possible, either based on profiles or on inspection of the set of object descriptors.

8.7.3.2 The Initial Object Descriptor

Initial object descriptors convey information about the profiles required by the terminal compliant with ISO/IEC
14496 specifications to be able to process the described content. This profile information summarizes the
complexity of the content referenced directly or indirectly through this initial object descriptor, i.e., it indicates the
overall terminal capabilities required to decode and present this content. Therefore initial object descriptors
constitute self-contained access points to content compliant with ISO/IEC 14496 specifications.

There are two constraints to this general statement:

� If the includeInlineProfileLevelFlag of the initial object descriptor is not set, the complexity of any
inlined content is not included in the profile indications.

� In addition to the elementary streams that are decodable by the terminal conforming to the indicated profiles,
alternate content representations might be available. This is further explained in 8.7.3.4.

An initial object descriptor may be conveyed by means not defined in ISO/IEC 14496. The content may be
accessed starting from the elementary streams that are described by this initial object descriptor, usually one or
more scene description streams and zero or more object descriptor streams.

Content refered to by an initial object descriptor may itself be referenced from another piece of ISO/IEC 14496
content. In this case, the initial object descriptor will be conveyed in an object descriptor stream.

Ordinary object descriptors may be used as well to describe scene description and object descriptor streams.
However, since they do not carry profile information, they can only be used to access content if that information is
either not required by the terminal or is obtained by other means.

8.7.3.3 Usage of URLs in the Object Descriptor Framework

URLs in the object description framework serve to locate either inlined ISO/IEC 14496 content or the elementary
stream data associated to individual audio-visual objects.

URLs in ES_Descriptors locate elementary stream data that shall be delivered as SL-packetized stream by the
delivery entity associated to the current name scope. The complete description of the stream (its ES_Descriptor) is
available locally.

URLs in object descriptors locate an object descriptor at a remote location. Only the content of this object
descriptor shall be returned by the delivery entity upon access to this URL. This implies that the description of the
resources for the associated BIFS node or the inlined content is only available at the remote location. Note,
however, that depending on the value of includeInlineProfileLevelFlag in the initial object descriptor, the
global resources needed may already be known (i.e., including remote, inlined portions).

8.7.3.4 Selection of Elementary Streams for an Audio-Visual Object

Elementary streams are attached through their object descriptor to appropriate BIFS nodes which, in most cases,
constitute the representation of a single audio-visual object in the scene. The selection of one or more ESs for each
BIFS node may be governed by the profile indications that are conveyed in the initial object descriptor. All object
descriptors shall at least include one elementary stream with suitable object type to satisfy the initially signaled
profiles.

Additionally, object descriptors may aggregate ES_Descriptors for elementary streams that require more computing
or bandwidth resources. Those elementary streams may be used by the receiving terminal if it is capable of
processing them.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

46 © ISO/IEC 1999 – All rights reserved

In case initial object descriptors do not indicate any profile and level or if profile and level indications are
disregarded, an alternative to the profile driven selection of streams exists. The receiving terminal may evaluate the
ES_Descriptors of all available elementary streams for each BIFS node and choose by some non-standardized
way for which subset it has sufficient resources to decode them while observing the constraints specified in this
subclause.

NOTE — Some restrictions on the selection of and access to elementary streams might exist if a set of elementary streams
shares a single object time base (see 10.2.6).

8.7.3.5 Content access in “push” and “pull” scenarios

In an interactive, or “pull” scenario, the receiving terminal actively requests the establishment of sessions and the
delivery of content, i.e., streams. This usually involves a session and channel set up protocol between sender and
receiver. This protocol is not specified here. However, the conceptual steps to be performed are the same in all
cases and are specified in the subsequent clauses.

In a broadcast, or “push” scenario, the receiving terminal passively processes what it receives. Instead of issuing
requests for session or channel set up the receiving terminal shall evaluate the relevant descriptive information that
associates ES_IDs to their transport channel. The syntax and semantics of this information is outside the scope of
ISO/IEC 14496, however, it needs to be present in any delivery layer implementation. This allows the terminal to
gain access to the elementary streams forming part of the content.

8.7.3.6 Content access through a known Object Descriptor

8.7.3.6.1 Pre-conditions

� An object descriptor has been acquired. This may be an initial object descriptor.

� The object descriptor contains ES_Descriptors pointing to object descriptor stream(s) and scene description
stream(s) using ES_IDs.

� A communication session to the source of these streams is established.

� A mechanism exists to open a channel that takes user data as input and provides some returned data as output.

8.7.3.6.2 Content Access Procedure

The content access procedure shall be equivalent to the following:

1. The object descriptor is evaluated and the ES_ID for the streams that are to be opened are determined.

2. Requests for opening the selected ESs are made, using a suitable channel set up mechanism with the ES_IDs
as parameter.

3. The channel set up mechanism shall return handles to the streams that correspond to the requested list of ESs.

4. Requests for delivery of the selected ESs are made.

5. Interactive scenarios: Delivery of streams starts. All scenarios: The streams now become accessible.

6. Scene description and object descriptor stream are evaluated.

7. Further streams are opened as needed with the same procedure, starting at step 1.

8.7.3.7 Content access through a URL in an Object Desciptor

8.7.3.7.1 Pre-conditions

� A URL to an object descriptor or an initial object descriptor has been acquired.

� A mechanism exists to open a communication session that takes a URL as input and provides some returned
data as output.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 47

8.7.3.7.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. A connection to the source of the URL is made, using a suitable service set up call.

2. The service set up call shall return data consisting of a single object descriptor.

3. Continue at step 1 in 8.7.3.6.2.

8.7.3.8 Content access through a URL in an elementary stream descriptor

8.7.3.8.1 Pre-conditions

� An ES_Descriptor pointing to a stream through a URL has been aquired. (Note that the ES_Descriptor fully
specifies the configuration of the stream.)

� A mechanism exists to open a channel that takes a URL as input and provides some returned data as output.

8.7.3.8.2 Content access procedure

The content access procedure shall be equivalent to the following:

1. Request to open the stream is made, using a suitable channel set up mechanism with the URL as parameter.

2. The channel set up mechanism shall return a handle to the stream that corresponds to the requested URL.

3. Requests for delivery of the selected stream are made.

4. Interactive scenarios: Delivery of stream starts. All scenarios: The stream now becomes accessible.

EXAMPLE � Access to Complex Content

The example in Figure 6 shows a complex piece of ISO/IEC 14496 content, consisting of three parts. The upper part is a scene
accessed through its initial object descriptor. It contains, among others a visual and an audio stream. A second part of the scene
is inlined and accessed through its initial object descriptor that is pointed to (via URL) in the object descriptor stream of the first
scene. Utilization of the initial object descriptor allows the signaling of profile information for the second scene. Therefore this
scene may also be used without the first scene. The second scene contains, among others, a scaleably encoded visual object
and an audio object. A third scene is inlined and accessed via the ES_IDs of its object descriptor and scene description
streams. These ES_IDs are known from an object descriptor conveyed in the object descriptor stream of the second scene.
Note that this third scene is not accessed through an initial object descriptor. Therefore the profile information for this scene
need to be included in the profile information for the second scene.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

48 © ISO/IEC 1999 – All rights reserved

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Visual Stream

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

initial
ObjectDescriptor

initial
ObjectDescriptor

ES_DescrES_Descr

ES_DescrES_Descr

Object
Descriptor

Object
Descriptor

Initial
Object

Descriptor

URL

Initial
Object

Descriptor

URL

ObjectDescriptorUpdate

ES_DES_D

... ...

......

e.g.Movie
Texture

e.g.Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g.Audio
Source

e.g.Audio
Source

InlineInline

Audio Stream

Visual Stream (e.g. temporal enhancement)

Visual Stream (e.g. base layer)

Scene Description Stream

Object Descriptor Stream

ObjectDescriptorID

ES_ID

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D
ES_DES_D

ES_DES_D

... ...

......

Audio Stream

Scene Description Stream

Object Descriptor Stream

Scene Description

ES_ID

ES_ID

ES_ID

ObjectDescriptorObjectDescriptor

ES_DescriptorES_Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

Object
Descriptor

ObjectDescriptorUpdate

ES_DES_D

... ...

......

BIFS Command (Replace Scene)

e.g.Audio
Source

e.g.Audio
Source

Audio Stream

ES_DES_D

e.g.Movie
Texture

e.g.Movie
Texture

Scene Description

BIFS Command (Replace Scene)

e.g.Audio
Source

e.g.Audio
Source

InlineInline

Figure 6 - Complex content example

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 49

8.7.3.9 Mapping of Content Access Procedure to DAI calls

The following two DAI primitives, quoted from ISO/IEC 14496-6, subclause 10.4, are required to implement the
content access procedure described in 8.7.3.6 to 8.7.3.8:

DA_ServiceAttach (IN: URL, uuDataInBuffer, uuDataInLen;
OUT: response, serviceSessionId, uuDataOutBuffer, uuDataOutLen)

DA_ChannelAdd (IN: serviceSessionId, loop(qosDescriptor, direction, uuDataInBuffer, uuDataInLen);
OUT: loop(response, channelHandle, uuDataOutBuffer, uuDataOutLen))

DA_ServiceAttach is used to implement steps 1 and 2 of 8.7.3.7.2. The URL shall be passed to the IN: URL
parameter. UuDataInBuffer shall remain empty. The returned serviceSessionId shall be kept for future reference to
this URL. UuDataOutBuffer shall contain a single object descriptor.

DA_ChannelAdd is used to implement steps 2 and 3 of 8.7.3.6.2. serviceSessionId shall be the identifier for the
service session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed.
QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream
channels according to the DecoderConfigDescriptor.upstream flag. UuDataInBuffer shall contain the ES_ID
of this ES_Descriptor. On successful return, channelHandle shall contain a valid, however, not normative handle to
the accessible stream.

DA_ChannelAdd is used to implement steps 1 and 2 of 8.7.3.8.2. serviceSessionId shall be the identifier for the
service session that has supplied the object descriptor that includes the ES_Descriptor that is currently processed.
QosDescriptor shall be the QoS_Descriptor of this ES_Descriptor, direction shall indicate upstream or downstream
channels according to the DecoderConfigDescriptor.upstream flag. UuDataInBuffer shall contain the URL
of this ES_Descriptor. On successful return, channelHandle shall contain a valid, however, not normative handle to
the accessible stream.

NOTE1 — It is a duty of the service to discriminate between the two cases with either ES_ID or URL as parameters to
uuDataInBuffer in DA_ChannelAdd.

NOTE2 � Step 4 in 8.7.3.6.2 and step 3 in 8.7.3.8.2 are currently not mapped to a DAI call in a normative way. It may be
implemented using the DA_UserCommand() primitive.

The set up example in the following figure conveys an initial object descriptor that points to one
SceneDescriptionStream, an optional ObjectDescriptorStream and additional optional SceneDescriptionStreams or
ObjectDescriptorStreams. The first request to the DAI will be a DA_ServiceAttach() with the content address as a
parameter. This call will return an initial object descriptor. The ES_IDs in the contained ES_Descriptors will be used
as parameters to a DA_ChannelAdd() that will return handles to the corresponding channels.

Additional streams (if any) that are identified when processing the content of the object descriptor stream(s) are
subsequently opened using the same procedure. The object descriptor stream is not required to be present if no
further audio- or visual streams or inlined scene description streams form part of the content.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

50 © ISO/IEC 1999 – All rights reserved

Content Address

Initial

Object

Descriptor

�

�

�

D

A

I

�

�

�

ES_descriptor (optional)
for ObjectDescriptorStream

ES_ID_a

ES_descriptor
for SceneDescriptionStream

ES_descriptor (optional)
for SceneDescriptionStream
or ObjectDescriptorStream

ES_ID_b

ES_ID_x

handle for
ObjectDescriptorStream

handle for
SceneDescriptionStream

handle for
SceneDescriptionStream or
ObjectDescriptorStream

Figure 7 - Requesting stream delivery through the DAI

8.8 Usage of the IPMP System interface

8.8.1 Overview

IPMP elementary streams and descriptors may be used in a variety of ways. For instance, IPMP elementary
streams may convey time-variant IPMP information such as keys that change periodically. An IPMP elementary
stream may be associated with a given elementary stream or set of elementary streams. Similarly, IPMP
descriptors may be used to convey time-invariant or slowly changing IPMP information associated with a given
elementary stream or set of elementary streams. This subclause specifies methods how to associate an IPMP
system to an elementary stream or a set of elementary streams.

8.8.2 Association of an IPMP System with IS0/IEC 14496 content

8.8.2.1 Association in the initial object descriptor

An IPMP System may be associated with ISO/IEC 14496 content in the initial object descriptor. In that case the
initial object descriptor shall aggregate in addition to the ES_Descriptors for scene description and object descriptor
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the elementary streams that are described through this initial object descriptor are governed by the one or more
IPMP Systems that are identified within the one or more IPMP streams.

8.8.2.2 Association in other object descriptors

An IPMP System may be associated with ISO/IEC 14496 content in an object descriptor in three ways:

In the first case, the object descriptor aggregates in addition to the ES_Descriptors for the content elementary
streams one or more ES_Descriptors that reference one or more IPMP elementary streams. This implies that all
the content elementary streams described through this object descriptor are governed by the one or more IPMP
Systems that are identified within the one or more IPMP streams. Note that an ES_Descriptor that describes an
IPMP stream may contain references to IPMP_Descriptors.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 51

The second method is to include one or more IPMP_DescriptorPointers in the object descriptor. This implies that all
content elementary streams described by this object descriptor are governed by the IPMP System(s) that is/are
identified within the referenced IPMP descriptor(s).

The third method is to include IPMP_DescriptorPointers in the ES_Descriptors embedded in this object descriptor.
This implies that the elementary stream referenced by such an ES_Descriptor is controlled by an IPMP System.

8.8.3 IPMP of Object Descriptor streams

Object Descriptor streams shall not be affected by IPMP Systems, i.e., they shall always be available without
protection.

An IPMP_Descriptor associated with an object descriptor stream through an IPMP_DescriptorPointer implies that
an IPMP System controls all elementary streams that are referred to by this object descriptor stream.

8.8.4 IPMP of Scene Description streams

Scene description streams are treated like any media stream, i.e. they may be managed by an IPMP System.

An IPMP_Descriptor associated with a scene description stream implies that the IPMP System controls this scene
description stream.

There are two ways to protect part of a scene description (or to apply different IPMP Systems to different
components of a given scene):

The first method exploits the fact that it is permissible to have more than one scene description stream associated
with one object descriptor (see 8.7.2.2). Such a split of the scene description can be freely designed by a content
author, for example, putting a basic scene description into the first stream and adding one or more additional scene
description streams that enhance this basic scene using BIFS updates.

The second method is to structure the scene using one or more Inline nodes (see 9.4.2.52). Each Inline node
refers to one or more additional scene description streams, each of which might use a different IPMP System.

8.8.5 Usage of URLs in managed and protected content

8.8.5.1 URLs in the BIFS Scene Description

ISO/IEC 14496 does not specify compliance points for content that uses BIFS URLs that do not point to an object
descriptor. Equally, no normative way to apply an IPMP System to such links exists. The behavior of an IPMP-
enabled terminal that encounters such links is undefined.

8.8.5.2 URLs in Object Descriptors

URLs in object descriptors point to other remote object descriptors. This merely constitutes an indirection and
should not adversely affect the behavior of the IPMP System that might be invoked through this remote object
descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective actions
to guard against this condition are not in the scope of ISO/IEC 14496.

8.8.5.3 URLs in ES_Descriptors

URLs in ES descriptors are used to access elementary streams remotely. This merely constitutes an indirection
and therefore does not adversely affect the behavior of the IPMP System that might be invoked through this remote
object descriptor.

NOTE — The only difference is that while the original site might be trusted, the referred one might not. Further corrective actions
to guard against this condition are not in the scope of ISO/IEC 14496.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

52 © ISO/IEC 1999 – All rights reserved

8.8.6 IPMP Decoding Process

Audio DB
Audio

Decode

IPMP DB

Video DB
Video

Decode
Video CB

C
om

posite
Elementary Stream Interface

BIFS DB

Audio CB

IPMP System(s)

OD DB
OD

Decode

BIFS
Decode

IPMP-ES

Decoded
BIFS BIFS Tree

IPMP-Ds

DMIF

D
M

U
X

Possible IPMP
Control Points

R
ender

Figure 8 - IPMP system in the ISO/IEC 14496 terminal architecture

Figure 8 depicts the injection of an IPMP System with respect to the MPEG-4 terminal. IPMP System specific data
is supplied to the IPMP System via IPMP streams and/or IPMP descriptors, and the IPMP system releases
protected content after the sync layer.

Each elementary stream under the control of an IPMP System has the conceptual element of a stream flow
controller. Stream flow control can take place between the the SyncLayer decoder and the decoder buffer. As the
figure indicates, elements of IPMP control may take place at other points in the terminal including, after decoding
(as with some watermarking systems) or in the decoded BIFS stream, or after the composition buffers have been
written, or in the BIFS scene tree. Stream flow controllers either enable or disable processing of an elementary
stream in a non-normative way that depends on the status information provided by the IPMP System.

Finally, the IPMP System must at a minimum:

1. Process the IPMP stream and descriptor

2. Appropriately manage (e.g. decrypt and release) protected elementary streams.

The initialization process of the IPMP System is not specified except that it shall not unduly delay the content
access process as specified in 8.7.3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 53

9 Scene Description

9.1 Introduction

9.1.1 Scope

ISO/IEC 14496 addresses the coding of audio-visual objects of various types: natural video and audio objects as
well as textures, text, 2- and 3-dimensional graphics, and also synthetic music and sound effects. To reconstruct a
multimedia scene at the terminal, it is hence not sufficient to transmit the raw audio-visual data to a receiving
terminal. Additional information is needed in order to combine this audio-visual data at the terminal and construct
and present to the end user a meaningful multimedia scene. This information, called scene description, determines
the placement of audio-visual objects in space and time and is transmitted together with the coded objects as
illustrated in Figure 9. Note that the scene description only describes the structure of the scene. The action of
assembling these objects in the same representation space is called composition. The action of transforming these
audio-visual objects from a common representation space to a specific presentation device (i.e., speakers and a
viewing window) is called rendering.

multiplexed
downstream control / data

multiplexed
upstream control / data

audiovisual
presentation

3D objects

2D background

voice

sprite

hypothetical viewer

projection

video
compositor

plane

audio
compositor

scene
coordinate

system
x

y

z user events

audiovisual

speaker display
user input

Figure 9 - An example of an object-based multimedia scene

Independent coding of different objects may achieve higher compression, and also brings the ability to manipulate
content at the terminal. The behaviors of objects and their response to user inputs can thus also be represented in
the scene description.

The scene description framework used in ISO/IEC 14496-1 is based largely on ISO/IEC 14772-1:1998 (Virtual
Reality Modeling Language – VRML) [10].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

54 © ISO/IEC 1999 – All rights reserved

9.1.2 Composition and Rendering

ISO/IEC 14496-1 defines the syntax and semantics of bitstreams that describe the spatio-temporal relationships of
audio-visual objects. For visual data, particular composition algorithms are not mandated since they are
implementation-dependent; for audio data, subclause 9.2.2.13 and the semantics of the AudioBIFS nodes
normatively define the composition process. The manner in which the composed scene is presented to the user is
not specified for audio or visual data. The scene description representation is termed “BInary Format for Scenes”
(BIFS).

9.1.3 Scene Description

In order to facilitate the development of authoring, editing and interaction tools, scene descriptions are coded
independently from the audio-visual media that form part of the scene. This permits modification of the scene
without having to decode or process in any way the audio-visual media. The following clauses detail the scene
description capabilities that are provided by ISO/IEC 14496-1.

9.1.3.1 Grouping of audio-visual objects

A scene description follows a hierarchical structure that can be represented as a graph. Nodes of the graph form
audio-visual objects, as illustrated in Figure 10. The structure is not necessarily static; nodes may be added,
deleted or be modified.

scene

globe desk

person audiovisual
presentation

2D background furniture

voice sprite

Figure 10 - Logical structure of example scene

9.1.3.2 Spatio-Temporal positioning of objects

Audio-visual objects have both a spatial and a temporal extent. Complex audio-visual objects are constructed by
combining appropriate scene description nodes to build up the scene graph. Audio-visual objects may be located in
2D or 3D space. Each audio-visual object has a local co-ordinate system. A local co-ordinate system is one in
which the audio-visual object has a pre-defined (but possibly varying) spatio-temporal location and scale (size and
orientation). Audio-visual objects are positioned in a scene by specifying a co-ordinate transformation from the
object’s local co-ordinate system into another co-ordinate system defined by a parent node in the scene graph.

9.1.3.3 Attributes of audio-visual objects

Scene description nodes expose a set of parameters through which aspects of their appearance and behavior can
be controlled.

EXAMPLE � the volume of a sound; the color of a synthetic visual object; the source of a streaming video.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 55

9.1.3.4 Behavior of audio-visual objects

ISO/IEC 14496-1 provides tools for enabling dynamic scene behavior and user interaction with the presented
content. User interaction can be separated into two major categories: client-side and server-side. Client-side
interaction is an integral part of the scene description described herein. Server-side interaction is not dealt with.

Client-side interaction involves content manipulation that is handled locally at the end-user’s terminal. It consists of
the modification of attributes of scene objects according to specified user actions.

EXAMPLE � A user can click on a scene to start an animation or video sequence. The facilities for describing such interactive
behavior are part of the scene description, thus ensuring the same behavior in all terminals conforming to ISO/IEC 14496-1.

9.2 Concepts

9.2.1 BIFS Elementary Streams

9.2.1.1 Overview

BIFS is a compact binary format representing a pre-defined set of audio-visual objects, their behaviors, and their
spatio-temporal relationships. The BIFS scene description may, in general, be time-varying. Consequently, BIFS
data is carried in a dedicated elementary stream and is subject to the provisions of the systems decoder model
(see clause 7). Portions of BIFS data that become valid at a given point in time are contained in BIFS
CommandFrames or AnimationFrames and are delivered within time-stamped access units. Note that the initial
BIFS scene is sent as a BIFS-Command, although it is not required, in general, that a BIFS CommandFrame
contains a complete BIFS scene description.

9.2.1.2 BIFS Decoder Configuration

BIFS configuration information is contained in a BIFSConfig (see 9.3.5.2) syntax structure, which is transmitted
as DecoderSpecificInfo for the BIFS elementary stream in the corresponding object descriptor (see 8.6.6).
This gives basic information that must be known by the terminal in order to parse the BIFS elementary stream. In
particular, it indicates whether the stream consists of BIFS-Command or BIFS-Anim entities.

9.2.1.3 BIFS Access Units

A BIFS data access unit consists of one BIFS CommandFrameor AnimationFrame , as defined in 9.3.6.2 and
9.3.8.2, respectively. The BIFS CommandFrame or AnimationFrame shall convey all the data that is to be
processed at any given instant in time. Access units in BIFS streams shall be labelled and time-stamped by
suitable means. This shall be done via the related flags and the composition time stamps (CTS), respectively, in the
SL packet header (see 10.2.4). The composition time indicates the point in time at which the CommandFrameor
AnimationFrame embedded in a BIFS access unit shall become valid. This means that any changes to audio-
visual objects that are described in the BIFS access unit will become visible or audible at precisely this time in an
ideal compositor, unless a different behavior is specified by the fields of their nodes. Decoding and composition
time for a BIFS access unit shall always have the same value.

An access unit does not necessarily convey a complete scene. In that case it just modifies the persistent state of
the scene description. However, if an access unit conveys a complete scene as required at a given point in time it
shall set the randomAccessPointFlag in the SL packet header to ‘1’ for this access unit. Otherwise, the
randomAccessPointFlag shall be set to ‘0’.

9.2.1.4 Time base for BIFS streams

The time base associated to a BIFS stream shall be indicated by suitable means. This shall be done by means of
object clock reference time stamps in the SL packet headers (see 10.2.4) for this stream or by indicating the
elementary stream from which this BIFS stream inherits the time base (see 10.2.3). All time stamps in the SL-
packetized BIFS stream refer to this time base.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

56 © ISO/IEC 1999 – All rights reserved

9.2.1.5 Multiple BIFS streams

Scene description data may be conveyed in more than one BIFS elementary streams. Two distinct mechanisms
exist to associate a set of BIFS elementary streams to a single scene.

The first method uses Inline nodes (see 9.4.2.52) in a BIFS scene description. Each such node refers to further
BIFS elementary streams. In this case, multiple BIFS streams have a hierarchical dependency. Each Inline node
opens a new name scope for the identifiers used to label BIFS elements (nodeID , ROUTEID,
objectDescriptorID ). Therefore, it is not possible to pass events between parts of a scene that reside below
different Inline nodes.

EXAMPLE 1 � An application of hierarchical BIFS streams is a multi-user virtual conferencing scene, where sub-scenes
originate from different sources. Usually, it is neither possible nor useful to specify interaction between two such disjoint parts of
the scene.

The second method to associate multiple BIFS elementary streams to a single scene is to group their elementary
stream descriptors in a single object descriptor (see 8.7.2.2). In this case, these BIFS streams share the same
scope for the identifiers they use (nodeID , ROUTEID, objectDescriptorID ). This allows a single scene to be
partitioned into multiple streams.

EXAMPLE 2 � An application may offer a presentation with different levels of detail, corresponding to different data rates and
different computational complexity. By sharing the same name scope, the more detailed scene description can build on the
simple one, rather than sending the entire scene again.

9.2.1.6 Time

9.2.1.6.1 Time-dependent nodes

The semantics of the loop , startTime and stopTime exposedFields and the isActive eventOut in time-
dependent nodes are as described in ISO/IEC 14772-1:1998, subclause 4.6.9 [10]. startTime , stopTime and
loop apply only to the local start, pause and restart of media and do not affect the delivery of the stream attached
to the time dependent node. ISO/IEC 14496-1 has the following time-dependent nodes: AnimationStream ,
AudioBuffer , AudioClip , AudioSource , MovieTexture and TimeSensor .

9.2.1.6.2 Time fields in BIFS nodes

Several BIFS nodes have fields of type SFTime that identify a point in time at which an event occurs (change of a
parameter value, start of a media stream, etc). Depending on the individual field semantics, these fields may
contain time values that refer either to an absolute position on the time line of the BIFS stream or that define a time
duration.

As defined in 9.2.1.4, the speed of the flow of time for events in a BIFS stream is determined by the time base of
the BIFS stream. This determines unambiguously durations expressed by relative SFTime values like the
cycleTime field of the TimeSensor node.

The semantics of some SFTime fields is such that the time values shall represent an absolute position on the time
line of the BIFS stream (e.g. startTime in MovieTexture ). This absolute position is defined as follows:

Each node in the scene description has an associated point in time at which it is inserted in the scene graph or at
which an SFTime field in such a node is updated through a CommandFrame in a BIFS access unit (see 9.2.1.3).
The value in the SFTime field is the positive offset from this point in time in seconds. Negative values are not
permitted. The absolute position on the time line shall therefore be calculated as the sum of the CTS value of the
BIFS access unit and the value of the SFTime field.

NOTE 1 — Absolute time in ISO/IEC 14772-1:1998 is defined slightly differently. Due to the non-streamed nature of the scene
description in that case, absolute time corresponds to wallclock time in [10].

NOTE 2 — The SFTime fields that define the start or stop of a media stream are relative to the BIFS time base. If the time base
of the media stream is a different one, it is not generally possible to set a startTime that corresponds exactly to the
composition time of a composition unit of this media stream.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 57

EXAMPLE � The example in Figure 11 shows a BIFS access unit that is to become valid at CTS. It conveys a node that has an
associated media elementary stream. The startTime of this node is set to a positive value �t. Hence, startTime will occur �t
seconds after the CTS of the BIFS access unit that has incorporated this node (or the value of the startTime field) in the scene
graph.

OCRstream

BIFS time line

BIFS stream

OCR OCR OCR OCR OCR

BIFS AU BIFS AU

CTS

Media time line

Media stream CU CU CU CU CU CU CU CU CU CU CU CU CU CU CU CU

0

0

�t

CTS+����t

Figure 11 - Media start times and CTS

9.2.2 BIFS Scene Graph

9.2.2.1 Structure of the BIFS scene graph

Conceptually, BIFS scenes represent (as in ISO/IEC 14772-1:1998 [10]) a set of visual and audio primitives
distributed in a directed acyclic graph, in a 3D space. However, BIFS scenes may fall into several sub-categories
representing particular cases of this conceptual model. In particular, BIFS scene descriptions support scenes
composed of:

� 2D primitives (only)

� 3D primitives (only)

� A combination of 2D and 3D primitives

� Audio primitives (only)

In scenes combining 2D and 3D primitives, the following possibilities exist:

� Complete 2D and 3D scenes layered in a 2D space with depth

� 2D and 3D scenes used as texture maps for 2D or 3D primitives

� 2D scenes drawn in the local X-Y plane of the local co-ordinate system in a 3D scene

Figure 12 describes a typical BIFS scene structure.

A BIFS scene shall start with a one of the following nodes: OrderedGroup , Group , Layer2D , Layer3D . When the
profile used enables visual elements to be composed, the first node indicates the co-ordinate system and context
(2D or 3D) to be used for the children of that node. The following rules apply:

� Scene starts with a Layer2D or OrderedGroup node: A 2D co-ordinate system and context is assumed.

� Scene starts with a Layer3D or Group node : A 3D co-ordinate system and context is assumed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

58 © ISO/IEC 1999 – All rights reserved

2D Layer-2

3D Layer-1

3D Obj-1

3D Layer-2

3D Obj-2

3D Obj-3

3D Obj-4

3D Obj-5

root
2DLayer

2D Layer-1

2D Obj-1

2D Obj- 2

2D Obj-3

3D Obj-4

Layers
Scenegraph

3D
Scenegraph

2D
Scenegraph

Pointer to 2D scene

2D Scene-1

3D Scene-1 3D Scene-2

Figure 12 - Scene graph example.

The hierarchy of three different scene graphs is shown: a 2D graphics scene graph and two 3D graphics scene
graphs combined with the 2D scene via layer nodes. As shown in the picture, the 3D Layer-2 is the same scene as
3D Layer-1, but the viewpoint may be different. The 3D Obj-3 is an Appearance node that uses the 2D Scene-1 as
a texture node.

9.2.2.2 2D Co-ordinate System

The origin of the 2D co-ordinate system is positioned in the center of the rendering area, the x-axis is positive to the
right, and the y-axis is positive upwards.

The width of the rendering area represents -1.0 to +1.0 (meters) on the x-axis (see Figure 13). The extent of the y-
axis in the positive and negative directions is determined by the aspect ratio of the rendering area so that the unit of
distance is equal in both directions. The rendering area is either the entire screen, or window on a computer
screen, when viewing a single 2D scene, or the rectangular area defined by the texture used in a
CompositeTexture2D node, or a Layer2D node that contains a subordinate 2D scene description.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 59

-1.0 +1.0o

+AR-1

-AR-1

Figure 13 - 2D co-ordinate system (AR = Aspect Ratio)

9.2.2.3 3D Co-ordinate System

The 3D co-ordinate system is as described in ISO/IEC 14772-1:1998, subclause 4.4.5 [10]. When 2D objects are
described in a 3D space, they are drawn in the local (x,y) plane (z=0), and the units used are those of the 3D co-
ordinate system for the x and y directions.

9.2.2.4 Mixing 2D and 3D scenes

� A single BIFS scene may contain both 2D and 3D elements. The following methods exist:

� 2D primitives may be placed in a 3D scene graph. In this cased, the 2D primitives are drawn in the local (x,y)
plane, and use the local coordinate system, restricted to this (x,y) plane.

� 2D and 3D scenes may be composed and overlapped on the screen using Layer2D and Layer3D nodes.
This is useful, for instance, when it is desirable to have 2D interfaces to 3D worlds ("head up" display), or a 3D
insert in a 2D scene.

� 2D and 3D scenes may be mapped onto any given geometry using the CompositeTexture2D and
CompositeTexture3D nodes. For instance, 2D scenes may be mapped onto animated 3D geometry to
perform special effects.

9.2.2.5 Drawing Order

It is possible to specify the drawing order of elements of the scene, using the OrderedGroup node. This feature
may be used for 2D or 3D scenes. 2D scenes are considered to have zero depth. Nonetheless, it is important to be
able to specify the order in which 2D objects are composed, in order to describe their apparent depths. 3D scenes
may use the drawing order facility to solve conflicts of coplanar polygons or other rendering optimizations.

The following rules determine the drawing order, including conflict resolution for objects having the same drawing
order:

1. The object having the lowest drawing order shall be drawn first (taking into account negative values).

2. Objects having the same drawing order shall be drawn in the order in which they appear in the scene
description.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

60 © ISO/IEC 1999 – All rights reserved

9.2.2.6 Pixel and Meter metrics

In addition to meter-based metrics, it is also possible to use pixel-based metrics. In this case, 1 meter is set to be
equal to the distance between two pixels. This applies to both the horizontal (x-axis) and vertical (y-axis) directions.

The selection of the appropriate metrics is performed by the content creator. In particular, it is controlled by the
BIFSConfig syntax (see 9.3.5.2): when pixelMetric is set to 1, pixel metrics shall be used for the entire scene.

9.2.2.7 Nodes and fields

9.2.2.7.1 Nodes

The BIFS scene description consists of a collection of nodes that describe the scene structure. An audio-visual
object in the scene is described by one or more nodes, which may be grouped together (using a grouping node).
Nodes are grouped into node data types (NDTs) and the exact type of the node is specified using a nodeType
field.

An audio-visual object may be completely described within the BIFS information, e.g. Box with Appearance , or
may also require elementary stream data from one or more audio-visual objects, e.g. MovieTexture or
AudioSource . In the latter case, the node includes a reference to an object descriptor that indicates which
elementary stream(s) is (are) associated with the node, or directly to a URL description (see ISO/IEC 14772-
1:1998, subclause 4.5.2 [10]). With the exception of the Anchor and Script nodes, a url field may only refer to
content that conforms to a valid profile and level for the terminal.

9.2.2.7.2 Fields and Events

See ISO/IEC 14772-1:1998, subclause 5.1 [10].

9.2.2.8 Internal, ASCII and Binary Representation of Scenes

ISO/IEC 14496-1 describes the attributes of audio-visual objects using node structures and fields. These fields can
be one of several types (see 9.2.2.7.2). To facilitate animation of the content and modification of the objects’
attributes in time, within the terminal, it is necessary to use an internal representation of nodes and fields as
described in the node specifications (see 9.4). This is essential to ensure deterministic behaviour in the terminal’s
compositor, for instance when applying ROUTEs or differentially coded BIFS-Anim frames. The observable
behaviour of compliant terminals shall not be affected by the way in which they internally represent and transform
data; that is, they shall behave as if their internal representation is as defined herein.

However, when encoding the BIFS scene description, different attributes may need to be quantized or compressed
appropriately. Thus, the binary representation of fields may differ according to the types of fields, or according to
the precision needed to represent a given audio-visual object's attributes. The semantics of nodes are described in
9.4. The binary syntax which represents the binary format as transported in streams conforming to ISO/IEC 14496-
1 is provided in 9.3 and uses the node coding parameters provided in Annex H.

9.2.2.8.1 Binary Syntax Overview

9.2.2.8.1.1 Scene Description

The entire scene is represented by a binary encoding of the scene graph. This encoding restricts the VRML
grammar as defined in ISO/IEC 14778-1:1997, Annex A [10], but still enables the representation of any scene that
can be generated by this grammar.

EXAMPLE � One example of the grammatical differences is the fact that all ROUTEs are represented at the end of a BIFS
scene, and that a global grouping node is required at the top level of the scene.

9.2.2.8.1.2 Node Description

Node types are encoded according to the context of the node. This improves efficiency by exploiting the fact that
not all nodes are valid at all places in the scene graph. In many instances, only one of a subset of all BIFS nodes is
valid at a particular place in the scene graph, and hence in the bitstream.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 61

9.2.2.8.1.3 Fields description

Fields may be quantized to improve compression efficiency. Several aspects of the inverse quantization process
can be controlled by adjusting the parameters of the QuantizationParameter node.

9.2.2.8.1.4 ROUTE description

All ROUTEs are described at the end of the scene. This improves bit efficiency by grouping these elements in a
single location in the bitstream and removes the need for switches in the syntax to allow ROUTEs and nodes to be
described in a mixed format.

9.2.2.9 Basic Data Types

There are two general classes of fields and events: fields/events that contain a single value (e.g. a single number
or a vector), and fields/events that contain multiple values. Multiple-valued fields/events have names that begin with
MF, whereas single valued begin with SF.

9.2.2.9.1 Numerical data and string data types

9.2.2.9.1.1 Introduction

For each basic data type, single field and multiple field data types are defined in ISO/IEC 14772-1:1998, subclause
5.2 [10]. Some further restrictions are described herein.

9.2.2.9.1.2 SFInt32/MFInt32

When routing values between two SFInt32s note shall be taken of the valid range of the destination. If the value
being conveyed is outside the valid range, it shall be clipped to be equal to either the maximum or minimum value
of the valid range, as follows:

if x > max, x := max

if x < min, x := min

9.2.2.9.1.3 SFTime

The SFTime field and event specifies a single time value. Time values shall consist of 64-bit floating point numbers
indicating a duration in seconds or the number of seconds elapsed since the origin of time as defined in the
semantics for each SFTime field.

9.2.2.9.2 Node data types

Nodes in the scene are also represented by a data type, namely SFNode and MFNode types. ISO/IEC 14496-1
also defines a set of sub-types, such as SFColorNode, SFMaterialNode. These node data types (NDTs) allow
efficient binary representation of BIFS scenes, taking into account the usage context to achieve better
compression. However, the generic SFNode and MFNode types are sufficient for internal representations of BIFS
scenes.

9.2.2.10 Attaching nodeIDs to nodes

Each node in a BIFS scene graph may have a nodeID associated with it, to be used for referencing. ISO/IEC
14772-1:1998, subclause 4.6.2 [10], describes the DEF statement which is used to attach names to nodes. In BIFS
scenes, an integer value is used for the same purpose for nodeIDs . The number of bits used to represent these
integer values is specified in the BIFSConfig syntax (see 9.3.5.2).

The following restrictions apply:

a) Nodes are identified by the use of nodeIDs , which are binary numbers conveyed in the BIFS bitstream.

b) The scope of nodeIDs is given in 9.2.1.5.

c) No two nodes in the scene graph may have the same nodeID at any point in time.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

62 © ISO/IEC 1999 – All rights reserved

Nodes that have been assigned a nodeID may be re-used, as described in ISO/IEC 14772-1:1998, subclause
4.6.3 [10]. Note that this mechanism results in a scene description that is a directed acyclic graph, rather than a
simple tree.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodeIDs (see 9.2.2.10).

9.2.2.11 Standard Units

As described in ISO/IEC 14772-1:1998, subclause 4.4.5 [10], the standard units used in the scene description are
the following:

Table 13 - Standard units

Category Unit

Distance Meter
Color Space RGB [0,1] [0,1] [0,1]
Time Seconds
Angle Radians

9.2.2.12 Mapping of Scenes to Screens

BIFS scenes may contain still images and videos that are to be pixel-copied to the rendering device using their
native dimensions as produced at the output of their terminals. The Bitmap node (see 9.4.2.14) provides a
screen-aligned geometry that has the pixel dimensions of the texture that is mapped onto it.

NOTE — When Bitmap is used, the same scene will appear differently on screens with different resolutions. BIFS scenes
that do not use the Bitmap node are independent from the screen on which they are viewed.

9.2.2.12.1 Transparency of visual objects

Content complying with ISO/IEC 14496-1 may include still images or video sequences with representations that
include alpha values. These values provide transparency information and are to be treated as specified in ISO/IEC
14772-1:1998, subclause 4.14 [10]. For video sequences represented according to ISO/IEC 14496-2, transparency
is handled as specified in ISO/IEC 14496-2.

9.2.2.13 Special considerations for audio

9.2.2.13.1 Audio sub-graphs

Audio nodes are used to build audio scenes in the terminal from audio sources coded with tools specified in
ISO/IEC 14496-3. The audio scene description capabilities provide two functionalities:

� “Physical modelling” composition for virtual-reality applications, where the goal is to recreate the acoustic space
of a real or virtual environment.

� “Post-production” composition for traditional content applications, where the goal is to apply high-quality signal
processing transformations.

Audio may be included in either 2D or 3D scene graphs. In a 3D scene, the audio may be spatially presented to
sound as though it originates from a particular 3D direction, according to the positions of the object and the listener.

The Sound node is used to attach audio to 3D scene graphs and the Sound2D node is used to attach audio to
2D scene graphs. As with visual objects, an audio object represented by one of these nodes has a position in
space and time, and is transformed by the spatial and grouping transforms of nodes hierarchically above it in the
scene.

The nodes below the Sound /Sound2D nodes, however, constitute an audio sub-graph. This sub-graph is used
to describe a particular audio object through the mixing and processing of several audio streams. Rather than
representing a hierarchy of spatio-temporal transformations, the nodes within the audio sub-graph represent a

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 63

signal flow graph that describes how to create the audio object from the audio coded in the AudioSource
streams. That is, each audio sub-graph node (AudioSource , AudioMix , AudioSwitch , AudioFX ,
AudioClip , AudioBuffer , AudioDelay ) accepts one or several channels of input audio, and describes how
to turn these channels of input audio into one or more channels of output. The only sounds presented in the audio-
visual scene are those which are the output of audio nodes that are children of a Sound /Sound2D node (that is,
the “highest” outputs in the audio sub-graph). The remaining nodes represent “intermediate results” in the sound
computation process and the sound represented therein is not presented to the user.

The normative semantics of each of the audio sub-graph nodes describe the exact manner in which to compute the
output audio the input audio for each node based on its parameters.

9.2.2.13.2 Overview of sound node semantics

This subclause describes the concepts for normative calculation of the audio objects in the scene in detail, and
describes the normative procedure for calculating the audio signal which is the output of a Sound/Sound2D
node given the audio signals which are its input.

Recall that the audio nodes present in an audio sub-graph do not each represent a sound to be presented in the
scene. Rather, the audio sub-graph represents a signal-flow graph which computes a single (possibly multi-
channel) audio object based on a set of audio inputs (in AudioSource nodes) and parametric transformations.
The only sounds which are presented to the listener are those which are the “output” of these audio sub-graphs, as
connected to a Sound /Sound2D node. This subclause describes the proper computation of this signal-flow
graph and resulting audio object.

As each audio source is decoded, it produces data that is stored in composition memory (CM). At a particular time
instant in the scene, the compositor shall receive from each audio decoder a CM such that the decoded time of the
first audio sample of the CM for each audio source is the same (that is, the first sample is synchronized at this time
instant). Each CM will have a certain length, depending on the sampling rate of the audio source and the clock rate
of the system. In addition, each CM has a certain number of channels, depending on the audio source .

Each node in the audio sub-graph has an associated input buffer and output buffer, except for the AudioSource
node which has no input buffer. The CM for the audio source acts as the input buffer of audio for the
AudioSource with which the decoder is associated. As with CM, each input and output buffer for each node has
a certain length, and a certain number of channels.

As the signal-flow graph computation proceeds, the output buffer of each node is placed in the input buffer of its
parent node, as follows:

If an audio node, N, has n children, and each of the children produces k(i) channels of output, for 1 <= i <= n, then
the node, N, shall have k(1) + k(2) + ... + k(n) channels of input, where the first k(1) channels [number 1 through
k(1)] shall be the channels of the first child, the next k(2) channels [number k(1)+1 through k(1)+k(2)] shall be the
channels of the second child, and so forth.

Then, the output buffer of the node is calculated from the input buffer based on the particular rules for that node.

9.2.2.13.2.1 Sample-rate conversion

If the various children of a Sound /Sound2D node do not produce output at the same sampling rate, then the
lengths of the output buffers of the children do not match, and the sampling rates of the children’s’ output must be
brought into alignment in order to place their output buffers in the input buffer of the parent node. The sampling rate
of the input buffer for the node shall be the fastest of the sampling rates of the children. The output buffers of the
children shall be resampled to be at this sampling rate. The particular method of resampling is non-normative, but
the quality shall be close in accuracy to the DAC that the signal is targeted for, i.e. according to the rule dB SNR =
6 * (nbits –1) , where nbits is the number of bits corresponding to the maximum bit depth of any of the
signals being so converted and/or composited. Aliasing artifacts may be at this level of signal-to-noise ratio. The
noise level due to arithmetic accuracy and other uncorrelated noise sources should be below the rule dB SNR =
6* nbits .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

64 © ISO/IEC 1999 – All rights reserved

The output sampling rate of a node shall be the output sampling rate of the input buffers after this resampling
procedure is applied.

Content authors are advised that content which contains audio sources operating at many different sampling rates,
especially sampling rates which are not related by simple rational values, may produce scenes with a high
computational complexity.

EXAMPLE � Suppose that node N has children M1 and M2, all three audio nodes, and that M1 and M2 produce output at S1
and S2 sampling rates respectively, where S1 > S2. Then if the decoding frame rate is F frames per second, then M1’s output
buffer will contain S1/F samples of data, and M2’s output buffer will contain S2/F samples of data. Then, since M1 is the faster
of the children, its output buffer values are placed in the input buffer of N. The output buffer of M2 is resampled by the factor
S1/S2 to be S1/F samples long, and these values are placed in the input buffer of N. The output sampling rate of N is S1.

9.2.2.13.2.2 Number of output channels

If the numChan field of an audio node, which indicates the number of output channels, differs from the number of
channels produced according to the calculation procedure in the node description, or if the numChan field of an
AudioSource node differs in value from the number of channels of an input audio stream, then the numChan
field shall take precedence when including the source in the audio sub-graph calculation, as follows:

a) If the value of the numChan field is strictly less than the number of channels produced, then only the first
numChan channels shall be used in the output buffer.

b) If the value of the numChan field is strictly greater than the number of channels produced, then the “extra”
channels shall be set to all 0’s in the output buffer.

9.2.2.13.3 Audio-specific BIFS Nodes

In the following table, nodes that are related to audio scene description are listed.

Table 14 – Audio-Specific BIFS Nodes

Node Purpose Subclause

AudioBuffer Interactively trigger snippets of sound 9.4.2.4

AudioClip Insert an audio clip into a scene 9.4.2.5

AudioDelay Add delay to sound 9.4.2.6

AudioMix Mix sounds 9.4.2.8

AudioSource Define audio source input to a scene 9.4.2.9

AudioFX Apply post-production effects to sound 9.4.2.7

AudioSwitch Switching of audio sources in a scene 9.4.2.10

ListeningPoint Define listening point in a scene 9.4.2.57

Sound,
Sound2D

Define properties of sound 9.4.2.82,
9.4.2.83

9.2.3 Sources of modification to the scene

9.2.3.1 Interactivity and behaviors

To describe interactivity and behavior of scene objects, the event architecture defined in ISO/IEC 14772-1:1998,
subclause 4.10 [10], is used. Sensors and routes describe interactivity and behaviors. Sensor nodes generate
events based on user interaction or a change in the scene. These events are routed to interpolator or other nodes
to change the attributes of these nodes. If routed to an interpolator, a new parameter is interpolated according to
the input value, and is finally routed to the node which must process the event

9.2.3.1.1 Attaching ROUTEIDs to routes

ROUTEIDs may be attached to routes using the DEF mechanism, described in ISO/IEC 14772-1:1998, subclause
4.6.2 [10]. This allows routes to be subsequently referenced in BIFS-Command structures. ROUTEIDs are integer

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 65

values and the namespace for routes is distinct from that of nodeIDs . The number of bits used to represent these
integer values is specified in the BIFS DecoderConfigDescriptor .

The scope of ROUTEIDs is defined in see 9.2.1.5. The following restrictions apply:

a) Routes are identified by the use of ROUTEIDs, which are binary numbers conveyed in the BIFS bitstream.

b) The scope of ROUTEIDs is given in 9.2.1.5.

c) No two routes in the scene graph may have the same ROUTEIDat any point in time.

The mechanisms that allow modifications to the BIFS scene also depend on the use of nodeIDs (see 9.2.2.10).
The USE mechanism shall not be used with routes.

9.2.3.1.2 Conditional node

The Conditional node (see 9.4.2.22) allows BIFS-Commands to be described in the scene which shall only be
applied to the scene graph when an event is received on one of the Conditional node's inputs.

9.2.3.2 External modification of the scene: BIFS-Commands

The BIFS-Command mechanism enables the change of properties of the scene graph, its nodes and behaviors.

EXAMPLE � Transform nodes can be modified to move objects in space; Material nodes can be changed to modify an
object’s appearance, and fields of geometric nodes can be totally or partially changed to modify the geometry of objects.

9.2.3.2.1 Overview

BIFS-Commands are used to modify a set of properties of the scene at a given time instant in time. Commands are
grouped into CommandFrames (see 9.3.6.2) in order to be able to send several commands in a single access unit.
The following four basic commands are defined:

1. Replacement of an entire scene

2. Insertion

3. Deletion

4. Replacement

The first of these commands allows the replacement of the entire BIFS scene. The replacement of the entire scene
requires a scene graph representing a valid BIFS scene to be transmitted. The SceneReplace command is the
only random access point in the BIFS stream.

The other three commands can be used to update the following structures:

1. A node

2. An eventIn, exposedField or an indexed value in an MFField

3. A ROUTE

In order to modify the scene the sender must transmit a BIFS CommandFramethat contains one or more update
commands. A single source of BIFS-Commands is assumed. The identification of a node in the scene is provided
by a nodeID . Note that it is the sender’s responsibility to provide this nodeID , which must be unique (see 9.2.1.5).
The identification of a node's fields is provided by sending the INid of the field (see Annex H).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

66 © ISO/IEC 1999 – All rights reserved

ROUTE: routeID

Insert

Delete

Replace

Replace
Scene

Node: nodeID

IdxValue: nodeID

ROUTE: nodeID1

Index
Begin
End

NodeValue

Index
Begin
End

ValueFieldNb

Field1 nodeID2 Field2

Node: nodeID

IdxValue: nodeID
Index
Begin
End

ValueFieldNb

Node: nodeID

IdxValue: nodeID

ROUTE: routeID

NodeValue

Index
Begin
End

ValueFieldNb

Field1 nodeID2 Field2

Field: nodeID FieldValueFieldNb

nodeID1

Scene: SceneValue

BIFS
Update

Figure 14 - BIFS-Command Types

9.2.3.2.2 Modification of indexed values

Insertion of an indexed value in a field implies that all later values in the field have their indices incremented and
the length of the field increases accordingly. Appending a value to an indexed value field also increases the length
of the field but the indices of existing values in the field do not change.

Deletion of an indexed value in a field implies that all later values in the field have their indices decremented and
the length of the field decreases accordingly.

9.2.3.2.3 Timing of BIFS-Commands

The time at which a BIFS-Command is applied shall be the composition time stamp of the access unit in which the
command is contained, as defined in the sync layer (see 10.2).

9.2.3.3 External animation of the scene: BIFS-Anim

BIFS-Anim provides for the continuous update of the certain fields of nodes in the scene graph. BIFS-Anim is used
to integrate different kinds of animation, including the ability to animate face models as well as meshes, 2D and 3D
positions, rotations, scale factors, and color attributes. Although BIFS-Anim and BIFS-Command have the same
elementary stream type (see Table 9) they may not occupy the same elementary stream. BIFS-Anim information is
conveyed in a separate elementary stream from that which carries BIFS-Command elements.

9.2.3.3.1 Overview

BIFS-Anim elementary streams consist of a sequence of AnimationFrames . The AnimationMask , which is
required to interpret these AnimationFrames , is transmitted in the DecoderSpecificInfo for the BIFS-Anim
elementary stream in the corresponding object descriptor (see 8.6.6).

9.2.3.3.2 BIFS-Anim configuration

The AnimationMask contains one ElementaryMask for each node that is to be animated. These
ElementaryMasks specify the fields that are contained in the AnimationFrames for a given animated node, and
their associated quantization parameters. Only eventIn or exposedField fields that have an animation method (see

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 67

Annex H and 9.2.3.3.3) can be modified using BIFS-Anim. Such fields are called dynamic fields. In addition, the
animated field must be part of an updateable node; that is, a node that has been assigned a nodeID . The
AnimationMask is composed of several elementary masks defining these parameters.

9.2.3.3.3 BIFS-Anim animation parameters

Animation parameters are transmitted as a sequence of AnimationFrames . AnimationFrames specify the
values of the dynamic fields of updateable nodes that are being animated in BIFS-Anim streams. An
AnimationFrame contains the new values of all animated parameters at a specified time, unless if it is specified
that, for some frames, these parameters are not sent. The parameters can be sent in Intra (the absolute value is
sent) and Predictive modes (the difference between the current and previous values is sent).

Animation parameters can be applied to any eventIn or exposedField of any updateable node of a scene which has
an assigned animation method (see Annex H).

NOTE � Some node tables in Annex H contain an eventIn or exposedField that has an animation method but for which there is
no associated dynID . This is the case when only one exposedField or eventIn in a node has an animation method. In such
cases, it is not necessary for the field to have a dynID since the terminal can assume that BIFS-Anim animations for this type of
node refer to the only dynamic field of the node.

The types of dynamic fields are:

� SFInt32/MFInt32

� SFFloat/MFFloat

� SFRotation/MFRotation

� SFColor/MFColor

� SFVec2f/MFVec2f

� SFVec3f/MFVec3f

9.2.3.4 Order of application of modifications to the scene

Where modifications to the scene graph, resulting from the use of more than one of the permitted methods, must
be applied simultaneously, the following order of application shall be observed:

1. BIFS-Anim

2. Conditional node

3. BIFS-Command

9.3 BIFS Syntax

9.3.1 Introduction

BIFS data consists of two distinct elements in the multiplexed bitstream. Terminal configuration information is first
sent in the object descriptor. The remaining BIFS information is sent in a separate elementary stream.

The syntax and semantics of the terminal configuration is described in 9.3.5.2. Two different kinds of session can
take place: a BIFS-Command session or a BIFS-Anim session.

If the session is a BIFS-Command session, a sequence of commands to modify the scene is sent. The syntax and
semantics of these commands are described in 9.3.6.

If the session is a BIFS-Anim session, a sequence of animation data to change the values of specific fields in the
scene is sent. The syntax and semantics of this session is described in 9.3.8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

68 © ISO/IEC 1999 – All rights reserved

9.3.2 Decoding tables, data structures and associated functions

9.3.2.1 Function of decoding tables, data structures and functions

This subclause describes tables and data structures used to contain necessary data, along with the associated
functions, for decoding the BIFS elementary streams. These are not syntax elements but are descriptions, often in
code or pseudo-code, of data and functions that are required to decode the bitstream. The tables and data
structures may be known a priori at the terminal or may be constructed from data parsed from the bitstream. They
are referenced throughout the syntax.

NOTE — The code or pseudo-code for the non-syntax data elements is purely notational and does not imply a normative
requirement to use these code fragments in implementations.

Coding of individual nodes and field values is very regular, and follows a depth-first order (children or sub-nodes of
a node are present in the bitstream before its siblings).

9.3.2.2 Node Data Type Tables

Identification of nodes and fields within a BIFS scene graph is context-dependent. Each field of a BIFS node that
accepts nodes as fields can only accept a specific set of nodes. Each of these sets of nodes is stored in a node
data type table and is referenced by a node data type (NDT).

A field of type SFNode is fully described by its NDT. Each node belongs to one or more NDT tables. These tables
are provided in Annex H and identify the various nodes and node types they contain.

Identification of a particular node depends on the context of the NDT specified for its parent field. The value 0 is
always reserved for future extensions.

EXAMPLE � Anchor is identified by the 5-bit code 0b0000.1 when the context of its parent’s field is SF2DNode, whereas the
7-bit code 0b0000.001 is used when the context of its parent’s field is SFWorldNode.

9.3.2.3 Node Coding Tables and field indexing

The syntactic description of fields is context-dependent. For a given node, its fields are indexed using a code called
a fieldID . This fieldID is not unique for each field of a node but varies according to the “mode” in which the
field is referenced. There are five modes in which a field may be referenced and, thus, five types of fieldID . For
each field of each node, the binary values of the fieldIDs for each mode are defined in the node coding tables.

defID
The defIDs refer to the fieldIDs for those fields that may have a value when nodes are declared. They refer to
fields of type exposedField and field. This indexing scheme is further referred to as the “def” mode.

inID
The inIDs refer to the fieldIDs for those events and fields that can be modified from outside the node. They
refer to fields of type exposedField and eventIn types. This indexing scheme is further referred to as the “in” mode.

outID
The outIDs refer to the fieldIDs for those events and fields that can be output from the node. They refer to
fields of type exposedField and eventOut types. This indexing scheme is further referred to as the “out” mode.

dynID
The dynIDs refer to the fieldIDs for those fields that can be animated using the BIFS-Anim scheme. They refer
to a subset of the fields designated by inIDs . This indexing scheme is further referred to as the “dyn” mode.

allID
The allIDs refer to all events and fields of the node. That is, there is an allID for each field of a node. This
indexing scheme is further referred to as the “all” mode.

The length of each of the fieldID types for each node depends on the number of fields of that type for the given
node.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 69

EXAMPLE � The AnimationStream node has four fields of type defID. Therefore, three bits are required to code the
defIDs for this node. The Appearance node , however, has just three fields of type defID. Therefore, two bits are sufficient
to code the defIDs for this node.

9.3.2.4 BIFSConfig

This data structure is a global data structure referred to in every BIFS access unit. The data contained in the
BIFSConfig data structure is transmitted in the syntax element of the same name (see 9.3.5.2).

class BIFSConfig extends DecoderSpecificInfo :
bit(8) tag=DecSpecificInfoTag{

int nodeIDbits; The number of bits used to encode the nodeIDs .
int routeIDbit; The number of bits used to encode the routeIDs .
boolean randomAccess; The randomAccess boolean is set in the

BIFSConfig to distinguish between BIFS-Anim
elementary streams in which support random access
at any intra frame, and those where random access
may not be possible at all intra frames. In the latter
case, greater compression efficiency may be achieved
because a given intra frame may re-use quantization
settings and statistics from the previous intra frame.

AnimationMask animMask; The AnimationMask used for BIFS-Anim
}

9.3.2.5 AnimationMask

The AnimationMask structure contains all the relevant information to describe a BIFS-Anim session. It is
constructed, upon receipt of the BIFSConfig syntax element, during the configuration of the BIFS decoder, and
updated for every received AnimationFrame .

Class AnimationMask {
int numNodes; The number of nodes to be animated
NodeData animNode[numNodes]; The array of animated nodes.
boolean isIntra; The status of the current frame: intra if isIntra is true,

predictive otherwise.
boolean isActive[numNodes]; The mask of active animated node for the current frame.

If the node is not animated in the current frame, the
boolean shall be false.

}

9.3.2.6 NodeData

This data structure is built to decode the relevant information for one node. It is created from the node coding tables
in Annex H. The following functions support relevant operations on this data structure:

NodeData MakeNode(int nodeType)

This function creates a NodeData structure from the node coding table matching the given nodeType .

NodeData GetNodeFromID (int nodeID)

This function returns the NodeData structure matching the given nodeID .

class NodeData {
int nodeType; The nodeType of the node.
FieldData field[]; The fields of this node whose construction is described below.

This array is indexed in “all” mode.
boolean isAnimField[]; The mask of animated fields for the entire BIFS-Anim session,

indexed in “dyn” mode. This array is only used in BIFS-Anim.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

70 © ISO/IEC 1999 – All rights reserved

The following data describes the indexing of the fields in “in”,
“out”, “def”, “dyn” and “all” modes

int nDEFbits; The number of bits used for “def” field codes (the width of the
codewords in the 2nd column of the node coding tables).

int nINbits; The number of bits used for “in” field codes (the width of the
codewords in the 3rd column of the node coding tables).

int nOUTbits; The number of bits used for “out” field codes (the width of the
codewords in the 4th column of the node coding tables).

int numDEFfields; The number of “def” fields available for this node
int numDYNfields; The number of “dyn” fields available for this node.
int in2all[]; The ids of eventIns and exposedFields in “all” mode, indexed

with the ids in “in” mode.
int def2all[]; The ids of fields and exposedFields in “all” mode, indexed with

the ids in “def” mode.
int dyn2all[]; The ids of dynamic fields in “all” mode, indexed with the ids in

“dyn” mode.
}

9.3.2.7 FieldData

This data structure is built to decode the relevant information for one field. It is created from the field’s entry in the
relevant node coding table (see Annex H).

Class FieldData {
int fieldType; The type of the field (e.g., SFInt32Type ). This is given by

the “Field Type” column of the node coding table for the
node to which it belongs.

int quantType; The type of quantization used for the field. This is given by
the “Q” column of the node coding table of the node to
which it belongs. Types refer to Table 17 in 9.3.3.1.1.

int animType; The animation method for the field. This is given by the “A”
column of the node coding table. Types refer to animation
type in Table 23 in 9.3.3.2.1.

boolean useEfficientCoding; Set to true if the efficient coding is to be used. This value is
FALSE by default. If there is a local
QuantizationParameter node this value is the same
as its useEfficientCoding field.

The following data structures are used in the quantization
process:

FieldCodingTable fct; This field is determined from the node coding table as
described in 9.3.2.9.

AnimFieldQP aqp; This field is only used in BIFS-Anim. It references an
AnimFieldQP stucture described in 9.3.2.10.

QuantizationParameter lqp; This field points to the local QuantizationParameter
node.

boolean isQuantized; Set to true if the corresponding field is quantized, false
otherwise.

int nbBits; The number of bits used for the quantization of the field.
float floatMin[]; The minimum bounds for the quantization of vector fields.

These values are obtained from the FieldCodingTable
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
animField (for BIFS-Anim).

float floatMax[]; The maximum bounds for the quantization of vector fields.
These values are obtained from the FieldCodingTable

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 71

(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
animField (for BIFS-Anim).

int intMin[]; The minimum bounds for integers (SFInt32 and MFInt32).
These values are obtained from the FieldCodingTable
(described in 9.3.2.9) and the current
QuantizationParameter node (for BIFS-Scene) or the
animField (for BIFS-Anim).

}

It is assumed that the following functions are available:

int isSF(FieldData field)

Returns 1 if the field’s fieldType corresponds to a single field and 0 otherwise.

int getNbComp(FieldData field)

Returns the number of quantized components for the field as given below:

Table 15 – Return values of getNbComp

fieldType quantType animType value returned
SFFloat
SFInt32

any 6,7,8
13

1

SFVec2f
SFVec3f

any
9

2,12
9

2

SFVec3f
SFRotation

!=9
any

1,4,11
10

3

The number of quantized components is the same as the natural number of components (three for SFVec3f, two
for SFVec2f, and so on) except for normals (2) and rotations (3) because of the quantization process (see 9.3.3.3).

9.3.2.8 Node Data Type Table Parameters

The following functions provide access to the node data type tables (described in Annex H):

int GetNodeType(int nodeDataType, int localNodeType)

Returns the nodeType of the node indexed by localNodeType in the node data type table. The nodeType of a
node is its index in the SFWorldNode NDT Table.

int GetNDTnbBits(int nodeDataType)

Returns the number of bits used to index the nodes of the matching node data type table (this number is indicated
in the last column of the first row of the node data type table).

int GetNDTFromID(int id)

Returns the nodeDataType for the children field of the node identified by the nodeID , id . Nodes having a
children field may have restrictions on the types of node that may occupy the field. These node types are
indicated in the node semantics (see 9.4 and ISO/IEC 14772-1:1998 , Table 4.3 [10]).

9.3.2.9 Field Coding Table

This data structure contains parameters relating to the quantization of the field. It is created from the field’s entry in
the relevant node coding table (Annex H).

Class FieldCodingTable {
float floatMin[]; The minimum default bounds for fields of type SFFloat, SFVec2f and

SFVec3f. These values are obtained from the “[m, M]” column of the
node coding table.

float floatMax[]; The minimum default bounds for fields of type SFFloat, SFVec2f and
SFVec3f. These values are obtained from the “[m, M]” column of the
node coding table.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

72 © ISO/IEC 1999 – All rights reserved

float intMin[]; The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

float intMax[]; The minimum default bounds for fields of type SFInt32. These values
are obtained from the “[m, M]” column of the node coding table.

int defaultNbBits; The number of bits used by default for each field. Only used when the
quantization category of the field is 13. For quantization category 13,
the number of bits used for coding is also specified in the node coding
(e.g “13 16” in the node coding table means category 13 with 16 bits).

}

9.3.2.10 AnimFieldQP

This data structure contains the necessary quantization parameters and information for the animation of a field. It is
updated throughout the BIFS-Anim session.

class AnimFieldQP {
int animType; The animation method for the field. This is given by the “A” column of

the node coding table for each node. Types refer to animation type in
Table 23 in 9.3.3.2.1.

boolean useDefault; If this bit is set to TRUE, then the bounds used in intra mode are those
specified in the “[m, M]” column of the node coding table. The default
value is FALSE.

boolean isTotal; If the field is a multiple field and if this boolean is set to TRUE, all the
components of the multiple field are animated.

int numElement; The number of elements being animated in the field. This is 1 for all
single fields, and equal to or greater than 1 for multiple fields.

int indexList[]; If the field is a multiple field and if isTotal is false, this is the list of
the indices of the animated SFFields . For instance, if the field is an
MFField with elements 3,4 and 7 being animated, the valuse of
indexList will be {3,4,7}.

float[] Imin; The minimum values for bounds of the field in intra mode. This value is
obtained from the “[m, M]” column of the node coding table (if
useDefault is TRUE), the InitialAnimQP (if useDefault is
FALSE and the last intra did not hold any new AnimQP), or the
AnimQP.

float[] Imax; The maximum values for bounds of the field in intra mode. This value
is obtained from the “[m, M]” column of the semantics table (if
useDefault is TRUE), the InitialAnimQP (if useDefault is
FALSE and if the last intra did not hold any new AnimQP), or the
AnimQP.

int[] IminInt; The minimum value for bounds of variations of integer fields in intra
mode. This value is obtained from the InitialAnimQP (if the last
intra did not hold any new AnimQP) or AnimQP structure.

int[] Pmin; The minimum value for bounds of variations of the field in predictive
mode. This value is obtained from the InitialAnimQP (if the last
intra did not hold any new AnimQP) or AnimQP.

int INbBits; The number of bits used in intra mode for the field. This value is
obtained from the InitialAnimQP or AnimQP.

int PNbBits; The number of bits used in predictive mode for the field. This value is
obtained from the InitialAnimQP (if the last intra did not hold any
new AnimQP) or AnimQP structure.

}

It is assumed that the following function is available :

int getNbBounds(AnimFieldQP aqp)

Returns the number of set of bounds matching the animation type (see 9.3.2.3), as follows :

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 73

Table 16 - Return values of getNbBounds

aqp.animType value
returned

4,6,7,8
9,10
11,12,13

1

2 2
1 3

Note that only Position2D and Position3D have specific sets of bounds for each of their components. The
number of bounds is also the number of independent models used in predictive mode during the BIFS-Anim
session.

9.3.3 Quantization

In BIFS scenes, the values of the fields may be quantized. BIFS-Anim data is always quantized. This subclause
describes this quantization process. A number of parameters control the quantization of a field. Here, these
parameters are used to construct a notational data structure called FieldData . In this subclause, the semantics of
how to determine these parameters for BIFS scenes and BIFS-Anim are first described, followed by a description of
the actual quantization process.

9.3.3.1 Quantization of BIFS scenes

9.3.3.1.1 Quantization categories

Single fields are coded according to the type of the field. The fields have a default syntax that specifies a non-
quantized encoding. When quantization is used, the quantization parameters are obtained from a special node
called QuantizationParameter . The following quantization categories are specified, providing suitable
quantization procedures for the various types of quantities represented by the various fields of the BIFS nodes.

Table 17 - Quantization Categories

Category Description

0 None
1 3D position
2 2D positions
3 Drawing order
4 SFColor
5 Texture Coordinate
6 Angle
7 Scale
8 Interpolator keys
9 Normals
10 Rotations
11 Object Size 3D (1)
12 Object Size 2D (2)
13 Linear Scalar Quantization
14 CoordIndex
15 Reserved

Each field that may be quantized is assigned to one of the quantization categories (see Annex H). Along with
quantization parameters, minimum and maximum values are specified for each field of each node.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

74 © ISO/IEC 1999 – All rights reserved

9.3.3.1.2 Determining the quantization parameters for a given field

The scope of quantization is constrained to a single BIFS access unit. A field is quantized when:

� The field is of type SFInt32, SFFloat, SFRotation, SFVec2f or SFVec3f.

� The quantization category of the field is not 0.

� The node to which the field belongs has a QuantizationParameter (see 9.4.2.77) node in its context

� The quantization for this type of field is activated (by setting the corresponding boolean to TRUE in the
QuantizationParameter node.

The isQuantized , nbBits, floatMin, floatMax and intMin fields of the FieldData structure pertain to
the quantization of the field. The values of these fields are determined from the local QuantizationParameter
(lqp ) and the FieldCodingTable (fct ) stored in the FieldData . This is done in the following way:

isQuantized

isQuantized is set to true when the three following conditions are met :

� lqp!=0 (there is a QuantizationParameter node in the scope of the field)

� quantType !=0 (the field value is of a type that may be quantized), and

� the following condition is met for the relevant quantization type:

Table 18 - Condition for setting isQuantized to true

quantType Condition

1 lqp.position3DQuant == TRUE
2 lqp.position2DQuant == TRUE
3 lqp.drawOrderQuant == TRUE
4 lqp.colorQuant == TRUE
5 lqp.textureCoordinateQuant == TRUE
6 lqp.angleQuant == TRUE
7 lqp.scaleQuant == TRUE
8 lqp.keyQuant == TRUE
9 lqp.normalQuant == TRUE
10 lqp.normalQuant == TRUE
11 lqp.sizeQuant == TRUE
12 lqp.sizeQuant == TRUE
13 Always TRUE
14 Always TRUE
15 Always TRUE

nbBits

In the BIFS scene quantization process, nbBits is set in the following way :

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 75

Table 19 - Value of nbBits depending on quantType

quantType nbBits

1 lqp.position3DNbBits
2 lqp.position2DNbBits
3 lqp.drawOrderNbBits
4 lqp.colorNbBits
5 lqp.textureCoordinateNbBits
6 lqp.angleNbBits
7 lqp.scaleNbBits
8 lqp.keyNbBits
9,10 lqp.normalNbBits
11,12 lqp.sizeNbBits
13 fct.defaultNbBits
14 This value is set according to the number

of points received in the last received
coord field of the node. Let N that number,
then:

� �)(logCeilnbBits 2 N�

where the function Ceil returns the
smallest integer greater than its argument

15 0

floatMin[]

In the BIFS scene quantization process, floatMin is set in the following way:

Table 20 - Value of floatMin , depending on quantType and fieldType

quantType fieldType floatMin

1 SFVec3fType lqp.position3Dmin
2 SFVec2fType lqp.position2Dmin
3 SFFloatType max(fct.min[0],lqp.drawOrderMin)

SFFloatType lqp.colorMin4
SFColorType lqp.colorMin, lqp.colorMin, lqp.colorMin

5 SFVec2fType lqp.textureCoordinateMin
6 SFFloatType Max(fct.min[0],lqp.angleMin)

SFFloatType lqp.scaleMin
SFVec2fType lqp.scaleMin, lqp.scaleMin

7

SFVec3fType lqp.scaleMin, lqp.scaleMin, lqp.scaleMin
8 SFFloatType Max(fct.min[0],lqp.keyMin)
9 SFVec3fType 0.0
10 SFRotationTyp

e
0.0

SFFloatType lqp.sizeMin
SFVec2fType lqp.sizeMin, lqp.sizeMin

11,12

SFVec3fType lqp.sizeMin, lqp.sizeMin, lqp.sizeMin
13,14,15 NULL

floatMax[]

In the BIFS scene quantization process, floatMax is set in the following way:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

76 © ISO/IEC 1999 – All rights reserved

Table 21 - Value of floatMax , depending on quantType and fieldType

quantType fieldType floatMax

1 SFVec3fType lqp.position3Dmax
2 SFVec2fType lqp.position2Dmax
3 SFFloatType min(fct.max[0],lqp.drawOrderMax)

SFFloatType lqp.colorMax4
SFColorType lqp.colorMax, lqp.colorMax, lqp.colorMax

5 SFVec2fType lqp.textureCoordinateMax
6 SFFloatType min(fct.max[0],lqp.angleMax)

SFFloatType lqp.scaleMax7
SFVec2fType lqp.scaleMax, lqp.scaleMax
SFVec3fType lqp.scaleMax, lqp.scaleMax, lqp.scaleMax

8 SFFloatType min(fct.max[0],lqp.keyMax)
9 SFVec3fType 1.0
10 SFRotationType 1.0

SFFloatType lqp.sizeMax
SFVec2fType lqp.sizeMax, lqp.sizeMax

11,12

SFVec3fType lqp.sizeMax, lqp.sizeMax, lqp.sizeMax
13,14,15 NULL

intMin[]

In the BIFS scene quantization process, intMin is set in the following way:

Table 22 - Value of intMin , depending on quantType

quantType intMin

1,2,3,4,5,6,7,8
9,10,11,12

NULL

13,14 fct.intMin[0]
15 NULL

9.3.3.2 Quantization of BIFS-Anim

9.3.3.2.1 Animation Categories

The fields are grouped in the following categories for animation:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 77

Table 23 – Animation Categories

Category Description

0 None
1 Position 3D
2 Positions 2D
3 Reserved
4 Color
5 Reserved
6 Angle
7 Float
8 BoundFloat
9 Normals
10 Rotation
11 Size 3D
12 Size 2D
13 Integer
14 Reserved
15 Reserved

9.3.3.2.2 Determining the quantization parameters for a given field

The isQuantized , nbBits, floatMin, floatMax and intMin fields of the FieldData structure pertain to
the quantization of the field. The values of these fields are determined from the local AnimFieldQP (aqp ) and the
FieldCodingTable (fct ) stored in the FieldData . This is done in the following way:

isQuantized

In the BIFS-Anim quantization process, isQuantized is always TRUE.

nbBits

In the BIFS-Anim quantization process, nbBits is set in the following way :

Table 24 - Value of nbBits , depending on animType

animType nbBits

1,2,4,6,7,8,9
10,11,12,13

animType.INbBits

floatMin[]

In the BIFS-Anim quantization process, floatMin is set in the following way:IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

78 © ISO/IEC 1999 – All rights reserved

Table 25 - Value of floatMin , depending on animType

animType aqp.useDefau
lt

floatMin

true fct.min[0], fct.min[0], fct.min[0]4 Color
false aqp.IMin[0], aqp.IMin[0],

aqp.IMin[0]
true fct.min[0]8 BoundFloat
false aqp.IMin[0]

1 Position
3D

false aqp.IMin

2 Position
2D

false aqp.IMin

11 Size 3D false aqp.IMin[0], aqp.IMin[0]
12 Size 2D false aqp.IMin[0], aqp.IMin[0],

aqp.IMin[0]
7 Float false aqp.IMin[0]
6
9
10

Angle
Normal
Rotation

false 0.0

13 Integer false NULL
14,1
5

Reseved NULL

floatMax[]

In the BIFS-Anim quantization process, floatMax is set in the following way:

Table 26 - Value of floatMax , depending on animType

animType aqp.useDefau
lt

floatMax

true fct.max[0], fct.max[0], fct.max[0]4 Color
false aqp.IMax[0], aqp.IMax[0], aqp.IMax[0]
true fct.max[0]8 BoundFloat
false aqp.IMax[0]

1 Position
3D

false aqp.IMax

2 Position
2D

false aqp.IMax

11 Size 3D false aqp.IMax[0], aqp.IMax[0]
12 Size 2D false aqp.IMax[0], aqp.IMax[0], aqp.IMax[0]
7 Float false aqp.IMax[0]

false 2*Pi6
9
10

Angle
Normal
Rotation

false 1.0

13 Integer false NULL
14,1
5

Reseved NULL

intMin[]

In the BIFS-Anim quantization process, intMax is set in the following way:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 79

Table 27 - Value of intMin , depending on animType

animType intMin

1,2,4,6,7,8
9,10,11,12

NULL

13 aqp.IminInt[0]
14,15 NULL

9.3.3.3 Quantization process

Let )(tvq be the value decoded from the bitstream at an instant t. Then, the inverse-quantized value at time t is:

� �)(InvQuant)( tvtv q�

The linear quantization and inverse quantization are:

int quantize (float Vmin, float Vmax, float v, int Nb)

which returns )12(
minmax

min
�

�

�

�
Nb

q VV

Vv
v

float invQuantize (float Vmin,float Vmax,int vq, int Nb)

which returns 12
ˆ

)1,max(
minmax

min
�

�

��
Nbq

VV
vVv

If isQuantized is true, the quantization/inverse quantization process is the following :

Table 28 - Quantization and inverse quantization process

quantType animType Quantization/Inverse Quantization Process

1,2,3,4,5
6,7,8
11,12

1,2,4

6,7,8

11,12

For each component of the vector, the float quantization is applied:

)nbBits],[v],[floatMax],[floatMinquantize(][ iiiivq �

For the inverse quantization:

)nbBits],[v],[floatMax],[floatMinuantize(invQ][̂ q iiiiv �

9,10 9,10 For normals and rotations, the quantization method is as follows.

Normals are first renormalized :

222222222
]2[,]1[,]0[

zux

z

zux

y

zux

x

nnn

n
v

nnn

n
v

nnn

n
v

��

�

��

�

��

�

Rotations (axis n
�

, angle � ) are first written as quaternions :

2
sin(.]3[)

2
sin(.]2[)

2
sin(.]1[)

2
cos(]0[

����

n

n
v

n

n
v

n

n
vv zyx

���
����

The number of reduced components is defined to be N: 2 for normals, and
3 for rotations. Note that v is then of dimension N+1. The compression
and quantization process is the same for both :

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

80 © ISO/IEC 1999 – All rights reserved

quantType animType Quantization/Inverse Quantization Process

The orientation k of the unit vector v is determined by the largest

component in absolute value: )][argMax( ivk � . This is an integer

between 0 and N that is encoded using two bits.

The direction of the unit vector v is 1 or –1 and is determined by the sign
of the component ][kv .Note that this value is not written for rotations
(because of the properties of quaternions).

The N components of the compressed vector are computed by mapping

the square on the unit sphere
�
�
�

�
�
�

�� 1
][

][
0

kv

iv
v into a N dimensional

square :

� �
Ni

kv

Nkiv
ivc ,...,0

][

)1mod()1(
tan

4
][ 1 ���

�

�
��
�

� ���
� �

�

If nbBits=0, the process is complete. Otherwise, each component of cv
(which lies between –1 and 1) is quantized as a signed integer as follows :

� �1nbBits],[],0[floatMax],0[floatMinquantize2][ 1nbBits
���

� iviv cq

The value encoded in the bitstream is

][2 1.nbBits ivq�
�

The decoding process is the following :

The value decoded from the stream is converted to a signed value

1.nbBits2][ �

�� decodedq viv

The inverse quantization is performed

)1nbBits],[],0[floatMin],0[floatMinuantize(invQ][ �� iviv qc

After extracting the orientation (k) and direction (dir) , the inverse mapping
can be performed :

�
�

�

�

�
Ni

i

c iv
kv

0

2

4

][.
tan1

1
.dir][̂

�

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 81

quantType animType Quantization/Inverse Quantization Process

� � Nikv
iv

Nkiv c ,...,0][̂.
4

][.
tan)1mod()1(ˆ ��

�

�
�
�

�
����

�

If the object is a rotation, vcan be either used directly or converted back
from a quaternion to a SFRotation :

)2/sin(

]3[̂

)2/sin(

]2[̂

)2/sin(

]1[̂
])0[̂(cos.2 1

���

�

v
n

v
n

v
nv zyx ����

�

The entire compression process therefore consists in projecting a vector of
the unit sphere onto the face of a cube inscribed inside the sphere, and
transmitting separately the face’s index (orientation: x, y or z – and
direction : + or -) and the coordinates on the face.

EXAMPLE � How two different normals are encoded in the case nbBits=3. The
compensation process (described in 9.3.4) is also illustrated.

y (ori=1)

z (ori=2)

x (ori=0)

ori=0, dir=+1,vq=[-2,+2]

inv=+1, delta=[+1,+2]

ori=2, dir=+1,vq=[+2,-1]

Note that two quaternions that lie in opposite directions on the unit sphere
actually represent the same rotation. This is the reason why the direction is
not coded for rotations.

13,14 13 For integers, the quantized value is the integer shifted to fit the interval [0,
2nbBits -1].

intMin�� vvq

The inverse quantization process in then :

qvv �� intMinˆ

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

82 © ISO/IEC 1999 – All rights reserved

quantType animType Quantization/Inverse Quantization Process

fieldType

SFImage

For SFImage types, the width and height of the image are sent.
numComponents defines the image type. The following four types are
enabled:

If the value is ‘00’, then a grey scale image is defined.

If the value is ‘01’, a grey scale with alpha channel is used.

If the value is ‘10’, then an RGB image is used.

If the value is ‘11’, then an RGB image with alpha channel is used.

9.3.4 Compensation process

This subclause describes the mechanism used to compensate a quantized value for a given FieldData structure.
In other words, how to add a delta to a quantized value to yield the result of addition, which is another quantized
value. For vectorial types, this is simply an addition component by component, but for normals and rotations special
care has to be taken when performing this addition. This process is used in predictive mode in BIFS-Anim
sessions.

Let 1
qv be the initial quantized value, �v be the delta value and 2

qv be the quantized value resulting from the

addition. The general inverse compensation process is :

),(AddDelta 12 �vvv qq �

1
qv and �v are interpreted as follows:

A quantized value qv contains an array of integers vq[]. Additionally, for normals and rotations, 1
qv contains an

orientation and, for normals only, a direction (see 9.3.3.3).

A delta value �v contains an array of integers vDelta[]. Additionnally, for normals, it contains an integer inverse
whose value is –1 or 1.

The size of these arrays is that returned by the function getNbComp(field) , as described in 9.3.2.7.

The result 2
qv is then computed in the following way :

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 83

Table 29 - Compensation process

animType Compensation Process

1,2,4,6,7,8

11,12,13

The components of 2
qv are:

vq2[i] = vq1[i] + vDelta[i]

The addition is first performed component by component and stored in a temporary array:
vqTemp[i] = vq1[i] + vDelta[i].

Let scale = 12 )1,0max(
�

�nbBits .
Let N the number of reduced components (2 for normals, 3 for rotations)
There are then three cases are to be considered:
For every index
I,

scalevqTemp[i] �

2
qv is defined by,

vq2[i] = vqTemp[i]

orientation2= orientation1

direction2 = direction1 * inverse

2
qv is rescaled as if gliding on the faces of the mapping cube.

Let inv = 1 if vqTemp[k]>= 0 and –1 else

Let dOri = k+1

The components of vq2 are computed as follows

dOri-Ni0 �� vq2[i] = inv*vqTemp[(i+dOri) mod N]

dOri-Ni � vq2[i] = inv*2*scale–vqTemp[dOri–1]

NidOri-N �� vq2[i] = inv*vqTemp[(i+dOri-1) mod N]

There is one
and only one
index k such
that

scalevqTemp[k] �

orientation2 = (orientation1 + dOri) mod (N+1)

direction2 = direction1 * inverse * inv

9,10

There are
several indices
k such that

scalevqTemp[k] �

The result is undefined

9.3.5 BIFS Configuration

9.3.5.1 Overview

This subclause describes the terminal configuration for the BIFS elementary stream. It is encapsulated within the
specificInfo fields of the general DecoderSpecificInfo structure (see 8.6.6), which is contained in the
DecoderConfigDescriptor that is carried in ES_Descriptors . If the session is a BIFS-Anim session, the
BIFS configuration contains some specific information to describe the animation mask, which specifies the
elements of the scene to be animated.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

84 © ISO/IEC 1999 – All rights reserved

9.3.5.2 BIFSConfig

9.3.5.2.1 Syntax

class BIFSConfig extends DecoderSpecificInfo : bit(8) tag=DecSpecificInfoTag {
unsigned int(5) nodeIDbits;
unsigned int(5) routeIDbits;
bit(1) isCommandStream;
if(isCommandStream) {

bit(1) pixelMetric;
bit(1) hasSize;
if(hasSize) {

unsigned int(16) pixelWidth;
unsigned int(16) pixelHeight;

}
}
else {

bit(1) randomAccess;
AnimationMask animMask();

}
}

9.3.5.2.2 Semantics

BIFSConfig is the terminal configuration for the BIFS elementary stream. It is encapsulated within the
specificInfo fields of the general DecoderSpecificInfo structure (see 8.6.6), which is contained in the
DecoderConfigDescriptor that is carried in ES_Descriptors .

The parameter nodeIDbits sets the number of bits used to represent nodeIDs . Similarly, routeIDbits sets
the number of bits used to represent ROUTEIDs.

The boolean isCommandStream identifies whether the BIFS stream is a BIFS-Command stream or a BIFS-Anim
stream. If the BIFS-Command stream is selected (isCommandStream set to TRUE), the following parameters are
contained in BIFSConfig :

� The boolean isPixelMetric indicates whether pixel metrics or meter metrics are used.

� The boolean hasSize indicates whether a desired scene size (in pixels) is specified. If hasSize is set to true,
pixelWidth and pixelHeight provide to the receiving terminal the desired horizontal and vertical
dimensions (in pixels) of the scene.

If isCommandStream is false, the following information is contained in BIFSConfig :

� The randomAccess boolean signals the mode of the BIFS-Anim stream. If the bit is set to TRUE, it is possible
to perform random access in the BIFS-Anim stream at any intra frame. At each intra frame, the statistics of the
arithmetic decoder shall be reset. New quantization parameters shall be coded in the bistream or the default
parameters sent in the BIFS-Anim mask are used. If the randomAccess bit is set to FALSE, compression may
be more efficient, but random access may not be possible at each intra frame. See 9.3.8 for detailed semantics.

� The AnimationMask specifies the animation parameters of the BIFS-Anim elementary stream.

9.3.5.3 AnimationMask

9.3.5.3.1 Syntax

class AnimationMask() {
int numNodes = 0;
do {

ElementaryMask elemMask();
numNodes++;

bit(1) moreMasks;
} while (moreMasks);

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 85

9.3.5.3.2 Semantics

The AnimationMask describes the nodes and fields to be animated, along with the quantization parameters to
help decode their values. It consists of a list of ElementaryMasks .

If the boolean moreMasks is TRUE, another ElementaryMask shall be present.

9.3.5.4 Elementary mask

9.3.5.4.1 Syntax

Class ElementaryMask() {
bit(BIFSConfig.nodeIDbits) nodeID;

NodeUpdateField node = GetNodeFromID(nodeID);
switch (node.nodeType) {

case FaceType:
break;
case BodyType:
break;
case IndexedFaceSet2DType:
break;

default:
InitialFieldsMask initMask(node);

}
}

9.3.5.4.2 Semantics

The ElementaryMask describes how to animate the elements of a node.

The integer nodeID identifies the animated node.

If the node’s nodeType is FDP, BDP or IndexedFaceSet2D , no further information is expected.

NOTE � The BDP node ("case BodyType" ) is not specified in ISO/IEC 14496 nor in ISO/IEC 14772-1:1998 [10]. This
syntax switch has been provided to allow support for future extensions.

If any other case, an InitialFieldsMask shall be present.

9.3.5.5 InitialFieldsMask

9.3.5.5.1 Syntax

class InitialFieldsMask(NodeUpdateField node) {
for(i=0; i<node.numDYNfields; i++)

bit(1) node.isAnimField[i];
int i;
for(i=0; i<node.numDYNfields; i++) {

if (node.isAnimField[i]) {
FieldData field = node.field[node.dyn2all[i]];
AnimFieldQP aqp = field.aqp;
if (!isSF(field) {

bit(1) aqp.isTotal;
if (!aqp.isTotal) {

unsigned int(5) nbBits;
do {

int(nbBits) aqp.indexList[aqp.numElement++];
bit(1) moreIndices;

} while (moreIndices);
}
InitialAnimQP QP[i](field.aqp);

}
}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

86 © ISO/IEC 1999 – All rights reserved

9.3.5.5.2 Semantics

The InitialFieldsMask specifies which fields of a given node are animated.

The array of booleans isAnimField describes whether the fields (indexed with dynIDs ) are animated.

If a multiple field is animated and if the boolean isTotal is TRUE, all the of the field’s individual elements are
animated.

If a multiple field is animated and if the boolean isTotal is FALSE, the indices of the animated individual field are
sent and stored in aqp.indexList[] . The number of bits used to encode them is specified by nbBits . If the
boolean moreIndices is TRUE, another index shall be present.

An InitialAnimQP shall then be expected.

9.3.5.6 InitialAnimQP

9.3.5.6.1 Syntax

InitialAnimQP(animFieldQP aqp) {

aqp.useDefault=FALSE;
switch(aqp.animType) {

case 4: // Color
case 8: // BoundFloats

bit(1) aqp.useDefault
case 1: // Position 3D
case 2: // Position 2D
case 11: // Size 3D
case 12: // Size 2D
case 7: // Floats

if (!aqp.useDefault) {
for (i=0;i<getNbBounds(aqp);i++) {

bit(1) useEfficientCoding
GenericFloat aqp.Imin[i](useEfficientCoding);

}
for (i=0;i<getNbBounds(aqp);i++) {

bit(1) useEfficientCoding
GenericFloat aqp.Imax[i](useEfficientCoding);

}
}
break;

case 13: // Integers
int(32) aqp.IminInt[0];

break;
}
unsigned int(5) aqp.INbBits;

for (i=0;i<getNbBounds(aqp);i++) {
int(INbBits+1) vq
aqp.Pmin[i] = vq-2^aqp.INbBits;

}

unsigned int(4) aqp.PNbBits;

}

9.3.5.6.2 Semantics

The InitialAnimQP specifies the field’s default quantization parameters.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 87

The quantization bounds are first coded. For animTypes that have default finite bounds (Colors , BoundFloats ),
the default bounds of the field coding tables data structures can optionally be used by setting useDefautBounds
to TRUE. For all other animTypes , this boolean is set to FALSE. For all vectorial animTypes (Position3D ,
Position2D , Size3D , Size2D , Float , BoundFloat , Color ), if useDefaultBounds is FALSE, the
quantization bounds aqp.Imin[] and aqp.Imax[] are coded. Depending on the value of
useEfficientCoding , these bounds are coded using GenericFloat as floats of 32 bits or less. For the
animTypes Angle , Normal and Rotation , no quantization bounds are coded.

The number of bits used in the quantization process, aqp.INbBits , is then coded. The quantization process (see
9.3.3.3) is used in intra mode only.

The minimal bounds used to offset the values obtained from the compensatiation process in predictive mode,
Pmin[] , are then coded. Pmins may have values in the range –2INbBits to 2INbBits-1. The value is coded as an
unsigned integer using INbBits +1 bits and has the value PMin+2INbBits.

The number of bits used for the predictive values, aqp.PNbBits , is then coded. The compensation process (see
9.3.4) is used in predictive mode only.

9.3.6 BIFS Command Syntax

9.3.6.1 Overview

This subclause describes the commands that can be sent to act on the scene. They allow insertion, modification,
and deletion of elements of the scene (new scenes, nodes, fields). All BIFS information is encapsulated in BIFS
command frames. Each frame may contain commands that perform a number of operations, such as insertion,
deletion, or modification of scene nodes, their fields, or routes.

9.3.6.2 Command Frame

9.3.6.2.1 Syntax

class CommandFrame() {
do {

Command command();
bit(1) continue;

} while (continue);
}

9.3.6.2.2 Semantics

A CommandFrame is a collection of BIFS-Commands, and corresponds to one access unit. A sequence of
commands may be sent. The boolean value continue , when TRUE, indicates that another command follows the
current one.

9.3.6.3 Command

9.3.6.3.1 Syntax

class Command() {
bit(2) code;
switch (code) {
case 0:

InsertionCommand insert();
break;

case 1:
DeletionCommand delete();
break;

case 2:
ReplacementCommand replace();
break;

case 3:
SceneReplaceCommand sceneReplace();
break;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

88 © ISO/IEC 1999 – All rights reserved

9.3.6.3.2 Semantics

For each Command, the 2-bit flag, code , signals one of the four basic commands: insertion, deletion, replacement,
and scene replacement.

9.3.6.4 Insertion Command

9.3.6.4.1 Syntax

class InsertionCommand() {
bit(2) parameterType ;
switch parameterType {
case 0:

NodeInsertion nodeInsert();
break;

case 2:
IndexedValueInsertion idxInsert();
break;

case 3:
ROUTEInsertion ROUTEInsert();
break ;

}
}

9.3.6.4.2 Semantics

There are four basic insertion commands, signaled by the 2-bit flag parameterType .

If parameterType is 0, a NodeInsertion is expected.

If parameterType is 2, an IndexedValueInsertion is expected.

If parameterType is 3, a ROUTEInsertion is expected.

9.3.6.5 Node Insertion

9.3.6.5.1 Syntax

class NodeInsertion() {
bit(BIFSConfig.nodeIDbits) nodeID ;

int ndt=GetNDTFromID(nodeID);
bit(2) insertionPosition;
switch (insertionPosition) {
case 0: // insertion at a specified position

bit (8) position;
SFNode node(ndt);
break;

case 2: // insertion at the beginning of the field
SFNode node(ndt);
break;

case 3: // insertion at the end of the field
SFNode node(ndt);
break;

}
}

9.3.6.5.2 Semantics

The insertion of a node may be performed on a node that has an MFNode children field. Inserting a node adds the
node at the desired position in the children multiple field. The command is thus valid only if the node referred to by
nodeID contains a children field of type MFNode.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 89

A node may be inserted in the children field of a grouping node. The nodeID of this grouping node is first coded.

The NDT of the inserted node can be determined from the NDT of the children field in which the node is inserted.

The position in the children field where the node shall be inserted, insertionPosition is then coded on two bits :

� If the insertionPosition is 0, the node is inserted at a specified position coded on 8 bits.

� If the insertionPosition is 2, the node is inserted at the beginning of the field.

� If the insertionPosition is 3, the node is inserted at the end of the field.

The node is then coded.

9.3.6.6 IndexedValue Insertion

9.3.6.6.1 Syntax

class IndexedValueInsertion() {
bit(BIFSConfig.nodeIDbits) nodeID;
NodeUpdateField node=GetNodeFromID(nodeID);
int(node.nINbits) inID;
bit(2) insertionPosition;
switch (insertionPosition) {
case 0: // insertion at a specified position

bit (16) position;
SFField value(node.field[node.in2all[inID]]);
break;

case 2: // insertion at the beginning of the field
SFField value(node.field[node.in2all[inID]]);
break;

case 3: // insertion at the end of the field
SFField value(node.field[node.in2all[inID]]);
break;

}
}

9.3.6.6.2 Semantics

The IndexedValueInsertion syntax allows the insertion of a new value in a multiple field at the desired
position.

The nodeID of the node in whose field the value is to be inserted is first coded.

The field in which the value is inserted must be a multiple field type. The field is signaled with an inID . The inID
is parsed using the table for the node type of the node in which the value is inserted. The node type may be
determined from the nodeID

The position in the children field where the node shall be inserted, insertionPosition , is then coded:

� If the insertionPosition is 0, the node is inserted at a specified position coded using 16 bits.

� If the insertionPosition is 2, the node is inserted at the beginning of the field.

� If the insertionPosition is 3, the node is inserted at the end of the field.

The node is then coded.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

90 © ISO/IEC 1999 – All rights reserved

9.3.6.7 ROUTE Insertion

9.3.6.7.1 Syntax

class ROUTEInsertion() {
bit(1) isUpdatable;
if (isUpdatable)

bit(BIFSConfig.routeIDbits) routeID;

bit(BIFSConfig.nodeIDbits) departureNodeID;
NodeData nodeOUT=GetNodeFromID(departureNodeID);

int(nodeOUT.nOUTbits) departureID;
bit(BIFSConfig.nodeIDbits) arrivalNodeID;

NodeData nodeIN=GetNodeFromID(arrivalNodeID);
int(nodeIN.nINbits) arrivalID;

}

9.3.6.7.2 Semantics

The ROUTE insertion syntax permits the addition of a new ROUTE in the list of ROUTEs for the current scene.

A ROUTE is inserted in the list of ROUTEs by specifying a new ROUTE.

If the boolean isUpdatable is TRUE, a routeID is coded to allow the ROUTE to be referenced.

The nodeID of the route’s departure, departureNodeID , is first coded.

The outID of the departure field in the departure node, departureID ,is then coded.

The nodeID of the route’s arrival, arrivalNodeID , is then coded.

The inID of the arrival field in the arrival node, arrivalID , is then coded.

9.3.6.8 Deletion Command

9.3.6.8.1 Syntax

class DeletionCommand() {
bit(2) parameterType ;
switch (parameterType) {
case 0:

NodeDeletion nodeDelete();
break ;

case 2:
IndexedValueDeletion idxDelete();
break ;

case 3:
ROUTEDeletion ROUTEDelete();
break ;

}
}

9.3.6.8.2 Semantics

There are three types of deletion commands, signalled by the 2-bit flag parameterType .

If parameterType is 0, a NodeDeletion is expected.

If parameterType is 2, an IndexedValueDeletion is expected.

If parameterType is 3, a ROUTEDeletion is expected.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 91

9.3.6.9 Node Deletion

9.3.6.9.1 Syntax

class NodeDeletion() {
bit(BIFSConfig.nodeIDbits) nodeID;

}

9.3.6.9.2 Semantics

The NodeDeletion syntax permits the deletion of a node with a specific nodeID . The node deletion deletes the
node and all its instances, if it was referenced elsewhere in the scene with a USE statement.

The node deletion is signalled by the nodeID of the node to be deleted. When deleting a node, all fields shall also
deleted, as well as all ROUTEs related to the node or its fields.

9.3.6.10 IndexedValue Deletion

9.3.6.10.1 Syntax

class IndexedValueDeletion() {
bit(BIFSConfig.nodeIDbits) nodeID;

NodeData node=GetNodeFromID(nodeID);
int(node.nINbits) inID;
bit(2) deletionPosition;
switch (deletionPosition) {
case 0: // deletion at a specified position

bit(16) position;
break;

case 2: // deletion at the beginning of the field
break;

case 3: // deletion at the end of the field
break;

}
}

9.3.6.10.2 Semantics

The IndexedValueDeletion syntax permits the deletion of an element of a multiple value field.

The nodeID of the node to be deleted is first coded.

The inID of the field to be deleted is then coded.

The position in the children field from where the value shall be deleted, deletionPosition , is then coded:

� If the insertionPosition is 0, the value at specified position, coded using 16 bits, shall be deleted.

� If the insertionPosition is 2, the value at the beginning of the field shall be deleted.

� If the insertionPosition is 3, the value at the end of the field shall be deleted.

9.3.6.11 ROUTE Deletion

9.3.6.11.1 Syntax

class ROUTEDeletion() {
bit(BIFSConfig.routeIDbits) routeID;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

92 © ISO/IEC 1999 – All rights reserved

9.3.6.11.2 Semantics

The ROUTEDeletion syntax permits the deletion of a ROUTE with a given routeID from the list of active
ROUTEs.

Deleting a ROUTE is performed by specifying its routeID . This is similar to the deletion of a node.

9.3.6.12 Replacement Command

9.3.6.12.1 Syntax

class ReplacementCommand() {
bit(2) parameterType ;
switch (parameterType) {
case 0:

NodeReplacement nodeReplace();
break;

case 1:
FieldReplacement fieldReplace();
break;

case 2:
IndexedValueReplacement idxReplace();
break ;

case 3:
ROUTEReplacement ROUTEReplace();
break;

}
}

9.3.6.12.2 Semantics

There are 4 replacement commands, signalled by the 2-bit flag parameterType .

If parameterType is 0, a NodeReplacement is expected.

If parameterType is 1, a FieldReplacement is expected.

If parameterType is 2, a IndexedValueReplacement is expected.

If parameterType is 3, a ROUTEReplacement is expected.

9.3.6.13 Node Replacement

9.3.6.13.1 Syntax

class NodeReplacement() {
bit(BIFSConfig.nodeIDbits) nodeID;
SFNode node(SFWorldNode);

}

9.3.6.13.2 Semantics

The NodeReplacement syntax permits the deletion of an existing node and its replacement with a new node. All
ROUTEs pointing to the deleted node as well as any instances of the node created through the USE mechanism
shall be deleted.

The node to be replaced is signalled by its nodeID . The new node is encoded with the SFWorldNode node data
type, which is valid for all BIFS nodes, in order to avoid necessitating the NDT of the replaced node to be
established.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 93

9.3.6.14 Field Replacement

9.3.6.14.1 Syntax

class FieldReplacement() {
bit(BIFSConfig.nodeIDbits) nodeID ;
NodeData node = GetNodeFromID(nodeID);
int(node.nINbits) inID;
Field value(node.field[node.in2all[inID]]);

}

9.3.6.14.2 Semantics

This FieldReplacement syntax permits the modification of the value of a field of an existing node. The existing
value shall be deleted and replaced with the new value.

The nodeID of the node whose field is to be modified is first coded

The inID of the field to be modified is then coded

The new field is then coded

9.3.6.15 IndexedValueReplacement

9.3.6.15.1 Syntax

class IndexedValueReplacement() {
bit(BIFSConfig.nodeIDbits) nodeID;

NodeData node = GetNodeFromID(nodeID);
int(node.nINbits) inID;
bit(2) replacementPosition;
switch (replacementPosition) {
case 0: // replacement at a specified position

bit (16) position;
SFField value(node.field[node.in2all[inID]]);
break;

case 2: // replacement at the beginning of the field
SFField value(node.field[node.in2all[inID]]);
break;

case 3: // replacement at the end of the field
SFField value(node.field[node.in2all[inID]]);
break;

}
}

9.3.6.15.2 Semantics

The IndexedValueReplacement syntax permits the modification of the value of an element of a multiple field.
As for any multiple field access, it is possible to replace at the beginning, the end or at a specified position in the
multiple field.

The nodeID of the node whose field is to be modified is first coded

The inID of the field whose value is to be modified is then coded

The position in the children field where value has to be modified, replacementPosition , is then coded:

� If the insertionPosition is 0, the value at specified position, coded using 16 bits, is modified.

� If the insertionPosition is 2, the value at the beginning of the field is modified.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

94 © ISO/IEC 1999 – All rights reserved

� If the insertionPosition is 3, the value at the end of the field is modified.

The new value is then coded as a SFField.

9.3.6.16 ROUTE Replacement

9.3.6.16.1 Syntax

class ROUTEReplacement() {
bit(BIFSConfig.routeIDbits) routeID;
bit(BIFSConfig.nodeIDbits) departureNodeID;

NodeData nodeOUT = GetNodeFromID(nodeID);
int(nodeOUT.nOUTbits) departureID;
bit(BIFSConfig.nodeIDbits) arrivalNodeID;

NodeData nodeIN = GetNodeFromID(nodeID);
int(nodeIN.nINbits) arrivalID;

}

9.3.6.16.2 Semantics

Replacing a ROUTE deletes the replaced ROUTE and replaces it with the new ROUTE.

The routeID of the ROUTE to be replaced is first coded.

The nodeID of the new route’s departure, departureNodeID , is then coded.

The outID of the departure field in the departure node, departureID , is then coded.

The nodeID of the route’s arrival, arrivalNodeID , is then coded.

The inID of the arrival field in the arrival node, arrivalID , is then coded.

9.3.6.17 Scene ReplaceCommand

9.3.6.17.1 Syntax

class SceneReplaceCommand() {
BIFSScene scene();

}

9.3.6.17.2 Semantics

Replacing a scene results in the entire BIFS scene being replaced with a new BIFSScene scene. When used in
the context of an Inline node, this corresponds to replacement of the sub-scene (previously assumed to be
empty). In a BIFS elementary stream, the SceneReplacement commands are the only random access points.

9.3.7 BIFS Scene

9.3.7.1 BIFSScene

9.3.7.1.1 Syntax

class BIFSScene() {
bit(8) reserved;
SFNode nodes(SFTopNode);
bit(1) hasROUTEs;
if (hasROUTEs) {

ROUTEs routes();
}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 95

9.3.7.1.2 Semantics

The integer reserved may be used in future extensions. It shall be set to 0.

The BIFSScene structure represents the global scene. A BIFSScene is always associated to a ReplaceScene
BIFS-Command message. The BIFSScene is structured in the following way:

The nodes of the scene are described first as an SFNode. The first node in the scene shall be of type SFTopNode
(see Annex H).

ROUTEs are described after all nodes

All BIFS scenes shall begn with a node of type SFTopNode. This implies that the top node may be one of
Layer2D , OrderedGroup , Group or Layer3D .

9.3.7.2 SFNode

9.3.7.2.1 Syntax

class SFNode(int nodeDataType) {
bit(1) isReused ;
if (isReused) {

bit(BIFSConfig.nodeIDbits) nodeID;
}
else {

bit(GetNDTnbBits(nodeDataType)) localNodeType;
nodeType = GetNodeType(nodeDataType,localNodeType);
bit(1) isUpdateable;
if (isUpdateable) {

bit(BIFSConfig.nodeIDbits) nodeID;
}
bit(1) MaskAccess;
if (MaskAccess) {

MaskNodeDescription mnode(MakeNode(nodeType));
}
else {

ListNodeDescription lnode(MakeNode(nodeType));
}

}
}

9.3.7.2.2 Semantics

The SFNode syntax represents a generic node. The encoding depends on the context of the parent field of the
node. This context is described by the parent field’s node data type (NDT).

If isReused is TRUE then this node is a reference to another node, identified by its nodeID . This is equivalent to
the use of the USE statement in ISO/IEC 14772-1:1998 [10].

If isReused is FALSE, then a complete node is provided in the bitstream. This requires that the nodeType be
inferred from the node data type. The node is referenced by its localNodeType in the node data type table. Then,
this information is converted into the node’s nodeType (e.g. its localNodeType in the SFWorldNode NDT table).

The isUpdatable flag enables the assignment of a nodeID to the node. This is equivalent to the DEF statement
of ISO/IEC 14772-1:1998 [10].

The node definition follows using either a MaskNodeDescription , or a ListNodeDescription .

The nodeType is a number that represents the type of the node. This nodeType is coded using a variable number
of bits for efficiency reasons. The exact type of node may be determined from the nodeType as follows:

1. The data type of the field parsed indicates the node data type. The root node is always of type SFTopNode.

2. From the node data type expected and the total number of nodes type in the category, the number of bits
representing the nodeType is obtained (this number is given in the node data type tables in Annex H).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

96 © ISO/IEC 1999 – All rights reserved

3. The nodeType gives the nature of the node to be parsed.

EXAMPLE � The Shape node has 2 fields defined as:

exposedField SFAppearanceNode Appearance NULL
exposedField SFGeometry3DNode geometry NULL

When decoding a Shape node, if the first field is transmitted, a node of type SFAppearanceNode is expected.
The only node with SFAppearanceNode type is the Appearance node, and hence the nodeType can be coded
using 0 bits. When decoding the Appearance node, the following fields can be found:

exposedField SFMaterialNode Material NULL
exposedField SFTextureNode texture NULL
exposedField SFTextureTransformNode TextureTransform NULL

9.3.7.3 MaskNodeDescription

9.3.7.3.1 Syntax

class MaskNodeDescription(NodeData node) {
for (i=0; i<node.numDEFfields; i++) {

bit(1) Mask;
if (Mask)

Field value(node.field[node.def2all[i]]);
}

}

9.3.7.3.2 Semantics

In the MaskNodeDescription , a mask indicates, for each “def” mode field (those having a defID ) of this node
type, if the field value is specified. Fields are sent in the order indicated in Annex H. The field types are thus known
and permit the field’s value to be decoded.

9.3.7.4 ListNodeDescription

9.3.7.4.1 Syntax

class ListNodeDescription (NodeData node) {
bit(1) endFlag;
while (!EndFlag){

int(node.nDEFbits) fieldRef;
Field value(node.field[node.def2all[i]]);
bit(1) endFlag;

}
}

9.3.7.4.2 Semantics

In the ListNodeDescription , fields are directly addressed by their field reference, fieldRef . The reference is
sent as a defID and its parsing depends on the node type (see 9.3.2.3).

9.3.7.5 Field

9.3.7.5.1 Syntax

class Field(FieldData field) {
if (isSF(field))

SFField svalue(field);
else

MFField mvalue(field);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 97

9.3.7.5.2 Semantics

A field is encoded according to its type: single (SFField) or multiple (MFField). A multiple field is a collection of
single fields.

9.3.7.6 MFField

9.3.7.6.1 Syntax

class MFField(FieldData field) {
bit(1) reserved;
if (!reserved) {

bit(1) isListDescription;
if (isListDescription)

MFListDescription lfield(field);
else

MFVectorDescription vfield(field);
}

}

9.3.7.6.2 Semantics

The bit reserved is reserved for future extension. The bit shall be set to 0.

MFField types can be encoded with a list (MFListDescription ) or vector (MFVectorDescription )
description.

9.3.7.7 MFListDescription

9.3.7.7.1 Syntax

class MFListDescription(FieldData field) {
bit(1) endFlag;
while (!endFlag) {

SFField field(field);
bit(1) endFlag;

}
}

9.3.7.7.2 Semantics

The MFField type is encoded as a list of single fields.

9.3.7.8 MFVectorDescription

9.3.7.8.1 Syntax

class MFVectorDescription(FieldData field) {
int(5) NbBits;
int(NbBits) numberOfFields;
SFField field[numberOfFields](field);

}

9.3.7.8.2 Semantics

The MFField type is encoded as a vector of fields whose dimension is specified.

The number of bits, NbBits , used to specify the dimension of the vector is first coded. The actual dimension is
then coded as an unsigned integer using NbBits . The fields are then coded in order.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

98 © ISO/IEC 1999 – All rights reserved

9.3.7.9 SFField

9.3.7.9.1 Syntax

class SFField(FieldData field) {
switch (field.fieldType) {

case SFNodeType:
SFNode nValue(field.fieldType);
break;

case SFBoolType:
SFBool bValue;
break;

case SFColorType:
SFColor cValue(field);
break;

case SFFloatType:
SFFloat fValue(field);
break;

case SFInt32Type:
SFInt32 iValue(field);
break;

case SFRotationType:
SFRotation rValue(field);
break;

case SFStringType:
SFString sValue;
break;

case SFTimeType:
SFTime tValue;
break;

case SFUrlType:
SFUrl uValue;
break;

case SFVec2fType:
SFVec2f v2Value(field);
break;

case SFVec3fType:
SFVec3f v3Value(field);
break;

case SFImageType:
SFImage imageValue(field);
break;

case SFCommandBufferType:
SFCommandBuffer commandValue(field);
break;

case SFScriptType:
SFScript scriptValue();
break;

}
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 99

9.3.7.9.2 Semantics

Each field is encoded according to its fieldType .

9.3.7.10 GenericFloat

9.3.7.10.1 Syntax

class GenericFloat(boolean useEfficientCoding) {
if (!useEfficientCoding)

float(32) value;
else {

EfficientFloat value;
}

9.3.7.10.2 Semantics

If the parameter useEfficientCoding is true, the float is coded using the EfficientFloat scheme.
Otherwise, the IEEE 32 bit format for float coding is used.

9.3.7.11 EfficientFloat

9.3.7.11.1 Syntax

class EfficientFloat {
unsigned int(4) mantissaLength;
if (mantissaLength != 0) {

int(3) exponentLength;
int(1) mantissaSign;
int(mantissaLength-1) mantissa;
if (exponentLength != 0) {

int(1) exponentSign;
int(exponentLength-1) exponent;

}
}

}

9.3.7.11.2 Semantics

For floating point values it is possible to use a more economical representation than the standard 32-bit format, as
specified in the EfficientFloat structure. This representation separately encodes the size of the exponent
(base 2) and mantissa of the number.

If the mantissaLength is 0, the decoded value is 0 and further parameters are not coded.

If the mantissaLength is not 0, the exponentLength , mantissaSign and mantissa are coded. The
mantissa sign is 1 when the mantissa is negative, otherwise it is 0.

The mantissa syntax element contains the actual mantissa with the leading 1 removed, hence only
(mantissaLength -1) bits are needed to encode it.

If the exponentLength is 0 then exponent is not parsed, and the decoded exponent is set, by default, to 0.
Otherwise, the sign is read, with exponentSign =1 used to denote a negative exponent. The leading 1 of the
exponent is not coded, so that exponent can be encoded using exponentLength -1 bits.

The actual mantissa and exponent are, respectively, (2 mantissaLength-1 + mantissa ) and

(2 exponentLength-1 + exponent ), thus in all other cases the decoded value shall be:

)exponent2Sign).(2.exponent-(11-ngthmantissaLe 1ngthexponentLe

2).mantissaSign).(22.mantissa-(1 �
�

�

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

100 © ISO/IEC 1999 – All rights reserved

9.3.7.12 SFBool

9.3.7.12.1 Syntax

class SFBool {
bit(1) value;

}

9.3.7.12.2 Semantics

If value is 1 the decoded boolean is set to TRUE. If value is 0, the decoded boolean is set to FALSE.

9.3.7.13 SFColor

9.3.7.13.1 Syntax

class SFColor(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat rValue(field.useEfficientCoding);
GenericFloat gValue(field.useEfficientCoding);
GenericFloat bValue(field.useEfficientCoding);

}
}

9.3.7.13.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFColor is coded using the GenericFloat scheme.

9.3.7.14 SFFloat

9.3.7.14.1 Syntax

class SFFloat(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else

GenericFloat value(field.useEfficientCoding);
}

9.3.7.14.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise the SFFloat is
coded using the GenericFloat scheme.

9.3.7.15 SFInt32

9.3.7.15.1 Syntax

class SFInt32(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else

int(32) value;
}

9.3.7.15.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise the SFInt32 is
coded as a signed value using 32 bits.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 101

9.3.7.16 SFRotation

9.3.7.16.1 Syntax

class SFRotation(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat xAxis(field.useEfficientCoding);
GenericFloat yAxis(field.useEfficientCoding);
GenericFloat zAxis(field.useEfficientCoding);
GenericFloat angle(field.useEfficientCoding);

}
}

9.3.7.16.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFRotation is coded indepedently using the GenericFloat scheme.

9.3.7.17 SFString

9.3.7.17.1 Syntax

class SFString {
unsigned int(5) lengthBits;
unsigned int(lengthBits) length;
char(8) value[length];

}

9.3.7.17.2 Semantics

The SFString is coded as an array of characters whose length is first specified.

lengthBits is the number of bits used to encode the string length.

length is the length of the string coded using lengthBits .

All characters are coded using the UTF-8 character encoding [3].

9.3.7.18 SFTime

9.3.7.18.1 Syntax

class SFTime {
double(64) value;

}

9.3.7.18.2 Semantics

The SFTime value is coded as a 64-bit double.

9.3.7.19 SFUrl

9.3.7.19.1 Syntax

class SFUrl {
bit(1) isOD;
if (isOD)

bit(10) ODid;
else

SFString urlValue;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

102 © ISO/IEC 1999 – All rights reserved

9.3.7.19.2 Semantics

If the SFUrl refers to an object descriptor, the ObjectDescriptorID is coded as a 10-bit integer. Otherwise the
URL is sent as an SFString .

9.3.7.20 SFVec2f

9.3.7.20.1 Syntax

class SFVec2f(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat value1;
GenericFloat value2;

}
}

9.3.7.20.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFVec2f is coded using the GenericFloat scheme.

9.3.7.21 SFVec3f

9.3.7.21.1 Syntax

class SFVec3f(FieldData field) {
if (field.isQuantized)

QuantizedField qvalue(field);
else {

GenericFloat value1(field.useEfficientCoding);
GenericFloat value2(field.useEfficientCoding);
GenericFloat value3(field.useEfficientCoding);

}
}

9.3.7.21.2 Semantics

If the field’s isQuantized bit is TRUE, the QuantizedField scheme shall be used. Otherwise each component
of the SFVec3f is coded using the GenericFloat scheme.

9.3.7.22 SFImage

9.3.7.22.1 Syntax

class SFImage {
unsigned int(12) width;
unsigned int(12) height;
bit(2) numComponents;
bit(8) pixels[(numComponents+1)*width*height];

}

9.3.7.22.2 Semantics

The width and height in pixels of the image are coded as 12-bit unsigned integers.

numComponents defines the image type. The following types are permitted:

� If the value is ‘00’, then a grey scale image shall be decoded.

� If the value is ‘01’, then a grey scale with alpha channel shall be decoded.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 103

� If the value is ‘10’, then an RGB image shall be decoded.

� If the value is ‘11’, then an RGB image with alpha channel shall be decoded.

Pixels shall be decoded as unsigned char, 8-bit encoded pixel values.

9.3.7.23 SFCommandBuffer

9.3.7.23.1 Syntax

class SFCommandBuffer {
unsigned int(5) lengthBits;
unsigned int(lengthBits) length;
bit(8) value[length];

}

9.3.7.23.2 Semantics

The SFCommandBuffer syntax element is coded as an array of bytes whose length is first specified.

lengthBits is the number of bits used to encode the buffer length.

length is the length of the buffer coded using lengthBits .

value is an array of bytes of length length . It shall contain a CommandFrame, padded if necessary to complete
the last byte.

9.3.7.24 QuantizedField

9.3.7.24.1 Syntax

class QuantizedField(FieldData field) {
switch (field.quantType) {

case 9:
int(1) direction

case 10:
int(2) orientation

default:
break;

}
for (i=0;i<getNbComp(field);i++)

int(field.nbBits) vq[i]
}

9.3.7.24.2 Semantics

The value is quantized using the quantization process described in 9.3.3.

For normals, the direction and orientation values specified in the quantization process are first coded. For rotations,
only the orientation value is coded.

The compressed components, vq[i] , of the field’s value are then coded in sequence as unsigned integers using
the number of bits specified in the field data structure.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

104 © ISO/IEC 1999 – All rights reserved

9.3.7.25 SFScript

9.3.7.25.1 Syntax

class SFScript() {
bit(1) isListDescription;
if (isListDescription)

ScriptFieldsListDescripion();
else

ScriptFieldsVectorDescripion();
bit(1) EncodeURL;
if(!EncodeURL)

MFURL URLstring;
else

SFNode EncodedScript();
}

9.3.7.25.2 Semantics

The Script class is used to represent a Script node. This can be done as a list description or as a vector
description, depending on the value in isListDescription . If EncodeURL is TRUE, the URLString field is
read as a regular URL. Otherwise, the URLString field shall contain a script, which is encoded using the bitstream
syntax for EncodedScript , given below. This bitstream is a tree representation of the BNF grammar for
ECMAScript [11]. Each node determines the parse decision selected in parsing the script, and thus the resulting
bitstream can be used to interpret the script directly.

9.3.7.26 ScriptFieldsListDescription

9.3.7.26.1 Syntax

class ScriptFieldsListDescription() {
bit(1) endFlag; // List description of the fields
while (!EndFlag) {

ScriptField();
bit(1) endFlag;

}
}

9.3.7.26.2 Semantics

ScriptFieldsListDescription reads a list description of the fields in the Script node. When endFlag has
value 1, the list has ended and no more values are read.

9.3.7.27 ScriptFieldsVectorDescription

9.3.7.27.1 Syntax

class ScriptFieldsVectorDescription() {
bit(4) fieldBits; // Number of bits for number of fields
bit(fieldBits) numFields; // Number of fields in the script
for (i=0; i<numFields; ++i) {

ScriptField();
}

}

9.3.7.27.2 Semantics

ScriptFieldsVectorDescription reads a value numFields , to determine how many fields are in the
Script node, and these are read sequentially. The number of bits used to give the number of fields is first read as
4 bits in fieldBits .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 105

9.3.7.28 ScriptField

9.3.7.28.1 Syntax

class ScriptField() {
bit(2) eventType;
bit(6) fieldType;
if (eventType == FIELD) {

bit(1) hasInitialValue;
if (hasInitialValue){

NodeData node = makeNode(ScriptNodeType);
Field(node.field[fieldType]) value;

}
}

}

9.3.7.28.2 Semantics

The ScriptField contains one field for the Script node. The eventType specifies the type of field, with values
0, 1, and 2 representing fields, eventIns and eventOuts, respectively. The fieldType is an integer value that
holds the same value as the nodeData structure’s fieldType . This determines the type of the field.

When the event is a field, it may have a default value. This presence of this value is indicated by
hasInitialValue being 1. In this case, the field value is read using the Field class. In order to be able to use
the Field class, a node of type NodeData is created which then has the appropriate field value for each
fieldType (the fieldType index can be used to reference field structures of the appropriate type).

9.3.7.29 EncodedScript

9.3.7.29.1 Syntax

class EncodedScript {
bit(1) hasFunction
while (hasFunction) {

Function function;
bit(1) hasFunction

}
}

9.3.7.29.2 Semantics

A script is a collection of functions, listed sequantially while hasFunction is TRUE.

9.3.7.30 Function

9.3.7.30.1 Syntax

class Function {
Identifier identifier;
Arguments arguments;
StatementBlock statementBlock;

}

9.3.7.30.2 Semantics

Each function consists of an identifier , a list of arguments , and a statementBlock which contains the
script statements executed when the function is called.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

106 © ISO/IEC 1999 – All rights reserved

9.3.7.31 Arguments

9.3.7.31.1 Syntax

class Arguments {
bit(1) hasArgument
while (hasArgument) {

Identifier identifier;
bit(1) hasArgument

}
}

9.3.7.31.2 Semantics

The argument list is of arbitrary length, and terminates when hasArgument is 0. Each argument consists of one
identifier .

9.3.7.32 StatementBlock

9.3.7.32.1 Syntax

class StatementBlock {
bit(1) isCompoundStatement
if (isCompoundStatement) {

bit(1) hasStatement
while (hasStatement) {

Statement statement;
bit(1) hasStatement

}
else {

Statement statement;
}

}
}

9.3.7.32.2 Semantics

A statementBlock consists of either a compoundStatement , which holds several script statements, or a single
statement, indicated by the value of isCompoundStatement . When the statementBlock consists of several
statements, the hasStatement bit is used to signal either the end of the list or the existance of another statement.

9.3.7.33 Statement

9.3.7.33.1 Syntax

class Statement {
bit(3) statementType
switch statementType {

case ifStatementType:
IFStatement ifStatement;
break;

case forStatementType:
FORStatement forStatement;

break;
case whileStatementType:

WHILEStatement whileStatement;
break;

case returnStatementType:
RETURNStatement returnStatement;
break;

case compoundExpressionType:
CompoundExpression compoundExpression;
break;

case breakStatementType:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 107

case continueStatementType:
break;

}
}

9.3.7.33.2 Semantics

A Statement may consist of one of the following specific statement types:

� ifStatement

� forStatement

� whileStatement

� returnStatement

� compoundExpression

� breakStatement

� continueStatement .

These statement types are indicated by a value from 0-6, respectively, called statementType .

9.3.7.34 IFStatement

9.3.7.34.1 Syntax

class IFStatement {
CompoundExpression compoundExpression;
StatementBlock statementBlock;
bit(1) hasELSEStatement
if (hasELSEStatement) {

StatementBlock statementBlock;
}

}

9.3.7.34.2 Semantics

An IFStatement is used for conditional execution of a statementBlock . It consists of a
CompoundExpression followed by a statementBlock . The statementBlock is interpreted when the
CompoundExpression evaluates to a non-zero or non-empty value. The IFStatement has an optional
additional statementBlockwhich is included when hasElseStatement is 1. This second, optional
compoundStatement is interpreted when the CompoundExpression evaluates to a zero or empty value.

9.3.7.35 FORStatement

9.3.7.35.1 Syntax

class FORStatement {
OptionalExpression optionalExpression;
OptionalExpression optionalExpression;
OptionalExpression optionalExpression;
StatementBlock statementBlock;

}

9.3.7.35.2 Semantics

A FORStatement is used to iterate over values, stopping when a conditional expression fails. The first
optionalExpression shall be executed when the statement is interpretted. The second
optionalExpression shall then be evaluated, and if it returns a non-zero or non-empty value, the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

108 © ISO/IEC 1999 – All rights reserved

statementBlock shall be executed. The third optionalExpression shall then be executed. After this process
shall repeat starting with the execution of the second optionalExpression again, the statementBlock , and
the third optionalExpression .

9.3.7.36 WHILEStatement

9.3.7.36.1 Syntax

class WHILEStatement {
CompoundExpression compoundExpression;
StatementBlock statementBlock;

}

9.3.7.36.2 Semantics

The WHILEStatement is used to conditionally execute a statementBlock for so long as the
compoundExpression evaluates to a non-zero or non-empty value.

9.3.7.37 RETURNStatement

9.3.7.37.1 Syntax

class RETURNStatement {
bit(1) returnValue
if (returnValue) {

CompoundExpression compoundExpression;
}

}

9.3.7.37.2 Semantics

The RETURNStatement is used to return a value from a function. When a function has no return value,
returnValue shall be 0. Otherwise, the returned value shall be the last value evaluated for
compoundExpression .

9.3.7.38 CompoundExpression

9.3.7.38.1 Syntax

class CompoundExpression {
do {

Expression expression;
bit(1) hasExpression

} while (hasExpression);
}

9.3.7.38.2 Semantics

A CompoundExpression is a list of expressions , terminated when hasExpression has value 0. The value of
the compound expression shall be the value of the last evaluated expression.

9.3.7.39 optionalExpression

9.3.7.39.1 Syntax

class optionalExpression {
bit(1) hasCompoundExpression
if (hasCompoundExpression) {

CompoundExpression compoundExpression;
}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 109

9.3.7.39.2 Semantics

An optionalExpression may be an empty expression, containing no executable statements, or a
compoundExpression . This is indicated by the value of hasCompoundExpression .

9.3.7.40 Expression

9.3.7.40.1 Syntax

class Expression {
bit(6) expressionType
switch expressionType {

case curvedExpressionType: // (compoundExpression)
CompoundExpression compoundExpression;
break;

case negativeExpressionType: // -expression
case notExpressionType: // !expression
case onescompExpressionType: // ~expression
case incrementExpressionType: // ++expression
case decrementExpressionType: // --expression
case postIncrementExpressionType: // expression++
case postDecrementExpressionType: // expression--

Expression expression;
break;

case conditionExpressionType: // expression ? expression : expression
Expression expression;
Expression expression;
Expression expression;
break;

case stringExpressonType:
String string;
break;

case numberExpressionType:
Number number;
break;

case variableExpressionType:
Identifier identifier;
break;

case functionCallExpressionType:
case objectConstructExpressionType:

Identifier identifier;
Params params;
break;

case objectMemberAccessExpressionType:
Expression expression;
Identifier identifier;
break;

case objectMethodCallExpressionType:
Expression expression;
Identifier identifier;
Params params;
break;

case arrayDereferenceExpressionType:
Expression expression;
CompoundExpression compoundExpression;
break;

default: // =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, >>>=,
// ==, !=, <, <=, >, >=, +, -, *, /, %, &&, ||, &, |,
// ^, <<, >>, >>>
Expression expression;
Expression expression;
break;

}
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

110 © ISO/IEC 1999 – All rights reserved

9.3.7.40.2 Semantics

An expression may contain one of a number of possible executed statements, specified by the value in
expressionType . These are listed below, according the value of expressionType .

curvedExpressionType=0:

The expression consists of a compoundExpression .

NegativeExpressionType=1:

An expression shall be evaluated and the value returned shall be negated.

NotExpressionType=2:

An expression shall be evaluated and its returned value shall be logically negated (empty values return non-
empty, zero values return non-zero, and vice-versa).

OnescompExpressionType=3:

An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall be bitwise negated.

IncrementExpressionType=4:

An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall incremented by 1.

DecrementExpressionType=5:

An expression shall be evaluated numerically (string values will yield an undefined result) and the value returned
shall be decremented by 1.

PostIncrementExpressionType=6:

An expression shall be evaluated numerically (string values will yield an undefined result) and its returned value
shall be incremented by 1. The returned value of this expression shall be the value prior to the increment being
applied.

PostDecrementExpressionType=7:

An expression shall be evaluated numerically (string values will yield an undefined result) and its returned value
shall be decremented by 1. The returned value of this expression shall be the value prior to the decrement being
applied.

ConditionExpressionType=8:

Three expressions shall be evaluated. If the first expression returns a non-zero or non-empty value, then the
returned value of this expression shall be the value of the second expression . Otherwise, the returned value of
this expression shall be the value of the third expression .

StringExpressonType=9:

The expression contains a string.

NumberExpressionType=10:

The expression is a number.

VariableExpressionType=11:

The expression is a variable and shall return the value held by the variable determined by identifier .

FunctionCallExpressionType=12:

An identifier determines which function shall be evaluated. The params shall be passed to the function
by value. The returned value of the expression shall be the value returned by the function in its
returnStatement .

ObjectConstructExpressionType=13:

A new object shall be created (using a ‘new’ statement in the script) and the object shall be held in the variable
determined by identifier . A list of params shall be passed to any constructors that exist for the object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 111

ObjectMemberAccessExpressionType=14:

A member variable of an object shall be accessed and the returned value of the expression shall be the value in
this member variable. Normally, the first expression will evaluate to a node in the scene graph (which is
accessed through a script variable). This means that the first expression will normally evaluate to an
identifier reference. The following identifier will then refer to a field of the node.

ObjectMethodCallExpressionType=15:

A method of an object shall be evaluated. The first expression shall evaluate to an object. The following
identifier shall specify a method of this object. The following params shall be passed to the method. The value
of this expression shall be the value returned by the method.

ArrayDereferenceExpressionType=16:

The expression shall be an array element reference. The first expression shall evaluate to an array reference.
The following compoundExpression shall evaluate to a number that shall then be used to index the array. The
returned value of this expression shall be the value held in the referenced array element.

The following binary operands evaluate two expressions and return a value based on a binary operation of these
two expressions. The binary operation and value of expressionType is listed below for each binary operation.
Unless explicitely stated, a string value for either of the expressions will yield an undefined result.

BinaryOperand(=) = 17:

The first expression shall evaluate to an identifier which shall be assigned the value of the second
expression .

BinaryOperand(+=) = 18:

The first expression shall evaluate to an identifier . If the value held by the variable is numerical, the variable
value shall be incremented by the value of the second expression , which shall also evaluate to a numerical
value. If the variable is a string, then its new value shall be its original value with the second expression (which
shall be a string) appended.

BinaryOperand(-=) = 19:

The first expression shall evaluate to an identifier whose value shall be decremented by the value of the
second expression .

BinaryOperand(*=) = 20:

The first expression shall evaluate to an identifier whose value shall be set to its current value multiplied by
the value of the second expression .

BinaryOperand(/=) = 21:

The first expression shall evaluate to an identifier whose value shall be set to its current value divided by
the value of the second expression .

BinaryOperand(%=) = 22:

The first expression shall evaluate to an identifier whose value shall be set to its current value modulo the
value of the second expression . The expressions shall both evaluate to integer values.

BinaryOperand(&=) = 23:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise ANDed with the value of the second expression .

BinaryOperand(|=) = 24:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise ORed with the value of the second expression.

BinaryOperand(^=) = 25:

The first expression shall evaluate to an identifier whose value shall be set to its current value logically
bitwise EXCLUSIVE-ORed with the value of the second expression.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

112 © ISO/IEC 1999 – All rights reserved

BinaryOperand(<<=) = 26:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the left a number of bits specified by the second expression .

BinaryOperand(>>=) = 27:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the right a number of bits specified by the second expression.

BinaryOperand(>>>=) = 28:

The first expression shall evaluate to an identifier whose value shall be set to its current value bitwise
shifted to the right (with the least significant bits looped) a number of bits specified by the second expression .

BinaryOperand(==) = 29:

This expression shall return a non-zero value when the first and second expression are identical. Otherwise, the
result of this expression shall be zero.

BinaryOperand(!=) = 30:

This expression shall return a non-zero value when the first and second expression are not identical. Otherwise,
the result of this expression shall be zero.

BinaryOperand(<) = 31:

This expression shall return a non-zero value when the first expression is numerically or lexicographically less
than the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(<=) = 32:

This expression shall return a non-zero value when the first expression is numerically or lexicographically less
than or equal to the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(>) = 33:

This expression shall return a non-zero value when the first expression is numerically or lexicographically greater
than the second. Otherwise, the result of this expression shall be zero.

BinaryOperan(>=) = 34:

This expression shall return a non-zero value when the first expression is numerically or lexicographically greater
than or equal to the second. Otherwise, the result of this expression shall be zero.

BinaryOperand(+) = 35:

This expression shall return the sum of the first and second expressions . If both expressions are strings, then
the result shall be the first string concatenated with the second.

BinaryOperand(-) = 36:

This expression shall return the difference of the first and second expressions .

BinaryOperand(*) = 37:

This expression shall return the product of the first and second expressions .

BinaryOperand(/) = 38:

This expression shall returns the quotient of the first and second expressions .

BinaryOperand(%) = 39:

This expression shall return the value of the first expression modulo the second expression .

BinaryOperand(&&) = 40:

This expression shall return the logical AND of the first and second expressions .

BinaryOperand(||) = 41:

This expression shall return the logical OR of the first and second expressions .

BinaryOperand(&) = 42:

This expression shall return the logical bitwise AND of the first and second expressions .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 113

BinaryOperand(|) = 43:

This expression shall return the logical bitwise OR of the first and second expressions .

BinaryOperand(^) = 44:

This expression shall return the logical bitwise XOR of the first and second expressions .

BinaryOperand(<<) = 45:

This expression shall return the value of the first expression shifted to the left by the number of bits specified as
the value of the second expression .

BinaryOperand(>>) = 46:

Returns the value of the first expression shifted to the right by the number of bits specified as the value of the
second expression .

BinaryOperand(>>>) = 47:

This expression shall return the value of the first expression shifted to the right (with the least significant bit
looped to the most significant bit) by the number of bits specified as the value of the second expression .

9.3.7.41 Params

9.3.7.41.1 Syntax

class Params {
bit(1) hasParam
while(hasParam) {

Expression expression;
bit(1) hasParam

}
}

9.3.7.41.2 Semantics

The Params class consists of a (possibly empty) list of expressions . The hasParam bit indicates either the end
of the list, or the existance of another expression .

9.3.7.42 Identifier

9.3.7.42.1 Syntax

class Identifier {
bit(1) received
if (received) {

bit(num) identifierCode // num is calculated by counting
// number of distinguished identifiers
// received so far

}
else {

String string;
}

}

9.3.7.42.2 Semantics

An identifier is used to identify a variable. If the identifier has not occured before in the script, a String
is sent holding the name of the identifier. This is indicated by the received bit. If the identifier has occured
before in the script, then an identifierCode value is sent using num bits. The value of num, that is, the number
of bits needed to send the index of the identifier in a list of all previousy occuring identifiers, is variable and is
determined by the minimum number of bits needed to specify the length of the list of all previously occuring
identifiers.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

114 © ISO/IEC 1999 – All rights reserved

9.3.7.43 String

9.3.7.43.1 Syntax

class String {
bit(8) char
while (char!=0) {

bit(8) char
}

}

9.3.7.43.2 Semantics

A String type consist of a null-terminated list of 8 bit characters.

9.3.7.44 Number

9.3.7.44.1 Syntax

class Number {
bit(1) isInteger
if (isInteger) {

bit(5) numbits // number of bits the integer is represented
bit(numbits) value // integer value

}
else {

bit(4) floatChar // 0-9, ., E, END_SYMBOL
while (floatChar!=END_SYMBOL) {

bit(4) floatChar
}

}
}

9.3.7.44.2 Semantics

A number shall be represented as an integer, indicated by isInteger , or as a list of 4 bit characters,
represending (in order) the characters 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,0 , . , E , END-SYMBOL. The END-SYMBOL value
is used to signal the end of the float value list. The list of characters shall result in a human readable float value in
scientific notation.

9.3.7.45 ROUTEs

9.3.7.45.1 Syntax

class ROUTEs() {
bit(1) ListDescription;
if (ListDescription)

ListROUTEs lroutes();
else

VectorROUTEs vroutes();
}

9.3.7.45.2 Semantics

ROUTEsmay be encoded with a list (ListROUTEs ) or vector (VectorROUTEs ) description.

9.3.7.46 ListROUTEs

9.3.7.46.1 Syntax

class ListROUTEs() {
do {

ROUTE route();
bit(1) moreROUTEs;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 115

while (moreROUTEs);
}

9.3.7.46.2 Semantics

The ROUTEs are coded as a list, with the moreROUTEsflag used to indicate the end of the list (when set to false).

9.3.7.47 VectorROUTEs

9.3.7.47.1 Syntax

class VectorROUTEs() {
int(5) nBits;
int(nBits) length;
ROUTE route[length]();

}

9.3.7.47.2 Semantics

The ROUTEs are coded as a vector whose dimension, length , is first specified.

9.3.7.48 ROUTE

9.3.7.48.1 Syntax

class ROUTE() {
bit(1) isUpdateable;
if (isUpdateable)

bit(BIFSConfig.routeIDbits) routeID;

bit(BIFSConfig.nodeIDbits) outNodeID;
NodeData nodeOUT = GetNodeFromID(outNodeID);

int(nodeOUT.nOUTbits) outFieldRef;
bit(BIFSConfig.nodeIDbits) inNodeID;

NodeData nodeIN = GetNodeFromID(inNodeID);
int(nodeIN.nINbits) inFieldRef;

}

9.3.7.48.2 Semantics

This is the basic syntax element used to represent a ROUTE. If isUpdateable is TRUE (‘1’) then a routeID is
sent to enable further reference to this route. The ROUTE description is then sent. The nodeID of the target node
is coded, followed by the target field’s outID . The nodeID of the source node is then coded, followed by the
source field’s inID .

9.3.8 BIFS-Anim

9.3.8.1 Overview

The BIFS-Anim session has two parts: the AnimationMask and the AnimationFrames . The AnimationMask
specifies the nodes and fields to be animated. It is sent in BIFS configuration, in the object descriptor for the BIFS
elementary stream. The animation frames are sent in a separate BIFS stream. When parsing the BIFS-Anim
stream, the node structure and related functions as described in Annex H are known at the receiving terminal. The
decoding data structure AnimationMask (see 9.3.2.5) is constructed when the AnimationMask syntax is read,
and further used in the decoding process of the BIFS-Anim frames.

AnimationFrames contain update information for thevalues of the animated fields described in the
AnimationMask . They are the access units of the BIFS-Anim stream. An AnimationFrame can send information
in intra or in predictive mode. In intra mode, the values are quantized and coded directly. In predictive mode, the
difference between the quantized value of the current and the last transmitted value of the field are coded. The
encoding is performed using an adaptative arithmetic coder described in Annex G.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

116 © ISO/IEC 1999 – All rights reserved

The use of the adaptive arithmetic coder is as follows:

At the beginning of each predictive frame, the adaptive arithmetic coder is reset. At the end of each frame, it is
flushed.

Each animated field has its own set of models. At each intra frame, if the stream has been declared in random
access mode (see 9.3.5.2), the models are reset to the uniform statistics. If the stream is not in random access
mode, the models are not reset unless the decoding structures (AnimQP) are modified.

9.3.8.2 AnimationFrame

9.3.8.2.1 Syntax

class AnimationFrame() {
AnimationFrameHeader header(BIFSConfig.animMask);
AnimationFrameData data(BIFSConfig.animMask);

}

9.3.8.2.2 Semantics

The AnimationFrame is the access unit of the BIFS-Anim stream. It contains the AnimationFrameHeader ,
which specifies timing, and specifies which nodes are animated in the list of animated nodes, and the
AnimationFrameData , which contains the data for all nodes being animated.

9.3.8.3 AnimationFrameHeader

9.3.8.3.1 Syntax

class AnimationFrameHeader(AnimationMask mask) {
bit(23)* next;
if (next==0)

bit(32) AnimationStartCode;

bit(1) mask.isIntra;
bit(1) mask.isActive[mask.numNodes];
if (isIntra) {

bit(1) isFrameRate;
if (isFrameRate)

FrameRate rate;
bit(1) isTimeCode;
if (isTimeCode)

unsigned int(18) timeCode;
}
bit(1) hasSkipFrames;
if (hasSkipFrames)

SkipFrames skip;
}

9.3.8.3.2 Semantics

In the AnimationFrameHeader , a start code may be sent at each intra or prdictive frame to enable
resynchronization. The first 23 bits are read ahead, and stored as the integer next .

If next is 0 (in other words, the first 23 bits if the AnimationFrame are 0), the first 32 bits of the
AnimationFrame shall be read and interpreted as a start code that precedes the AnimationFrame .

If the boolean isIntra is TRUE, the current animation frame contains intra-coded values, otherwise it is a
predictive frame.

The array of booleans isActive specifies which nodes shall be animated for this frame. isActive shall contain
one boolean for each node in the AnimationMask . The boolean is set to TRUE if the node is to be animated;
FALSE otherwise.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 117

In intra mode, some additional timing information is also specified. The timing information obeys the syntax of the
Facial Animation specification in ISO/IEC 14496-2. Finally, it is possible to skip a number of AnimationFrames by
using the FrameSkip syntax specified in ISO/IEC 14496-2.

9.3.8.4 FrameRate

9.3.8.4.1 Syntax

class FrameRate {
unsigned int(8) frameRate;
unsigned int(4) seconds;
bit(1) frequencyOffset;

}

9.3.8.4.2 Semantics

frame_rate is an 8-bit unsigned integer indicating the reference frame rate of the sequence.

seconds is a 4-bit unsigned integer indicating the fractional reference frame rate. The frame rate is computed as
follows:

frame rate = (frame_rate + seconds /16).

frequency_offset is a 1-bit flag which when set to ‘1’ indicates that the frame rate uses the NTSC frequency
offset of 1000/1001. This bit would typically be set when frame_rate = 24, 30 or 60, in which case the resulting
frame rate would be 23.97, 29.94 or 59.97 respectively. When set to ‘0’ no frequency offset is present, i.e. if
(frequency_offset ==1), frame rate = (1000/1001) * (frame_rate + seconds /16).

9.3.8.5 SkipFrame

9.3.8.5.1 Syntax

class SkipFrame {
int nFrame = 0;
do {

bit(4) number_of_frames_to_skip;
nFrame = number_of_frames_to_skip + nFrame;

} while (number_of_frames_to_skip == 0b1111);
}

9.3.8.5.2 Semantics

number_of_frames_to_skip is a 4-bit unsigned integer indicating the number of frames skipped. If the
number_of_frames_to_skip is equal to 15 (pattern “1111”) then another 4-bit word follows allowing a skip of
up to 29 frames (pattern “11111110”) to be specified. If the 8-bits pattern equals “11111111”, then another 4-bits
word shall follow and so on, and the number of frames skipped is incremented by 30. Each 4-bit pattern of ‘1111’
increments the total number of frames to skip with 15.

9.3.8.6 AnimationFrameData

9.3.8.6.1 Syntax

class AnimationFrameData (AnimationMask mask) {

int i;
for (i=0; i<mask.numNodes; i++) {

if (mask.isActive[i]) {
NodeData node = mask.animNode[i]

switch (node.nodeType) {
case FaceType:

FaceFrameData fdata;
break;

case BodyType:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

118 © ISO/IEC 1999 – All rights reserved

BodyFrameData bdata;
break;

case IndexedFaceSet2DType:
Mesh2DframeData mdata;
break;

default
int j;
for(j=0; j<node.numDYNfields; j++) {

if (node.isAnimField[j])
AnimationField AField(node.field[node.dyn2all[j]],mask.isIntra);

}
}

}
}

}

9.3.8.6.2 Semantics

The AnimationFrameData corresponds to the field data for the nodes being animated. In the case of an
IndexedFaceSet2D , a Face , or a Body node, the syntax used is that defined ISO/IEC 14496-2. In other
cases, for each field declared as an animated field is the AnimationMask , the AnimationField is sent.

NOTE � The Body node ("case BodyType" ) is not specified in ISO/IEC 14496 nor in ISO/IEC 14772-1:1998 [10]. This
syntax switch has been provided to allow support for future extensions.

In predictive mode, at the beginning of the AnimationFrameData , an adaptive arithmetic coder session is
initiated by resetting the adaptive arithmetic coder in the way defined by the procedure decoder_reset( ) in
Annex G. Then, the animated values are sent using this adaptive arithmetic coder, using and updating their own
models.

9.3.8.7 AnimationField

9.3.8.7.1 Syntax

class AnimationField(FieldData field, boolean isIntra) {
AnimFieldQP aqp = field.aqp;
if (isIntra) {

bit(1) hasQP;
if(hasQP) {

AnimQP QP(aqp);
}
int i;
for (i=0; i<aqp.numElements; i++)

if (aqp.indexList[i])
AnimIValue ivalue(field);

} else {
int i;
for (i=0; i<aqp.numElements; i++)

if (aqp.indexList[i])
AnimPValue pvalue(field);

}
}

9.3.8.7.2 Semantics

In an AnimationField , if in intra mode, a new animation quantization parameter value may be sent. The intra or
predictive frame follows.

In intra mode, if hasQP is TRUE, a new AnimQP is sent, it shall be valid until the next intra frame is received. If
hasQP is FALSE, the value of the randomAccess boolean shall be considered.

� If randomAccess is set to TRUE, then the InitialAnimQP shall be used until the next intra frame.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 119

� If randomAccess is set to FALSE, then the AnimQP that was valid at the previous intra frame shall be used. In
this case, no random access is possible ato this particular frame.

In intra mode, if BIFSConfig.randomAccess is TRUE , the field’s predictive models shall then be reset to be
uniform models as defined by the procedure model_reset(PNbBits) in Annex G. If
BIFSConfig.randomAccess is FALSE, the field’s models are reset only if a new AnimQP is received.

The value is then sent: in intra mode, an AnimIValue is expected, in predictive mode an AnimPValue is
expected.

9.3.8.8 AnimQP

9.3.8.8.1 Syntax

class AnimQP(AnimFieldQP aqp) {

bit (1) IMinMax ;
if (IMinMax) {

aqp.useDefault=FALSE;
switch(aqp.animType) {

case 4: // Color
case 8: // BoundFloats

bit(1) aqp.useDefault
case 1: // Position 3D
case 2: // Position 2D
case 11: // Size 3D
case 12: // Size 2D
case 7: // Floats

if (!aqp.useDefault) {
for (i=0;i<getNbBounds(aqp);i++) {

bit(1) useEfficientCoding
GenericFloat aqp.Imin[i](useEfficientCoding);

}
for (i=0;i<getNbBounds(aqp);i++)

bit(1) useEfficientCoding
GenericFloat aqp.Imax[i](useEfficientCoding);

}
break;

case 13: // Integers
int(32) aqp.IminInt[0];

break;

}

bit (1) hasINbBits;
if (hasINbBits)

unsigned int(5) aqp.INbBits;

bit (1) PMinMax ;
if (PMinMax) {

for (i=0;i<getNbBounds(aqp);i++) {
int(INbBits+1) vq
aqp.Pmin[i] = vq-2^aqp.INbBits;

}
}

bit (1)hasPNbBits;
if (hasPNbBits)

unsigned int(4) aqp.PNbBits;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

120 © ISO/IEC 1999 – All rights reserved

9.3.8.8.2 Semantics

The AnimQP specifies the quantization parameters that shall be used until the next intra frame is received. AnimQP
is identical to InitialAnimQP (subclause 9.3.5.6) with the exception that each quantization parameter may or
may not be sent.

If BIFSConfig.randomAccess is TRUE and if the parameter is not coded, then the parameter defined in the
InitialAnimQP in the AnimationMask is used by default.

If BIFSConfig.randomAccess is FALSE and if the parameter is not coded, then the parameter defined in the
latest AnimQP (or InitialAnimQP if this parameter was never modified) is used.

9.3.8.9 AnimIValue

9.3.8.9.1 Syntax

class AnimIValue(FieldData field) {
switch (field.animType) {

case 9: // Normal
int(1) direction

case 10: // Rotation
int(2) orientation
break;

default:
break;

}
for (j=0;j<getNbComp(field);j++)

int(field.nbBits) vq[j];
}

9.3.8.9.2 Semantics

The AnimIValue represents the quantized intra value of a field. The value is coded according to the quantization
process described in 9.3.3.3.

For normals the direction and orientation values specified in the quantization process are first coded. For rotations
only the orientation value is coded. If the bit representing the direction is 0, the normal’s direction is set to 1, if the
bit is 1, the normal’s direction is set to –1. The value of the orientation is coded as an unsigned integer using 2 bits.

The compressed components vq[i] of the field’s value are then coded as a sequence of unsigned integers using
the number of bits specified in the field data structure.

The decoding process in intra mode computes the animation values by applying the inverse quantization process.

9.3.8.10 AnimPValue

9.3.8.10.1 Syntax

class AnimPValue(FieldData field) {
switch (field.animType) {

case 9: // Normal
int(1) inverse
break;

default:
break;

}
for (j=0;j<getNbComp(field);j++)
int(aacNbBits) vqDelta[j];

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 121

9.3.8.10.2 Semantics

The AnimPValue represents the difference between the previously received quantized value and the current
quantized value of a field. The value is coded using the compensation process AddDelta described in 9.3.4.

The values are decoded from the adaptive arithmetic coder bitstream with the procedure

aacv =aa_decode(model) defined in Annex G. The model is updated with the procedure

model_update(model, aacv ).

For normals the inverse value is decoded through the adaptive arithmetic coder with a uniform, non-updated model.
If the bit is 0, then inverse is set to 1, the bit it is 1, inverse is set to –1.

The compensation values vqDelta[i] are then decoded in sequence. Let )1( �tvq be the quantized value

decoded at the previous frame and )(tvaac be the value decoded by the frame’s adaptive arithmetic decoder at

instant t with the field’s models. The value a time t is obtained from the previous value as follows:

� �)(InvQuant)(

))(),1((AddDelta)(

)()(

tvtv

tvtvtv

PMintvtv

q

qq

aac

�

��

��

�

�

The field’s models are updated each time a value is decoded through the adaptive arithmetic coder.

If the animType is 1 (Position3D ) or 2 (Position2D ), each component of the field’s value is using its own
model and offset PMin[i]. In all other cases the same model and offset PMin[0] is used for all the components.

aacNbBits is the variable number of bits needed for the adaptive arithemtic coder to decode the symbol (see
Annex G).

9.4 Node Semantics

9.4.1 Overview

The BIFS nodes include nodes that have been defined in ISO/IEC 14772-1:1998 [10]. For these nodes, the
semantic information is given by normative reference with any restrictions defined herein.

9.4.2 Node specifications

9.4.2.1 Anchor

9.4.2.1.1 Node interface

Anchor {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFString description ""
exposedField MFString parameter []
exposedField MFString url []

}

NOTE — For the binary encoding of this node see Annex H.1.1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

122 © ISO/IEC 1999 – All rights reserved

9.4.2.1.2 Functionality and semantics

The semantics of the Anchor node are specified in ISO/IEC 14772-1:1998, subclause 6.2 [10]. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize ). Constraints on URLs are defined
by profiles and levels.

9.4.2.2 AnimationStream

9.4.2.2.1 Node interface

AnimationStream {
exposedField SFBool loop FALSE
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url [""]
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.2.

9.4.2.2.2 Functionality and semantics

The AnimationStream node is designed to implement control parameters for a BIFS-Anim stream.

The loop , startTime , and stopTime exposedFields and the isActive eventOut, and their effects on the
AnimationStream node are described in 9.2.1.6.1.

The semantics of the speed exposedField are identical to those for the MovieTexture node (see 9.4.2.61).

The url field specifies the data source to be used. The data source referred to shall be a BIFS-Anim stream (see
also 9.2.3.3).

9.4.2.3 Appearance

9.4.2.3.1 Node interface

Appearance {
exposedField SFNode material NULL
exposedField SFNode texture NULL
exposedField SFNode textureTransform NULL

}

NOTE — For the binary encoding of this node see Annex H.1.3.

9.4.2.3.2 Functionality and semantics

The semantics of the Appearance node are specified in ISO/IEC 14772-1:1998, subclause 6.3 [10].

The material field, if non-NULL, shall contain either a Material node or a Material2D node depending on the
type of geometry node used in the geometry field of the Shape node that contains the Appearance node. The
list below shows the geometry nodes that require a Material node, those that require a Material2D node and
those where either may apply:

� Material2D only: Circle, Curve2D, IndexedFaceSet2D, IndexedLineSet2D, PointSet2D,
Rectangle ;

� Material only: Box, Cone, Cylinder, ElevationGrid, Extrusion, IndexedFaceSet,
IndexedLineSet, PointSet, Sphere;

� Material2D or Material : Bitmap, TermCap, Text.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 123

9.4.2.4 AudioBuffer

9.4.2.4.1 Node interface

AudioBuffer {
exposedField SFBool loop FALSE
exposedField SFFloat length 0.0
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFNode children []
exposedField SFInt numChan 1
exposedField MFInt phaseGroup [1]
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.4.

9.4.2.4.2 Functionality and semantics

The AudioBuffer node provides an interface to short snippets of sound to be used in an interactive scene.

EXAMPLE � Sounds triggered as “auditory icons” upon mouse clicks.

It buffers the audio generated by its children to support random restart capability upon interaction events. It differs
from the AudioClip node in the following ways:

� AudioBuffer can be used in broadcast and other one-way applications in which URLs from remote locations
cannot be retrieved interactively

� AudioBuffer can be used to trigger sounds made from processed sound (ie, with the other sound nodes)
rather than only raw sound data as transmitted in the elementary stream

The loop , startTime , and stopTime exposedFields and the isActive eventOut, and their effects on the
AnimationStream node are described in 9.2.1.6.1.

The semantics of the speed exposedField are identical to those for the MovieTexture node (see 9.4.2.61).

The length field specifies the length in seconds of the audio buffer. Audio shall be buffered at the instantiation of
the node, and whenever the length field changes.

The pitch field specifies a pitch-shift to apply to the output sound. The pitch-shift is calculated by simple
resampling; that is, a pitch-shift of 2 corresponds to playing the sound twice as fast and an octave higher. If pitch
is negative, the buffer is played backwards at the indicated speed, beginning at the last sample in the buffer and
proceeding to the first, then returning to the last sample if loop is TRUE.

The children field specifies the child nodes that provide the sound for this node. Each child shall be an AudioBIFS
node; that is, one of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX ,
AudioClip or AudioBuffer .

An event shall be generated via the duration_changed field whenever a change is made to the startTime or
stopTime fields. An event shall also be triggered if these fields are changed simultaneously, even if the duration
does not actually change.

The numChan field specifies the number of output channels of this node. If there are more output channels than
input channels, the “extra” channels shall contain all 0s; if there are more input channels than output channels, the
“extra” channels shall be ignored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

124 © ISO/IEC 1999 – All rights reserved

The phaseGroup field specifies phase relationships in the output of the node, see 9.2.2.13 and 9.4.2.9.

The output of this node is not calculated based on the current input values, but according to the startTime event,
the pitch field and the contents of the clip buffer. When the startTime is reached (that is, the current scene time
is greater than or equal to startTime ), the sound output shall begin at the beginning of the clip buffer and
isActive shall be set to TRUE. At each time step thereafter, the value of the output buffer shall be the value of the
next portion of the clip buffer, upsampled or downsampled as necessary according to pitch . When the end of the
clip buffer according to the value of length is reached, if loop is TRUE, the audio shall begin again from the
beginning of the clip buffer; if loop is FALSE, the playback shall cease. This playback shall be continued until
stopTime is reached. When the current scene time is greater than or equal to stopTime , the node shall cease to
produce sound.

The clip buffer shall be calculated as follows. When the node is instantiated, or whenever the length field is
changed, the first length seconds of the audio input to the AudioBuffer node shall be copied to the clip buffer.
That is, after t seconds, where t < length, audio sample number t * S of channel i (where 0 <= i < numChan ) in the
buffer is set to contain the audio sample corresponding to time t of channel i of the input, where S is the sampling
rate of this node. After the first length seconds, the input to this node has no effect. Changes to the length field
that are received when isActive is TRUE shall be ignored.

When the playback is not active, the audio output of the node is all 0s.

9.4.2.5 AudioClip

9.4.2.5.1 Node interface

AudioClip {
exposedField SFString description ""
exposedField SFBool loop FALSE
exposedField SFFloat pitch 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url []
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.5.

9.4.2.5.2 Functionality and semantics

The semantics of the Audioclip node are specified in ISO/IEC 14772-1:1998, subclause 6.4 [10].

The loop , startTime , and stopTime exposedFields and the isActive eventOut, and their effects on the
AudioClip node are described in 9.2.1.6.1.

The url field specifies the data source to be used (see 9.2.2.7.1).

9.4.2.6 AudioDelay

9.4.2.6.1 Node interface

AudioDelay {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFTime delay 0
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.6.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 125

9.4.2.6.2 Functionality and semantics

The AudioDelay node allows sounds to be started and stopped under temporal control. The start time and stop
time of the child sounds are delayed or advanced accordingly.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children array specifies the nodes affected by the delay. Each child shall be an AudioBIFS node; that is, one
of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX , AudioClip or
AudioBuffer .

The delay field specifies the delay to apply to each child node.

The numChan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

Implementation of the AudioDelay node requires the use of a buffer of size d * S * n, where d is the length of the
delay in seconds, S is the sampling rate of the node, and n is the number of output channels from this node. At
scene startup, a multichannel delay line of length d and width n is initialized to reside in this buffer.

At each time step, the k * S audio samples in each channel of the input buffer, where k is the length of the system
time step in seconds, are inserted into this delay line. If the number of input channels is strictly greater than the
number of output channels, the extra input channels are ignored; if the number of input channels is strictly less than
the number of output channels, the extra channels of the delay line shall be taken as all 0’s.

The output buffer of the node is the k * S audio samples which fall off the end of the delay line in this process. Note
that this definition holds regardless of the relationship between k and d.

If the delay field is updated during playback, discontinuties (audible artefacts or “clicks”) in the output sound may
result. If the delay field is updated to a greater value than the current value, the delay line is immediately extended
to the new length, and zero values inserted at the beginning, so that d * S seconds later there will be a short gap in
the output of the node. If the delay field is updated to a lesser value than the current value, the delay line is
immediately shortened to the new length, truncating the values at the end of of the line, so that there is an
immediate discontinuity in sound output. Manipulation of the delay field in this manner is not recommended
unless the audio is muted within the terminal or by appropriate use of an AudioMix node at the same time, since
it gives rise to impaired sound quality.

9.4.2.7 AudioFX

9.4.2.7.1 Node interface

AudioFX {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFString orch ""
exposedField SFString score ""
exposedField MFFloat params []
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.7.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

126 © ISO/IEC 1999 – All rights reserved

9.4.2.7.2 Functionality and semantics

The AudioFX node is used to allow arbitrary signal-processing functions defined using structured audio tools to
be included and applied to its children (see ISO/IEC 14496-3 section 5, clause 5.15).

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children array contains the nodes operated upon by this effect. Each child shall be an AudioBIFS node; that
is, one of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX , AudioClip
or AudioBuffer . If this array is empty, the node has no function (the node may not be used to create new
synthetic audio in the middle of a scene graph).

The orch string contains a tokenised block of signal-processing code written in SAOL (Structured Audio Orchestra
Language). This code block shall contain an orchestra header and some instrument definitions, and conform to the
bitstream syntax of the orchestra class as defined in ISO/IEC 14496-3 section 5 subclause 5.5.2.2 and clause 5.8.

The score string may contain a tokenized score for the given orchestra written in SASL (Structured Audio Score
Language). This score may contain control operators to adjust the parameters of the orchestra, or even new
instrument instantiations. A score is not required. If present it shall conform to the bitstream syntax of the
score_file class as defined in ISO/IEC 14496-3 section 5 subclause 5.5.2 and clause 5.11.

The params field allows BIFS commands and events to affect the sound-generation process in the orchestra. The
values of params are available to the FX orchestra as the global array global ksig params[128] ; see
ISO/IEC 14496-3 section 5 clause 5.15.

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The node is evaluated according to the semantics of the orchestra code contained in the orch field. See ISO/IEC
14496-3, section 5, for the normative description of this process. Within the orchestra code, the multiple channels
of input sound are placed on the global bus, input_bus; first, all channels of the first child, then all the channels of
the second child, and so on. The orchestra header shall ‘send’ this bus to an instrument for processing. The
phaseGroup arrays of the children are made available as the inGroup variable within the instrument(s) to which
the input_bus is sent.

The orchestra code block shall not contain the spatialize statement.

The output buffer of this node is the sound produced as the final output of the orchestra applied to the input
sounds, as described in ISO/IEC 14496-3 section 5, subclauses 5.7.3.

9.4.2.8 AudioMix

9.4.2.8.1 Node interface

AudioMix {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFInt32 numInputs 1
exposedField MFFloat matrix []
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 127

9.4.2.8.2 Functionality and semantics

This node is used to mix together several audio signals in a simple, multiplicative way. Any relationship that may be
specified in terms of a mixing matrix may be described using this node.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field specifies which nodes’ outputs to mix together. Each child shall be an AudioBIFS node; that is,
one of the following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX , AudioClip or
AudioBuffer .

The numInputs field specifies the number of input channels. It shall be the sum of the number of channels of the
children.

The matrix array specifies the mixing matrix which relates the inputs to the outputs. matrix is an unrolled
numInputs x numChan matrix which describes the relationship between numInputs input channels and
numChan output channels. The numInputs * numChan values are in row-major order. That is, the first
numInputs values are the scaling factors applied to each of the inputs to produce the first output channel; the
next numInputs values produce the second output channel, and so forth.

That is, if the desired mixing matrix is �
�

�
�
�

�

fed

cba
, specifying a “2 into 3” mix, the value of the matrix field shall be

[a b c d e f].

The numchan field specifies the number of channels of audio output by this node.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The value of the output buffer for an AudioMix node is calculated as follows. For each sample number x of
output channel i, 1 <= i <= numChan , the value of that sample is

matrix [ (0) * numChan + i ] * input[1][x] +

matrix [ (1) * numChan + i ] * input[2][x] + ...

matrix [ (numInputs – 1) * numChan + i ] * input[numInputs ][x],

where input[i][j] represents the jth sample of the ith channel of the input buffer, and the matrix elements are
indexed starting from 1.

9.4.2.9 AudioSource

9.4.2.9.1 Node interface

AudioSource {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField MFString url []
exposedField SFFloat pitch 1.0
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.9.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

128 © ISO/IEC 1999 – All rights reserved

9.4.2.9.2 Functionality and semantics

This node is used to add sound to a BIFS scene. See ISO/IEC 14496-3 for information on the various audio tools
available for coding sound.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field allows buffered AudioBuffer data to be used as sound samples within a structured audio
decoding process. Only AudioBuffer nodes shall be children to an AudioSource node, and only in the case
where url indicates a structured audio bitstream.

The pitch field controls the playback pitch for the structured audio and the parametric speech (HVXC) decoder. It
is specified as a ratio, where 1 indicates the original bitstream pitch, values other than 1 indicate pitch-shifting by
the given ratio. This field is available through the getttune() core opcode in the structured audio decoder (see
ISO/IEC 14496-3, section 5). The structured audio is the only decoder that may be controlled in this manner; to
adjust the pitch of other decoder types, use the AudioFX node with an appropriate effects orchestra.

The speed field controls the playback speed for the structured audio decoder (see ISO/IEC 14496-3, section 5). It
is specified as a ratio, where 1 indicates the original speed; values other than 1 indicate multiplicative time-scaling
by the given ratio (i.e. 0.5 specifies twice as fast). The value of this field shall be made available to the structured
audio decoder indicated by the url field. ISO/IEC 14496-3, section 5, subclause 5.7.3.3.6, list item 8, describe the
use of this field to control the structured audio decoder. The structured audio decoder is the only decoder that may
be controlled in this manner; to adjust the speed of other decoder types, use the AudioFX node with an
appropriate orchestra.

The startTime and stopTime exposedFields and their effects on the AudioSource node are described in
9.2.1.6.1.

The numChan field describes how many channels of audio are in the decoded bitstream.

The phaseGroup array specifies whether or not there are important phase relationships between the multiple
channels of audio. If there are such relationships – for example, if the sound is a multichannel spatialized set or a
“stereo pair” – it is in general dangerous to do anything more complex than scaling to the sound. Further filtering or
repeated “spatialization” will destroy these relationships. The values in the array divide the channels of audio into
groups; if phaseGroup[i] = phaseGroup[j] then channel i and channel j are phase-related. Channels for which
the phaseGroup value is 0 are not related to any other channel.

The url field specifies the data source to be used (see 9.2.2.7.1).

The audio output from the decoder according to the bitstream(s), referenced in the specified URL, at the current
scene time is placed in the output buffer for this node, unless the current scene time is earlier than the current
value of startTime or later than the current value of stopTime , in which case 0 values are placed in the output
buffer for this node for the current scene time.

For audio sources decoded using the main object of the structured audio decoder (ISO/IEC 14496-3, section 5),
several variables from the scene description must be mapped into standard names in the orchestra. See ISO/IEC
14496-3, section 5, clause 5.15 and subclause 5.8.6.8.

If AudioClip children are provided for a structured audio decoder, the audio data buffered in the AudioClip (s)
must be made available to the decoding process. See Subclause ISO/IEC 14496-3, section 5, subclause 5.10.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 129

9.4.2.10 AudioSwitch

9.4.2.10.1 Node interface

AudioSwitch {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField MFInt32 whichChoice []
field SFInt32 numChan 1
field MFInt32 phaseGroup []

}

NOTE — For the binary encoding of this node see Annex H.1.10.

9.4.2.10.2 Functionality and semantics

The AudioSwitch node is used to select a subset of audio channels from the child nodes specified.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field specifies a list of child options. Each child shall be an AudioBIFS node; that is, one of the
following: AudioSource , AudioDelay , AudioMix , AudioSwitch , AudioFX , AudioClip or
AudioBuffer .

The whichChoice field specifies which channels shall be passed through. If whichChoice[i] is 1, then the i-th
child channel shall be passed through.

The numchan field specifies the number of channels of audio output by this node; ie, the number of channels in
the passed child.

The phaseGroup field specifies the phase relationships among the various output channels; see 9.2.1.6.1.

The values for the output buffer are calculated as follows:

For each sample number x of channel number i of the output buffer, 1 <= i <= numChan , the value in the buffer is
the same as the value of sample number x in the jth channel of the input, where j is the least value such that
whichChoice[0] + whichChoice[1] + ... + whichChoice[ j] = i.

9.4.2.11 Background

9.4.2.11.1 Node interface

Background {
eventIn SFBool set_bind
exposedField MFFloat groundAngle []
exposedField MFColor groundColor []
exposedField MFString backURL []
exposedField MFString bottomURL []
exposedField MFString frontURL []
exposedField MFString leftURL []
exposedField MFString rightURL []
exposedField MFString topURL []
exposedField MFFloat skyAngle []
exposedField MFColor skyColor 0, 0, 0
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.11.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

130 © ISO/IEC 1999 – All rights reserved

9.4.2.11.2 Functionality and semantics

The semantics of the Background node are specified in ISO/IEC 14772-1:1998, subclause 6.5 [10].

The backUrl , bottomURL , frontUrl , leftUrl , rightUrl , topUrl fields specify the data sources to be used (see
9.2.2.7.1).

9.4.2.12 Background2D

9.4.2.12.1 Node interface

Background2D {
eventIn SFBool set_bind
exposedField SFColor backColor 0 0 0
exposedField MFString url []
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.12.

9.4.2.12.2 Functionality and semantics

There exists a Background2D stack, in which the top-most background is the current active background one.
The Background2D node allows a background to be displayed behind a 2D scene. The functionality of this
node can also be accomplished using other nodes, but use of this node may be more efficient in some
implementations.

If set_bind is set to TRUE the Background2D is moved to the top of the stack.If set_bind is set to FALSE,
the Background2D is removed from the stack so the previous background which is contained in the stack is on
top again.

The isBound event is sent as soon as the backdrop is put at the top of the stack, so becoming the current
backdrop.

The url field specifies the data source to be used (see 9.2.2.7.1).

The backColor field specifies a colour to be used as the background.

This is not a geometry node and the top-left corner of the image is displayed at the top-left corner of the screen,
regardless of the current transformation. Scaling and/or rotation do not have any effect on this node.

EXAMPLE � Changing the background for 5 seconds.

Group {
children [

…
DEF TIS TimeSensor {

startTime 5.0
stopTime 10.0

}
DEF BG1 Background2D {

…
}

]
}
ROUTE TIS.isActive TO BG1.set_bind

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 131

9.4.2.13 Billboard

9.4.2.13.1 Node interface

Billboard {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec3f axisOfRotation 0, 1, 0
exposedField MFNode children []

}

NOTE — For the binary encoding of this node see Annex H.1.13.

9.4.2.13.2 Functionality and semantics

The semantics of the Billboard node are specified in ISO/IEC 14772-1:1998, subclause 6.6 [10]. ISO/IEC
14496-1 does not support the bounding box parameters (bboxCenter and bboxSize ).

9.4.2.14 Bitmap

9.4.2.14.1 Node interface

Bitmap {
exposedField SFVec2f scale -1, -1

}

NOTE — For the binary encoding of this node see Annex H.1.14.

9.4.2.14.2 Functionality and semantics

Bitmap is a geometry node, to be placed in the geometry field of a Shape node. In general, it is a screen-
aligned rectangle with the dimensions of the texture that is mapped onto it, as specified in the Appearance node
of its parent Shape node. However, the effective geometry of Bitmap is defined by the non-transparent pixels of
the image or video that is mapped onto it. When no scaling is specified, a trivial texture-mapping (pixel copying) is
performed.

The scale field specifies a scaling of the geometry in the x and y dimensions, respectively. The scale values shall
be strictly positive or equal to -1. A scale value of -1 indicates that no scaling shall be applied in the relevant
dimension. The special case where both scale dimensions are -1 indicates that the natural dimensions of the
texture that is mapped onto the Bitmap shall be used.

Bitmap shall not be rotated but may be subject to translation.

Geometry sensors shall respond to the effective geometry of the Bitmap , which is defined by the non-transparent
pixels of the texture that is mapped onto it.

Example � To specify semi-transparent video:

Shape {
appearance Appearance {

texture MovieTexture { // Visual object
…

}
material Material2D {

transparency 0.5 // semi-transparent
}

}
geometry Bitmap {}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

132 © ISO/IEC 1999 – All rights reserved

9.4.2.15 Box

9.4.2.15.1 Node interface

Box {
field SFVec3f size 2, 2, 2

}

NOTE — For the binary encoding of this node see Annex H.1.15.

9.4.2.15.2 Functionality and semantics

The semantics of the Box node are specified in ISO/IEC 14772-1:1998, subclause 6.7 [10].

9.4.2.16 Circle

9.4.2.16.1 Node interface

Circle {
exposedField SFFloat radius 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.16.

9.4.2.16.2 Functionality and semantics

This node specifies a circle centred at (0,0) in the local coordinate system. The radius field specifies the radius of
the circle and shall be greater than 0.

9.4.2.17 Collision

9.4.2.17.1 Node interface

Collision {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFBool collide TRUE
field SFNode proxy NULL
eventOut SFTime collideTime

}

NOTE — For the binary encoding of this node see Annex H.1.17.

9.4.2.17.2 Functionality and semantics

The semantics of the Collision node are specified in ISO/IEC 14772-1:1998, subclause 6.8 [10]. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize).

9.4.2.18 Color

9.4.2.18.1 Node interface

Color {
exposedField MFColor color []

}

NOTE — For the binary encoding of this node see Annex H.1.18.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 133

9.4.2.18.2 Functionality and semantics

The semantics of the Color node are specified in ISO/IEC 14772-1:1998, subclause 6.9 [10].

9.4.2.19 ColorInterpolator

9.4.2.19.1 Node interface

ColorInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFColor keyValue []
eventOut SFColor value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.19.

9.4.2.19.2 Functionality and semantics

The semantics of the ColorInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.10 [10].

9.4.2.20 CompositeTexture2D

9.4.2.20.1 Node interface

CompositeTexture2D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFInt32 pixelWidth -1
exposedField SFInt32 pixelHeight -1
exposedField SFNode background NULL
exposedField SFNode viewport NULL

}

NOTE — For the binary encoding of this node see Annex H.1.20.

9.4.2.20.2 Functionality and semantics

The CompositeTexture2D node represents a texture that is composed of a 2D scene, which may be mapped
onto another object.

This node may only be used as the texture field of an Appearance node. All behaviors and user interaction are
enabled when using a CompositeTexture2D .

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field contains a list of 2D children nodes that define the 2D scene that is to form the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an
undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The semantics of the background and viewport fields are identical to the semantics of the Layer2D (see
9.4.2.53) fields of the same name.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

134 © ISO/IEC 1999 – All rights reserved

Figure 15 - A CompositeTexture2D example. The 2D scene is projcted onto the 3D cube.

(0,1,0)
(1,1,0)

Z

Y

X

(1,0,0)

Figure 16 - A CompositeTexture2D example.

Here the 2D scene as defined in Figure 15 composed of an image, a logo, and a text, is textured on a rectangle n
in the local X,Y plane of the back wall. A similar effect may be obtained by simply placing the 2D objects in the (3D)
Transform . However, CompositeTexture2D and CompositeTexture3D shall be used when maping
onto non-flat geometries.

9.4.2.21 CompositeTexture3D

9.4.2.21.1 Node interface

CompositeTexture3D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 135

exposedField SFInt32 pixelWidth -1
exposedField SFInt32 pixelHeight -1
exposedField SFNode background
exposedField SFNode fog
exposedField SFNode navigationInfo
exposedField SFNode viewpoint

}

NOTE — For the binary encoding of this node see Annex H.1.21.

9.4.2.21.2 Functionality and semantics

The CompositeTexture3D node represents a texture mapped onto a 3D object that is composed of a 3D
scene.

Behaviors and user interaction are enabled when using a CompositeTexture3D . However, the standard user
navigation on the textured scene is disabled. Instead, sensors contained in the scene which forms the
CompositeTexture3D may be used to define behaviours. This node may only be used as a texture field of
an Appearance node.

The addChildren eventIn specifies a list of nodes that shall be added to the children field.

The removeChildren eventIn specifies a list of nodes that shall be removed from the children field.

The children field is the list of 3D children nodes that define the 3D scene that forms the texture map.

The pixelWidth and pixelHeight fields specify the ideal size in pixels of this map. The default values result in an
undefined size being used. This is a hint for the content creator to define the quality of the texture mapping.

The background , fog , navigationInfo and viewpoint fields represent the current values of the bindable
children nodes used in the 3D scene. This node may only be used as the texture field of an Appearance node.
All behaviors and user interaction are enabled when using a CompositeTexture2D .

Figure 17 - CompositeTexture3D example. The 3D view of the earth is projected onto the 3D cube

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

136 © ISO/IEC 1999 – All rights reserved

9.4.2.22 Conditional

9.4.2.22.1 Node interface

Conditional {
eventIn SFBool activate
eventIn SFBool reverseActivate
exposedField SFString buffer ""
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.22.

9.4.2.22.2 Functionality and semantics

The Conditional node interprets a buffered bit string of BIFS-Commands when it is activated. This allows events
to trigger node updates, deletions, and other modifications to the scene. The buffered bit string is interpreted as if it
had just been received.

Upon reception of either an SFBool event of value TRUE on the activate eventIn, or an SFBool event of value
FALSE on the reverseActivate eventIn, the contents of the buffer field shall be interpreted as a BIFS
CommandFrame(see 9.3.6.2). These updates are not time-stamped; they are executed at the time of the event,
assuming a zero-decoding time.

EXAMPLE � A typical use of this node is for the implementation of the action of a button. The button geometry is enclosed in a
grouping node which also contains a TouchSensor node. The isActive eventOut of the TouchSensor is routed to
the activate eventIn of Conditional C1 and to the reverseActivate eventIn of Conditional C2; C1 then implements
the “mouse-down” action and C2 implements the “mouse-up” action.

9.4.2.23 Cone

9.4.2.23.1 Node interface

Cone {
field SFFloat bottomRadius 1.0
field SFFloat height 2.0
field SFBool side TRUE
field SFBool bottom TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.23.

9.4.2.23.2 Functionality and semantics

The semantics of the Cone node are specified in ISO/IEC 14772-1:1998, subclause 6.11 [10].

9.4.2.24 Coordinate

9.4.2.24.1 Node interface

Coordinate {
exposedField MFVec3f point []

}

NOTE — For the binary encoding of this node see Annex H.1.24.

9.4.2.24.2 Functionality and semantics

The semantics of the Coordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.12 [10].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 137

9.4.2.25 Coordinate2D

9.4.2.25.1 Node interface

Coordinate2D {
exposedField MFVec2f point []

}

NOTE — For the binary encoding of this node see Annex H.1.25.

9.4.2.25.2 Functionality and semantics

This node defines a set of 2D coordinates to be used in the coord field of geometry nodes.

The point field contains a list of points in the 2D coordinate space (see 9.2.2.2).

9.4.2.26 CoordinateInterpolator

9.4.2.26.1 Node interface

CoordinateInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec3f keyValue []
eventOut MFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.26.

9.4.2.26.2 Functionality and semantics

The semantics of the CoordinateInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.13
[10].

9.4.2.27 CoordinateInterpolator2D

9.4.2.27.1 Node interface

CoordinateInterpolator2D {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec2f keyValue []
eventOut MFVec2f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.27.

9.4.2.27.2 Functionality and semantics

CoordinateInterpolator2D is the 2D equivalent of CoordinateInterpolator (see 9.4.2.26).

9.4.2.28 Curve2D

9.4.2.28.1 Node interface

Curve2D {
exposedField SFNode point NULL
exposedField SFInt32 fineness 0
exposedField MFInt32 type []

}

NOTE — For the binary encoding of this node see Annex H.1.28.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

138 © ISO/IEC 1999 – All rights reserved

9.4.2.28.2 Functionality and semantics

This node is used to describe the Bezier approximation of a polygon in the scene at an arbitrary level of precision. It
behaves as other “lines”, which means it is sensitive to modifications of line width and “dotted-ness”, and can be
filled or not.

The given parameters are a control polygon and a parameter setting the quality of approximation of the curve.
Internally, another polygon of fineness points is computed on the basis of the control polygon. The coordinates of
that internal polygon are given by the following formula:

in

f

j
i

f

j

ini

n
i

n
xcjx

i

��

��
�

�
��
�

�
����

�

�
��
�

�
�

��

�
�	�

�

1
1

)!1(!

)!1(
][][

0 ,

where x[j] is the jth x coordinate of the internal polygon, n is the number of points in the control polygon, xc[i] is the
ith x coordinate of the control polygon and f is short for the above fineness parameter which is also the number of
points in the internal polygon. A similar formula yields the y coordinates.

The point field shall list the vertices of the control polygon.

The fineness parameter is an SFFloat value that indicates how finely to tessellate the Bezier curves. A value of 1
means that the curve shall be fine enough that no edges are visible. A value of 0 indicates that a straight line shall
be drawn between the two points of the curve. The default value of 0.5 gives an intermediate level of smoothness.
The amount of tessellation may be adjusted according to scale of the shape, making it possible to avoid visible
edges appearing when the shape is zoomed. When the field type is specified, the above functionality is extended
as follows: the curve is now defined piecewise either with the above equation or as straight segments or as non-
segments, depending on the values in type . The point field is now taken to contain all key-points (points where
the curve passes) and control-points (points defining the aspect of the curve around them). The values in the type
field define the semantics of the elements of point .

The point field contains a Coordinate2D field with the list of points. If the type field is non-empty, then it shall
contain tokens indicating how the point list is to be interpreted, according to the following algorithm (expressed in
pseudo-code):

SFInt32 i = 0;
SFInt32 j = 0;
SFVec2f cur = point[i++];
SFVec2f first = cur;
SFVec2f curctl;

while (i < point.length)
SFInt3 2 t = 0;
if (type.length > j ) t = type[j++];

switch(t) {
case 0: // move, use 1 point

if (is_filled) draw_line(cur, point[i]);
cur = point[i];
i++;
break;

case 1: // line, use 1 point
draw_line(cur, point[i]);
cur = point[i];
i++;
break;

case 2: // bezier curve, use 3 points
draw_curve(cur, point[i], point[i+1], point[i+2]);
cur = point[i+2];
curctl =point[i+1];
i += 3;
break;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 139

case 3: // tangent curve, use 2 points
SFVec2f tanctl;
tanctl.x = 2*cur.x – curctl.x;
tanctl.y = 2*cur.y – curctl.y;
draw_curve(cur, tanctl, point[i], point[i+1]);
cur = point[i+1];
curctl = point[i];
i += 2;
break;

}
}
if (is_filled) draw_line(cur, first);

In the above pseudo-code, draw_line(a,b) draws a line from a to b and draw_curve(a,b,c,d) draws a
Bezier curve from a to d, using b as the control point for a and c as the control point for d. Note that, because of the
move command (type = 0) multiple disjoint segments are possible. In the case of a filled shape, each segment is
closed by drawing a straight line from the last point in the segment to the first. Shapes are filled using the odd-even
winding fill rule. If one segment is contained within another, the inside of the inner shape is not filled, allowing
shapes with holes.

The first coordinate pair in point is the starting point of the curve. The first value in type describes the treatment to
be applied to the subsequent coordinate pairs. At any time, a value in type describes the characteristics of the next
curve segment. If P is the starting point or the last point of the previous segment of the curve; N the ending point of
the current curve segment; C1 the control point on the side of P and C2 the control point on the side of N.

The permitted values of type are:

• 0 = MoveTo: One coordinate pair in the point list is consumed, defining N. P ends the curve. The curve shall
start again at N. Sequences of two or more MoveTos shall not occur. MoveTo shall not occur as the first
element in type.

• 1 = LineTo: One coordinate pair in the point list is consumed, defining N. A straight line is drawn from P to N.

• 2 = CurveTo: Three coordinate pairs in the point list are consumed, defining C1, C2 and N respectively. The
first coordinate pair specifies the control point the start of this curve segment (C1), the second specifies the
control point for end of the curve segment (C2) and the third specifies the ending point of the curve segment
(N).

• 3 = NextCurveto: Two coordinate pairs in the point list are consumed, defining C2 and N in this order. The first
coordinate pair specifies the control point for the end of the curve segment (C2), and the second specifies the
ending point of the curve segment (N). The control point C1 for the start of the curve segment is derived from
the previous control point. If the previous segment was formed with CurveTo or NextCurveTo, the start control
point C1 is symmetrical to the end control point C’

2 of the previous curve segment with respect to point P. This
control type shall not occur immediately following a MoveTo or LineTo.

The formula for obtaining the coordinates of C1 in the case of a NextCurveTo is:

C1x = 2.Px – C’
2xand C1y = 2.Py – C’

2y

The first point in point , as the first point in the curve, is implicitly a MoveTo.

For CurveTo and NextCurveTo, the piece of curve is constructed using the above formula as applied to a polygon
constructed from four points, that is the starting point P, the first control point C1, the second control point C2 and
the end point N, which is the next point in the point list.

The curve shall be continuous except at points tagged with MoveTo. The tangent of the curve is only continuous at
points tagged with NextCurveTo, or at points where the previous second control point C’

2, the key point P and the
next first control point C1 are aligned.

If there are more values in point than specified by type , then the unused points shall describe a curve as if no
type was defined.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

140 © ISO/IEC 1999 – All rights reserved

EXAMPLE �

geometry Curve2D {
point Coordinate2D {

point s [ 0 0 0 100 200 100 200 200 210 200 220 200 ]
}
type [ 2 0 1 ]

}

The first segment of curve starts at 0,0 goes to 200,200 and control points are 0,100 and 200,100. The Bezier curve drawn is
the one with the polygon [0 0 0 100 200 100 200 200] (represented in dotted gray) when types=null, with the same fineness.
When types is specified, the fineness parameter is applied to each curve segment. Then we have a "move to", from 200,200 to
210,200. Then we have a "line to", from 210,200 to 220,200 (small segment in upper right corner).

In Figure 18, the curve is drawn in wide black, and the control polygon is drawn in dotted gray. The curve has two connex
components.

Figure 18 - Curve node example

9.4.2.29 Cylinder

9.4.2.29.1 Node interface

Cylinder {
field SFBool bottom TRUE
field SFFloat height 2.0
field SFFloat radius 1.0
field SFBool side TRUE
field SFBool top TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.29.

9.4.2.29.2 Functionality and semantics

The semantics of the Cylinder node are specified in ISO/IEC 14772-1:1998, subclause 6.14 [10].

9.4.2.30 CylinderSensor

9.4.2.30.1 Node interface

CylinderSensor {
exposedField SFBool autoOffset TRUE
exposedField SFFloat diskAngle 0.262
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1.0
exposedField SFFloat minAngle 0.0
exposedField SFFloat offset 0.0
eventOut SFBool isActive

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 141

eventOut SFRotation rotation_changed
eventOut SFVec3f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.30.

9.4.2.30.2 Functionality and semantics

The semantics of the CylinderSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.15 [10].

9.4.2.31 DiscSensor

9.4.2.31.1 Node interface

DiscSensor {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFFloat maxAngle -1.0
exposedField SFFloat minAngle -1.0
exposedField SFFloat offset 0.0
eventOut SFBool isActive
eventOut SFFloat rotation_changed
eventOut SFVec2f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.31.

9.4.2.31.2 Functionality and semantics

This sensor enables the rotation of an object in the 2D plane around an axis specified in the local coordinate
system. The semantics are as similar to those for CylinderSensor , but restricted to a 2D case.

9.4.2.32 DirectionalLight

9.4.2.32.1 Node interface

DirectionalLight {
exposedField SFFloat ambientIntensity 0.0
exposedField SFColor color 1, 1, 1
exposedField SFVec3f direction 0, 0, -1
exposedField SFFloat intensity 1.0
exposedField SFBool on TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.32.

9.4.2.32.2 Functionality and semantics

The semantics of the DirectionalLight node are specified in ISO/IEC 14772-1:1998, subclause 6.16 [10].

9.4.2.33 ElevationGrid

9.4.2.33.1 Node interface

ElevationGrid {
eventIn MFFloat set_height
exposedField SFNode color NULL
exposedField SFNode normal NULL
exposedField SFNode texCoord NULL
field MFFloat height []
field SFBool ccw TRUE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

142 © ISO/IEC 1999 – All rights reserved

field SFBool colorPerVertex TRUE
field SFFloat creaseAngle 0.0
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field SFInt32 xDimension 0
field SFFloat xSpacing 1.0
field SFInt32 zDimension 0
field SFFloat zSpacing 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.33.

9.4.2.33.2 Functionality and semantics

The semantics of the ElevationGrid node are specified in ISO/IEC 14772-1:1998, subclause 6.17 [10].

9.4.2.34 Expression

9.4.2.34.1 Node interface

Expression {
field SFInt32 expression_select1 0
field SFInt32 expression_intensity1 0
field SFInt32 expression_select2 0
field SFInt32 expression_intensity2 0
field SFBool init_face FALSE
field SFBool expression_def FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.34.

9.4.2.34.2 Functionality and semantics

The Expression node is used to define the expression of the face as a combination of two expressions from the
standard set of expressions defined ISO/IEC 14496-2, Annex C, Table C-3.

The expression_select1 and expression_select2 fields specify the expression types. The
expression_intensity1 and expression_intensity2 fields specify the corresponding expression intensities.

If init_face is set, a neutral face may be modified before applying FAPs 1 and 3-68.

If expression_def is set, current FAPs are used to define an expression and store it.

9.4.2.35 Extrusion

9.4.2.35.1 Node interface

Extrusion {
eventIn MFVec2f set_crossSection
eventIn MFRotation set_orientation
eventIn MFVec2f set_scale
eventIn MFVec3f set_spine
field SFBool beginCap TRUE
field SFBool ccw TRUE
field SFBool convex TRUE
field SFFloat creaseAngle 0.0
field MFVec2f crossSection 1, 1, 1, -1, -1, -1, -1, 1, 1, 1
field SFBool endCap TRUE
field MFRotation orientation 0, 0, 1, 0
field MFVec2f scale 1, 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 143

field SFBool solid TRUE
field MFVec3f spine 0, 0, 0, 0, 1, 0

}

NOTE — For the binary encoding of this node see Annex H.1.35.

9.4.2.35.2 Functionality and semantics

The semantics of the Extrusion node are specified in ISO/IEC 14772-1:1998, subclause 6.18 [10].

9.4.2.36 Face

9.4.2.36.1 Node interface

Face {
exposedField SFNode fit NULL
exposedField SFNode fdp NULL
exposedField SFNode fap NULL
exposedField SFNode ttsSource NULL
exposedField MFNode renderedFace NULL

}

NOTE — For the binary encoding of this node see Annex H.1.36.

9.4.2.36.2 Functionality and semantics

The Face node is used to define and animate a face in the scene. In order to animate the face with a facial
animation stream, ut us necessary to link the Face node to a BIFS-Anim stream. The node shall be assigned a
nodeID, through the DEF mechanism. Then, as for any BIFS-Anim stream, an animation mask is sent in the
object descriptor of the BIFS-Anim stream (specificInfo field). The animation mask points to the Face node
using its nodeID . The terminal shall then connect the facial animation decoder to the appropriate Face node.

The FAP field shall contain a FAP node, describing the facial animation parameters (FAPs). Each Face node
shall contain a non-NULL FAP field.

The FDP field, which defines the particular look of a face by means of downloading the position of face definition
points or an entire model, is optional. If the FDP field is not specified, the default face model of the terminal shall be
used.

The FIT field, when specified, allows a set of FAPs to be defined in terms of another set of FAPs. When this field is
non-NULL, the terminal shall use FIT to compute the maximal set of FAPs before using the FAPs to compute the
mesh.

The ttsSource field shall only be non-NULL if the facial animation is to determine the facial animation parameters
from an audio TTS source (see ISO/IEC 14496-3, section 6). In this case the ttsSource field shall contain an
AudioSource node and the face shall be animated using the phonemes and bookmarks received from the TTS.
See also Annex I.

renderedFace is the scene graph of the face after it is rendered (all FAP’s applied).

9.4.2.37 FaceDefMesh

9.4.2.37.1 Node interface

FaceDefMesh {
field SFNode faceSceneGraphNode NULL
field MFInt32 intervalBorders []
field MFInt32 coordIndex []
field MFVec3f displacements []

}
NOTE — For the binary encoding of this node see Annex H.1.37.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

144 © ISO/IEC 1999 – All rights reserved

9.4.2.37.2 Functionality and semantics

The FaceDefMesh node allows for the deformation of an IndexedFaceSet as a function of the amplitude of
a FAP as specified in the related FaceDefTable node. The FaceDefMesh node defines the piece-wise linear
motion trajectories for vertices of the faceSceneGraphNode field, which shall contain an IndexedFaceSet
node. This IndexedFaceSet node belongs to the scenegraph of the faceSceneGraph field of the FDP node.

The intervalBorders field specifies interval borders for the piece-wise linear approximation in increasing order.
Exactly one interval border shall have the value 0.

The coordIndex field shall contain a list of indices into the Coordinate node of the IndexedFaceSet node
specified by the faceSceneGraphNode field.

For each vertex indexed in the coordIndex field, displacement vectors are given in the displacements field for
the intervals defined in the intervalBorders field. There must be exactly (num(intervalBorders )-
1)*num(coordIndex ) values in this field.

In most cases, the animation generated by a FAP cannot be specified by updating a Transform node. Thus, a
deformation of an IndexedFaceSet node needs to be performed. In this case, the FaceDefTables shall
define which IndexedFaceSets are affected by a given FAP and how the coord fields of these nodes are
updated. This is done by means of tables.

If a FAP affects an IndexedFaceSet , the FaceDefMesh shall specify a table of the following format for this
IndexedFaceSet :

Table 30 - Vertex displacements

Vertex no. 1st Interval [I1, I2] 2nd Interval [I2, I3] …

Index 1 Displacement D11 Displacement D12 …
Index 2 Displacement D21 Displacement D22 …
… … … …

Exactly one interval border Ik must have the value 0:

[I1, I2], [I2, I3], …[Ik-1, 0], [0, Ik+1], [Ik+1, Ik+2], …[Imax-1, Imax]

During animation, when the terminal receives a FAP, which affects one or more IndexedFaceSets of the face
model, it shall piece-wise linearly approximate the motion trajectory of each vertex of the affected
IndexedFaceSets by using the appropriate table.

Figure 19 - An arbitrary motion trajectory is approximated as a piece-wise linear one.

If Pm is the position of the mth vertex in the IndexedFaceSet in neutral state (FAP = 0), P’m the position of the
same vertex after animation with the given FAP and Dmk the 3D displacement in the kth interval, the following
algorithm shall be applied to determine the new position P’m.

Determine, in which of the intervals listed in the table the received FAP is lying.

If the received FAP is lying in the jth interval [Ij, Ij+1] and 0=Ik � Ij, the new vertex position P’m of the mth vertex of
the IndexedFaceSet is given by:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 145

P’m = FAPU * ((Ik+1-0) * Dm,k + (Ik+2-Ik+1) * Dm, k+1 + … + (Ij - Ij-1) * Dm, j-1 + (FAP-Ij) * Dm, j) + Pm. (Eq. 1)

If FAP � Imax, then P’m is calculated by using equation Eq. 1 and setting the index j = max.

If the received FAP is lying in the jth interval [Ij, Ij+1] and Ij+1 � Ik=0, the new vertex position P’m is given by:

P’m = FAPU * (( Ij+1 - FAP) * Dm, j + (Ij+2 - Ij+1) * Dm, j+1 + … + (Ik-1 - Ik-2) * Dm, k-2 + (0 - Ik-1) * Dm, k-1) + Pm (Eq. 2)

If FAP � I1, then P’m is calculated by using equation Eq. 1 and setting the index j+1 = 1.

If for a given FAP and IndexedFaceSet the table contains only one interval, the motion is strictly linear:

P’m = FAPU * FAP * Dm1 + Pm.

EXAMPLE �

FaceDefMesh {
objectDescriptorID UpperLip
intervalBorders [ -1000, 0, 500, 1000 ]
coordIndex [ 50, 51]
displacements [1 0 0, 0.9 0 0, 1.5 0 4, 0.8 0 0, 0.7 0 0 , 2 0 0 ]

}

This FaceDefMesh defines the animation of the mesh “UpperLip”. For the piecewise-linear motion function three intervals
are defined: [-1000, 0], [0, 500] and [500, 1000]. Displacements are given for the vertices with the indices 50 and 51. The
displacements for the vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements for vertex 51 are (0.8 0 0), (0.7 0 0) and
(2 0 0). Given a FAPValue of 600, the resulting displacement for vertex 50 would be:

displacement(vertex 50) = 500*(0.9 0 0)T + 100 * (1.5 0 4)T = (600 0 400)T.

If the FAPValue is outside the given intervals, the boundary intervals are extended to +I or -I, as appropriate.

9.4.2.38 FaceDefTables

9.4.2.38.1 Node interface

FaceDefTables {
field SFInt32 fapID 0
field SFInt32 highLevelSelect 0
exposedField MFNode faceDefMesh []
exposedField MFNode faceDefTransform []

}

NOTE — For the binary encoding of this node see Annex H.1.38.

9.4.2.38.2 Functionality and semantics

The FaceDefTables node defines the behavior of a facial animation parameter FAP on a downloaded face
model in faceSceneGraph by specifying the displacement vectors for moved vertices inside IndexedFaceSet
objects as a function of the FAP fapID and/or specifying the value of a field of a Transform node as a function
of FAP fapID .

The FaceDefTables node is transmitted directly after the BIFS bitstream of the FDP node. The
FaceDefTables lists all FAPs that animate the face model. The FAPs animate the downloaded face model by
updating the Transform or IndexedFaceSet nodes of the scene graph in faceSceneGraph . For each listed
FAP, the FaceDefTables node describes which nodes are animated by this FAP and how they are animated. All
FAPs that occur in the bitstream have to be specified in the FaceDefTables node. The animation generated by
a FAP can be specified either by updating a Transform node (using a FaceDefTransform ), or as a
deformation of an IndexedFaceSet (using a FaceDefMesh ).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

146 © ISO/IEC 1999 – All rights reserved

The FAPUs shall be calculated by the terminal using the feature points that shall be specified in the FDP. The
FAPUs are needed in order to animate the downloaded face model.

9.4.2.38.3 Semantics

The fapID field specifies the FAP, for which the animation behavior is defined in the faceDefMesh and
faceDefTransform fields.

If fapID has value 1 or 2, the highLevelSelect field specifies the type of viseme or expression. In other cases
this field has no meaning and shall be ignored.

The faceDefMesh field shall contain a FaceDefMesh node.

The faceDefTransform field shall contain a FaceDefTransform node.

9.4.2.39 FaceDefTransform

9.4.2.39.1 Node interface

FaceDefTransform {
field SFNode faceSceneGraphNode NULL
field SFInt32 fieldId 1
field SFRotation rotationDef 0, 0, 1, 0
field SFVec3f scaleDef 1, 1, 1
field SFVec3f translationDef 0, 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.39.

9.4.2.39.2 Functionality and semantics

The FaceDefTransform node defines which field (rotation , scale or translation ) of a Transform node
(faceSceneGraphNode) of faceSceneGraph (defined in an FDP node) is updated by a facial animation
parameter, and how the field is updated. If the face is in its neutral position, the faceSceneGraphNode has its
translation , scale , and rotation fields set to the neutral values (0,0,0) T, (1,1,1)T, (0,0,1,0), respectively.

The faceSceneGraphNode field specifies the Transform node for which the animation is defined. The node
shall be part of faceScenegraph as defined in the FDP node.

The fieldId field specifies which field in the Transform node, specified by the faceSceneGraphNode field, is
updated by the FAP during animation. Possible fields are translation , rotation , scale .

� If fieldID ==1, rotation shall be updated using rotationDef and FAPValue .

� If fieldID ==2, scale shall be updated using scaleDef and FAPValue .

� If fieldID ==3, translation shall be updated using translationDef and FAPValue .

The rotationDef field is of type SFRotation. With rotationDef =(rx,ry,rz,�), the new value of the rotation field of
the Transform node faceSceneGraphNode is:

rotation : =(rx,ry,rz,�*FAPValue *AU) [AU is defined in ISO/IEC 14496-2]

The scaleDef field is of type SFVec3f. The new value of the scale field of the Transform node
faceSceneGraphNode is:

scale := FAPValue *scaleDef

The translationDef field is of type SFVec3f. The new value of the translation field of the Transform node
faceSceneGraphNode is:

translation := FAPValue *translationDef

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 147

9.4.2.40 FAP

9.4.2.40.1 Node interface

FAP {
exposedField SFNode viseme NULL
exposedField SFNode expression NULL
exposedField SFInt32 open_jaw +I
exposedField SFInt32 lower_t_midlip +I
exposedField SFInt32 raise_b_midlip +I
exposedField SFInt32 stretch_l_corner +I
exposedField SFInt32 stretch_r_corner +I
exposedField SFInt32 lower_t_lip_lm +I
exposedField SFInt32 lower_t_lip_rm +I
exposedField SFInt32 lower_b_lip_lm +I
exposedField SFInt32 lower_b_lip_rm +I
exposedField SFInt32 raise_l_cornerlip +I
exposedField SFInt32 raise_r_cornerlip +I
exposedField SFInt32 thrust_jaw +I
exposedField SFInt32 shift_jaw +I
exposedField SFInt32 push_b_lip +I
exposedField SFInt32 push_t_lip +I
exposedField SFInt32 depress_chin +I
exposedField SFInt32 close_t_l_eyelid +I
exposedField SFInt32 close_t_r_eyelid +I
exposedField SFInt32 close_b_l_eyelid +I
exposedField SFInt32 close_b_r_eyelid +I
exposedField SFInt32 yaw_l_eyeball +I
exposedField SFInt32 yaw_r_eyeball +I
exposedField SFInt32 pitch_l_eyeball +I
exposedField SFInt32 pitch_r_eyeball +I
exposedField SFInt32 thrust_l_eyeball +I
exposedField SFInt32 thrust_r_eyeball +I
exposedField SFInt32 dilate_l_pupil +I
exposedField SFInt32 dilate_r_pupil +I
exposedField SFInt32 raise_l_i_eyebrow +I
exposedField SFInt32 raise_r_i_eyebrow +I
exposedField SFInt32 raise_l_m_eyebrow +I
exposedField SFInt32 raise_r_m_eyebrow +I
exposedField SFInt32 raise_l_o_eyebrow +I
exposedField SFInt32 raise_r_o_eyebrow +I
exposedField SFInt32 squeeze_l_eyebrow +I
exposedField SFInt32 squeeze_r_eyebrow +I
exposedField SFInt32 puff_l_cheek +I
exposedField SFInt32 puff_r_cheek +I
exposedField SFInt32 lift_l_cheek +I
exposedField SFInt32 lift_r_cheek +I
exposedField SFInt32 shift_tongue_tip +I
exposedField SFInt32 raise_tongue_tip +I
exposedField SFInt32 thrust_tongue_tip +I
exposedField SFInt32 raise_tongue +I
exposedField SFInt32 tongue_roll +I
exposedField SFInt32 head_pitch +I
exposedField SFInt32 head_yaw +I
exposedField SFInt32 head_roll +I
exposedField SFInt32 lower_t_midlip_o +I
exposedField SFInt32 raise_b_midlip_o +I
exposedField SFInt32 stretch_l_cornerlip +I
exposedField SFInt32 stretch_r_cornerlip_o +I
exposedField SFInt32 lower_t_lip_lm_o +I

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

148 © ISO/IEC 1999 – All rights reserved

exposedField SFInt32 lower_t_lip_rm_o +I
exposedField SFInt32 raise_b_lip_lm_o +I
exposedField SFInt32 raise_b_lip_rm_o +I
exposedField SFInt32 raise_l_cornerlip_o +I
exposedField SFInt32 raise_r_cornerlip_o +I
exposedField SFInt32 stretch_l_nose +I
exposedField SFInt32 stretch_r_nose +I
exposedField SFInt32 raise_nose +I
exposedField SFInt32 bend_nose +I
exposedField SFInt32 raise_l_ear +I
exposedField SFInt32 raise_r_ear +I
exposedField SFInt32 pull_l_ear +I
exposedField SFInt32 pull_r_ear +I

}

NOTE — For the binary encoding of this node see Annex H.1.40.

9.4.2.40.2 Functionality and semantics

This node defines the current look of the face by means of expressions and FAPs and gives a hint to TTS
controlled systems on which viseme to use. For a definition of the facial animation parameters see ISO/IEC
14496-2, Annex C.

The viseme field shall contain a Viseme node.

The expression field shall contain an Expression node.

The semantics for the remaining fields are described in the ISO/IEC 14496-2, Annex C and in particular in Table
C-1.

A FAP of value +I shall be interpreted as indicating that the particular FAP is uninitialized.

9.4.2.41 FDP

9.4.2.41.1 Node interface

FDP {
exposedField SFNode featurePointsCoord NULL
exposedField SFNode textureCoords NULL
exposedField SFBool useOrthoTexture FALSE
exposedField MFNode faceDefTables []
exposedField MFNode faceSceneGraph []

}

NOTE — For the binary encoding of this node see Annex H.1.41.

9.4.2.41.2 Functionality and semantics

The FDP node defines the face model to be used at the terminal. Two options are supported:

1. If faceDefTables is NULL, calibration information is downloaded, so that the proprietary face of the terminal
can be calibrated using facial feature points and, optionally, the texture information. In this case, the
featurePointsCoord field shall be set. featurePointsCoord contains the coordinates of facial feature
points, as defined in ISO/IEC 14496-2, Annex C, Figure C-1, corresponding to a neutral face. If a coordinate of
a feature point is set to +I, the coordinates of this feature point shall be ignored. The textureCoord field, if set,
is used to map a texture on the model calibrated by the feature points. The textureCoord points correspond to
the feature points. Tthat is, each defined feature point shall have corresponding texture coordinates. In this
case, the faceSceneGraph shall contain exactly one texture image, and any geometry it might contain shall
be ignored. The terminal shall interpret the feature points, texture coordinates, and the faceSceneGraph in
the following way:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 149

� Feature points of the terminal’s face model shall be moved to the coordinates of the feature points supplied in
featurePointsCoord , unless a feature point is to be ignored, as explained above.

� If textureCoord is set, the texture supplied in the faceSceneGraph shall be mapped onto the terminal's
default face model. The texture coordinates are derived from the texture coordinates of the feature points
supplied in textureCoords . The useOrthoTexture field provides a hint to the decoding terminal that, when
FALSE, indicates that the texture image is best obtained by cylindrical projection of the face. If
useOrthoTexture is TRUE, the texture image is best obtained by orthographic projection of the face.

2. A face model as described in the faceSceneGraph is decoded. This face model replaces the terminal's
default face model in the terminal. The faceSceneGraph shall contain the face in its neutral position (all FAPs
= 0). If desired, the faceSceneGraph shall contain the texture maps of the face. The functions defining the
way in which the faceSceneGraph shall be modified, as a function of the FAPs, shall also be decoded. This
information is described by faceDefTables that define how the faceSceneGraph is to be modified as a
function of each FAP. By means of faceDefTables , IndexedFaceSets and Transform nodes of the
faceSceneGraph can be animated. Since the amplitude of FAPs is defined in units that are dependent on the
size of the face model, the featurePointsCoord field defines the position of facial features on the surface of
the face described by faceSceneGraph . From the location of these feature points, the terminal computes the
units of the FAPs. Generally, only two node types in the scene graph of a decoded face model are affected by
FAPs: IndexedFaceSet and Transform nodes. If a FAP causes a deformation of an object (e.g. lip
stretching), then the coordinate positions in the affected IndexedFaceSets shall be updated. If a FAP
causes a movement which can be described with a Transform node (e.g. FAP 23, yaw_l_eyeball), then the
appropriate fields in this Transform node shall be updated. It shall be assumed that this Transform node
has its rotation , scale , and translation fields set to neutral values if the face is in its neutral position. A
unique nodeId shall be assigned via the DEF statement to all IndexedFaceSet and Transform nodes
which are affected by FAPs so that they can be accessed unambiguously during animation.

The featurePointsCoord field shall contain a Coordinate node that specifies feature points for the calibration
of the terminal's default face. The coordinates are specified in the point field of the Coordinate node in the
prescribed order, that a feature point with a lower label number is listed before a feature point with a higher label
naumber.

EXAMPLE � Feature point 3.14 before feature point 4.1

The textureCoords field shall contain a Coordinate node that specifies texture coordinates for the feature
points. The coordinates are listed in the point field in the Coordinate node in the prescribed order, that a
feature point with a lower label is listed before a feature point with a higher label.

The useOrthoTexture field may contain a hint to the terminal as to the type of texture image, in order to allow
better interpolation of texture coordinates for the vertices that are not feature points. If useOrthoTexture is
FALSE, the terminal may assume that the texture image was obtained by cylindrical projection of the face. If
useOrthoTexture is 1, the terminal may assume that the texture image was obtained by orthographic projection
of the face.

The faceDefTables field shall contain FaceDefTables nodes. The behavior of FAPs is defined in this field for
the face in faceSceneGraph .

The faceSceneGraph field shall contain a Group node. In the case of option 1 (above), this may be used to
contain a texture image as described above. In the case of option 2, this shall be the grouping node for the face
model rendered in the compositor and shall contain the face model. In this case, the effect of facial animation
parameters is defined in the faceDefTables field.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

150 © ISO/IEC 1999 – All rights reserved

9.4.2.42 FIT

9.4.2.42.1 Node interface

FIT {
exposedField MFInt32 FAPs []
exposedField MFInt32 graph []
exposedField MFInt32 numeratorTerms []
exposedField MFInt32 denominatorTerms []
exposedField MFInt32 numeratorExp []
exposedField MFInt32 denominatorExp []
exposedField MFInt32 numeratorImpulse []
exposedField MFFloat numeratorCoefs []
exposedField MFFloat denominatorCoefs []

}

NOTE — For the binary encoding of this node see Annex H.1.42.

9.4.2.42.2 Functionality and semantics

The FIT node allows a smaller set of FAPs to be sent during a facial animation. This small set can then be used to
determine the values of other FAPs, using a rational polynomial mapping between parameters. In a FIT node,
rational polynomials are used to specify interpolation functions.

EXAMPLE � The top inner lip FAPs can be sent and then used to determine the top outer lip FAPs. Another example is that
only viseme and/or expression FAPs are sent to drive the face. In this case, low-level FAPs are interpolated from these two
high-level FAPs.

To make the scheme general, sets of FAPs are specified, along with a FAP interpolation graph (FIG) between the
sets that specifies which sets are used to determine which other sets. The FIG is a graph with directed links. Each
node contains a set of FAPs. Each link from a parent node to a child node indicates that the FAPs in the child node
can be interpolated from the parent node. Expression (FAP#1) or Viseme (FAP #2) and their fields shall not
be interpolated from other FAPs.

In a FIG, a FAP may appear in several nodes, and a node may have multiple parents. For a node that has multiple
parent nodes, the parent nodes are ordered as 1st parent node, 2nd parent node, etc. During the interpolation
process, if this child node needs to be interpolated, it is first interpolated from 1st parent node if all FAPs in that
parent node are available. Otherwise, it is interpolated from 2nd parent node, and so on.

An example of FIG is shown in Figure 20. Each node has a nodeID . The numerical label on each incoming link
indicates the order of these links.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 151

Figure 20 - A FIG example

The interpolation process based on the FAP interpolation graph is described using pseudo-C code as follows:

do {
interpolation_count = 0;
for (all Node_i) { // from Node_1 to Node_N

for (ordered Node_i’s parent Node_k) {
if (FAPs in Node_i need interpolation and

FAPs in Node_k have been interpolated or are available) {
interpolate Node_i from Node_k; //using interpolation function

// table here
interpolation_count ++;
break;

}
}

}
} while (interpolation_count != 0);

Each directed link in a FIG is a set of interpolation functions. Suppose F1, F2, …, Fn are the FAPs in a parent set
and f1, f2, …, fm are the FAPs in a child set.

Then, there are m interpolation functions denoted as:

f1 = I1(F1, F2, …, Fn)

f2 = I2(F1, F2, …, Fn)

…

fm = Im(F1, F2, …, Fn)

Each interpolation function Ik () is in a rational polynomial form if the parent node does not contain viseme FAP or
expression FAP.

� �� ��
�

� �

�

� �

1

0 1

1

0 1
21 )()(),...,,(

P

i

n

j

m
ji

K

i

n

j

l
jin

ijij FbFcFFFI

expression

lower_t_midlip

raise_b_midlip

bottom_inner_lip FAPs

bottom_outer_lip FAPs

top_outer_lip FAPs

top_inner_lip FAPs

1
1

1

1

2

2

2

2

1

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

152 © ISO/IEC 1999 – All rights reserved

Otherwise, an impulse function is added to each numerator polynomial term to allow selection of expression or
viseme.

� �� ���
�

� �

�

� �

1

0 1

1

0 1
21 )())((),...,,(

P

i

n

j

m
ji

K

i

n

j

l
jiisn

ijij
i

FbFcaFFFFI �

In both equations, K and P are the numbers of polynomial products, ci and ib are the coefficient of the ith product.

lij and ijm are the power of Fj in the ith product. An impulse function equals 1 when is aF
i
� , otherwise, equals 0.

isF can only be viseme_select1, viseme_select2, expression_select1, and expression_select2. ia is an integer

that ranges from 0 to 6 when
isF is expression_select1 or expression_select2, ranges 0 to 14 when

isF is

viseme_select1 or viseme_select2. The encoder shall send an interpolation function table which contains
K , P , ia , is , ci , ib , lij , ijm to the terminal.

To aid in the explanation below, it is assumed that there are N different sets of FAPs with index 1 to N, and that
each set has ni, i=1,..,N parameters. It is also assumed that there are L directed links in the FIG and that each link
points from the FAP set with index Pi to the FAP set with index Ci, for i = 1, .. , L

The FAPs field shall contain a list of FAP-indices specifying which animation parameters form sets of FAPs. Each
set of FAP indices is terminated by –1. There shall be a total of N + n1 + n2 + … + nN numbers in this field, with N of
them being –1. FAP#1 to FAP#68 are of indices 1 to 68. Fields of the Viseme FAP (FAP#1), namely,
viseme_select1 , viseme_select2 , viseme_blend , are of indices from 69 to 71. Fields of the Expression
FAP (FAP#2), namely, expression_select1 , expression_select2 , expression_intensity1 ,
expression_intensity2 are of indices from 72 to 75. When the parent node contains a Viseme FAP, three
indices, 69, 70, 71, shall be included in the node (but not index 1). When a parent node contains an Expression
FAP, four indices, 72,73,74,75, shall be included in the node (but not index 2).

The graph field shall contain a list of pairs of integers, specifying a directed links between sets of FAPs. The
integers refer to the indices of the sets specified in the FAPs field, and thus range from 1 to N. When more than
one direct link terminates at the same set, that is, when the second value in the pair is repeated, the links have
precedence determined by their order in this field. This field shall have a total of 2L numbers, corresponding to the
directed links between the parents and children in the FIG.

The numeratorTerms field shall be a list containing the number of terms in the polynomials of the numerators of
the rational functions used to interpolae parameter values. Each element in the list corresponds to K in equation 1
above). Each link i (that is, the ith integer pair) in the graph field must have nCi values specified, one for each child
FAP. The order in the numeratorTerms list shall correspond to the order of the links in the graph field and the
order that the child FAP appears in the FAPs field. There shall be nC1 + nC2 + … + nCL numbers in this field.

The denominatorTerms field shall contain a list of the number of terms in the polynomials of the denominator of
the rational functions controlling the parameter value. Each element in the list corresponds to P in equation 1. Each
link i (that is, the ith integer pair) in the graph field must have nCi values specified, one for each child FAP. The
order in the denominatorTerms list corresponds to the order of the links in the graph field and the order that the
child FAP appears in the FAPs field. There shall be nC1 + nC2 + … + nCL numbers in this field.

The numeratorImpulse field shall contain a list of impulse functions in the numerator of the rational function for

links with the Viseme or Expression FAP in parent node. This list corresponds to the )( is aF
i
�� . Each entry

in the list is ( is , ia ).

The numeratorExp field shall contain a list of exponents of the polynomial terms in the numerator of the rational
function controlling the parameter value. This list corresponds to lij . For each child FAP in each link i, nPi*K values

need to be specified. The order in the numeratorExp list shall correspond to the order of the links in the graph
field and the order that the child FAP appears in the FAPs field.

NOTE — K may be different for each child FAP.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 153

The denominatorExp field shall contain a list of exponents of the polynomial terms of the denominator of the
rational function controlling the parameter value. This list corresponds to ijm . For each child FAP in each link i,

nPi*P values need to be specified. The order in the denominatorExp list shall correspond to the order of the links
in the graph field and the order that the child FAP appears in the FAPs field.

NOTE — P may be different for each child FAP.

The numeratorCoefs field shall contain a list of coefficients of the polynomial terms of the numerator of the
rational function controlling the parameter value. This list corresponds to ci . The list shall have K terms for each
child parameter that appears in a link in the FIG, with the order in numeratorCoefs corresponding to the order in
graph and FAPs .

NOTE — K is dependent on the polynomial, and is not a fixed constant.

The denominatorCoefs field shall contain a list of coefficients of the polynomial terms in the numerator of the
rational function controlling the parameter value. This list corresponds to ib . The list shall have P terms for each
child parameter that appears in a link in the FIG, with the order in denominatorCoefs corresponding to the order
in graph and FAPs .

NOTE — P is dependent on the polynomial, and is not a fixed constant.

EXAMPLE � Suppose a FIG contains four nodes and 2 links. Node 1 contains FAP#3, FAP#3, FAP#5. Node 2 contains
FAP#6, FAP#7. Node 3 contains an expression FAP, which means contains FAP#72, FAP#73, FAP#74, and FAP#75. Node 4
contains FAP#12 and FAP#17. Two links are from node 1 to node 2, and from node 3 to node 4. For the first link, the
interpolation functions are

)65/()432( 5435
2

435436 FFFFFFFFFF �����

47 FF �
.

For the second link, the interpolation functions are

)6.0)(6()6.0)(6( 7573747212 FFFFF ���� ��

)5.1)(6()5.1)(6( 7573747217 FFFFF ������ ��
.

The second link simply says that when the expression is surprise (FAP#72=6 or FAP#73=6), for FAP#12, the value is 0.6 times
of expression intensity FAP#74 or FAP#75; for FAP#17, the value is –1.5 tims of FAP#74 or FAP#75.

After the FIT node given below, we explain each field separately.

FIT {
FAPs [ 3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]
graph [ 1 2 3 4]
numeratorTerms [ 4 1 2 2 ]
denominatorTerms [ 2 1 1 1]
numeratorExp [1 0 0 0 1 0 0 0 1 1 2 0 0 1 0

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 ]
denominatorExp [ 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 ]
numeratorImpulse [ 72 6 73 6 72 6 73 6 ]
numeratorCoefs [ 1 2 3 4 1 0.6 0.6 -1.5 –1.5 ]
denominatorCoefs [ 5 6 1 1 1 ]

}

FAPs [ 3 4 5 -1 6 7 –1 72 73 74 75 –1 12 17 -1]
Four sets of FAPs are defined, the first with FAPs number 3, 4, and 5, the second with FAPs number 6 and 7, the third with
FAPs number 72, 73, 74, 75, and the fourth with FAPs number 12, 17.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

154 © ISO/IEC 1999 – All rights reserved

graph [ 1 2 3 4]
The first set is made to be the parent of the second set, so that FAPs number 6 and 7 will be determined by FAPs 3, 4, and 5.
Also, the third set is made to be the parent of the fourth set, so that FAPs number 12 and 17 will be determined by FAPs 72, 73,
74, and 75.

numeratorTerm s [ 4 1 2 2]
The rational functions that define F6 and F7 are selected to have 4 and 1 terms in their numerator, respectively. Also, the
rational functions that define F12 and F17 are selected to have 2 and 2 terms in their numerator, respectively.

denominatorTerm s [ 2 1 1 1]
The rational functions that define F6 and F7 are selected to have 2 and 1 terms in their denominator, respectively. Also, the
rational functions that define F12 and F17 are selected to both have 1 term in their denominator.

numeratorEx p [ 1 0 0 0 1 0 0 0 1 1 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1]
The numerator selected for the rational function defining F6 is F3 + 2F4 + 3 F5 + 4F3F42. There are 3 parent FAPs, and 4
terms, leading to 12 exponents for this rational function. For F7, the numerator is just F4, so there are three exponents only (one
for each FAP). Values for F12 and F17 are derived in the same way.

denominatorEx p [ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]
The denominator selected for the rational function defining F6 is 5F5+ 6F3F4F5 , so there are 3 parent FAPs and 2 terms and
hence, 6 exponents for this rational function. For F7, the denominator is just 1, so there are three exponents only (one for each
FAP). Values for F12 and F17 are derived in the same way.

numeratorImpulse [72 6 73 6 72 6 73 6]

For the second link, all four numerator polynomial terms contain impulse function
)6( 72 �F�

or
)6( 73 �F�

.

numeratorCoef s [ 1 2 3 4 1 0.6 0.6 -1.5 –1.5]
There is one coefficient for each term in the numerator of each rational function.

denominatorCoef s [ 5 6 1 1 1]
There is one coefficient for each term in the denominator of each rational function.

9.4.2.43 Fog

9.4.2.43.1 Node interface

Fog {
exposedField SFColor color 1 1 1
exposedField SFString fogType "LINEAR"
exposedField SFFloat visibilityRange 0.0
eventIn SFBool set_bind
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.43.

9.4.2.43.2 Functionality and semantics

The semantics of the Fog node are specified in ISO/IEC 14772-1:1998, subclause 6.19 [10].

9.4.2.44 FontStyle

9.4.2.44.1 Node interface

FontStyle {
field MFString family ["SERIF"]
field SFBool horizontal TRUE
field MFString justify ["BEGIN"]
field SFString language ""
field SFBool leftToRight TRUE
field SFFloat size 1.0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 155

field SFFloat spacing 1.0
field SFString style "PLAIN"
field SFBool topToBottom TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.44.

9.4.2.44.2 Functionality and semantics

The semantics of the FontStyle node are specified in ISO/IEC 14772-1:1998, subclause 6.20 [10].

9.4.2.45 Form

9.4.2.45.1 Node interface

Form {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFVec2f size -1, -1
exposedField MFInt32 groups []
exposedField MFInt32 constraints []
exposedField MFInt32 groupsIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.45.

9.4.2.45.2 Functionality and semantics

The Form node specifies the placement of its children according to relative alignment and distribution constraints.
Distribution spreads objects regularly, with an equal spacing between them.

The children field shall specify a list of nodes that are to be arranged. The children’s position is implicit and order
is important.

The size field specifies the width and height of the layout frame.

The groups field specifies the list of groups of objects on which the constraints can be applied. The children of the
Form node are numbered from 1 to n, 0 being reserved for a reference to the form itself. A group is a list of child
indices, terminated by a -1.

The constraints and the groupsIndex fields specify the list of constraints. One constraint is constituted by a
constraint type from the constraints field, coupled with a set of group indices terminated by a –1 contained in the
groupsIndex field. There shall be as many strings in constraints as there are –1-terminated sets in
groupsIndex . The n-th constraint string shall be applied to the n-th set in the groupsIndex field.

Constraints belong to two categories: alignment and distribution constraints.

Components referred to in the tables below are components whose indices appear in the list following the
constraint type. When rank is mentioned, it refers to the rank in that list.

The semantics of the <s>, when present in the name of a constraint, is the following. It shall be a number, integer
when the scene uses pixel metrics, and float otherwise, which specifies the space mentioned in the semantics of
the constraint.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

156 © ISO/IEC 1999 – All rights reserved

Table 31 - Alignment Constraints

Alignment Constraints Type
Index

Effect

AL: Align Left edges “AL” The xmin of constrained components becomes equal to the xmin
of the left-most component.

AH: Align centers
Horizontally

“AH” The (xmin+xmax)/2 of constrained components becomes equal to
the (xmin+xmax)/2 of the group of constrained components as
computed before this constraint is applied.

AR: Align Right edges “AR” The xmax of constrained components becomes equal to the xmax
of the right-most component.

AT: Align Top edges “AT” The ymax of all constrained components becomes equal to the
ymax of the top-most component.

AV: Align centers Vertically “AV” The (ymin+ymax)/2 of constrained components becomes equal to
the (ymin+ymax)/2 of the group of constrained components as
computed before this constraint is applied.

AB: Align Bottom edges “AB” The ymin of constrained components becomes equal to the ymin
of the bottom-most component.

ALspace: Align Left edges
by specified space

“AL <s>” The xmin of the second and following components become equal
to the xmin of the first component plus the specified space.

ARspace: Align Right
edges by specified space

“AR <s>” The xmax of the second and following components becomes equal
to the xmax of the first component minus the specified space.

ATspace: Align Top edges
by specified space

“AT <s>” The ymax of the second and following components becomes equal
to the ymax of the first component minus the specified space.

ABspace: Align Bottom
edges by specified space

“AB <s>” The ymin of the second and following components become equal
to the ymin of the first component plus the specified space.

The purpose of distribution constraints is to specify the space between components, by making such pairwise gaps
equal either to a given value or to the effect of filling available space.

Table 32 - Distribution Constraints

Distribution Constraints Type
Index

Effect

SH: Spread Horizontally “SH” The differences between the xmin of each component and the
xmax of the previous one all become equal. The first and the last
component shall be constrained horizontally already.

SHin: Spread Horizontally
in container

“SHin” The differences between the xmin of each component and the
xmax of the previous one all become equal.
References are the edges of the layout.

SHspace: Spread
Horizontally by specified
space

“SH <s>” The difference between the xmin of each component and the xmax
of the previous one all become equal to the specified space. The
first component is not moved.

SV: Spread Vertically “SV” The differences between the ymin of each component and the
ymax of the previous one all become equal. The first and the last
component shall be constrained vertically already.

SVin: Spread Vertically in
container

“SVin” The differences between the ymin of each component and the
ymax of the previous one all become equal.
References are the edges of the layout.

SVspace: Spread
Vertically by specified
space

“SV <s>” The difference between the ymin of each component and the ymax
of the previous one all become equal to the specified space. The
first component is not moved.

All objects start at the center of the Form . The constraints are then applied in sequence.

EXAMPLE � Laying out five 2D objects.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 157

Shape {
Geometry2D Rectangle { size 50 55 } // draw the Form’s frame.
VisualProps use VPSRect

}

Transform2D {
translation 10 10 {

children [
Form {

children [
Shape2D { use OBJ1 }
Shape2D { use OBJ2 }
Shape2D { use OBJ3 }
Shape2D { use OBJ4 }
Shape2D { use OBJ5 }

]
size 50 55

group s [ 1 -1 2 -1 3 -1 4 -1 5 -1 1 3 -1]
constraints [“SH” “SV” “AR” “AB” “AB 6”

“AB 7” “AL 7” “AT –2” “AR –2”]
groupsIndex [6 -1 1 - 1 0 2 -1 0 2 -1 0 3 -1

0 4 -1 0 4 -1 0 5 -1 0 5 -1]
}

]
}

}

The above constraints specify the following operations:

� spread group 6 (objects 1 and 3) horizontally in container (object 0)

� spread group 1 (object 1) vertically in container

� align the right edges of groups 0 (container) and 2 (object 2)

� align the bottom edges of the container and group 2 (object 2)

� align the bottom edges of the container and group 3 (object 3) with spacing of size 6

� align the bottom edges of the container and group 4 (object 4) with spacing of size 7

� align the left edges of the container and group 4 (object 4) with spacing of size 7

� align the top edges of the container and group 5 (object 5) with spacing size of -2

� align the right edges of the container and group 5 (object 5) with spacing size of -2

Figure 21 - Visual result of the Form node example

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

158 © ISO/IEC 1999 – All rights reserved

9.4.2.46 Group

9.4.2.46.1 Node interface

Group {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []

}

NOTE — For the binary encoding of this node see Annex H.1.46.

9.4.2.46.2 Functionality and semantics

The semantics of the Group node are specified in ISO/IEC 14772-1:1998, subclause 6.21 [10]. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize ).

Where multiple sub-graphs containing audio content (i.e. Sound nodes) occur as children of a Group node, the
sounds shall be combined as described in 9.4.2.82.

9.4.2.47 ImageTexture

9.4.2.47.1 Node interface

ImageTexture {
exposedField MFString url []
field SFBool repeatS TRUE
field SFBool repeatT TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.47.

9.4.2.47.2 Functionality and semantics

The semantics of the ImageTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.22 [10].

The url field specifies the data source to be used (see 9.2.2.7.1).

9.4.2.48 IndexedFaceSet

9.4.2.48.1 Node interface

IndexedFaceSet {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
eventIn MFInt32 set_normalIndex
eventIn MFInt32 set_texCoordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
exposedField SFNode normal NULL
exposedField SFNode texCoord NULL
field SFBool ccw TRUE
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordIndex []
field SFFloat creaseAngle 0.0
field MFInt32 normalIndex []
field SFBool normalPerVertex TRUE
field SFBool solid TRUE
field MFInt32 texCoordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.48.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 159

9.4.2.48.2 Functionality and semantics

The semantics of the IndexedFaceSet node are specified in ISO/IEC 14772-1:1998, subclause 6.23 [10]. Some
restrictions on these semantics are described below.

The IndexedFaceSet node represents a 3D polygon mesh formed by constructing faces (polygons) from points
specified in the coord field. If the coordIndex field is not NULL, IndexedFaceSet uses the indices in its
coordIndex field to specify the polygonal faces by connecting together points from the coord field. An index of -1
shall indicate that the current face has ended and the next one begins. The last face may be followed by a -1.
IndexedFaceSet shall be specified in the local coordinate system and shall be affected by parent
transformations.

The coord field specifies the vertices of the face set and is specified by Coordinate node.

If the coordIndex field is not NULL, the indices of the coordIndex field shall be used to specify the faces by
connecting together points from the coord field. An index of -1 shall indicate that the current face has ended and
the next one begins. The last face may be followed by a -1.

If the coordIndex field is NULL, the vertices of the coord field are laid out in their respective order to specify one
face.

If the color field is NULL and there is a Material node defined for the Appearance affecting this
IndexedFaceSet , then the emissiveColor of the Material node shall be used to draw the faces.

9.4.2.49 IndexedFaceSet2D

9.4.2.49.1 Node interface

IndexedFaceSet2D {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
eventIn MFInt32 set_texCoordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
exposedField SFNode texCoord NULL
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field SFBool convex TRUE
field MFInt32 coordIndex []
field MFInt32 texCoordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.49.

9.4.2.49.2 Functionality and semantics

The IndexedFaceSet2D node is the 2D equivalent of the IndexedFaceSet node as defined in 9.4.2.48. The
IndexedFaceSet2D node represents a 2D shape formed by constructing 2D faces (polygons) from 2D vertices
(points) specified in the coord field. The coord field contains a Coordinate2D node that defines the 2D
vertices, referenced by the coordIndex field. The faces of an IndexedFaceSet2D node shall not overlap each
other.

The detailed semantics are identical to those for the IndexedFaceSet node (see 9.4.2.48), restricted to the 2D
case, and with the additional differences described here.

If the texCoord field is NULL, a default texture coordinate mapping is calculated using the local 2D coordinate
system bounding box of the 2D shape, as follows. The X dimension of the bounding box defines the S coordinates,
and the Y dimension defines the T coordinates. The value of the S coordinate ranges from 0 to 1, from the left end
of the bounding box to the right end. The value of the T coordinate ranges from 0 to 1, from the lower end of the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

160 © ISO/IEC 1999 – All rights reserved

bounding box to the top end. Figure 22 illustrates the default texture mapping coordinates for a simple
IndexedFaceSet2D shape consisting of a single polygonal face.

(x0, y0)
(s=0.0, t=0.0)

(x0+Xsize, y0+Ysize)
(s=1.0, t=1.0)

Xsize

Ysize

s = (x-x0)/Xsize
t = (y-y0)/Ysize

Figure 22 - IndexedFaceSet2D default texture mapping coordinates for a simple shape

9.4.2.50 IndexedLineSet

9.4.2.50.1 Node interface

IndexedLineSet {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field MFInt32 coordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.50.

9.4.2.50.2 Functionality and semantics

The semantics of the IndexedLineSet node are specified in ISO/IEC 14772-1:1998, subclause 6.24 [10].

9.4.2.51 IndexedLineSet2D

9.4.2.51.1 Node interface

IndexedLineSet2D {
eventIn MFInt32 set_colorIndex
eventIn MFInt32 set_coordIndex
exposedField SFNode color NULL
exposedField SFNode coord NULL
field MFInt32 colorIndex []
field SFBool colorPerVertex TRUE
field MFInt32 coordIndex []

}

NOTE — For the binary encoding of this node see Annex H.1.51.

9.4.2.51.2 Functionality and semantics

The IndexedLineSet2D node specifies a collection of lines or polygons.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 161

The coord field shall list the vertices of the lines. When coordIndex is empty, the order of vertices shall be
assumed to be sequential in the coord field. Otherwise, the coordIndex field determines the ordering of the
vertices, with an index of -1 representing an end to the current polyline.

If the color field is not NULL, it shall contain a Color node, and the colors are applied to the line(s) as with the
IndexedLineSet node (see 9.4.2.50).

9.4.2.52 Inline

9.4.2.52.1 Node interface

Inline {
exposedField MFString url []

}

NOTE — For the binary encoding of this node see Annex H.1.52.

9.4.2.52.2 Functionality and semantics

The semantics of the Inline node are specified in ISO/IEC 14772-1:1998, subclause 6.25 [10]. ISO/IEC 14496-1
does not support the bounding box parameters (bboxCenter and bboxSize ).

The url field specifies the data source to be used (see 9.2.2.7.1). The external source must contain a valid BIFS
scene, and may include BIFS-Commands and BIFS-Anim frames

9.4.2.53 Layer2D

9.4.2.53.1 Node interface

Layer2D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children NULL
exposedField SFVec2f size -1, -1
exposedField SFNode background NULL
exposedField SFNode viewport NULL

}

NOTE — For the binary encoding of this node see Annex H.1.53.

9.4.2.53.2 Functionality and semantics

The Layer2D node is a transparent rendering rectangle region on the screen where a 2D scene is drawn. The
rectangle always faces the viewer of the scene. Layer2D and Layer3D nodes enable the composition of
multiple 2D and 3D scenes (see Figure 23).

EXAMPLE � This allows users to have 2D interfaces to a 2D scene, or 3D interfaces to a 2D scene, or to view a 3D scene from
different viewpoints in the same scene.

The addChildren eventIn specifies a list of 2D nodes that shall be added to the Layer2D’s children field.

The removeChildren eventIn specifies a list of 2D nodes that shall be removed from the Layer2D's children
field.

The children field may contain any 2D children nodes that define a 2D scene. Layer nodes are considered to be
2D objects within the scene. The layering of the 2D and 3D layers is specified by any relevant transformations in
the scene graph. The Layer2D node is composed with its center at the origin of the local coordinate system and
shall not be present in 3D contexts (see 9.2.2.1).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

162 © ISO/IEC 1999 – All rights reserved

The size parameter shall be a floating point number that expresses the width and height of the layer in the units of
the local coordinate system. In case of a layer at the root of the hierarchy, the size is expressed in terms of the
default 2D coordinate system (see 9.2.2.2). A size of -1 in either direction, means that the Layer2D node is not
specified in size in that direction, and that the size is adjusted to the size of the parent layer, or the global rendering
area dimension if the layer is on the top of the hierarchy. In the case where a 2D scene or object is shared between
several Layer2D nodes, the behaviours are defined exactly as for objects that are multiply referenced using the
DEF/USE mechanism. A sensor triggers an event whenever the sensor is triggered in any of the Layer2D in
which it is contained. The behaviors triggered by the shared sensors as well as other behaviors that apply on
objects shared between several layers apply on all layers containing these objects.

A Layer2D stores the stack of bindable children nodes that can affect the children scene of the layer. All relevant
bindable children nodes have a corresponding exposedField in the Layer2D node. During presentation, these
fields take the value of the currently bound bindable children node for the scene that is a child of the Layer2D
node. Initially, the bound bindable children node is the corresponding field value of the Layer2D node if it is
defined. If the field is undefined, the first bindable children node defined in the child scene will be bound. When the
binding mechanism of the bindable children node is used (set_bind field set to TRUE), all the parent layers
containing this node set the corresponding field to the current bound node value. It is therefore possible to share
scenes across layers, and to have different bound nodes active, or to trigger a change of bindable children node for
all layers containing a given bindable children node. For 2D scenes, the background field specifies the bound
Background2D node. The viewport field is reserved for future extensions for 2D scenes.

All the 2D objects contained in a single Layer2D node form a single composed object. This composed object is
considered by other elements of the scene to be a single object. In other words, if a Layer2D node, A, is the
parent of two objects, B and C, layered one on top of the other, it will not be possible to insert a new object, D,
between B and C unless D is added as a child of A.

Layers are transparent to user input, which means that if two layers are overlapping at a given location on the
screen, a user input will affect both layers, regardless of which is drawn on top of the other. For instance, if two
buttons placed in two different layers are overlapping, the click of the user at the location of the topmost button will
also affect the button contained in the layer behind. Authors should carefully design behaviors in the overlapping
layers.

EXAMPLE � In the following example, the same scene is used in two different Layer2D nodes. However, one scene is
initially viewed with background b1, the other with background b2. When the user clicks on the button1 object, all layers are set
with background b3.

OrderedGroup{
children [

Transform2 D { # A set of transforms to translate and scale the layer
...
children [

Layer2D {
background DEF b1 Background2D {…}

# It is possible to define the bindable children node directly in
# the corresponding field

children [
DEF MYSCENE Transform2D {

children [
DEF b3 Background2D {… } # A shared background
DEF TS TouchSensor{}
DEF button1 Shape{..} # The button 1

# The objects of my scene
]

}
]

}
]

}
Transform2D {

# Another set of transforms to translate and scale the layer
children [

Layer2D {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 163

children [
DEF b2 Background2D{…} # It is possible to define the bindable

# children node in the children field.
# b2 is initially bound sicne it is the
# first background 2D in the children
# field OF the parent Layer2d

Transform2D USE MYSCENE
]

}
]

}
]

}

ROUTE TS.isActive TO b3.set_bind
9.4.2.54 Layer3D

9.4.2.54.1 Node interface

Layer3D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children NULL
exposedField SFVec2f size -1, -1
exposedField SFNode background NULL
exposedField SFNode fog NULL
exposedField SFNode navigationInfo NULL
exposedField SFNode viewpoint NULL

}

NOTE — For the binary encoding of this node see Annex H.1.54.

9.4.2.54.2 Functionality and semantics

The Layer3D node is a transparent, rectangular rendering region where a 3D scene is drawn. The Layer3D
node may be composed in the same manner as any other 2D node. It represents a rectangular region on the
screen facing the viewer. The basic Layer3D semantics are identical to those for Layer2D (see 9.4.2.53) but
with 3D (rather than 2D) children. In general, Layer3D nodes shall not be present in 3D co-ordinate systems. The
permitted exception to this in when a Layer3D node is the "top" node that begins a 3D scene or context (see
9.2.2.1).

The following fields specify bindable children nodes for Layer3D :

� background for Background nodes

� fog for Fog nodes

� navigationInfo for NavigationInfo nodes

� viewpoint for Viewpoint nodes

The viewpoint field can be used to allow the viewing of the same scene with several viewpoints.

NOTE — The rule for transparency to behaviors is also true for navigation in Layer3D . Authors should carefully design the
various Layer3D nodes in a given scene to take account of navigation. Overlapping several Layer3D with navigation
turned on may trigger strange navigation effects which are difficult to control by the user. Unless it is a feature of the content,
navigation can be easily turned off using the NavigationInfo type field, or Layer3D’s can be designed not to be
superimposed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

164 © ISO/IEC 1999 – All rights reserved

(a) (b)

(c)

Figure 23 - Three Layer2D and Layer3D examples composed in a 2D space.

Layer2D’s are indicated by a continuous line; Layer3D’s by a dashed line. Image (a) shows a Layer3D
containing a 3D view of the earth on top of a Layer2D composed of a video, a logo and a text. Image (b) shows a
Layer3D of the earth with a Layer2D containing various icons on top. Image (c) shows 3 views of a 3D scene
with 3 non-overlapping Layer3D .

9.4.2.55 Layout

9.4.2.55.1 Node interface

Layout {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFBool wrap FALSE
exposedField SFVec2f size -1, -1
exposedField SFBool horizontal TRUE
exposedField MFString justify ["BEGIN"]
exposedField SFBool leftToRight TRUE
exposedField SFBool topToBottom TRUE
exposedField SFFloat spacing 1.0
exposedField SFBool smoothScroll FALSE
exposedField SFBool loop FALSE
exposedField SFBool scrollVertical TRUE
exposedField SFFloat scrollRate 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.55.

9.4.2.55.2 Functionality and semantics

The Layout node specifies the placement (layout) of its children in various alignment modes as specified. For text
children, this is by their fontStyle fields, and for non-text children by the fields horizontal , justify , leftToRight ,
topToBottom and spacing present in this node. It also provides the functionality of scrolling its children
horizontally or vertically.

The children field shall specify a list of nodes that are to be arranged. Note that the children’s position is implicit
and that order is important.

The wrap field specifies whether children are allowed to wrap to the next row (or column in vertical alignment
cases) after the edge of the layout frame is reached. If wrap is set to TRUE, children that would be positioned

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 165

across or past the frame boundary are wrapped (vertically or horizontally) to the next row or column. If wrap is set
to FALSE, children are placed in a single row or column that is clipped if it is larger than the layout.

When wrap is TRUE, if text objects larger than the layout frame need to be placed, these texts shall be broken
down into pieces that are smaller than the layout. The preferred places for breaking text are spaces, tabs, hyphens,
carriage returns and line feeds. When there is no such character in the texts to be broken, the texts shall be broken
at the last character that is entirely placed in the layout frame.

The size field specifies the width and height of the layout frame.

The horizontal , justify , leftToRight , topToBottom and spacing fields have the same meaning as in the
FontStyle node (see 9.4.2.44).

The scrollRate field specifies the scroll rate in meters per second. When scrollRate is zero, then there is no
scrolling and the remaining scroll-related fields are ignored.

The smoothScroll field selects between smooth and line-by-line/character-by-character scrolling of children.
When TRUE, smooth scroll is applied.

The loop field specifies continuous looping of children when set to TRUE. When loop is FALSE, child nodes that
have scrolled out of the scroll layout frame will be deleted. When loop is TRUE, then the set of children scrolls
continuously, wrapping around when they have scrolled out of the layout area. If the set of children is smaller than
the layout area, some empty space will be scrolled with the children. If the set of children is bigger than the layout
area, then only some of the children will be displayed at any point in time. When scrollVertical is TRUE and
loop is TRUE and scrollRate is negative (top-to-bottom scrolling), then the bottom-most object will reappear on
top of the layout frame as soon as the top-most object has scrolled entirely into the layout frame.

The scrollVertical field specifies whether the scrolling is done vertically or horizontally. When set to TRUE, the
scrolling rate shall be interpreted as a vertical scrolling rate and a positive rate shall be interpreted as scrolling
towards the top. When set to FALSE, the scrolling rate shall be interpreted as a horizontal scrolling rate and a
positive rate shall mean scrolling to the right.

Objects are placed one by one, in the order they are given in the children list. Text objects are placed according to
the horizontal , justify , leftToRight , topToBottom and spacing fields of their FontStyle node. Other
objects are placed according to the same fields of the Layout node. The reference point for the placement of an
object is the reference point as left by the placement of the previous object in the list.

In the case of vertical alignment, objects may be placed with respect to their top, bottom, center or baseline. The
baseline of non-text objects is the same as their bottom.

Spacing shall be coherent only within sequences of objects with the same orientation (same value of horizontal
field). The notions of top edge, bottom edge, base line, vertical center, left edge, right edge, horizontal center, line
height and row width shall have a single meaning over coherent sequences of objects. This means that over a
sequence of objects where horizontal is TRUE, topToBottom is TRUE and spacing has the same value, then
the vertical size of the lines is computed as follows:

� maxAscent is the maximum of the ascent on all text objects.

� maxDescent is the maximum of the descent on all text objects.

� maxHeight is the maximum height of non-text objects.

If the minor mode in the justify field of the layout is FIRST (baseline alignment), then the non-text objects shall be
aligned on the baseline, which means the vertical size of the line is:

size = max( maxAscent, maxHeight ) + maxDescent

If the minor mode in the justify field of the layout is any other value, then the non-text objects shall be aligned with
respect to the top, bottom or center, which means the size of the line is:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

166 © ISO/IEC 1999 – All rights reserved

size = max( maxAscent+maxDescent, maxHeight )

The first line is placed with its top edge flush to the top edge of the layout; the base line is placed maxAscent units
lower, and the bottom edge is placed maxDescent units lower. The center line is in the middle, between the top and
bottom edges. The top edges of subsequent lines are placed at regular intervals of value spacing � size.

The other cases can be inferred from the above description. When the orientation is vertical, then the baseline,
ascent and descent are not useful for the computation of the width of the rows. All objects only have a width.
Column size is the maximum width over all objects.

EXAMPLE �

If wrap is FALSE:

a) If horizontal is TRUE, then objects are placed in a single line. The layout direction is given by the leftToRight field.
Horizontal alignment in the row is done according to the first argument in justify (major mode = flush left, flush right,
centered), and vertical alignment is done according to the second argument in justify (minor mode = flush top, flush
bottom, flush baseline, centered). The topToBottom field is meaningless in this configuration.

b) If horizontal is FALSE, then objects are placed in a single column. The layout direction is given by the topToBottom field.
Vertical alignment in the column is done according to the first argument in justify (major mode), and horizontal alignment is
done according to the second argument in justify (minor mode).

If wrap is TRUE:

a) If horizontal is TRUE, then objects are placed in multiple lines. The layout direction is given by the leftToRight field. The
wrapping direction is given by the topToBottom field. Horizontal alignment in the lines is done according to the first
argument in justify (major mode), and vertical alignment is done according to the second argument in justify (minor mode).

b) If horizontal is FALSE, then objects are placed in multiple column. The layout direction is given by the topToBottom field.
The wrapping direction is given by the leftToRight field. Vertical alignment in the columns is done according to the first
argument in justify (major mode), and horizontal alignment is done according to the second argument in justify (minor
mode).

If scrollRate is zero, then the Layout is static and positions change only when children are modified.

If scrollRate is non-zero, then the position of the children is updated according to the values of scrollVertical , scrollRate ,
smoothScroll and loop .

If scrollVertical is TRUE, then if scrollRate is positive, then the scrolling direction is left-to-right, and vice-versa.

If scrollVertical is FALSE, then if scrollRate is positive, then the scrolling direction is bottom-to-top, and vice-versa.

9.4.2.56 LineProperties

9.4.2.56.1 Node interface

LineProperties {
exposedField SFColor lineColor 0, 0, 0
exposedField SFInt32 lineStyle 0
exposedField SFFloat width 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.56.

9.4.2.56.2 Functionality and semantics

The LineProperties node specifies line parameters used in 2D and 3D rendering.

The lineColor field specifies the color with which to draw the lines and outlines of 2D geometries.

The lineStyle field shall contain the line style type to apply to lines. The allowed values are:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 167

Table 33 - lineStyle description

lineStyle Description

0 solid
1 dash
2 dot
3 dash-dot
4 dash-dash-dot
5 dash-dot-dot

The terminal shall draw each line style in a manner that is distiguishable from each other line style.

The width field determines the width, in the local coordinate system, of rendered lines. The apparent width
depends on the local transformation.

The cap and join style to be used are as follows. The wide lines should end with a square form flush with the end of
the lines. The join style is described in Figure 24.

width

Figure 24 - Cap and join style for LineProperties

9.4.2.57 ListeningPoint

9.4.2.57.1 Node interface

ListeningPoint {
eventIn SFBool set_bind
exposedField SFBool jump TRUE
exposedField SFRotation orientation 0, 0, 1, 0
exposedField SFVec3f position 0, 0, 10
field SFString description ""
eventOut SFTime bindTime
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.57.

9.4.2.57.2 Functionality and semantics

The ListeningPoint node specifies the reference position and orientation for spatial audio presentation. If there
is no ListeningPoint given in a scene, the apparent listener position is slaved to the active ViewPoint .

The semantics are identical to those of the Viewpoint node (see 9.4.2.97).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

168 © ISO/IEC 1999 – All rights reserved

9.4.2.58 LOD

9.4.2.58.1 Node interface

LOD {
exposedField MFNode level []
field SFVec3f center 0, 0, 0
field MFFloat range []

}

NOTE — For the binary encoding of this node see Annex H.1.58.

9.4.2.58.2 Functionality and semantics

The semantics of the LOD node are specified in ISO/IEC 14772-1:1998, subclause 6.26 [10].

9.4.2.59 Material

9.4.2.59.1 Node interface

Material {
exposedField SFFloat ambientIntensity 0.2
exposedField SFColor diffuseColor 0.8, 0.8, 0.8
exposedField SFColor emissiveColor 0, 0, 0
exposedField SFFloat shininess 0.2
exposedField SFColor specularColor 0, 0, 0
exposedField SFFloat transparency 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.59.

9.4.2.59.2 Functionality and semantics

The semantics of the Material node are specified in ISO/IEC 14772-1:1998, subclause 6.27 [10].

9.4.2.60 Material2D

9.4.2.60.1 Node interface

Material2D {
exposedField SFColor emissiveColor 0.8, 0.8, 0.8
exposedField SFBool filled FALSE
exposedField SFNode lineProps NULL
exposedField SFFloat transparency 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.60.

9.4.2.60.2 Functionality and semantics

The Material2D node specifies the characteristics of a rendered 2D Shape . Material2D shall be used as the
material field of an Appearance node in certain circumstances (see 9.4.2.3.2)

The emissiveColor field specifies the color of the 2D Shape .

The filled field specifies whether rendered nodes are filled or drawn using lines. This field affects
IndexedFaceSet2D , Circle and Rectangle nodes.

The lineProps field contains information about line rendering in the form of a LineProperties node. If the field
is null the line properties take on a default behaviour identical to the default settings of the LineProperties node
(see 9.4.2.56) for more information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 169

The transparency field specifies the transparency of the 2D Shape .

9.4.2.61 MovieTexture

9.4.2.61.1 Node interface

MovieTexture {
exposedField SFBool loop FALSE
exposedField SFFloat speed 1.0
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
exposedField MFString url []
field SFBool repeatS TRUE
field SFBool repeatT TRUE
eventOut SFTime duration_changed
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.61.

9.4.2.61.2 Functionality and semantics

The loop , startTime , and stopTime exposedFields and the isActive eventOut, and their effects on the
MovieTexture node, are described in 9.2.1.6.1.

The speed exposedField controls playback speed. It does not affect the delivery of the stream attached to the
MovieTexture node. For streaming media, value of speed other than 1 shall be ignored.

A MovieTexture shall display frame or VOP 0 if speed is 0. For positive values of speed , the frame or VOP
that an active MovieTexture will display at time now corresponds to the frame or VOP at movie time (i.e., in the
movie’s local time base with frame or VOP 0 at time 0, at speed = 1):

fmod (now - startTime , duration/speed )

If speed is negative, then the frame or VOP to display is the frame or VOP at movie time:

duration + fmod(now - startTime , duration/speed ).

A MovieTexture node is inactive before startTime is reached. If speed is non-negative, then the first VOP
shall be used as texture, if it is already available. If speed is negative, then the last VOP shall be used as texture,
if it is already available.

When a MovieTexture becomes inactive, the VOP corresponding to the time at which the MovieTexture
became inactive shall persist as the texture. The speed exposedField indicates how fast the movie shall be
played. A speed of 2 indicates the movie plays twice as fast. Note that the duration_changed eventOut is not
affected by the speed exposedField. set_speed events shall be ignored while the movie is playing.

The url field specifies the data source to be used (see 9.2.2.7.1).

9.4.2.62 NavigationInfo

9.4.2.62.1 Node interface

NavigationInfo {
eventIn SFBool set_bind
exposedField MFFloat avatarSize [0.25, 1.6, 0.75]
exposedField SFBool headlight TRUE
exposedField SFFloat speed 1.0
exposedField MFString type ["WALK", "ANY"]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

170 © ISO/IEC 1999 – All rights reserved

exposedField SFFloat visibilityLimit 0.0
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.62.

9.4.2.62.2 Functionality and semantics

The semantics of NavigationInfo are specified in ISO/IEC 14772-1:1998, subclause 6.29 [10].

9.4.2.63 Normal

9.4.2.63.1 Node interface

Normal {
exposedField MFVec3f vector []

}

NOTE — For the binary encoding of this node see Annex H.1.63.

9.4.2.63.2 Functionality and semantics

The semantics of the Normal node are specified in ISO/IEC 14772-1:1998, subclause 6.30 [10].

9.4.2.64 NormalInterpolator

9.4.2.64.1 Node interface

NormalInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec3f keyValue []
eventOut MFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.64.

9.4.2.64.2 Functionality and semantics

The semantics of the NormalInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.31 [10].

9.4.2.65 OrderedGroup

9.4.2.65.1 Node interface

OrderedGroup {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField MFFloat order []

}

NOTE — For the binary encoding of this node see Annex H.1.65.

9.4.2.65.2 Functionality and semantics

The OrderedGroup node controls the visual layering order of its children. When used as a child of a Layer2D
node, it allows the control of which shapes obscure others. When used as a child of a Layer3D node, it allows
content creators to specify the rendering order of elements of the scene that have identical z values. This allows
conflicts between coplanar or close polygons to be resolved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 171

The addChildren eventIn specifies a list of objects that shall be added to the OrderedGroup node.

The removeChildren eventIn specifies a list of objects that shall be removed from the OrderedGroup node.

The children field is the current list of objects contained in the OrderedGroup node.

When the order field is empty (the default) children are layered in order, first child to last child, with the last child
being rendered last. If the order field contains values, one value is assigned to each child. Entries in the order
field array match the child in the corresponding element of the children field array. The child with the lowest order
value is rendered before all others. The remaining children are rendered in increasing order. The child
corresponding to the highest order value is rendered last.

Since 2D shapes have no z value, this is the sole determinant of the visual ordering of the shapes. However, when
the OrderedGroup node is used with 3D shapes, its ordering mechanism shall be used in place of the natural z
order of the shapes themselves. The resultant image shall show the shape with the highest order value on top,
regardless of its z value. However, the resultant z-buffer contains a z value corresponding to the shape closest to
the viewer at that pixel. The order shall be used to specify which geometry should be drawn first, to avoid conflicts
between coplanar or close polygons.

NOTE — Content authors must use this functionality carefully since, depending on the Viewpoint , 3D shapes behind a
given object in the natural z order may appear in front of this object.

9.4.2.66 OrientationInterpolator

9.4.2.66.1 Node interface

OrientationInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFRotation keyValue []
eventOut SFRotation value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.66.

9.4.2.66.2 Functionality and semantics

The semantics of the OrientationInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.32
[10].

9.4.2.67 PixelTexture

9.4.2.67.1 Node interface

PixelTexture {
exposedField SFImage image 0 0 0
field SFBool repeatS TRUE
field SFBool repeatT TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.67.

9.4.2.67.2 Functionality and semantics

The semantics of the PixelTexture node are specified in ISO/IEC 14772-1:1998, subclause 6.33 [10].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

172 © ISO/IEC 1999 – All rights reserved

9.4.2.68 PlaneSensor

9.4.2.68.1 Node interface

PlaneSensor {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition -1 -1
exposedField SFVec2f minPosition 0 0
exposedField SFVecf3f offset 0 0 0
eventOut SFBool isActive
eventOut SFVec3f trackPoint_changed
eventOut SFVec3f translation_changed

}

9.4.2.68.2 Fnctionality and semantics

The semantics of the PlaneSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.34 [10].

9.4.2.69 PlaneSensor2D

9.4.2.69.1 Node interface

PlaneSensor2D {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFVec2f maxPosition 0, 0
exposedField SFVec2f minPosition 0, 0
exposedField SFVec2f offset 0, 0
eventOut SFBool isActive
eventOut SFVec2f trackPoint_changed
eventOut SFVec2f translation_changed

}

NOTE — For the binary encoding of this node see Annex H.1.68.

9.4.2.69.2 Functionality and semantics

This sensor detects pointer device dragging and enables the dragging of objects on the 2D rendering plane.

The semantics of PlaneSensor2D are a restricted case for 2D of the semantics for the PlaneSensor node
(see 9.4.2.68).

9.4.2.70 PointLight

9.4.2.70.1 Node interface

PointLight {
exposedField SFFloat ambientIntensity 0.0
exposedField SFVec3f attenuation 1, 0, 0
exposedField SFColor color 1, 1, 1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0, 0, 0
exposedField SFBool on TRUE
exposedField SFFloat radius 100.0

}

NOTE — For the binary encoding of this node see Annex H.1.69.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 173

9.4.2.70.2 Functionality and semantics

The semantics of the PointLight node are specified in ISO/IEC 14772-1:1998, subclause 6.35 [10].

9.4.2.71 PointSet

9.4.2.71.1 Node interface

PointSet {
exposedField SFNode color NULL
exposedField SFNode coord NULL

}

NOTE — For the binary encoding of this node see Annex H.1.70.

9.4.2.71.2 Functionality and semantics

The semantics of the PointSet node are specified in ISO/IEC 14772-1:1998, subclause 6.36 [10].

9.4.2.72 PointSet2D

9.4.2.72.1 Node interface

PointSet2D {
exposedField SFNode color NULL
exposedField SFNode coord NULL

}

NOTE — For the binary encoding of this node see Annex H.1.71.

9.4.2.72.2 Functionality and semantics

This is a 2D equivalent of the PointSet node (see 9.4.2.71), with semantics that are the 2D restriction of that
node.

9.4.2.73 PositionInterpolator

9.4.2.73.1 Node interface

PositionInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFVec3f keyValue []
eventOut SFVec3f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.72.

9.4.2.73.2 Functionality and semantics

The semantics of the PositionInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.37 [10].

9.4.2.74 PositionInterpolator2D

9.4.2.74.1 Node interface

PositionInterpolator2D {
eventIn SFFloat set_fraction
exposedField MFFloat key []

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

174 © ISO/IEC 1999 – All rights reserved

exposedField MFVec2f keyValue []
eventOut SFVec2f value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.73.

9.4.2.74.2 Functionality and semantics

This is a 2D equivalent of the PositionInterpolator node (see 9.4.2.73) with semantics that are the 2D
restriction of that node.

9.4.2.75 ProximitySensor

9.4.2.75.1 Node interface

ProximitySensor {
exposedField SFVec3f center 0, 0, 0
exposedField SFVec3f size 0, 0, 0
exposedField SFBool enabled TRUE
eventOut SFBool isActive
eventOut SFVec3f position_changed
eventOut SFRotation orientation_changed
eventOut SFTime enterTime
eventOut SFTime exitTime

}

NOTE — For the binary encoding of this node see Annex H.1.74.

9.4.2.75.2 Functionality and semantics

The semantics of the ProximitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.38 [10].

9.4.2.76 ProximitySensor2D

9.4.2.76.1 Node interface

ProximitySensor2D {
exposedField SFVec2f center 0, 0
exposedField SFVec2f size 0, 0
exposedField SFBool enabled TRUE
eventOut SFBool isActive
eventOut SFVec2f position_changed
eventOut SFFloat orientation_changed
eventOut SFTime enterTime
eventOut SFTime exitTime

}

NOTE — For the binary encoding of this node see Annex H.1.75.

9.4.2.76.2 Functionality and semantics

This is the 2D equivalent of the ProximitySensor node (see 9.4.2.75) with semantics that are the 2D restriction
of the that node.

9.4.2.77 QuantizationParameter

9.4.2.77.1 Node interface

QuantizationParameter {
field SFBool isLocal FALSE
field SFBool position3DQuant FALSE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 175

field SFVec3f position3DMin -�, -�, -�
field SFVec3f position3DMax +�, +�, +�
field SFInt32 position3DNbBits 16
field SFBool position2DQuant FALSE
field SFVec2f position2DMin -�, -�
field SFVec2f position2DMax +�, +�
field SFInt32 position2DNbBits 16
field SFBool drawOrderQuant TRUE
field SFVec3f drawOrderMin -�
field SFVec3f drawOrderMax +�
field SFInt32 drawOrderNbBits 8
field SFBool colorQuant TRUE
field SFFloat colorMin 0.0
field SFFloat colorMax 1.0
field SFInt32 colorNbBits 8
field SFBool textureCoordinateQuant TRUE
field SFFloat textureCoordinateMin 0.0
field SFFloat textureCoordinateMax 1.0
field SFInt32 textureCoordinateNbBits 16
field SFBool angleQuant TRUE
field SFFloat angleMin 0.0
field SFFloat angleMax 2¶
field SFInt32 angleNbBits 16
field SFBool scaleQuant FALSE
field SFFloat scaleMin 0.0
field SFFloat scaleMax +�
field SFInt32 scaleNbBits 8
field SFBool keyQuant TRUE
field SFFloat keyMin 0.0
field SFFloat keyMax 1.0
field SFInt32 keyNbBits 8
field SFBool normalQuant TRUE
field SFInt32 normalNbBits 8
field SFBool sizeQuant FALSE
field SFFloat sizeMin 0.0
field SFFloat sizeMax +�
field SFInt32 sizeNbBits 8
field SFBool useEfficientCoding FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.76.

9.4.2.77.2 Functionality and semantics

The QuantizationParameter node describes the quantization values to be applied on single fields of
numerical types. For each of identified categories of fields, a minimal and maximal value is given as well as a
number of bits to represent the given class of fields. Additionally, it is possible to set the isLocal field to apply the
quantization only to the node following the QuantizationParameter node. The use of a node structure for
declaring the quantization parameters allows the application of the DEF and USE mechanisms that enable reuse of
the QuantizationParameter node. Also, it enables the parsing of this node in the same manner as any other
scene information.

The QuantizationParameter node may only appear as a child of a grouping node. When a
QuantizationParameter node appears in the scene graph, the quantization is set to TRUE, and will apply to
subsequent nodes as follows:

If the isLocal boolean is set to FALSE, the quantization applies to all siblings following the
QuanitzationParameter node, and thus to all their children as well.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

176 © ISO/IEC 1999 – All rights reserved

If the isLocal boolean is set to TRUE, the quantization only applies to the following sibling node in the children list
of the parent node. If no sibling is following the QuantizationParameter node declaration, the node has no
effect.

In all cases, the quantization is applied only in the scope of a single BIFS command. That is, if a command in the
same access unit, or in another access unit inserts a node in a context in which the quantization was active, no
quantization will be applied, except if a new QuantizationParameter node is defined in this new command.

The information contained in the QuantizationParameter node fields applies within the context of the node
scope as follows. For each category of fields, a boolean sets the quantization on or off, the minimal and maximal
values are set, as well as the number of bits for the quantization. This information, combined with the node coding
table, enables the relevant information to quantize the fields to be obtained. The quantization parameters are
applied as explained in 9.3.3.

If the useEfficientCoding boolean is set to FALSE, the encoding of floats shall be performed using 32 bits,
according to IEEE Std 754-1985 [12].

If the useEfficientCoding boolean is set to TRUE, the encoding of floats shall use the syntax described in
9.3.7.11. The scope of the use of the efficient coding is the same as that of the QuantizationParameter node.
This means that the values of the fields of the current QuantizationParameter node are not sent in the
efficient coding mode unless the context is within the scope of a previously sent QuantizationParameter
whose useEfficientCoding bit was set to true.

9.4.2.78 Rectangle

9.4.2.78.1 Node interface

Rectangle {
exposedField SFVec2f size 2, 2

}

NOTE — For the binary encoding of this node see Annex H.1.77.

9.4.2.78.2 Functionality and semantics

This node specifies a rectangle. The size field specifies the horizontal and vertical size of the rendered rectangle.

9.4.2.79 ScalarInterpolator

9.4.2.79.1 Node interface

ScalarInterpolator {
eventIn SFFloat set_fraction
exposedField MFFloat key []
exposedField MFFloat keyValue []
eventOut SFFloat value_changed

}

NOTE — For the binary encoding of this node see Annex H.1.78.

9.4.2.79.2 Functionality and semantics

The semantics of the ScalarInterpolator node are specified in ISO/IEC 14772-1:1998, subclause 6.39 [10].

9.4.2.80 Script

9.4.2.80.1 Node interface

Script {
exposedField MFString url []
field SFBool directOutput FALSE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 177

field SFBool mustEvaluate FALSE
Any number of the following may then follow:
eventIn eventType eventName
field fieldType fieldName initialValue
eventOut eventType eventName

}

NOTE — For the binary encoding of this node see Annex H.1.79.

9.4.2.80.2 Functionality and semantics

The Script node is used to describe behaviour in a programmtic way in a scene. Script nodes typically

� signify a change or user action

� receive events from other nodes

� contain a program module that performs some computation

� effect change somewhere else in the scene by sending events

Each Script node has associated programming language code, referenced by the url field, that is executed to
carry out the Script node's function. That code is referred to as the "script" in the rest of this description.

9.4.2.80.2.1 Detailed Semantics

The semantics of this node are as defined in ISO/IEC 14772-1:1998, subclause 6.40 [10], with the following
exception. The interface functions CreateVRMLFromString() and CreateVRMLFromURL() are not supported.
The terminal shall support JavaScript.

EXAMPLE � The following scene contains two spheres that exchange colors when they are clicked with the mouse. The script
is used to hold the current color state (in the variable num). The script variables color1 and color2 are used to hold the colors
that are flipped back and forth between the two spheres. The script variable color is used to hold the last color state of the first
sphere, and this color is routed to the second sphere. The first sphere color is set directly in the script.

Group {
children [

Viewpoint {
fieldOfView 0.785398

}
DirectionalLight {

colo r 1 1 1
}
Shape {

geometry Sphere { radius 0.5} # first sphere…
appearance Appearance {

material DEF COLOR Material {diffuseColo r 1 0 0}
}

}
Transform {

translation -2 0 0
children [

Shape {
geometry Sphere { radius 1.0} #second sphere…
appearance Appearance {
material DEF COLOR2 Material {diffuseColo r 1 1 1}
}

}
DEF TS TouchSensor{} #clicking on the 2 nd sphere will activate the script

]
}
DEF SC Script {

eventIn SFBool touch

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

178 © ISO/IEC 1999 – All rights reserved

field SFNode node USE COLOR
field SFColor color 1 0 1 0 # constant color for sphere
field SFColor color 2 0 0 1 # same as above
field SFInt32 num 1 # holds the current color state
eventOut SFColor color # holds the last color in COLOR
url "javascript:

function touch (value, tp) {
color = node.diffuseColor;
if (num==1) {

node.diffuseColor = color1;
num = 2;

} else {
node.diffuseColor = color2;
num = 1;

}
}

"
}

]
}
ROUTE TS.isActive TO SC.touch # activates the script when sensor is touched
ROUTE SC.color TO COLOR2.diffuseColor # routes the last color of COLOR to COLOR2

9.4.2.81 Shape

9.4.2.81.1 Node interface

Shape {
exposedField SFNode appearance NULL
exposedField SFNode geometry NULL

}

NOTE — For the binary encoding of this node see Annex H.1.80.

9.4.2.81.2 Functionality and semantics

The semantics of the Shape node are specified in ISO/IEC 14772-1:1998, subclause 6.41 [10].

9.4.2.82 Sound

9.4.2.82.1 Node interface

Sound {
exposedField SFVec3f direction 0, 0, 1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0, 0, 0
exposedField SFFloat maxBack 10.0
exposedField SFFloat maxFront 10.0
exposedField SFFloat minBack 1.0
exposedField SFFloat minFront 1.0
exposedField SFFloat priority 0.0
exposedField SFNode source NULL
field SFBool spatialize TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.81.

9.4.2.82.2 Functionality and semantics

The Sound node is used to attach sound to a scene, thereby giving it spatial qualities and relating it to the visual
content of the scene.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 179

The Sound node relates an audio BIFS sub-graph to the rest of an audio-visual scene. By using this node, sound
may be attached to a group, and spatialized or moved around as appropriate for the spatial transforms above the
node. By using the functionality of the audio BIFS nodes, sounds in an audio scene dscribed using ISO/IEC
14496-1 may be filtered and mixed before being spatially composited into the scene.

The semantics of this node are as defined in ISO/IEC 14472-1:1997, subclause 6.42, with the following exceptions
and additions.

The source field allows the connection of an audio sub-graph containing the sound.

The spatialize field determines whether the Sound shall be spatialized. If this flag is set, the sound shall be
presented spatially according to the local coordinate system and current listeningPoint , so that it apparently
comes from a source located at the location point, facing in the direction given by direction . The exact manner
of spatialization is implementation-dependant, but implementators are encouraged to provide the maximum
sophistication possible depending on terminal resources.

If there are multiple channels of sound output from the child sound, they may or may not be spatialized, according
to the phaseGroup properties of the child, as follows. Any individual channels, that is, channels not phase-related
to other channels, are summed linearly and then spatialized. Any phase-grouped channels are not spatialized, but
passed through this node unchanged. The sound presented in the scene is thus a single spatialized sound,
represented by the sum of the individual channels, plus an “ambient” sound represented by mapping all the
remaining channels into the presentation system as described in 9.2.2.13.2.2.

If the spatialize field is not set, the audio channels from the child are passed through unchanged, and the sound
presented in the scene due to this node is an “ambient” sound represented by mapping all the audio channels
output by the child into the presentation system as described in 9.2.2.13.2.2.

As with the visual objects in the scene, the Sound node may be included as a child or descendant of any of the
grouping or transform nodes. For each of these nodes, the sound semantics are as follows.

Affine transformations presented in the grouping and transform nodes affect the apparant spatialization position of
spatialized sound. They have no effect on “ambient” sounds.

If a particular grouping or transform node has multiple Sound nodes as descendants, then they are combined for
presentation as follows. Each of the Sound nodes may be producing a spatialized sound, a multichannel ambient
sound, or both. For all of the spatialized sounds in descendant nodes, the sounds are linearly combined through
simple summation from presentation. For multichannel ambient sounds, the sounds are linearly combined channel-
by-channel for presentation.

EXAMPLE � Sound node S1 generates a spatialized sound s1 and five channels of multichannel ambient sound a1[1-5].
Sound node S2 generates a spatialized sound s2 and two channels of multichannel ambient sound a2[1-2]. S1 and S2 are
grouped under a single Group node. The resulting sound is the superposition of the spatialized sound s1, the spatialized
sound s2, and the five-channel ambient multichannel sound represented by a3[1-5], where

a3[1] = a1[1] + a2[1]

a3[2] = a1[2] + a2[2]

a3[3] = a1[3]

a3[4] = a1[4]

a3[5] = a1[5]

9.4.2.83 Sound2D

9.4.2.83.1 Node interface

Sound2D {
exposedField SFFloat intensity 1.0
exposedField SFVec2f location 0,0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

180 © ISO/IEC 1999 – All rights reserved

exposedField SFNode source NULL
field SFBool spatialize TRUE

}

NOTE — For the binary encoding of this node see Annex H.1.82.

9.4.2.83.2 Functionality and semantics

The Sound2D node relates an audio BIFS sub-graph to the other parts of a 2D audio-visual scene. It shall not be
used in 3D contexts (see 9.2.2.1). By using this node, sound may be attached to a group of visual nodes. By using
the functionality of the audio BIFS nodes, sounds in an audio scene may be filtered and mixed before being
spatially composed into the scene.

The intensity field adjusts the loudness of the sound. Its value ranges from 0.0 to 1.0, and this value specifies a
factor that is used during the playback of the sound.

The location field specifies the location of the sound in the 2D scene.

The source field connects the audio source to the Sound2D node.

The spatialize field specifies whether the sound shall be spatialized on the 2D screen. If this flag is set, the sound
shall be spatialized with the maximum sophistication possible. The 2D sound is spatialized assuming a distance of
one meter between the user and a 2D scene of size 2m x 1.5m, giving the minimum and maximum azimuth angles
of –45� and +45�, and the minimum and maximum elevation angles of -37� and +37 �.

The same rules for multichannel audio spatialization apply to the Sound2D node as to the Sound (3D) node
(see 9.4.2.82). Using the phaseGroup flag in the AudioSource node it is possible to determine whether the
channels of the source sound contain important phase relations, and that spatialization at the terminal should not
be performed.

As with the visual objects in the scene (and for the Sound node), the Sound2D node may be included as a child
or descendant of any of the grouping or transform nodes. For each of these nodes, the sound semantics are as
follows.

Affine transformations presented in the grouping and transform nodes affect the apparent spatialization position of
spatialized sound.

If a transform node has multiple Sound2D nodes as descendants, then they are combined for presentation as
described in 9.4.2.82. If Sound and Sound2D nodes are both used in a scene, all shall be treated the same
way according to these semantics.

9.4.2.84 Sphere

9.4.2.84.1 Node interface

Sphere {
field SFFloat Radius 1.0

}

NOTE — For the binary encoding of this node see Annex H.1.83.

9.4.2.84.2 Functionality and semantics

The semantics of the Sphere node are specified in ISO/IEC 14772-1:1998, subclause 6.43 [10].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 181

9.4.2.85 SphereSensor

9.4.2.85.1 Node interface

SphereSensor {
exposedField SFBool autoOffset TRUE
exposedField SFBool enabled TRUE
exposedField SFRotation offset 0 1 0 0
eventOut SFBool isActive
eventOut SFRotation rotation_changed
eventOut SFVec3f trackPoint_changed

}

NOTE — For the binary encoding of this node see Annex H.1.84.

9.4.2.85.2 Functionality and semantics

The semantics of the SphereSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.44 [10].

9.4.2.86 SpotLight

9.4.2.86.1 Node interface

SpotLight {
exposedField SFFloat ambientIntensity 0.0
exposedField SFVec3f attenuation 1, 0, 0
exposedField SFFloat beamWidth 1.5708
exposedField SFColor color 1, 1, 1
exposedField SFFloat cutOffAngle 0.785398
exposedField SFVec3f direction 0, 0, -1
exposedField SFFloat intensity 1.0
exposedField SFVec3f location 0, 0, 0
exposedField SFBool on TRUE
exposedField SFFloat radius 100.0

}

NOTE — For the binary encoding of this node see Annex H.1.85.

9.4.2.86.2 Functionality and semantics

The semantics of the SpotLight node are specified in ISO/IEC 14772-1:1998, subclause 6.45 [10].

9.4.2.87 Switch

9.4.2.87.1 Node interface

Switch {
exposedField MFNode choice []
exposedField SFInt32 whichChoice -1

}

NOTE — For the binary encoding of this node see Annex H.1.86.

9.4.2.87.2 Functionality and semantics

The semantics of the Switch node are specified in ISO/IEC 14772-1:1998, subclause 6.46 [10], with the following
restrictions.

If some of the child sub-graphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are switched on and off according to the value of the whichChoice field. That is, only sound that corresponds to
Sound nodes in the whichChoice’th subgraph of this node are played. The others are muted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

182 © ISO/IEC 1999 – All rights reserved

9.4.2.88 TermCap

9.4.2.88.1 Node interface

TermCap {
eventIn SFTime evaluate
field SFInt32 capability 0
eventOut SFInt32 value

}

NOTE — For the binary encoding of this node see Annex H.1.87.

9.4.2.88.2 Functionality and semantics

The TermCap node is used to query the resources of the terminal. By ROUTEing the result to a Switch node,
simple adaptive content may be authored using BIFS.

When this node is instantiated, the value of the capability field shall be examined by the system and the value
eventOut generated to indicate the associated system capability. The value eventOut is updated and generated
whenever an evaluate eventIn is received.

The capability field specifies a terminal resource to query. The semantics of the value field vary depending on
the value of this field. The capabilities which may be queried are:

Table 34 - Semantics of value, dependent on capability

capability Semantics of value

0 frame rate
1 color depth
2 screen size
3 graphics hardware
32 audio output format
33 maximum audio sampling

rate
34 spatial audio capability
64 CPU load
65 memory load

The exact semantics differ depending on the value of the capability field, as follows.

capability : 0 (frame rate)

For this value of capability , the current rendering frame rate is measured. The exact method of measurement not
specified.

Table 35 - Semantics of value for capability=0

value Semantics

0 unknown or can’t determine
1 less than 5 fps
2 5-10 fps
3 10-20 fps
4 20-40 fps
5 more than 40 fps

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 183

For the breakpoint between overlapping values between each range (i.e. 5, 10, 20, and 40), the higher value of
value shall be used (ie, 2, 3, 4, and 5 respectively). This applies to each of the subsequent capability-value
tables as well.

capability : 1 (color depth)

For this value of capability , the color depth of the rendering terminal is measured. At the time this node is
instantiated, the value field is set to indicate the color depth as follows:

Table 36 - Semantics of value for capability=1

value Semantics

0 unknown or can’t determine
1 1 bit/pixel
2 grayscale
3 color, 3-12 bit/pixel
4 color, 12-24 bit/pixel
5 color, more than 24 bit/pixel

capability : 2 (screen size)

For this value of capability , the window size (in horizontal lines) of the output window of the rendering terminal is
measured:

Table 37 - Semantics of value for capability=2

value Semantics

0 unknown or can’t determine
1 less than 200 lines
2 200-400 lines
3 400-800 lines
4 800-1600 lines
5 1600 or more lines

capability : 3 (graphics hardware)

For this value of capability , the available of graphics acceleration hardware of the rendering terminal is
measured. At the time this node is instantiated, the value field is set to indicate the available graphics hardware:

Table 38 - Semantics of value for capability=3

value Semantics

0 unknown or can’t determine
1 no acceleration
2 matrix multiplication
3 matrix multiplication +

texture mapping (less than 1M memory)
4 matrix multiplication +

texture mapping (less than 4M memory)
5 matrix multiplication +

texture mapping (more than 4M memory)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

184 © ISO/IEC 1999 – All rights reserved

capability : 32 (audio output format)

For this value of capability , the audio output format (speaker configuration) of the rendering terminal is measured.
At the time this node is instantiated, the value field is set to indicate the audio output format.

Table 39 - Semantics of value for capability=32

value Semantics

0 unknown or can’t determine
1 mono
2 stereo speakers
3 stereo headphones
4 five-channel surround
5 more than five speakers

capability : 33 (maximum audio sampling rate)

For this value of capability , the maximum audio output sampling rate of the rendering terminal is measured. At
the time this node is instantiated, the value field is set to indicate the maximum audio output sampling rate.

Table 40 - Semantics of value for capability=33

value Semantics

0 unknown or can’t determine
1 less than 16000 Hz
2 16000-32000 Hz
3 32000-44100 Hz
4 44100-48000 Hz
5 48000 Hz or more

capability : 34 (spatial audio capability)

For this value of capability , the spatial audio capability of the rendering terminal is measured. At the time this
node is instantiated, the value field is set to indicate the spatial audio capability.

Table 41 - Semantics of value for capability=34

value Semantics

0 unknown or can’t determine
1 no spatial audio
2 panning only
3 azimuth only
4 full 3-D spatial audio

capability : 64 (CPU load)

For this value of capability , the CPU load of the rendering terminal is measured. The exact method of
measurement is not specified. The value of the value eventOut indicates the available CPU resources as a
percentage of the maximum available; that is, if all of the CPU cycles are being consumed, and no extra calculation
can be performed without compromising real-time performance, the indicated value is 100%; if twice as much
calculation as currently being done can be so performed, the indicated value is 50%.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 185

Table 42 - Semantics of value for capability=64

value Semantics

0 unknown or can’t determine
1 less than 20% loaded
2 20-40% loaded
3 40-60% loaded
4 60-80% loaded
5 80-100% loaded

capability : 65 (RAM available)

For this value of capability , the available memory of the rendering terminal is measured. The exact method of
measurement is not specified.

Table 43 - Semantics of value for capability=65

value Semantics

0 unknown or can’t determine
1 less than 100 KB free
2 100 KB – 500 KB free
3 500 KB – 2 MB free
4 2 MB – 8 MB free
5 8 MB – 32 MB free
6 32 MB – 200 MB free
7 more than 200 MB free

9.4.2.89 Text

9.4.2.89.1 Node interface

Text {
exposedField MFString string []
exposedField MFFloat length []
exposedField SFNode fontStyle NULL
exposedField SFFloat maxExtent 0.0

}

NOTE — For the binary encoding of this node see Annex H.1.88.

9.4.2.89.2 Functionality and semantics

The semantics of the Text node are specified in ISO/IEC 14772-1:1998, subclause 6.47 [10].

9.4.2.90 TextureCoordinate

9.4.2.90.1 Node interface

TextureCoordinate {
exposedField MFVec2f point []

}

NOTE — For the binary encoding of this node see Annex H.1.89.

9.4.2.90.2 Functionality and semantics

The semantics of the TextureCoordinate node are specified in ISO/IEC 14772-1:1998, subclause 6.48 [10].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

186 © ISO/IEC 1999 – All rights reserved

9.4.2.91 TextureTransform

9.4.2.91.1 Node interface

TextureTransform {
exposedField SFVec2f center 0, 0
exposedField SFFloat rotation 0.0
exposedField SFVec2f scale 1, 1
exposedField SFVec2f translation 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.90.

9.4.2.91.2 Functionality and semantics

The semantics of the TextureTransform node are specified in ISO/IEC 14772-1:1998, subclause 6.49 [10].

9.4.2.92 TimeSensor

9.4.2.92.1 Node interface

TimeSensor {
exposedField SFTime cycleInterval 1
exposedField SFBool enabled TRUE
exposedField SFBool loop FALSE
exposedField SFTime startTime 0
exposedField SFTime stopTime 0
eventOut SFTime cycleTime
eventOut SFFloat fraction_changed
eventOut SFBool isActive
eventOut SFTime time

}

NOTE — For the binary encoding of this node see Annex H.1.91.

9.4.2.92.2 Functionality and semantics

The semantics of the TimeSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.50 [10].

9.4.2.93 TouchSensor

9.4.2.93.1 Node interface

TouchSensor {
exposedField SFBool enabled TRUE
eventOut SFVec3f hitNormal_changed
eventOut SFVec3f hitPoint_changed
eventOut SFVec2f hitTexCoord_changed
eventOut SFBool isActive
eventOut SFBool isOver
eventOut SFTime touchTime

}

NOTE — For the binary encoding of this node see Annex H.1.92.

9.4.2.93.2 Functionality and semantics

The semantics of the TouchSensor node are specified in ISO/IEC 14772-1:1998, subclause 6.51 [10].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 187

9.4.2.94 Transform

9.4.2.94.1 Node interface

Transform {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec3f center 0, 0, 0
exposedField MFNode children []
exposedField SFRotation rotation 0, 0, 1, 0
exposedField SFVec3f scale 1, 1, 1
exposedField SFRotation scaleOrientation 0, 0, 1, 0
exposedField SFVec3f translation 0, 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.93.

9.4.2.94.2 Functionality and semantics

The semantics of the Transform node are specified in ISO/IEC 14772-1:1998, subclause 6.52 [10]. ISO/IEC
14496-1 does not support the bounding box parameters (bboxCenter and bboxSize ).

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate
system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially
presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds.
After any such transformation, the combination of sounds is performed as described in 9.4.2.82.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no
effect on the childrens’ sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the
semantics are not defined.

9.4.2.95 Transform2D

9.4.2.95.1 Node interface

Transform2D {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec2f center 0, 0
exposedField MFNode children []
exposedField SFFloat rotationAngle 0.0
exposedField SFVec2f scale 1, 1
exposedField SFFloat scaleOrientation 0.0
exposedField SFVec2f translation 0, 0

}

NOTE — For the binary encoding of this node see Annex H.1.94.

9.4.2.95.2 Functionality and semantics

The Transform2D node allows the translation, rotation and scaling of its 2D children objects.

The rotation field specifies a rotation of the child objects, in radians, which occurs about the point specified by
center .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

188 © ISO/IEC 1999 – All rights reserved

The scale field specifies a 2D scaling of the child objects. The scaling operation takes place following a rotation of
the 2D coordinate system that is specified, in radians, by the scaleOrientation field. The rotation of the co-
ordinate system is notional and purely for the purpose of applying the scaling and is undone before any further
actions are performed. No permanent rotation of the co-ordinate system is implied.

The translation field specifies a 2D vector which translates the child objects.

The scaling, rotation and translation are applied in the following order: scale, rotate, translate.

The children field contains a list of zero or more children nodes which are grouped by the Transform2D node.

The addChildren and removeChildren eventIns are used to add or remove child nodes from the children field
of the node. Children are added to the end of the list of children and special note should be taken of the
implications of this for implicit drawing orders.

If some of the child subgraphs contain audio content (i.e., the subgraphs contain Sound nodes), the child sounds
are transformed and mixed as follows.

If each of the child sounds is a spatially presented sound, the Transform node applies to the local coordinate
system of the Sound nodes to alter the apparent spatial location and direction. If the children are not spatially
presented but have equal numbers of channels, the Transform node has no effect on the childrens’ sounds.
After any such transformation, the combination of sounds is performed as described in 9.4.2.82.

If the children are not spatially presented but have equal numbers of channels, the Transform node has no
effect on the children’s sounds. The child sounds are summed equally to produce the audio output at this node.

If some children are spatially presented and some not, or all children do not have equal numbers of channels, the
semantics are not defined.

9.4.2.96 Valuator

9.4.2.96.1 Node interface

Valuator {
eventIn SFBool inSFBool
eventIn SFColor inSFColor
eventIn MFColor inMFColor
eventIn SFFloat inSFFloat
eventIn MFFloat inMFFloat
eventIn SFInt32 inSFInt32
eventIn MFInt32 inMFInt32
eventIn SFRotation inSFRotation
eventIn MFRotation inMFRotation
eventIn SFString inSFString
eventIn MFString inMFString
eventIn SFTime inSFTime
eventIn SFVec2f inSFVec2f
eventIn MFVec2f inMFVec2f
eventIn SFVec3f inSFVec3f
eventIn MFVec3f inMFVec3f
eventOut SFBool outSFBool
eventOut SFColor outSFColor
eventOut MFColor outMFColor
eventOut SFFloat outSFFloat
eventOut MFFloat outMFFloat
eventOut SFInt32 outSFInt32
eventOut MFInt32 outMFInt32
eventOut SFRotation outSFRotation
eventOut MFRotation outMFRotation
eventOut SFString outSFString

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 189

eventOut MFString outMFString
eventOut SFTime outSFTime
eventOut SFVec2f outSFVec2f
eventOut MFVec2f outMFVec2f
eventOut SFVec3f outSFVec3f
eventOut MFVec3f outMFVec3f
exposedField SFFloat factor1 1.0
exposedField SFFloat factor2 1.0
exposedField SFFloat factor3 1.0
exposedField SFFloat factor4 1.0
exposedField SFFloat offset1 0.0
exposedField SFFloat offset2 0.0
exposedField SFFloat offset3 0.0
exposedField SFFloat offset4 0.0
exposedField SFBool sum FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.95.

9.4.2.96.2 Functionality and semantics

A Valuator node can receive an event of any type, and on reception of such an event, will trigger eventOuts of
many different types. Upon reception of an event on any of its eventIns, on each eventOut connected to a ROUTE
an event will be generated. The value of this event is governed by the equation below. This node serves as a
simple type casting method.

Each output value is dependent on the input value with the following relationship:

output value = factor * x + offset

In the above equation, factor is one of the exposedField values and offset is one of the eventOut values specified in
the node inteface. All values specified in the above equation are floating point values.

Output
value

Output
value

Output
value

Output
value

Factor
1

+x

x

x

x

�

+

+

+

Type cast to
output type

Type cast to
output type

Type cast to
output type

Type cast to
output type

Summing
flag

Factor
2

Factor
3

Factor
4

Offset1

Offset2

Offset3

Offset4

Figure 25 - Valuator functionaliy

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

190 © ISO/IEC 1999 – All rights reserved

Referring to the above figure, there are input paths each catering to an input value. Depending on the data type,
there may be one to four input values. For example the SFRotation will require four input paths but the SFInt32 will
only require the first input path. Each input path will operate identically.

Table 44 - Simple typecasting conversion from other data types to float.

From Conversion to float

integer Direct conversion.
(1 to 1.0)

Boolean true – 1.0
false – 0.0

double Truncate to 32-bit precision

Table 45 - Simple typecasting conversion from float to other data types.

To Conversion from float

integer Truncate floating point.
eg (1.11 to 1)

Boolean 0.0 to False
Any other values to true

double Direct conversion

Each input value is converted to a floating-point value using a simple typecasting rule as illustrated in Table 45.
After conversion, the values are multiplied by the corresponding factor value and added to the corresponding offset
value. Depending on whether the summer is enabled, either the summed value or the individual values are
presented at the output.

Depending on the output data type required, the corresponding number of output values are retrieved and
converted to the output types according to Table 44.

In the event that the input value is of a multi-valued type and the output is of a single value type, the first value of
the multi-valued input is used.

EXAMPLE � The Valuator node can be seen as an event type adapter. One use of this node is the modification of the
SFInt32 whichChoice field of a Switch node by an event. There is no interpolator or sensor node with a SFInt32
eventOut. Thus, if a two-state button is described with a Switch containing the description of each state in choices 0 and 1.
The triggering event of any type can be routed to a Valuator node whose SFInt32 field is routed to the whichChoice field
of the Switch .

9.4.2.97 Viewpoint

9.4.2.97.1 Node interface

Viewpoint {
eventIn SFBool set_bind
exposedField SFFloat fieldOfView 0.785398
exposedField SFBool jump TRUE
exposedField SFRotation orientation 0, 0, 1, 0
exposedField SFVec3f position 0, 0, 10
field SFString description ""
eventOut SFTime bindTime
eventOut SFBool isBound

}

NOTE — For the binary encoding of this node see Annex H.1.96.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 191

9.4.2.97.2 Functionality and semantics

The semantics of the Viewpoint node are specified in ISO/IEC 14772-1:1998, subclause 6.53 [10].

9.4.2.98 Viseme

9.4.2.98.1 Node interface

Viseme {
field SFInt32 viseme_select1 0
field SFInt32 viseme_select2 0
field SFInt32 viseme_blend 0
field SFBool viseme_def FALSE

}

NOTE — For the binary encoding of this node see Annex H.1.97.

9.4.2.98.2 Functionality and semantics

The Viseme node defines a blend of two visemes from a standard set of 14 visemes as defined in ISO/IEC
14496-2, Annex C, Table C-5.

The viseme_select1 field specifies viseme 1.

The viseme_select2 field specifies viseme 2.

The viseme_blend field specifies the blend of the two visemes.

If viseme_def is TRUE, the current FAPs shall be used to define a viseme and store it.

9.4.2.99 VisibilitySensor

9.4.2.99.1 Node interface

VisibilitySensor {
exposedField SFVec3f center 0 0 0
exposedField SFBool enabled TRUE
exposedField SFVec3f size 0 0 0
eventOut SFTime enterTime
eventOut SFTime exitTime
eventOut SFBool isActive

}

NOTE — For the binary encoding of this node see Annex H.1.98.

9.4.2.99.2 Functionality and semantics

The semantics of the VisibilitySensor node are specified in ISO/IEC 14772-1:1998, subclause 6.54 [10].

9.4.2.100 WorldInfo

9.4.2.100.1Node interface

WorldInfo {
field MFString info []
field SFString title ""

}

NOTE — For the binary encoding of this node see Annex H.1.99.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

192 © ISO/IEC 1999 – All rights reserved

9.4.2.100.2Functionality and semantics

The semantics of the WorldInfo node are specified in ISO/IEC 14772-1:1998, subclause 6.55 [10].

10 Synchronization of Elementary Streams

10.1 Introduction

This subclause defines the tools to maintain temporal synchronisation within and among elementary streams. The
conceptual elements that are required for this purpose, namely time stamps and clock reference information, have
already been introduced in clause 7. The syntax and semantics to convey these elements to a receiving terminal
are embodied in the sync layer, specified in 10.2. This syntax is configurable to adapt to the needs of different
types of elementary streams. The required configuration information is specified in 10.2.3.

On the sync layer, an elementary stream is mapped into a sequence of packets, called an SL-packetized stream
(SPS). Packetization information has to be exchanged between the entity that generates an elementary stream and
the sync layer. This relation is best described by a conceptual interface between both layers, termed the
elementary stream interface (ESI). The ESI is a reference point that need not be accessible in an implementation. It
is described in 10.3.

SL-packetized streams are conveyed through a delivery mechanism that is outside the scope of ISO/IEC 14496-1.
This delivery mechanism is only described in terms of the DMIF Application Interface (DAI) whose semantics are
specified in ISO/IEC 14496-6. It specifies the information that needs to be exchanged between the sync layer and
the delivery mechanism. The basic data transport feature that this delivery mechanism shall provide is the framing
of the data packets generated by the sync layer. The DAI is a reference point that need not be accessible in an
implementation. The required properties of the DAI are described in 10.4.

The items specified in this clause are depicted in Figure 26 below.

DMIF Application Interface

Elementary Stream Interface

SL-Packetized Streams

Elementary Streams

Sync LayerSL SLSL SL.............

Figure 26 - The sync layer

10.2 Sync Layer

10.2.1 Overview

The sync layer (SL) specifies a syntax for the packetization of elementary streams into access units or parts
thereof. Such a packet is called SL packet. The sequence of SL packets resulting from one elementary stream is
called an SL-packetized stream (SPS). Access units are the only semantic entities at this layer that need to be
preserved from end to end. Their content is opaque. Access units are used as the basic unit for synchronisation.

An SL packet consists of an SL packet header and an SL packet payload. The SL packet header provides means
for continuity checking in case of data loss and carries the coded representation of the time stamps and associated
information. The detailed semantics of the time stamps are specified in 7.3 that defines the timing aspects of the
Systems Decoder Model. The SL packet header is configurable as specified in 10.2.3. The SL packet header itself
is specified in 10.2.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 193

An SL packet does not contain an indication of its length. Therefore, SL packets must be framed by a suitable lower
layer protocol using, e.g., the FlexMux tool specified in 11.2. Consequently, an SL-packetized stream is not a self-
contained data stream that can be stored or decoded without such framing.

An SL-packetized stream does not provide identification of the ES_ID associated to the elementary stream (see
8.6.4) in the SL packet header. This association must be conveyed through a stream map table using the
appropriate signalling means of the delivery mechanism.

10.2.2 SL Packet Specification

10.2.2.1 Syntax

class SL_Packet (SLConfigDescriptor SL) {
aligned(8) SL_PacketHeader slPacketHeader(SL);
aligned(8) SL_PacketPayload slPacketPayload;

}

10.2.2.2 Semantics

In order to properly parse an SL_Packet , it is required that the SLConfigDescriptor for the elementary stream
to which the SL_Packet belongs is known, since the SLConfigDescriptor conveys the configuration of the
syntax of the SL packet header.

slPacketHeader – an SL_PacketHeader element as specified in 10.2.4.

slPacketPayload – an SL_PacketPayload that contains an opaque payload.

10.2.3 SL Packet Header Configuration

10.2.3.1 Syntax

class SLConfigDescriptor extends BaseDescriptor : bit(8) tag=SLConfigDescrTag {
bit(8) predefined;
if (predefined==0) {

bit(1) useAccessUnitStartFlag;
bit(1) useAccessUnitEndFlag;
bit(1) useRandomAccessPointFlag;
bit(1) hasRandomAccessUnitsOnlyFlag;
bit(1) usePaddingFlag;
bit(1) useTimeStampsFlag;
bit(1) useIdleFlag;
bit(1) durationFlag;
bit(32) timeStampResolution;
bit(32) OCRResolution;
bit(8) timeStampLength; // must be � 64
bit(8) OCRLength; // must be � 64
bit(8) AU_Length; // must be � 32
bit(8) instantBitrateLength;
bit(4) degradationPriorityLength;
bit(5) AU_seqNumLength; // must be � 16
bit(5) packetSeqNumLength; // must be � 16
bit(2) reserved=0b11;
if (durationFlag) {

bit(32) timeScale;
bit(16) accessUnitDuration;
bit(16) compositionUnitDuration;

}
if (!useTimeStampsFlag) {

bit(timeStampLength) startDecodingTimeStamp;
bit(timeStampLength) startCompositionTimeStamp;

}
}
aligned(8) bit(1) OCRstreamFlag;
const bit(7) reserved=0b1111.111;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

194 © ISO/IEC 1999 – All rights reserved

if (OCRstreamFlag)
bit(16) OCR_ES_Id;

}

10.2.3.2 Semantics

The SL packet header may be configured according to the needs of each individual elementary stream. Parameters
that can be selected include the presence, resolution and accuracy of time stamps and clock references. This
flexibility allows, for example, a low bitrate elementary stream to incur very little overhead on SL packet headers.

For each elementary stream the configuration is conveyed in an SLConfigDescriptor , which is part of the
associated ES_Descriptor within an object descriptor.

The configurable parameters in the SL packet header can be divided in two classes: those that apply to each SL
packet (e.g. OCR, sequenceNumber) and those that are strictly related to access units (e.g. time stamps,
accessUnitLength, instantBitrate, degradationPriority).

predefined – allows to default the values from a set of predefined parameter sets as detailed below.

NOTE — This table will be updated by amendments to ISO/IEC 14496 to include predefined configurations as required by future
profiles.

Table 46 - Overview of predefined SLConfigDescriptor values

Predefined field value Description

0x00 Custom
0x01 null SL packet header
0x02 - 0xFF Reserved for ISO use

Table 47 – Detailed predefined SLConfigDescriptor values

predefined field value 0x01

useAccessUnitStartFlag 0
useAccessUnitEndFlag 0
useRandomAccessPointFlag 0
usePaddingFlag 0
useTimeStampsFlag 0
useIdleFlag 0
durationFlag -
timeStampResolution -
OCRResolution -
timeStampLength -
OCRlength -
AU_length 0
instantBitrateLength -
degradationPriorityLength 0
AU_seqNumLength 0
packetSeqNumLength 0
timeScale -
accessUnitDuration -
compositionUnitDuration -
startDecodingTimeStamp -
startCompositionTimeStamp -

useAccessUnitStartFlag – indicates that the accessUnitStartFlag is present in each SL packet header of
this elementary stream.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 195

useAccessUnitEndFlag – indicates that the accessUnitEndFlag is present in each SL packet header of this
elementary stream.

If neither useAccessUnitStartFlag nor useAccessUnitEndFlag are set this implies that each SL packet
corresponds to a complete access unit.

useRandomAccessPointFlag – indicates that the RandomAccessPointFlag is present in each SL packet
header of this elementary stream.

hasRandomAccessUnitsOnlyFlag – indicates that each SL packet corresponds to a random access point. In
that case the randomAccessPointFlag need not be used.

usePaddingFlag – indicates that the paddingFlag is present in each SL packet header of this elementary
stream.

useTimeStampsFlag – indicates that time stamps are used for synchronisation of this elementary stream. They
are conveyed in the SL packet headers. Otherwise, the parameters accessUnitRate , compositionUnitRate ,
startDecodingTimeStamp and startCompositionTimeStamp conveyed in this SL packet header
configuration shall be used for synchronisation.

useIdleFlag – indicates that idleFlag is used in this elementary stream.

durationFlag – indicates that the constant duration of access units and composition units for this elementary
stream is subsequently signaled.

timeStampResolution – is the resolution of the time stamps in clock ticks per second.

OCRResolution – is the resolution of the object time base in cycles per second.

timeStampLength – is the length of the time stamp fields in SL packet headers. timeStampLength shall take
values between zero and 64 bit.

OCRlength – is the length of the objectClockReference field in SL packet headers. A length of zero indicates
that no objectClockReferences are present in this elementary stream. If OCRstreamFlag is set,
OCRLength shall be zero. Else OCRlength shall take values between zero and 64 bit.

AU_Length – is the length of the accessUnitLength fields in SL packet headers for this elementary stream.
AU_Length shall take values between zero and 32 bit.

instantBitrateLength – is the length of the instantBitrate field in SL packet headers for this elementary
stream.

degradationPriorityLength – is the length of the degradationPriority field in SL packet headers for
this elementary stream.

AU_seqNumLength – is the length of the AU_sequenceNumber field in SL packet headers for this elementary
stream.

packetSeqNumLength – is the length of the packetSequenceNumber field in SL packet headers for this
elementary stream.

timeScale – used to express the duration of access units and composition units. One second is evenly divided in
timeScale parts.

accessUnitDuration – the duration of an access unit is accessUnitDuration * 1/timeScale seconds.

compositionUnitDuration – the duration of a composition unit is compositionUnitDuration *
1/timeScale seconds.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

196 © ISO/IEC 1999 – All rights reserved

startDecodingTimeStamp – conveys the time at which the first access unit of this elementary stream shall be
decoded. It is conveyed in the resolution specified by timeStampResolution .

startCompositionTimeStamp – conveys the time at which the composition unit corresponding to the first
access unit of this elementary stream shall be decoded. It is conveyed in the resolution specified by
timeStampResolution .

OCRstreamFlag – indicates that an OCR_ES_ID syntax element will follow.

OCR_ES_ID – indicates the ES_ID of the elementary stream within the name scope (see 8.7.2.4) from which the
time base for this elementary stream is derived.

10.2.4 SL Packet Header Specification

10.2.4.1 Syntax

aligned(8) class SL_PacketHeader (SLConfigDescriptor SL) {
if (SL.useAccessUnitStartFlag)

bit(1) accessUnitStartFlag;
if (SL.useAccessUnitEndFlag)

bit(1) accessUnitEndFlag;
if (SL.OCRLength>0)

bit(1) OCRflag;
if (SL.useIdleFlag)

bit(1) idleFlag;
if (SL.usePaddingFlag)

bit(1) paddingFlag;
if (paddingFlag)

bit(3) paddingBits;

if (!idleFlag && (!paddingFlag || paddingBits!=0)) {
if (SL.packetSeqNumLength>0)

bit(SL.packetSeqNumLength) packetSequenceNumber;
if (OCRflag)

bit(SL.OCRLength) objectClockReference;

if (accessUnitStartFlag) {
if (SL.useRandomAccessPointFlag)

bit(1) randomAccessPointFlag;
bit(SL.AU_seqNumLength) AU_sequenceNumber;
if (SL.useTimeStampsFlag) {

bit(1) decodingTimeStampFlag;
bit(1) compositionTimeStampFlag;

}
if (SL.instantBitrateLength>0)

bit(1) instantBitrateFlag;
if (decodingTimeStampFlag)

bit(SL.timeStampLength) decodingTimeStamp;
if (compositionTimeStampFlag)

bit(SL.timeStampLength) compositionTimeStamp;
if (SL.AU_Length > 0)

bit(SL.AU_Length) accessUnitLength;
if (instantBitrateFlag)

bit(SL.instantBitrateLength) instantBitrate;
if (SL.degradationPriorityLength>0)

bit(SL.degradationPriorityLength) degradationPriority;
}

}
}

10.2.4.2 Semantics

accessUnitStartFlag – when set to one indicates that an access unit starts in this SL packet. If this syntax
element is omitted from the SL packet header configuration its default value is known from the previous SL packet
with the following rule:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 197

accessUnitStartFlag = (previous-SL packet has accessUnitEndFlag ==1) ? 1 : 0.

accessUnitEndFlag – when set to one indicates that an access unit ends in this SL packet. If this syntax
element is omitted from the SL packet header configuration its default value is only known after reception of the
subsequent SL packet with the following rule:

accessUnitEndFlag = (subsequent-SL packet has accessUnitStartFlag ==1) ? 1 : 0.

If neither AccessUnitStartFlag nor AccessUnitEndFlag are configured into the SL packet header this
implies that each SL packet corresponds to a single access unit, hence both accessUnitStartFlag =
accessUnitEndFlag = 1 .

NOTE — When the SL packet header is configured to use accessUnitStartFlag but neither accessUnitEndFlag nore
accessUnitLength , it is not guaranteed that the terminal can determine the end of an access unit before the subsequent one
is received.

OCRflag – when set to one indicates that an objectClockReference will follow. The default value for OCRflag
is zero.

idleFlag – indicates that this elementary stream will be idle (i.e., not produce data) for an undetermined period
of time. This flag may be used by the decoder to discriminate between deliberate and erroneous absence of
subsequent SL packets.

paddingFlag – indicates the presence of padding in this SL packet. The default value for paddingFlag is zero.

paddingBits – indicate the mode of padding to be used in this SL packet. The default value for paddingBits is
zero.

If paddingFlag is set and paddingBits is zero, this indicates that the subsequent payload of this SL packet
consists of padding bytes only. accessUnitStartFlag, randomAccessPointFlag and OCRflag shall not
be set if paddingFlag is set and paddingBits is zero.

If paddingFlag is set and paddingBits is greater than zero, this indicates that the payload of this SL packet is
followed by paddingBits of zero stuffing bits for byte alignment of the payload.

packetSequenceNumber – if present, it shall be continuously incremented for each SL packet as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing SL packets. In that case, an error shall
be signalled to the sync layer user. If this syntax element is omitted from the SL packet header configuration,
continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of SL packets : elementary streams that have a sequenceNumber field in their SL packet headers
may use duplication of SL packets for error resilience. The duplicated SL packet(s) shall immediately follow the
original. The packetSequenceNumber of duplicated SL packets shall have the same value and each byte of the
original SL packet shall be duplicated, with the exception of an objectClockReference field, if present, which
shall encode a valid value for the duplicated SL packet.

objectClockReference – contains an Object Clock Reference time stamp. The OTB time value t is
reconstructed from this OCR time stamp according to the following formula:

t = (objectClockReference/SL.OCRResolution )+ k*(2SL.OCRLength /SL.OCRResolution )

where k is the number of times that the objectClockReference counter has wrapped around.

objectClockReference is only present in the SL packet header if OCRflag is set.

NOTE — It is possible to convey just an OCR value and no payload within an SL packet.

The following is the semantics of the syntax elements that are only present at the start of an access unit when
explicitly signaled by accessUnitStartFlag in the bitstream:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

198 © ISO/IEC 1999 – All rights reserved

randomAccessPointFlag – when set to one indicates that random access to the content of this elementary
stream is possible here. randomAccessPointFlag shall only be set if accessUnitStartFlag is set. If this
syntax element is omitted from the SL packet header configuration, its default value is the value of
SLConfigDescriptor.hasRandomAccessUnitsOnlyFlag for this elementary stream.

AU_sequenceNumber – if present, it shall be continuously incremented for each access unit as a modulo
counter. A discontinuity at the decoder corresponds to one or more missing access units. In that case, an error
shall be signalled to the sync layer user. If this syntax element is omitted from the SL packet header configuration,
access unit continuity checking by the sync layer cannot be performed for this elementary stream.

Duplication of access units : elementary streams that have a AU_sequenceNumber field in their SL packet
headers may use duplication of access units. The duplicated access unit(s) shall immediately follow the original.
The AU_sequenceNumber of such access units shall have the same value and each byte of the original one or
more SL packets shall be duplicated, with the exception of an objectClockReference field, if present, which
shall encode a valid value for the duplicated access unit.

decodingTimeStampFlag – indicates that a decoding time stamp is present in this packet.

compositionTimeStampFlag – indicates that a composition time stamp is present in this packet.

accessUnitLengthFlag – indicates that the length of this access unit is present in this packet.

instantBitrateFlag – indicates that an instantBitrate is present in this packet.

decodingTimeStamp – is a decoding time stamp as configured in the associated SLConfigDescriptor . The
decoding time td of this access unit is reconstructed from this decoding time stamp according to the formula:

td = (decodingTimeStamp /SL.timeStampResolution + k *
2SL.timeStampLength /SL.timeStampResolution

where k is the number of times that the decodingTimeStamp counter has wrapped around.

compositionTimeStamp – is a composition time stamp as configured in the associated
SLConfigDescriptor. The composition time tc of the first composition unit resulting from this access unit is
reconstructed from this composition time stamp according to the formula:

td = (compositionTimeStamp /SL.timeStampResolution + k *
2SL.timeStampLength /SL.timeStampResolution

where k is the number of times that the compositionTimeStamp counter has wrapped around.

accessUnitLength – is the length of the access unit in bytes. If this syntax element is not present or has the
value zero, the length of the access unit is unknown.

instantBitrate – is the instantaneous bit rate of this elementary stream until the next instantBitrate field is
found.

degradationPriority – indicates the importance of the payload of this access unit. The streamPriority
defines the base priority of an ES. degradationPriority defines a decrease in priority for this access unit
relative to the base priority. The priority for this access unit is given by:

AccessUnitPriority = streamPriority – degradationPriority

degradationPriority remains at this value until its next occurrence. This indication is used for graceful
degradation by the decoder of this elementary stream. The relative amount of complexity degradation among
access units of different elementary streams increases as AccessUnitPriority decreases.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 199

10.2.5 Clock Reference Stream

An elementary stream of streamType = ClockReferenceStream may be declared by means of the object
descriptor. It is used for the sole purpose of conveying Object Clock Reference time stamps. Multiple elementary
streams in a name scope may make reference to such a ClockReferenceStream by means of the OCR_ES_ID
syntax element in the SLConfigDescriptor to avoid redundant transmission of Clock Reference information.

On the sync layer a ClockReferenceStream is realized by configuring the SL packet header syntax for this SL-
packetized stream such that only OCR values of the required OCRresolution and OCRlength are present in
the SL packet header.

There shall not be any SL packet payload present in an SL-packetized stream of streamType =
ClockReferenceStream.

A ClockReferenceStream shall set the hasRandomAccessUnitsOnlyFlag to one.

The following indicates recommended values for the SLConfigDescriptor of a Clock Reference Stream:

Table 48 – SLConfigDescriptor parameter values for a ClockReferenceStream

useAccessUnitStartFlag 0
useAccessUnitEndFlag 0
useRandomAccessPointFlag 0
usePaddingFlag 0
useTimeStampsFlag 0
useIdleFlag 0
durationFlag 0
timeStampResolution 0
timeStampLength 0
AU_length 0
degradationPriorityLength 0
AU_seqNumLength 0

10.2.6 Restrictions for elementary streams sharing the same object time base

While it is possible to share an object time base between multiple elementary streams through OCR_ES_ID, a
number of restrictions for the access to and processing of these elementary streams exist as follows:

1. When several elementary streams share a single object time base, the elementary streams without embedded
object clock reference information shall not be used by the player, even if accessible, until the elementary
stream carrying the object clock reference information becomes accessible (see 8.7.3 for the stream access
procedure).

2. If an elementary stream without embedded object clock reference information is made available to the terminal
at a later point in time than the elementary stream carrying the object clock reference information, it shall be
delivered in synchronization with the other stream(s). Note that this implies that such a stream might not start
playing from its beginning, depending on the current value of the object time base.

3. When an elementary stream carrying object clock reference information becomes unavailable or is otherwise
manipulated in its delivery (e.g., paused), all other elementary streams which use the same object time base
shall follow this behavior, i.e., become unavailable or be manipulated in the same way.

4. When an elementary stream without embedded object clock reference information becomes unavailable this
has no influence on the other elementary streams that share the same object time base.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

200 © ISO/IEC 1999 – All rights reserved

10.2.7 Usage of configuration options for object clock reference and time stamp values

10.2.7.1 Resolution of ambiguity in object time base recovery

Due to the limited length of objectClockReference values these time stamps may be ambiguous. The OTB
time value can be reconstructed each time an objectClockReference is transmitted in the headers of an SL
packet according to the following formula:

tOTB_reconstructed=(objectClockReference/SL.OCRResolution )+k*(2SL.OCRLength /SL.OCRResolution )

with k being an integer value denoting the number of wrap-arounds. The resulting time base tOTB_reconstructed is
measured in seconds.

When the first objectClockReference for an elementary stream is acquired, the value k shall be set to one.
For each subsequent occurence of objectClockReference the value k is estimated as follows:

The terminal shall implement a mechanism to estimate the value of the object time base for any time instant.

Each time an objectClockReference is received, the current estimated value of the OTB tOTB_estimated shall be
sampled. Then, tOTB_rec(k) is evaluated for different values of k. The value k that minimizes the term | tOTB_estimated -
tOTB_rec(k)| shall be assumed to yield the correct value of tOTB_reconstructed. This value may be used as new input to the
object time base estimation mechanism.

The application shall ensure that this procedure yields an unambiguous value of k by selecting an appropriate
length and resolution of the objectClockReference element and a sufficiently high frequency of insertion of
objectClockReference values in the elementary stream. The choices for these values depend on the delivery
jitter for SL packets as well as the anticipated maximum drift between the clocks of the transmitting and receiving
terminal.

10.2.7.2 Resolution of ambiguity in time stamp recovery

Due to the limited length of decodingTimeStamp and compositionTimeStamp values these time stamps may
become ambiguous according to the following formula:

tts(m)=(TimeStamp/SL.timeStampResolution )+m*(2SL.timeStampLength /SL.timeStampResolution )

with TimeStamp being either a decodingTimeStamp or a compositionTimeStamp and m being an integer
value denoting the number of wrap-arounds.

The correct value ttimestamp of the time stamp can be estimated as follows:

Each time a TimeStamp is received, the current estimated value of the OTB tOTB_estimated shall be sampled. tts(m) is
evaluated for different values of m. The value m that minimizes the term | tOTB_estimated – tts(m)| shall be assumed to
yield the correct value of ttimestamp.

The application may choose, separately for every individual elementary stream, the length and resolution of time
stamps so as to match its requirements on unambiguous positioning of time events. This choice depends on the
maximum time that an SL packet with a TimeStamp may be sent prior to the point in time indicated by the
TimeStamp as well as the required precision of temporal positioning.

10.2.7.3 Usage considerations for object clock references and time stamps

The time line of an object time base allows to discriminate two time instants separated by more than
1/SL.OCRResolution. OCRResolution should be chosen sufficiently high to match the accuracy needed by
the application to synchronize a set of elementary streams.

The decoding and composition time stamp allow to discriminate two time instants separated by more than
1/SL.timeStampResolution. timeStampResolution should be chosen sufficiently high to match the
accuracy needed by the application in terms of positioning of access units for a given elementary stream.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 201

A TimeStampResolution higher than the OCRResolution will not achieve better discrimination between
events. If TimeStampResolution is lower than the OCRResolution, events for this specific stream cannot be
positioned with the maximum precision possible with this given OCRResolution.

The parameter OCRLength is signaled in the SL header configuration. 2SL.OCRLength /SL.OCRResolution is the
time interval covered by the objectClockReference counter before it wraps around. OCRLength should be
chosen sufficiently high to match the application needs for unambiguous positioning of time events from a set of
elementary streams.

When an application knows the value k defined in 10.2.7.1, the OTB time line is unambiguous for any time value.
When the application cannot reconstruct the k factor, as for example in any application that permits random access
without additional side information, the OTB time line is ambiguous modulo 2SL.OCRLength /SL.OCRResolution .
Therefore, any time stamp refering to this OTB is ambiguous. Therefore, any time stamp refering to this OTB is
ambiguous. It may, however, be considered unambiguous within an application environment through knowledge
about the maximum expected delivery jitter and constraints on the time by which an access unit can be sent prior to
its decoding time.

Note that elementary streams that choose the time interval 2SL.timeStampLength /SL.timeStampResolution higher
than 2SL.OCRLength /SL.OCRResolution can still only position time events unambiguously in the smaller of the two
intervals.

In cases, where k and m can not be estimated correctly, the buffer model may be violated, resulting in
unpredictable performance of the decoder.

EXAMPLE � Let’s assume an application that wants to synchronize elementary streams with a precision of 1 ms.
OCRResolution should be chosen equal to or higher than 1000 (the time between two successive ticks of the OCR is then
equal to 1ms). Let’s assume OCRResolution =2000.

The application assumes a drift between the STB and the OTB of 0.1% (i.e. 1ms every second). The clocks need therefore to be
adjusted at least every second (i.e. in the worst case, the clocks will have drifted 1ms which is the precision constraint). Let’s
assume that objectClockReference are sent every 1s.

The application wants to have an unambiguous OTB time line of 24h without need to reconstruct the k factor. The OCRLength
is therefore chosen accordingly such that 2SL.OCRLength /SL.OCRResolution=24h.

Let’s assume now that the application wants to synchronize events within a single elementary stream with a precision of 10 ms.
TimeStampResolution should be chosen equal to or higher than 100 (the time between two successive ticks of the
TimeStamp is then equal to 10ms). Let’s assume TimeStampResolution=200.

The application wants to be able to send access units at maximum 1 minute ahead of their decoding or composition time. The
timeStampLength is therefore chosen as

2SL.timeStampLength /SL.timeStampResolution = 2 minutes.

10.3 Elementary Stream Interface (Informative)

The elementary stream interface (ESI) is a conceptual interface that specifies which data need to be exchanged
between the entity that generates an elementary stream and the sync layer. Communication between the coding
and sync layers cannot only include compressed media, but requires additional information such as time codes,
length of access units, etc.

An implementation of ISO/IEC 14496-1, however, does not have to implement the elementary stream interface. It is
possible to integrate parsing of the SL-packetized stream and media data decompression in one decoder entity.
Note that even in this case the decoder receives a sequence of packets at its input through the DMIF Application
Interface (see 10.4) rather than a data stream.

The interface to receive elementary stream data from the sync layer has a number of parameters that reflect the
side information that has been retrieved while parsing the incoming SL-packetized stream:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

202 © ISO/IEC 1999 – All rights reserved

ESI.receiveData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp,
compositionTimeStamp, accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag,
accessUnitLength, degradationPriority, errorStatus)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of ESdata

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an undetermined
period of time.

objectClockReference – contains a reading of the object time base valid for the point in time when the first byte of
ESdata enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

degradationPriority - indicates the degradation priority for this access unit

errorStatus - indicates whether ESdata is error free, possibly erroneous or whether data has been lost preceding
the current ESdata bytes

A similar interface to send elementary stream data to the sync layer requires the following parameters that will
subsequently be encoded on the sync layer:

ESI.sendData (ESdata, dataLength, idleFlag, objectClockReference, decodingTimeStamp, compositionTimeStamp,
accessUnitStartFlag, randomAccessFlag, accessUnitEndFlag, accessUnitLength,
degradationPriority)

ESdata - a number of dataLength data bytes for this elementary stream

dataLength - the length in byte of ESdata

idleFlag – if set to one it indicates that this elementary stream will not produce further data for an undetermined
period of time.

objectClockReference – contains a reading of the object time base valid for the point in time when the first byte of
ESdata enters the decoder buffer.

decodingTimeStamp - the decoding time for the access unit to which this ESdata belongs

compositionTimeStamp - the composition time for the access unit to which this ESdata belongs

accessUnitStartFlag - indicates that the first byte of ESdata is the start of an access unit

randomAccessFlag - indicates that the first byte of ESdata is the start of an access unit allowing for random access

accessUnitEndFlag - indicates that the last byte of ESdata is the end of an access unit

accessUnitLength - the length of the access unit to which this Esdata belongs in byte

degradationPriority - indicates the degradation priority for this access unit

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 203

10.4 DMIF Application Interface

The DMIF Application Interface is a conceptual interface that specifies which data need to be exchanged between
the sync layer and the delivery mechanism. Communication between the sync layer and the delivery mechanism
includes SL-packetized data as well as additional information to convey the length of each SL packet.

An implementation of ISO/IEC 14496-1 does not have to expose the DMIF Application Interface. A terminal
compliant with ISO/IEC 14496-1, however, shall have the functionality described by the DAI to be able to receive
the SL packets that constitute an SL-packetized stream. Specifically, the delivery mechanism below the sync layer
shall supply a method to frame or otherwise encode the length of the SL packets transported through it.

The DMIF Application Interface specified in ISO/IEC 14496-6 embodies a superset of the required data delivery
functionality. The DAI has data primitives to receive and send data, which include indication of the data size. With
this interface, each invocation of a DA_Data or a DA_DataCallback shall transfer one SL packet between the sync
layer and the delivery mechanism below.

11 Multiplexing of Elementary Streams

11.1 Introduction

Elementary stream data encapsulated in SL-packetized streams are sent/received through the DMIF Application
Interface, as specified in clause 10. Multiplexing procedures and the architecture of the delivery protocol layers are
outside the scope of ISO/IEC 14496-1. However, care has been taken to define the sync layer syntax and
semantics such that SL-packetized streams can be easily embedded in various transport protocol stacks.

The analysis of existing transport protocol stacks has shown that, for stacks with fixed length packets (e.g.,
MPEG-2 Transport Stream) or with high multiplexing overhead (e.g., RTP/UDP/IP), it may be advantageous to
have a generic, low complexity multiplexing tool that allows interleaving of data with low overhead and low delay.
This is particularly important for low bit rate applications. Such a multiplex tool is specified in this clause. Its use is
optional.

11.2 FlexMux Tool

11.2.1 Overview

The FlexMux tool is a flexible multiplexer that accommodates interleaving of SL-packetized streams with varying
instantaneous bit rate. The basic data entity of the FlexMux is a FlexMux packet, which has a variable length. One
or more SL packets are embedded in a FlexMux packet as specified in detail in the remainder of this clause. The
FlexMux tool provides identification of SL packets originating from different elementary streams by means of
FlexMux Channel numbers. Each SL-packetized stream is mapped into one FlexMux Channel. FlexMux packets
with data from different SL-packetized streams can therefore be arbitrarily interleaved. The sequence of FlexMux
packets that are interleaved into one stream are called a FlexMux Stream.

A FlexMux Stream retrieved from storage or transmission can be parsed as a single data stream without the need
for any side information. However, the FlexMux requires framing of FlexMux packets by the underlying layer for
random access or error recovery. There is no requirement to frame each individual FlexMux packet. The FlexMux
also requires reliable error detection by the underlying layer. This design has been chosen acknowledging the fact
that framing and error detection mechanisms are in many cases provided by the transport protocol stack below the
FlexMux.

Two different modes of operation of the FlexMux providing different features and complexity are defined. They are
called Simple Mode and MuxCode Mode. A FlexMux Stream may contain an arbitrary mixture of FlexMux packets
using either Simple Mode or MuxCode Mode. The syntax and semantics of both modes are specified below.

11.2.2 Simple Mode

In the simple mode one SL packet is encapsulated in one FlexMux packet and tagged by an index which is equal
to the FlexMux Channel number as indicated in Figure 27. This mode does not require any configuration or
maintenance of state by the receiving terminal.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

204 © ISO/IEC 1999 – All rights reserved

FlexMux-PDU

PayloadHeader

SL-PDUlengthindex

Figure 27 - Structure of FlexMux packet in simple mode

11.2.3 MuxCode mode

In the MuxCode mode one or more SL packets are encapsulated in one FlexMux packet as indicated in Figure 28.
This mode requires configuration and maintenance of state by the receiving terminal. The configuration describes
how FlexMux packets are shared between multiple SL packets. In this mode the index value is used to
dereference configuration information that defines the allocation of the FlexMux packet payload to different
FlexMux Channels.

.......SL-PDUSL-PDUversion SL-PDUlengthindex

.......H PayloadH Payld H Payload

FlexMux-PDU

Figure 28 - Structure of FlexMux packet in MuxCode mode

11.2.4 FlexMux packet specification

11.2.4.1 Syntax

class FlexMuxPacket {
unsigned int(8) index;
bit(8) length;
if (index>239) {

bit(4) version;
const bit(4) reserved=0b1111;
multiple_SL_Packet mPayload;

} else {
SL_Packet sPayload;

}
}

11.2.4.2 Semantics

The two modes of the FlexMux, Simple Mode and MuxCode Mode are distinguished by the value of index as
specified below.

index – if index is smaller than 240 then

FlexMux Channel = index

This range of values corresponds to the Simple Mode. If index has a value in the range 240 to 255 (inclusive),
then the MuxCode Mode is used and a MuxCode is referenced as

MuxCode = index - 240

MuxCode is used to associate the payload to FlexMux Channels as described in 11.2.3.

NOTE — Although the number of FlexMux Channels is limited to 256, the use of multiple FlexMux streams allows virtually any
number of elementary streams to be provided to the terminal.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 205

length – the length of the FlexMux packet payload in bytes. This is equal to the length of the single
encapsulated SL packet in Simple Mode and to the total length of the multiple encapsulated SL packets in
MuxCode Mode.

version – indicates the current version of the MuxCodeTableEntry referenced by MuxCode. Version is used
for error resilience purposes. If this version does not match the version of the referenced MuxCodeTableEntry
that has most recently been received, the FlexMux packet cannot be parsed. The implementation is free to either
wait until the required version of MuxCodeTableEntry becomes available or to discard the FlexMux packet.

sPayload – a single SL packet (Simple Mode)

mPayload – one or more SL packets (MuxCode Mode)

11.2.4.3 Configuration for MuxCode Mode

11.2.4.3.1 Syntax

aligned(8) class MuxCodeTableEntry {
int i, k;
bit(8) length;
bit(4) MuxCode;
bit(4) version;
bit(8) substructureCount;
for (i=0; i<substructureCount; i++) {

bit(5) slotCount;
bit(3) repetitionCount;
for (k=0; k<slotCount; k++){

bit(8) flexMuxChannel[[i]][[k]];
bit(8) numberOfBytes[[i]][[k]];

}
}

}

11.2.4.3.2 Semantics

The configuration for MuxCode Mode is signaled by MuxCodeTableEntry messages. The transport of the
MuxCodeTableEntry shall be defined during the design of the transport protocol stack that makes use of the
FlexMux tool. Part 6 of this International Standard defines a method to convey this information using the
DN_TransmuxConfig primitive.

The basic requirement for the transport of the configuration information is that data arrives reliably in a timely
manner. However, no specific performance bounds are required for this control channel since version numbers
allow to detect FlexMux packets that cannot currently be decoded and, hence, trigger suitable action in the
receiving terminal.

length – the length in bytes of the remainder of the MuxCodeTableEntry following the length element.

MuxCode – the number through which this MuxCode table entry is referenced.

version – indicates the version of the MuxCodeTableEntry . Only the latest received version of a
MuxCodeTableEntry is valid.

substructureCount – the number of substructures of this MuxCodeTableEntry.

slotCount – the number of slots with data from different FlexMux Channels that are described by this
substructure.

repetitionCount – indicates how often this substructure is to be repeated. A repetitionCount zero
indicates that this substructure is to be repeated infinitely. repetitionCount zero is only permitted in the last
substructure of a MuxCodeTableEntry.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

206 © ISO/IEC 1999 – All rights reserved

flexMuxChannel[i][k] – the FlexMux Channel to which the data in this slot belongs.

numberOfBytes[i][k] – the number of data bytes in this slot associated to flexMuxChannel[i][k] . This
number of bytes corresponds to one SL packet.

11.2.5 Usage of MuxCode Mode

The MuxCodeTableEntry describes how a FlexMux packet is partitioned into slots that carry data from different
FlexMux Channels. This is used as a template for parsing FlexMux packets. If a FlexMux packet is longer than the
template, parsing shall resume from the beginning of the template. If a FlexMux packet is shorter than the template,
the remainder of the template is ignored.

Note that the usage of MuxCode mode may not be efficient if SL packets for a given elementary stream do not
have a constant length. Given the overhead for an update of the associated MuxCodeTableEntry, usage of simple
mode might be more efficient.

Note further that data for a single FlexMux channel may be conveyed through an arbitrary sequence of FlexMux
packets with both simple mode and MuxCode mode.

EXAMPLE �

In this example we assume the presence of three substructures. Each one has a different slot count as well as repetition count.
The exact parameters are as follows:

substructureCount = 3

slotCount [i] = 2, 3, 2 (for the corresponding substructure)

repetitionCount [i] = 3, 2, 1 (for the corresponding substructure)

We further assume that each slot configures channel number FMCn (flexMuxChannel) with a number of bytes Bytesn
(numberOfBytes ). This configuration would result in a splitting of the FlexMux packet payload to:

FMC1 (Bytes1), FMC2 (Bytes2) repeated 3 times, then

FMC3 (Bytes3), FMC4 (Bytes4), FMC5 (Bytes5) repeated 2 times, then

FMC6 (Bytes6), FMC7 (Bytes7) repeated once

The layout of the corresponding FlexMux packet would be as shown in Figure 29.

FlexMux-PDU

F
M
C
1

v
e
r
s
i
o
n

l
e
n
g
t
h

I
n
d
e
x

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
1

F
M
C
2

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
3

F
M
C
4

F
M
C
5

F
M
C
6

F
M
C
7

Figure 29 - Example for a FlexMux packet in MuxCode mode

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 207

12 Syntactic Description Language

12.1 Introduction

This subclause describes the mechanism with which bitstream syntax is documented in ISO/IEC 14496. This
mechanism is based on a Syntactic Description Language (SDL), documented here in the form of syntactic
description rules. It directly extends the C-like syntax used in ISO/IEC 11172:1993 and ISO/IEC 13818:1996 into a
well-defined framework that lends itself to object-oriented data representations. In particular, SDL assumes an
object-oriented underlying framework in which bitstream units consist of “classes.” This framework is based on the
typing system of the C++ and Java programming languages. SDL extends the typing system by providing facilities
for defining bitstream-level quantities, and how they should be parsed.

The elementary constructs are described first, followed by the composite syntactic constructs, and arithmetic and
logical expressions. Finally, syntactic control flow and built-in functions are addressed. Syntactic flow control is
needed to take into account context-sensitive data. Several examples are used to clarify the structure.

12.2 Elementary Data Types

The SDL uses the following elementary data types:

1. Constant-length direct representation bit fields or Fixed Length Codes — FLCs. These describe the encoded
value exactly as it is to be used by the appropriate decoding process.

2. Variable length direct representation bit fields, or parametric FLCs. These are FLCs for which the actual length
is determined by the context of the bitstream (e.g., the value of another parameter).

3. Constant-length indirect representation bit fields. These require an extra lookup into an appropriate table or
variable to obtain the desired value or set of values.

4. Variable-length indirect representation bit fields (e.g., Huffman codes).

These elementary data types are described in more detail in the clauses to follow immediately.

All quantities shall be represented in the bitstream with the most significant byte first, and also with the most
significant bit first.

12.2.1 Constant-Length Direct Representation Bit Fields

Constant-length direct representation bit fields shall be represented as:

Rule E.1: Elementary Data Types
[aligned ] type [( length) ] element_name [= value]; // C++-style comments allowed

The type may be any of the following: int for signed integer, unsigned int for unsigned integer, double for
floating point, and bit for raw binary data. The length attribute indicates the length of the element in bits, as it is
actually stored in the bitstream. Note that a data type equal to double shall only use 32 or 64 bit lengths. The
value attribute shall be present only when the value is fixed (e.g., start codes or object IDs), and it may also
indicate a range of values (i.e., ‘0x01..0xAF’). The type and the optional length attributes are always present,
except if the data is non-parsable, i.e., it is not included in the bitstream. The keyword aligned indicates that the
data is aligned on a byte boundary. As an example, a start code would be represented as:

aligned bit(32) picture_start_code=0x00000100;

An optional numeric modifier, as in aligned( 32) , may be used to signify alignment on other than byte boundary.
Allowed values are 8, 16, 32, 64, and 128. Any skipped bits due to alignment shall have the value ‘0’. An entity
such as temporal reference would be represented as:

unsigned int(5) temporal_reference;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

208 © ISO/IEC 1999 – All rights reserved

where unsigned int( 5) indicates that the element shall be interpreted as a 5-bit unsigned integer. By default,
data shall be represented with the most significant bit first, and the most significant byte first.

The value of parsable variables with declarations that fall outside the flow of declarations (see 12.6) shall be set to
0.

Constants shall be defined using the keyword const .

EXAMPLE �

const int SOME_VALUE=255; // non-parsable constant
const bit(3) BIT_PATTERN=1; // this is equivalent to the bit string “001”

To designate binary values, the 0b prefix shall be used, similar to the 0x prefix for hexadecimal numbers. A period
(‘.’) may be optionally placed after every four digits for readability. Hence 0x0F is equivalent to 0b0000.1111.

In several instances, it may be desirable to examine the immediately following bits in the bitstream, without actually
consuming these bits. To support this behavior, a ‘* ’ character shall be placed after the parse size parentheses to
modify the parse size semantics.

Rule E.2: Look-ahead parsing
[aligned ] type ( length)* element_name;

For example, the value of next 32 bits in the bitstream can be checked to be an unsigned integer without advancing
the current position in the bitstream using the following representation:

aligned unsigned int (32)* next_code;

12.2.2 Variable Length Direct Representation Bit Fields

This case is covered by Rule E.1, by allowing the length attribute to be a variable included in the bitstream, a non-
parsable variable, or an expression involving such variables.

EXAMPLE �

unsigned int(3) precision;
int(precision) DC;

12.2.3 Constant-Length Indirect Representation Bit Fields

Indirect representation indicates that the actual value of the element at hand is indirectly specified by the bitstream
through the use of a table or map. In other words, the value extracted from the bitstream is an index to a table from
which the final desired value is extracted. This indirection may be expressed by defining the map itself:

Rule E.3: Maps
map MapName ( output_type) {

index, { value_1, … value_M} ,
…

}

These tables are used to translate or map bits from the bitstream into a set of one or more values. The input type of
a map (the index specified in the first column) shall always be bit . The output_type entry shall be either a
predefined type or a defined class (classes are defined in 12.3.1). The map is defined as a set of pairs of such
indices and values. Keys are binary string constants while values are output_type constants. Values shall be
specified as aggregates surrounded by curly braces, similar to C or C++ structures.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 209

EXAMPLE �

class YUVblocks {// classes are fully defined later on
int Yblocks;
int Ublocks;
int Vblocks;

}

// a table that relates the chroma format with the number of blocks
// per signal component
map blocks_per_component (YUVblocks) {

0b00, {4, 1, 1}, // 4:2:0
0b01, {4, 2, 2}, // 4:2:2
0b10, {4, 4, 4} // 4:4:4

}

The next rule describes the use of such a map.

Rule E.4: Mapped Data Types
type ( MapName) name;

The type of the variable shall be identical to the type returned from the map.

EXAMPLE �

YUVblocks(blocks_per_component) chroma_format;

Using the above declaration, a particular value of the mapmay be accessed using the construct: chroma_format.Ublocks .

12.2.4 Variable Length Indirect Representation Bit Fields

For a variable length element utilizing a Huffman or variable length code table, an identical specification to the fixed
length case shall be used:

class val {
unsigned int foo;
int bar;

}

map sample_vlc_map (val) {
0b0000.001, {0, 5},
0b0000.0001, {1, -14}

}

The only difference is that the indices of the map are now of variable length. The variable-length codewords are (as
before) binary strings, expressed by default in ‘0b’ or ‘0x’ format, optionally using the period (‘.’) every four digits for
readability.

Very often, variable length code tables are partially defined. Due to the large number of possible entries, it may be
inefficient to keep using variable length codewords for all possible values. This necessitates the use of escape
codes, that signal the subsequent use of a fixed-length (or even variable length) representation. To allow for such
exceptions, parsable type declarations are allowed for map values.

EXAMPLE � This example uses the class type ‘val’ as defined above.

map sample_map_with_esc (val) {
0b0000.001, {0, 5},
0b0000.0001, {1, -14},
0b0000.0000.1, {5, int(32)},
0b0000.0000.0, {0, -20}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

210 © ISO/IEC 1999 – All rights reserved

When the codeword 0b0000.0000.1 is encountered in the bitstream, then the value ‘5’ is assigned to the first element
(val.foo ). The following 32 bits are parsed and assigned as the value of the second element (val.bar ). Note that, in case
more than one element utilizes a parsable type declaration, the order is significant and is the order in which elements are
parsed. In addition, the type within the map declaration shall match the type used in the class declaration associated with the
map’s return type.

12.3 Composite Data Types

12.3.1 Classes

Classes are the mechanism with which definitions of composite types or objects is performed. Their definition is as
follows.

Rule C.1: Classes
[aligned ] [abstract ] [expandable [( maxClassSize) ]] class object_name [extends parent_class] [:

bit( length) [id_name=] object_id | id_range ] {
[element; …] // zero or more elements

}

The different elements within the curly braces are the definitions of the elementary bitstream components
discussed in 12.2 or control flow elements that will be discussed in a subsequent subclause.

The optional keyword extends specifies that the class is “derived” from another class . Derivation implies that
all information present in the base class is also present in the derived class , and that, in the bitstream, all such
information precedes any additional bitstream syntax declarations specified in the new class .

The optional attribute id_name allows to assign an object_id, and, if present, is the key demultiplexing entity which
allows differentiation between base and derived objects. It is also possible to have a range of possible values: the
id_range is specified as start_id .. end_id, inclusive of both bounds.

If the attribute id_name is used, a derived class may appear at any point in the bitstream where its base class is
specified in the syntax. This allows to express polymorphism in the SDL syntax description. The actual class to be
parsed is determined as follows:

• The base class declaration shall assign a constant value or range of values to object_id.

• Each derived class declaration shall assign a constant value or ranges of values to object_id. This value or
set of values shall correspond to legal object_id value(s) for the base class .

NOTE 1 — Derivation of classes is possible even when object_ids are not used. However, in that case derived classes may not
replace their base class in the bitstream.

NOTE 2 — Derived classes may use the same object_id value as the base class . In that case classes can only be
discriminated through context information.

EXAMPLE �

class slice: aligned bit(32) slice_start_code=0x00000101 .. 0x000001AF {
// here we get vertical_size_extension, if present
if (scalable_mode==DATA_PARTITIONING) {

unsigned int(7) priority_breakpoint;
}
…

}

class foo {
int(3) a;
...

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 211

class bar extends foo {
int(5) b; // this b is preceded by the 3 bits of a
int(10) c;
...

}

The order of declaration of the bitstream components is important: it is the same order in which the elements appear in the
bitstream. In the above examples, bar.b immediately precedes bar.c in the bitstream.

Objects may also be encapsulated within other objects. In this case, the element in Rule C.1 is an object itself.

12.3.2 Abstract Classes

When the abstract keyword is used in the class declaration, it indicates that only derived classes of this class
shall be present in the bitstream. This implies that the derived classes may use the entire range of IDs available.
The declaration of the abstract class requires a declaration of an ID, with the value 0.

EXAMPLE �

abstract class Foo : bit(1) id=0 { // the value 0 is not really used
...

}

// derived classes are free to use the entire range of IDs
class Foo0 extends Foo : bit(1) id=0 {

...
}

class Foo1 extends Foo : bit(1) id=1 {
...

}

class Example {
Foo f; // can only be Foo0 or Foo1, not Foo

}

12.3.3 Expandable classes

When the expandable keyword is used in the class declaration, it indicates that the class may contain implicit
arrays or undefined trailing data, called the "expansion". In this case the class encodes its own size in bytes
explicitly. This may be used for classes that require future compatible extension or that may include private data. A
legacy device is able to decode an expandable class up to the last parsable variable that has been defined for a
given revision of this class . Using the size information, the parser shall skip the class data following the last
known syntax element. Anywhere in the syntax where a set of expandable classes with object_id is expected it is
permissible to intersperse expandable classes with unknown object_id values. These classes shall be skipped,
using the size information.

The size encoding precedes any parsable variables of the class . If the class has an object_id, the encoding of
the object_id precedes the size encoding. The size information shall not include the number of bytes needed for the
size and the object_id encoding. Instances of expandable classes shall always have a size corresponding to an
integer number of bytes. The size information is accessible within the class as class instance variable
sizeOfInstance .

If the expandable keyword has a maxClassSize attribute, then this indicates the maximum permissible size of this
class in bytes, including any expansion.

The length encoding is itself defined in SDL as follows:

int sizeOfInstance = 0;
bit(1) nextByte;
bit(7) sizeOfInstance;
while(nextByte) {

bit(1) nextByte;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

212 © ISO/IEC 1999 – All rights reserved

bit(7) sizeByte;
sizeOfInstance = sizeOfInstance<<7 | sizeByte;

}

12.3.4 Parameter types

A parameter type defines a class with parameters. This is to address cases where the data structure of the
class depends on variables of one or more other objects. Since SDL follows a declarative approach, references to
other objects, in such cases, cannot be performed directly (none is instantiated). Parameter types provide
placeholders for such references, in the same way as the arguments in a C function declaration. The syntax of a
class definition with parameters is as follows.

Rule C.2: Class Parameter Types
[aligned ] [abstract ] class object_name [( parameter list) ] [extends parent_class]

[: bit( length) [id_name=] object_id | id_range ] {
[element; …] // zero or more elements

}

The parameter list is a list of type names and variable name pairs separated by commas. Any element of the
bitstream, or value derived from the bitstream with a variable-length codeword, or a constant, can be passed as a
parameter.

A class that uses parameter types is dependent on the objects in its parameter list, whether class objects or
simple variables. When instantiating such a class into an object, the parameters have to be instantiated objects of
their corresponding classes or types.

EXAMPLE �

class A {
// class body
...
unsigned int(4) format;

}

class B (A a, int i) { // B uses parameter types
unsigned int(i) bar;
...
if( a.format == SOME_FORMAT ) {

...
}
...

}

class C {
int(2) i;
A a;
B foo( a, I); // instantiated parameters are required

}

12.3.5 Arrays

Arrays are defined in a similar way as in C/C++, i.e., using square brackets. Their length, however, can depend on
run-time parameters such as other bitstream values or expressions that involve such values. The array declaration
is applicable to both elementary as well as composite objects.

Rule A.1: Arrays
typespec name [ length] ;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 213

typespec is a type specification (including bitstream representation information, e.g. ‘int( 2) ’). The attribute
name is the name of the array, and length is its length.

EXAMPLE �

unsigned int(4) a[5];
int(10) b;
int(2) c[b];

Here ‘a’ is an array of 5 elements, each of which is represented using 4 bits in the bitstream and interpreted as an unsigned
integer. In the case of ‘c’, its length depends on the actual value of ‘b’. Multi-dimensional arrays are allowed as well. The parsing
order from the bitstream corresponds to scanning the array by incrementing first the right-most index of the array, then the
second, and so on .

12.3.6 Partial Arrays

In several situations, it is desirable to load the values of an array one by one, in order to check, for example, a
terminating or other condition. For this purpose, an extended array declaration is allowed in which individual
elements of the array may be accessed.

Rule A.2: Partial Arrays
typespec name[[ index]] ;

Here index is the element of the array that is defined. Several such partial definitions may be given, but they shall
all agree on the type specification. This notation is also valid for multidimensional arrays.

EXAMPLE �

int(4) a[[3]][[5]];

indicates the element a(5, 3) of the array (the element in the 6th row and the 4th column), while

int(4) a[3][[5]];

indicates the entire sixth column of the array, and

int(4) a[[3]][5];

indicates the entire fourth row of the array, with a length of 5 elements.

NOTE � a[5] means that the array has five elements, whereas a[[5]] implies that there are at least six.

12.3.7 Implicit Arrays

When a series of polymorphic classes is present in the bitstream, it may be represented as an array of the same
type as that of the base class . Let us assume that a set of polymorphic classes is defined, derived from the base
class Foo (may or may not be abstract):

class Foo : int(16) i d = 0 {
...

}

For an array of such objects, it is possible to implicitly determine the length by examining the validity of the class
ID. Objects are inserted in the array as long as the ID can be properly resolved to one of the IDs defined in the
base (if not abstract) or its derived classes. This behavior is indicated by an array declaration without a length
specification.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

214 © ISO/IEC 1999 – All rights reserved

EXAMPLE 1 �

class Example {
Foo f[]; // length implicitly obtained via ID resolution

}

To limit the minimum and maximum length of the array, a range specification may be inserted in the specification of the length.

EXAMPLE 2 �

class Example {
Foo f[1 .. 255]; // at least 1, at most 255 elements

}

In this example, ‘f’ may have at least 1 and at most 255 elements.

12.4 Arithmetic and Logical Expressions

All standard arithmetic and logical operators of C++ are allowed, including their precedence rules.

12.5 Non-Parsable Variables

In order to accommodate complex syntactic constructs, in which context information cannot be directly obtained
from the bitstream but only as a result of a non-trivial computation, non-parsable variables are allowed. These are
strictly of local scope to the class they are defined in. They may be used in expressions and conditions in the
same way as bitstream-level variables. In the following example, the number of non-zero elements of an array is
computed.

unsigned int(6) size;
int(4) array[size];
…
int i; // this is a temporary, non-parsable variable
for (i=0, n=0; i<size; i++) {

if (array[[i]]!=0)
n++;

}

int(3) coefficients[n];
// read as many coefficients as there are non-zero elements in array

12.6 Syntactic Flow Control

The syntactic flow control provides constructs that allow conditional parsing, depending on context, as well as
repetitive parsing. The familiar C/C++ if-then-else construct is used for testing conditions. Similarly to C/C++, zero
corresponds to false, and non-zero corresponds to true.

Rule FC.1: Flow Control Using If-Then-Else
if ( condition) {

…
} [ else if ( condition) {

…
} ] [else {

…
} ]

EXAMPLE 1 �

class conditional_object {
unsigned int(3) foo;
bit(1) bar_flag;
if (bar_flag) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 215

unsigned int(8) bar;
}
unsigned int(32) more_foo;

}

Here the presence of the entity ‘bar’ is determined by the ‘bar_flag’.

EXAMPLE 2 �

class conditional_object {
unsigned int(3) foo;
bit(1) bar_flag;
if (bar_flag) {

unsigned int(8) bar;
} else {

unsigned int(some_vlc_table) bar;
}
unsigned int(32) more_foo;

}

Here we allow two different representations for ‘bar’, depending on the value of ‘bar_flag’. We could equally well have another
entity instead of the second version (the variable length one) of ‘bar’ (another object, or another variable). Note that the use of a
flag necessitates its declaration before the conditional is encountered. Also, if a variable appears twice (as in the example
above), the types shall be identical.

In order to facilitate cascades of if-then-else constructs, the ‘switch’ statement is also allowed.

Rule FC.2: Flow Control Using Switch
switch ( condition) {

[case label1: …]
[default: ]

}

The same category of context-sensitive objects also includes iterative definitions of objects. These simply imply the
repetitive use of the same syntax to parse the bitstream, until some condition is met (it is the conditional repetition
that implies context, but fixed repetitions are obviously treated the same way). The familiar structures of ‘for’,
‘while’, and ‘do’ loops can be used for this purpose.

Rule FC.3: Flow Control Using For
for ( expression1; expression2; expression3) {

…
}

expression1 is executed prior to starting the repetitions. Then expression2 is evaluated, and if it is non-zero (true)
the declarations within the braces are executed, followed by the execution of expression3. The process repeats
until expression2 evaluates to zero (false).

Note that it is not allowed to include a variable declaration in expression1 (in contrast to C++).

Rule FC.4: Flow Control Using Do
do {

…
} while ( condition) ;

Here the block of statements is executed until condition evaluates to false. Note that the block will be executed at
least once.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

216 © ISO/IEC 1999 – All rights reserved

Rule FC.5: Flow Control Using While
while ( condition) {

…
}

The block is executed zero or more times, as long as condition evalutes to non-zero (true).

12.7 Built-In Operators

The following built-in operators are defined.

Rule O.1: lengthof() Operator
lengthof( variable)

This operator returns the length, in bits, of the quantity contained in parentheses. The length is the number of bits
that was most recently used to parse the quantity at hand. A return value of 0 means that no bits were parsed for
this variable.

12.8 Scoping Rules

All parsable variables have class scope, i.e., they are available as class member variables.

For non-parsable variables, the usual C++/Java scoping rules are followed (a new scope is introduced by curly
braces: ‘{‘ and ‘}’). In particular, only variables declared in class scope are considered class member variables, and
are thus available in objects of that particular type.

13 Profiles

13.1 Introduction

This clause defines profiles and levels for the usage of the tools defined in this part of ISO/IEC 14496. Each profile
at a given level constitutes a subset of ISO/IEC 14496-1 to which system manufacturers and content creators can
claim conformance in order to ensure interoperability.

The object descriptor profiles (OD profiles) specify the allowed configurations of the object descriptor tool and the
sync layer tool. The scene graph profiles specify the allowed scene graph elements of the BIFS tool. The graphics
profiles specify the graphics elements of the BIFS tool that are allowed.

Profile definitions, by themselves, are not sufficient to provide a full characterization of a receiving terminal’s
capabilities and the resources needed for a presentation. For this reason, levels are defined within each profile.
Levels constrain the values of parameters in a given profile in order to specify an upper complexity bound.

13.2 OD Profile Definitions

13.2.1 Overview

The object descriptor profiles (OD profiles) specify the configurations of the object descriptor tool and the sync layer
tool that are allowed. The object descriptor tool provides a structure for all descriptive information. The sync layer
tool provides the syntax to convey, among others, timing information for elementary streams. object descriptor
profiles are used, in particular, to reduce the amount of asynchronous operations as well as the amount of
permanent storage.

13.2.2 OD Profiles Tools

The following tools are available to construct OD profiles:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 217

� Object descriptor (OD) tool as defined in 8.5.

� Sync layer (SL) tool as defined in 10.2.

� Object content information (OCI) tool as defined in 8.4.

� Intellectual property management and protection (IPMP) tool as defined in 8.3.

13.2.3 OD Profiles

The OD profiles are defined in the following table. Currently, only one profile is defined, comprising all the tools. No
additional profiles are foreseen at the moment, but the possibility of adding Profiles through amendments is left
open.

Table 49 - OD Profiles

OD Profiles

OD Tools Core

SL X
OD X
OCI X
IPMP X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

13.2.4 OD Profiles@Levels

13.2.4.1 Levels for the Core Profile

No levels are defined yet for the OD Core profile. Future definition of Levels is anticipated; this will happen by
means of an amendment to this part of the standard.

13.3 Scene Graph Profile Definitions

13.3.1 Overview

The scene graph profiles specify the scene graph elements of the BIFS tool that are allowed. These elements
provide the means to describe the spatio-temporal locations, the hierarchical dependencies as well as the
behaviors of audio-visual objects in a scene. Profiling of scene graph elements of the BIFS tool serves to restrict
the memory requirements and computational complexities of scene graph traversal and processing of specified
behaviors during the composition and rendering processes.

13.3.2 Scene Graph Profiles Tools

The following tools are available to construct the definitions for scene graph profiles:

� BIFS nodes related to scene description as defined in Table 50.

� BIFS commands and BIFS animation as defined in 9.3.6 and 9.3.8, respectively.

� BIFS ROUTES as defined in 9.3.7.45.

13.3.3 Scene Graph Profiles

The following table defines the scene graph profiles:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

218 © ISO/IEC 1999 – All rights reserved

Table 50 - Scene graph profiles

Scene Graph Profiles

Scene Graph Tools Audio Simple 2D Complete 2D Complete

Anchor X X
AudioBuffer X X X
AudioDelay X X X
AudioFX X X X
AudioMix X X X
AudioSwitch X X X
Billboard X
Collision X
Composite2DTexture X X
Composite3DTexture X
Form X X
Group X X X X
Inline X X
Layer2D X X
Layer3D X
Layout X X
ListeningPoint X X
LOD X
NavigationInfo X
OrderedGroup X X X
QuantizationParameter X X
Sound X
Sound2D X X X X
Switch X X
Transform X
Transform2D X X X
Viewpoint X
WorldInfo X X
Node Update X X
Route Update X X
Scene Update X X X X
AnimationStream X X
Script ? X
ColorInterpolator X X
Conditional X X
CoordinateInterpolator2D X X
CoordinateInterpolator X
CylinderSensor X
DiscSensor X X
NormalInterpolator X
OrientationInterpolator X
PlaneSensor2D X X
PlaneSensor X
PositionInterpolator X
PositionInterpolator2D X X
ProximitySensor X
ProximitySensor2D X X
ROUTE X X

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

© ISO/IEC 1999 – All rights reserved 219

ScalarInterpolator X X
SphereSensor X
TermCap X X
TimeSensor X X
TouchSensor X X
VisibilitySensor X
Valuator X X

Decoders that claim compliance to a given profile shall implement all the tools with an ‘X’ entry for that profile.

13.3.3.1 BIFS nodes for audio objects

The presence of AudioClip and AudioSource nodes in BIFS scene graph depends on the selected Audio profile.
The following table describes what nodes are allowed in the BIFS scene graph depending on the Audio profile.

Table 51 - BIFS nodes for audio objects

Audio Profiles Allowed Audio Object Nodes

Main AudioClip, AudioSource
Scalable AudioClip, AudioSource
Speech AudioClip, AudioSource
Low Rate Synthesis AudioClip, AudioSource

13.3.3.2 BIFS nodes for visual objects

The presence of ImageTexture, Background2D, Background, MovieTexture, Face, Expression, FAP, FDP, FIT,
FaceDefMesh, FaceDefTable, FaceDefTransform, Viseme nodes in a BIFS scene graph depends on the selected
Visual profile. The following table describes what nodes are allowed in the BIFS scene graph depending on the
choice of the Visual profile.

Table 52 - BIFS nodes for visual objects

Visual Profiles Allowed visual object nodes

Simple ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
Core ImageTexture, Background2D, Background, MovieTexture
Main ImageTexture, Background2D, Background, MovieTexture
Simple Scalable ImageTexture, Background2D, Background, MovieTexture
N-Bit ImageTexture, Background2D, Background, MovieTexture
Hybrid ImageTexture, Background2D, Background, MovieTexture,

Face, Expression, FAP, FDP, FIT, FaceDefMesh,
FaceDefTable, FaceDefTransform, Viseme

Basic Animated Texture ImageTexture, Background2D, Background, Face, Expression,
FAP, FDP, FIT, FaceDefMesh, FaceDefTable,
FaceDefTransform, Viseme

Scaleable Texture ImageTexture, Background2D, Background
Simple Face Face, Expression, FAP, FDP, FIT, FaceDefMesh,

FaceDefTable, FaceDefTransform, Viseme

If the terminal complies with a 2D graphics profile only, the terminal may choose to ignore the contents of the FDP,
FIT, FaceDefMesh, FaceDefTable, FaceDefTransform nodes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8


ISO/IEC 14496-1:1999(E)

220 © ISO/IEC 1999 – All rights reserved

13.3.4 Scene Graph Profiles@Levels

13.3.4.1 Levels for the Audio Scene Graph Profile

13.3.4.1.1 Functionalities provided

The Audio scene graph profile provides for a set of BIFS scene graph elements for usage in audio only
applications. The Audio scene graph profile supports applications like broadcast radio.

13.3.4.1.2 Levels

No levels are yet defined for the Audio scene graph profile. Future definition of Levels is anticipated; this will
happen by means of an amendment to this part of the standard.

13.3.4.2 Levels for the Simple 2D Scene Graph Profile

13.3.4.2.1 Functionalities provided

The Simple 2D scene graph profile provides for only those BIFS scene graph elements necessary to place one or
more audio-visual objects in a scene. The Simple 2D scene graph profile allows presentation of audio-visual
content with potential update of the complete scene but no interaction capabilities. The Simple 2D scene graph
profile supports applications like broadcast television.

13.3.4.2.2 Level 1

The following restrictions apply for the Simple 2D scene graph profile at Level 1:

Table 53 - Restrictions for Simple 2D scene graph profile at Level 1

Transform2D

Field name

addChildren Ignored
removeChildren Ignored
children X.
center Ignored
rotationAngle 0
scale 1, 1
scaleOrientation 0
translation X

X = allowed;
else: default value

The metric shall be the pixel metrics. BIFSConfig.isPixel=1.

A cascade of Transform2D nodes is not allowed. Children nodes of a Transform2D node shall not be Transform2D
nodes. Only one initial update to convey the complete scene graph is allowed.

13.3.4.3 Levels for the Complete 2D Scene Graph Profile

13.3.4.3.1 Functionalities provided

The Complete 2D scene graph profile provides for all the 2D scene description elements of the BIFS tool. It
supports features such as 2D transformations and alpha blending. The Complete 2D scene graph profile enables
2D applications that require extensive and customized interactivity.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
:19

99

https://iecnorm.com/api/?name=db2538c026d5b647bcc8c7f86d75c8c8

