INTERNATIONAL STANDARD ISO/IEC 8825-3:2008
TECHNICAL CORRIGENDUM 1

Published 2012-12-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION o MEXOYHAPOOHAA OPTAHU3ALIMA MO CTAHOAPTUSALIMKA o ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION . MEXOYHAPOOHAA SNEKTPOTEXHUYECKAA KOMUCCKA . COMMISSION ELECTROTECHNIQUE INTERNATIONALE

Information technology — ASN.1 encoding rules: Specification
of Encoding Control Notation (ECN)

TECHNICAL CORRIGENDUM 1

Technologies de l'information — Régles de codage ASN.1: Spécificatiende la notation de contréle de cpdage
(ECN)

RECTIFICATIF TECHNIQUE 1

Technical Corrigendum 1 to ISO/IEC 8825-3:2008 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 6, Telecommunications and inforfation
exchange between systems, in collabération with ITU-T. The identical text is publishgd as
Rec. ITU-T X.692 (2008)/Cor.1 (10/2011),

ICS 35.100.60 Ref. No. ISO/IEC 8825-3:2008/Cor.1:2012(E)

© ISO/IEC 2012 — All rights reserved

Published in Switzerland

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012(E)

CONTENTS
Page
1 CIAUSE 2 ...ttt sttt et et e a e e a e e b e s bt e bt et e ab e e et e et e bt e bt en bt en e ee e e ehteebe e bt e bt ete et e sanene 1
2 CLaUSE 18.2.3 -ttt ettt st b et e et et a e bbbt et et b e a e eh e bt bt ea bt et nae b bt eaees 1
3 ANNEX D ottt e h e a e a e ettt sae et eaeeeneeane e 1

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

INTERNATIONAL STANDARD

RECOMMENDATION ITU-T

Information technology — ASN.1 encoding rules:
Specification of Encoding Control Notation (ECN)

Conventions used in this corrigendum: Original, unchanged, text is in normal font. Deleted text is struck-through, thus:
deleted-text. Inserted text is underlined, thus: inserted text.

Q

cl

Clause 2

ld a new NOTE to the first paragraph as follows:

NOTE - This Recommendation | International Standard is based on ISO/IEC 10646:2003. It cannot be applied using la
versions of this standard.

Clause 18.2.3

hange the existing NOTE after 18.2.3 to NOTE 2 modified as follows:

precedence over any encoding which could be obtained by de-referencing.

ld the following new NOTE 1:

NOTE 1 — The encoding objects of the encoding object sets BER, CER, (DER do not carry an implied alignment to the nd
multiple of 8 bits. The encoding objects of the encoding objects of the éncoding object sets PER-BASIC-ALIGNED and PE
CANONICAL-ALIGNED do carry an implied alignment to the next multiple of 8 bits only when required by ITU-T Rec. X.69
ISO/IEC-8825-2

Annex D

number of changes of the ASN.1 and ECN specifications are required .There are also a large number of indentati
anges needed. These are not listed separately,instead a complete replacement for Annex D is provided. Replace t
hole of Annex D with:

NOTE 2 — An encoading object for a user-defined or implicitly-generated encoding class.¢an be added to such a set, and will take

Xt
R-
|

e

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

1

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

Annex D

Examples

(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ECN. The examples are divided into five groups:
— General examples, which show the look-and-feel of ECN definitions (D.1).

— Specialization examples, which show how to modify some parts of a standardized encoding. Each
TXAMPIT NaS & GCSCTIPoN Of T TCUITTITES fOT T eNcOding and a deScription ot the Seiected Sotutgn
and possible alternative solutions (D.2).

— Explicitly generated structure examples, which show the use of explicitly generated structures when the
same specialized encoding is used several times (D.3).

— A legacy protocol example which shows three ways of handling the problem of a traditienal "more-b{t
approach to sequence-of termination (D.4).

— A second legacy protocol example, which shows how to construct ECN definitions for a protocol whofe
message encodings have been specified using a tabular notation (D.5).

D1 General examples

The examples described in D.1.1 to D.1.14 are part of a complete ECN specification whose ASN.1, EDM, and ELM
mpdules are given in outline in D.1.15, D.1.16 and D.1.17, and are given completely in a copy of this annex which [is
ayailable from the website cited in Annex F.

Di1.1 An encoding object for a boolean type
D}1.1.1 The ASN.1 assignment is:

Married ::= BOOLEAN

D}1.1.2 The encoding object assignment (see 23.3.1) is:

b¢oleanEncoding #BOOLEAN ::= {
ENCODING-SPACE
SIZE 1
MULTIPLE OF bit
TRUE-PATTERN bits:'1'B
FALSE-PATTERN bits:'0'B}
marriedEncoding-1 #Married = booleanEncoding

D}1.1.3 There is no pre-alignmient, and the encoding space is one bit, so "Married" is encoded as a bit-field pf
lepgth 1. Patterns for TRUE and FALSE values (in this case a single bit) are '1'B and '0'B respectively.

D}1.1.4 The values specified above are the values that would be set by default (see 23.3.1) if the corresponding
erjcoding properties were omitted, so the same encoding can be achieved with less verbosity by:

marriedEncoding-2 #Married ::= {
ENCODING-SPACE
SIZE 1}

D}1.1.5_) This encoding for a boolean is, of course, just what PER provides, and another alternative is to specify the
encoding using the PER encoding object for boolean by way of the syntax provided by 17.3.1.

marriedEncoding-3 #Married ::= {
ENCODE WITH PER-BASIC-UNALIGNED}

D.1.1.6 As these examples show, there are often cases where ECN provides multiple ways to define an encoding. It is
up to the user to decide which alternative to use, balancing verbosity (stating explicitly values that can be defaulted)
against readability and clarity.

2 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.1.2 An encoding object for an integer type
D.1.2.1 The ASN.1 assignments are:

EvenPositivelInteger ::
EvenNegativelnteger ::

INTEGER (1..MAX) (CONSTRAINED BY {-- Must be even --})
INTEGER (MIN..-1) (CONSTRAINED BY {-- Must be even --})

D.1.2.2 The encoding object assignments are:

evenPositiveIntegerEncoding #EvenPositivelInteger ::

[
-~

USE #NonNegativelnt
MAPPING TRANSFORMS {{INT-TO-INT divide:2}}

WITH PER-BASIC-UNALIGNED}

#flonNegativeInt ::= HINT (0..MAX)
eyenNegativeIntegerEncoding #EvenNegativeInteger ::= {
UBE #NonPositivelnt

WITH PER-BASIC-UNALIGNED}
#NonPositiveInt ::= #INT (MIN..O)
D}1.2.3 An even value is divided by two, and is then encoded using standardized PER encodingtrules for positive afd

ng

D
D

D

A
D

[

starting at an octet boundary.

htegerRightAlignedEncoding #Altitude ::= {
ENCODING {

MAPPING TRANSFORMS {{INT-TO-INT divide:2 -
Note: -1/2 =0 - see clause 24.3.7 -- }}

gative integer types.

1.3 Another encoding object for an integer type

1.3.1 Here we assume the requirement to define an encoding object which eneodes an integer in a two-octet field

1.3.2 The ASN.1 assignment is:
ltitude ::= INTEGER (0..65535)

1.3.3 The Encoding object assignment (see 23.6.1 and 23.7.1) is;

ALIGNED TO NEXT octet
ENCODING-SPACE
SIZE 16}}

1.4 An encoding object for an integer type with holes
1.4.1 The ASN.1 assignment is:

htegerWithHole ::= INTEGER %(=256..-1 | 32..1056)
1.4.2 The encoding object assignment (see 19.5.2) is:

htegerWithHoleEncoding #IntegerWithHole ::= {
SE #IntFrom0To1280

APPING ORDERED VALUES

ITH PER-BASIC:UNALIGNED}

[ntFrom0Tol1280. ::= #INT (0..1280)

1.4.3 "IntegerWithHole" is encoded as a positive integer. Values in the range -256..-1 are mapped to values fin
e range-0:,255 and values in the range 32..1056 are mapped to 256..1280.

1.5 A more complex encoding object for an integer type

D.1.5.1 The ASN.1 assignments are:

Positivelnteger
Negativelnteger

INTEGER (1..MAX)
INTEGER (MIN..-1)

D.1.5.2 The encoding object assignments are:

positiveIntegerEncoding #PositivelInteger ::=

integerEncoding
negativeIntegerEncoding #NegativeInteger ::=

integerEncoding

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 3

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.1.5.3 Values of "PositiveInteger" and "NegativeInteger" types are encoded by the encoding object
"integerEncoding" as a positive integer or as a twos-complement integer respectively. This is defined below, and

provides different encodings depending on the bounds of the type to which it is applied.

D.1.5.4 The "integerEncoding" encoding object defined here is very powerful, but quite complex. It contains five
encoding objects of the class #CONDITIONAL-INT; they all define an octet-aligned encoding. When the integer values
being encoded are bounded, the number of bits is fixed; when the values are not bounded, the type is required to be the

last in a PDU, and the value is right justified in the remaining octets of the PDU.
D.1.5.5 The definition of the encoding object (see 23.6.1 and 23.7.1) is:

integerEncoding #INT ::= {ENCODINGS {

{ IF unbounded-or-no-Tower-bound
ENCODING-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER
ENCODING twos-complement} ,
F bounded-with-negatives
ENCODING-SPACE
SIZE fixed-to-max
ENCODING twos-complement} ,
F semi-bounded-with-negatives
ENCODING-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER
ENCODING twos-complement} ,
F semi-bounded-without-negatives
ENCODING-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER
ENCODING positive-int} ,
F bounded-without-negatives
ENCODING-SPACE
SIZE fixed-to-max
ENCODING positive-int}}}

~—

~—

~—

~—

Di{1.6 Positive integers encoded in BCD

D}1.6.1 This example shows how to encode a positive integer in BCD (Binary Coded Decimal) by successi
transforms: from integer to character string then from character string to bitstring.

D}1.6.2 The ASN.1 assignment is:
bsitiveIntegerBCD : :="INTEGER (0. .MAX)

P
D}1.6.3 The encoding object assignment (see 19.4, 24.1 and 23.4.1) is:

ppsitiveIntegerBCDEncoding #PositiveIntegerBCD ::= {
UBE #CHARS
MAPPING TRANSFORMS{{
INT<TO-CHARS
~\We convert to characters (e.g., integer 42
-- becomes character string "42") and encode the characters
-- with the encoding object "numeric-chars-to-bcdEncoding”

~

SIZE variable

PLUS-SIGN FALSE}}

WITH numeric-chars-to-bcdEncoding }
numeric-chars-to-bcdEncoding #CHARS ::= {
ALIGNED TO NEXT nibble

TRANSFORMS {{
CHAR-TO-BITS
-- We convert each character to a bitstring
--(e.g., character "4" becomes '0100'B and "2" becomes
--'0010'B)
AS mapped
CHAR-LIST { non,nlvv’uzn,n3u,
"4","5"’"6","7"’

4 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

S

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

"8","9"}

BITS-LIST { '0000'B, '0001'B, '0010'B, '0011'B,
'0100'B, '0101'B, '0110'B, '0111'B,
'1000'B, '1001'B }}}

REPETITION-ENCODING {

REPETITION-SPACE
-- We determine the concatenation of the bitstrings for the
-- characters and add a terminator (e.g.,
--'0100'B + '0010'B becomes '0100 0010 1111'B)
SIZE variable-with-determinant
DETERMINED BY pattern
PATTERN bits:'1111'B}}

D
V4
"d
"d
Joki
D
ay

D

D}1.7.1 This example defines an encoding object of class #BITS (see 23.2.1) for{a/bitstring that is octet-alignegd,
pddded with 0, and terminated by an 8-bit field containing '00000000'B (it is assumed that an abstract value never
cq@ntains eight successive zeros):

D}1.7.2 The ASN.1 assignment is:

Fax ::= BIT STRING (CONSTRAINED BY

{-t must not contain eight successive zero bits --})

D}1.7.3 The encoding object assignment (see 23.2.1, 23.13.1 and.23.14.1) is:

faxEncoding #Fax ::= {

ALIGNED TO NEXT octet

D

1.8.1 The ASN.1 assignment is:
jnaryFile) : := OCTET STRING
1.8.2_)The encoding object assignment (see 23.9.1) is:

1.6.4 The positive number is first transformed into a character string by the int-to-chars transform using the optiohs
riable length and no plus sign, and in addition the default option of no padding, giving a string containing characters
" to "9". Then the character string is encoded such that each character is transformed into a bit pattern, ' 0000" B fpr
", '0001'B for "1".., '1001'B for "9". The bitstring is aligned on a nibble boundary and terminates with a specifiic
ttern '1111'B.

1.6.5 A more complex alternative, not shown here, but commonly used, would be to embed the BCD encoding jn
octet string, with an external boolean identifying whether there is an unused nibble at the end-or not.

1.7 An encoding object of class #BITS

EPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY pattern
PATTERN bits:'00000000'B}}

1.74 This encoding object (of “class #BITS) contains an embedded encoding object of clags
CONDITIONAL-REPETITION whichspecifies the mechanism and the termination pattern.

1.7.5 As with many of the examples in this annex, there is heavy reliance here on the defaults provided in clause 23
d advantage is taken of the’ ability to define encoding objects in-line rather than separately assigning them fo
ference names which are.then used in other assignments.

1.8 An encoding-object for an octetstring type

b

: s 4 s Toal L
ncoarng—wornaryrie— T

ALIGNED TO NEXT octet
PADDING one
REPETITION-ENCODING {

D

REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER}}

.1.8.3 The value is octet-aligned using padding with ones and terminates with the end of the PDU.

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 5

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.1.9 An encoding object for a character string type

D.1.9.1 The ASN.1 assignment is:

Password ::= PrintableString
D.1.9.2 The encoding object assignment (see 23.4.1 and 23.14.1) is:

passwordEncoding #Password ::= {
ALIGNED TO NEXT octet
TRANSFORMS {{CHAR-TO-BITS AS compact
SIZE fixed-to-max
MULTIPLE OF bit }}

REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
DETERMINED BY container
USING OUTER}}

D}1.9.3 The string is octet-aligned using padding with "0" and terminates with the end of the PDUJ the characte
erjcoding is specified as "compact", so each character is encoded in 7 bits using '0000000 !B\for the first ASC
Raracter of type PrintableString, '0000001'B for the next, and so on.

[e)

D{1.10 Mapping character values to bit values
D}1.10.1 The ASN.1 assignment is:

CharacterStringToBit ::= IA5String ("FIRST" | "SECOND" | "THIRD")
D}1.10.2 The encoding object assignment (see 19.2) is:

characterStringToBitEncoding #CharacterStringToBit ::=_{
SE #IntFrom0To2
APPING VALUES {
"FIRST" TO 0,
"SECOND" TO1,
"THIRD"TO 2}
ITH integerEncoding}
[ntFrom0To2 ::= #INT (0..2)

2 =

1.10.3 The three possible abstract values are'mapped to three integer numbers and then those numbers are encoded

W
#
where "integerEncoding" is defined in D.1.5.5.
D
a fwo-bit field.

D{1.11 An encoding object for a sequence type
D

1.11.1 Here we encode a sequence type that has a field "a" which carries application semantics (i.e., is visible to t
application), but we also want-to use it as a presence determinant for a second (optional) integer field "b". There is th
a1} octet string that is octet-aligned, and delimited by the end of the PDU. We need to give specialized encodings for t
optionality of "b", and,we use the specialized encoding defined in D.1.8 (by reference to the encoding obje
"HinaryFileEncoding") for the octet string "c". We want to encode everything else with PER basic unaligned.

D}1.11.2 TheASN.1 assignment is:

-

In

e
en
he
ict

Sequencel ::= SEQUENCE {
a BOOLEAN,

b INTEGER OPTIONAL,

c RinﬂryF‘ilp

-- "BinaryFile" is defined in D.1.8.1 --}
D.1.11.3 The ECN assignments (see 17.5 and 23.11.1) are:

sequencelEncoding #Sequencel ::= {
ENCODE STRUCTURE {
b USE-SET OPTIONAL-ENCODING parameterizedPresenceEncoding {< a >},
¢ binaryFileEncoding
-- "binaryFileEncoding" is defined in D.1.8.2 --}
WITH PER-BASIC-UNALIGNED}
parameterizedPresenceEncoding {< REFERENCE:reference >} #OPTIONAL ::= {
PRESENCE

6 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

D.

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

DETERMINED BY field-to-be-used
USING reference}

1.11.4 Notice that we did not need to provide the "DECODERS-TRANSFORMS" encoding property in the

"parameterizedPresenceEncoding" encoding object, because the component "a" was a boolean, and it is assumed
that TRUE meant that "b" was present. If, however, "a" had been an integer field, or if the application value of TRUE for

n

H

actually meant that "b" was absent, then we would have included a "DECODER-TRANSFORMS" encoding property as

in D.2.6.

D.
D.

D}1.12.3 The ECN assignments (see 23.1.1 and 23.15.1) are:
choiceEncoding-1 #Choice ::= {
ENCODE STRUCTURE {

=

v

(s

My
cl

D

D
sg

agEncoding #TAG ::= ({
NCODING-SPACE
SIZE 3
MULTIPLE OF bit

KHIBITS HANDLE "Tag" AT {0 | 1|2}}

1.12 An encoding object for a choice type

1.12.1 A choice type with three alternatwes is encoded usmg the tag number of class context, encoded in a three bit

oice ::= CHOICE {
olean [1] BOOLEAN,
eger [3] INTEGER,
ring [5] IASString}

boolean [tagEncoding] USE-SET,
integer [tagEncoding] USE-SET,
string [tagEncoding] USE-SET
STRUCTURED WITH {
ALTERNATIVE
DETERMINED BY handle
HANDLE "Tag"}}
WITH PER-BASIC-UNALIGNED}

1.12.4 Perhaps a neater way of providingsthe first assignment in D.1.12.3 would be to define a new encoding objefct
t and apply it as follows:

yEncodings #ENCODINGS ::= {‘“tagEncoding } COMPLETED BY PER-BASIC-UNALIGNED
hoiceEncoding-2 #Choice ::= {
NCODE STRUCTURE {
STRUCTURED WITH {
ALTERNATIVE
DETERMINED BY handle
HANDLE "Tag"}}
WITH MyEncodings}

1.13 Encoding a bitstring containing another encoding

1.134 A" bitstring value encoded with PER basic unaligned, contains the PER basic unaligned encoding offa
quénce’ as an integral number of octets (padded with zeros) but not necessarily aligned on an octet boundary.

D

I.13.2 The ASN.T assignment are:

Sequence2 ::= SEQUENCE {

a
b

BOOLEAN,
BIT STRING (CONTAINING Sequence3) }

Sequence3 ::= SEQUENCE {

a
b

INTEGER(0..10),
BOOLEAN }

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 7

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.1.13.3 The ECN assignments (see 25.1) are:

sequence2Encoding #Sequence2 ::= {
ENCODE STRUCTURE {

b { REPETITION-ENCODING {

REPETITION-SPACE
SIZE 8
MULTIPLE OF bit}
CONTENTS-ENCODING {sequence3Encoding}

COMPLETED BY PER-BASIC-UNALIGNED}}
WITH PER-BASIC-UNALIGNED}
sequence3Encoding #Sequence3 ::= {

E JCOPESTRLOCTLIRE L
N CODT O TISOCC T UISEY

STRUCTURED WITH sequence3StructureEncoding

}
WITH PER-BASIC-UNALIGNED }
se¢quence3StructureEncoding #CONCATENATION ::= {
ENCODING-SPACE
MULTIPLE OF octet
VALUE-PADDING
JUSTIFIED left:0
POST-PADDING zero
UNUSED BITS
DETERMINED BY not-needed }

=)

1.14 An encoding object set

These encoding object sets contain encoding definitions for some types specified in‘the ASN.1 module of D.1.15.

ExamplelEncodings #ENCODINGS ::= {
rriedEncoding-1 |
egerRightAlignedEncoding |
enPositivelntegerEncoding |
enNegativelntegerEncoding |
egerRightAlignedEncoding |
eger WithHoleEncoding |
sitivelntegerEncoding |
gativelntegerEncoding |
sitiveIntegerBCDEncoding |
Encoding |
aryFileEncoding |
sswordEncoding |
aracterStringToBitEncoding |
uencel Encoding |
oiceEncoding-1 |
sequence2Encoding |
sequence3Encoding /}

D}1.15 ASN.1 definitions

D}1.15.1 This ASN.l\module groups all the ASN.1 definitions from D.1.1 to D.1.13 together. They will be encods
adcording to the enceding objects defined in the EDM of D.1.16, together with the PER basic unaligned encoding rule

Examplel-ASN1-Module {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) asnl-modulel (2)}
DEEINITIONS AUTOMATIC TAGS ::=

BEGIN
MyPDU\.//:= CHOICE {
marriedMessage Married,
altitudeMessage Altitude
- etc.
}
Married ::= BOOLEAN
Altitude ::= INTEGER (0..65535)
-- etc.
END

8 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

d

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.1.16 EDM definitions
D.1.16.1 This EDM module groups all the ECN definitions from D.1.1 to D.1.13 together.

Examplel-EDM {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) edm-modulel (3)}
ENCODING-DEFINITIONS ::=
BEGIN
EXPORTS ExamplelEncodings;
IMPORTS #Married, #Altitude, #EvenPositiveInteger, #EvenNegativeInteger,
#IntegerWithHole, #PositiveInteger, #NegativeInteger, #PositiveIntegerBCD,
#Fax, #BinaryFile, #Password, #CharacterStringToBit, #Sequencel, #Choice
FROM Examplel-ASN1-Module { joint-iso-itu-t(2) asnl(l) ecn(4) examples(5)
asnl-modulel (2) };

ExamplelEncodings #ENCODINGS ::= {
marriedEncoding-1 |
-- etc
sequence3Encoding}

-- etc
END

1.17 ELM definitions

D
The following ELM encodes the ASN.1 module defined in D.1.15, using objects specified in the EDM defined n
Djl.16.

=

*xamplel-ELM {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) elm-modulel(1l)}
LINK-DEFINITIONS ::=
BEGIN

IMPORTS
ExamplelEncodings FROM Example-EDM
{joint-iso-itu-t(2) asnl(l) een(4) examples(5) edm-modulel (3)}
#MyPDU, #Sequence2 FROM Examplel-ASN1-Module
{joint-iso-itu-t(2) asnl(l))ecn(4) examples(5) asnl-modulel(2)};
EICODE #MyPDU WITH ExamplelEncodings

COMPLETED BY PER-BASIC-UNALIGNED
D

D2 Specialization examples

The examples in this clause show how to imodify selected parts of an encoding for given types in order to minimize the
sige of encoded messages. PER basie, unaligned encodings normally produce as compact encodings as possibl
Hpwever, there are some cases when specialized encodings might be desired:

o

— There are some special semantics associated with message components that make it possible to remoye
some of the PER/generated auxiliary fields.

— The user.wants different encodings for PER auxiliary fields that are generated by default, such ps
variable-width determinant fields.

D}j2.1 Encoding by distributing values to an alternative encoding structure

D}2.1.1 The ASN.1 assignment is:

N¢rmallySmallValues ::= INTEGER (0..1000)
-- Usually values are in the range 0..63, but sometimes the wholdg

valile range

-- 1s used.

D.2.1.2 PER would encode the type using 10 bits. We wish to minimize the size of the encoding such that the normal
case is encoded using as few bits as possible.
NOTE - In this example we take a simple direct approach. A more sophisticated approach using Huffman encodings is given
in E.1.

D.2.1.3 The encoding object assignment (see 19.6) is:
normallySmallValuesEncoding-1 #NormallySmallValues ::= {

USE #NormallySmallValuesStruct-1
MAPPING DISTRIBUTION {

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 9

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

0..63 TO small,
REMAINDER TO large }
WITH PER-BASIC-UNALIGNED}

D.2.1.4 The encoding structure assignment is:

#NormallySmallValuesStruct-1 ::= #CHOICE {
small #INT (0..63),
large #INT (64..1000)}

D.2.1.5 Values which are normally used are encoded using the "small" field and the ones used only occasionally are
encoded using the "large" field. The selection between the two is done by a one-bit PER-generated selector field. The

le 0O 1C k= Cl1(O _D dand 1n ngin o 1 O 1NC NOIma d NCoded USIing

bilts and the rare case using 11 bits.

2.2 Encoding by mapping ordered abstract values to an alternative encoding structure

he same effect can be achieved more simply by using "mapping by ordered abstract values". However,)as illustratiop,
e here also modify the requirement: Arbitrarily large values may occasionally occur, and the ASN.1 assignment [is
agsumed to have its constraint removed.

D
D}2.2.1 Example D.2.1 used explicit definition of how value ranges are mapped to fields of the enceding structufe.
T
W,

D}2.2.2 The encoding object assignments (see 19.5) are:

nermallySmallValuesEncoding-2 #NormallySmallValues ::= {
UBE #NormallySmallValuesStruct-2
MAPPING ORDERED VALUES
WITH NormallySmallValuesTag-encoding-plus-PER}
nermallySmallValuesTag-encoding #TAG ::= {
ENCODING-SPACE

SIZE 1}

NormallySmallValuesTag-encoding-plus-PER #ENCODINGS, “)=
{normallySmallValuesTag-encoding}

CDMPLETED BY PER-BASIC-UNALIGNED

D}2.2.3 The encoding structure assignment is:

#NormallySmallValuesStruct-2 ::= #CHOICE {
s{al] [#TAG(0)] #INT (0..63),
lafge [#TAG(1)] #INT (0..MAX) }

D}2.2.4 The result is very similar to D.2.1xbut now the values above 64 that are mapped to the field "large" are
ericoded from zero upwards. The two altetnatives are distinguished by an index of one bit. Another difference is that the
figld "large" is left unbounded, so the encoding object can encode arbitrarily large integers, but with the cost of a lengfh
figld in the "large" case. This example can also be used if there is no upper-bound on the values that might
og¢casionally occur ("large" is not,bounded in the replacement structure). This again illustrates the flexibility availablle
to| ECN specifiers to design encadings to suite their particular requirements.

D}f2.3 Compression of\non-continuous value ranges

D}2.3.1 This example-also uses a mapping of ordered abstract values. In this case the mapping is used to comprefs
splarse values in a base ASN.1 specification. The compression could also have been achieved by defining the ASN].
alstract value/ix"*to have the application semantics of "2x", then using a simpler constraint on the ASN.1 integer typ
The assumption in this example, however, is that the ASN.1 designer chose not to do that, and we are required to applly
thie compgesSion during the mapping from abstract values to encodings.

(L.

D{2:32~ The ASN.1 assignment is:

SparseEvenlyDistributedvValueSet ::= INTEGER (2 | 4 | 6 | 8 | 10 | 12 | 14 | 16)

D.2.3.3 PER basic unaligned takes only lower bounds and upper bounds into account when determining the number of
bits needed to encode an integer. This results in unused bit patterns in the encoding. The encoding can be compressed
such that unused bit patterns are omitted, and each value is encoded using the minimum number of bits.

D.2.3.4 The encoding object assignment (see 19.5) is:

sparseEvenlyDistributedValueSetEncoding-1 #SparseEvenlyDistributedvValueSet ::= {
USE #IntFrom0To7

MAPPING ORDERED VALUES

WITH PER-BASIC-UNALIGNED}

10 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

#IntFrom0To7 ::= H#INT (0..7)

D.2.3.5 The eight possible abstract values have been mapped to the range 0..7 and will be encoded in a three-bit field.

D.2.4 Compression of non-continuous value ranges using a transform

D.2.4.1 Example D.2.3 used mapping of ordered abstract values. The same effect can be achieved by using the
#TRANSFORM class.

D.2.4.2 The encoding object assignment (see 19.4) is:

sparseEvenlyDistributedValueSetEncoding-2 #SparseEvenlyDistributedValueSet ::= {
USE #IntFrom0To7

APPING TRANSFORMS (RUNT-TO-INT divide: 2¢, INT-TO-INT decrement:1§¢

WITH PER-BASIC-UNALIGNED}

D}2.4.3 Again, the eight possible abstract values are mapped to the range 0. .7 and encoded in a three-bit fi€ld,

D}2.5 Compression of an unevenly distributed value set by mapping ordered abstract values

D}2.5.1 The ASN.1 assignment is:

SparseUnevenlyDistributedValueSet ::= INTEGER (0|3|5|6|11]8)
--|Out of order to illustrate that order does not matter in the constraint

2.5.2 The encoding should be such that there are no holes in the encoding patterns used:

D
D}2.5.3 The encoding object assignment is:

sparseUnevenlyDistributedValueSetEncoding #SparseUnevenlyDistributedValueSet ::= {
UBE #IntFrom0To5

MAPPING ORDERED VALUES

WITH PER-BASIC-UNALIGNED}

#IntFrom0ToS5 ::= #INT (0..5)

=

D}2.5.4 The six possible abstract values are mapped to the-range 0. .5 and encoded in a three-bit field. The mappit
is|as follows: 0—0, 3—>1, 552, 6—3, 84, and 11->5.

g

Df2.6 Presence of an optional component depending on the value of another component
D}2.6.1 The ASN.1 assignment is:

CoénditionalPresenceOnValue ::= SEQUENCE {

a INTEGER (0..4),

b INTEGER (1..10),

[BOOLEAN OPTIONAL

--|Condition: "c" is present if "a" is O otherwise "c" is absent --,

d BOOLEAN OPTIONAL

--|Condition: "d" is absent if "a" is”1, otherwise "d" is present -- }
--|Note the implied presence‘constraints in comments.

--|Note also that the integer'field "a" carries application semantics and
--lhas values other than zefo and one.

--|If "a" has value 0, both "c" and "d" are present.

--|If "a" has value I both "c" and "d" are missing.

--|If "a" has yalties 3 or 4, "c" is absent and "d" is present.

--|These conditions are very hard to express formally using ASN.1 alone.

D}2.6.2-/ The component "a" acts as the presence determinant for both components "¢" and "d", but a PER encoding
wpuld’produce two auxiliary bits for the optional components. We require an encoding in which these auxiliary bits aIe
absent.

D.2.6.3 The encoding object assignment is:

conditionalPresenceOnValueEncoding #ConditionalPresenceOnValue ::= {
ENCODE STRUCTURE {
c USE-SET OPTIONAL-ENCODING is-c-present{< a >},
d USE-SET OPTIONAL-ENCODING is-d-present{< a >}}
WITH PER-BASIC-UNALIGNED}
is-c-present {< REFERENCE : a >} #OPTIONAL ::= {
PRESENCE
DETERMINED BY field-to-be-used

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 11

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

USING a
DECODER-TRANSFORMS {{INT-TO-BOOL TRUE-IS {0}}}}
is-d-present {< REFERENCE : a >} #OPTIONAL ::= ({
PRESENCE
DETERMINED BY field-to-be-used
USING a

DECODER-TRANSFORMS {{INT-TO-BOOL TRUE-IS {0 |2 | 3 | 4}}}}

D.2.6.4 Here we have a simple, formal, and clear specification of the presence conditions on "¢" and "d" which can be
understood by encoder-decoder tools. The ASN.1 comments cannot be handled by tools. The provision of optionality
encoding for "¢" and "d" means that the PER encoding for OPTIONAL is not used in this case, and there are no auxiliary
bits.

D}2.6.5 The parameterized encoding objects "is-c-present" and "is-d-present" specify how presence of)the
cqmponents is determined during decoding. Note that no transformation is needed (nor permitted) for encodingbeoaufe
the determinant has application semantics (i.e., it is visible in the ASN.1 type definition). However, a good encoding
topl will police the setting of "a" by the application, to ensure that its value is consistent with the presence.orabsence pf
¢" and "4d" that the application code has determined.

Df2.7 The presence of an optional component depends on some external condition
D}2.7.1 The ASN.1 assignment is:

CoénditionalPresenceOnExternalCondition ::= SEQUENCE ({

a BOOLEAN OPTIONAL

"on -

-- Condition: "a" is present if the external condition "C" holds,
-- otherwise "a" absent -- }
--|Note that the presence constraint can only be supplied in comment.

D}2.7.2 The application code for both a sender and a receiver can evaluate'the condition "C" from some informatign
oytside the message. The ECN specifier wishes tools to invoke such gode/to determine the presence of "a", rather thjn
uging a bit in the encoding.

D}2.7.3 The encoding object assignment is:

conditionalPresenceOnExternalConditionEncoding
(ConditionalPresenceOnExternalCondition ::= {

NCODE STRUCTURE {

a USE-SET OPTIONAL-ENCODING is>a-present}
WITH PER-BASIC-UNALIGNED}

is-a-present #OPTIONAL ::=

NPN-ECN-BEGIN {joint-iso-itu-t(2) asn1(1) een(4) examples(5) user-notation(7)}
extern C;

exXtern channel;

/*|a is present only if channel is equal to some value ""C" */

ing is_a_present() {

if(channel == C) retuin l;

else return 0; }

NDN-ECN-END

= 3t

D}2.7.4 Because the-¢ondition is external to the message, the encoding object for determining presence of the
cqmponent "a" can only be specified by a non-ECN definition of an encoding object. However, while this saves bits ¢n
thie line, many-designers would consider it better to include the bit in the message to reduce the possibility of error, and

to| make testing and monitoring easier. Such choices are for the ECN specifier.

Dif2.8 A variable length list

DI2.81 The ASN.1 assignment is:

EnclosingStructureForList ::= SEQUENCE {
list VariableLengthList}
VariablelLengthList ::= SEQUENCE (SIZE (0..1023)) OF INTEGER (1..2)

-- Normally the list contains only a few elements (0..31),
-— but it might contain many.

D.2.8.2 PER basic unaligned encodes the length of the list using 10 bits even if normally the length is in the range
0..31. We wish to minimize the size of the encoding of the length determinant in the normal case while still allowing
values which rarely occur.

12 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.2.8.3 The encoding object assignment is:

enclosingStructureForListEncoding #EnclosingStructureForList ::= {
USE #EnclosingStructureForListStruct
MAPPING FIELDS WITH {

ENCODE STRUCTURE {

aux-length list-lengthEncoding,
list {
ENCODE STRUCTURE {
STRUCTURED WITH {
REPETITION-ENCODING {
REPETITION-SPACE
———————————————————————————————— St variable-with-determinant
MULTIPLE OF repetitions
DETERMINED BY field-to-be-set
USING aux-length}}}
WITH PER-BASIC-UNALIGNED }}

WITH PER-BASIC-UNALIGNED}}
-- First mapping: use of an encoding structure with an explicit length
-- determinant.
1ist-lengthEncoding #AuxVariablelListLength ::= {
UBE #AuxVariableListLengthStruct -- See D.2.8.4.
MAPPING ORDERED VALUES
WITH PER-BASIC-UNALIGNED}

-- Second mapping: list length is encoded as a choice between

-- a short form "normally" and a long form "sometimes",

D}2.8.4 The encoding structure assignments are:

#EnclosingStructureForListStruct ::= #CONCATENATION {
ayx-length #AuxVariableListLength,

ligt #VariableLengthList}

#AuxVariableListLength ::= #INT (0..1023)
#AuxVariableListLengthStruct ::= #ALTERNATIVES /{

nqrmally #INT (0..31),
sometimes #INT (32..1023)}

D}2.8.5 The length determinant for the component "1ist" is variable. The length determinant for short list values fis
erjcoded using 1 bit for the selection determinant and S bits for the length determinant. The length determinant for long
ligt values is encoded using 1 bit for the selectiondéterminant and 10 bits for the length determinant.

D}2.9 Equal length lists
D}2.9.1 The ASN.1 assignment is:

EquallLengthLists ::= SEQUENCE {
lijtl Listl1,
ligt2 List2}

(QONSTRAINED BY {
-- "list]1" and "list2" always have the same number of elements. --

D
Listl ::= SEQUENCE (SIZE (0..1023)) OF BOOLEAN
List2 ::= SEQUENCE (SIZE (0..1023)) OF INTEGER (1..2)

D}2.9.2 Both*"1ist1" and "1list2" have the same number of elements, and the ECN specifier wishes to use a singlle
lepgth determinant for both lists. (PER would encode length fields for both components.)

D}2.933 The encoding object assignments are:

equalLengthListsEncoding #EqualLengthLists ::= {
USE #EqualLengthListsStruct
MAPPING FIELDS
WITH {
ENCODE STRUCTURE {

listl list1Encoding{< aux-length >},

list2 list2Encoding{< aux-length >}}
WITH PER-BASIC-UNALIGNED}}

The first encoding object is defined with two parameterized encoding objects of classes #Listl and #List2
respectively using the length field as an actual parameter. Those two encoding objects use a common parameterized
encoding object of class #REPETITION.

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 13

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

listlEncoding {< REFERENCE : length >} #Listl ::= ({
ENCODE STRUCTURE { USE-SET

STRUCTURED WITH list-with-determinantEncoding {< length >}}
WITH PER-BASIC-UNALIGNED}
list2Encoding {< REFERENCE : length >} #List2 ::= {
ENCODE STRUCTURE { USE-SET

STRUCTURED WITH list-with-determinantEncoding {< length >}}
WITH PER-BASIC-UNALIGNED}
list-with-determinantEncoding {< REFERENCE : length-determinant >} #REPETITION ::= {
REPETITION-ENCODING {

REPETITION-SPACE

SIZE variable-with-determinant

MULTIPLE OF repetitions
DETERMINED BY field-to-be-set
USING length-determinant}}

D}2.9.4 The encoding structure assignments are:

#EquallengthListsStruct ::= #CONCATENATION {
ayx-length #AuxListLength,

li}tl #List1,

ligt2 #List2}

#AuxListLength ::= #INT (0..1023)

D{2.10 Uneven choice alternative probabilities

D}2.10.1 The ASN.1 assignment is:

closingStructureForChoice ::= SEQUENCE {

cHoice UnevenChoiceProbability }
UnevenChoiceProbability ::= CHOICE ({

mmonl INTEGER (1..2),
mmon2 BOOLEAN,

mmon3 BOOLEAN,

rel BOOLEAN,

re2 INTEGER (1..2),
re3 INTEGER (1..2)}

D}2.10.2 The alternatives of the choice type have different selection probabilities. There are alternatives which appe
vgry frequently ("frequentl" and "frequént2"), or are fairly common ("commonl", "common2" and "common3"),
apjpear only rarely ("rarel", "rare2" afid "rare3"). The encoding for the alternative determinant should be such th
se alternatives that appear frequently’have shorter determinant fields than those appearing rarely.

D}2.10.3 The encoding structurd.assignments are:

#EnclosingStructureForChoiceStruct ::= #CONCATENATION {
x-selector #AuxSelector,

oice #UneyenChoiceProbability }

--|Explicit auxiliary alteinative determinant for "choice".

#AuxSelector ‘= #INT (0..7)

D}2.10.4 Theencoding object assignments are:

enclosingStructureForChoiceEncoding #EnclosingStructureForChoice ::= {
UBE #EnclosingStructureForChoiceStruct

APPING EIELDS

WITH {
ENCODE STRUCTURE {
aux-selector auxSelectorEncoding,
choice {
ENCODE STRUCTURE {
STRUCTURED WITH {
ALTERNATIVE
DETERMINED BY field-to-be-set
USING aux-selector}}
WITH PER-BASIC-UNALIGNED }}

14 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

WITH PER-BASIC-UNALIGNED} }
-- First mapping: inserts an explicit auxiliary alternative
-- determinant.
-- This encoding object specifies that an auxiliary determinant is used
-- as an alternative determinant.
auxSelectorEncoding #AuxSelector ::= {

USE #BITS

-—- ECN Huffman

-- RANGE (0..7)

-- (0..1) IS 60%

-— (2..4) IS 30%

-- (5..7) IS 10%

—— End Definition

-- Mappings produced by "ECN Public Domain Software for Huffman encodingsy
-- version 1"

-— (see E.8)
MAPPING TO BITS {
0 .. 1TO '10'B .. '11'B,
2 .. 4TO '001'B .. '011'B,
5 TO '0001'B,
6 .. 7 TO '00000'B .. '00001'B}

WITH bitStringEncoding }

-- Second mapping: Map determinant indexes to bitstrings
bjtStringEncoding #BITS ::= {

REPETITION-ENCODING {

REPETITION-SPACE }}

the public domain ECN Huffman generator (see E.8) to determine the optimal bit-patterns to be used for each range
integer.

traffic depends on what the other parts of the protocol consist of:) Whilst it costs nothing in implementation effort
pioduce and use optimal encodings (because tools can be used)ythe ultimate gains may not be significant.

D{2.11 A version 1 message

D}2.11.1 ASN.1 assignment:

VérsionlMessage ::= SEQUENCE {
ietl BOOLEAN,
iet2 INTEGER (0..20)}

We want to use PER basic unaligned(but intend to add further fields in version 2, and wish to specify that version
ystems should accept and ignore any additional material in the PDU.

w

D}2.11.2 We use two encodifig structures to encode the message: one is the implicitly generated encoding structu
c@ntaining only the version-1 fields, and the second is a structure that we define containing the version 1 fields plus
vyriable-length padding.field that extends to the end of the PDU. The version 1 system uses the first structure fi
efjcoding, and the sécond for decoding. Apart from this approach to extensibility, all encodings are PER bas
unpaligned. The version 1 decoding structure is:

#YersionlDecodingStructure ::= #CONCATENATION {
iet1 #BOOL,
ief2 #INT (0..20),

D}2.10.5 In the above, we quantified "frequent”, "common", and "rare" as 60%, 30%, and 10%, respectively, and us¢

D}2.10.6 The above is in a mathematical sense optimal, but how, miich difference it makes as a percentage of tofal

—_—

re
a
br
lic

flTure-additions #PAD}

D 2112 Tl s 1os 4 : 4
ez T LI TV UIICUUTITE U0 LU T AS STEITHIUITTS At

versionlMessageEncoding #VersionlMessage ::= ({
ENCODE-DECODE

{ENCODE WITH PER-BASIC-UNALIGNED }
DECODE AS IF decodingSpecification}
decodingSpecification #VersionlMessage ::= {
USE #Version1DecodingStructure
MAPPING FIELDS
WITH {

ENCODE STRUCTURE {

future-additions additionsEncoding{< OUTER >} }
WITH PER-BASIC-UNALIGNED}}

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 15

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

additionsEncoding {< REFERENCE:determinant >} #PAD ::= ({
ENCODING-SPACE

SIZE encoder-option-with-determinant

DETERMINED BY container

USING determinant}

D.2.12 The encoding object set

This encoding object set contains encoding definitions for some of the types specified in the ASN.1 module named

"Example2-ASN1-Module" (the rest is encoded using PER basic unaligned).

Example2Encodings #ENCODINGS ::= ({

pnding-l !

sparseEvenlyDistributedValueSetEncoding |
sparseUnevenlyDistributedValueSetEncoding |
cdnditionalPresenceOnValueEncoding |
cdnditionalPresenceOnExternalConditionEncoding |
erjclosingStructureForListEncoding |
equalLengthListsEncoding |
erjclosingStructureForChoiceEncoding |
vdrsionlMessageEncoding }

D}2.13 ASN.1 definitions
This module groups together all the ASN.1 definitions from D.2.1 to D.2.11 that will be encoded according to t

utaligned encoding rules.

Example2-ASNl1-Module {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) asnl-module2(5)}
DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

ExampleMessages ::= CHOICE {

n¢rmallySmallValues NormallySmallValues,

sparseEvenlyDistributedValueSet SparseEvenlyDistributedValueSet

--letc.

}

N¢rmallySmallValues ::= INTEGER (0..1000)

SparseEvenlyDistributedvValueSet ::= INTEGER (2 | 4 | 6 | 8 | 10 | 12 | 14 | 16)
-- etc.
END

D|2.14 EDM definitions

Example2-EDM {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) edm-module2(6)}
ENCODING-DEFINITIONS ::=

ericoding objects defined in the EDM, and also lists the other ASN.1 definitions that Willbe encoded with the PER basii

nc
1Cc

BEGIN
EXPORTS Example2Encedings;
IMPORTS #NormallySmallValues, #SparseEvenlyDistributedvValueSet,
#$parseUnevenlyDistributedValueSet, #ConditionalPresenceOnValue,
#ConditionalPresence@nExternalCondition,
#InclosingStructukeForList, #EqualLengthLists, #EnclosingStructureForChoice,
#Yersion1Message, #List1, #List2, #VariableLength,#UnevenChoiceProbability
FROM Example2-ASN1-Module
{ipint-ise-ifu-t(2) asn1(1) ecn(4) examples(5) asnl-module2(5)};
Example2Encodings #ENCODINGS ::= {
n¢rmallySmallValuesEncoding-1 |
-- etc.
versionl MessageEncoding}

-- etc.

END

16 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.2.15 ELM definitions
The following ELM is associated with the ASN.1 module defined in D.2.13, and the EDM defined in D.2.14.

Example2-ELM {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) elm-module2 (4)}
LINK-DEFINITIONS ::=
BEGIN
IMPORTS
Example2Encodings FROM Example2-EDM
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module2(6)}
#ExampleMessages FROM Example2-ASN1-Module
{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asnl-module2(5)};
ENCODE j#{ExampleMessages WITH Example2Encodings
CPOMPLETED BY PER-BASIC-UNALIGNED

END
D3 Explicitly generated structure examples
The examples described in D.3.1 to D.3.4 show the use of explicitly generated structures to replace\anencoding class jn

an} implicitly generated encoding structure with a synonymous class. We then produce specidlized encodings by
cluding in the encoding object set an object of the synonymous class.

=3

The examples are presented using the following format:

— The "ASN.1 type assignment". This gives the original ASN.1 type definition.

— The requirement. This lists the required changes from the encodings provided by PER basic unaligned.
— Modification of the implicitly generated encoding structure to/preduce a new encoding structure.

— The encoding class and encoding object assignments.

Di{3.1 Sequence with optional components defined by a pointer

D}3.1.1 The ASN.1 assignment is:

Séquencel ::= SEQUENCE {
cdmponentl INTEGER OPTIONAL,
cdmponent2 INTEGER OPTIONAL,
cdmponent3 VisibleString }

D}3.1.2 Instead of using the PER bit-map forthe two components of type integer marked OPTIONAL, the presence and
position of those components are detegmined by pointers at the beginning of the encoding of the sequence. Ea¢h
pdinter contains 0 (component absent) or\a*relative offset to the encoding of the component which begins on an octet

D}3.1.4 Then twolencoding objects are defined. The first, "integer-with-pointer-concat-encoding" of class
#Integer-with-pointer-concat receives three parameters: the replaced element, the pointer and the current
cqmbined enéeding object set (see 22.1.3.7). The second, "integer-optionality-encoding" of class "#Integef-
optionality" receives one parameter, the pointer, which is used to determine the presence of the component. Singe
PER-BASIC-UNALIGNED does not contain an encoding object of class #CONCATENATION with optional components,| a
third.€ncoding object of class #CONCATENATION needs to be defined. This object "concat" uses default settings.

D.3.1.5 The encoding class and encoding object assignments are:

sequencel-encoding #SEQUENCE ::= ({

REPLACE OPTIONALS

WITH #Integer-with-pointer-concat
ENCODED BY integer-with-pointer-concat-encoding
INSERT AT HEAD #Pointer

ENCODING-SPACE

SIZE variable-with-determinant

DETERMINED BY container

USING OUTER }

#Pointer ::= #INTEGER

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 17

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

#Integer-with-pointer-concat {< #Element >} ::= #CONCATENATION {
element #Element OPTIONAL-ENCODING #Integer-optionality }
#Integer-optionality ::= #OPTIONAL

integer-optionality-encoding{< REFERENCE: start-pointer >}
#Integer-optionality ::= {
ALIGNED TO ANY octet
START-POINTER start-pointer
PRESENCE DETERMINED BY pointer}
integer-with-pointer-concat-encoding
{< #Element, REFERENCE:pointer, #ENCODINGS:EncodingObjectSet >}
#Integer-with-pointer-concat{< #Element >} ::= {
ENCODE STRUCTURE {
—element BSESEFOPHONAL- ENCODNG—"———————————
integer-optionality-encoding{< pointer >}
STRUCTURED WITH concat}
WITH EncodingObjectSet}
coéncat #CONCATENATION ::= {
ENCODING-SPACE }
D
D

3.2 Addition of a boolean type as a presence determinant

3.2.1 The ASN.1 assignment is:

Séquence2 ::= SEQUENCE {
cdmponentl BOOLEAN OPTIONAL,
camponentz INTEGER,

cdmponent3 VisibleString OPTIONAL }

D}3.2.2 Instead of using the PER bit-map for components marked "OBTIONAL", the presence of an optional
cgmponent is related to the value of a unique presence bit which is equakfo”l (component absent), or 0 (componept
piesent). In that case, the presence bit is inverted.

D}3.2.3 The encoding structures and encoding objects are defined.as\follows:

The encoding class #OPTIONAL is renamed as #Sequence2-optional in the "RENAMES" clause (see D.3.7). Therefore
the "#Sequence2" class is implicitly replaced with:

#$equence2 ::= #SEQUENCE {

cdmponentl #BOOL OPTIONAL-ENCODING. #Sequence2-optional,

camponentz #INTEGER,

cdmponent3 #VisibleString OPTIONAL-ENCODING #Sequence2-optional}

where:

#$equence2-optional ::= #OPTIONAL

Then an encoding object of class,"" #Sequence2-optional" is defined; that object, using the replacement group,

regplaces the component encoding definition (see 23.11.3.2) with the class "Optional-with-determinant".

sequence2-optional=-encoding #Sequence2-optional ::= ({
EPLACE STRUCTURE

ITH #Optional-with-determinant

NCODED BY optional-with-determinant-encoding}

b=l

That class, which is parameterized by the original component, belongs to the concatenation category and has two
cgmponents:the determinant (boolean) and the original component.

#0ptional-with-determinant{< #Element >} ::= #CONCATENATION {

ddterminant #BOOLE AN7

component #Element OPTIONAL-ENCODING #Presence-determinant}

where:

#Presence-determinant ::= #OPTIONAL

Then an encoding object of class "#Optional-with-determinant" is defined; that object has two dummy
parameters: the class of the component and an encoding object set used to encode everything except determinant and
component optionality:

optional-with-determinant-encoding

18 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

{<#Element, fENCODINGS: Sequence2-combined-encoding-object-set >}
#Optional-with-determinant {< #Element >} ::={
ENCODE STRUCTURE {
determinant determinant-encoding,
component USE-SET
OPTIONAL-ENCODING if-component-present-encoding{< determinant >} }
‘WITH Sequence2-combined-encoding-object-set }

The encoding is completely specified by the definition of encoding objects "if-component-present-encoding" and
"determinant-encoding":

if-component-present-encoding {<REFERENCE:presence-bit>} #Presence-determinant ::= {
PRESENCE

DETERMINED BY field-to-be-set

USING presence-bit}

de¢terminant-encoding #BOOLEAN ::= ({

ENCODING-SPACE

SIZE 1

MULTIPLE OF bit

TRUE-PATTERN bits:'0'B

FALSE-PATTERN bits:'1'B}

)

3.3 Sequence with optional components identified by a unique tag and delimited by a’length field
D}3.3.1 The ASN.1 assignments are:

O¢tet3 ::= OCTET STRING (CONTAINING Sequence3)
S¢quence3 ::=SEQUENCE {
amponentl [0] BIT STRING (SIZE(0..2047)) OPTIONAL,

o6

mponent2 [1] OCTET STRING (SIZE(0..2047)) OPTIONAL,
mponent3 [2] VisibleString (SIZE(0..2047)) OPTIONAL }

(<]

D}3.3.2 Each component is identified by a tag on four bits and the total length of the sequence is specified with a field
of eleven bits which precedes the encoding of the first componentt

D}3.3.3 The encoding classes #OCTETS, #OPTIONAL arnid #TAG are renamed respectively as #Octets3,
#$equence3-optional and #TAG-4-bits in the "RENAMES" clause (see D.3.7). Then encoding objects of the ngw
ericoding classes are defined.

D}3.3.4 The encoding class and encoding object dssignments for the octet string are:

+*

Dctets3 ::= #OCTET-STRING
ttets3-encoding #Octets3 ::= {
REPETITION-ENCODING {
REPLACE STRUCTURE
WITH #Octets-with-length

ENCODED BY octets-with-length-encoding}}
#Pctets-with-length{< #Element >} ::= #CONCATENATION {
lepgth #INT(0..2047),
odtets #Element}
o¢tets-with-lengthrencoding{< #Element >} #Octets-with-length{< #Element >} ::= {
ENCODE STRUCTURE {

octets.octets-encoding{< length >}}

WITH PER-BASIC-UNALIGNED}
o¢tets-encoding{< REFERENCE:length >} #OCTETS ::= ({
REPETITION-ENCODING {
REPETITION-SPACE

SIZE variable-with-determinant

MULITIFLE Ur 0Clcl
DETERMINED BY field-to-be-set
USING length} }

0

D.3.3.5 The encoding class and encoding object assignments for the sequence are:
sequence3-encoding #Sequence3 ::= {

ENCODE STRUCTURE {

STRUCTURED WITH sequence3Structure-encoding }
WITH Sequence3-encodings

COMPLETED BY PER-BASIC-UNALIGNED }
Sequence3-encodings #ENCODINGS ::= {
sequence3-optional-encoding |

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 19

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

tag-4-bits-encoding }
#Sequence3-optional ::= #OPTIONAL
sequence3-optional-encoding #Sequence3-optional ::= {
PRESENCE

DETERMINED BY container

USING OUTER}
#TAG-4-bits ::= #TAG
tag-4-bits-encoding #TAG-4-bits o= |
ENCODING-SPACE

SIZE 4}

iter-encoding #OUTER ::= {
DDED BITS DECODING silently-ignore }

o
A
D{3.4 Sequence-of type with a count
D}3.4.1 The ASN.1 assignment is:

SéquenceOfIntegers ::= SEQUENCE (SIZE(0..63)) OF INTEGER(0..1023)

D}3.4.2 The number of elements is encoded in a six-bit field preceding the encoding of the' first element.

ericoding object of the new encoding class is defined. The encoding class and encoding/object assignments are:

#$equenceOf ::= $REPETITION
s¢quenceOf-encoding #SequenceOf ::= {
REPETITION-ENCODING {
REPLACE STRUCTURE
WITH #SequenceOf-with-count
ENCODED BY sequenceOf-with-count-encoding}}
#$equenceOf-with-count{< #Element >} ::= #CONCATENATION {
cdunt #INT(0..63),
elements #Element }
s¢quenceOf-with-count-encoding{< #Element >}
#Y§equenceOf-with-count{< #Element >} ::= {
ENCODE STRUCTURE {
elements {
ENCODE STRUCTURE {
STRUCTURED WITH elements-encoding{< count >}}
WITH PER-BASIC-UNALIGNED}}
WITH PER-BASIC-UNALIGNED}
lements-encoding{< REFERENCE:count >} #REPETITION ::= {
REPETITION-ENCODING {
REPETITION-SPACE
SIZE variable-with-determinant
MULTIPLE OF repetitions
DETERMINED BY field-to-be-set
USINGjcount}}

]

D}3.4.4 The-count field is encoded using the PER encoding rules for an integer type with the value range constrai
(0..63), which gives a six-bit field.

D{3.5 Encoding object sets

The encoding object sets contain encoding objects of classes defined in the EDM module. (Only the first one contai

D}3.4.3 The encoding class #SEQUENCE-OF is renamed as #SequenceOf in the "RENAMES" clause (see D.3.7). An

the encoding object of class #SEQUENCE.)

Example3Encodings-1 #ENCODINGS :
sequencel-encoding }

Example3Encodings-2 #ENCODINGS
concat
sequence2-optional-encoding
octets3-encoding
sequenceOf-encoding
sequence3-encoding
outer-encoding }

{

{

20 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.3.6 ASN.1 definitions

This module groups together the ASN.1 definitions from D.3.1 to D.3.4 that will be encoded according to the encoding

objects defined in the EDM of D.3.7.

Example3-ASNl1-Module {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) asnl-module3(9)}

DEFINITIONS
AUTOMATIC TAGS ::=
BEGIN
Sequencel ::= SEQUENCE {
componentl BOOLEAN OPTIONAL,
component2 INTEGER OPTIONAL,
coqmponentd VisibleString OPTIONALL

-- efc.

END

D|3.7 EDM definitions

Example3-EDM {joint-iso-itu-t(2) asnl(l) ecn(4) examples(5) edm-module3(10)}
ENCODING-DEFINITIONS ::=
BEGIN
EXPORTS Example3Encodings-1, Example3Encodings-2;
RENAMES
#OPTIONAL AS #Sequence2-optional
IN #Sequence2
#OCTET-STRING AS #Octets3
IN ALL
#OPTIONAL AS #Sequence3-optional
IN #Sequence3
#TAG AS #TAG-4-bits
IN #Sequence3
FROM Example3-ASN1l-Module

Example3Encodings-1 #ENCODINGS ::= {
sequencel-encoding }
Example3Encodings-2 #ENCODINGS
cdncat |

--letc.

sequenceOf-encoding }

--elc.

{

END

D}3.8 ELM definitions
The following ELM is associated with the ASN.1 module defined in D.3.6 and the EDM defined in D.3.7.

Example3-ELM {joint=iso-itu-t(2) asnl(l) ecn(4) examples(5) elm-module3(8)}
LINK-DEFINITIONS\ :.:=
BEGIN

IMPORTS Example3Encodings-1, Example3Encodings-2, #Sequencel, #Sequence2,
ctet3, #Sequence3, #SequenceOfIntegers

FROM_.Example3-EDM
{ joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module3(10) };

=

{ joint-iso-itu-t(2) asnl(l).’écn(4) examples(5) asnl-module3(9)};

ENCODE #Sequencel
WITH Example3Encodings-1
COMPLETED BY PER-BASIC-UNALIGNED

ENCODE #Sequence2, #Octet3, #Sequence3, #SequenceOfIntegers
WITH Example3Encodings-2

COMPLETED BY PER-BASIC-UNALIGNED

END

Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

21

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

D.4 A more-bit encoding example

D4.1 Description of the problem

D.4.1.1 This example is taken from ITU-T Rec. Q.763 (Signalling System No. 7 — ISDN User Part formats and

codes).

D.4.1.2 There is a requirement to produce the following encoding as a series of octets:

8 7 6 5 4 3 2 1
extension spare protocol profile
Indticator

D}4.1.3 Bit 8 is an "extension indicator". If it is 0, there is a following octet in the same format. If it is 1, this is-the 13
ogtet of the series.
carlier elements TRUE. Thus if we use a PER-encoded boolean for the more-bit, we need to apply the "not" transform.

D}4.1.4 This is the traditional use of a "more bit", although with the perhaps unusual zero for\"more" and one ff
"lpst".

—
=

ere were no "spare” bits, but use of the real example was preferred here.

D}4.1.6 There are four approaches to solving this problem.

=)

4.1.7 The first approach is to include a component in the ASN.1 specification-to provide the more-bit determina
ste D.4.2). This approach is deprecated for two reasons. The first is that-the ASN.1 type definition contains
mponent which does not carry application semantics. The second is that\it requires the application to (redundantl
gt this field correctly in each element of the more-bit repetition.

~

v O

D}4.1.8 The second approach is to use value mappings from ‘an implicitly generated structure to a user-defin
ericoding structure which includes the more-bit determinant (see D:4.3).

D}4.1.9 The third approach is to use the replacement meghanism to include the more-bit determinant (see D.4.4).
D}4.1.10 The fourth approach is to use head-end insertion of the more-bit determinant. (This is not illustrated here.)

D}4.1.11 All of the last three approaches have thei?own advantages, and choosing between them is largely a matter
style.

Di{4.2 Use of ASN.1 to provide the meore-bit determinant

D}4.2.1 In this approach, the ASN.]l(Teflects all fields in the encoding. This is generally considered "dirty", as fiel
which should be visible only in the encoding are visible to the application, reducing the "information hiding" that is tl
Fength of ASN.1. In this case the-ASN.1 is:

2}
=

ProfileIndication ::= SEQUENCE OF
SEQUENCE {

mpre-bit BOOLEAN,

reserved BIT STRING (SIZE (2)),
pyotocol-Profile<ID™ * INTEGER (0..31) }

D}4.2.2 The,implicitly generated encoding structure is:

NOTE — The PER encoding of boolean is 1 for TRUE and 0 for FALSE, and ECN requires that the last elemenreturns FALSE,

D}4.1.5 The example would be simplified if the use of the "extension indicator" had zero andone interchanged, and|i

st

pr

a
y)

bd

ne

#ProfileIndication ::= #SEQUENCE-OF {
#$EQUENCE {

mere-bit H#BOOLEAN:

reserved #BIT-STRING (SIZE (2)),

protocol-Profile-ID #INTEGER (0..31) } }

D.4.2.3 First, we produce a generic encoding object for #SEQUENCE-OF that uses a more-bit in a field identified as
parameter of the encoding object, and with BOOLEAN TRUE (encoded as a single "1" bit by PER) for the last element:

more-bit-encoding {< REFERENCE:more-bit >} #SEQUENCE-OF ::= {

REPETITION-ENCODING {
REPETITION-SPACE

22 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

a

https://iecnorm.com/api/?name=9e6db0ec06bc5c6b54a9e4b30897f02a

