INTERNATIONAL STANDARD

ISO 10202-3

First edition 1998-07-01

Financial transaction cards Security architecture of financial transaction systems using integrated circuit cards —

Part 3:

Cryptographic key relationships

Cartes de transactions financières — Architecture de sécurité des systèmes de transactions financières utilisant des cartes à circuit intégré —

Partie 3: Relations avec les clés de chiffrement

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

0115010202:3:1998

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10202-3 was prepared by Technical Committee ISO/TC 68, *Banking, securities and other financial services*, Subcommittee SC 6, *Retail financial services*.

ISO 10202 consists of the following parts, under the general title *Financial transaction cards* — *Security architecture of financial transaction systems using integrated circuit cards*:

- Part 1: Card life cycle
- Part 2: Transaction process
- Part 3: Cryptographic key relationships
- Part 4: Secure application modules
- Part 5: Use of algorithms
- Part 6: Cardholder verification
- Part 7: Key management
- Part 8: General principles and overview

Annexes A and B form an integral part of this part of ISO 10202. Annexes C and D are for information only.

© ISO 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch

Printed in Switzerland

Financial transaction cards — Security architecture of financial transaction systems using integrated circuit cards —

Part 3:

Cryptographic key relationships

1 SCOPE

This part of ISO 10202 specifies the minimum cryptographic key relationship requirements for security architectures of financial transaction systems using ICCs and, in addition, provides options from which the card issuer or application supplier can select those key relationships appropriate to their application.

Cryptographic key relationships may be established during the card life cycle and the SAM life cycle between the parties responsible for ICC and SAM manufacture and preparation, and for the transaction process.

Whenever a cryptographic key relationship is referred to in this document that relationship is achieved by establishing a mutual secret key for a symmetric algorithm or an appropriate key from a public/secret key pair for an asymmetric algorithm.

NOTE: Whenever the card issuer or application supplier is referred to in this International Standard these terms encompass agents appointed by either.

The key relationships which are covered by this part of ISO 10202 are given in figure 1 (for the ICC and SAM manufacture and preparation) and figure 2 (for the transaction process). The Card Accepting Device (CAD) of figure 2 consists of one part that acts as an agent for the acquirer (outside the scope of this International Standard) and, optionally, one part that acts as an agent for the application supplier: a Secure Application Module (SAM). ASAM is either

- a physical device supplied by the SAM provider or
- a logical functionality in the CAD security module.

It is assumed that the SAM is the responsibility of the application supplier.

Two normative annexes are attached to this part of ISO 10202, namely annex A and B, tables of key relationships. Two informative annexes are attached; namely, annex C, an example of key layered structure in an ICC, and annex D, an example of how to use cryptographic keys.

2 NORMATIVE REFERENCES

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 10202. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 10202 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

- ISO 9807 (1991) Banking and related financial services Requirements for message authentication (retail)
- ISO 9992 -2 Financial transaction cards Messages between the Integrated Circuit Card and the Card Accepting Device Functions messages (commands and responses), data elements and structures.
- ISO 10202 -1 (1991) Financial Transaction Cards Security architecture of financial transaction system using Integrated Circuit Cards Card Life Cycle.
- ISO 10202 -2 Financial Transaction Cards Security architecture of financial transaction system using Integrated Circuit Cards Transaction Process.
- ISO 10202 -4 Financial Transaction Cards Security architecture of financial transaction systems using Integrated Circuit Cards Secure Application Modules.
- ISO 10202 -5 Financial Transaction Cards Security architecture of financial transaction systems using Integrated Circuit Cards Use of Algorithms.
- ISO 10202 -6 Financial Transaction Cards Security architecture of financial transaction systems using Integrated Circuit Cards Cardholder Verification.

ISO 10202 -7 Financial Transaction Cards - Security architecture of financial transaction systems using Integrated Circuit Cards - Key Management.

ISO 10202 -8 Financial Transaction Cards - Security architecture of financial transaction systems using Integrated Circuit Cards - General Principles and Overview.

STANDARDS SO. COM. Click to View the full POF of SO 10707.3: 1998

3 DEFINITIONS AND ABBREVIATIONS

3.1 For the purpose of the International Standard the following definitions apply.

ciphertext

Enciphered plaintext.

cryptographic key

A parameter used in conjunction with a cryptographic algorithm for executing cryptographic transformations.

decipherment

The process of transforming ciphertext into plaintext.

encipherment

The process of transforming plaintext into ciphertext for confidentiality.

key

(see cryptographic key)

Secure Application Module (SAM)

A physical module (or a logical functionality in the CAD) intended to contain algorithm(s), related keys, security procedures and information to protect an application in such a way that unauthorised access is not possible. In order to achieve this the module shall be physically and logically protected.

transaction acquirer

Institution which collects the data relating to a financial transaction from the card acceptor for settlement purposes.

3.2 For abbreviations used in this part of 10202 such as CDF, ADF, ICC, see ISO 10202-1 (1991).

The following letters are used as abbreviations in the text which follows:

A: application supplier

B: trusted third party for public key certification

C: ICC

D: designer

E: embedder/IC assembler

H: cardholder I: card issuer

K: secret key used with a symmetric algorithm

M: manufacturer N: SAM initialiser

P: public key used with an asymmetric algorithm

O: transaction acquirer R: card personaliser

S: secret key used with an asymmetric algorithm

T: CAD U: SAM

VA: ADF activator VC: CDF activator W: SAM activator

GENERAL SECURITY PRINCIPLES 4

the full PDF of 150 AD202.3: A998 The security procedures provided in this part of ISO 10202 are governed by the following principles:

- a) Those principles applicable to the ICC, see 10202 -2
- b) Those principles applicable to the SAM, see 10202 -4
- c)The information obtainable by any means from one ICC shall not compromise the security of any other ICC or SAM system or the combination of such systems.
- d)Access to a CDF or an ADF shall always be subject to the logical access controls of the CDF or ADF.
- e) While processing in one given ADF, the memory belonging to other ADF's can neither be read nor written.
- f)Knowledge of a cryptographic key at one layer of the cryptographic key layered structured shall not compromise any other cryptographic key at that layer or at a higher layer. (see section 7)
- g)Cryptographic key separation shall ensure that after an ADF is activated the card issuer shall have no control over the functioning of that ADF unless the application supplier is either the card issuer or makes the card issuer his agent.

5 NOTATION FOR KEY RELATIONSHIPS AND ASSOCIATED KEYS

Two entities X and Y have established a keying relationship k when:

- -they have exchanged or are sharing a common secret symmetric key K, or
- -the public asymmetric key P of either X or Y has been exchanged and its certificate verified, or
- -the public asymmetric key P of X and the public asymmetric key P of Y have been exchanged and their certificates verified.

The public asymmetric key P of entity X, and the public asymmetric key P of entity Y shall both be exchanged when two way encipherment, authentication and certification functions are required.

Entities which share a key are denoted by two letters separated by a hyphen for example (X-Y).

The nomenclature used to denote a key - as provided in Table 1 - shall be kl (i,j) f_{x-y} where:

- -l denotes who is responsible for loading the key.
- -k is a generic notation for a key (K,P or S) which can be either a key for a symmetric or an asymmetric algorithm
- -f denotes the function of the key.
- -the index i denotes a specific ADF and its related set of keys
- -the index j denotes a specific key of a set of keys related to one ADF and having the same function.

NOTE: j is the key set number defined in 10202-7 and 10202-8

TABLE 1 - Key Nomenclature

Key	Responsible for loading keys (1)	Function of Key	Entities which share
(k)	loading keys (t)	(f)	the use of a key (X-Y)
K	A	aut (entity authentication)	A
S	E	cer (certification)	- C
P	1	ctl (control)	E
	M	enc (encipherment)	I
	N	kex (key exchange)	M
	R	mac(message authentication)	N O
		prd (production)	R.A.

As an example for symmetric algorithms, KA (i,j) aut_{CA} is the application supplier Authentication Key j for ADF (i) shared by the ICC and the application supplier. An example for asymmetric algorithm, SA (i,j)aut is the application supplier Authentication Key j for ADF (i) known only by the application supplier.

The key relationships are established in different phases of the card of SAM life cycle - manufacture of the IC, ICC or SAM, ICC or SAM preparation; ADF preparation; card or SAM usage; and termination of use (see 10202-1).

A cryptographic key relationship is defined for every CDF, ADF and SAM related security function. For some of these functions, namely the mandatory control functions, the cryptographic key shall be different for each ICC [see annex A (normative)]. For other functions it is recommended [see annex A (normative)] that with the exception of the mandatory keys, it is the responsibility of the application supplier, card issuer and acquirer to determine which keys are needed, which keys may be omitted and which keys may be shared in several ICCs for their applications. The values defined for the references of keys are contained in 10202-7.

6 KEY RELATIONSHIPS

6.1 DURING MANUFACTURE AND PREPARATION

Figure 1 shows the ICC key relationships and the SAM key relationships during the manufacture and preparation of the ICC and SAM

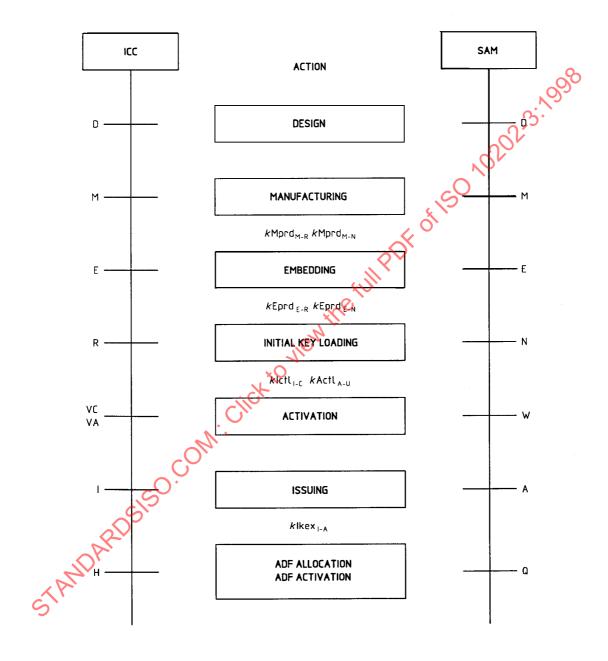


Figure 1 - Stages of the ICC or SAM preparation and keys used during that process.

In the ICC and SAM Life Cycle the issuer and application supplier are responsible for verifying the authenticity of the ICC and SAM respectively before initial key loading.

The ICC personaliser and SAM initialiser act as agents on behalf of the issuer and the application supplier and shall ensure that the IC manufacturer and SAM manufacturer have no control over or responsibility for the ICC and SAM at the stage "initial key loading". This can be accomplished by making the kMprd a temporary key not related to the key hierarchy of the ICC (figure 3) and SAM (figure 4) after personalisation/initialisation.

The embedding does not necessarily have to be executed by a separate intity. This could also be done by the manufacturer or personaliser/SAM initialiser.

6.2 DURING THE TRANSACTION PROCESS

The key relationships that may be established for the transaction process are provided in figure 2.

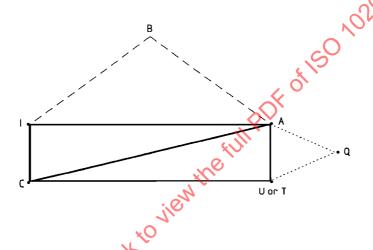


Figure 2 Transaction relationships

Description of the relationships in figure 2

The T relationship is only for an asymmetric algorithm where the CAD does not have a SAM.

The key relationship C-T is established between the ICC and the CAD for off-line cryptographic functions. It is the same as the key relationship C-A but the application supplier public keys are located in the CAD.

The key relationship I-C is used for CDf transactions between the ICC and the card issuer.

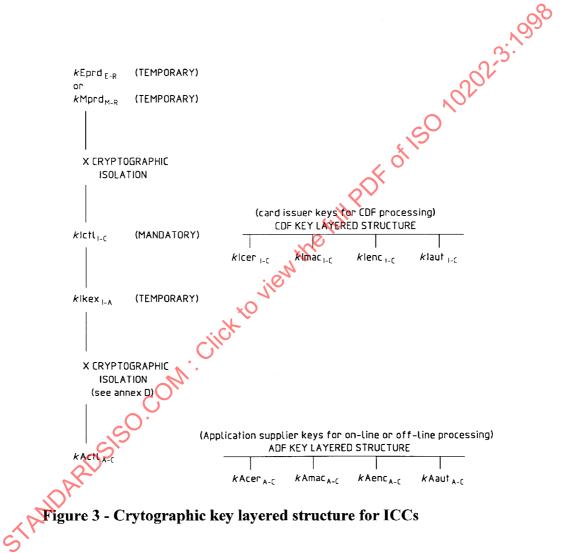
The key relationship C-A is used for on-line transactions between the ICC (acting for the cardholder) and the application supplier. Multiple key relationships C-A may be established by an application supplier for different functions such as debit, credit or electronic purse and are outside the scope of this standard.

© ISO ISO 10202-3:1998(E)

The key relationship C-U is established between the ICC and the SAM for off-line cryptographic functions. It is the sam as the key relationship C-A but the application supplier eys are located in the SAM.

The key relationship U-A is used for programme or key updates of the SAM.

The key relationship I-A is a temporary relationship between card issuer and application supplier to permit the setting up of an ADF and to provide key separation.


The key relationships A-Q and U-Q fall outside the scope of this International Standard (indicated with dotted lines).

crusted the representation of the original state of the original s The key relationships B-I and B-A are used for public key certification by a trusted third party B (indicated with the dashed lines).

7 **KEY RELATIONSHIPS FOR ICCs**

Those keys which are unique in this clause are detailed in annex A (normative).

The keys used during or after ICC personalisation shall be cryptographically independent from the keys established before ICC personalisation. The CDF-related and ADF-related keys shall be cryptographically independent as shown in the following cryptographic key layered structure for ICCs.

7.1 Keys established before card personalisation

If there is proprietary data in the IC, one of the appropriate production keys shall be used to control transfer of an IC and protect against substitution of an IC between the card personaliser and the preceding party in the life cycle.

NOTE: If there is a key relationship between E and R, it is the responsibility of the embedder to protect against substitution of an IC between manufacturer and embedder, such as using a $kMprd_{M-E}$ provided by E. When $kMprd_{M-E}$ key is used, $kEprd_{E-R}$ key shall also be used in order to secure proprietary information between M and R.

Table 2 shows the possible production keys before the card personalisation. The responsibility is shared by two parties using a production key. Each party may use its own control key which is not shared by the other parties (and is not defined in this standard) to protect its own data.

NOTE: There is no key relationship R-I. The card personaliser R is assumed to be the card issuer, or an agent of the card issuer which loads the keys provided by the card issuer.

) \	
Key name	Preceding production key for loading protection	Responsibility shared by	Loaded by	Purpose of key
<i>k</i> Mprd _{M-R}	Existing production key	M & R	М	Control transfer of an IC and
kEprd _{E-R}	Existing production key	E & R	E	protect against substitution of an IC

TABLE 2 - Possible production keys before card personalisation

7.2 Keys provided by the card issuer and established during card personalisation (see table 3)

During personalisation, the Production Key, if used, shall provide cryptographic control for the loading of secret parameters (including $k \text{Ictl}_{I-C}$) into the IC. The Production Keys are temporary keys that shall not be usable after card personalisation is complete (refer to figure 3). If Production Keys are not used, the loading of these parameters shall be physically protected in a manner agreed by the card issuer and the card personaliser.

7.2.1 kIctl_{I-C} - Issuer Control Key

This key shall be used by the card issuer to load and control his own cryptographic keys and parameters (such as a PIN) in the IC (refer to figure 3) and for the allocation of space in the IC.

For a given card issuer the kIctl_{I-C} in the card shall not intentionally be the same as the kIctl_{I-C} in other cards.

If cryptographic protection is required for Common Data File (CDF) activation, deactivation, reactivation and termination then this key shall also be used.

The kIctl_{I-C} shall also be used to allocate memory space for ADFs if the IC supports the dynamic allocation of memory space.

7.2.2 klaut_{I-C} - Issuer Authentication Key

This key shall be used by the card issuer for authentication of the CDF and/or by the CDF for authentication of the card issuer, if any of these functions are required (refer to figure 2).

If klaut_{LC} and klaut_{C-1} are the same then consideration should be given to the potential for a reflection attack (see 10202-5)

TABLE 3 - Key relationships during card personalisation

Key name	Loaded under key	Provided by	Loaded by	Purpose of key	Status
kIctl _{I-C}	Existing production key or physical protection	I	R	Load/control of keys and parameters	See 7.2 and 7.2.1
<i>k</i> Iaut _{I-C}	kIctl _{I-C}	I	R	ICC/Card issuer authentication	See 7.2.2
kIcer _{I-C}	kIctl _{I-C}	I	R	Certification	See 7.2.3
kImac _{I-C}	kIctl _{I-C}	I	R	Message authentication	See 7.2.4
kIenc _{I-C}	kIctl _{I-C}	I	R	Encipherment/ Decipherment	See 7.2.5

7.2.3 kIcer_{I-C} - Issuer Certification Key

This key shall be used for transaction certification between the CDF and the card issuer if this function is required (refer to figure 2).

7.2.4 kImac_{I-C} - Issuer Message Authentication Key

This key shall be used for message authentication between the CDF and the card issuer if this function is required (refer to figure 2)

7.2.5 kIenc_{I-C} - Issuer Encipherment Key

This key shall be used for the encipherment or decipherment of data between the CDF and the card issuer if this function is required (refer to figure 2).

- 7.3 Keys established during or after card personalisation (see table 4)
- 7.3.1 $kI(i)kex_{I-A}$ Issuer Key Exchange Key

This key shall be provided securely to the application supplier by the card issuer and to the ICC enciphered under kIctl_{I-C} if this function is required (refer to figure 3). The Issuer Key Exchange Key is a temporary key and shall be used by the application supplier to load his control keys kA(i,j)ctl_{A-C} in the application supplier's ADF in the ICC (see Annex D (informative) for an example of symmetric algorithm based key exchange).

7.3.2 $kA(i,j)ctl_{A-C}$ - Application Control Key

This key shall be used by the application supplier to load and control his own keys and ADF parameters (such as PIN) in the ADF if these functions are required [see Annex D (informative)].

Once $kA(i,j)ctl_{A-C}$ is established, only the application supplier shall be able to load and control his ADF parameters and keys, and $k(i)kex_{I-A}$ shall be rendered unusable (refer to figure 3).

If cryptographic protection is required for ADF activation, deactivation, reactivation and termination then this key shall also be used.

7.3.3 $kA(i,j)aut_{A-C}$ - Application Authentication Key

This key shall be used by the application supplier to authenticate the ADF(i) in the ICC or by the ADF(i) to authenticate the application supplier if these functions are required (refer to figure 2).

7.3.4 kA(i,j)cer_{A-C} - Application Certification Key

This key shall be used for certification between ADF (i) and the application supplier (i) if this function is required (refer to figure 2).

7.3.5 kA(i,j)mac_A Application Message Authentication Key

This key shall be used for message authentication between ADF(i) and the application supplier (i) if this function is required (refer to figure 2).

7.3.6 kA(i,j)enc_{A-C} - Application Encipherment Key

This key shall be used for the encipherment or decipherment of data between ADF (i) and the application supplier (i) if this function is required (refer to figure 2).

TABLE 4 - Key relationships during or after card personalisation

Key name	Loaded under (key)	Provided by	Loaded by	Purpose of key	Status
kI(i)kex _{I-A}	kIct1 _{I-C}	I	I (or R)	Load kA(i,j)ctl	See 7.3.1
kA(i,j)ct1 _{A-C}	kI(i)kex _{I-A}	A	A	Load/control of keys and parameters	See 7.3.2
kA(i,j)aut _{A-C}	kA(i,j)ctl _{A-C}	A	A	ADF/CAD/SAM/ Host authentication	See 7.3.3
kA(i,j)cer _{A-C}	kA(i,j)ctl _{A-C}	A	A	Certification	See 7.3.4
kA(i,j)mac _{A-C}	kA(i,j)ctl _{I-C}	A	A	Message authentication	See 7.3.5
kA(i,j)enc _{A-C}	kA(i,j)ctl _{A-C}	A	A	Encipherment/ Decipherment	See 7.3.6
	kA(i,j)ctl _{A-C}	Chy. Click	io vie		
CIR	DARL				

8 KEY RELATIONSHIPS FOR SAMS

Those keys which are unique in this clause are detailed in annex B (normative).

The keys used during or after SAM initialisation shall be cryptographically independent from the keys established before SAM initialisation, an example is shown in figure 4.

The keys used for off-line cryptographic functions (C-U) between the SAM and the ICC are the same as those defined for the ICC (see section 7) and shall be loaded in the SAM using $kActl_{A-U}$

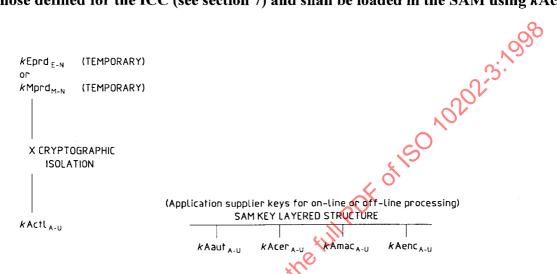


Figure 4 - Cryptographic key layered structure for SAMs

8.1 Keys established before SAM initialisation

If there is proprietary data in the SAM IC, one of the appropriate production keys shall be used to control transfer of a SAM IC and protect against substitution of a SAM IC between the SAM initialiser and the preceding party in the life cycle.

Table 5 shows the possible production keys before the SAM initialisation. The responsibility is shared by two parties using the same production key. Each party may use its own control key which is not shared by the other parties (and is not defined in this standard) to protect its own data.

Key name	Preceding production key for loading protection	Responsibility shared by	Loaded by	Purpose of key
<i>k</i> Mprd _{M-N}	Existing production key	M & N	M	Control transfer of an IC and protect against substitution of an
k Eprd $_{E-N}$	Existing production key	E&N	E	IC

8.2 SAM related keys provided by the application supplier and established during SAM initialisation (see table 6)

During initialisation, the production key, if used, shall provide cryptographic control for the loading of secret parameters (including kAct 1_{A-U}) into the SAM IC. The production keys are temporary keys that shall not be usable after SAM initialisation is complete (refer to figure 4). If production keys are not used, the loading of these parameters shall be physically protected in a manner agreed by the application supplier and the SAM initialiser.

8.2.1 kAct1_{A-II} - SAM Control Key

This key shall be used by the application supplier to load and control his own cryptographic keys and parameters in the SAM (refer to figure 4).

If cryptographic protection is required for SAM activation, deactivation, reactivation and termination then this key shall be used.

8.2.2 kAaut_{A-II} SAM Authentication Key

This key shall be used by the CAD or application supplier for authentication of the SAM and/or by the SAM for authentication of the application supplier, if any of these functions are required (refer to figure 2).

If $kAaut_{A-U}$ and $kAaut_{B-V}$ are the same then consideration should be given to the potential for a reflection attack (see 10202-5)

TABLE 6 - Key relationships during SAM initialisation

Key name	Loaded under (key)	Provided by	Loaded by	Purpose of key	Status
kActl _{A-U}	Existing production key or physical protection	A	N	Load/control of keys and parameters	See 8.2 and 8.2.1
kAaut _{A-U}	kAct1 _{A-U}	A	N	SAM/CAD/Host authentication	See 8.2.2
kAcer _{A-U}	kAct1 _{A-U}	A	N	Certification	See 8.2.3
kAmac _{A-U}	kAct1 _{A-U}	A	N	Message authentication	See 8.2.4
kAenc _{A-U}	kAct1 _{A-U}	A	N	Encipherment	See 8.2.5

8.2.3 kAcer_{A-U} - SAM Certification Key

This key shall be used for certification between the SAM and the application supplier if this function is required (refer to figure 2).

8.2.4 kAmac_{A-U} - SAM Message Authentication Key

This key shall be used for message authentication between the SAM and the application supplier if this function is required (refer to figure 2).

8.2.5 kAenc_{A-U} - SAM Encipherment Key

This key shall be used for the encipherment or decipherment of data between the SAM and the application supplier or SAM and CAD if confidentiality is required (refer to figure 4).

ANNEX A (normative)

KEY RELATIONSHIPS (ICC) TABLE

USED BETWEEN
M-R
E-R
J-I
I-C
J-C
رين با
1-C
1-A
A-C

• The techniques for obtaining unique keys per card are described in 10202-7