INTERNATIONAL STANDARD

ISO 10277

> First edition 1995-03-15

Aluminium ores — Experimental methods for checking the project of compling aumineux — Methodes expérimentales de contrôle de la fidélité ...antillonnage ...durant

Foreword

out through ISO
merested in a subject for setablished has the right to be see. International organizations, governmental closed with the International Electrotechnical Commission or all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies castion a vote.

International Standard ISO 10277 was prepared in SO/TC 129, Aluminium ores, Subcommental Standard Iso 10277 was prepared in solve.

al Sta Click STANDARDSISO.COM. for information only.

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Aluminium ores — Experimental methods for checking the precision of sampling FUIL POR OF 150 10271. 1095

Scope

This International Standard specifies the experimental methods to be applied for checking the precision of sampling of aluminium ores, expressed in terms of the standard deviation, being carried out in accordance with the methods prescribed in ISO 8685.

These methods may also be applied for the purpose of checking the precision of preparation of samples being carried out in accordance with the methods prescribed in ISO 6140.

Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10277. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10277 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 6139:1993, Aluminium ores — Experimental determination of the heterogeneity of distribution of a NSO 6140:1991, Aluminium ores — Preparation of samples.

ISO 8685:1992, Aluminium ores — Sampling procedures.

Symbols

The following symbols are used throughout this International Standard:

- factor to estimate the standard deviation from the range $(d_2 = 1,128 \text{ for a pair of determi-}$ nations)
- number of increments n
- absolute difference between determinations on R_1 subsample A and subsample B
- \overline{R}_1 mean absolute difference between determinations on subsamples A and B for n_s sampling
- absolute difference between determinations on divided subsamples B₁ and B₂
- \overline{R}_2 mean absolute difference between determinations on divided subsamples B_1 and B_2 for n_s sampling units
- R_3 absolute difference between determinations on the same divided subsample B2

ISO 10277:1995(E) © ISO

- \overline{R}_3 mean absolute difference between determinations on the same divided subsample B_2 for n_s sampling units
- x subsample values
- \bar{x} mean value of a quality characteristic
- x_1 determination on subsample A
- x_2 determination on subsample B
- x_3 determination on divided subsample B₁
- x_4 determination on divided subsample B_2
- x_i value of non-reference member of *i*th pair
- x_{ri} value of reference member of *i*th pair
- $\sigma_{\rm S}$ standard deviation of sampling
- $\hat{\sigma}$ estimated value of σ
- $\hat{\sigma}_{\rm M}$ estimated standard deviation of measurement
- $\hat{\sigma}_{
 m P}$ estimated standard deviation of sample preparation
- $\hat{\sigma}_{\text{PM}}$ estimated standard deviation of sample preparation and measurement
- $\hat{\sigma}_{\rm S}$ estimated standard deviation of sampling
- $\hat{\sigma}_{\text{SPM}}$ estimated overall standard deviation of samplings sample preparation and measurement

4 General conditions

4.1 General

The determination of precision of <u>sampling</u> is based on duplicate sampling from lots. If sample <u>preparation</u> and <u>analysis</u> is also carried out in duplicate, it is possible to determine the errors associated with those parameters in addition to the errors due to sampling.

4.2 Number of lots for the experiment

In order to reach a reliable conclusion, it is recommended that the experiment be carried out on more than 20 lots of the same type of aluminium ore. However, if this is impracticable, at least 10 lots should be covered and each lot shall be divided into several parts to produce more than 20 parts for the experiment. The experiment shall be carried out on each part, considering each part as a separate lot in accordance with ISO 8685.

4.3 Number of increments and number of gross samples

The minimum number of increments required for the experiment shall be twice the number specified in ISO 8685. Thus, if the number of increments required for the routine sampling is n and one gross sample is constituted, the minimum number of increments required for the experiments shall be 2n and two gross samples shall be constituted.

NOTE 2 If this is impracticable n increments may be taken and divided into two parts, each comprising n/2 increments.

4.4 Sample preparation and testing

The preparation of samples shall be in accordance with ISO 6140 and the testing of samples shall be carried out in accordance with the methods prescribed in the relevant International Standards.

4.5 Replication of experiment

It is recommended that, even after a series of experiments has been conducted, the experiments should be repeated at regular intervals and when there is a change in ore quality. The experiment should also be repeated when there is a change in equipment or of ore supplier.

Because of the large amount of work involved in this method, it is recommended that the procedure should be carried out as a part of routine work of sampling and measurement.

5 Experimental

5.1 Duplicate samples

Each alternate primary increment is set aside in order to form gross samples A and B. The number of divided increments per primary increment is the same as that taken for routine sampling. An example of a sampling plan for gross samples A and B is shown in figure 1.

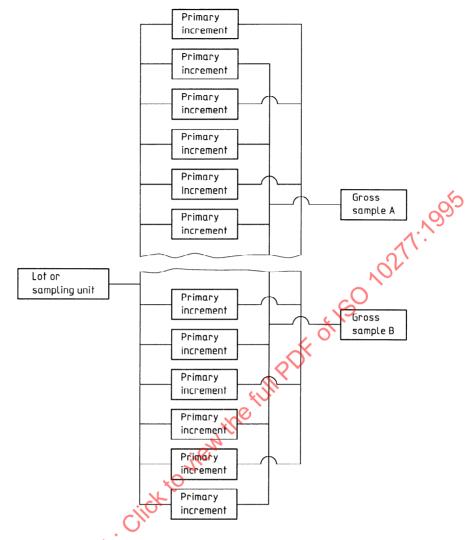


Figure 1📤 Example of a plan of duplicate sampling

5.2 Sample division and testing

The two gross samples A and B taken in accordance with 5.1 shall be divided separately and subjected to either type 1, type 2 or type 3 testing as described in 5.2.1, 5.2.2 or 5.2.3 respectively.

5.2.1 Division-testing type 1 (see figure 2)

- **5.2.1.1** The two gross samples A and B shall be divided separately to prepare two final samples.
- **5.2.1.2** The four final samples A_1 , A_2 and B_1 , B_2 shall each be tested in duplicate. A total of eight tests shall be run in random order.
- NOTE 3 In type 1 testing, the standard deviations of sampling, preparation and measurement are obtained separately.

5.2.2 Division-testing type 2 (see figure 3)

- **5.2.2.1** The gross sample A shall be divided to prepare two final samples, A_1 and A_2 , and from the gross sample B, one final sample shall be prepared.
- **5.2.2.2** The final sample A_1 shall be tested in duplicate and the other final samples A_2 and B shall be tested individually.
- NOTE 4 In type 2 testing, the standard deviations of sampling, preparation and measurement are obtainable separately. However, the precision for estimating the standard deviations of sampling, preparation and measurement will be lower than that attainable in type 1 testing.

ISO 10277:1995(E) © ISO

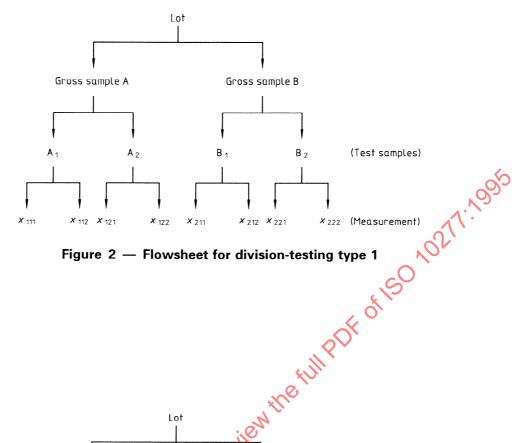
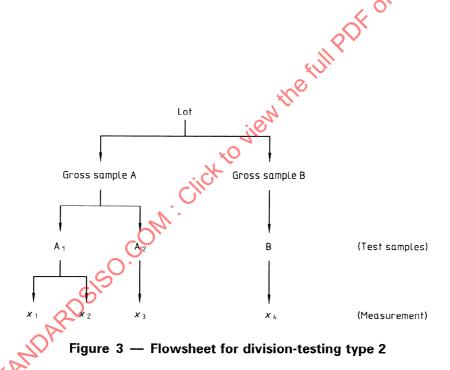



Figure 2 — Flowsheet for division-testing type 1

5.2.3 Division-testing type 3 (see figure 4)

5.2.3.1 From each of the two gross samples A and B, one final sample shall be prepared.

5.2.3.2 The two final samples A and B shall be tested individually.

In type 3 testing, only the overall standard devi-NOTE 5 ation of sampling, preparation and measurement is obtained.

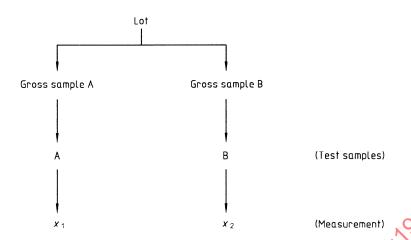


Figure 4 — Flowsheet for division-testing type 3

6 Analysis of experimental data

The procedure for the analysis of experimental data shall be as specified in 6.1 to 6.3 or in annex A for the type of division-testing selected. A procedure for treating data containing rogue results is included in the procedure (see example clause 7). When the data do not contain rogue values, the method in annex A may be used.

6.1 Division-testing type 1 (see figure 2 and sheet 2)

The estimated values of approximately 95% probability standard deviation (hereinafter referred to simply as standard deviation) of sampling, preparation and measurement shall be calculated in accordance with the procedure given below:

- a) Denote the pair of four measurements (such as Al_2O_3 as a percentage by mass) of a pair of two duplicate samples, prepared from the two gross samples A and B, as x_{111} , x_{112} , x_{121} , x_{122} and x_{211} , x_{212} , x_{221} , x_{222}
- b) Calculate the mean and the range for each pair of duplicate measurements:

$$\bar{x}_{ij.} = \frac{1}{2} (x_{ij1.} + x_{ij2})$$
 ...(1)

$$R_1 = |x_{ij1} - x_{ij2}| \qquad \dots (2)$$

where

i = 1 and 2, stands for gross samples A and B respectively;

j = 1 and 2, stands for final samples A_1 , B_1 and A_2 , B_2 respectively.

c) Calculate the mean and the range for each pair of duplicate samples:

$$\bar{\bar{x}}_{i} = \frac{1}{2} (\bar{x}_{i1.} + \bar{x}_{i2.})$$
 ...(3)

$$R_2 = |\bar{x}_{i1} - \bar{x}_{i2}| \qquad ... (4)$$

Calculate the mean and the range for each pair of gross samples, A and B:

$$\bar{\bar{x}} = \frac{1}{2} (\bar{x}_{1..} + \bar{x}_{2..})$$
 ... (5)

$$R_3 = |\bar{x}_{1..} - \bar{x}_{2..}|$$
 ... (6)

e) Calculate the overall mean and the mean of ranges $(\overline{R}_1, \overline{R}_2 \text{ and } \overline{R}_3)$:

$$\overline{\overline{x}} = \frac{1}{k} \sum_{k} \overline{\overline{x}}$$
 ...(7)

$$\overline{R}_1 = \frac{1}{4k} \sum R_1 \tag{8}$$

$$\overline{R}_2 = \frac{1}{2k} \sum R_2 \tag{9}$$

$$\overline{R}_3 = \frac{1}{k} \sum R_3 \tag{10}$$

where k is the number of lots.

Calculate the control limits to construct the control charts for means and ranges.

Control limits for \bar{x} -chart:

$$\bar{\bar{x}} \pm A_2 \bar{R}_1, \ \bar{\bar{x}} \pm A_2 \bar{R}_2, \ \bar{\bar{x}} \pm A_2 \bar{R}_3$$
 ...(11)

ISO 10277:1995(E) © ISO

Upper control limit for R-chart:

$$D_4 \overline{R}_1$$
 (for R_1), $D_4 \overline{R}_2$ (for R_2),
$$D_4 \overline{R}_3$$
 (for R_3) ...(12)

where $A_2 = 1,880$ and $D_4 = 3,267$ (for a pair of measurements). (See clause 8.)

Using the ranges of measurement, calculate the estimated values of variance of measurement $(\hat{\sigma}_{M}^{2})$, preparation $(\hat{\sigma}_{P}^{2})$ and sampling $(\hat{\sigma}_{S}^{2})$:

$$\hat{\sigma}_{\mathsf{M}}^2 = \left(\overline{R}_1/d_2\right)^2 \qquad \dots (13)$$

$$\hat{\sigma}_{P}^{2} = (\overline{R}_{2}/d_{2})^{2} - \frac{1}{2} (\overline{R}_{1}/d_{2})^{2}$$
 ... (14)

$$\hat{\sigma}_{S}^{2} = \left(\overline{R}_{3}/d_{2}\right)^{2} - \frac{1}{2}\left(\overline{R}_{2}/d_{2}\right)^{2} \qquad \dots (15)$$

where $1/d_2 = 0.886$ (for a pair of measurements). (See clause 8.)

NOTE 6 When n increments are taken and divided into two parts in accordance with note 2 in 4.3, the value of $\hat{\sigma}_{S}^{2}$ in equation (15) shall be divided by 2 to compare with the specified variance $(\sigma_S)^2$. The comparison described in step h) below will be made using the value thus obtained.

- Calculate the estimated values of standard deviation of measurement $(\hat{\sigma}_{M})$, preparation $(\hat{\sigma}_{P})$ and sampling $(\hat{\sigma}_{S})$.
- Compare the value of $\hat{\sigma}_{S}$ thus obtained with the desired standard deviation of sampling $(\sigma_{\hat{S}})$ as given in ISO 8685.

6.2 Division testing type 2 (see figure 3)

The estimated values of standard deviation shall be calculated in accordance with the following pro-

- Denote the four measurements as follows:
 - pair of duplicate measurements of a final sample A₁ prepared from gross sample A;
 - single measurement of a final sample x_3 : A_2 prepared from a gross sample A;
 - single measurement of a final sample *x*₄: B prepared from gross sample B.
- Calculate the mean and the range for each pair of duplicate measurements:

$$\bar{x} = \frac{1}{2} (x_1 + x_2)$$
 ... (16)

$$R_1 = |x_1 - x_2| \qquad \dots (17)$$

c) Calculate the mean and the range for each selected pair of measurements, x_1 and x_3 , or x_2 and x_3 , selected at random:

$$\bar{x} = \frac{1}{2} (x_1 + x_3) \text{ or } \frac{1}{2} (x_2 + x_3) \dots (18)$$

$$R_2 = |x_1 - x_3| \text{ or } |x_2 - x_3| \dots (19)$$

d) Calculate the mean and the range for each pair of gross samples, A and B, selected at random:

$$\frac{1}{x} = \frac{1}{2} (x_1 + x_4), \frac{1}{2} (x_2 + x_4) \text{ or}$$

$$\frac{1}{2} (x_3 + x_4) \qquad \dots (20)$$

$$R_3 = |x_1 - x_4|, |x_2 - x_4| \text{ or } |x_3 - x_4| \qquad \dots (21)$$

$$R_3 = |x_1 - x_4|, |x_2 - x_3| \text{ or } |x_3 - x_4| \dots (21)$$

e) Calculate the overall mean and the mean of ranges $(\overline{R}_1, \overline{R}_2)$ and \overline{R}_3 :

$$\bar{\bar{x}} = \sum_{x} \bar{\bar{x}}$$
 ... (22)

$$\overline{R}_1 = \frac{1}{k} \sum R_1 \tag{23}$$

$$\overline{R}_2 = \frac{1}{k} \sum R_2 \tag{24}$$

$$\overline{R}_3 = \frac{1}{k} \sum R_3 \tag{25}$$

where k is the number of lots.

Calculate the control limits to construct the control charts for mean and ranges.

Control limits for \bar{x} -chart:

$$\bar{\bar{x}} \pm A_2 \bar{R}_1$$
, $\bar{\bar{x}} \pm A_2 \bar{R}_2$, $\bar{\bar{x}} \pm A_2 \bar{R}_3$...(26)

Upper control limit for R-chart:

$$D_4\overline{R}_1$$
, $D_4\overline{R}_2$, $D_4\overline{R}_3$...(27)

where $A_2 = 1,880$ and $D_4 = 3,267$ (for a pair of measurements). (See clause 8.)

Using the ranges, calculate the estimated values of variance of measurement $(\hat{\sigma}_{\rm M}^2)$, preparation $(\hat{\sigma}_{\rm P}^2)$ and sampling $(\hat{\sigma}_s^2)$:

$$\hat{\sigma}_{\mathsf{M}}^2 = (\overline{R}_1/d_2)^2 \qquad \dots (28)$$

$$\hat{\sigma}_{P}^{2} = \left(\overline{R}_{2}/d_{2}\right)^{2} - \left(\overline{R}_{1}/d_{2}\right)^{2} \qquad \dots (29)$$

$$\hat{\sigma}_{S}^{2} = (\overline{R}_{3}/d_{2})^{2} - (\overline{R}_{2}/d_{2})^{2} \qquad \dots (30)$$

where $1/d_2 = 0.886$ (for a pair of measurements). (See clause 8 and note 6 in 6.1.)

- g) Calculate the estimated values of standard deviation of measurement $(\hat{\sigma}_{\rm M})$, preparation $(\hat{\sigma}_{\rm P})$ and sampling $(\hat{\sigma}_{\rm S})$.
- h) Compare the value of $\hat{\sigma}_S$ thus obtained with the desired standard deviation of sampling (σ_S) as given in ISO 8685.

6.3 Division testing type 3 (see figure 4)

In this case the estimated values of standard deviation of sampling, preparation and measurement are not obtainable separately. Type 3 testing gives the overall standard deviation ($\hat{\sigma}_{\text{SPM}}$):

$$\hat{\sigma}_{\mathsf{SPM}}^2 = \hat{\sigma}_{\mathsf{S}}^2 + \hat{\sigma}_{\mathsf{P}}^2 + \hat{\sigma}_{\mathsf{M}}^2 \qquad \dots (31)$$

The estimated value of overall standard deviation shall be calculated in accordance with the following procedure:

a) Calculate the mean and the range for each pair of measurements:

$$\bar{x} = \frac{1}{2} (x_1 + x_2)$$
 (32)

$$R = |x_1 - x_2| ... (33)$$

where x_1 , x_2 are the measurements of final samples A and B, respectively.

b) Calculate the overall mean and the mean of the range:

$$= \frac{1}{x} = \frac{1}{k} \sum_{x} x^{x} \qquad \dots (34)$$

$$\overline{R} \stackrel{\bullet}{\hookrightarrow} \sum_{k} \sum_{r} R$$
 ...(35)

where k is the number of lots.

c) Calculate the control limits to construct control charts for mean and range.

Control limit for \bar{x} -chart:

$$\bar{x} \pm A_2 \bar{R}$$
 ... (36)

Upper control limit for R-chart:

$$D_4\overline{R}$$
 ... (37)

where $A_2 = 1,880$ and $D_4 = 3,267$ (for a pair of measurements). (See clause 8.)

d) Calculate the estimated values of overall variance $(\hat{\sigma}_{SPM}^2)$:

$$\hat{\sigma}_{SPM}^2 = (\overline{R}/d_2)^2 \qquad \dots (38)$$

e) Calculate the estimated value of overall standard deviation ($\hat{\sigma}_{SPM}$).

7 Interpretation of results and action

7.1 Interpretation

7.1.1 Data containing no rogue results

When all of the values of R_3 , R_2 and R_1 calculated in accordance with 6.1 and 6.2 are within the upper control limit of the R-chart constructed in accordance with 6.1 e) and 6.2 e), it is an indication that the routine processes of sampling, division and measurement of samples are under control.

When all of the values of *R* calculated in accordance with 6.3 are within the upper control limit of the *R*-chart constructed in accordance with 6.3 c), it is an indication that the overall process of sampling, division and measurement is under control.

On the other hand, when any of the values of R_3 , R_2 , R_1 , calculated in accordance with 6.1 and 6.2 and R, calculated in accordance with 6.3, fall outside the respective upper control limit, the process (such as sampling, preparation, or measurement) under investigation is not under control, and should be checked in order to detect assignable causes.

7.1.2 Data containing rogue results

When a greater number of the values of \bar{x}_{ij} or $\bar{\bar{x}}_{i..}$ calculated in accordance with 6.1, \bar{x} or $\bar{\bar{x}}$ calculated in accordance with 6.2 or \bar{x} calculated in accordance with 6.3, is outside the control limits of the corresponding x-chart, it is an indication that the standard deviation of measurement or standard deviation of preparation is reasonably sufficient.

When most of the values of \bar{x} calculated in accordance with 6.1 and 6.2 or \bar{x} calculated in accordance with 6.3 are within the control limits of the corresponding \bar{x} -chart, the standard deviation of sampling is insufficient, and the variation in quality characteristics of the lots under experiment could not be detected. Under such circumstances, the methods of

ISO 10277:1995(E) © ISO

sampling, preparation and measurement shall be reviewed for modification (see 7.2).

NOTE 7 These tests are necessary to ensure that the standard deviation of measurement or standard deviation of preparation are sufficient to enable the other components of error to be identified.

7.2 Action

When there is an indication that the standard deviation does not attain the desired value, the sampling procedure may be modified as follows:

a) Check the changes in heterogeneity of distribution of the aluminium ore in accordance with the method given in ISO 6139. If it is confirmed that there is a significant change in heterogeneity of distribution of the aluminium ore in question, the number of increments taken from a lot shall be revised accordingly.

In the case of systematic or stratified random sampling when a greater number (denoted by n_1) of increments is collected from a lot, the standard deviation of sampling is improved in proportion to $\sqrt{n|n_1}$.

b) Increase the mass of increment. There is, however, a limit above which increasing the sample mass will not effect a significant improvement of the standard deviation of sampling.

8 Experimental example

The following experimental example is based on periodic, systematic sampling by division-testing type 1, and conducted by a consumer of aluminium ores. The

experimental results are summarized in sheets 1 and 2, and in figure 5.

Sheet 1 shows details of the experiment and analysis results of alumina (Al_2O_3) determinations.

Sheet 2 shows the Al_2O_3 content and the process of calculation of $\hat{\sigma}_M$, $\hat{\sigma}_P$ and $\hat{\sigma}_S$.

Figure 5 shows the control charts for the mean and the range for \bar{x} , \bar{x} , $\bar{\bar{x}}$ and R_1 , R_2 , R_3 .

In order to avoid errors and omissions, and for future reference, it may be convenient to keep detailed records of experiments in a standardized form such as that used in the example shown.

The number of cases where points of data are situated outside the 3-sigma control limits are recorded in the bottom space of sheet 2, and the corresponding data in the body of the sheet are identified by asterisks (see 7.1).

The values of estimated standard deviation of measurement preparation and sampling of this example are as follows:

Standard deviation of measurement:

$$\hat{\sigma}_{M} = 0.077 \text{ [% } (m/m) \text{ of Al}_{2}\text{O}_{3}\text{]}$$

Standard deviation of preparation:

$$\hat{\sigma}_{P} = 0.17 \text{ [% } (m/m) \text{ of Al}_{2}O_{3}\text{]}$$

Standard deviation of sampling:

$$\hat{\sigma}_{S} = 0.23 \, [\% \, (m/m) \, \text{of Al}_{2}O_{3}]$$

Of the three, $\hat{\sigma}_{S}$ is the greatest.

Sheet 1 — Example of recording experimental details

[Name of Company and Works]

Report of checking the precision of sampling

Date of experiment:												
Site of experiment:												
Characteristic measured: Alumina content as a percentage by mass												
Lots investigated			,									
Source and type of ore:			<u> </u>									
Loading point:			. 100									
Means of transportation:	Ship		V.									
Number of lots:	20		VOL									
Mass of lots:	Mean 9 920 t; m	inimum 7 000 t; maximum 13 000	(T)									
Sampling details		of 12	<i>,</i>									
Maximum particle size o	f lots: 110 mm	K o										
Type of increment: Unit	mass of ore on belt	conveyor; for its full cross-section	over a certain length of flow									
Nominal mass of increme	ent: 25 kg	Illes										
Number of increments: with a shovel on the belt	Stop belt conveyor at the specified loc	at specified tonnage intervals of o ation to obtain a 25 kg increment	re discharge, and collect all ore									
Preparation of samples		jies										
		alternately individual increments t										
Mass of gross samples:	Mean 1 250 kg; min	imum 1 220 kg; maximum 1 285 k	g									
Type of dividing of gross	samples: Division-te	esting type 1 (duplicate samples)										
Mesurements of Al ₂ O ₃ [% (m/m)]											
Statistic Exp	erimental results	Commercial determination	Found at loading point									
Mean	51,10		_									
Minimum	49,90	_	_									
Maximum	53,02											
Estimated precision of sa	ampling [% (m/m) of	Al_2O_3										
$\hat{\sigma}_{M} = 0.077$ $\hat{\sigma}_{SI}$ $\hat{\sigma}_{P} = 0.077$	$_{PM} = 0.29$											
$\hat{\sigma}_{S} = 0.23$												
Comments and remarks:												
Date:		Reported by:										
			of supervisor of experiment]									
		- '										

Sheet 2 — Example of recorded values (See 6.1 and figure 5)

Source and type of ore:

Date:

Characteristic measured: alumina content

Number of lots: 20

Date of experiment:

Lot No.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Sum	Mean
Date of samplin	g																	√ · ·					
Mass of lot, t		12 100	7300	10 700	13 000	11500	10 000	11 200	9 700	8 600	9300	8 300	10 500	8 200	10600	9100	10400	7 900	11 200	11 800	7 000	198 400	9920
Number of increments	_A	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	1 000	50
	В	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	1 000	50
	<i>x</i> ₁₁₁	50,92	50,88	50,82	51,40	52,04	52,70	50,94	50,90	51,20	50,94	49,94	50,08	50,38	51,10	52,00	50,72	51,50	51,08	51,15	51,54	1 022,23	51,11
	<i>x</i> ₁₁₂	50,99	50,87	50,76	51,30	52,00	52,92	50,98	50,87	51,00	51,07	49,90	50,04	50,23	51,00	51,93	50,78	51,42	50,94	51,30	51,32	1 021,62	51,08
A_1	\vec{x}_{11}	50,96	50,88*	50,79*	51,35*	52,02*	52,81*	50,96	50,88*	51,10	51,00	49,92*	50,06*	50,30*	51,05	51,96*	50,75*	51,46*	51,01	51,22	51,43*	1 021,91	51,10
	R_1	0,07	0,01	0,06	0,10	0,04	0,22	0,04	0,03	0,20	0,13	0,04	0,04 矣	0,15	0,10	0,07	0,06	0,08	0,14	0,15	0,22	1,95	0,10
	<i>x</i> ₁₂₁	50,98	51,02	50,96	51,40	52,27	52,90	50,80	51,02	51,08	51,00	50,02	50,14	50,30	51,00	52,32	51,14	52,02	51,04	51,10	51,50	1 024,01	51,20
	x ₁₂₂	51,01	51,02	50,88	51,25	52,44	52,72	50,85	51,00	51,08	51,00	50,09	50,26	50,30	51,02	52,27	51,14	52,07	50,96	51,08	51,26	1 023,70	51,18
A_2	\bar{x}_{12}	51,00	51,02	50,92*	51,32*	52,36*	52,81*	50,82*	51,01	51,08	51,00	50,06*	50,20*	50,30*	51,01	52,30*	51,14	52,04*	51,00	51,09	51,38*	1 023,86	51,19
	<i>R</i> ₁	0,03	0,00	0,08	0,15	0,17	0,18	0,05	0,02	0,00	0,60	0,07	0,12	0,00	0,02	0,05	0,00	0,05	0,08	0,02	0,24	1,33	0,07
	<u>x</u> 1_	50,98	50,95	50,86	51,34	52,19*	52,81*	50,89	50,94	51.09	51,00	49,99*	50,13*	50,30*	51,03	52,13*	50,94*	51,75*	51,00	51,16	51,40	1 022,88	51,14
A	R ₂	0,04	0,14	0,13	0,03	0,34	0,00	0,14	0,13	0,02	0,00	0,14	0,14	0,00	0,04	0,34	0,39	0,58	0,01	0,13	0,05	2,79	0,14
	x ₂₁₁	51,40	50,27	50,70	51,94	51,92	53.02	51,14	50,90	50,88	51,00	49,96	50,52	50,28	50,84	51,80	50,82	51,06	50,78	52,00	51,86	1 023,09	51,15
_	x ₂₁₂	51,34	50,10	50,67	51,97	51,77	52,94	51,20	50,88	50,64	51,00	50,02	50,60	50,18	50,66	51,74	50,74	51,04	50,80	52,05	51,60	1 021,94	51,10
B_1	<u>x</u> _{21.}	51,37*	50,18*	50,68*	51,96*	51,84*	52,98*	51,17	50,89*	50,76*	51,00	49,99*	50,56*	50,23*	50,75*	51,77*	50,78*	51,05	50,79*	52,02*	51,73*	1 022,50	51,12
	R_1	0,06	0,17	0,03	0,03	0,15	0.08	0,06	0,02	0,24	0,00	0,06	0,08	0,10	0,18	0,06	0,06	0,02	0,02	0,05	0,26	1,75	0,08
	X ₂₂₁	51,28	50,04	50,82	51,60	52,51	52,98	50,94	50,70	50,60	49,95	49,98	50,46	50,29	51,12	51,74	50,56	51,16	50,88	51,21	51,66	1 020,48	51,02
n	x ₂₂₂	51,35	49,93	50,60	51,43	52,52	52,92	51,03	50,50	50,55	49,87	49,90	50,35	50,32	50,96	51,71	50,38	51,25	50,89	51,12	51,58	1 019,16	50,96
B_2	<u> </u>	51,32*	49,98*	50,71*	51,52	52,52*	52,95*	50,98	50,60*	50,58*	49,91*	49,94*	50,40*	50,30*	51,04	51,72*	50,47*	51,20	50,88*	51,16	51,62*	1 019,80	50,99
	<i>R</i> ₁	0,07	0,11	0,22	0,17	0,01	0,06	0,09	0,20	0,05	0,08	0,08	0,11	0,03	0,16	0,03	0,18	0,09	0,01	0,09	0,08	1,92	0,10
p	- x ₂	51,34	50,08*	50,70*	51,74*	52,18*	52,96*	51,08	50,74	50,67*	50,46*	49,96*	50,48*	50,26*	50,90	51,74*	50,62*	51,12	50,84	51,59*	51,68*	1 021,14	51,06
В	R ₂	0,05	0,20	0,03	0,44	0,68*	0,03	0,19	0,29	0,18	1,09*	0,05	0,16	0,07	0,29	0,05	0,31	0,15	0,09	0,86*	0,11	5,32	0,26

Š	
0	
_	
0	
2	
7	
7	
-:	
9	
Ö	
5	
E	

K X	51,16	50,52*	50,78	51,54	52,18*	52.86*	50,98	50,84	50,86	50,73	49,98*	50,30*	50,28*	50,96	51,94*	50,78	51,44	50,92	51,38	51,54	1 022,01	51,10
R ₃	0,36	0,67	0,16	0,40	0,01	0,15	0,19	0,20	0,42	0,54	0,03	0,35	0,04	0,13	0,39	0,32	0,63	0,16	0,43	0,28	6,06	0,30

Calculation

 $\hat{\sigma}_{M}^{2} = (0.886 \ 5 \ R_{1})^{2} = 0.005 \ 9$

 $(0.886\ 5\ \overline{R}_2)^2 = 0.032\ 3$ $(0.886\ 5\ \overline{R}_3)^2 = 0.072\ 1$

 $\hat{\sigma}_{P} = 0.171$

 $3,267 \ \overline{R}_1 = 0,204$

 $\hat{\sigma}_{M} = 0.077$

 $\hat{\sigma}_{P}^{2} = 0.032 \ 3 - \frac{0.005 \ 9}{2} = 0.029 \ 4$ $\hat{\sigma}_{S}^{2} = 0.072 \ 1 - \frac{0.032 \ 3}{2} = 0.056 \ 0$

 $\overline{R}_3 = 0.303$

 $3,267 \ \overline{R}_3 = 0,991$

 $\bar{\bar{x}} \pm 1,880 \ \bar{R}_1 = 51,10 \pm 0,164 \ (51,26 \ \text{and} \ 50,94); \ \bar{\bar{x}} \pm 1,880 \ \bar{R}_2 = 51,10 \pm 0,382 \ (51,48 \ \text{and} \ 50,72); \ \bar{\bar{x}} \pm 1,880 \ \bar{R}_3 = 51,10 \pm 0,570 \ (51,67 \ \text{and} \ 50,53)$

 $\hat{\sigma}_{S} = 0.237$

Adjustment for calculated values

Individual % Al₂O₃ identified by asterisk (*) are outside the 3-sigma control limits.

Number of cases where % Al₂O₃ fell outside the limits are

 R_1 : 0 out of 80 data (Simplify as 0/80), R_2 : 3/40, R_3 : 0/20, \bar{x} : 57/80, \bar{x} : 21/40, \bar{x} : 7/20

 $\hat{\sigma}_{M}^{2} = 0,005 9$

 $\hat{\sigma}_{M} = 0.077$

First adjustment for R_2 :

 $\bar{R}'_2 = 0.148$

3,267 $\overline{R}'_2 = 0,484$ (One point outside the UCL)

Second adjustment for R_2 :

 $\overline{R}''_2 = 0.136$

3,267 $\overline{R}''_2 = 0,445$ (No point outside the UCL)

 $(0.886 \ 5 \ \overline{R}^{"}_{2})^{2} = 0.014 \ 5$

 $\hat{\sigma}_{P} = 0.107 \, 5$

 $(0.886 \ 5 \ \overline{R}'_3)^2 = 0.060 \ 7$

 $\hat{\sigma}_{S} = 0.231 \ 2$

Comments and remarks:

[Name of supervisor of experiment]

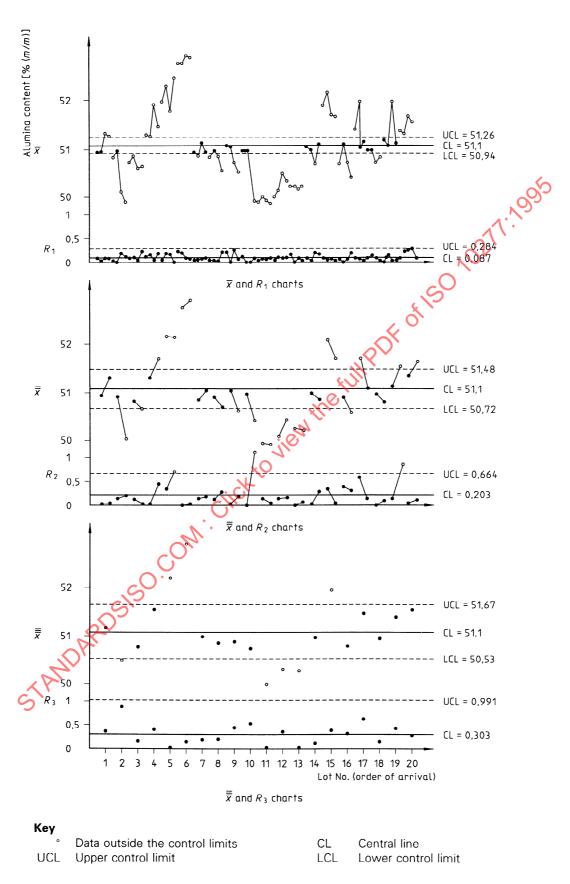


Figure 5 — Example of control charts for mean and range (Graphical presentation of data in sheet 2)

Annex A

(normative)

Alternative method for analysis of experimental data

When the data do not contain rogue values (see 7.1.1) this alternative method may be used for analysing the experimental data in place of the method specified in clause 6.

A.1 Division-testing type 1

The estimated values of approximately 95 % probability standard deviation (hereinafter referred to simply as standard deviation) of sampling, division and measurement should be calculated in accordance with the procedure given below:

- a) Denote the pair of four measurements (such as Al₂O₃ as a percentage by mass) of a pair of two duplicate samples, prepared from the two gross 100 samples A and B, as x_{111} , x_{112} , x_{121} , x_{122} and x_{211} , x_{212} , x_{221} , x_{222} .
- b) Calculate the mean and the range for each pair of duplicate measurements:

$$\bar{x}_{ij.} = \frac{1}{2} (x_{ij1} + x_{ij2})$$
 ... (A.1)

$$R_1 = |x_{ij1} - x_{ij2}|$$
 ... (A.2)

i=1 and 2 stands for A and B respectively; j=1 and 2, stands for final samples, A_1 , B_1 and A_2 , B_2 respectively.

Calculate the mean and the range for each pair of duplicate samples:

$$\bar{\bar{x}}_{i..} = \frac{1}{2} \left(\bar{x}_{i1.} + \bar{x}_{i2.} \right)$$
 ... (A.3)

$$R_2 = |\bar{x}_{i1} - \bar{x}_{i2}|$$
 ... (A.4)

d) Calculate the mean and the range for each pair of gross samples, A and B:

$$\bar{\bar{x}} = \frac{1}{2} (\bar{\bar{x}}_{1..} + \bar{\bar{x}}_{2..})$$
 ... (A.5)

$$R_3 = |\bar{\bar{x}}_{1..} - \bar{\bar{x}}_{2..}|$$
 (A.6)

e) Calculate the overall mean and the variance in accordance with the sum of squares of the ranges:

$$\overline{\overline{x}} = \frac{1}{k} \sum_{x} \overline{\overline{x}} \qquad \dots (A.7)$$

$$\sum R_1^2 = |\bar{x}_{ij1} - \bar{x}_{ij2}|^2 \qquad \dots (A.8)$$

$$\sum_{i=1}^{n} R_2^2 = |\bar{x}_{i1} - \bar{x}_{i2}|^2 \qquad \dots (A.9)$$

$$\sum R_3^2 = |\bar{x}_1 - \bar{x}_2|^2 \qquad \dots (A.10)$$

$$\hat{\sigma}_1^2 = \frac{1}{8k} \sum R_1^2 \tag{A.11}$$

$$\hat{\sigma}_2^2 = \frac{1}{4k} \sum R_2^2 \qquad \qquad \dots (A.12)$$

$$\hat{\sigma}_3^2 = \frac{1}{2k} \sum R_3^2 \qquad \dots \text{ (A.13)}$$

where k is the number of lots.

Calculate the estimated values of the variance of measurement ($\hat{\sigma}_{M}^{2}$), preparation ($\hat{\sigma}_{P}^{2}$) and sampling $(\hat{\sigma}_{S}^{2})$:

$$\hat{\sigma}_{\mathsf{M}}^2 = \hat{\sigma}_{\mathsf{1}}^2 \qquad \qquad \dots (\mathsf{A}.14)$$

$$\hat{\sigma}_{P}^{2} = \hat{\sigma}_{2}^{2} - \frac{1}{2} \hat{\sigma}_{M}^{2}$$
 ... (A.15)

$$\hat{\sigma}_{S}^{2} = \hat{\sigma}_{3}^{2} - \frac{1}{2} \hat{\sigma}_{2}^{2} \qquad \qquad \dots (A.16)$$

- g) Calculate the estimated values of standard deviation of measurement ($\hat{\sigma}_{\mathsf{M}}$), preparation ($\hat{\sigma}_{\mathsf{P}}$) and sampling $(\hat{\sigma}_{\varsigma})$.
- h) Compare the value of $\hat{\sigma}_{\mathrm{S}}$ thus obtained with the desired standard deviation of sampling (σ_s) as given in ISO 8685.

© ISO ISO 10277:1995(E)

Division-testing type 2 **A.2**

The estimated values of standard deviation should be calculated in accordance with the procedure given below:

Denote the four measurements as follows:

pair of duplicate measurements of a x_1, x_2 : final sample A₁ prepared from gross sample A;

single measurement of a final sample x_3 : A₂ prepared from gross sample A;

single measurement of a final sample x_4 : B prepared from gross sample B.

Calculate the mean and the range for each pair of b) duplicate measurements:

$$\bar{x} = \frac{1}{2} (x_1 + x_2)$$
 ... (A.17)

$$R_1 = |x_1 - x_2|$$
 ... (A.18)

Calculate the mean and the range for each selected pair of measurements, x_1 and x_3 or x_2 and x_3 selected at random:

$$\bar{x} = \frac{1}{2} (x_1 + x_3) \text{ or } \frac{1}{2} (x_2 + x_3) \dots (A.19)$$

$$R_2 = |x_1 - x_3| \text{ or } |x_2 - x_3|$$
 ... (A.20)

Calculate the mean and the range for each pair of gross samples, A and B selected at random:

$$\frac{1}{x} = \frac{1}{2} (x_1 + x_4), \frac{1}{2} (x_2 + x_4) \text{ or}$$

$$\frac{1}{2} (x_3 + x_4) \qquad \dots \text{ (A.21)}$$

$$R_3 = |x_1 - x_4|, |x_2 - x_4| \text{ or } |x_3 - x_4| \qquad \dots \text{ (A.22)}$$

$$R_3 = |x_1 - x_4|, |x_2 - x_4| \text{ or } |x_3 - x_4| \dots \text{ (A.22)}$$

Calculate the overall mean and the variances in accordance with the sum of squares of the ranges:

$$\overline{\overline{x}} = \frac{1}{k} \sum_{x} \overline{\overline{x}} \qquad \dots (A.23)$$

$$\hat{\sigma}_1^2 = \frac{1}{2k} \sum R_1^2 \tag{A.24}$$

$$\hat{\sigma}_2^2 = \frac{1}{2k} \sum R_2^2 \qquad ... (A.25)$$

$$\hat{\sigma}_3^2 = \frac{1}{2k} \sum R_3^2 \qquad \dots \text{ (A.26)}$$

where k is the number of lots.

Calculate the estimated values of the variance of measurement $(\hat{\sigma}_{M}^{2})$, preparation $(\hat{\sigma}_{P}^{2})$ and sampling

$$\hat{\sigma}_{\mathsf{M}}^2 = \hat{\sigma}_1^2 \qquad \qquad \dots (\mathsf{A}.27)$$

$$\hat{\sigma}_P^2 = \hat{\sigma}_2^2 - \hat{\sigma}_M^2 \qquad \qquad \dots (A.28)$$

$$\hat{\sigma}_{S}^{2} = \hat{\sigma}_{3}^{2} - \hat{\sigma}_{2}^{2} \qquad \qquad \dots (A.29)$$

- Calculate the estimated values of standard deviation of measurement $(\hat{\sigma}_{M})$, preparation $(\hat{\sigma}_{P})$ and sampling $(\hat{\sigma}_{S})$.
- h) Compare the value of $\hat{\sigma}_{S}$ thus obtained with the desired standard deviation of sampling (σ_s) as given in ISO 8685.

Division-testing type 3

In this case, the estimated values of standard deviation of sampling, preparation and measurement are not obtainable separately. Type 3 testing gives the overall standard deviation ($\hat{\sigma}_{SPM}$):

$$\hat{\sigma}_{SPM}^2 = \hat{\sigma}_S^2 + \hat{\sigma}_P^2 + \hat{\sigma}_M^2 \qquad \dots (A.30)$$

. (A.19) The estimato ' (A.20) The stimato ' $\hat{\sigma}_{SPM}^2 = \hat{\sigma}_S^2 + \hat{\sigma}_P^2 + \hat{\sigma}_M^2$ The estimated value of overall standard deviation shall be calculated in accordance with the procedure given below:

> a) Calculate the mean and the range for each pair of measurements:

$$\bar{x} = \frac{1}{2} (x_1 + x_2)$$
 ... (A.31)

$$R = |x_1 - x_2|$$
 ... (A.32)

where x_1 , x_2 are the measurements of final samples A and B, respectively.

b) Calculate the overall mean and the estimated value of overall variance in accordance with the sum of squares of the ranges:

$$\bar{\bar{x}} = \frac{1}{k} \sum \bar{x} \qquad \dots (A.33)$$

$$\hat{\sigma}_{SPM}^2 = \frac{1}{\iota} \sum_{k} R^2 \qquad \dots (A.34)$$

where k is the number of lots.

Calculate the estimated value of overall standard deviation ($\hat{\sigma}_{SPM}$).