INTERNATIONAL STANDARD

ISO 12999-1

> Second edition 2020-04

Acoustics — Determination and application of measurement uncertainties in building acoustics —

Part 1: Sound insulation

Acoustique — Détermination et application des incertitudes de mesure dans l'acoustique des bâtiments — STANDARDSISO.COM. Click to view

Partie 1: Isolation acoustique

STANDARDSISO COM. Click to view the full Political Copyri

© ISO 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Con	tents	I	Page
Forew	ord		iv
Introd	luction		v
1	Scope		1
2	-	ntive references	
3		and definitions	
		ed uncertainty budget	
4 5	Uncert 5.1 5.2 5.3 5.4 5.5 5.6	tainty determination by inter-laboratory measurements General Measurement situations Measurement conditions Number of participating laboratories Stating the test results of inter-laboratory measurements Choice of test specimen 5.6.1 General 5.6.2 Use of single test specimen — Same material circulated among participants 5.6.3 Use of several test specimens taken from a production lot — Nominally identical material exchangeable among participants 5.6.4 Use of several test specimens constructed in-situ — Nominally identical material not exchangeable among participants	3344445
	5.7 5.8	Laboratories with outlying measurement results	5
6		Verification of laboratory results by results of inter-laboratory teststainties associated with single-number values	
7	Standa 7.1 7.2 7.3	Ard uncertainties for typical measurands General Airborne sound insulation Impact sound insulation Reduction of transmitted impact noise by floor coverings	7 7 7
8	Applic	ation of the uncertainties	10
Annex	A (info	rmative) Example of handling uncertainties in building acoustics	12
Annex	B (info	rmative) Example for the calculation of the uncertainty of single number values	14
Annex	C (info	rmative) Detailed uncertainty budget	17
	D (info	rmative) Upper limit for the standard deviation of reproducibility for sound insulation	
Biblio	graphy	/	21

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 43, *Acoustics*, Subcommittee SC 2, *Building acoustics* in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 126, *Acoustic properties of building elements and of buildings*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 12999-1:2014), which has been technically revised.

The main changes compared to the previous edition are as follows:

- the quantity σ_{R95} was removed from Table 2;
- the text in <u>Clause 7</u> referring to this quantity was removed and the wording adapted;
- a new Annex D was drafted with a new table containing σ_{R95} and text explaining what it is;
- new references were added.

A list of all parts in the ISO 12999 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

An assessment of uncertainties that is comprehensible and close to reality is indispensable for many questions in building acoustics. Whether a requirement is met, a laboratory delivers correct results or the acoustic properties of a product are better than the same properties of some other product can be decided only by adequately assessing the uncertainties associated with the quantities under consideration.

Uncertainties should preferably be determined following the principles of ISO/IEC Guide 98-3. This Guide specifies a detailed procedure for the uncertainty evaluation that is based upon a complete mathematical model of the measurement procedure. At the current knowledge, it seems to be impossible to formulate these models for the different quantities in building acoustics. Therefore, only the principles of such an uncertainty assessment are explained.

To come to uncertainties all the same, the concept of reproducibility and repeatability is incorporated which is the traditional approach for uncertainty determination in building acoustics. This concept offers the possibility to state the uncertainty of a method and of measurements carried out according to the method, based on the results of inter-laboratory measurements.

NOTE Whenever applicable, the terms and definitions used in this document are equivalent to those given in ISO 5725-1[2], in ISO/IEC Guide 98-3[7] and in ISO/IEC Guide 99[8].

STANDARDS SO. COM. Click to View the full PDF of ISO 12099.1.2020

Acoustics — Determination and application of measurement uncertainties in building acoustics —

Part 1: **Sound insulation**

1 Scope

This document specifies procedures for assessing the measurement uncertainty of sound insulation in building acoustics. It provides for

- a detailed uncertainty assessment;
- a determination of uncertainties by inter-laboratory tests;
- an application of uncertainties.

Furthermore, typical uncertainties are given for quantities determined according to ISO 10140 (all parts), ISO 16283 (all parts) and ISO 717 (all parts).

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia available at http://www.electropedia.org/

3.1

measurand

particular quantity subject to measurement

EXAMPLE The airborne sound insulation of a particular window pane determined in accordance with ISO 10140 (all parts).

EXAMPLE 2 The standardized level difference of a particular facade according to ISO 16283-3.

3.2

measurement result

value attributed to a *measurand* (3.1), obtained by following the complete set of instructions given in a measurement procedure

Note 1 to entry: The measurement result may be a frequency band level or a single number value determined according to the rating procedures of ISO 717 (all parts).

ISO 12999-1:2020(E)

3.3

uncertainty

parameter, associated with the *measurement result* (3.2), that characterizes the dispersion of the values that can reasonably be attributed to the *measurand* (3.1)

3.4

standard uncertainty

и

uncertainty (3.3) of the measurement result (3.2) expressed as a standard deviation

3.5

combined standard uncertainty

 $u_{\rm c}$

standard uncertainty (3.4) of the result of a measurement when that result is obtained from the values of a number of other quantities, equal to the positive square root of a sum of terms, the terms being the variances or covariances of these other quantities weighted according to how the measurement result (3.2) varies with changes in these quantities

3.6

expanded uncertainty

IJ

quantity defining an interval about the *measurement result* (3.2) that can be expected to encompass a large fraction of the distribution of values that can reasonably be attributed to the *measurand* (3.1)

3.7

coverage factor

k

numerical factor used as a multiplier of the *combined standard uncertainty* (3.5) in order to obtain an *expanded uncertainty* (3.6)

3.8

repeatability condition

condition of measurement that includes the same measurement procedure, same operators, same measuring system, same location (laboratory or usual building), and replicate measurements on the same object over a short period of time

3.9

repeatability standard deviation

 σ_{r}

standard deviation of measurement results (3.2) obtained under repeatability conditions (3.8)

3.10

reproducibility condition

condition of measurement that includes the same measurement procedure, different locations (laboratories or usual buildings), operators, measuring systems, and replicate measurements on the same or similar objects

3.11

reproducibility standard deviation

 $\sigma_{
m R}$

standard deviation of measurement results (3.2) obtained under reproducibility conditions (3.10)

3.12

in-situ condition

condition of measurement that includes the same location (laboratory or usual building), and replicate measurements on the same object by different operators using different measuring systems

3.13

in-situ standard deviation

 $\sigma_{
m situ}$

standard deviation of measurement results (3.2) obtained under in-situ conditions (3.12)

4 Detailed uncertainty budget

The derivation of a detailed uncertainty budget is desirable to find out which uncertainty contributions are the most important ones and how these contributions can be reduced. Furthermore, such a budget reflects the individual sound fields during the measurement. Consequently, the uncertainty is valid for an individual measurement result and not for a whole family of results. Annex C gives provisions on the derivation of such uncertainty budgets.

5 Uncertainty determination by inter-laboratory measurements

5.1 General

Standard deviations determined by inter-laboratory measurements may serve as an estimate for the standard uncertainty. The general concept and the procedure for determining these standard deviations are given in ISO 5725-1 and ISO 5725-2, respectively. As many operators and laboratories as possible should participate in such inter-laboratory measurements in order to obtain reliable results.

5.2 Measurement situations

In building acoustics, three different measurement situations are to be distinguished.

- a) Situation A is that a building element is characterized by laboratory measurements. In this case, the measurand is defined by the relevant part of ISO 10140, including all additional requirements, e.g. for the measurement equipment and especially for the test facilities. Therefore, all measurement results that are obtained in another test facility or building also comply with this definition. The standard uncertainty, thus, is the standard deviation of reproducibility as determined by interlaboratory measurements.
- b) Situation B is described by the case that different measurement teams come to the same location to carry out measurements. The location may be a usual building or a test facility. The measurand, thus, is a property of one particular element in one particular test facility or the property of a building. The main difference from situation A is that many aspects of the airborne and structure-borne sound fields involved remain constant since the physical construction is unchanged. The standard uncertainty obtained for this situation is called *in-situ* standard deviation.
- c) Situation C applies to the case when the measurement is simply repeated in the same location by the same operator using the same equipment. The location may be a usual building or a test facility. The standard uncertainty is the standard deviation of repeatability as determined by interlaboratory measurements.

5.3 Measurement conditions

The acoustical measurement conditions for determining the different standard deviations shall correspond to the conditions given in the standardized measurement procedures. The test specimen shall not be remounted between repeated measurements.

Each laboratory shall use its normal measurement procedure when participating in an interlaboratory measurement. No deviations from the test procedure laid down shall occur but repeating the measurements several times, the parameters left open in the measurement procedure shall be represented as well as possible. In particular, the set of microphone positions and source positions over which averaging is carried out for one measurement shall be selected anew, more or less randomly,

ISO 12999-1:2020(E)

for each repeated measurement. This is necessary to obtain a mean value and a standard deviation of repeatability that represent the situation correctly.

Before the inter-laboratory measurement is started, each participating laboratory shall report the exact details of its test procedure.

Additional requirements for carrying out inter-laboratory measurements for the test specimen chosen shall be laid down in detail. This refers in particular to the following items:

- quantities being measured and reported, rules for rounding numbers;
- number of repeated measurements required;
- calibration of the measurement equipment;
- mounting and sealing conditions of the test specimen, and curing time where appropriate

5.4 Number of participating laboratories

The number of laboratories, p, shall, from a statistical point of view, be at least eight, but is preferable to exceed this number in order to reduce the number of replicate measurements required. The number of measurements in each laboratory, n, should be so chosen that $p(n-1) \ge 35$. In addition, at least five test results are needed for each laboratory. If the number n of measurements is different among the participating laboratories, a mean number of measurements shall be calculated and used (see ISO 5725-2). The measurement results obtained shall not be pre-selected in any way by the participating laboratories before they are reported.

5.5 Stating the test results of inter-laboratory measurements

In order to simplify the evaluation of measurement results reported, it is strongly desirable to supply forms for filling in by the participants. For the statistical analysis, it is important to report special observations and/or any irregularities observed during the test.

5.6 Choice of test specimen

5.6.1 General

The kind of test specimen used for an inter-laboratory measurement depends not only on the quantity being tested (i.e. airborne sound reduction index, normalized impact sound pressure level) but specifically on the mounting and measurement conditions for which the standard deviation of repeatability and reproducibility are being obtained (e.g. walls, floors, windows). Effects influencing the measurement result, like ageing or a strong dependence on humidity or temperature, shall also be considered.

The choice of test specimen also depends on practical considerations. In general, three different approaches (see 5.6.2 to 5.6.4) depending on the type of measurement method and/or on the type of specimen can be appropriate.

5.6.2 Use of single test specimen — Same material circulated among participants

For checking the measurement procedure and the facilities in different laboratories, ideally, the same test specimen should be used by all participants in the inter-laboratory measurement and checked again by the first laboratory at the end of the inter-laboratory measurement.

In building acoustics, this procedure is often not feasible due to the long period of time required, the risk of damage or change of the test specimen and different sizes of test openings. However, the variability resulting from the use of more than one test specimen is avoided and the standard deviation of reproducibility thus obtained is characteristic for the test facility and measurement procedure alone.

5.6.3 Use of several test specimens taken from a production lot — Nominally identical material exchangeable among participants

In contrast to the procedure described in <u>5.6.2</u>, all participants of the inter-laboratory measurement receive nominally identical test specimens, i.e. coming from the same production lot or of identical design and constructed by one manufacturer. This enables testing in parallel and reduces the risk of damage or of change due to the influence of time. However, the variability among the test specimens due to their heterogeneity is then inseparable from the variability of the measurement procedure and forms an inherent part of the reproducibility standard deviation. For this reason, it can be advantageous to check all test specimens for homogeneity with more precision at one laboratory before the interlaboratory measurement and possibly also after its completion.

5.6.4 Use of several test specimens constructed *in-situ* — Nominally identical material not exchangeable among participants

When the test specimens cannot be prefabricated and readily transported, they shall be constructed *in-situ* by each participant according to close specifications. In this case, the variability among the test specimens due to their heterogeneity is even larger than for test specimens according to 5.6.3.

5.7 Laboratories with outlying measurement results

ISO 5725-2 provides statistical methods to test whether a result of a laboratory is an outlier in a statistical sense. If a result turns out to be an outlier, it is necessary to investigate what are the reasons for the discrepancy. A result shall be disqualified only in the case that an error has occurred, e.g. a wrong microphone sensitivity was used. Whenever the measurement procedure described in the standard has been applied correctly and all the requirements for the test facility, the measurement equipment and the mounting of the specimen are fulfilled, the measurement result shall be considered to be in conformity with the definition of the measurand. Such results shall not be disqualified even if they are outliers.

5.8 Verification of laboratory results by results of inter-laboratory tests

A laboratory *x* that has not taken part in an inter-laboratory test can verify the proper operation of its own test procedure using the test results and the test specimen from an inter-laboratory test. It is further recommended that a laboratory verifies the proper operation of its own test procedure from time to time, especially whenever changes in the test procedure itself, the test facility or the instrumentation are made.

Laboratory x carries out n_x repeated measurements. The standard deviation of these measurements shall be smaller than the values given in <u>Table 1</u>.

Table 1 — Maximum standard deviation of repeatability

Frequency	Maximum standard deviation of repeatability
Hz	dB
50	4,0
63	3,5
80	3,0
100	2,6
125	2,2
160	1,9
200	1,7
250	1,5

 Table 1 (continued)

Frequency	Maximum standard deviation of repeatability	
Hz	dB	
315	1,4	
400	1,3	
500	1,3	
630	1,3	
800	1,3	20
1 000	1,3	201
1 250	1,3	N.V
1 600	1,3	12991.30t
2 000	1,3	1000
2 500	1,3	
3 150	1,3	
4 000	1,3	
5 000	1,3	

The average value of these measurements \overline{y}_x is compared with the total average $\overline{\overline{y}}$ of the interlaboratory test in each frequency band. The appropriate critical difference, δ_{Cr95} , for this case is as given in Formula (1):

$$\delta_{\text{Cr95}}\left(\left|\overline{\overline{y}}-\overline{y}_{x}\right|\right)=2\sqrt{\sigma_{R}^{2}\left(1+\frac{1}{p}\right)-\sigma_{r}^{2}\left(1+\frac{1}{p}-\frac{1}{n_{x}}-\frac{1}{p^{2}}\sum_{i=1}^{p}n_{i}\right)}$$

$$\tag{1}$$

where

 $\overline{\overline{y}}$ is the overall average of the inter-laboratory test;

 \overline{y}_x is the average of the test results of laboratory x;

p is the number of laboratories participating in the inter-laboratory test;

 n_i is the number of test results of the *i*th laboratory;

 n_x is the number of test results of an additional laboratory x.

The results of laboratory *x* are in agreement with the results of the inter-laboratory test if the differences between the average of the test for the laboratory and the overall average of the inter-laboratory test are not exceeding the appropriate critical difference in more than 5 % of the frequency bands. In case of more exceeding, it is necessary to investigate what the reasons for the discrepancy are. A result is invalid only in the case that an error occurred, e.g. a wrong microphone sensitivity was used. Whenever the agreed measurement procedure has been applied correctly and all the requirements for the test facility, the measurement equipment and the mounting of the specimen are fulfilled, the measurement result shall be considered as a valid realization of the measurand.

6 Uncertainties associated with single-number values

The uncertainty associated with single-number values obtained in accordance with ISO 717 (all parts) can be determined by two different methods [9].

The first method is to treat the single-number value as the measurand. A value for the standard uncertainty can then be determined by inter-laboratory tests. This method has the disadvantage that the uncertainty of the single-number value depends then on the spectral shape of the one-third-octave band values that are the base for the calculation of the single-number value. Typical uncertainties determined in this way are given in <u>Clause 8</u>.

A second method for the determination of the uncertainty of single-number values is to apply the one-third-octave band uncertainties to the weighting procedure. Unfortunately, the unknown degree of correlation between the one-third-octave band results influences the uncertainty of the single-number value considerably. Such correlations can be caused by using the same microphone and source positions for all one-third-octave bands. Nevertheless, an upper limit for the uncertainty of the single-number value can be calculated by assuming a correlation coefficient of 1 between the one-third-octave band values. An example of such a calculation is given in Annex B.

7 Standard uncertainties for typical measurands

7.1 General

If uncertainty data are available for specific specimens, e.g. from an inter-laboratory test, these data shall be used. If no such data are available, uncertainties given in 7.2 to 7.4 shall be used. They are derived from inter-laboratory measurements according to ISO 5725-1 and ISO 5725-2 and represent average values derived from measurements on different types of test specimens including lightweight partition walls, heavyweight walls, glazings and windows [1].

7.2 Airborne sound insulation

Standard uncertainties for airborne sound insulation in one-third-octave bands are given in <u>Table 2</u>. Standard uncertainties for different single-number quantities are given in <u>Table 3</u>. The values apply to situations where the volume of the receiving room and the surface of the separating element are well defined. If this is not the case, standard uncertainties can be larger. The numbers given in <u>Table 2</u> and <u>Table 3</u> exclude receiving room volumes less than 25 m^3 .

NOTE An upper limit for the standard deviation of reproducibility for airborne sound insulation is given in Annex D.

Table 2 — Standard uncertainties for airborne sound insulation in one third-octave bands

Frequency	Situation A	Situation B	Situation C
(S)	$\sigma_{ m R}$	$\sigma_{ m situ}$	$\sigma_{ m r}$
Hž	dB	dB	dB
50	6,8	4,0	2,0
63	4,6	3,6	1,8
80	3,8	3,2	1,6
100	3,0	2,8	1,4
125	2,7	2,4	1,2
160	2,4	2,0	1,0
200	2,1	1,8	0,9
250	1,8	1,6	0,8
315	1,8	1,4	0,7
400	1,8	1,2	0,6
500	1,8	1,1	0,6
630	1,8	1,0	0,6
800	1,8	1,0	0,6

Table 2 (continued)

Frequency	Situation A	Situation B	Situation C
	$\sigma_{ m R}$	$\sigma_{ m situ}$	$\sigma_{ m r}$
Hz	dB	dB	dB
1 000	1,8	1,0	0,6
1 250	1,8	1,0	0,6
1 600	1,8	1,0	0,6
2 000	1,8	1,0	0,6
2 500	1,9	1,3	0,6
3 150	2,0	1,6	0,6
4 000	2,4	1,9	0,6
5 000	2,8	2,2	0,6

Table 3 — Standard uncertainties for single-number values in accordance with ISO 717-1

Descriptor	Situation A	Situation B	Situation C
Descriptor	$\sigma_{ m R}$	$\sigma_{\rm situ}$	$\sigma_{ m r}$
	dB	dB	dB
$R_{\rm w}$, $R'_{\rm w}$, $D_{\rm nw}$, $D_{\rm nT,w}$	1,2	0,9	0,4
$(R_{w}, R'_{w}, D_{nw}, D_{nT,w}) + C_{100-3 \ 150}$	1,3	0,9	0,5
$(R_{\rm w}, R'_{\rm w}, D_{\rm nw}, D_{\rm nT,w}) + C_{100-5000}$	1,3	1,1	0,5
$(R_{\rm w}, R'_{\rm w}, D_{\rm nw}, D_{\rm nT,w}) + C_{50-3 \ 150}$	1,3	1,0	0,7
$(R_{\rm w}, R'_{\rm w}, D_{\rm nw}, D_{\rm nT,w}) + C_{50-5000}$	1,3	1,1	0,7
$(R_{w'}, R'_{w'}, D_{nw'}, D_{nT,w}) + C_{tr,100-3 150}$	13	1,1	0,7
$(R_{\rm w}, R'_{\rm w}, D_{\rm nw}, D_{\rm nT,w}) + C_{\rm tr,100-5000}$	1,5	1,1	0,7
$(R_{w'}, R'_{w'}, D_{nw'}, D_{nT,w}) + C_{tr,50-3 150}$	1,5	1,3	1,0
$(R_{w'}, R'_{w'}, D_{nw'}, D_{nT,w}) + C_{tr,50-5000}$	1,5	1,0	1,0

7.3 Impact sound insulation

At present, there are no results available for impact sound insulation at reproducibility conditions (situation A). Standard uncertainties for impact sound insulation in one-third-octave bands are given in Table 4. Standard uncertainties for different single-number quantities are given in Table 5. The values apply to situations where the volume of the receiving room and the surface of the separating element are well defined. If this is not the case, standard uncertainties can be larger.

Table 4 — Standard uncertainties for impact sound insulation in one third-octave bands

Frequency	Situation B	Situation C
Hz	dB	dB
50	3,2	1,5
63	2,8	1,4
80	2,4	1,3
100	2,0	1,2
125	1,6	1,1
160	1,4	1,0
200	1,3	0,9
250	1,2	0,8
315	1,2	0,8

Table 4 (continued)

Frequency	Situation B	Situation C
Hz	dB	dB
400	1,2	0,8
630	1,2	0,8
800	1,2	0,8
1 000	1,2	0,8
1 250	1,3	0,8
1 600	1,4	0,8
2 000	1,5	0,8
2 500	1,7	1,0
3 150	1,9	1,2
4 000	2,1	1,4
5 000	2,3	1,6

Table 5 — Standard uncertainties for single-number values in accordance with ISO 717-2

Descriptor	Situation A	Situation B	Situation C
	dB	dB	dB
$L_{\text{n,w}}, L'_{\text{n,w}}, L'_{\text{n}T,\text{w}}$	1,5 ^a	1,0	0,5
$(L_{n,w}, L'_{n,w}, L'_{nT,w}) + C_{I}$	1,5ª	1,0	0,6
^a Indicated values are estimate	es.		

7.4 Reduction of transmitted impact noise by floor coverings

At present, there are no results available for the reduction in impact sound pressure level at *in-situ* and at repeatability conditions (situations B and C). Standard uncertainties for the reduction in impact sound pressure level in one-third-octave bands are given in <u>Table 6</u>. Standard uncertainties for different single-number quantities are given in <u>Table 7</u>.

Table 6 — Standard uncertainties for the reduction in impact sound pressure level in one-thirdoctave bands

Frequency	Situation A
Hz	dB
50	1,4
63	1,3
80	1,2
100	1,1
125	1,0
160	1,0
200	1,0
250	1,0
315	1,0
400	1,1
500	1,2
630	1,3
800	1,6
1 000	1,9

Table 6 (continued)

Frequency	Situation A
Hz	dB
1 250	2,2
1 600	2,5
2 000	2,8
2 500	3,2
3 150	3,6
4 000	4,0
5 000	4,4

Table 7 — Standard uncertainties for single-number values in accordance with ISO 717-2

Descriptor	Situation A
	dB
$\Delta L_{ m w}$	1,1

8 Application of the uncertainties

For measurement results, the expanded uncertainty *U* shall be calculated by Formula (2):

$$U=ku$$
 (2)

where

- *u* is the standard uncertainty determined in accordance with <u>Clause 5</u> or <u>Clause 6</u>;
- *k* is the coverage factor, the value of which depends on the distribution of the possible values of the measurand and on the confidence level.

For the purpose of ISO 10140 (all parts), it is assumed that the values of the measurand follow a Gaussian distribution. The value of k can then be determined from Table 8. A minimum value of k = 1 shall be used. The chosen coverage factor shall be reported together with the information whether one-sided or two-sided intervals have been used.

Table 8 — Coverage factors for different confidence levels

	Coverage factor	Confidence level for two-sided test	Confidence level for one-sided test
7	k	%	%
	1,00	68	84
	1,28	80	90
	1,65	90	95
	1,96	95	97,5
	2,58	99	99,5
	3,29	99,9	99,95

A measurand, *Y*, shall then be stated as given in Formula (3):

$$Y = y \pm U \tag{3}$$

where

- *y* is the best estimate found by the measurement;
- U is the expanded uncertainty calculated for a given confidence level for the two-sided test.

EXAMPLE An airborne sound insulation can be designated as $R = (35,1 \pm 1,2)$ dB (k = 1, two-sided).

If the conformity with a requirement will be verified by a measurement, the coverage factor for one-sided tests shall be applied to calculate the expanded uncertainty, U. This value is then added to the best estimate y to check whether a measurement result is smaller than a requirement Y_{required} as given by Formula (4):

$$y+U (4)$$

The expanded uncertainty is subtracted from the best estimate, y, to check whether a measurement result is larger than a requirement Y_{required} as given by Formula (5):

$$y-U>Y_{\text{required}}$$
 (5)

An example for handling uncertainties in building acoustics is given in Annex A.

Annex A.

STANDARDS SO.

CON.

Citch to view the full handling acoustics is given in Annex A.

STANDARDS SO.

Annex A

(informative)

Example of handling uncertainties in building acoustics

A.1 General

This annex gives an example showing how uncertainties can be handled in building acoustics for airborne sound insulation.

A.2 From laboratory measurements to predicted values

The starting point is a determination of a weighted sound reduction index in a laboratory. The standard uncertainty of this measurement is the standard deviation of reproducibility. From this value, the input uncertainty for the prediction u_{input} can be determined with the standard deviation for the product homogeneity (σ_{product} – scatter of different nominally identical test specimens) and the number n of measurements carried out with this product in different laboratories with Formula (A.1).

$$u_{\text{input}} = \sqrt{\frac{\sigma_{\text{R}}^2 + \sigma_{\text{product}}^2}{n} + \sigma_{\text{product}}^2}$$
(A.1)

Such an input uncertainty shall be calculated for all acoustic quantities used in the prediction.

The apparent sound reduction index of the building is then predicted from the acoustic properties of the building products, e.g. by the method described in EN 12354-1. Since analytical expressions are used, the uncertainty of the predicted value, $u_{\rm pred}$, can be calculated from the interaction of the input quantities and their uncertainties, $u_{\rm calc}$, with an additional component, $u_{\rm reality}$, accounting for the discrepancies between the reality and the calculation model^[9] as given by Formula (A.2):

$$u_{\text{pred}} = \sqrt{u_{\text{calc}}^2 + u_{\text{reality}}^2}$$
 (A.2)

In a next step, the expanded incertainty, *U*, is calculated by Formula (2) for an appropriate confidence level for the one-sided test. The requirement is met when the condition in Formula (A.3) is fulfilled:

$$R'_{\rm w,pred}$$
 – $U > R'_{\rm w,required}$ (A.3)
EXAMPLE The conditions $\sigma_{\rm R} = 1.2 \, {\rm dB}$

$$\sigma_{\rm R} = 1.2 \, \rm dB$$

$$\sigma_{\mathrm{product}}$$
 =1,0 dB

yield the result

$$u_{\text{input}} = 1,9 \text{ dB}$$

The assumption that one building element determines the sound transmission leads to Formula (A.4):

$$u_{\text{calc}} = u_{\text{input}}$$
 (A.4)

Formula (A.4) combined with the condition

$$u_{\text{reality}} = 0.8 \text{ dB}$$

yields the result

$$u_{\text{pred}} = 2.0 \text{ dB}$$

For the chosen confidence level of 84 % for the one-sided test, a coverage factor of 1 is obtained from Table 7. The expanded uncertainty thus is

$$U = 2.0 \text{ dB}$$

It is necessary that this value be subtracted from the predicted apparent sound reduction index before it is compared to a requirement.

A.3 Experimental verification of a requirement

It shall now be determined whether or not the requirement for the airborne sound insulation is met in a building. The standard uncertainty of this measurement is the *in-situ* standard deviation, which is 0,9 dB for the apparent weighted sound reduction index according to <u>Table 3</u>. A confidence level of 84 % is chosen as an example, which leads to a coverage factor of 1 and an expanded uncertainty of 0,9 dB. The requirement is met when the condition given as <u>Formula (A.5)</u> applies:

$$R'_{\text{w,meas}} - U > R'_{\text{w,required}}$$
 (A.5)

It is not met when the condition given as Formula (A.6) applies:

$$R'_{\text{w,meas}} + U < R'_{\text{w,required}}$$
 (A.6)

If no decision can be made, the uncertainty of the measurement can be reduced by further independent measurements, which means other persons measure with other equipment. Then the uncertainty is as given by Formula (A.7):

$$u = \frac{0.9}{\sqrt{m}} dB$$
 (A.7)

where m is the number of independent measurements.

Annex B

(informative)

Example for the calculation of the uncertainty of single number values

B.1 Uncertainty of the sum of the weighted sound reduction index and the spectrum adaptation terms

The sum of the weighted sound reduction index and the spectrum adaptation terms, *R*, *C*, expressed in decibels, is calculated in accordance with ISO 717 (all parts) as given in Formula (B.)

$$R_{W} + C = -10 \lg \sum_{i} 10^{(L_{i} - R_{i})/10 dB} dB$$
(B.1)

where

 R_i is the measured sound reduction index in frequency band in dB;

 L_i is the reference spectrum as defined in ISO 717 (all parts).

Regarding the one-third-octave band insulations as independent input quantities, the uncertainty under the assumption of no correlation between the input quantities is given by Formula (B.2) (see Reference [9]):

$$u(R_{\rm w} + C) = \sqrt{\sum_{i} \left(\frac{10^{(L_i - R_i)/10\,\mathrm{dB}}}{\sum_{i} 10^{(L_i - R_i)/10\,\mathrm{dB}}}\right)^2 u^2(R_i)}$$
(B.2)

Under the assumption of full positive correlation between the one-third-octave band insulations, the single-number value is determined twice. In the first case, all uncertainties are added to the measured sound insulations in the one-third-octave bands yielding the sum of the single-number value and the standard uncertainty as given in Formula (B.3):

$$R_{W} + C + u(R_{W} + C) = -10 \text{ ig } \sum_{i} 10^{(L_{i} - R_{i} + u(R_{i}))/10 \text{ dB}} \text{ dB}$$
(B.3)

In the second case, all uncertainties are subtracted from the measured sound insulations in the one-third-octave bands yielding the difference between the single-number value and the standard uncertainty as given in Formula (B.4):

$$R_{W} + C - u(R_{W} + C) = -10 \lg \sum_{i} 10^{(L_{i} - R_{i} - u(R_{i}))/10 \, dB} \, dB$$
(B.4)

Dividing the results from Formulae (B.4) and (B.3) by two yields the uncertainty as given in Formula (B.5):

$$u(R_{w}+C) = \frac{R_{w}+C+u(R_{w}+C)-[R_{w}+C-u(R_{w}+C)]}{2}$$
(B.5)

This procedure is applicable to all the different reference spectra and frequency ranges defined in ISO 717 (all parts).

B.2 Uncertainty of the weighted sound reduction index

According to ISO 717-1, the weighted sound reduction index is calculated by shifting a reference curve by full decibel steps until the sum of all negative (or non-favourable) one-third-octave band differences is equal to or smaller than 32 dB. The uncertainty of the weighted sound reduction index can be calculated under the assumption of full positive correlation between the one-third-octave band insulations by adding or subtracting the uncertainty in one-third-octave bands by analogy to Formula (B.3). The weighted sound reduction index is then calculated for both cases, the results being $R_{\rm w} + u(R_{\rm w})$ and $R_{\rm w} - u(R_{\rm w})$, respectively. The uncertainty of the weighted sound reduction index is, then, calculated from these results by analogy to Formula (B.5) as given in Formula (B.6):

$$u(R_{w}) = \frac{R_{w} + u(R_{w}) - [R_{w} - u(R_{w})]}{2}$$
(B.6)

To come to realistic uncertainties, a shift of the reference curve in 0,1 dB steps is required.

Under the assumption of no correlation between the one-third-octave band insulations, the uncertainty of the weighted sound reduction index can be calculated by a special linearization technique or by Monte-Carlo methods^[9].

B.3 Example

An example of a measured sound insulation is given in <u>Table B.1</u>. The uncertainties are from <u>Table 2</u>, situation A. The calculated single-number values and uncertainties are given in <u>Table B.2</u>.

Table B.1 — Example for a measured sound insulation and the associated uncertainties

	Frequency	R_i	u_i
	Hz	dB	dB
	50	39,5	6,8
	63	40,3	4,6
	80	41,6	3,8
	100	43,1	3,0
	125	43,3	2,7
D515	160	43,1	2,4
S	200	42,5	2,1
Q^2	250	44,7	1,8
	315	48,0	1,8
	400	50,5	1,8
	500	53,2	1,8
	630	55,9	1,8
	800	58,1	1,8
	1 000	60,0	1,8
	1 250	62,2	1,8
	1 600	63,7	1,8
	2 000	65,4	1,8
	2 500	66,8	1,9
	3 150	68,4	2,0
	4 000	68,8	2,4
	5 000	65,1	2,8

Table B.2 — Single-number values and uncertainties calculated from the values in <u>Table B.2</u>

	R _w dB	$R_{\rm w} + C_{50-5000}$ dB	$R_{\rm w} + C_{\rm tr, 50-5000}$ dB
Single-number value	57,4	56,4	51,1
Uncertainty for correlated one-third octave band insulations	1,9	2,1	2,6
Uncertainty for uncorrelated one- third octave band insulations	_	0,6	0,8

STANDARDS SO. COM. Click to View the full POF of ISO 12999 1. 2020