

Reference number
ISO 13209-3:2012(E)

© ISO 2012

INTERNATIONAL
STANDARD

ISO
13209-3

First edition
2012-08-15

Road vehicles — Open Test sequence
eXchange format (OTX) —

Part 3:
Standard extensions and requirements

Véhicules routiers — Format public d'échange de séquence-tests
(OTX) —

Partie 3: Exigences et spécifications des extensions du standard

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,

electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or

ISO's member body in the country of the requester.

ISO copyright office

Case postale 56  CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO 2012 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved iii

Contents Page

Foreword .. vi

Introduction ... vii

1 Scope .. 1

2 Normative references .. 1

3 Terms, definitions and abbreviated terms .. 2
3.1 Terms and definitions ... 2
3.2 Abbreviated terms ... 2

4 Requirements ... 3
4.1 Basic principles for requirements definition .. 3
4.2 Requirement priorities .. 3
4.3 Requirement listing ... 4

5 Extension overview ... 7
5.1 General ... 7
5.2 Dependencies .. 7
5.3 Basic characteristics of the OTX extensions ... 8

6 OTX DateTime extension .. 10
6.1 Introduction .. 10
6.2 Terms .. 10

7 OTX DiagCom extension ... 13
7.1 Introduction .. 13
7.2 General considerations ... 13
7.3 Data types... 21
7.4 Exceptions ... 24
7.5 Variable access .. 26
7.6 Actions.. 27
7.7 Terms .. 42

8 OTX DiagDataBrowsing extension .. 67
8.1 Introduction .. 67
8.2 Data types... 67
8.3 Variable access .. 69
8.4 Terms .. 69

9 OTX EventHandling extension ... 74
9.1 Introduction .. 74
9.2 Data types... 74
9.3 Variable access .. 76
9.4 Actions.. 76
9.5 Terms .. 78

10 OTX Flash extension ... 85
10.1 Introduction .. 85
10.2 Data types... 86
10.3 Exceptions ... 88
10.4 Variable access .. 89
10.5 Actions.. 89
10.6 Terms .. 92

11 OTX HMI extension .. 113
11.1 Introduction .. 113

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

iv © ISO 2012 – All rights reserved

11.2 Data types .. 116
11.3 Exceptions ... 118
11.4 Variable access ... 119
11.5 Actions ... 119
11.6 Terms ... 130
11.7 Signatures ... 134

12 OTX i18n extension... 137
12.1 Introduction ... 137
12.2 Data types .. 137
12.3 Exceptions ... 138
12.4 Variable access ... 139
12.5 Terms ... 139

13 OTX Job extension ... 147
13.1 Introduction ... 147
13.2 Exceptions ... 147
13.3 Actions ... 148
13.4 Terms ... 153
13.5 Standard signature definitions .. 157

14 OTX Logging extension ... 160
14.1 Introduction ... 160
14.2 Data types .. 161
14.3 Variable access ... 162
14.4 Actions ... 163
14.5 Terms ... 165

15 OTX Math extension ... 167
15.1 Introduction ... 167
15.2 Terms ... 167

16 OTX Measure extension ... 170
16.1 Introduction ... 170
16.2 Data types .. 170
16.3 Exceptions ... 171
16.4 Variable access ... 172
16.5 Signatures ... 172
16.6 Actions ... 175
16.7 Terms ... 177

17 OTX Quantities extension .. 183
17.1 Introduction ... 183
17.2 Data types .. 185
17.3 Exceptions ... 187
17.4 Variable access ... 188
17.5 Terms ... 188

18 OTX StringUtil extension ... 196
18.1 Introduction ... 196
18.2 Data types .. 196
18.3 Exceptions ... 197
18.4 Variable access ... 198
18.5 Terms ... 198

Annex A (normative) Comprehensive checker rule listing .. 205

Annex B (normative) OTX DiagCom extension data type mappings .. 208

Annex C (normative) OTX DiagMetaData auxiliary for the OTX DiagCom extension 210

Annex D (normative) OTX standard signature documents .. 214

Annex E (informative) Test sequence examples ... 215

Annex F (informative) OTX DiagComRaw extension for resource-restrained systems 218

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved v

Annex G (normative) XML Schemas ... 231

Bibliography .. 278

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

vi © ISO 2012 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13209-3 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 3,
Electrical and electronic equipment.

ISO 13209 consists of the following parts, under the general title Road vehicles — Open Test sequence
eXchange format (OTX):

 Part 1: General information and use cases

 Part 2: Core data model specification and requirements

 Part 3: Standard extensions and requirements

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved vii

Introduction

Diagnostic test sequences are utilized whenever automotive components or functions with diagnostic abilities
are being diagnosed, tested, reprogrammed or initialised by off-board test equipment. Test sequences define
the succession of interactions between the user (i.e. workshop or assembly line staff), the diagnostic
application (the test equipment) and the vehicle communication interface as well as any calculations and
decisions that have to be carried out. Test sequences provide a means to define interactive, guided
diagnostics or similar test logic.

Today, the automotive industry mainly relies on paper documentation and/or proprietary authoring environ-
ments to document and to implement such test sequences for a specific test application. An author who is
setting up engineering, assembly line or service diagnostic test applications needs to implement the required
test sequences manually, supported by non-uniform test sequence documentation, most likely using different
authoring applications and formats for each specific test application. This redundant effort can be greatly
reduced if processes and tools support the OTX concept.

ISO 13209 proposes an open and standardized format for the human- and machine-readable description of
diagnostic test sequences. The format supports the requirements of transferring diagnostic test sequence
logic uniformly between electronic system suppliers, vehicle manufacturers and service dealerships/repair
shops.

ISO 13209-2 represents the requirements and technical specification for the fundament of the OTX format,
namely the "OTX Core". The Core describes the basic structure underlying every OTX document. This
comprises detailed data model definitions of all required control structures by which test sequence logic is
described, but also definitions of the outer, enveloping document structure in which test sequence logic is
embedded. To achieve extensibility the core also contains well-defined extension points that allow a separate
definition of additional OTX features – without the need to change the core data model.

This part of ISO 13209 extends the Core by a set of additional features, using the extension mechanism rules
described in ISO 13209-2. The extensions defined herein comprise features which allow diagnostic
communication to a vehicle's diagnostic interface, flashing, executing diagnostic jobs, controlling
measurement equipment, internationalisation, working with physical units, accessing the environment,
communication via a human machine interface (HMI) and other utility extensions.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

INTERNATIONAL STANDARD ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 1

Road vehicles — Open Test sequence eXchange format
(OTX) —

Part 3:
Standard extensions and requirements

1 Scope

This part of ISO 13209 defines the Open Test sequence eXchange (OTX) extension requirements and data
model specifications.

The requirements are derived from the use cases described in ISO 13209-1. They are listed in Clause 4.

The data model specification aims at an exhaustive definition of all features of the OTX extensions which have
been implemented to satisfy the requirements. This part of ISO 13209 establishes rules for the syntactical
entities of each extension. Each of these syntactical entities is accompanied by semantic rules which
determine how OTX documents containing extension features are to be interpreted. The syntax rules are
provided by UML class diagrams and XML schemas, whereas the semantics are given by UML activity
diagrams and prose definitions.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange

ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation of
dates and times

ISO/IEC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character sets — Part 1:
Latin alphabet No. 1

ISO/IEC 10646, Information technology — Universal Multiple-Octet Coded Character Set (UCS)

ISO/IEC 13209-1, Road vehicles — Open Test sequence eXchange format (OTX) — Part 1: General
information and use cases

ISO/IEC 13209-2, Road vehicles — Open Test sequence eXchange format (OTX) — Part 2: Core data model
specification and requirements

ISO/IEC 19501:2005, Information technology — Open Distributed Processing — Unified Modeling Language
(UML) Version 1.4.2

ISO 14229 (all parts), Road vehicles — Unified diagnostic services (UDS)

ISO 22900 (all parts), Road vehicles — Modular vehicle communication interface (MVCI)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

2 © ISO 2012 – All rights reserved

ISO 22901 (all parts), Road vehicles — Open diagnostic data exchange (ODX)

RFC 1866, Hypertext Markup Language - 2.0

SAE J1979, E/E Diagnostic Test Modes

W3C XPtr:2003, W3C Recommendation: XPointer Framework (all parts)

W3C XLink:2001, W3C Recommendation: XML Linking Language (XLink) Version 1.0

W3C XML:2008, W3C Recommendation: Extensible Markup Language (XML) 1.0 (Fifth Edition)

W3C XMLNS:2009, W3C Recommendation: Namespaces in XML 1.0 (Third Edition)

W3C XSD:2004, W3C Recommendation: XML Schema (all parts)

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 13209-1, ISO 13209-2 and the
following apply.

3.1.1
custom screen
screen with attributes and fields defined by a test sequence author

3.1.2
dialog
screen with predefined attributes and fields which can be set or read from an OTX sequence

3.1.3
ECOS measurement device
widely-used embedded system for testing electrical consumer's current and voltage curves

3.1.4
modal dialog
dialog which is blocking the flow execution until the user dismisses it

3.1.5
non-modal screen
asynchronous, non-blocking screen which is still displayed while the test sequence execution continues

3.1.6
tester
computer system attached to a vehicle via a Vehicle Communication Interface, running a diagnostic
application

3.1.7
text ID
string reference to a thesaurus data base entry containing localized string translations

3.2 Abbreviated terms

API Application Programming Interface

DTC Diagnostic Trouble Code

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 3

ECOS Electric Check-Out System

ECU Electronic Control Unit

GUI Graphical User Interface

HMI Human Machine Interface

IFD Interface Definition (OTX extension)

NOP No Operation Performed

OEM Original Equipment Manufacturer

OTX Open Test sequence eXchange

PDU Protocol Data Unit

UI User Interface

UML Unified Modeling Language

VCI Vehicle Communication Interface

XML Extensible Markup Language

XSD XML Schema Definition

4 Requirements

4.1 Basic principles for requirements definition

Basic principles have been established as a guideline to define the OTX requirements:

a) OTX requirements specify the conditions that the OTX data model and format shall satisfy.

b) All stakeholders (System Suppliers, OEMs, Tool Suppliers), which offer diagnostic test procedures are
expected to implement and follow the requirements of this standard.

The content of OTX documents and the quality of the information is the responsibility of the originator.

4.2 Requirement priorities

Each of the following requirements carries a priority-attribute which can be set to SHALL or SHOULD.

 SHALL:
The requirement represents stakeholder-defined characteristics the absence of which will result in a
deficiency that cannot be compensated by other means.

 SHOULD:
If the requirement defined characteristic is not or not fully implemented in the data model, it does not
result in a deficiency, because other features in the data model can be used to circumvent this.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

4 © ISO 2012 – All rights reserved

4.3 Requirement listing

Extensions_R01 – Read current date and time

Priority: SHALL

Rationale: It shall be possible to retrieve the current date and time.

Description: The current date and time shall be accessible in a way appropriate for calculating durations
between two dates but also for generating a human readable form of a date.

Extensions_R02 – Support but not require ODX

Priority: SHALL

Rationale: For communication with vehicle ECUs, the usage of ODX shall be supported but not forced.

Description: Any vehicle communication related extension data model shall match to a useful subset of the
functionality of ODX.

Extensions_R03 – Handle flash sessions

Priority: SHALL

Rationale: Functionality shall be provided to browse and select flash sessions.

Description: A extension for flashing shall provide the possibility to select by direction and name.

Extensions_R04 – Low level flash data access

Priority: SHALL

Rationale: Functionality shall be provided for browsing and selecting data from the flash environment
(download container).

Description: The data shall be clustered in blocks and segments. Security functions, used by modern data
formats like ODX Flash shall be supported.

Extensions _R05 – Flash data storage

Priority: SHALL

Rationale: Uploaded flash data shall be stored in local storage.

Description: For flash data upload, an OTX extension for flashing shall provide functionality to store in a
selected format.

Extensions _R06 – Enable developer to use OTX in place of ODX Java Jobs

Priority: SHALL

Rationale: Functionality shall be provided to emulate ODX Java Jobs by OTX sequences.

Description: A job extension shall enable developers to run OTX sequences as ODX Java Jobs.
SingelEcuJob, SecurityAccessJob and FlashJob shall be supported.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 5

Extensions _R07 – Provide means for diagnostic communication with vehicle ECUs

Priority: SHALL

Rationale: Functionality shall be provided for diagnostic communication with a vehicle's ECU systems.

Description: There shall be an OTX extension which allows configuring and executing diagnostic services of
vehicle ECUs. It shall be possible establish a communication channel to a particular ECU, to configure request
parameters of a diagnostic service which is sent to the ECU and to analyze the response parameters of the
ECU. The description of communication channels, diagnostic services and parameters shall happen in a
human-readable and symbolic way; any existing diagnostic symbolic-to-binary mapping (e.g. ODX) shall be
supported. The actual functionality for sending a diagnostic service and receiving shall be provided through an
interface between test sequence and vehicle (e.g. MCD 3D API and MVCI).

Extensions _R08 – Provide means to browse diagnostic data

Priority: SHALL

Rationale: Functionality shall be provided to read information from the static diagnostic data base of a

diagnostic application.

Description: An OTX extension shall be provided which allows reading static information from a diagnostic
data base, like e.g. available communication channels, diagnostic services for a communication channel or
parameters for a diagnostic service.

Extensions _R09 – Enable developer to handle events

Priority: SHALL

Rationale: Functionality shall be provided which allows for an OTX test sequence to react on a well-defined

set of events.

Description: An OTX extension shall enable developers to configure a test sequence so that it can wait for
certain events to happen (e.g. when a timer expires, a variable value changes or user input is received from
the UI, etc.). There shall be a way to get further information about an event, e.g. what kind of event it is, and
additional information about a particular event.

Extensions _R10 – Provide means for human machine interface functionality

Priority: SHALL

Rationale: Functionality shall be provided which allows OTX test sequences to communicate with a user in a
bidirectional way.

Description: An OTX extension is required which allows sending and receiving information to and from a user
interface (e.g. a GUI window with input controls). The extension shall not provide means for explicitly
configuring the graphical layout of the information; instead it shall only provide a bidirectional interface for the
communicated data itself.

Extensions _R11 – Enable developer to configure localized test sequences

Priority: SHALL

Rationale: A test sequence developer shall be supported in configuring OTX test sequences which are

prepared for translation to different languages.

Description: An OTX extension is required which allows the developer to access a thesaurus data base via a
text ID concept. The developer shall be supported by functionality which translates text IDs into the language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

6 © ISO 2012 – All rights reserved

configured for the runtime system or to other languages (as far as known by the runtime system). The
thesaurus data base itself shall not be part of the standard. A generic approach shall support different kinds of
thesaurus data bases.

Extensions _R12 – Provide means for logging

Priority: SHALL

Rationale: It shall be possible to write log messages to a logging resource.

Description: An OTX extension is required which allows writing log messages to a logging resource;
messages shall be filterable according to severity.

Extensions _R13 – Support measurement equipment

Priority: SHALL

Rationale: Measurement equipment in manufacturing and after sales workshops shall be accessible via

appropriate functionality.

Description: An OTX extension is required which allows receiving measurement values from measurement
equipment. There shall be an abstraction layer which allows using any kind of measurement equipment.

Extensions _R14 – Support physical units

Priority: SHALL

Rationale: Functionality is required which allows the handling of physical values with units

Description: An OTX extension is required which allows describing physical quantities. The extension shall
facilitate common calculations done on such physical quantities, like e.g. the transformation of a physical
value from one unit-system to another (e.g. representing a distance by kilometres or miles, etc.). It shall also
allow basic mathematical operations on quantities without requiring the developer to explicitly care for the unit
(e.g. it shall be possible to calculate 10 m + 2 km directly).

Extensions _R15 – Support for enhanced string operations

Priority: SHALL

Rationale: The OTX Core string operations shall be extended by additional commonly used string operations.

Description: An OTX extension is required which describes additional string operations which shall facilitate
calculations on string values.

Extensions _R16 – Support of basic mathematical functions

Priority: SHALL

Rationale: The arithmetic operations of the OTX Core shall be extended by additional mathematical functions.

Description: An OTX extension is required which describes a set of additional mathematical functions which
are needed in some diagnostic applications (like e.g. trigonometric and logarithmic functions, etc.).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 7

5 Extension overview

5.1 General

This document represents the specification of the OTX standard extensions for data model version "1.0.0".

5.2 Dependencies

Figure 1 shows a UML package diagram [ISO/IEC 19501] describing the full set of OTX extensions (together
with the OTX Core) and the import dependencies in between them. OTX extensions use or extend types
defined in the OTX Core. Therefore, all of the extensions are (directly or indirectly) based on the OTX Core
data model, as specified by Part 2 of ISO 13209. Aside of the OTX Core, the OTX EventHandling,
OTX DiagCom and OTX Quantities extensions also play a central role; types defined there are used or
extended by other OTX extensions.

Figure 1 — Overview: OTX schema dependencies

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

8 © ISO 2012 – All rights reserved

IMPORTANT — The OTX Core is a prerequisite for any OTX application and shall always be fully
supported. By contrast, OTX applications are NOT required to support all of the extensions specified
in this standard. The set of supported extensions may vary depending on the field of application.
However, an OTX application supporting an extension which imports other extensions shall support
these, too. This guarantees that the set of supported extensions is consistent with regard to the
dependencies.

Figure 1 also shows the auxiliary packages OTX DiagMetaData as well as OTX AppInfo. These packages are
no OTX extensions; they support OTX authoring systems with additional data used only at authoring time. The
information is not required at runtime of an OTX test sequence. For the DiagMetaData auxiliary, please see
Annex C. For the AppInfo auxiliary, please refer to Part 2 of ISO 13209.

5.3 Basic characteristics of the OTX extensions

Table 1 provides an overview about all OTX extensions and their basic characteristics.

Table 1 — OTX extension characteristics

Extension (schema file) Summary Dependencies

DateTime

(otxIFD_DateTime.xsd)
provides access to system time Core

DiagCom

(otxIFD_DiagCom.xsd)

connecting to ECUs, creating and executing diagnostic

services, analysing communication data

EventHandling,

Quantities, Core

DiagComRaw

(otxIFD_DiagComRaw.xsd)

direct diagnostic communication on a non-symbolic (binary)

level
DiagCom

DiagDataBrowsing

(otxIFD_DiagDataBrosing.xsd)

browsing functionality for reading data from the diagnostic

data base
DiagCom, Core

EventHandling

(otxIFD_Event.xsd)
support for the OTX event handling mechanism. Core

Flash

(otxIFD_Flash.xsd)

functionality for downloading and uploading flash data to and

from ECUs
DiagCom, Core

HMI

(otxIFD_HMI.xsd)

functionality for communicating with the UI (user interface),

through dialogs and screens
EventHandling, Core

i18n

(otxIFD_I18n.xsd)

internationalisation features, multi-language support and

translation mechanisms
Quantities, Core

Job

(otxIFD_Job.xsd)

functionality for emulating ODX Java jobs by OTX test

sequences

DiagCom, Quantities,

Core

Logging

(otxIFD_Logging.xsd)
support for (Log4J-style) logging Core

Math

(otxIFD_Math.xsd)
extended mathematical functions Core

Measure

(otxIFD_Measure.xsd)

executing measurement device services, measuring physical

values, analyzing measurements

EventHandling

Quantities, Core

Quantities

(otxIFD_Quantities.xsd)

handling of quantity data, wrt. SI unit system, transformations

between units, etc.
Core

StringUtil

(otxIFD_StringUtil.xsd)
extended functionality for string handling Core

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 9

Table 2 shows the XSD namespace associations of all OTX extensions [W3C XSD] [W3C XMLNS]. Each
namespace has a prefix assigned to it. This applies also to the OTX Core namespace which has the
otx: prefix (not shown in the table). In the remainder of this document, the prefixes defined here are used to

mark types which belong to extensions other than the one which is currently described. In contrast, the types
defined by the currently described extension are not prefixed.

Table 2 — OTX extension namespace associations

Extension Namespace Prefix

DateTime http://iso.org/OTX/1.0.0/DateTime time:

DiagCom http://iso.org/OTX/1.0.0/DiagCom diag:

DiagComRaw http://iso.org/OTX/1.0.0/DiagComRaw raw:

DiagDataBrowsing http://iso.org/OTX/1.0.0/DiagDataBrowsing data:

EventHandling http://iso.org/OTX/1.0.0/Event event:

Flash http://iso.org/OTX/1.0.0/Flash flash:

HMI http://iso.org/OTX/1.0.0/HMI hmi:

i18n http://iso.org/OTX/1.0.0/i18n i18n:

Job http://iso.org/OTX/1.0.0/Job job:

Logging http://iso.org/OTX/1.0.0/Logging log:

Math http://iso.org/OTX/1.0.0/Math math:

Measure http://iso.org/OTX/1.0.0/Measure measure:

Quantities http://iso.org/OTX/1.0.0/Quantities quant:

StringUtil http://iso.org/OTX/1.0.0/StringUtil string:

Please consider the example in Figure 2. It shows the IsDiagServiceEvent term from the OTX DiagCom

extension. The term accepts a parameter which is defined in the OTX EventHandling extension, therefore the
type of the element is marked with the event: prefix (event:EventValue). The same applies to the

Boolean return type defined for the figure, which is defined in the OTX Core and is marked accordingly with
the otx: prefix (otx:BooleanTerm). The type IsDiagServiceEvent itself is not prefixed since is a

member of the currently described OTX DiagCom extension.

otx:BooleanTerm

«XSDcomplexType»

IsDiagServ iceEvent

«XSDelement»

+ event: event:EventValue

Figure 2 — Example: Usage of extension prefixes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

10 © ISO 2012 – All rights reserved

6 OTX DateTime extension

6.1 Introduction

The purpose of the OTX DateTime extension is to retrieve information about the current date and time
provided by the diagnostic application.

6.2 Terms

6.2.1 Overview

The terms in the OTX DateTime extension shall be used to retrieve information about the current system time.

6.2.2 Syntax

Figure 3 shows the syntax of all terms in the OTX DateTime extension.

otx:StringTerm

«XSDcomplexType»

FormatDuration

«XSDelement»

+ duration: otx:IntegerTerm

+ format: otx:StringTerm [0..1]

otx:IntegerTerm

«XSDcomplexType»

GetTimestamp

otx:StringTerm

«XSDcomplexType»

FormatDate

«XSDelement»

+ timestamp: otx:IntegerTerm

+ format: otx:StringTerm [0..1]

Figure 3 — Data model view: TimeDate terms

6.2.3 Semantics

6.2.3.1 GetTimeStamp

GetTimestamp shall return a timestamp, expressed in milliseconds elapsed since 1970-01-01 00:00:00 UTC.

The semantics of GetTimestamp shall be according to the java.util.Date.getTime() method as

specified by the Java™ 2 Platform Standard Ed. 6.

GetDate is an otx:Integer term. It has no members.

6.2.3.2 FormatDate

The FormatDate term shall transform a timestamp (see GetTimestamp term above) into a date

representation which shall be formatted as follows:

a) In case there is no custom format specified, the returned string shall be formatted according to the rules
given by the ISO 8601 standard [ISO 8601:2004].

b) If a custom format is given (by the <format> element), the string shall be formatted according to the

cusom format rules as specified below.

The custom format pattern can be configured by the OTX author; it controls the text presentation of the date.
A format pattern consists of one or more predefined date and time format specifiers (see Table 3) as well as
user-defined string sequences which have to be escaped by quotes ('). Non-numeric outputs (e.g. the name

of a month) shall be translated automatically to the currently set locale (cf. Clause 12, OTX i18n extension).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 11

Table 3 — Date format pattern specifiers

Specifier(s) Meaning Presentation Example

G Era Text (localized) AD

yy, yyyy Year (two digits / four digits) Number 11, 2011

M, MM Month in year (without / with leading zero) Number 9, 09

MMM, MMMM Month in year (short form / long form) Text (localized) Jan, January

d, dd Day in month (without / with leading zero) Number 3, 09

D Day in year Number 304

F Day of week of month Number 3

E, EEEE Day of week (short form / long form) Text (localized) Wed, Wednesday

h, hh Hours, 1-12 count (without / with leading zero) Number 7, 07

H, HH Hours, 0-23 count (without / with leading zero) Number 7, 07

m, mm Minutes (without / with leading zero) Number 2, 02

s, ss Seconds (without / with leading zero) Number 4, 04

S, SS, SSS Milliseconds (without / with leading zeros) Number 357, 034, 002

w, W Week in year / Week in month Number 34, 3

a AM/PM designator Text (localized) AM

z, zzzz Time zone (short form / long form) Text (localized) CET, Central European Time

Z RFC 822 timezone (timeshift to GMT) Text +0100

The format pattern rules are analogous to the rules given for the class java.text.SimpleDateFormat as

specified by the Java™ 2 Platform Standard Ed. 6. The overall semantics of FormatDate shall be according

to the semantics of the method SimpleDateFormat.format(Date date).

EXAMPLE 1 At a given date and time of 2011-03-10 11:23:56 in the Central European Time zone (CET) and with the
current locale set to en-US, a pattern like e.g. "hh 'o''clock' a, zzzz" would produce the following formatted

output: "11 o'clock AM, Central European Time."

If no custom format is given, the ISO 8601 conform date output shall be formatted equivalent to the custom
pattern "yyyy-MM-dd'T'HH:mm:ss'.'SSSZ", where "T" is the time designator and "." is a separator for

the following millisecond portion. This pattern is language independent; the currently set locale does not
influence the output.

EXAMPLE 2 At a given date and time of 2011-03-10 11:23:56 in the Central European Time zone (CET), the following
standard-format output will be produced: "2011-03-10T11:23:56.123+0100".

FormatDate is an otx:StringTerm. Its members have the following semantics:

 <timestamp> : otx:NumericTerm [1]

This element represents a date given as timestamp which shall be interpreted as amount of milliseconds
elapsed since January 1, 1970 00:00:00 UTC. The corresponding date shall be formatted to a string
output according to the rules given above. Float values shall be truncated.

 <pattern> : otx:StringTerm [0..1]

This optional element represents the custom format pattern which shall be applied in order to produce a
custom date output string.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

12 © ISO 2012 – All rights reserved

Throws:

 otx:OutOfBoundsException

If the timestamp value is negative.

6.2.3.3 FormatDuration

The FormatDuration term shall return a given millisecond duration in a string representation. Formatting

shall be done in analogy to the FormatDate term, with the difference that the milliseconds passed to the term

are to be interpreted as duration, not as date.

Since some of the format specifiers given in Table 3 are meaningless with respect to durations (e.g. time zone,
week day name, era, etc.), only the specifiers defined in Table 4 should be used.

Table 4 — Duration format pattern specifiers

Specifier(s) Meaning Example

y Years portion of duration 11, 124

M, MM Months portion of duration, 0-11 count (without / with leading zero) 2, 02

d, dd Days portion of duration, 0-365 count (without / with leading zero) 3, 09

H, HH Hours portion of duration, 0-23 count (without / with leading zero) 7, 07

m, mm Minutes portion of duration, 0-59 count (without / with leading zero) 2, 02

s, ss Seconds portion of duration, 0-59 count (without / with leading zero) 4, 04

S, SS, SSS Milliseconds of duration, 0-999 count (without / with leading zeros) 357, 034, 002

EXAMPLE 1 For a given duration of 203443 milliseconds (this is 3 minutes, 23 seconds and 443 milliseconds), a
pattern like e.g. "'This took about' m 'minutes and' s 'seconds.'" would produce the following

formatted output: "This took about 3 minutes and 23 seconds."

If no custom format is given, the ISO 8601 conform date output shall be formatted equivalent to the custom
pattern "'P'yyyy-MM-dd'T'HH:mm:ss'.'SSS", where "P" is the duration designator and "T"is the time

designator.

EXAMPLE 2 For a given duration of 203443 milliseconds (this is 3 minutes, 23 seconds and 443 milliseconds), the
following standard-format output will be produced: "P0000-00-00T00:03:23.443".

FormatDuration is an otx:StringTerm. Its members have the following semantics:

 <duration> : otx:NumericTerm [1]

This element represents a duration in milliseconds which shall be transformed to a string which is
formatted according to the rules given above. Float values shall be truncated.

 <pattern> : otx:StringTerm [0..1]

This optional element represents the custom format pattern which shall be applied in order to produce a
custom duration output string.

Throws:

 otx:OutOfBoundsException

If the duration value is negative.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 13

7 OTX DiagCom extension

7.1 Introduction

The purpose of the OTX DiagCom extension is to provide the necessary OTX elements for performing
diagnostic vehicle communication. Specifically, the following diagnostic use cases have been considered:

 Handling of ECU communication channels

 Execution of a diagnostic service

 Setting of service request parameters and evaluation of service response parameters

 Dealing with positive or various negative responses of a diagnostic service

 Handling of communication channel protocol parameters

 Performing variant identification of an ECU

 Functionally addressed diagnostic services: more than one ECU will respond to a request

 Repeated/cyclic execution of diagnostic services: a single request will result in multiple responses from
the same ECU

 A potential combination of functional addressing and cyclic service execution: multiple ECUs responding
multiple times to one request

 Complex data structures within the requests and responses of diagnostic services: structures of
parameters, lists of parameters, lists containing structures of parameters

The considerations below introduce the problem domain that is addressed by the design of the DiagCom
extension. Although it is unlikely that these features will all be supported by all runtime environments that
execute OTX sequences, the OTX DiagCom extension has to provide the means to deal with these concepts,
as it aims to be a universally usable way for defining vehicle diagnostics.

NOTE 1 It is an explicit design goal of the DiagCom extension to be usable with any diagnostic communication kernel.

As a design guideline, an ODX/MVCI [ISO 22901] [ISO 22900] based system has been considered – as ODX/MVCI is
solving the vehicle communication problem domain on a highly generic level, the design concepts that have been adopted

for the DiagCom extension should be usable abstractions for any system that is implementing a solution to the vehicle
communication problem domain.

NOTE 2 It is an explicit design goal of the DiagCom extension to only provide a runtime interface for diagnostic vehicle
communication. The browsing of diagnostic data bases (e.g. the database parts of the ASAM MCD3 API) is not a design

goal of the DiagCom extension. For such use cases, a separate OTX extension specifically providing data access
functionality should be created.

7.2 General considerations

7.2.1 Communication channels

The prerequisite for performing any diagnostic communication is a communication channel between the
diagnostic application and the electronic control unit(s) of a vehicle. In OTX this instance is called a
ComChannel, designating a logical connection between the test sequence and the intended communication

target. A ComChannel is not concerned with any details about the protocols, cabling, connectors or pinning

required for communication with the desired endpoint; rather, these aspects are to be handled by the
underlying vehicle communication layer. A ComChannel works on a symbolic level in that it is supposed to

address ECUs through their name and be aware about an ECUs diagnostic capability through the specific

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

14 © ISO 2012 – All rights reserved

variant of an ECU that is present at runtime. As such, in OTX there is the concept of ECU variant identification
on a ComChannel, and the capability of creating channels to point to specific ECU variants or retrieve the

currently active ECU variant name of a ComChannel.

NOTE It is an explicit design goal of the OTX DiagCom extension to be useable with any diagnostic communication
kernel. However, the concepts of ComChannels and ECU variants are based on the MVCI definitions for Logical Links

and ECU Variant Identification as they represent a generic, high-level approach to a widely applicable design problem.

7.2.2 Diagnostic services

Figure 4 gives a high-level overview of a diagnostic service’s request and result data structure. The service
contains one request. The request comprises one or more parameters. A diagnostic service can have an
arbitrary number of results. In the example, one result is shown. A service result can contain an arbitrary
number of ECU responses. A response contains one or more parameters. A parameter can either be a simple
data type or a complex type containing lists or structures of parameters.

Service

Request

Result

Parameter [1..*]

Response (Positive/Negative, ECU-A)

Response (Positive/Negative, ECU-B)

Parameter [1..*]

Parameter [1..*]

. . .

. . .

Figure 4 — Diagnostic service request - result structure

The request illustrated in Figure 5 consists of a simple parameter, a struct parameter containing two inferior
parameters and a list parameter containing two items which in turn contain three simple data type parameters
each. It is also shown how the different parameters can be accessed by terms and actions within the
DiagCom extension, using the <stepByIndex> and <stepByName> method defined by the <path> element

(please refer to the remainder of this clause, as well as Part 2 of ISO 13209 for more information). The way
the parameters are accessed by path as shown in the example request also applies to ECU responses, which
can comprise complex parameter structures as well.

To deal with repeated service execution patterns (please refer to 7.2.3), a diag service features the concept of
a result queue. Every time a request is sent to an ECU, a new result element is added to the queue which
contains the ECUs response(s) to that request. The OTX DiagCom extension provides three methods of
interacting with the result queue:

a) the first result of the queue can be accessed by using the GetFirstResult term

b) all results currently in the queue can be retrieved as an OTX list by using the GetAllResults term

c) the GetAllResultsAndClear action retrieves all results in the queue and clears the queue

The lifecycle of the results in a diagnostic service's queue is delimited by service execution requests: a
diagnostic service's queue is cleared each time ExecuteDiagService or StartRepetition is invoked on

that DiagService object.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 15

Service

Request

Result

"ReqParam1"

. . .

"ReqParam_Struct"

"ReqParam_Array"

"StructParam1"

"StructParam2"

"Param1"

"Param2"

"Param3"

"Param1"

"Param2"

"Param3"

[0]

[1]

. . .

<diag:path>

 <stepByName xsi:type="StringLiteral" value="ReqParam1"/>

</diag:path>

<diag:path>

 <stepByName xsi:type="StringLiteral" value="ReqParam_Struct"/>

 <stepByName xsi:type="StringLiteral" value="StructParam2"/>

</diag:path>

<diag:path>

 <stepByName xsi:type="StringLiteral" value="ReqParam_Array"/>

 <stepByIndex xsi:type="IntegerLiteral" value="1"/>

 <stepByName xsi:type="StringLiteral" value="Param2"/>

</diag:path>

Figure 5 — Complex request structure with <stepByName> and <stepByIndex>

7.2.3 Diagnostic communication patterns

7.2.3.1 General

Besides diagnostic service requests and responses being of arbitrary structural complexity, the interaction
model between a diagnostic application and the ECUs within a vehicle is also providing challenges to a
diagnostic application: One diagnostic service request sent to a vehicle can result in multiple ECUs answering
that request, or in multiple request and response frames in case of a diagnostic service being executed
repeatedly by the communication backend. Further complications arise when an ECU's answer is sent in
multiple parts. The conceivable permutations of physical and functional addressing, one-shot and repeated
execution and single- and multi-part responses and the resulting result structures are illustrated below.

7.2.3.2 One-shot service, physical addressing, single-part response

Figure 6 shows a communication flow between a tester and one ECU.

Result_1

Response_1

Tester ECU

TX_1

RX_1_ECU

Service t

Figure 6 — One-shot service, physical addressing, single-part response

The ECU receives a physically addressed service request which results in the ECU sending a single-part
response to the tester system. The request sent to the ECU leads to the creation of a corresponding result
object (Result_1). The ECU's response is contained within that result object (Response_1).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

16 © ISO 2012 – All rights reserved

7.2.3.3 One-shot service, physical addressing, multi-part responses

Figure 7 shows a communication flow between a tester and one ECU.

Response_2

Result_1

Response_1

Tester ECU

TX_1

 R
X_1_ECU_part1

Service t

 R
X_1_ECU_part2

Figure 7 — One-shot service, physical addressing, multi-part responses

The ECU receives a physically addressed service request which results in the ECU sending a multi-part
response to the tester system. The request sent to the ECU leads to the creation of a corresponding result
object (Result_1). The ECU's responses are contained within that result object (Response_1 and
Response_2).

7.2.3.4 One-shot service, functional addressing, single-part response

Figure 8 shows a communication flow between a diagnostic application and a set of ECUs.

Result_1

Response_1

Response_2

Tester ECU_1

TX_1

RX_1_ECU_1

RX_1_ECU_2

t

ECU_2

TX_1
Service

Figure 8 — One-shot service, functional addressing, single-part response

The ECUs receive a functionally addressed service request which results in the ECUs sending a single-part
response to the application. The request sent to the ECUs leads to the creation of a corresponding result
object (Result_1). The ECU's response is contained within that result object (Response_1 and Response_2).
Please note that the OTX DiagCom term GetComChannelIdentifierFromResponse can be used to

identify the ECU (ComChannel) that a response is associated with.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 17

7.2.3.5 One-shot service, functional addressing, multi-part responses

Figure 9 shows a communication flow between a diagnostic application and a set of ECUs.

Result_1

Response_1

Response_2

Tester ECU_1

TX_1

RX_1_ECU_1_part1

RX_1_ECU_2_part1

t

ECU_2

TX_1

Service

Response_3

Response_4

RX_1_ECU_1_part2

RX_1_ECU_2_part2

Figure 9 — One-shot service, functional addressing, multi-part responses

The ECUs receive a functionally addressed service request which results in the ECUs sending a multi-part
response to the tester system. The request sent to the ECUs leads to the creation of a corresponding result
object (Result_1). The ECU's responses are contained within that result object (Response_1 through
Response_4).

7.2.3.6 Repeated service, physical addressing, single-part response

Figure 10 shows a communication flow between a diagnostic application and one ECU.

Result_1

Response_1

Tester ECU

TX_1

RX_1_ECU

Service

t

Result_2

Response_1

TX_2

RX_2_ECU

Figure 10 — Repeated service, physical addressing, single-part response

The ECU receives a repeated physically addressed service request which results in the ECU sending a
single-part response to the diagnostic application for each request. The requests sent to the ECU lead to the
creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the repeated
requests are contained within the result object corresponding to the execution cycle that provoked the
response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

18 © ISO 2012 – All rights reserved

7.2.3.7 Repeated service, functional addressing, single-part response

Figure 11 shows a communication flow between a diagnostic application and a set of ECUs.

Result_1

Response_1

Response_2

Tester ECU_1

TX_1

RX_1_ECU_1

RX_1_ECU_2

t

ECU_2

TX_1

Service

Response_1

Response_2

Result_2

TX_2

RX_2_ECU_1

RX_2_ECU_2

TX_2

Figure 11 — Repeated service, functional addressing, single-part response

The ECUs receive a repeated functionally addressed service request which results in the ECUs sending a
single-part response to the diagnostic application for each request. The requests sent to the ECUs lead to the
creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the repeated
requests are contained within the result object corresponding to the execution cycle that provoked the
response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

7.2.3.8 Repeated service, physical addressing, multi-part responses

Figure 12 shows a communication flow between a diagnostic application and one ECU.

Result_1

Response_1

Response_2

Tester ECU

TX_1

RX_1_ECU_part1

t

Service

Response_1

Response_2

Result_2

TX_2

RX_2_ECU_part1

RX_1_ECU_part2

RX_2_ECU_part2

Figure 12 — Repeated service, physical addressing, multi-part responses

The ECU receives a repeated physically addressed service request which results in the ECU sending a multi-
part response to the diagnostic application for each request. The requests sent to the ECU lead to the creation
of corresponding result objects (Result_1 and Result_2). The ECU's responses to the repeated requests are
contained within the result object corresponding to the execution cycle that provoked the response (Result_1
for the first cycle, Result_2 for the second cycle, and so on).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 19

7.2.3.9 Repeated service, functional addressing, multi-part responses

Figure 13 shows a communication flow between a diagnostic application and a set of ECUs.

Result_1

Response_1

Response_2

Tester ECU_1

TX_1

RX_1_ECU_1_part1

RX_1_ECU_2_part1

t

ECU_2

TX_1

Service

RX_1_ECU_1_part2

RX_1_ECU_2_part2
Response_3

Response_4

Result_2

Response_1

Response_2

TX_2

RX_2_ECU_1_part1

RX_2_ECU_2_part1

TX_2

RX_2_ECU_1_part2

RX_2_ECU_2_part2
Response_3

Response_4

Figure 13 — Repeated service, functional addressing, multi-part responses

The ECUs receive a repeated functionally addressed service request which results in the ECUs sending a
multi-part response to the diagnostic application for each request. The requests sent to the ECUs lead to the
creation of corresponding result objects (Result_1 and Result_2). The ECU's responses to the repeated
requests are contained within the result object corresponding to the execution cycle that provoked the
response (Result_1 for the first cycle, Result_2 for the second cycle, and so on).

7.2.3.10 Other patterns

Please note that the OTX DiagCom extension does not explicitly support the feature of cyclically executing
diagnostic services, i.e. services where one request to an ECU leads to the ECU cyclically sending responses
to the tester system without corresponding requests. If such behaviour has to be mapped by an OTX
DiagCom runtime system, the basic rule is that an OTX result object always corresponds to one request sent
out by the tester system.

Figure 14 illustrates the theoretical case of a group of ECUs cyclically sending multi-part responses to a
diagnostic application. In OTX, the initial request send by the application will cause a corresponding result
object to be created, which subsumes any responses that were subsequently received. Please note that OTX
does not support any convenience functionality for the stopping of cyclic diagnostic services. An OTX author
that needs an ECU to stop it's sending of cyclic responses has to manually select and execute the appropriate
diagnostic service for telling the ECU to stop.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

20 © ISO 2012 – All rights reserved

Result_1

Response_1

Response_2

Tester ECU_1

TX_1

RX_1_ECU_1_part1

RX_1_ECU_2_part1

t

ECU_2

TX_1

Service

RX_1_ECU_1_part2

RX_1_ECU_2_part2
Response_3

Response_4

Response_5

Response_6

RX_2_ECU_1_part1

RX_2_ECU_2_part1RX_2_ECU_1_part2

RX_2_ECU_2_part2
Response_7

Response_8

Figure 14 — One-shot service, functional addressing, cyclical multi-part responses

7.2.4 Special-purpose diagnostic data types

As OTX does not support the explicit definition of structured data types, it needs to be mentioned how the
DiagCom extension treats ubiquitious diagnostic datatypes like DTCs or freeze frame data. Looking at a DTC,
generally speaking it is nothing else than a structured data type, with a set of structure parameters defined by
the SAE J1979 standard [SAE J1979], others that are OEM specific. As such, a DTC in OTX is treated like
any other structured parameter: when a parameter that represents a DTC is retrieved from a diagnostic
service's response, the DTC's fields can be accesed through using the DiagCom term
GetParameterByPath on the DTC parameter, passing the name of the required sub-parameter in the

<path> element.

For instance, if in a diagnostic system, a DTC's PID value is named "TroubleCode" to access that information
the OTX sequence would look as shown in the OTX sample below.

EXAMPLE Sample of OTX-file "DtcExample.otx"

<action id="a1">

 <specification>Get trouble code parameter from DTC</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ParameterVariable" name="TroubleCodeParameter"/>

 <term xsi:type="diag:GetParameterByPath">

 <diag:parameterContainer xsi:type="diag:ParameterValue" valueOf="dtc"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="TroubleCode"/>

 </diag:path>

 </term>

 </realisation>

</action>

<action id="a2">

 <specification>Get trouble code quantity from parameter</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="TroubleCodeValue"/>

 <term xsi:type="diag:GetParameterValueAsInteger">

 <diag:parameter xsi:type="diag:ParameterValue" valueOf="dtc"/>

 </term>

 </realisation>

</action>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 21

7.3 Data types

7.3.1 Overview

All datatypes introduced by the OTX DiagCom extension are derived from the OTX Core ComplexType which

means they define complex data types as defined by Part 2 of ISO 13209. The elements described here are
handles to the corresponding objects of the underlying communication system.

7.3.2 Syntax

The syntax of all OTX DiagCom exception type declarations is shown in Figure 15.

«XSDcomplexType»

Parameter

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

Result

«XSDcomplexType»

DiagServ ice

«XSDcomplexType»

ParameterContainer

«XSDcomplexType»

Message

«XSDcomplexType»

ComChannel

«XSDcomplexType»

Response

«XSDcomplexType»

Request

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

ResponseState

«XSDelement»

+ init: ResponseStateLiteral [0..1]

«XSDcomplexType»

ResultState

«XSDelement»

+ init: ResultStateLiteral [0..1]

«XSDcomplexType»

otx:SimpleType

Figure 15 — Data model view: DiagCom data types

7.3.3 Semantics

7.3.3.1 General

The OTX DiagCom data types have no initialisation parts (with the exception of the enumeration types
ResponseState and ResultState); therefore, these can not be declared constant.

7.3.3.2 ComChannel

A ComChannel is a handle to a communication channel. It represents the concept of linking to one specific

communication endpoint, e.g. an ECU module (physical addressing) or a set of ECU modules (functional
addressing).

NOTE In case of a MVCI/ODX based system a ComChannel handle points to a MCDDLogicalLink object.

7.3.3.3 DiagService

A DiagService is a handle to an object representing a diagnostic service, e.g. a service for reading error

codes. A DiagService handle can be used for performing a diagnostic service execution using the

ExecuteDiagService action (see 7.6.4.3.1).

NOTE In case of a MVCI/ODX based system a DiagService handle represents a MCDDiagComPrimitive object.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

22 © ISO 2012 – All rights reserved

7.3.3.4 Result

A Result is a handle to the result of a diagnostic service object. See Figure 4 for an explanation of the

structure of Request, Result, Response and Parameter instances of a diagnostic service.

NOTE In case of a MVCI/ODX based system a Result handle represents a MCDResult object.

7.3.3.5 ParameterContainer

The ParameterContainer is an abstract data type which subsumes all data types that contain parameters,

i.e. Parameter and Message handles.

7.3.3.6 Parameter

A Parameter is a handle to a parameter object of a diagnostic service request or response. It can represent

a simple or a complex type parameter, i.e. a Parameter handle might point to a simple Integer or String

parameter, or it might correspond to a parameter structure or a list of parameters, depending on the definitions
of the underlying communication system. See Figure 4 for an explanation of the structure of Request,

Result, Response and Parameter instances of a diagnostic service.

NOTE In case of a MVCI/ODX based system a Parameter handle represents a MCDParameter object (or its

specializations MCDRequestParameter and MCDResponseParameter, respectively).

7.3.3.7 Message

The Message element is an abstract data type that encapsulates actual ECU messages.

7.3.3.8 Response

A Response is a handle to a response object of a diagnostic service’s result. See Figure 4 for an explanation

of the structure of Request, Result, Response and Parameter instances of a diagnostic service.

NOTE In case of a MVCI/ODX based system a Response handle represents a MCDResponse object.

7.3.3.9 Request

A Request is a handle to a request of a diagnostic service. See Figure 4 for an explanation of the structure of

Request, Result, Response and Parameter instances of a diagnostic service.

NOTE In case of a MVCI/ODX based system a Request handle represents a MCDRequest object.

7.3.3.10 ResultState

ResultState is an enumeration type describing the state of a Result.

The list of allowed enumeration values is defined as follows:

 ALL_FAILED: all ECUs in a functional group (listening to the same functional address) failed to answer,

in case of physical addressing: the one requested ECU failed to answer

 ALL_INVALID: all ECUs in a functional group (listening to the same functional address) returned an

invalid answer, in case of physical addressing: the one requested ECU returned an invalid response

 ALL_NEGATIVE: all ECUs in a functional group (listening to the same functional address) returned a

negative response, in case of physical addressing: the one requested ECU returned a negative response

 ALL_POSITIVE: all ECUs in a functional group (listening to the same functional address) returned a

positive response, in case of physical addressing: the one requested ECU returned a positive response

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 23

 FAILED: some of the ECUs in a functional group (listening to the same functional address) failed to

answer

 INVALID: some of the ECUs in a functional group (listening to the same functional address) returned an

invalid response

 NEGATIVE: some of the ECUs in a functional group (listening to the same functional address) returned a

negative response

 POSITIVE: some of the ECUs in a functional group (listening to the same functional address) returned a

positive response

IMPORTANT — ResultState values may occur as operands of comparisons (cf. Part 2 of ISO 13209,

relational operations). For this case, the following order relation shall apply:
ALL_FAILED < ALL_INVALID < ALL_NEGATIVE < ALL_POSITIVE < FAILED < INVALID < NEGA-

TIVE < POSITIVE.

IMPORTANT — When applying otx:ToString on a ResultState value, the resulting string shall be

the name of the enumeration value, e.g. otx:ToString(POSITIVE)="POSITIVE". Furthermore,

applying otx:ToInteger shall return the index of the value in the ResultStates enumeration

(smallest index is 0). The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

ResultState is an otx:SimpleType. Its members have the following semantics:

 <init> : ResultStateLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : ResultStates={ALL_FAILED|ALL_INVALID|ALL_NEGATIVE|ALL_POSITIVE|

FAILED|INVALID|NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResultStates enumeration.

IMPORTANT — If the ResultState declaration is not explicitly initialized (omitted <init> element),

the default value shall be ALL_FAILED.

7.3.3.11 ResponseState

ResponseState is an enumeration type describing the state of a Response.

The list of allowed enumeration values is defined as follows:

 FAILED: the ECU failed to answer

 INVALID: the ECUs returned an invalid response

 NEGATIVE: the ECUs returned a negative response

 POSITIVE: the ECUs returned a positive response

IMPORTANT — ResponseState values may occur as operands of comparisons (cf. Part 2 of

ISO 13209, relational operations). For this case, the following order relation shall apply:

FAILED < INVALID < NEGATIVE < POSITIVE.

IMPORTANT — When applying otx:ToString on a ResponseState value, the resulting string shall

be the name of the enumeration value, e.g. otx:ToString(POSITIVE)="POSITIVE". Furthermore,

applying otx:ToInteger shall return the index of the value in the ResponseStates enumeration

(smallest index is 0). The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

24 © ISO 2012 – All rights reserved

ResponseState is an otx:SimpleType. Its members have the following semantics:

 <init> : ResponseStateLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : ResponseStates={FAILED|INVALID|NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResponseStates enumeration.

IMPORTANT — If the ResponseState declaration is not explicitly initialized (omitted <init>

element), the default value shall be FAILED.

7.4 Exceptions

7.4.1 Overview

All elements referenced in this clause are derived from the OTX Core Exception type as defined by Part 2 of

ISO 13209. They represent the full set of exceptions added by the OTX DiagCom extension.

7.4.2 Syntax

The syntax of all OTX DiagCom exception type declarations is shown in Figure 16.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

«XSDcomplexType»

DiagComException

«XSDcomplexType»

AmbiguousSemanticException

«XSDcomplexType»

LossOfComException

«XSDcomplexType»

UnknownComChannelException

«XSDcomplexType»

UnknownResponseException

«XSDcomplexType»

UnknownTargetException

«XSDcomplexType»

IncompleteParameterizationException

«XSDcomplexType»

Inv alidStateException

Figure 16 — Data model view: DiagCom exceptions

7.4.3 Semantics

7.4.3.1 General

Since all OTX DiagCom exception types are implicit exceptions without initialisation parts, they can not be
declared constant.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 25

7.4.3.2 DiagComException

The DiagComException is the super class for all exceptions in the DiagCom extension. A

DiagComException shall be used in case the more specific exception types described in the remainder of

this section do not apply to the problem at hand.

7.4.3.3 AmbiguousSemanticException

The AmbiguousSemanticException is thrown if there is more than one object with the same semantic

attribute matching a DiagCom activity. This exception can be thrown by the following actions/terms:

 CreateDiagServiceBySemantic

 GetParameterBySemantic

 SetParameterValueBySemantic

7.4.3.4 UnknownTargetException

The UnknownTargetException is thrown if a DiagCom action or term references an object in the

underlying communication system that is not available or not defined.

7.4.3.5 LossOfComException

The LossOfComException is thrown if there is a communication breakdown during a service execution, e.g.

in case the cable to the vehicle gets unplugged.

7.4.3.6 UnknownResponseException

This exception is thrown in case execution of a diagnostic service returned a response that was not mapped
by the ExecuteDiagService action (see 7.6.4.3.1).

7.4.3.7 UnknownComChannelException

This exception is thrown in case a Response handle can not be linked to a communication channel when

using the GetComChannelNameFromResponse term (see 7.7.2.3.4).

7.4.3.8 InvalidStateException

This exception is thrown in case the StartRepeatedExecution action used on a DiagService that is

already executing repeatedly, in case the StopRepeatedExecution action used on a DiagService that is

not currently executing repeatedly or in case the SetRepetitionTime action is used on a DiagService

that is currently executing repeatedly.

7.4.3.9 IncompleteParameterizationException

This exception is thrown in case a DiagService was executed where not all request parameters have been

set that didn't have a default value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

26 © ISO 2012 – All rights reserved

7.5 Variable access

7.5.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the DiagCom extension.

7.5.2 Syntax

Figure 17 shows the syntax of the DiagCom extension's variable access types.

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

ComChannelVariable
«XSDcomplexType»

DiagServ iceVariable
«XSDcomplexType»

ResultVariable

«XSDcomplexType»

ParameterVariable

«XSDcomplexType»

ResponseVariable

«XSDcomplexType»

RequestVariable

«XSDcomplexType»

otx:ExceptionVariable

«XSDcomplexType»

ResultStateVariable

«XSDcomplexType»

ResponseStateVariable

Figure 17 — Data model view: DiagCom variable access types

7.5.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for details.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 27

7.6 Actions

7.6.1 Overview

All of the elements shown in Figure 18 extend the otx:ActionRealisation extension interface as defined
by Part 2 of ISO 13209.

Figure 18 — Data model view: DiagCom actions overview

7.6.2 ComChannel related actions

7.6.2.1 Description

All actions described in this clause effect changes on a ComChannel handle.

7.6.2.2 Syntax

Figure 19 shows the syntax of all ComChannel related ActionRealisation types of the DiagCom
extension.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

28 © ISO 2012 – All rights reserved

otx:ActionRealisation

«XSDcomplexType»

IdentifyAndSelectVariant

«XSDelement»

+ comChannel: ComChannelValue

otx:ActionRealisation

«XSDcomplexType»

CloseComChannel

«XSDelement»

+ comChannel: ComChannelValue

Figure 19 — Data model view: ComChannel related actions

7.6.2.3 Semantics

7.6.2.3.1 IdentifyAndSelectVariant

The IdentifyAndSelectVariant action shall be used to tell the communication backend to identify the

ECU variant that is present at runtime at a specific communication channel. In case an ECU variant can be
identified, the communication channel is switched to point to that specific variant.

This standard can not make assumptions about whether the vehicle communication component used by an
OTX runtime supports the concept of ECU variant identification or about the behaviour of the communication
component in case it does. The relevant parts of the DiagCom extension are based on the following
assumptions:

 A communication channel to an ECU is associated with a data set describing diagnostic behaviour of a
specific variant of that ECU.

 The vehicle communication component is able to explicitly perform an ECU variant identification operation
on a communication channel to an ECU.

 The required logic and data for performing the variant identification is intrinsic to the vehicle
communication component, i.e. there is no additional external information required for the communication
component to perform the ECU variant identification.

 After an ECU variant has been identified, the vehicle communication component is able to explicitly
associate the communication channel to that ECU with the specific data set for that ECU variant,
effectively switching the communication channel from the old variant data set to a new one.

The IdentifyAndSelectVariant action tells the runtime system to perform the variant identification

operation on the provided communication channel and then switch the data set associated with that channel
to the one fitting the newly identified variant (if any). Please refer also to the GetComChannel term (see

7.7.2.3.3) which tells the runtime system to create a new communication channel, immediately perform the
variant identification operation on the new communication channel and then switch the data set associated
with that channel to the one fitting the newly identified variant (if any).

NOTE In case an ODX/MVCI system is used, the exact semantics of variant identification and selection are specified

by the ISO ODX and MVCI standards.

The members of the IdentifyAndSelectVariant action the following semantics:

 <comChannel> : ComChannelValue [1]

This element comprises the communication channel which shall be used for identifying the actual variant
of the ECU the communication channel is connected to.

Throws:

 LossOfComException

If communication to the ECU was interrupted during the variant identification process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 29

7.6.2.3.2 CloseComChannel

The action CloseComChannel tells the OTX runtime system that the communication channel to an ECU can

be closed and associated resources can be freed. Please note that the use of the CloseComChannel action

by an OTX sequence only indicates that the channel is not needed any more – it is up to the implementation
of a specific runtime system whether it actually frees all resources and closes the channel at this point. If a
diagnostic sequence uses a ComChannel handle after it’s been freed by a CloseComChannel action, the

runtime system shall throw an otx:InvalidReferenceException.

The members of the CloseComChannel action have the following semantics:

 <comChannel>: ComChannelVariable [1]

This element comprises communication channel which shall be closed.

7.6.3 ComParameter related actions

7.6.3.1 Description

All actions described in this clause change communication parameter settings of a ComChannel handle. For

example, CAN timeouts or baudrate settings usually are modelled as communication parameters.

7.6.3.2 Syntax

Figure 20 shows the syntax of all parameter handling related ActionRealisation types of the DiagCom

extension.

otx:ActionRealisation

«XSDcomplexType»

SetComParameter

«XSDelement»

+ comChannel: ComChannelValue

+ name: otx:StringTerm

+ value: otx:Term

otx:ActionRealisation

«XSDcomplexType»

SetComplexComParameter

«XSDelement»

+ comChannel: ComChannelValue

+ parameter: ParameterTerm

Figure 20 — Data model view: Communication parameter handling

7.6.3.3 Semantics

7.6.3.3.1 SetComParameter

The SetComParameter action shall be used to change the value of a communication parameter used by the

communication backend. For example, bus timeouts or baud rates can be set using the SetComParameter

node.

NOTE In case an ODX/MVCI system is used for vehicle communication, the communication parameter names and

data types that can be set are defined by the D-PDU API/ODX communication parameter specification.

The members of the SetComParameter action have the following semantics:

 <comChannel> : ComChannelValue [1]

This element comprises the communication channel where the communication parameter shall be
modified.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

30 © ISO 2012 – All rights reserved

 <name> : otx:StringTerm [1]

This element specifies the name of the communication parameter which shall be changed.

 <value> : otx:Term [1]

This element specifies the new communication parameter value that shall be set.

Throws:

 UnknownTargetException

If no communication parameter with the specified name exists.

 otx:TypeMismatchException

If the specified quantity type does not match the data type of the communication parameter to be set.

7.6.3.3.2 SetComplexComParameter

The SetComplexComParameter action is an enhanced variant of SetComParameter. The difference

between these actions is that in this case complex data types can be used.

NOTE For instance, in an ODX/MVCI based system, complex communication parameter data types are used to

define response ID lists for the functional addressing use case.

The members of the SetComplexComParameter action have the following semantics:

 <comChannel> : ComChannelValue [1]

This element comprises the communication channel where the communication parameter shall be
modified.

 <parameter> : ParameterTerm [1]

This element comprises the parameter structure which shall be set.

Throws:

 otx:TypeMismatchException

If the specified <parameter> element does not match the communication parameter to be set.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 31

7.6.4 DiagService related actions

7.6.4.1 Description

Actions described in this clause are used for setting up and performing actual ECU communication.

7.6.4.2 Syntax

Figure 21 shows the syntax of all ActionRealisation types of the DiagCom extension which relate to

diagnostic service configuration and execution.

otx:ActionRealisation

«XSDcomplexType»

ExecuteDiagServ ice

«XSDattribute»

+ executeAsync: xsd:boolean [0..1]

+ suppressPositiveResponse: xsd:boolean [0..1]

«XSDelement»

+ diagService: DiagServiceTerm

+ result: ResultVariable [0..1]

+ resultState: ResultStateVariable [0..1]

«XSDcomplexType»

RequestParameter

«XSDelement»

+ value: otx:Term

+ path: otx:Path

«XSDcomplexType»

ResponseParameter

«XSDelement»

+ target: otx:Variable

+ path: otx:Path

«XSDcomplexType»

RequestParameters

«XSDcomplexType»

ResponseParameters

«XSDelement»

+ name: otx:StringTerm

otx:ActionRealisation

«XSDcomplexType»

ExecuteHexDiagServ ice

«XSDelement»

+ comChannel: ComChannelTerm

+ hexRequest: otx:ByteFieldTerm

+ hexResponse: otx:ByteFieldVariable [0..1]

otx:ActionRealisation

«XSDcomplexType»

SetParameterValueBySemantic

«XSDelement»

+ parameterContainer: ParameterContainerTerm

+ semantic: otx:StringTerm

+ value: otx:Term

otx:ActionRealisation

«XSDcomplexType»

SetParameterValue

«XSDelement»

+ parameter: ParameterTerm

+ value: otx:Term

otx:ActionRealisation

«XSDcomplexType»

SetPdu

«XSDelement»

+ request: RequestTerm

+ pdu: otx:ByteFieldTerm

otx:ActionRealisation

«XSDcomplexType»

GetAllResultsAndClear

«XSDelement»

+ diagService: DiagServiceValue

+ resultList: otx:ListVariable

otx:ActionRealisation

«XSDcomplexType»

StartRepeatedExecution

«XSDelement»

+ diagService: DiagServiceValue

otx:ActionRealisation

«XSDcomplexType»

StopRepeatedExecution

«XSDelement»

+ diagService: DiagServiceValue

otx:ActionRealisation

«XSDcomplexType»

SetRepetitionTime

«XSDelement»

+ diagService: DiagServiceValue

+ repetitionTime: otx:NumericTerm

responseParam

0..*

requestParam

1..*

responseParameters

0..*

requestParameters

0..1

Figure 21 — Data model view: DiagService related actions

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

32 © ISO 2012 – All rights reserved

7.6.4.3 Semantics

7.6.4.3.1 ExecuteDiagService

The ExecuteDiagService action shall be used for performing diagnostic vehicle communication. An

ExecuteDiagService node in an OTX sequence indicates to the runtime system that at this point, a service

request shall be transmitted to one or more ECUs, and that any associated responses might have to be
provided to the OTX sequence. To be able to do this, the ExecuteDiagService action requires two sets of

information:

a) The DiagService to use

b) The definition for mapping OTX values to the service’s request parameters as well as the values of the
service’s response parameters back to OTX variables.

The writing/reading of values to/from service parameters can be done in two ways, depending on whether a
service’s parameter structure is known at OTX authoring time or will have to be dynamically evaluated at run
time.

 Inline mapping: In case a service’s parameter structure is static (known at authoring time), the
ExecuteDiagService action can be used to define request and response parameter mappings inline

through its <RequestParameters> and <ResponseParameters> members. A detailed explanation

will be given in the remainder of this clause. Please note that the inline mapping approach is only meant
to be used in cases where there is one response from one ECU to a diagnostic service. In case more
than one ECU respond to a service request and/or ECUs respond more than once, the inline mapping will
only relate to the first response within the first result.

 Dynamic response: In case a service’s parameter structure is dynamic at runtime (not known at
authoring time), it is possible to use terms defined by the DiagCom extension to evaluate request and
response parameter structures by explicit OTX statements. This way, it is possible to e.g. loop through a
service response that contains a list of structures. An example for a diagnostic service where the
response parameter structure varies in such a way at runtime is the read DTC service as defined by the
UDS protocol [ISO 14229]. As it returns the number of DTCs that are present within the ECU at the time
of the service execution, it can not be known at authoring time exactly how many or which DTCs will be
contained in the service's response at run time.

Manual evaluation of results is also needed in case a diagnostic service produces a complex result structure.
This can happen in two cases, the first one being a diagnostic service where one service execution results in
multiple, cyclic responses from an ECU. In this case, the diagnostic service will have multiple results
associated with it – one for each of the ECUs responses along the timeline. The individual results have to be
accessed and evaluated through the terms defined in 7.6.4.4. The second case is when one diagnostic
request results in multiple responses from different ECUs, i.e. when using functional addressing. In this case,
there is one result associated with the diagnostic service, which in turn contains multiple responses – one for
each ECU that responded to the functional request. The individual responses have to be accessed and
evaluated using the terms defined in 7.6.4.4. Please note that in theory, both cases can also be combined – it
is possible to imagine a repeatedly sent diagnostic service which uses functional addressing, producing
multiple results including multiple responses each. Please refer to 7.6.4.4 for more details.

The following rules apply for inline mapping of parameters in the ExecuteDiagService element:

 Allowed OTX data types for parameter mapping: RequestParameter and ResponseParameter

mappings are only allowed to reference OTX simple types, OTX ByteField, List and Map types as

well as OTX Quantity types.

 Response mapping and exception behaviour of ExecuteDiagService: Generally, the

ExecuteDiagService action can contain multiple sequences of response parameters - one for each

response that is of interest to the OTX sequence. If at runtime an ECU response is encountered that is
not represented by a <responseParameters> element in the ExecuteDiagService node, this shall

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 33

result in an UnknownResponseException. To be able to determine the nature of the problem, in this

case it is possible to retrieve the DiagService object that was executed from the

UnknownResponseException using the term GetDiagServiceFromException (see 7.7.3.3.7),

and then to analyse it's response structure by looking at the PDU of the response (see term GetPdu in

7.7.4.3.4) or by the usual traversal methods using the appropriate DiagCom terms.

 Defining which service responses are of interest to the diagnostic sequence: as has been elaborated in
the previous paragraph, an ExecuteDiagService node can freely define which of the responses of a

service it is interested in by providing a <responseParameters> element with the appropriate response

name. Please note that a <responseParameters> element is allowed to be empty, it is not required

that any mappings of actual response parameters are defined. This allows a diagnostic sequence author
fine-grained control over the behaviour of the ExecuteDiagService action: whether or not the

ExecuteDiagService action is supposed to throw an exception in case an unexpected/unwanted

response is encountered is simply a matter of providing a potenitally empty response parameter mapping
for the response in question. For example if a diagnostic sequence author is only interested in a positive
response and considers the occurence of a negative response to be an error, he should only provide a
mapping for the positive response's name. If the occurence of the negative response is not considered an
error and shall not cause an UnknownResponseException, he can simply provide a mapping for the

negative response as well, which can be empty if he doesn't care about the acutal response parameters.
The princple applies for any combination of responses (positive, negative, global negative, etc.) – simply
by providing an appropriate <responseParameters> element, the author can control whether the

occurence of the response shall be treated as an UnknownResponseException (no mapping) or not

(mapping present).

NOTE In case the OTX DiagCom extension functionality is used with an ODX/MVCI system, the name of the
<responseParameters> element is the SHORT-NAME of the response (positive, local negative, global negative) in the

corresponding ODX data. In case of the DiagCom extension being used with a different communications backend that has
no concept of multiple responses for a service/no names for responses, a similar internal naming convention could be

used to map OTX response parameters to positive or negative responses.

The ExecuteDiagService action can also be configured to tell the communication backend that the

addressed ECU shall suppress the sending of a positive response, in case that concept is supported by the
communication backend and by the specific diagnostic service that is to be executed. This shall happen if the
value of the attribute suppressPositiveResponse is set to true. If the attribute is omitted from

ExecuteDiagService, the default value shall be false.

The members of ExecuteDiagService action have the following semantics:

 executeAsync : xsd:boolean={false|true} [0..1]

This option tells the communication backend to make this diagnostic service execution non-blocking. This
means that if executeAsync is set to true, the OTX execution flow will immediately move on to the

next Action, without waiting for the result of the ExecuteDiagService action. As a consequence, any

response parameter mappings defined by this ExecuteDiagService action are ignored: as the

diagnostic service execution has not necessarily finished with the execution of the
ExecuteDiagService node, the OTX variables that are statically mapped to contain the service's

responses cannot contain a value at this point. The use of the executeAsync capability always requires

the OTX sequence to perform dynamic response interpretation. An OTX sequence can make use of the
DiagServiceEventSource term (refer to 7.7.9.3.1) to be notified when a new result for an

asynchronously executed diagnostic service has arrived.

 suppressPositiveResponse : xsd:boolean={false|true} [0..1]

This option tells the ECU(s) addressed by the diagnostic service to suppress sending of a positive
response. This feature has to be supported by the underlying communication system, diagnostic protocol
and specific diagnostic service (compare to suppressPosRspMsgIndicationBit of the UDS protocol

[ISO 14229]).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

34 © ISO 2012 – All rights reserved

 <diagService> : DiagServiceTerm [1]

The element specifies the service which shall be executed. Syntax and semantics of expression
DiagServiceTerm are specified in 7.7.3.

 <requestParameters> : RequestParameters [0..1]

In this part OTX values are mapped to service request parameters.

 <requestParam> : RequestParameter [1..*]

This element shall be used to assign one specific OTX value to one specific request parameter of the
diagnostic service.

 <value> : otx:Term [1]

This element specifies the value which shall be assigned to a service’s request parameter. At
runtime, the value is yieled by evaluation of the term given by the <value> member element. It

is only allowed to map from OTX simple data types, OTX bytefields, lists and maps as well as
OTX quantities as defined in the OTX Quantities extension. The specific data type to be used in
a mapping depends on the type expected by the diagnostic service’s request parameter.

 <path> : otx:Path [1]

This element is described in the OTX Core language specification. Here it shall be used to locate
the request parameter to which the value shall be assigned to.

The usage of the following elements depends on the elements necessary stepping through the
parameter hierarchy. If more steps like <stepByIndex> / <stepByName> are necessary these

elements get combined.

 <stepByIndex> : otx:NumericTerm [1]

The element shall be used locate a parameter inside a list of request parameters. For
example, in case a diagnostic service request contains a list of three parameter structures,
the <stepByIndex> element can be set to 0 to indicate a mapping to the first of these

three list entries. Float values shall be truncated.

 <stepByName> : otx:StringTerm [1]

The element shall be used to locate a named parameter of a request. For example, in case
a diagnostic service request contains three parameters "RequestParameterA",

"RequestParameterB" and "RequestParameterC", the <stepByName> element can

be set to "RequestParameterB" to indicate a mapping to the second of these request

parameters.

 <responseParameters> : ResponseParameters [0..*]

In this part service response parameters are assigned to OTX variables.

 <name> : otx:StringTerm [1]

This element shall contain the name of the response that shall be used for this mapping definition.

 NOTE In case an ODX/MVCI based communication backend is used, this element shall contain the SHORT-

NAME of the RESPONSE element that shall be mapped. In case a non-ODX based system is used, this element

should contain an equivalent response identifier to denote a positive, negative etc. response.

 <responseParam> : ResponseParameter [0..*]

This element shall be used to assign one specific response parameter value of a diagnostic service
to a specific OTX variable.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 35

 <target> : otx:Variable [1]

This element specifies the OTX variable the response value shall be assigned to. It is only
allowed to assign to OTX simple data types, OTX bytefields, lists and maps and OTX quantities.

 <path> : otx:Path [1]

This element is described in the OTX core language definition. Here it shall be used to define
which response parameter shall be mapped to an OTX variable.

The member elements <stepByIndex> and <stepByName> are not further specified here

since they have identical semantics as specified for the <requestParameters> mapping

explained above.

 <result> : otx:ResultVariable [0..1]

After execution of the diagnostic service, the first result shall be assigned to the variable given by this
optional element.

In order to get further results (e.g. in case of cyclic execution), the GetAllResults term shall be used

(cf. 7.7.5.3.4).

 <resultState> : otx:ResultStateVariable [0..1]

After execution of the diagnostic service, the state of its first result (i.e. whether the ECU(s) answered at
all, correctly, positively or negatively) shall be assigned to the variable given by this optional element.
Allowed result state values are specified by the ResultState data type as defined in 7.3.3.10.

In order to get the result state of further results (e.g. in case of cyclic execution), the GetResultState

term shall be used (cf. 7.7.5.3.8).

Throws:

 IncompleteParameterizationException

One or more request parameters of the diag service have not been set and don't have a default value.

 LossOfComException

If communication to the ECU was interrupted during diagnostic service execution.

 UnknownTargetException

If no request or response parameter with the specified name in any of the parameter mappings exist.

 UnknownResponseException

If execution of the diagnostic service returned a response that was not mapped by any
<responseParameters> element.

 otx:OutOfBoundsException

If a conversion can not be made because the value of an OTX variable exceeds the limits of the target
data type of a parameter of the vehicle communication component.

 otx:TypeMismatchException

If an invalid OTX data type is mapped to a request parameter or a response parameter is mapped to an
invalid OTX data type. For instance it is thrown if a String variable gets mapped onto a request

parameter that is of type Integer.

Associated checker rules:

 DiagCom_Chk001 – No Path in ExecuteDiagService response parameter arguments

An example for the ExecuteDiagService action is given in 7.6.4.4.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

36 © ISO 2012 – All rights reserved

7.6.4.3.2 ExecuteHexDiagService

The ExecuteHexDiagSevice action allows the sending of diagnostic services by directly entering the

request byte stream, bypassing the symbolic level that is utilized by the normal ExecuteDiagService action.

By using this action, ECUs can be directly addressed with hex requests defined by the OTX sequence author.
Possible use cases for this functionality are errors in the diagnostic database which have to be bypassed to
achieve a temporary workaround. The response to an ExecuteHexDiagService is provided as a

ByteField containing the raw, uninterpreted ECU response message. Please note that the

ExecuteHexDiagSevice action is only meant to be used in cases where there is one response from one

ECU to a diagnostic service. In case more than one ECU respond to a service request and/or ECUs respond
more than once, the <hexResponse> assignment will only contain the first Response of the first Result.

A PDU as understood by the DiagCom extension comprises the complete payload of a message including the
service identifier and any other request parameters. It does not include header or checksum bytes from
underlying protocol layers.

The members of the ExecuteHexDiagService action have the following semantics:

 <comChannel> : ComChannelTerm [1]

This element shall comprise the handle of the communication channel which shall be used for
communication with the ECU.

 <hexRequest> : otx:ByteFieldTerm [1]

This element shall contain the service request as a set of raw bytes.

 <hexResponse> : otx:ByteFieldVariable [0..1]

This element specifies the OTX ByteField variable to which the raw response bytes of the service shall

be assigned.

Throws:

 LossOfComException

If communication to the ECU was interrupted during diagnostic service execution.

7.6.4.3.3 StartRepeatedExecution

This action causes a DiagService to be executed repeatedly by the underlying communication backend.

The repetition time shall be set through the SetRepetitionTime action and queried by the

GetRepetitionTime term. The StartRepeatedExecution action will return immediately, the results of

the DiagService created by the repeeated service execution can be queried through the GetFirstResult

or GetAllResults terms or the GetAllResultsAndClear action. Each new result (each execution cycle)

will cause a DiagServiceEvent to be raised by the DiagService object. To stop a repeated service

execution, the StopRepeatedExecution action is to be used.

The members of the StartRepeatedExecution action have the following semantics:

 <diagService> : DiagServiceValue [1]

The element specifies the service which shall be executed repeatedly.

Throws:

 InvalidStateException

The diag service is already being executed repeatedly.

 IncompleteParameterizationException

One or more request parameters of the diag service have not been set and don't have a default value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 37

7.6.4.3.4 StopRepeatedExecution

This action causes the repeated execution of a DiagService to be stopped. The results of the

DiagService created by the repeated service execution can be queried through the GetFirstResult / or

GetAllResults terms or the GetAllResultsAndClear action. To start a repeated service execution, the

StartRepeatedExecution action is to be used.

The members of the StopRepeatedExecution action have the following semantics:

 <diagService> : DiagServiceValue [1]

The element specifies the service which shall not be executed repeatedly any more.

Throws:

 InvalidStateException

The diag service is currently not being executed repeatedly.

7.6.4.3.5 SetRepetitionTime

This action sets the repetition cycle time of a diagnostic service. The repetition time is always provided in
millisecond (ms) granularity. It is not allowed to set the repetition time of a service while it is being executed
repeatedly. To start or stop a repeated service execution, the StartRepeatedExecution and
StopRepeatedExecution actions are to be used ().

The members of the SetRepetitionTime action have the following semantics:

 <diagService> : DiagServiceValue [1]

The element specifies the service where the repetition time should be set.

 <repetitionTime> : otx:NumericTerm [1]

This element specifies the repetition cycle time in milliseconds (ms). Float values shall be truncated.

Throws:

 InvalidStateException

The diag service is currently being executed repeatedly.

 otx:OutOfBoundsException

The repetition time value is negative.

7.6.4.3.6 GetAllResultsAndClear

This action retrieves all available result entries from a diagnostic service and then clears the diagnostic
communication system’s result buffer. The results are provided as a list of Result elements. In comparison to

the term GetAllResults defined in 7.7.5.3.4, GetAllResultsAndClear is modelled as an

ActionRealisation because it changes the DiagService object it is invoked on by clearing its result

buffer.

This action is designed based on the assumption that a diagnostic communication component as used by an
OTX runtime has the capability to buffer results it receives from ECUs. Especially for dealing with system
behaviour as illustrated in Figure 6 (one ECU returning multiple results for one diagnostic request) a
communication system requires a buffering concept for ECU results. The following assumptions are made in
the context of the DiagCom extension regarding the result buffer:

 The result buffer is owned and managed by the vehicle communication component and is outside the
scope of an OTX runtime.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

38 © ISO 2012 – All rights reserved

 Every DiagService object has an associated result buffer which contains any results that were received

as a reaction to an ExecuteDiagService action.

 This result buffer is of finite size, i.e. a loop buffer that will wrap around after a number of results have
been received by the vehicle communication component.

 The DiagCom term GetFirstResult (see 7.7.5.3.3) only fetches the first (in time) result out of the

communication component's result buffer, but does not modify that buffer.

 The DiagCom term GetAllResults (see 7.7.5.3.4) fetches all results present at the time of the call out

of the communication component's result buffer, but does not modify that buffer. The list of results that is
returned to OTX will be in ascending order from first (oldest) to last (most recent) result.

 The DiagCom action GetAllResultsAndClear (see 7.6.4.3.6) fetches all results present at the time of

the call out of the communication component's result buffer and tells the communication component to
clear the buffer afterwards. The list of results that is returned to OTX will be in ascending order from first
(oldest) to last (most recent) result.

The members of the GetAllResultsAndClear action have the following semantics:

 <diagService> : DiagServiceValue [1]

This element specifies the diagnostic service to retrieve results from. Syntax and semantics of expression
DiagServiceVariable are specified in 7.5.

 <resultList> : otx:ListVariable [1]

This element specifies the List to which the list of Result items shall be assigned.

7.6.4.3.7 SetParameterValue

This action sets a specific value to a Parameter element. The value to be set is to be provided as an OTX

simple type, an OTX lists or maps or an OTX Quantity as defined in 17.

The members of the SetParameterValue action have the following semantics:

 <parameter> : ParameterTerm [1]

This element specifies the parameter which will be set. Syntax and semantics of the ParameterTerm

type are specified in 7.7.6.3.9.

 <value> : otx:Term [1]

This element specifies the value that shall be set to the Parameter. Allowed input types are OTX simple

types, OTX bytefields, lists and maps and OTX quantities.

Throws:

 otx:OutOfBoundsException

If the conversion can not be made because the value of an OTX variable exceeds the limits of the target
data type of a parameter of the vehicle communication component.

 otx:TypeMismatchException

If the data type of the OTX value to be set does not match the parameter vehicle communication
component. For instance it is thrown if a String variable gets mapped onto a parameter that is of type

Integer.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 39

7.6.4.3.8 SetParameterValueBySemantic

This action sets a value to a <parameter> element with a specific semantic. This action is used in case the

backend communication system provides the means to associate semantic metadata with parameters of
diagnostic services. The value to be set is to be provided as an OTX simple type, an OTX bytefield, list or map
or an OTX Quantity as defined in 17.

NOTE 1 The ability to assign a semantic value to a diagnostic service or service parameter allows applications working

with diagnostic data to access functionality in a manner more abstract than directly pointing to specific names of
services/parameters. For example, the diagnostic service to be used for DTC reading could be required to carry the
semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter what the actual name of the

service in a specific data set is. Through the use of semantic attributes, certain elements of a diagnostic data set can
become universally identifiable, even though the names of these elements have to conform to user-specific conventions

and therefore differ between or even within companies.

NOTE 2 When using an ODX/MVCI based system it is mandatory to assign specific semantic attribute values to the

parameters used by diagnostic services for implementing DDLID (Dynamically Defined Local Identifier) functionality, like
the DDLID-POS semantic attribute that’s used for indicating the parameter that defines the position of a value in a

dynamically created response.

The members of the SetParameterValueBySemantic action have the following semantics:

 <parameterContainer> : ParameterContainerTerm [1]

The object that contains the parameter that shall be changed. Syntax and semantics of expression
ParameterContainerTerm are specified in 7.7.6.3.9.

 <semantic> : otx:StringTerm [1]

This element specifies the semantic of the parameter that shall be modified.

 <value> : otx:Term [1]

This element specifies the value that shall be set to the Parameter. Allowed input types are OTX simple

types, OTX bytefields, lists and maps and OTX quantities.

Throws:

 AmbiguousSemanticException

If there are none or more than one parameters present in the ParameterContainerTerm with the

semantic value specified by the <semantic> element.

 otx:OutOfBoundsException

If the conversion can not be made because the value of an OTX variable exceeds the limits of the target
data type of a parameter of the vehicle communication component.

 otx:TypeMismatchException

If the data type of the OTX value to be set does not match the parameter vehicle communication
component. For instance it is thrown if a String variable is mapped onto an Integer-type parameter.

7.6.4.3.9 SetPdu

This action is used to directly set a specific ByteField to a Request instance, without using the symbolic

level provided by the parameter mapping mechanism of the ExecuteDiagService action or the related

DiagCom terms. In addition to SetPdu, there exists a term GetPdu which is used to retrieve the raw byte

representation from a Response instance (see 7.7.4.3.4). SetPdu is modelled as an ActionRealisation

because it modifies the object it is invoked on.

A PDU as understood by the OTX DiagCom extension comprises the complete payload of a message
including the service identifier and any other request parameters. It does not include header or checksum
bytes from underlying protocol layers.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

40 © ISO 2012 – All rights reserved

The members of the SetPdu action have the following semantics:

 <request> : RequestTerm [1]

This element specifies the Request to which the value given by <pdu> shall be assigned. Syntax and

semantics of expression RequestTerm are specified in 7.7.3.3.8.

 <pdu> : otx:ByteFieldTerm [1]

The ByteField which shall be written to the Request.

7.6.4.4 Example

The example below illustrates the inline mapping usage of the ExecuteDiagService action node, using the

prefix "ODX_" to indicate identifiers that link to the ODX/MVCI communication component. The example

executes a diagnostic service called "ODX_DiagServiceName" on a ComChannel defined by the variable

"ComChannelHandle". The request parameter with the name "ODX_RequestParameterShortName" is

set to the string value "ExampleParameterValue", and the response parameter named

"ODX_ResponseParameterShortName" of the response named "ODX_PositiveResponseName" is

mapped to the OTX variable called "outputParamHandle".

Figure 22 shows the usage of the <stepByName> element. The first XML example defines a reference to

parameter "ReqParam2". In the second example a reference over two levels to "StructParam2" is shown.

Figure 23 shows the usage of the <stepByIndex> element. The XML example shows a reference to a

parameter over three levels, inside a list of parameters structures. The first and the third path steps are
<stepByName> references. The second is a <stepByIndex> reference to indicate the desired list entry.

More comprehensive examples for both inline and dynamic response mappings are provided in Annex E.

EXAMPLE Sample of OTX-file "ExecuteDiagServiceExample.otx"

<action id="a1">

 <specification>Execute a diagservice and map a response to an OTX variable</specification>

 <realisation xsi:type="diag:ExecuteDiagService">

 <diag:diagService xsi:type="diag:CreateDiagServiceByName">

 <diag:comChannel xsi:type="diag:ComChannelValue" valueOf="comChannelHandle"/>

 <diag:name xsi:type="StringLiteral" value="ODX_DiagServiceName"/>

 </diag:diagService>

 <diag:requestParameters>

 <diag:requestParam>

 <diag:value xsi:type="StringLiteral" value="ExampleParameterValue"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="ODX_RequestParameterShortName"/>

 </diag:path>

 </diag:requestParam>

 </diag:requestParameters>

 <diag:responseParameters>

 <diag:name xsi:type="StringLiteral" value="ODX_PositiveResponseName"/>

 <diag:responseParam>

 <diag:target xsi:type="diag:ParameterVariable" name="outputParamHandle"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="ODX_ResponseParameterShortName"/>

 </diag:path>

 </diag:responseParam>

 </diag:responseParameters>

 </realisation>

</action>

<action id="a2">

 <specification>Deselect the communication channel</specification>

 <realisation xsi:type="diag:CloseComChannel">

 <diag:comChannel xsi:type="diag:ComChannelVariable" name="comChannelHandle"/>

 </realisation>

</action>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 41

Request

"ReqParam2"

"ReqParam_Struct"

"StructParam1"

"StructParam2"

<diag:path>

 <stepByName xsi:type="StringLiteral" value="ReqParam2"/>

</diag:path>

<diag:path>

 <stepByName xsi:type="StringLiteral" value="ReqParam_Struct"/>

 <stepByName xsi:type="StringLiteral" value="StructParam2"/>

</diag:path>

"ReqParam1"

Figure 22 — Referencing parameters via <stepByName>

Request

"ReqParam1"

"ReqParam_Struct"

"ReqParam_Array"

"StructParam1"

"StructParam2"

"Param1"

"Param2"

"Param3"

"Param1"

"Param2"

"Param3"

[0]

[1]

<diag:path>

 <stepByName xsi:type="StringLiteral" value="ReqParam_Array"/>

 <stepByIndex xsi:type="IntegerLiteral" value="1"/>

 <stepByName xsi:type="StringLiteral" value="Param2"/>

</diag:path>

Figure 23 — Referencing parameters via <stepByName> and <stepByIndex>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

42 © ISO 2012 – All rights reserved

7.7 Terms

7.7.1 Overview

All of the DiagCom terms shown in Figure 24 extend the otx:Term extension interface as defined by Part 2

of ISO 13209. Information about the specific super class of a term is provided in the individual term description
clauses below.

«XSDcomplexType»

ResultTerm

«XSDcomplexType»

ParameterTerm

«XSDcomplexType»

ResponseTerm

«XSDcomplexType»

RequestTerm

«XSDcomplexType»

ParameterContainerTerm

«XSDcomplexType»

MessageTerm

«XSDcomplexType»

DiagServiceTerm

«XSDcomplexType»

ComChannelTerm

otx:ExtensionInterface

«XSDcomplexTy...

otx:Term

«XSDcomplexType»

event:EventSourceTerm

«XSDcomplexType»

ResponseStateTerm

«XSDcomplexType»

ResultStateTerm

«XSDcomplexTy...

otx:SimpleTerm

Figure 24 — Data model view: Abstract DiagCom term hierarchy

The abstract types ComChannelTerm, DiagServiceTerm and ResultTerm are the base types for all

DiagCom terms returning a ComChannel, DiagService or Result object, respectively.

ParameterContainerTerms return handles to any kind of object that can contain parameters. It is an

abstract type which is the super class of the ParameterTerm (Parameter objects can contain sub-

parameters in case of complex parameter structures) and the MessageTerm which subsumes diagnostic

service requests and responses (Request and Response objects) which also contain parameters.

Since there are DiagCom terms which return event:EventSource objects, the Event extension term

event:EventSourceTerm is also listed here. See Clause 8 for details about the Event extension.

Furthermore, the otx:SimpleTerm types ResultStateTerm and ResponseStateTerm are the base

types for all DiagCom terms returning a ResultState or ResponseState enumeration value.

7.7.2 ComChannel related terms

7.7.2.1 Description

All terms specified in the following clauses relate to the handling of ComChannel objects.

7.7.2.2 Syntax

Figure 25 shows the syntax of all ComChannel related terms of the DiagCom extension.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 43

ComChannelTerm

«XSDcomplexType»

ComChannelValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

ComChannelTerm

«XSDcomplexType»

GetComChannel

«XSDelement»

+ identifier: otx:StringTerm

+ ecuVariantName: otx:StringTerm [0..1]

+ performVariantSelection: otx:BooleanTerm [0..1]

otx:StringTerm

«XSDcomplexType»

GetComChannelIdentifierFromResponse

«XSDelement»

+ response: ResponseTerm

otx:StringTerm

«XSDcomplexType»

GetComChannelEcuVariantName

«XSDelement»

+ comChannel: ComChannelTerm

otx:BooleanTerm

«XSDcomplexType»

IsVariant

«XSDelement»

+ comChannel: ComChannelTerm

+ ecuVariantName: otx:StringTerm

Figure 25 — Data model view: ComChannel related terms

7.7.2.3 Semantics

7.7.2.3.1 ComChannelTerm

The abstract type ComChannelTerm is an otx:Term. It serves as a base for all concrete terms which return

a ComChannel. It has no special members.

7.7.2.3.2 ComChannelValue

This term returns the ComChannel stored in a ComChannel variable. For more information on value-terms

and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.2.3.3 GetComChannel

This term shall create a communication channel to an ECU. It depends on the implementation of the OTX
runtime system when the channel is actually created by the communications layer. There are three possible
scenarios:

 The channel is created at the time this term is executed.

 The channel already exists; no additional action is carried out by the execution of this term.

 The channel is created when it is first needed for actual diagnostic communication.

No matter which approach is chosen, the term GetComChannel shall always return a handle to the same

ComChannel for a given ECU. It is possible to manually control the lifecycle of a ComChannel object by

closing a ComChannel handle using the CloseComChannel action (refer to section 7.6.2.3.2). This is up to

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

44 © ISO 2012 – All rights reserved

the author of a diagnostic sequence, an OTX runtime system is expected to clean up open ComChannel

handles at the end of a diagnostic session.

The OTX runtime shall perform an ECU variant selection after opening of the channel if the term given by the
optional element <performVariantSelection> yields true. This implies that when the next action on a

communication channel is performed, the runtime system has identified the variant of the ECU actually
present at runtime and configured the ComChannel accordingly. In case both an <ecuVariantName> is

provided and <performVariantSelection> yields true, the channel is created to point at the desired

ECU variant and variant selection is performed on the link afterwards. The variant identification functionality
also exists as a separate action, see 7.6.2.3.1.

GetComChannel is a ComChannelTerm. Its members have the following semantics:

 <identifier> : otx:StringTerm [1]

This element represents a string identifying the communication channel which shall be created.

NOTE In case a MVCI/ODX system is used the identifier specifies the SHORT-NAME of the MCDLogicalLink to

be used for communication.

 <ecuVariantName> : otx:StringTerm [0..1]

This optional element allows an OTX sequence to explicitly specify a particular ECU variant that the
ComChannel shall be associated with. It is provided in addition to the identifier attribute based on the

assumption that the ComChannel identifier specifies a connection to a base variant of an ECU, the

precise variant of which then can be implicitly or explicitly identified by the diagnostic application
(compare the <performVariantSelection> element in this clause and the

IdentifyAndSelectVariant action in 7.6.2.3.1). The <ecuVariantName> element can be used to

directly create a ComChannel to a specific ECU variant without needing to perform the ECU variant

identification step.

NOTE In case a MVCI/ODX system is used the <ecuVariantName> element specifies the SHORT-NAME of the

MCDDbEcuVariant to be associated with the logical link.

 <performVariantSelection> : otx:BooleanTerm [0..1]

This optional element can be used by the OTX author for controlling whether an implicit variant selection
shall be done. If <performVariantSelection> yields true at runtime, the variant selection is done

automatically after the ComChannel is created. If the element is not set, the default value false applies.

This standard can not make assumptions about whether the vehicle communication component used by an
OTX runtime supports the concept of ECU variant identification or about the behaviour of the communication
component in case it does. The relevant parts of the OTX DiagCom standard are based on the following
assumptions:

 A communication channel to an ECU is associated with a data set describing diagnostic behaviour of a
specific variant of that ECU.

 The vehicle communication component is able to explicitly perform an ECU variant identification operation
on a communication channel to an ECU.

 The required logic and data for performing the variant identification is intrinsic to the vehicle
communication component, i.e. there is no additional external information required for the communication
component to perform the ECU variant identification.

 After an ECU variant has been identified, the vehicle communication component is able to explicitly
associate the communication channel to that ECU with the specific data set for that ECU variant,
effectively switching the communication channel from the old variant data set to a new one.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 45

 The IdentifyAndSelectVariant action (see 7.6.2.3.1) tells the runtime system to perform the variant

identification operation on the provided communication channel and then switch the data set associated
with that channel to the one fitting the newly identified variant (if any).

 The GetComChannel term (see7.7.2.3.3) tells the runtime system to create a new communication

channel, immediately perform the variant identification operation on the new communication channel and
then switch the data set associated with that channel to the one fitting the newly identified variant (if any).

NOTE In case an ODX/MVCI system is used, the exact semantics of Variant Identification and Selection are

specified by the ISO ODX and MVCI standards.

Throws:

 UnknownTargetException

If the ComChannel identifier provided by the <identifer> element doesn't exist or is invalid.

 LossOfComException

If communication to the ECU was interrupted during the variant identification process.

7.7.2.3.4 GetComChannelIdentifierFromResponse

This term accepts a response and returns the communication channel associated with the ECU that sent the
response. This term is especially useful for results containing responses from different ECUs (functional
addressing, refer to the example in Figure 7).

GetComChannelIdentifierFromResponse is an otx:StringTerm. Its members have the following

semantics:

 <response> : ResponseTerm [1]

This element specifies the response of which the originating ECU shall be returned.

Throws:

 UnknownComChannelException

If no ComChannel can be found that is associated with the Response referenced by the <response>

element.

7.7.2.3.5 GetComChannelEcuVariantName

The GetComChannelEcuVariantName term accepts a handle of a communication channel and returns the

name of the ECU variant associated with that channel. For instance, this term can be used to determine the
identified ECU variant after having used the IdentifyAndSelectVariant action (please refer to 7.6.2.3.1).

NOTE In case a MVCI/ODX system is used the term shall return the SHORT-NAME of the MCDDbEcuVariant

associated with the logical link represented by the ComChannel.

GetComChannelIdentifier is an otx:StringTerm. Its members have the following semantics:

 <comChannel> : ComChannelTerm [1]

The ComChannelTerm yields the handle of the communication channel of which the identifier shall be

returned.

7.7.2.3.6 IsVariant

The IsVariant term is used to compare the name of the ECU variant associated with the communication

channel with the given variant name. It accepts a communication channel handle as well as the name of the
ECU variant in question. The result is true or false depending on whether the ECU variant name equals

the ComChannel identifier or not.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

46 © ISO 2012 – All rights reserved

IsVariant is an otx:BooleanTerm. Its members have the following semantics:

 <comChannel> : ComChannelTerm [1]

The ComChannelTerm represents the communication channel which shall be evaluated.

 <ecuVariantName> : otx:StringTerm [1]

The StringTerm specifies the ECU variant name to be compared with the ECU variant associated with

the communication channel.

 NOTE In case a MVCI/ODX system is used the variant attribute specifies the SHORT-NAME of the

MCDDbEcuVariant to be queried.

7.7.3 DiagService related terms

7.7.3.1 Description

All terms specified in the following clauses relate to the handling of DiagService objects.

7.7.3.2 Syntax

Figure 26 shows the syntax of all DiagService related terms of the DiagCom extension.

DiagServiceTerm

«XSDcomplexType»

DiagServ iceValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

DiagServiceTerm

«XSDcomplexType»

CreateDiagServ iceBySemantic

«XSDelement»

+ comChannel: ComChannelTerm

+ semantic: otx:StringTerm

otx:ListTerm

«XSDcomplexType»

GetDiagServ iceListBySemantic

«XSDelement»

+ comChannel: ComChannelTerm

+ semantic: otx:StringTerm

DiagServiceTerm

«XSDcomplexType»

CreateDiagServ iceByName

«XSDelement»

+ comChannel: ComChannelTerm

+ name: otx:StringTerm

DiagServiceTerm

«XSDcomplexType»

GetDiagServ iceFromResult

«XSDelement»

+ result: ResultTerm

otx:StringTerm

«XSDcomplexType»

GetDiagServ iceName

«XSDelement»

+ diagService: DiagServiceTerm

DiagServiceTerm

«XSDcomplexType»

GetDiagServ iceFromException

«XSDelement»

+ unknownResponseException: otx:ExceptionValue

otx:IntegerTerm

«XSDcomplexType»

GetRepetitionTime

«XSDelement»

+ diagService: DiagServiceTerm

Figure 26 — Data model view: DiagService related terms

7.7.3.3 Semantics

7.7.3.3.1 DiagServiceTerm

The abstract type DiagServiceTerm is an otx:Term. It serves as a base for all concrete terms which return

a DiagService. It has no special members.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 47

7.7.3.3.2 DiagServiceValue

This term returns the DiagService stored in a DiagService variable. For more information on value-terms

and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.3.3.3 CreateDiagServiceByName

The CreateDiagServiceByName term creates a handle to a diagnostic service that can subsequently be

used for parameterizing or executing that service. The diagnostic service to be created is identified by its
name. The CreateDiagServiceByName term accepts a ComChannelTerm and the name of the desired

diagnostic service as an otx:StringTerm. As a result the term returns a DiagService handle.

NOTE In case a MVCI/ODX system is used, the name passed into the CreateDiagServiceByName term shall be

the SHORT-NAME of the associated MCDDiagComPrimitive object.

CreateDiagServiceByName is a DiagServiceTerm. Its members have the following semantics:

 <comChannel> : ComChannelTerm [1]

The ComChannelTerm to which the to-be-created diagnostic service belongs to and will be executed on

when the ExecuteDiagService action is used.

 <name> : otx:StringTerm [1]

Name of the to-be-created diagnostic service.

Throws:

 UnknownTargetException

If no DiagService with the name provided by the <name> element exists.

7.7.3.3.4 CreateDiagServiceBySemantic

The CreateDiagServiceBySemantic term creates a handle to a diagnostic service that can subsequently

be used for configuring or executing that service. The diagnostic service to be created is identified by its
semantic attribute. The term accepts a ComChannelTerm and the semantic value as an otx:StringTerm.

As a result the term returns a DiagService handle. Please note that using this term can result in an

AmbiguousSemanticException in case more than one diagnostic service with the desired semantic

attribute value exists within this communication channel.

NOTE 1 The ability to assign a semantic value to a diagnostic service or service parameter allows applications working

with diagnostic data to access functionality in a manner more abstract than directly pointing to specific names of
services/parameters. For example, the diagnostic service to be used for DTC reading could be required to carry the
semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter what the actual name of the

service in a specific data set is. Through the use of semantic attributes, certain elements of a diagnostic data set can
become universally identifiable, even though the names of these elements have to conform to user-specific conventions

and therefore differ between or even within companies.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

48 © ISO 2012 – All rights reserved

NOTE 2 The semantic attribute concept is defined by the ODX/MVCI standards, for example the diagnostic service
used for clearing an ECU's fault memory has the semantic attribute "FAULTCLEAR".

CreateDiagServiceBySemantic is a DiagServiceTerm. Its members have the following semantics:

 <comChannel> : ComChannelTerm [1]

The ComChannelTerm to which the to-be-created diagnostic service belongs to and will be executed on

when the ExecuteDiagService action is used.

 <semantic> : otx:StringTerm [1]

The semantic value of the to-be-created diagnostic service.

Throws:

 AmbiguousSemanticException

In case there are none or more than one DiagService present at the ComChannel with the semantic

value specified by the <semantic> element.

7.7.3.3.5 GetDiagServiceListBySemantic

The term GetDiagServiceListBySemantic returns a complete list of all DiagService handles which

have the same semantic. This is required in case more than one service with the same semantic attribute
value exists within the data set associated with the ComChannel.

NOTE The ability to assign a semantic value to a diagnostic service or service parameter allows applications working
with diagnostic data to access functionality in a manner more abstract than directly pointing to specific names of

services/parameters. For example, the diagnostic service to be used for DTC reading could be required to carry the
semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter what the actual name of the

service in a specific data set is. Through the use of semantic attributes, certain elements of a diagnostic data set can
become universally identifiable, even though the names of these elements have to conform to user-specific conventions

and therefore differ between or even within companies.

GetDiagServiceListBySemantic is a DiagServiceTerm. Its members have the following semantics:

 <comChannel> : ComChannelTerm [1]

The ComChannelTerm that shall be queried for all the services with the given semantic.

 <semantic> : otx:StringTerm [1]

The semantic value of the DiagServices to be returned.

7.7.3.3.6 GetDiagServiceFromResult

The GetDiagServiceNameFromResult term accepts a ResultTerm and will return the handle of the

DiagService the Result belongs to.

GetDiagServiceNameFromResult is an otx:ListTerm. Its members have the following semantics:

 <result> : ResultTerm [1]

Specifies the Result for which the containing DiagService name shall be retrieved.

Throws:

 otx:InvalidReferenceException

If the DiagService to which the Result belongs to can not be determined.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 49

7.7.3.3.7 GetDiagServiceFromException

The GetDiagServiceFromException term accepts an ExceptionReference and shall return the

handle of the DiagService that caused the exception to be thrown. It shall only be used together with

exceptions of type UnknownResponseException that shall be thrown by the ExecuteDiagService action

in case the static response mapping does not map a response that has been returned from the vehicle. In that
case, it allows the OTX sequence to analyse the result that caused the exception by making it accessible
through the DiagService object.

GetDiagServiceFromException is a DiagServiceTerm. Its members have the following semantics:

 <unknownResponseException> : otx:ExceptionValue [1]

Specifies the Exception for which the DiagService shall be retrieved that caused the exception when

executed. It is only allowed to reference exceptions of type UnknownResponseException.

Throws:

 UnknownTargetException

If the DiagService belonging to the exception can not be determined.

 otx:TypeMismatchException

If the specified exception is not of type UnknownResponseException.

7.7.3.3.8 GetDiagServiceName

The GetDiagServiceName term accepts a DiagService handle and returns the name of the

DiagService as a string.

NOTE In case a MVCI/ODX system is used, this term will return the SHORT-NAME of the MCDDiagComPrimitive

object represented by the DiagService handle.

GetDiagServiceName is an otx:StringTerm. Its members have the following semantics:

 <diagService> : DiagServiceTerm [1]

The DiagService of which the name shall be returned.

7.7.3.3.9 GetRepetitionTime

The GetRepetitionTime term accepts a DiagService and returns the currently set repetition cycle time

of that diag service in milliseconds (ms).

GetRepetitionTime is an otx:IntegerTerm. Its members have the following semantics:

 <diagService> : DiagServiceTerm [1]

The DiagService of which the current repetition cycle time shall be returned. STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

50 © ISO 2012 – All rights reserved

7.7.4 Request related terms

7.7.4.1 Description

All terms specified in the following clauses relate to the handling of Request objects.

7.7.4.2 Syntax

Figure 27 shows the syntax of all Request related terms of the DiagCom extension.

RequestTerm

«XSDcomplexType»

RequestValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

RequestTerm

«XSDcomplexType»

GetRequest

«XSDelement»

+ diagService: DiagServiceTerm

otx:ByteFieldTerm

«XSDcomplexType»

GetPdu

«XSDelement»

+ message: MessageTerm

Figure 27 — Data model view: Request related terms

7.7.4.3 Semantics

7.7.4.3.1 RequestTerm

The abstract type RequestTerm is a MessageTerm. It serves as a base for all concrete terms which return a

Request. It has no special members.

7.7.4.3.2 RequestValue

This term returns the Request stored in a Request variable. For more information on value-terms and the

syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.4.3.3 GetRequest

The GetRequest term shall return the Request belonging to a diagnostic service. It accepts a diagnostic

service handle.

GetRequest is a RequestTerm. Its members have the following semantics:

 <diagService> : DiagServiceTerm [1]

The term shall yield a handle to the DiagService that the Request belongs to.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 51

7.7.4.3.4 GetPdu

The GetPdu term shall return the raw byte stream data represented by a Request or a Response as seen

on the physical layer. The GetPdu term is derived from ByteFieldTerm. A possible use case for retrieving

raw communication data could be to implement bus tracing functionality. The corresponding opposite
operation to the GetPdu term is provided by the SetPdu action (see 7.6.4.3.8).

A PDU as understood by the DiagCom extension comprises the complete payload of a message including the
service identifier and any other request parameters. It does not include header or checksum bytes from
underlying protocol layers.

GetPdu is an otx:ByteFieldTerm. Its members have the following semantics:

 <message> : MessageTerm [1]

The Message (e.g. Request or Response) which is to be returned in ByteField form.

7.7.5 Result related terms

7.7.5.1 Description

All terms specified in the following clauses relate to the handling of Result objects.

The result related terms are designed based on the assumption that a diagnostic communication component
as used by an OTX runtime has the capability to buffer results it receives from ECUs. Especially for dealing
with system behaviour as illustrated in Figure 6 (one ECU returning multiple results for one diagnostic request)
a communication system requires a buffering concept for ECU results. The following assumptions are made in
the OTX DiagCom context regarding the result buffer:

 The result buffer is owned and managed by the vehicle communication component and is outside the
scope of an OTX runtime.

 Every DiagService object has an associated result buffer which contains any results that were received

as a reaction to an ExecuteDiagService action.

 This result buffer is of finite size, i.e. a loop buffer that will wrap around after a number of results have
been received by the vehicle communication component.

 The DiagCom term GetFirstResult (see 7.7.5.3.3) only fetches the first (in time) result out of the

communication component's result buffer, but does not modify that buffer.

 The DiagCom term GetAllResults (see 7.7.5.3.4) fetches all results present at the time of the call out

of the communication component's result buffer, but does not modify that buffer. The list of results that is
returned to OTX will be in ascending order from first (oldest) to last (most recent) result.

 The DiagCom action GetAllResultsAndClear (see 7.6.4.3.6) fetches all results present at the time of

the call out of the communication component's result buffer and tells the communication component to
clear the buffer afterwards. The list of results that is returned to OTX will be in ascending order from first
(oldest) to last (most recent) result.

7.7.5.2 Syntax

Figure 28 shows the syntax of all Result related terms of the DiagCom extension.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

52 © ISO 2012 – All rights reserved

ResultTerm

«XSDcomplexType»

ResultValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

ResultTerm

«XSDcomplexType»

GetFirstResult

«XSDelement»

+ diagService: DiagServiceTerm

otx:ListTerm

«XSDcomplexType»

GetAllResults

«XSDelement»

+ diagService: DiagServiceTerm

ResultStateTerm

«XSDcomplexType»

GetResultState

«XSDelement»

+ result: ResultTerm

ResultStateTerm

«XSDcomplexType»

ResultStateLiteral

«XSDattribute»

+ value: ResultStates

ResultStateTerm

«XSDcomplexType»

ResultStateValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

xsd:string

«enumeration»

ResultStates

 ALL_INVALID

 ALL_NEGATIVE

 ALL_POSITIVE

 ALL_FAILED

 FAILED

 INVALID

 NEGATIVE

 POSITIVE

Figure 28 — Data model view: Result related terms

7.7.5.3 Semantics

7.7.5.3.1 ResultTerm

The abstract type ResultTerm is an otx:Term. It serves as a base for all concrete terms which return a

Result. It has no special members.

7.7.5.3.2 ResultValue

This term returns the Result stored in a Result variable. For more information on value-terms and the

syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.5.3.3 GetFirstResult

The GetFirstResult term returns the first result of a service execution, irrespective of whether there exists

more than one result. The term accepts a DiagServiceTerm argument and returns a Result object.

GetFirstResult is a ResultTerm. Its members have the following semantics:

 <diagService> : DiagServiceReference [1]

Represents the DiagService object of which the first Result shall be returned.

Throws:

 otx:OutOfBoundsException

If there exists no Result object in the DiagService object.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 53

7.7.5.3.4 GetAllResults

The GetAllResults returns all available results of a diagnostic service as a ListTerm. The list contains

Result objects. In comparison to the action GetAllResultsAndClear referenced in DiagCom actions

specified in 7.6, this term only reads Result entries and does not delete the buffer containing the results.

Possible use case is the monitoring of results without changing the state of the DiagService.

GetAllResults is derived from ListTerm.

GetAllResults is an otx:ListTerm. Its members have the following semantics:

 <diagService> : DiagServiceTerm [1]

Represents the DiagService of which the Results shall be returned.

7.7.5.3.5 ResultStateTerm

The abstract type ResultStateTerm is an otx:SimpleTerm. It serves as a base for all concrete terms

which return a ResultState value (see 7.3.3.10). It has no special members.

7.7.5.3.6 ResultStateValue

This term returns the ResultState stored in a ResultState variable. For more information on value-terms

and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

7.7.5.3.7 ResultStateLiteral

This term shall return a ResultState value (see 7.3.3.10) from a hard-coded literal.

ResultStateLiteral is a ResultStateTerm. Its members have the following semantics:

 value : ResultStates={ALL_FAILED|ALL_INVALID|ALL_NEGATIVE|ALL_POSITIVE|

FAILED|INVALID|NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResultStates enumeration.

7.7.5.3.8 GetResultState

This term shall retrieve the state of a Result (i.e. whether the ECU(s) answered at all, correctly, positively or

negatively). Allowed result state values are specified by the ResultState data type as defined in 7.3.3.10.

This also corresponds to the <resultState> element of the ExecuteDiagService action, see 7.6.4.3.2.

GetResultState is a ResultStateTerm. Its members have the following semantics:

 <result> : ResultTerm [1]

The Result whose state shall be returned.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

54 © ISO 2012 – All rights reserved

7.7.6 Response related terms

7.7.6.1 Description

All terms specified in the following clauses relate to the handling of Response objects.

7.7.6.2 Syntax

Figure 29 shows the syntax of all Response related terms of the DiagCom extension.

ResponseTerm

«XSDcomplexType»

ResponseValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

otx:BooleanTerm

«XSDcomplexType»

IsPositiv e

«XSDelement»

+ response: ResponseTerm

ResponseTerm

«XSDcomplexType»

GetFirstResponse

«XSDelement»

+ result: ResultTerm

otx:ListTerm

«XSDcomplexType»

GetAllResponses

«XSDelement»

+ result: ResultTerm

otx:StringTerm

«XSDcomplexType»

GetResponseName

«XSDelement»

+ response: ResponseTerm

ResponseStateTerm

«XSDcomplexType»

GetResponseState

«XSDelement»

+ response: ResponseTerm

ResponseStateTerm

«XSDcomplexType»

ResponseStateLiteral

«XSDattribute»

+ value: ResponseStates

ResponseStateTerm

«XSDcomplexType»

ResponseStateValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

xsd:string

«enumeration»

ResponseStates

 FAILED

 INVALID

 POSITIVE

 NEGATIVE

Figure 29 — Data model view: Response related terms

7.7.6.3 Semantics

7.7.6.3.1 ResponseTerm

The abstract type ResponseTerm is a MessageTerm. It serves as a base for all concrete terms which return

a Response. It has no special members.

7.7.6.3.2 ResponseValue

This term returns the Response stored in a Response variable. For more information on value-terms and the

syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 55

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.6.3.3 GetFirstResponse

The GetFirstResponse term is used to retrieve the first Response of a Result handle. In case there is

more than one Response available in a Result, only the first Response will be returned.

GetFirstResponse is a ResponseTerm. Its members have the following semantics:

 <result> : ResultTerm [1]

The Result whose first response shall be returned.

7.7.6.3.4 GetAllResponses

The GetAllResponses term returns a list of all responses that are available for that Result. It accepts a

ResultTerm. For example in case of a functionally addressed diagnostic service, this term can be used to

retrieve all ECU responses that were received in response to the functional service execution. Normally there
will only be one response per diagnostic service (standard physical addressing), in which case the term
GetFirstResponse shall be used.

GetAllResponses is an otx:ListTerm. Its members have the following semantics:

 <result> : ResultTerm [1]

The Result whose responses shall be returned.

7.7.6.3.5 GetResponseName

This term shall retrieve the name of a Response. For example it can be used to determine whether a

Response is positive or negative by comparing the response name with preset response names valid for the

vehicle communication component.

NOTE In case a MVCI/ODX system is used the GetResponseName term returns the SHORT-NAME of the associated

MCDResponse object.

GetResponseName is an otx:StringTerm. Its members have the following semantics:

 <response> : ResponseTerm [1]

The Response whose name shall be returned.

7.7.6.3.6 ResponseStateTerm

The abstract type ResponseStateTerm is an otx:SimpleTerm. It serves as a base for all concrete terms

which return a ResponseState value (see 7.3.3.11). It has no special members.

7.7.6.3.7 ResponseStateValue

This term returns the ResponseState stored in a ResponseState variable. For more information on value-

terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

56 © ISO 2012 – All rights reserved

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

7.7.6.3.8 ResponseStateLiteral

This term shall return a ResponseState value (see 7.3.3.11) from a hard-coded literal.

ResponseStateLiteral is a ResponseStateTerm. Its members have the following semantics:

 value : ResponseStates={FAILED|INVALID|NEGATIVE|POSITIVE} [1]

This attribute shall contain one of the values defined in the ResponseStates enumeration.

7.7.6.3.9 GetResponseState

This term shall retrieve the state of a Response. Allowed response state values are specified by the

ResponseState data type as defined in 7.3.3.11.

GetResponseState is a ResponseStateTerm. Its members have the following semantics:

 <result> : ResponseTerm [1]

The Response whose state shall be returned.

7.7.6.3.10 IsPositive

The IsPositive term shall check whether a response is positive. It accepts a ResponseTerm. For details

on response states, please refer to the ResponseState data type (see 7.3.3.11).

IsPositive is an otx:BooleanTerm. Its members have the following semantics:

 <response> : ResponseTerm [1]

The Response which shall be checked for being positive.

7.7.7 Parameter related terms

7.7.7.1 Description

All terms specified in the following clauses relate to the handling of Parameter objects.

7.7.7.2 Syntax

Figure 30 shows the syntax of all Parameter related terms of the DiagCom extension. STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 57

ParameterTerm

«XSDcomplexType»

ParameterValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

ParameterTerm

«XSDcomplexType»

GetParameterBySemantic

«XSDelement»

+ parameterContainer: ParameterContainerTerm

+ semantic: otx:StringTerm

ParameterTerm

«XSDcomplexType»

GetParameterByPath

«XSDelement»

+ parameterContainer: ParameterContainerTerm

+ path: otx:Path

otx:BooleanTerm

«XSDcomplexType»

GetParameterValueAsBoolean

«XSDelement»

+ parameter: ParameterTerm

otx:StringTerm

«XSDcomplexType»

GetParameterName

«XSDelement»

+ parameter: ParameterTerm

otx:StringTerm

«XSDcomplexType»

GetParameterSemantic

«XSDelement»

+ parameter: ParameterTerm

otx:ListTerm

«XSDcomplexType»

GetParameterAsList

«XSDelement»

+ parameterContainer: ParameterContainerTerm

quant:QuantityTerm

«XSDcomplexType»

GetParameterValueAsQuantity

«XSDelement»

+ parameter: ParameterTerm

otx:StringTerm

«XSDcomplexType»

GetParameterValueAsString

«XSDelement»

+ parameter: ParameterTerm

otx:ByteFieldTerm

«XSDcomplexType»

GetParameterValueAsByteField

«XSDelement»

+ parameter: ParameterTerm

otx:StringTerm

«XSDcomplexType»

GetParameterTextId

«XSDelement»

+ parameter: ParameterTerm

otx:FloatTerm

«XSDcomplexType»

GetParameterValueAsFloat

«XSDelement»

+ parameter: ParameterTerm

otx:IntegerTerm

«XSDcomplexType»

GetParameterValueAsInteger

«XSDelement»

+ parameter: ParameterTerm

Figure 30 — Data model view: Parameter related terms

7.7.7.3 Semantics

7.7.7.3.1 ParameterTerm

The abstract type ParameterTerm is a ParameterContainerTerm. It serves as a base for all concrete

terms which return a Parameter. It has no special members.

7.7.7.3.2 ParameterValue

This term returns the Parameter stored in a Parameter variable. For more information on value-terms and

the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

7.7.7.3.3 GetParameterBySemantic

The GetParameterBySemantic term accepts a ParameterContainerTerm and the semantic value of

the parameter to be retrieved. It can return simple type or complex type parameters, depending on the

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

58 © ISO 2012 – All rights reserved

parameter structure of the diagnostic service definition of the underlying communication system and the
specific parameter that is being retrieved.

NOTE 1 The ability to assign a semantic value to a diagnostic service or service parameter allows applications working

with diagnostic data to access functionality in a manner more abstract than directly pointing to specific names of
services/parameters. For example, the diagnostic service to be used for DTC reading could be required to carry the
semantic value "DEFAULT-FAULTREAD" company wide or even industry wide, no matter what the actual name of the

service in a specific data set is. Through the use of semantic attributes, certain elements of a diagnostic data set can

become universally identifiable, even though the names of these elements have to conform to user-specific conventions
and therefore differ between or even within companies.

NOTE 2 In case a MVCI/ODX system is used the semantic value is equivalent to the semantic attribute of the
corresponding MCDParameter object.

GetParameterBySemantic is a ParameterTerm. Its members have the following semantics:

 <parameterContainer> : ParameterContainerTerm [1]

The container from which the Parameter shall be retrieved.

 <name> : otx:StringTerm [1]

The semantic attribute of the Parameter which shall be returned.

Throws:

 AmbiguousSemanticException

If there are none or more than one parameters present in the ParameterContainerTerm with the

semantic value specified by the <semantic> element.

7.7.7.3.4 GetParameterByPath

The GetParameterByPath term accepts a ParameterContainerTerm and a Path to the parameter to be

retrieved. It returns the parameter that is pointed to within the parameter container by the Path definition. It

can return simple type or complex type parameters, depending on the parameter structure of the diagnostic
service definition of the underlying communication system and the specific parameter that is being retrieved.
This term operates on the assumption that parameter names are unique within one hierarchy level of the
parameter structure. An example for retrieving a Parameter by otx:Path is shown in Figure 22.

GetParameterByPath is a ParameterTerm. Its members have the following semantics:

 <parameterContainer> : ParameterContainerTerm [1]

The container from which the Parameter shall be retrieved.

 <path> : otx:Path [1]

The path element specifies the path to the desired parameter.

Throws:

 UnknownTargetException

If the Parameter object referenced by the <path> element doesn't exist or is invalid.

7.7.7.3.5 GetParameterName

The GetParameterName term accepts a ParameterTerm and returns the name of the parameter.

NOTE In case a MVCI/ODX system is used it returns the SHORT-NAME of the corresponding MCDParameter object.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 59

GetParameterName is an otx:StringTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose name shall be returned.

7.7.7.3.6 GetParameterSemantic

The GetParameterSemantic term accepts a ParameterTerm and returns the semantic attribute value of

the Parameter.

NOTE In case a MVCI/ODX system is used it returns the semantic attribute of the corresponding MCDParameter

object.

GetParameterSemantic is an otx:StringTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The ParameterTerm whose semantic attribute shall be returned.

7.7.7.3.7 GetParameterTextId

The GetParameterTextId term accepts a ParameterTerm and returns the text id of the Parameter.

The actual functionality of this term and format of returned information depends on the communication
backend that is used by the OTX runtime and is not defined by this standard.

NOTE In case a MVCI/ODX system is used it returns the LongNameId attribute of the corresponding MCDDbObject

object. In case the parameter represents a DTC, the DiagTroubleCodeTextID of the MCDDbDiagTroubleCode is

returned.

GetParameterTextId is an otx:StringTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose text id attribute shall be returned.

7.7.7.3.8 GetParameterAsList

The GetParameterAsList term accepts a ParameterContainerTerm and returns an otx:List of

Parameter handles, corresponding to the contents of the passed in parameter container object. This term is

used in case a parameter of a diagnostic service contains a set of identically typed parameters, i.e. an array or
a list of parameters. Please refer to Figure 5 which shows an example of a complex list-type parameter.

GetParameterAsList is an otx:ListTerm. Its members have the following semantics:

 <parameterContainer> : ParameterContainerTerm [1]

The ParameterContainer whose value shall be returned as an otx:List.

Throws:

 otx:TypeMismatchException

If the specified ParameterContainer is not of a list or array type.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

60 © ISO 2012 – All rights reserved

7.7.7.3.9 GetParameterValueAsBoolean

The GetParameterValueAsBoolean term accepts a ParameterTerm and returns the actual value of the

parameter as a Boolean quantity.

GetParameterValueAsBoolean is an otx:BooleanTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose value shall be returned as a Boolean.

Throws:

 otx:TypeMismatchException

If the specified Parameter is not of boolean type.

7.7.7.3.10 GetParameterValueAsString

The GetParameterValueAsString term accepts a ParameterTerm and returns the actual value of the

parameter as a string.

GetParameterValueAsString is an otx:StringTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose value shall be returned as a string.

Throws:

 otx:TypeMismatchException

If the specified Parameter is not of string type.

7.7.7.3.11 GetParameterValueAsInteger

The GetParameterValueAsInteger term accepts a ParameterTerm and returns the actual value of the

parameter as an integer.

GetParameterValueAsInteger is an otx:IntegerTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose value shall be returned as an integer.

Throws:

 otx:TypeMismatchException

If the specified Parameter is not of integer type.

7.7.7.3.12 GetParameterValueAsFloat

The GetParameterValueAsFloat term accepts a ParameterTerm and returns the actual value of the

parameter as a float.

GetParameterValueAsFloat is an otx:FloatTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose value shall be returned as an integer.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 61

Throws:

 otx:TypeMismatchException

If the specified Parameter is not of float type.

7.7.7.3.13 GetParameterValueAsByteField

The GetParameterValueAsByteField term accepts a ParameterTerm and returns the actual value of

the parameter as a bytefield.

GetParameterValueAsByteField is an otx:ByteFieldTerm with the following member semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose value shall be returned as a bytefield.

Throws:

 otx:TypeMismatchException

If the specified Parameter is not of bytefield type.

7.7.7.3.14 GetParameterValueAsQuantity

The GetParameterValueAsQuantity term accepts a ParameterTerm and returns the actual value of the

parameter as a quantity.

GetParameterValueAsQuantity is a quant:QuantityTerm. Its members have the following semantics:

 <parameter> : ParameterTerm [1]

The Parameter whose value shall be returned as a quantity.

Throws:

 otx:TypeMismatchException

If the specified Parameter is not of quantity type.

7.7.8 ComParam related terms

7.7.8.1 Description

All terms specified in the following clauses relate to the handling of communication parameters.

7.7.8.2 Syntax

Figure 31 shows the syntax of all ComParam related terms of the DiagCom extension. STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

62 © ISO 2012 – All rights reserved

otx:BooleanTerm

«XSDcomplexType»

GetComParameterValueAsBoolean otx:BooleanTerm

«XSDcomplexType»

GetDefaultComParameterValueAsBoolean

ParameterTerm

«XSDcomplexType»

GetDefaultComplexComParameter

ParameterTerm

«XSDcomplexType»

GetComplexComParameter

«XSDgroup»

ChannelAndParameterName

«XSDelement»

+ comChannel: ComChannelTerm

+ comParameterName: otx:StringTerm

otx:ByteFieldTerm

«XSDcomplexType»

GetComParameterValueAsByteField

otx:StringTerm

«XSDcomplexType»

GetComParameterValueAsString

quant:QuantityTerm

«XSDcomplexType»

GetComParameterValueAsQuantity

otx:ByteFieldTerm

«XSDcomplexType»

GetDefaultComParameterValueAsByteField

otx:StringTerm

«XSDcomplexType»

GetDefaultComParameterValueAsString

quant:QuantityTerm

«XSDcomplexType»

GetDefaultComParameterValueAsQuantity

otx:IntegerTerm

«XSDcomplexType»

GetComParameterValueAsInteger

otx:FloatTerm

«XSDcomplexType»

GetComParameterValueAsFloat otx:FloatTerm

«XSDcomplexType»

GetDefaultComParameterValueAsFloat

otx:IntegerTerm

«XSDcomplexType»

GetDefaultComParameterValueAsInteger

11111111111

«XSDgroupref»

111

Figure 31 — Data model view: ComParam related terms

7.7.8.3 Semantics

7.7.8.3.1 ChannelAndParameterName group

The following properties are part of all of the following terms and are therefore defined as a separate group.

The members of the ChannelAndParameterName group have the following semantics:

 <comChannel> : ComChannelTerm [1]

The ComChannelTerm specifies the ComChannel which shall be queried.

 <comParameterName> : otx:StringTerm [1]

The otx:StringTerm specifies the name of a communication parameter.

Throws:

 UnknownTargetException

If there exists no communication parameter with the name provided by <comParameterName>.

 otx:TypeMismatchException

If the specified parameter is not of the correct type

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 63

7.7.8.3.2 GetDefaultComplexComParameter

The GetDefaultComplexComParameter term comprises the ChannelAndParameterName attribute

group and shall return the default value of a complex communication parameter (e.g. list and struct parameter
types).

GetDefaultComplexComParameter is a ParameterTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.3 GetComplexComParameter

The GetComplexComParameter term comprises the ChannelAndParameterName attribute group and

shall return the current value of a complex communication parameter (e.g. list and struct parameter types). If
the communication parameter has not been previously modified by the SetComplexComParameter action

(defined in 7.6.3.3.2), the default parameter value shall be returned.

GetComplexComParameter is a ParameterTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.4 GetComParameterValueAsBoolean

The GetComParameterAsBoolean term comprises the ChannelAndParameterName attribute group and

shall return the current value of a Boolean communication parameter. If the communication parameter has not
been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default parameter value

shall be returned.

GetComParameterAsBooleanQuantity is an otx:BooleanTerm. Its members are described by the

group ChannelAndParameterName, as specified above.

7.7.8.3.5 GetComParameterValueAsString

The GetComParameterAsString term comprises the ChannelAndParameterName attribute group and

shall return the current value of a string type communication parameter. If the communication parameter has
not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default parameter

value shall be returned.

GetComParameterAsString is an otx:StringTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.6 GetComParameterValueAsInteger

The GetComParameterAsInteger term comprises the ChannelAndParameterName attribute group and

shall return the current value of an integer type communication parameter. If the communication parameter
has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default

parameter value shall be returned.

GetComParameterAsInteger is an otx:IntegerTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.7 GetComParameterValueAsFloat

The GetComParameterAsFloat term comprises the ChannelAndParameterName attribute group and

shall return the current value of a float type communication parameter. If the communication parameter has
not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default parameter

value shall be returned.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

64 © ISO 2012 – All rights reserved

GetComParameterAsFloat is an otx:FloatTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.8 GetComParameterValueAsByteField

The GetComParameterAsByteField term comprises the ChannelAndParameterName attribute group

and shall return the current value of a bytefield type communication parameter. If the communication
parameter has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the

default parameter value shall be returned.

GetComParameterAsByteField is an otx:ByteFieldTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.9 GetComParameterValueAsQuantity

The GetComParameterAsQuantity term comprises the ChannelAndParameterName attribute group and

shall return the current value of a quantity type communication parameter. If the communication parameter
has not been previously modified by the SetComParameter action (defined in 7.6.3.3.1), the default

parameter value shall be returned.

GetComParameterAsQuantity is a quant:QuantityTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.10 GetDefaultComParameterValueAsBoolean

The GetDefaultComParameterAsBoolean term comprises the ChannelAndParameterName attribute

group and shall return the default value of a Boolean type communication parameter.

GetDefaultComParameterAsBoolean is an otx:BooleanTerm. Its members are described by the

group ChannelAndParameterName, as specified above.

7.7.8.3.11 GetDefaultComParameterValueAsString

The GetDefaultComParameterAsString term comprises the ChannelAndParameterName attribute

group and shall return the default value of a string type communication parameter.

GetDefaultComParameterAsString is an otx:StringTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.12 GetDefaultComParameterValueAsInteger

The GetDefaultComParameterAsInteger term comprises the ChannelAndParameterName attribute

group and shall return the default value of an integer type communication parameter.

GetDefaultComParameterAsInteger is an otx:IntegerTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

7.7.8.3.13 GetDefaultComParameterValueAsFloat

The GetDefaultComParameterAsFloat term comprises the ChannelAndParameterName attribute

group and shall return the default value of a float type communication parameter.

GetDefaultComParameterAsFloat is an otx:FloatTerm. Its members are described by the group

ChannelAndParameterName, as specified above.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 65

7.7.8.3.14 GetDefaultComParameterValueAsByteField

The GetDefaultComParameterAsByteField term comprises the ChannelAndParameterName attribute

group and shall return the default value of a bytefield type communication parameter.

GetDefaultComParameterAsByteFieldQuantity is an otx:ByteFieldTerm. Its members are

described by the group ChannelAndParameterName, as specified above.

7.7.8.3.15 GetDefaultComParameterValueAsQuantity

The GetDefaultComParameterAsQuantity term comprises the ChannelAndParameterName attribute

group and shall return the default value of a communication parameter.

GetDefaultComParameterAsQuantity is an quant:QuantityTerm. Its members are described by the

group ChannelAndParameterName, as specified above.

7.7.9 Event related terms

7.7.9.1 Description

All terms specified in the following clauses relate to event handling. For further details about the OTX
EventHandling extension please refer to Clause 8.

7.7.9.2 Syntax

Figure 32 shows the syntax of all event related terms of the DiagCom extension.

event:EventSourceTerm

«XSDcomplexType»

DiagServ iceEventSource

«XSDelement»

+ diagService: DiagServiceTerm

DiagServiceTerm

«XSDcomplexType»

GetDiagServ iceFromEvent

«XSDelement»

+ event: event:EventValue

otx:BooleanTerm

«XSDcomplexType»

IsDiagServ iceEvent

«XSDelement»

+ event: event:EventValue

Figure 32 — Data model view: Event related terms

7.7.9.3 Semantics

7.7.9.3.1 DiagServiceEventSource

The DiagServiceEventSource term accepts a DiagService object that is to be made an event source.

This term enables an OTX sequence to use a DiagService as a source for events in the context of the OTX

EventHandling extension (please refer to Clause 8). A DiagService shall trigger an event every time a new

Result has arrived (please compare Figure 6). The DiagServiceEventSource term is the complementary

functionality to the asynchronous execution feature of the ExecuteDiagService action: when

ExecuteDiagService is used with <executeAsync> set to true, the only way to be notified of available

results for the executed diagnostic service is to use it as an event source through the
DiagServiceEventSource term (the type of event can then be retrieved by using the

IsDiagServiceEvent term as specified below.

DiagServiceEventSource is an event:EventSource. Its members have the following semantics:

 <diagService> : DiagServiceTerm [1]

Represents the DiagService that shall be connected to the event source.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

66 © ISO 2012 – All rights reserved

7.7.9.3.2 IsDiagServiceEvent

The IsDiagServiceEvent term accepts an EventValue term yielding an Event object that has been

raised by the OTX runtime, as a result of declaring a DiagService object as an event source by using the

term DiagServiceEventSource. The term shall return true if and only if the Event originates from a

DiagServiceEventSource term.

IsDiagServiceEvent is an otx:BooleanTerm. Its members have the following semantics:

 <event> : event:EventValue [1]

Represents the Event whose type shall be tested.

7.7.9.3.3 GetDiagServiceFromEvent

The GetDiagServiceFromEvent term accepts an EventValue term yielding an Event object that has

been raised by the OTX runtime, as a result of declaring a DiagService object as an event source by using

the term DiagServiceEventSource. It returns a handle to the DiagService object that caused the event

(i.e. because a new ECU Result has been received after the DiagService has been executed, please

refer to 7.6.4.3.1 and 7.7.9.3.1). By using this term, an OTX sequence can wait for an Event raised by a

DiagService receiving a new Result and then evaluate the Result/Response structure of that

DiagService.

GetDiagServiceFromEvent is a DiagServiceTerm. Its members have the following semantics:

 <event> : event:EventValue [1]

Represents the event that was raised by the DiagService that shall be retrieved.

Throws:

 otx:TypeMismatchException

If the specified event has not been raised by a DiagServiceEventSource.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 67

8 OTX DiagDataBrowsing extension

8.1 Introduction

The OTX DiagDataBrowsing extension provides a set of terms for reading static information associated with
communication channels, diagnostic services and request- or response-parameters. The data is static insofar
that it originates from a diagnostic vehicle information database; this is unlike dynamic data which is e.g. read
from an ECU.

The extension is designed for supporting cases where diagnostic information is required by a test sequence
but the information is not known at authoring time and therefore needs to be retrieved at runtime; for instance
if a list of available communication channels is required, if different variants of a communication channel need
to be queried or if details of the diagnostic services of a communication channel need to be retrieved at
runtime.

The terms provided in this extension are based on the assumption that the diagnostic data associated to the
specific to-be-diagnosed vehicle (model) is provided implicitly by the runtime system. The identification and
retrieval of the data is the task of the initialisation process of diagnostic application; it is not intended to
provide the ability to specify the diagnostic data to load by means of this extension.

NOTE 1 For an ODX-MVCI based system, the information provided by the OTX DiagDataBrowsing terms is dependent

on the pre-loaded ODX data and especially on the selected vehicle information table (VIT)."

The OTX DiagDataBrowsing extension is based on the OTX DiagCom extension, as specified in Clause 7. It
uses the diag:ComChannel, diag:DiagService and diag:Parameter objects from which diverse static

information can be queried.

NOTE 2 In case an ODX/MVCI system is used, the targeted data is contained in the VEHICLE-INFORMATION section

of the ODX data which can be queried via the ASAM MCD-3D-API.

8.2 Data types

8.2.1 Overview

The OTX DiagDataBrowsing extension introduces a single data type named ComChannelCategory, as

described in the following.

8.2.2 Syntax

The syntax of the ComChannelCategory datatype declaration of the OTX DiagDataBrowsing extension is

shown in Figure 33.

«XSDcomplexType»

ComChannelCategory

«XSDelement»

+ init: ComChannelCategoryLiteral [0..1]

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:SimpleType

Figure 33 — Data model view: DiagDataBrowsing data types

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

68 © ISO 2012 – All rights reserved

8.2.3 Semantics

8.2.3.1 General

The ComChannelCategory enumeration type in the OTX DiagDataBrowsing extension is derived from

otx:SimpleType.

8.2.3.2 ComChannelCategory

ComChannelCategory is an enumeration type describing the category of a ComChannel.

The list of allowed enumeration values is defined as follows:

 BASE_VARIANT: A ComChannel of this category references a base variant that is the common

denominator of a set of ECU variants.

 FUNCTIONAL_GROUP: A ComChannel of this category references a functional group of ECUs, i.e. a set

of ECUs that share the same functional address.

 PROTOCOL: A ComChannel of this category references a protocol-level communication link, i.e. it

contains a set of diagnostic services that are common to all ECUs implementing a specific procotol.

Communication channel categories are used by GetComChannelList for filtering available communication

channels by category (cf. 8.4.3.1). Since filtering by the fourth category – ECU_VARIANT – would in many

cases produce a large and rather unmanageable list of ECU variants, this category is intentionally not part of
the ComChannelCategory enumeration. Instead, the term GetEcuVariantList shall be used for getting

only those ECU variants associated to a single ECU base variant at a time (cf. 8.4.3.2).

IMPORTANT — ComChannelCategory values may occur as operands of comparisons (cf. Part 2 of

ISO 13209, relational operations). For this case, the following order relation shall apply:

BASE_VARIANT < FUNCTIONAL_GROUP < PROTOCOL.

IMPORTANT — When applying otx:ToString on a ComChannelCategory value, the resulting string

shall be the name of the enumeration value, e.g. otx:ToString(PROTOCOL)="PROTOCOL".

Furthermore, applying otx:ToInteger shall return the index of the value in the enumeration

ComChannelCategories (smallest index is 0). The behaviour is undefined for other conversion terms

(cf. Part 2 of ISO 13209).

ComChannelCategory is an otx:SimpleType. Its members have the following semantics:

 <init> : ComChannelCategoryLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : ComChannelCategories={BASE_VARIANT|FUNCTIONAL_GROUP|PROTOCOL} [1]

This attribute shall contain one of the values defined in the ComChannelCategories enumeration.

IMPORTANT — If the ComChannelCategory declaration is not explicitly initialized (omitted <init>

element), the default value shall be BASE_VARIANT.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 69

8.3 Variable access

8.3.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the DiagDataBrowsing
extension.

8.3.2 Syntax

Figure 34 shows the syntax of the DiagDataBrowsing extension's variable access types.

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

ComChannelCategoryVariable

Figure 34 — Data model view: DiagDataBrowsing variable access types

8.3.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for further
details.

8.4 Terms

8.4.1 Overview

The terms in the OTX DiagDataBrowsing extension shall be used to retrieve static information from the
diagnostic vehicle information database, at runtime.

8.4.2 Syntax

Figure 35 shows the syntax of all terms in the OTX DiagDataBrowsing extension.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

70 © ISO 2012 – All rights reserved

xsd:string

«enumeration»

ComChannelCategories

 BASE_VARIANT

 FUNCTIONAL_GROUP

 PROTOCOL

otx:ListTerm

«XSDcomplexType»

GetComChannelList

«XSDelement»

+ category: ComChannelCategoryTerm [0..1]

otx:ListTerm

«XSDcomplexType»

GetEcuVariantList

«XSDelement»

+ comChannel: ComChannelTerm

otx:ListTerm

«XSDcomplexType»

GetDiagServ iceList

«XSDelement»

+ comChannel: ComChannelTerm

otx:ListTerm

«XSDcomplexType»

GetRequestParameterList

«XSDelement»

+ diagService: DiagServiceTerm

otx:ListTerm

«XSDcomplexType»

GetResponseParameterList

«XSDelement»

+ diagService: DiagServiceTerm

otx:ListTerm

«XSDcomplexType»

GetAllowedParameterValueList

«XSDelement»

+ parameter: ParameterTerm

otx:BooleanTerm

«XSDcomplexType»

IsStringParameter

«XSDelement»

+ parameter: ParameterTerm

otx:BooleanTerm

«XSDcomplexType»

IsBooleanParameter

«XSDelement»

+ parameter: ParameterTerm

otx:BooleanTerm

«XSDcomplexType»

IsNumericParameter

«XSDelement»

+ parameter: ParameterTerm

otx:BooleanTerm

«XSDcomplexType»

IsComplexParameter

«XSDelement»

+ parameter: ParameterTerm

otx:BooleanTerm

«XSDcomplexType»

IsByteFieldParameter

«XSDelement»

+ parameter: ParameterTerm

ComChannelCategoryTerm

«XSDcomplexType»

ComChannelCategoryLiteral

«XSDattribute»

+ value: ComChannelCategories

ComChannelCategoryTerm

«XSDcomplexType»

ComChannelCategoryValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

Figure 35 — Data model view: DiagDataBrowsing terms

8.4.3 Semantics

8.4.3.1 GetComChannelList

GetComChannelList shall return a list of strings containing the identifiers of all communication channels

described in the diagnostic vehicle information data base.

If the optional attribute category is set, only those communication channel identifiers shall be returned

which belong to the given category.

NOTE In the case of a MVCI/ODX based system, the equivalent of a communication channel identifier shall be the
SHORT-NAME of a LOGICAL-LINK.

GetComChannelList is an otx:ListTerm. Its members have the following semantics:

 <category> : ComChannelCategoryTerm [0..1]

This optional element specifies the category according to which the com channels shall be filtered.

8.4.3.2 GetEcuVariantList

GetEcuVariantList shall return a list of strings which represents the names of all ECU variants for a given

communication channel (cf. 7.7.2, communication channel related terms of the OTX DiagCom extension). The
channel shall either point to a base variant or an ECU variant – in both cases, the names of the ECU variants
of the base variant shall be returned. If a base variant has no associated ECU variants, an empty list shall be

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 71

returned. Furthermore, in case the communication channel points to a protocol or functional group, an
exception shall be thrown.

NOTE In the case of a MVCI/ODX based system, the equivalent of a variant name shall be the SHORT-NAME of an

ECU-VARIANT.

GetEcuVariantList is an otx:ListTerm. Its members have the following semantics:

 <comChannel> : diag:ComChannelTerm [1]

This element represents the communication channel which provides the data.

Throws:

 otx:TypeMismatchException

If the communication channel belongs to the category PROTOCOL or FUNCTIONAL_GROUP (cf. 8.2.3.2).

8.4.3.3 GetDiagServiceList

GetDiagServiceList shall return a list of strings containing the names of all diagnostic services available

for a given communication channel (cf. 7.7.2, communication channel related terms of OTX DiagCom).

NOTE In the case of a MVCI/ODX based system, the equivalent of a diagnostic service name shall be the
SHORT-NAME of a DIAG-COMM.

GetDiagServiceList is an otx:ListTerm. Its members have the following semantics:

 <comChannel> : diag:ComChannelTerm [1]

This element represents the communication channel whose diagnostic services shall be listed.

8.4.3.4 GetRequestParameterList

GetRequestParameterList shall return a list of strings containing the names of all request parameters of a

given diagnostic service (cf. 7.7.3, diagnostic service related terms of the OTX DiagCom extension).

NOTE In the case of a MVCI/ODX based system, the returned list shall contain the SHORT-NAMEs of all PARAM

objects (enclosed in a PARAMS object of the REQUEST). In case a request parameter is a complex parameter (e.g. a

STRUCT) there shall be no deep recursion into that parameter.

GetRequestParameterList is an otx:ListTerm. Its members have the following semantics:

 <diagService> : diag:DiagServiceTerm [1]

This element represents the diagnostic service whose request parameters shall be listed.

8.4.3.5 GetResponseParameterList

GetResponseParameterList shall return a list of strings containing the names of all response parameters

of a given diagnostic service (cf. 7.7.3, diagnostic service related terms of the OTX DiagCom extension).

NOTE In the case of a MVCI/ODX based system, the returned list shall contain the SHORT-NAMEs of all PARAM

objects (enclosed in a PARAMS object of the first POS-RESPONSE). In case a response parameter is a complex parameter

(e.g. a STRUCT) there is NO deep recursion into that parameter.

GetResponseParameterList is an otx:ListTerm. Its members have the following semantics:

 <diagService> : diag:DiagServiceTerm [1]

This element represents the diagnostic service whose response parameters shall be listed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

72 © ISO 2012 – All rights reserved

8.4.3.6 GetAllowedParameterValueList

GetAllowedParameterValueList shall return a list of strings containing the allowed values for a

parameter. If there is no enumeration of allowed values associated to the parameter, the empty list shall be
returned.

NOTE In the case of a MVCI/ODX based system, this applies only to parameters which have a TEXTTABLE as

COMPU-METHOD or to parameters which are of type TABLE-KEY. For those parameters the list contains all valid entries of

a TEXTTABLE or all entries which are valid for the TABLE-KEY. For other parameters the returned list is empty.

GetParameterValueList is an otx:ListTerm. Its members have the following semantics:

 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter.

8.4.3.7 IsStringParameter

IsStringParameter shall return true if and only if the given parameter represents a string value according

to its definition in the diagnostic data base.

IsStringParameter is an otx:BooleanTerm. Its members have the following semantics:

 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

8.4.3.8 IsBooleanParameter

IsBooleanParameter shall return true if and only if the given parameter represents a Boolean value

according to its definition in the diagnostic data base.

IsBooleanParameter is an otx:BooleanTerm. Its members have the following semantics:

 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

8.4.3.9 IsNumericParameter

IsNumericParameter shall return true if and only if the given parameter represents a numeric value

according to its definition in the diagnostic data base.

IsNumericParameter is an otx:BooleanTerm. Its members have the following semantics:

 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

8.4.3.10 IsByteFieldParameter

IsByteFieldParameter shall return true if and only if the given parameter represents a bytefield value

according to its definition in the diagnostic data base.

IsByteFieldParameter is an otx:BooleanTerm. Its members have the following semantics:

 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 73

8.4.3.11 IsComplexParameter

IsComplexParameter shall return true if and only if the given parameter neither represents a string,

Boolean, numeric nor bytefield value according to its definition in the diagnostic data base.

IsComplexParameter is an otx:BooleanTerm. Its members have the following semantics:

 <parameter> : diag:ParameterTerm [1]

The element addresses the name of the request or response parameter to be type-tested.

8.4.3.12 ComChannelCategoryTerm

The abstract type ComChannelCategoryTerm is an otx:SimpleTerm. It serves as a base for all concrete

terms which return a ComChannelCategory enumeration value (see 8.2.3.2). It has no special members.

8.4.3.13 ComChannelCategoryValue

This term returns the ComChannelCategory stored in a ComChannelCategory variable. For more

information on value-terms and the syntax and semantics of the valueOf attribute and <path> element,

please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

8.4.3.14 ComChannelCategoryLiteral

This term shall return a ComChannelCategory enumeration value (see 8.2.3.2) from a hard-coded literal.

ComChannelCategoryLiteral is a ComChannelCategoryTerm. Its members have the following

semantics:

 value : ComChannelCategories={BASE_VARIANT|FUNCTIONAL_GROUP|PROTOCOL} [1]

This attribute shall contain one of the values defined in the ComChannelCategories enumeration.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

74 © ISO 2012 – All rights reserved

9 OTX EventHandling extension

9.1 Introduction

At some point during execution, an OTX sequence needs to interact with the outside world. OTX sequences
can cause things to happen in various ways, for example by calling actions from the HMI and DiagCom
extensions. Responses can also come back into OTX through these actions (for example a blocking call to a
hmi:ConfirmDialog), but in addition to these blocking mechanisms, OTX provides an event concept for

finer-grained control of input events.

During the execution of an OTX procedure events may occur as a result of activities outside the procedure (for
example a user screen click or a timer expires) or inside (for example a variable changes state as a result of
an assignment in a parallel thread). OTX has no mechanisms (such as call-backs or listeners) to handle these
events asynchronously. The OTX EventHandling extension is designed to be fully synchronous – it uses a
procedural mechanism to wait for events to occur. A procedure with complex event requirements may process
events sequentially in a loop until some exit criteria is encountered.

The primary elements of the OTX EventHandling extension are:

 Event source. An event source is something that creates events as a result of some occurrence – for
example a screen press or a timer expiring. In OTX, event sources are created by terms that extend the
abstract term EventSourceTerm. An event source starts queuing events right after being created. Event

sources may contain multiple events in their event queue which can be removed from the queue
(eldest first) by using the WaitForEvent action.

 Event. An event encapsulates all the information about what has occurred. Events are created and

populated by event sources and can be stored in Event-type variables. Various terms exist to examine

and extract content from events. There is no programmatic way to create events.

 WaitForEvent. The EventHandling extension defines a single action that blocks a thread of execution
until an event occurs. This action is the synchronisation point between the event sources and the OTX
execution thread.

9.2 Data types

9.2.1 Overview

The OTX EventHandling extension introduces two data types named Event and EventSource, as described

in the following.

9.2.2 Syntax

The syntax of all OTX EventHandling data type declarations is shown in Figure 36.

«XSDcomplexType»

Ev ent

«XSDcomplexType»

Ev entSource

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

Figure 36 — Data model view: EventHandling data types

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 75

9.2.3 Semantics

9.2.3.1 General

Since the OTX Event data types have no initialisation parts, they can not be declared constant.

9.2.3.2 Event

Variables of type Event can be declared to hold events generated by event sources. Event variables cannot

be initialised; therefore it is not permitted to declare an Event constant.

The Event data type encapsulates the information about a single event. There are no terms or actions to

create events explicitly, programmatically – they are only created implicitly by event sources, once the awaited
event occurs.

Once an event has been obtained from an event source (by using a WaitForEvent action) it can be

examined using terms of the EventHandling extension (or other extensions with event handling), so for
instance terms which tell which type of event source an event originates from.

Since Event has no initialisation parts, an Event can not be declared constant.

IMPORTANT — Other OTX extensions may define additional event source terms by extending the

EventSourceTerm type. E.g. the OTX HMI extension defines the hmi:ScreenClosedEventSource

term which listens for the closed-event when the user closes the screen.

9.2.3.3 EventSource

Variables of type EventSource are handles to event sources created by any EventSourceTerm.

Once an EventSource has been created, its internal event queue shall start registering events which

correspond to the EventSourceTerm subtype chosen for creating. Queueing shall be done in a separate

thread of the runtime system.

For instance, in the case of an event source which was created by a MonitorChangeEventSource term

and assigned to an EventSource variable, the event source's internal queue starts registering each change

event of the monitored value immediately.

Registered events may be read out and removed one by one from an event source's queue by repeatedly
calling the WaitForEvent action on that event source. See 9.4.3.1 for details on the WaitForEvent action.

Event source queueing can be stopped explicitly by using the CloseEventSource action, as specified in

9.4.3.2. Event sources which are created on-the-fly within a WaitForEvent action shall be closed implicitly

as soon as the action exits.

Since EventSource has no initialisation parts, an EventSource can not be declared constant. STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

76 © ISO 2012 – All rights reserved

9.3 Variable access

9.3.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define. All variable access types are derived from the OTX Core otx:Variable extension interface.

The following specifies all variable access types defined for the OTX EventHandling extension.

9.3.2 Syntax

Figure 46 shows the syntax of the EventHandling extension's variable access types.

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

EventVariable

«XSDcomplexType»

EventSourceVariable

Figure 37 — Data model view: EventHandling variable access types

9.3.3 Semantics

The general semantics for all variable access types apply. Refer to Part 2 of ISO 13209 for further details.

9.4 Actions

9.4.1 Overview

The OTX EventHandling extension introduces the actions named WaitForEvent and CloseEventSource,

as described in the following.

9.4.2 Syntax

Figure 38 shows the syntax of all actions in the OTX EventHandling extension.

otx:ActionRealisation

«XSDcomplexType»

WaitForEvent

«XSDelement»

+ source: EventSourceTerm [1..*]

+ event: EventVariable [0..1]

otx:ActionRealisation

«XSDcomplexType»

CloseEventSource

«XSDelement»

+ source: EventSourceVariable [1..*]

Figure 38 — Data model view: EventHandling actions

9.4.3 Semantics

9.4.3.1 WaitForEvent

The WaitForEvent action shall block the thread of execution until it receives an event from one of its event

sources. As soon as an event becomes available in one of the sources' event queues, WaitForEvent shall

remove that event from the event source's queue and exit; the thread of execution continues to the next node.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 77

If an event variable was specified, the event that caused WaitForEvent to exit is assigned to the variable.

Special semantics apply for the following cases:

a) Situations may occur when event sources already contain one or multiple events in their event queue
before being used by a WaitForEvent action. In that case, WaitForEvent shall use the eldest event

available in any of its event sources' queues (and assign it to an event variable, if specified). If there is
more than one eldest event – this may happen for events that occurred at the same time – the event of
the event source which is listed first in the action shall be used (first in XML document order).

b) When WaitForEvent exits, those event sources which were created on-the-fly within the action shall be

closed (the ones that are not assigned to an EventSource variable).

In order to determine later which of the event sources has fired the event, the terms described in 9.5.4 should
be used.

The members of the WaitForEvent action have the following semantics:

 <source> : EventSourceTerm [1..*]

This represents one or more event sources that the action shall wait for. The wait shall be terminated by
the first source to fire an event.

 <event> : EventVariable [0..1]

This optional element represents an Event-type variable which shall receive the event that terminates

this wait.

9.4.3.2 CloseEventSource

The CloseEventSource action shall close and dispose given event sources. Closed event sources will no

more queue any events.

Once closed, an event source can not be reopened. Using a closed event source e.g. in a WaitForEvent

action is an error and will cause an otx:InvalidReferenceException (through the EventSourceValue

term as specified in 9.5.2.3.2).

In case that CloseEventSource is applied to an event source which is already closed, the action shall

perform nothing (NOP).

CAUTION — In parallel execution, situations may occur where an event source gets closed by a

CloseEventSource action while being used in a WaitForEvent action (in another parallel lane). If the

WaitForEvent action has no other event sources registered, this will cause a deadlock situation. OTX

authors should avoid such situations by careful test sequence design and the usage of the

MutexGroup node, as specified by Part 2 of ISO 13209.

The members of the CloseEventSource action have the following semantics:

 <source> : EventSourceVariable [1..*]

This represents one or more variables which contain the event sources that shall be closed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

78 © ISO 2012 – All rights reserved

9.4.4 Example

The example below shows the use of the WaitForEvent action with a MonitorChangeEventSource on a

variable x and a TimerExpiredEventSource of 10 seconds.

The MonitorChangeEventSource starts queueing change events of variable x prior to being used in the

WaitForEvent action, right after being created in the Assignment action. In constrast the

TimerExpiredEventSource is created on-the-fly inside of the WaitForEvent.

If x does not change its value, the wait will exit after 10 seconds. In any case – once one of the event sources

fires the event, it is assigned to the event variable myEvent which might be used later for analysis.

After the wait, the MonitorChangeEventSource is closed by an explicit CloseEventSource action. By

contrast, the TimerExpiredEventSource is closed implicitly as soon as the wait exits.

EXAMPLE Sample of OTX-file "EventHandlingExample.otx"

<action id="a1">

 <specification>Create a MonitorChangeEventSource listening to variable x</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="event:EventSourceVariable" name="xMonitor"/>

 <term xsi:type="event:MonitorChangeEventSource">

 <event:variable xsi:type="IntegerVariable" name="x"/>

 </term>

 </realisation>

</action>

<action id="a2">

 <specification>Wait for a change of x's value, stop waiting after 10 seconds</specification>

 <realisation xsi:type="event:WaitForEvent">

 <event:source xsi:type="event:EventSourceValue" valueOf="xMonitor"/>

 <event:source xsi:type="event:TimerExpiredEventSource">

 <event:timeout value="10000" xsi:type="IntegerLiteral"/>

 </event:source>

 <event:event name="myEvent"/>

 </realisation>

</action>

<action id="a3">

 <specification>Close xMonitor event source</specification>

 <realisation xsi:type="event:CloseEventSource">

 <event:source name="xMonitor"/>

 </realisation>

</action>

9.5 Terms

9.5.1 Overview

The Terms of the OTX EventHandling extension are grouped into three different categories:

 Event terms. Event terms return events. The OTX EventHandling extension defines exactly one event

term named EventValue.

 Event source terms. Event source terms can be used within WaitForEvent actions. This extension

defines several event sources, but additional event sources may be defined in other OTX extensions. In
particular the OTX HMI extension defines the hmi:ScreenClosedEventSource term as a source of

GUI events.

 Event property terms. The terms in this category are used to examine events that are produced by

event sources. They all operate on an event that is accessed using an EventTerm and return one of the

values stored in the event for further processing.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 79

The term categories described above are shown in Figure 39.

Figure 39 — Data model view: EventHandling term categories

9.5.2 Event terms

9.5.2.1 Description

Terms in this category return events.

9.5.2.2 Syntax

Figure 40 shows the syntax of the event terms.

EventTerm

«XSDcomplexType»

Ev entValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

Figure 40 — Data model view: Event terms

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

80 © ISO 2012 – All rights reserved

9.5.2.3 Semantics

9.5.2.3.1 EventTerm

The abstract type EventTerm is an otx:Term. It serves as a base for all concrete terms which return an

Event. It has no special members.

9.5.2.3.2 EventValue

This term returns the Event stored in an Event variable. For more information on value-terms and the syntax

and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

9.5.3 Event source terms

9.5.3.1 Description

Terms in this category represent event sources. In a WaitForEvent action, any of the event source terms

defined here or in other OTX extensions may be used. The WaitForEvent action waits so long until one of

the embedded event source term fires an event.

NOTE It is an intended design goal of the OTX EventHandling extension that there is no explicit EventSource data

type defined. Therefore it is not possible to declare EventSource variables. Event source terms are useable only within

WaitForEvent actions.

9.5.3.2 Syntax

Figure 41 shows the syntax of the event source terms.

EventSourceTerm

«XSDcomplexType»

MonitorChangeEv entSource

«XSDelement»

+ variable: otx:Variable

«XSDcomplexType»

ThresholdExceededEv entSource

«XSDelement»

+ lowerThreshold: otx:SimpleTerm

+ upperThreshold: otx:SimpleTerm

EventSourceTerm

«XSDcomplexType»

TimerExpiredEv entSource

«XSDelement»

+ timeout: otx:IntegerTerm

EventSourceTerm

«XSDcomplexType»

Ev entSourceValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

Figure 41 — Data model view: Event source terms

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 81

9.5.3.3 Semantics

9.5.3.3.1 EventSourceTerm

The abstract type EventSourceTerm is an otx:Term. It serves as a base for all concrete terms which return

an EventSource. It has no special members.

9.5.3.3.2 EventSourceValue

This term returns the Event stored in an Event variable. For more information on value-terms and the syntax

and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

9.5.3.3.3 MonitorChangeEventSource

This term creates an event source that shall monitor a variable's value and fire an event when it changes. The
fired event shall maintain a snapshot of the new value of the monitored variable, which may be read out later
(see GetNewValue term). Event queueing shall start immediately once the event source is created.

IMPORTANT — Change-monitoring shall be shallow. This means that changes inside of complex

values shall NOT be recognized, like e.g. a change of an item in a List or Map, or the removal of items

from a List or Map, etc. Regarding complex data types the only recognized change is when the

variable changes its value, e.g. when another List is assigned to the variable.

IMPORTANT — The case when a value is assigned to a formerly uninitialized variable shall also be
recognized as a change event and shall NOT pose an error.

MonitorChangeEventSource is an EventSourceTerm. Its members have the following semantics:

 <variable> : otx:Variable [1]

Represents the variable that shall be monitored. If the variable value changes, the event shall be fired,
causing an embedding WaitForEventAction to exit.

Associated checker rules:

 Event_Chk002 – No Path in MonitorChange related terms

9.5.3.3.4 ThresholdExceededEventSource

This term creates an event source that shall monitor the value of a variable and fire an event when the value
goes outside a specified range. If the value is outside of the specified range right from the start, the event shall
be fired, too. The fired event shall maintain a snapshot of the new value that exceeded the threshold, which
may be read out later (see GetNewValue term).

Event queueing shall start immediately once the event source is created.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

82 © ISO 2012 – All rights reserved

This event source term shall only be applied for data types on which an order relation is defined. These are

the SimpleType data types as specified in Part 2 of ISO 13209.

IMPORTANT — A ThresholdExceededEventSource which is applied to an uninitialized variable shall

also count as threshold exceeded event and does NOT pose an error.

ThresholdExceededEventSource is a MonitorChangeEventSource. Its members have the following

semantics:

 <variable> : otx:Variable [1] (derived from MonitorChangeEventSource)

Represents the variable that shall be monitored. If the variable value goes outside of the specified range
(see below) or is already outside from the beginning, the event shall be fired, causing an embedding
WaitForEventAction to exit.

 <lowerThreshold>: otx:SimpleTerm [1]

Represents a value to compare against. If the value of the monitored variable becomes less that this
value, the event shall be fired.

 <upperThreshold>: otx:SimpleTerm [1]

Represents a value to compare against. If the value of the monitored variable becomes greater than this
value, the event shall be fired.

Associated checker rules:

 Event_Chk002 – No Path in MonitorChange related terms

 Event_Chk001 – Correct data types of ThresholdExceededEventSource arguments

9.5.3.3.5 TimerExpiredEventSource

This term shall create an event source that produces an event when a specified time expires. If the specified
time expires, the timer expiry event is produced and put into the event source's queue. Event queueing shall
start immediately once the event source is created.

TimerExpiredEventSource is an EventSourceTerm. Its members have the following semantics:

 <timeout>: otx:NumericTerm [1]

This element specifies an Integer value that is interpreted as a time in milli-seconds to wait. Once the

given number of milli-seconds has passed, the event shall be fired, causing an embedding
WaitForEventAction to exit. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

if the timeout value is negative. STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 83

9.5.4 Event property terms

9.5.4.1 Description

Terms in this category return diverse information on event properties.

9.5.4.2 Syntax

Figure 42 shows the syntax of the event property terms.

otx:BooleanTerm

«XSDcomplexType»

IsMonitorChangeEv ent

«XSDelement»

+ event: EventTerm

+ variable: otx:Variable [0..1]

otx:BooleanTerm

«XSDcomplexType»

IsTimerExpiredEv ent

«XSDelement»

+ event: EventTerm

otx:BooleanTerm

«XSDcomplexType»

IsThresholdExceededEv ent

«XSDelement»

+ event: EventTerm

otx:Term

«XSDcomplexType»

GetNewValue

«XSDelement»

+ event: EventTerm

Figure 42 — Data model view: Event property terms

9.5.4.3 Semantics

9.5.4.3.1 IsMonitorChangeEvent

The IsMonitorChangeEvent term accepts an EventTerm yielding an Event object that has been raised

by the OTX runtime system, as a result of either using a MonitorChangeEventSource or a

ThresholdExceededEventSource in a WaitForEvent action. The term shall return true if and only if

the Event originates from such a kind of event source. In case an optional Variable is specified, the term

shall return true if and only if the Event was fired because that particular Variable changed. If the given

Variable was not the reason for the event, false shall be returned.

IsMonitorChangeEvent is an otx:BooleanTerm. Its members have the following semantics:

 <event> : EventTerm [1]

Represents the Event whose type shall be tested.

 <variable> : otx:Variable [0..1]

Optionally specifies the variable which shall be tested for being the reason for the event.

Associated checker rules:

 Event_Chk002 – No Path in MonitorChange related terms

9.5.4.3.2 IsTresholdExceededEvent

The IsThresholdExceededEvent term accepts an EventTerm yielding an Event object that has been

raised by the OTX runtime, as a result of using a ThresholdExceededEventSource in a WaitForEvent

action. The term shall return true if and only if the Event originates from a

ThresholdExceededEventSource.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

84 © ISO 2012 – All rights reserved

IsThresholdExceededEvent is an otx:BooleanTerm. Its members have the following semantics:

 <event> : EventTerm [1]

Represents the Event whose type shall be tested.

9.5.4.3.3 IsTimerExpiredEvent

The IsTimerExpiredEvent term accepts an EventTerm term yielding an Event object that has been

raised by the OTX runtime, as a result of using a TimerExpiredEventSource in a WaitForEvent action.

The term shall return true if and only if the Event originates from a TimerExpiredEventSource.

IsTimerExpiredEvent is an otx:BooleanTerm. Its members have the following semantics:

 <event> : EventTerm [1]

Represents the Event whose type shall be tested.

9.5.4.3.4 GetNewValue

GetNewValue shall only be applied to events which were fired by a MonitorChangeEventSource or one

of its descendants. The term shall return the value which was stored in the given Event; that value represents

a snapshot of the monitored variable's new value at the time when the event was fired. The term is useful to
find out which new value a variable had after it changed.

IMPORTANT — Since it depends on the datatype of the variable which was monitored by

MonitorChangeEventSource, the return type of GetNewValue is in general not known at authoring

time. Therefore, type-safety of this term cannot be checked statically. Runtime exceptions may occur

when results of this term are used in the wrong place, e.g. when using otx:ToInteger on a value

which cannot be converted to integer.

GetNewValue is an otx:Term. Its members have the following semantics:

 <event> : EventTerm [1]

Represents the monitor change event from which the new value of the formerly monitored variable at the
time of value change shall be returned.

Throws:

 otx:TypeMismatchException

If the specified event has not been raised by a MonitorChangeEventSource or one of its descendants.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 85

10 OTX Flash extension

10.1 Introduction

The OTX Flash extension provides access to data types, terms and actions for reading data from a flash
session context and creating flash jobs.

IMPORTANT — It is an explicit design goal of the OTX Flash extension that it supports the flash data
acquisition side in the flash process only. There are no actions defined herein which carry out the
actual ECU flashing; this functionality is provided already by the OTX DiagCom extension as specified
in Clause 6.

The OTX Flash extension is designed for flash-data acquisition and flash job creation; downloading to an ECU
shall happen by executing a flash job via ExecuteDiagService as defined by the OTX DiagCom extension.

The Flash extension assumes that several flash sessions can exist for a communication channel. A flash
session contains several flash blocks and a flash block several flash segments. The segments contain an
arbitrary number of data bytes. Since data can be compressed, size information is supplied. Additionally
security information is attached to blocks and the session.

The Flash extension is designed to support use cases from the flash process domain, e.g. choose a flash
session and handle low level functions which are needed inside a flash job to access flash data and its
additional information.

NOTE 1 It is an explicit design goal of the OTX Flash extension to be usable with any diagnostic communication kernel.

As a design guideline, an ODX/MVCI based system has been considered – as ODX/MVCI is solving the vehicle
communication problem domain on a highly generic level, the design concepts that have been adopted for this extension

should be usable abstractions for any system that is implementing a solution to the vehicle communication problem
domain.

NOTE 2 In an ODX/MVCI based system, the session context is an ODX ECU-MEM container. Therefore the examples
regarding the usage of the terms and actions of the Flash extension describe ODX scenarios. Nevertheless it is possible

to use a subset of the nodes to describe download via proprietary protocols and raw data sources like binary.

Figure 43 shows the data structure model of the OTX Flash extension.

FlashSessioncomChannel

FlashBlock

segment

Identification Compressed Size

Uncompressed

Size

Format Security Method

Checksum

Signature

Security

Start Adress

Type

Validity

Audience

OwnIdent

DiagServ ice

Response

0..*

1

1

0..*

1

1

1

1

1

1

1

0..*

1

0..*

1..*

1

1

0..*

Figure 43 — Data structure model of the OTX Flash extension

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

86 © ISO 2012 – All rights reserved

10.2 Data types

10.2.1 Overview

The OTX Flash extension introduces the data types named FlashJob and FlashSession, as well as the

enumeration types FlashFileFormat and Audience.

10.2.2 Syntax

The syntax of all OTX Flash data type declarations is shown in Figure 44.

«XSDcomplexType»

FlashSession

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

FlashJob

«XSDcomplexType»

diag:DiagServ ice

«XSDcomplexType»

FlashFileFormat

«XSDelement»

+ init: FlashFileFormatLiteral [0..1]

«XSDcomplexType»

Audience

«XSDelement»

+ init: AudienceLiteral [0..1]

«XSDcomplexType»

otx:SimpleType

Figure 44 — Data model view: Flash data types

10.2.3 Semantics

10.2.3.1 General

The data types in the OTX Flash extension are based on otx:ComplexType and on otx:SimpleType.

10.2.3.2 FlashJob

The FlashJob data type represents a diagnostic service that is used for performing the ECU reprogramming

process. Based on the concepts of the ODX/MVCI standard, a FlashJob can be parameterized with a

specific flash session which contains the data to be programmed into the ECU. This is the interface-level
difference between a FlashJob and a diag:DiagService. To parameterize a FlashJob with a flash

session, please refer to the SetFlashSession action (see 10.5.3.3).

10.2.3.3 FlashSession

The FlashSession data type serves as storage for information regarding the context of a diagnostic session

and download information [ISO 22901].

Since FlashSession has no initialisation parts, a FlashSession can not be declared constant.

10.2.3.4 FlashFileFormat

FlashFileFormat is an enumeration type describing the format of a flash file. It is used by the action

StoreUploadData (see 10.5.3.2).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 87

OTX runtimes should at least support a basic set of flash file formats, which is defined by the following list of
allowed enumeration values:

 BINARY: Raw binary data

 INTEL: Intel hex file

 SREC: Motorola S-Record file

IMPORTANT — FlashFileFormatTerm values may occur as operands of comparisons (cf. Part 2 of

ISO 13209, relational operations). For this case, the following order relation shall apply:
BINARY < INTEL < SREC.

IMPORTANT — When applying otx:ToString on a FlashFileFormat value, the resulting string shall

be the name of the enumeration value, e.g. otx:ToString(BINARY)="BINARY". Furthermore,

applying otx:ToInteger shall return the index of the value in the FlashFileFormat enumeration

(smallest index is 0). The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

FlashFileFormat is an otx:SimpleType. Its members have the following semantics:

 <init> : FlashFileFormatLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : FlashFileFormats={BINARY|SREC|INTEL} [1]

This attribute shall contain one of the values defined in the FlashFileFormats enumeration.

IMPORTANT — If the FlashFileFormat declaration is not explicitly initialized (omitted <init>

element), the default value shall be BINARY.

10.2.3.5 Audience

Audience is an enumeration type which is used by the term GetListOfValidFlashSessions (for filtering

flash sessions according to audience property) as well as by the term BlockIsValidForAudience (see

10.6.3.3.3 and 10.6.4.3.7).

The list of allowed enumeration values is defined as follows:

 "SUPPLIER"

 "DEVELOPMENT"

 "MANUFACTURING"

 "AFTERSALES"

 "AFTERMARKET"

IMPORTANT — AudienceTerm values may occur as operands of comparisons (cf. Part 2 of ISO 13209,

relational operations). For this case, the following order relation shall apply:

SUPPLIER < DEVELOPMENT < MANUFACTURING < AFTERSALES < AFTERMARKET.

IMPORTANT — When applying otx:ToString on an Audience value, the resulting string shall be the

name of the enumeration value, e.g. otx:ToString(SUPPLIER)="SUPPLIER". Furthermore, applying

otx:ToInteger shall return the index of the value in the Audiences enumeration (smallest index is 0).

The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

88 © ISO 2012 – All rights reserved

Audience is an otx:SimpleType. Its members have the following semantics:

 <init> : AudienceLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value :

Audiences={SUPPLIER|DEVELOPMENT|MANUFACTURING|AFTERSALES|AFTERMARKET} [1]

This attribute shall contain one of the values defined in the Audiences enumeration.

IMPORTANT — If the Audience declaration is not explicitly initialized (omitted <init> element), the

default value shall be SUPPLIER.

10.3 Exceptions

10.3.1 Overview

All elements referenced in this Clause are derived from the OTX Core Exception type as defined by Part 2

of ISO 13209. They represent the full set of exceptions added by the OTX Flash extension.

10.3.2 Syntax

The syntax of all OTX Flash exception type declarations is shown in Figure 45.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

«XSDcomplexType»

FlashException

«XSDcomplexType»

UnsupportedFormatException

Figure 45 — Data model view: Flash exceptions

10.3.3 Semantics

10.3.3.1 General

Since all OTX Flash exception types are implicit exceptions whithout initialisation parts, they can not be
declared constant.

10.3.3.2 FlashException

The FlashException is the super class for all exceptions in the Flash extension. A FlashException shall

be used in case the more specific exception types described in the remainder of this section do not apply to
the problem at hand.

10.3.3.3 UnsupportedFormatException

The UnsupportedFormatException shall be thrown if the flash file format used by a StoreUploadData

action is not supported by the runtime system.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 89

10.4 Variable access

10.4.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define. All variable access types are derived from the OTX Core otx:Variable extension interface.

The following specifies all variable access types defined for the Flash extension.

10.4.2 Syntax

Figure 46 shows the syntax of the Flash extension's variable access types.

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

FlashSessionVariable

«XSDcomplexType»

FlashJobVariable

«XSDcomplexType»

FlashFileFormatVariable

«XSDcomplexType»

AudienceVariable

«XSDcomplexType»

otx:ExceptionVariable

Figure 46 — Data model view: Flash variable access types

10.4.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for details.

10.5 Actions

10.5.1 Overview

There are three action types defined for the OTX Flash extension: GetDownloadData, StoreUploadData

as well as SetFlashSession. The types extend the ActionRealisation extension interface as defined

by Part 2 of ISO 13209.

10.5.2 Syntax

Figure 47 shows the syntax of the actions GetDownloadData and StoreUploadData.

otx:ActionRealisation

«XSDcomplexType»

GetDownloadData

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm

+ segment: otx:NumericTerm

+ position: otx:NumericTerm

+ size: otx:NumericTerm

+ data: otx:ByteFieldVariable

otx:ActionRealisation

«XSDcomplexType»

StoreUploadData

«XSDattribute»

+ append: xsd:boolean

«XSDelement»

+ data: otx:ByteFieldTerm

+ target: otx:StringTerm

+ address: otx:NumericTerm

+ format: FlashFileFormatTerm

otx:ActionRealisation

«XSDcomplexType»

SetFlashSession

«XSDelement»

+ flashJob: FlashJobVariable

+ flashSession: FlashSessionTerm

Figure 47 — Data model view: Flash actions

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

90 © ISO 2012 – All rights reserved

10.5.3 Semantics

10.5.3.1 GetDownloadData

GetDownloadData shall fill a given otx:ByteField variable with data from the FlashSession context.

The members of GetDownloadData have the following semantics:

 <session> : FlashSessionTerm [1]

Represents the FlashSession which provides the data that shall be addressed.

 <block> : otx:NumericTerm [1]

By this element, a block in the FlashSession context shall be addressed. The value shall be in the

range of the existing blocks. Float values shall be truncated.

 <segment> : otx:NumericTerm [1]

This element shall address a segment in the FlashSession context. The value shall be in the range of

the existing segments in the block. Float values shall be truncated.

 <size> : otx:NumericTerm [1]

This element defines how much bytes of memory shall be read from the context. It shall be a positive
value. Float values shall be truncated.

 <position> : otx:NumericTerm [1]

This element defines the first position which shall be read by the action. Position shall be greater than or
equal to zero and not greater than the size of the segment minus one. Float values shall be truncated.

 <data> : otx:ByteFieldVariable [1]

This element represents the variable into which the read data shall be stored. It shall be of the type
otx:ByteFieldVariable. The size of the ByteField after execution of the action should be the

number of bytes read from the context. If the context does not contain the amount of data which is
requested with the size parameter, then the resulting ByteField is shorter. If the position parameter

overlaps the segment size, the resulting ByteField will be empty.

Throws:

 otx:OutOfBoundsException

If the block, segment or position number does not exist in the download data or if size is zero or negative.

10.5.3.2 StoreUploadData

A StoreUploadData action tells an OTX runtime to store data in a data-storage.

The members of StoreUploadData have the following semantics:

 append : xsd:boolean [1]

The truth-value set for this attribute defines whether data shall be appended to existing data (true) or not

(false). If not, the storage shall be cleaned before write access.

 <data> : otx:ByteFieldTerm [1]

This element represents the data which shall be stored.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 91

 <target> : otx:StringTerm [1]

The element shall provide a data storage. If the target is an URI that describes a file, the data is stored in
that file.

 <address> : otx:NumericTerm [1]

This element shall be used to define the base address of the to-be-stored data. Float values shall be

truncated.

 <format> : FlashFileFormatTerm [1]

This element defines the format of the flash data file. The basic set of formats which should be supported
by any runtime system specified by the FlashFileFormat data type (see 10.2.3.4). For other

proprietary formats, proprietary extensions may be used.

Throws:

 otx:InvalidReferenceException

If the data storage resource given by the <target> element is not available or not accessible.

 UnsupportedFormatException

If the runtime system does not support the flash data file format.

10.5.3.3 SetFlashSession

This action shall set the flash session to be programmed when the FlashJob is executed. Only one session

can be set at a time. If this action is used multiple times, the later call shall overwrite the session set by a
previous call.

The members of SetFlashSession have the following semantics:

 <flashJob> : FlashJobVariable [1]

Represents the FlashJob where the session shall be set.

 <flashSession> : FlashSessionTerm [1]

Represents the FlashSession to be programmed by the FlashJob.

10.5.4 Example

The example below shows a GetDownloadData action working on mySession, block 1, segment 1, position

0 and a size request of 64 bytes. The data is assigned to the ByteField-variable "myData".

The second part of the example shows a StoreUploadData action with appends the data contained in a

ByteField-variable named "data" to an INTEL-format storage-file at "file://file.hex".

EXAMPLE Sample of OTX-file "FlashActionsExample.otx"

<action id="a1">

 <specification>

 Get 64 bytes of data from mySession, block 1, segment1, position 0 and put it in myData

 </specification>

 <realisation xsi:type="flash:GetDownloadData">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="1"/>

 <flash:segment xsi:type="IntegerLiteral" value="1"/>

 <flash:position xsi:type="IntegerLiteral" value="0"/>

 <flash:size xsi:type="IntegerLiteral" value="64"/>

 <flash:data xsi:type="ByteFieldVariable" name="myData"/>

 </realisation>

</action>

<action id="a2">

 <specification>Store the upload data in file file.hex</specification>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

92 © ISO 2012 – All rights reserved

 <realisation xsi:type="flash:StoreUploadData" append="true">

 <flash:data xsi:type="ByteFieldValue" valueOf="data"/>

 <flash:target xsi:type="StringLiteral" value="file://file.hex"/>

 <flash:address xsi:type="IntegerLiteral" value="1024"/>

 <flash:format xsi:type="flash:FlashFileFormatLiteral" value="INTEL"/>

 </realisation>

</action>

10.6 Terms

10.6.1 Overview

The terms of the OTX Flash extension are sorted into several categories, depending on whether they are
mainly flash job-, session-, block-, segment-, security- or own ident related. Additionally, there are auxiliary
enumeration-type term categories for describing flash file format types and audiences.

IMPORTANT — For all terms described in the following, it is assumed that the blocks in a flash
session's data will be numbered starting from 0 (first block). The same applies to segment- and own
ident-numbering.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 93

Figure 48 shows an overview of the OTX Flash extension term categories.

Figure 48 — Data model view: Flash term categories

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

94 © ISO 2012 – All rights reserved

10.6.2 Flash job related terms

10.6.2.1 Description

The following describes the flash job related terms of the OTX Flash extension.

10.6.2.2 Syntax

Figure 49 shows the syntax of the flash job related terms.

FlashJobTerm

«XSDcomplexType»

CreateFlashJobBySemantic

«XSDelement»

+ comChannel: diag:ComChannelTerm

+ semantic: otx:StringTerm

+ session: FlashSessionTerm [0..1]

FlashJobTerm

«XSDcomplexType»

CreateFlashJobByName

«XSDelement»

+ comChannel: diag:ComChannelTerm

+ name: otx:StringTerm

+ session: FlashSessionTerm [0..1]

FlashJobTerm

«XSDcomplexType»

FlashJobValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

FlashJobTerm

«XSDcomplexType»

CreateFlashJob

«XSDelement»

+ comChannel: diag:ComChannelTerm

[0..1]

+ session: FlashSessionTerm

Figure 49 — Data model view: Flash job related terms

10.6.2.3 Semantics

10.6.2.3.1 FlashJobTerm

The abstract type FlashJobTerm is a diag:DiagServiceTerm. It serves as a base for all concrete terms

which return a FlashJob. It has no special members.

10.6.2.3.2 FlashJobValue

This term returns the FlashJob stored in a FlashJob variable. For more information on value-terms and the

syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

10.6.2.3.3 CreateFlashJob

This term shall create a new FlashJob for the specified FlashSession. The FlashJob can subsequently

be used for initiating an ECU reprogramming session.

CreateFlashJob is a FlashJobTerm. Its members have the following semantics:

 <comChannel> : diag:ComChannelTerm [0..1]

This optionally specifies the diag:ComChannel object to which the to-be-created FlashJob belongs to

and will be executed on when the diag:ExecuteDiagService action is used (cf. 7.6.4.3.1).

 <session> : FlashSessionTerm [1]

This element represents the FlashSession to be programmed by the FlashJob.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 95

10.6.2.3.4 CreateFlashJobByName

This term shall create a new FlashJob for the specified ComChannel. The FlashJob can subsequently be

used for initiating an ECU reprogramming session. Optionally a FlashSession can be specified which will

be used by the FlashJob for reprogramming (alternatively the SetFlashSession action can be used to

assign a different FlashSession to an already existing FlashJob object).

CreateFlashJobByName is a FlashJobTerm. Its members have the following semantics:

 <comChannel> : diag:ComChannelTerm [1]

This specifies the diag:ComChannel object to which the to-be-created FlashJob belongs to and will

be executed on when the diag:ExecuteDiagService action is used (cf. 7.6.4.3.1).

 <name> : otx:StringTerm [1]

Represents the name of the to-be-created FlashJob.

 <session> : FlashSessionTerm [0..1]

This optional element represents the FlashSession to be programmed by the FlashJob.

Throws:

 UnknownTargetException

If no FlashJob with the name provided by the <name> element exists.

10.6.2.3.5 CreateFlashJobBySemantic

This term shall create a new FlashJob for the specified ComChannel with the semantic attribute provided as

an argument. The FlashJob can subsequently be used for initiating an ECU reprogramming session.

Optionally a FlashSession can be specified which will be used by the FlashJob for reprogramming

(alternatively the SetFlashSession action can be used to assign a different FlashSession to an already

existing FlashJob object).

CreateFlashJobBySemantic is a FlashJobTerm. Its members have the following semantics:

 <comChannel> : diag:ComChannelTerm [1]

This specifies the diag:ComChannel object to which the to-be-created FlashJob belongs to and will

be executed on when the diag:ExecuteDiagService action is used (cf. 7.6.4.3.1).

 <semantic> : otx:StringTerm [1]

This represents the semantic attribute of the to-be-created FlashJob.

 <session> : FlashSessionTerm [0..1]

This optional element represents the FlashSession to be programmed by the FlashJob.

Throws:

 AmbiguousSemanticException

In case there are none or more than one FlashJob present at the ComChannel with the semantic value

specified by the <semantic> element.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

96 © ISO 2012 – All rights reserved

10.6.3 Flash session related terms

10.6.3.1 Description

The following describes the flash session related terms of the OTX Flash extension.

10.6.3.2 Syntax

Figure 50 shows the syntax of the flash session related terms.

otx:IntegerTerm

«XSDcomplexType»

GetNumberOfBlocks

«XSDelement»

+ session: FlashSessionTerm

FlashSessionTerm

«XSDcomplexType»

FlashSessionValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

otx:ListTerm

«XSDcomplexType»

GetListOfValidFlashSessions

«XSDattribute»

+ direction: Directions

«XSDelement»

+ comChannel: diag:ComChannelTerm

+ audience: AudienceTerm [0..1]

FlashSessionTerm

«XSDcomplexType»

GetFlashSession

«XSDelement»

+ sessionID: otx:StringTerm

otx:StringTerm

«XSDcomplexType»

GetSessionID

«XSDelement»

+ session: FlashSessionTerm

xsd:string

«enumeration»

Directions

 UPLOAD

 DOWNLOAD

otx:IntegerTerm

«XSDcomplexType»

GetSessionPriority

«XSDelement»

+ session: FlashSessionTerm

otx:BooleanTerm

«XSDcomplexType»

IsDownloadSession

«XSDelement»

+ session: FlashSessionTerm

otx:StringTerm

«XSDcomplexType»

GetFlashKey

«XSDelement»

+ session: FlashSessionTerm

Figure 50 — Data model view: Flash session related terms

10.6.3.3 Semantics

10.6.3.3.1 FlashSessionTerm

The abstract type FlashSessionTerm is an otx:Term. It serves as a base for all concrete terms which

return a FlashSession. It has no special members.

10.6.3.3.2 FlashSessionValue

This term returns the FlashSession stored in a FlashSession variable. For more information on value-

terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 97

10.6.3.3.3 GetListOfValidFlashSessions

The GetListOfValidFlashSessions term shall return an otx:List of otx:String items which identify

the FlashSessions that are valid. The validity of a FlashSession shall be defined by rules which exist in

the respective technological environment. For instance, in an ODX environment the ExpectedIdents shall

be checked. In other environments the rules may differ.

IMPORTANT — GetListOfValidFlashSessions shall return the flash sessions in the order of their

session priority. The highest-ranking FlashSession shall be the first item in the resulting List

whereas the lowest-ranking shall be the last. For equally-ranked FlashSessions the order is

unspecified.

NOTE In an ODX/MVCI based system, the session priority is a non-negative integer value assigned to a flash
session, where a value of 0 represents the highest possible priority. For flash sessions without an explicit priority setting a

default priority of 100 applies.

GetListOfValidFlashSessions is an otx:ListTerm. Its members have the following semantics:

 direction : Directions={UPLOAD|DOWNLOAD} [1]

This attribute defines which kind of FlashSessions shall be returned.

 <comChannel> : diag:ComChannelTerm [1]

This element defines a communication channel which is associated to the flash sessions. Please refer to
Clause 6 (OTX DiagCom extension) for details on the diag:ComChannelTerm type.

 <audience> : AudienceTerm [0..1]

This optional element defines a filter on a special audience. Only flash sessions with the given audience
shall be returned. If the attribute is omitted, no audience filtering shall be done. Please refer to 10.2.3.5
for information about the Audience enumeration.

10.6.3.3.4 GetFlashSession

The GetFlashSession term shall return a FlashSession handle which is identified by a session ID.

GetFlashSession is a FlashSessionTerm. Its members have the following semantics:

 <sessionID> : otx:StringTerm [1]

This element shall represent a unique identifier in the environment which is used for identifying a flash
session.

Throws:

 UnsupportedFormatException

If the runtime system does not support the flash data file format.

10.6.3.3.5 GetSessionID

The GetSessionID term shall return the identifier of a flash session. The identifier is a string value.

NOTE In ODX/MVCI based systems, the returned ID string should correspond to the SHORT-NAME of the session.

GetSessionID is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession to be used.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

98 © ISO 2012 – All rights reserved

10.6.3.3.6 GetFlashKey

The GetFlashKey term shall return the key of a flash session. The key is a string value.

NOTE In ODX/MVCI based systems, the returned key should correspond to the PARTNUMBER of the session

(SESSION-DESC).

GetFlashKey is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession to be used.

10.6.3.3.7 GetSessionPriority

The GetSessionPriority term shall return the priority setting for a flash session. The resulting priority shall

be represented by a non-negative integer value where 0 represents the highest possible priority. If no priority

information is available for a flash session, a default value of 100 shall be returned.

NOTE In ODX/MVCI based systems, the flash session priority information is given by a non-negative integer value,
where a value of 0 shall represent the highest possible priority. For proprietary systems using a different priority concept, it

should nevertheless be possible to define a mapping between proprietary priorities and the priority values required by this
standard.

GetSessionPriority is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession to be used.

10.6.3.3.8 GetNumberOfBlocks

The GetNumberOfBlocks term shall return the number of blocks in a FlashSession. If no blocks exist, the

return value shall be zero, otherwise it shall be a positive number.

GetNumberOfBlocks is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession from which the number of blocks shall be returned.

10.6.3.3.9 IsDownloadSession

The IsDownloadSession term shall return true if and only if the flash session's direction is DOWNLOAD. If

the session's direction is UPLOAD, false shall be returned.

IsDownloadSession is an otx:BooleanTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element shall represent the FlashSession from which the direction shall be determined.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 99

10.6.3.4 Example

The example below shows the flash session related terms, embedded in assignment actions.

EXAMPLE Sample of OTX-file "FlashSessionRelatedTermsExample.otx"

<action id="a1">

 <specification>Get all download session for the after sales department</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="ListVariable" name="AllSessions"/>

 <term xsi:type="flash:GetListOfValidFlashSessions" direction="DOWNLOAD">

 <flash:comChannel xsi:type="diag:ComChannelValue" valueOf="cc"/>

 <flash:audience xsi:type="flash:AudienceLiteral" value="AFTERSALES"/>

 </term>

 </realisation>

</action>

<action id="a2">

 <specification>Get the first session from a list</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="flash:FlashSessionVariable" name="mySession"/>

 <term xsi:type="flash:GetFlashSession">

 <flash:sessionID xsi:type="StringValue" valueOf="AllSessions">

 <path>

 <stepByIndex xsi:type="IntegerLiteral" value="0"/>

 </path>

 </flash:sessionID>

 </term>

 </realisation>

</action>

<action id="a3">

 <specification>Get the session ID and write it into String variable</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="SessionString"/>

 <term xsi:type="flash:GetSessionID">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 </term>

 </realisation>

</action>

<action id="a4">

 <specification>Get the number of blocks in session</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="blocks"/>

 <term xsi:type="flash:GetNumberOfBlocks">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 </term>

 </realisation>

</action>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

100 © ISO 2012 – All rights reserved

10.6.4 Flash block related terms

10.6.4.1 Description

The following describes all terms of the OTX Flash extensions by which diverse information on flash blocks
can be retrieved.

10.6.4.2 Syntax

Figure 51 shows the syntax of all flash block related terms.

otx:IntegerTerm

«XSDcomplexType»

GetNumberOfOwnIdents

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm

otx:IntegerTerm

«XSDcomplexType»

GetNumberOfSecurities

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm [0..1]

otx:IntegerTerm

«XSDcomplexType»

GetNumberOfSegments

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm

otx:StringTerm

«XSDcomplexType»

GetLogicalBlockID

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm

otx:StringTerm

«XSDcomplexType»

GetCompressionEncryption

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm

otx:StringTerm

«XSDcomplexType»

GetType

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm

otx:BooleanTerm

«XSDcomplexType»

BlockIsValidForAudience

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:NumericTerm

+ audience: AudienceTerm

Figure 51 — Data model view: Flash block related terms

10.6.4.3 Semantics

10.6.4.3.1 GetNumberOfSegments

The GetNumberOfSegments term shall return the number of data segments in a block. If no segments exist,

the return value shall be zero, otherwise it shall be a positive number.

GetNumberOfSegments is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block of interest resides.

 <block> : otx:NumericTerm [1]

This element provides the number of the block from which the number of data segments shall be
retrieved. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 101

10.6.4.3.2 GetNumberOfOwnIdents

The GetNumberOfOwnIdents term shall return the number of required and to-be-fulfilled identifications of a

block.

GetNumberOfOwnIdents is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block of interest resides.

 <block> : otx:NumericTerm [1]

This element provides the number of the block from which the number of identifications shall be retrieved.
Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number.

10.6.4.3.3 GetNumberOfSecurities

The GetNumberOfSecurities term shall return the number of security information of a block or session.

GetNumberOfSecurities is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession of interest.

 <block> : otx:NumericTerm [0..1]

This optional element defines the block from which the number of security information shall be retrieved.
If the <block> element is omitted, the term returns the number of securities defined for the flash session.

Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number.

10.6.4.3.4 GetLogicalBlockID

The GetLogicalBlockID term shall return the unique string identification of a block.

NOTE In ODX/MVCI based systems, the returned ID string should correspond to the SHORT-NAME of the block.

GetLogicalBlockID is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

102 © ISO 2012 – All rights reserved

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number.

10.6.4.3.5 GetCompressionEncryption

The GetCompressionEncryption term shall return the compression and encryption information of a block

(e.g. AES encryption, LZSS compression, etc.).

GetCompressionEncryption is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number.

10.6.4.3.6 GetType

The GetType term shall return the type of a block. The type information indicates whether a block is used for

data or for program code.

GetType is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number.

10.6.4.3.7 BlockIsValidForAudience

The BlockIsValidForAudience term shall return true if and only if a block is valid for a given audience.

BlockIsValidForAudience is an otx:BooleanTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 103

 <audience> : AudienceTerm [1]

This attribute defines which audience shall be used for the check. Please refer to 10.2.3.5 for information
about the Audience enumeration.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number.

10.6.4.4 Example

The example below shows the flash block related terms, embedded in assignment actions.

EXAMPLE Sample of OTX-file "FlashBlockRelatedTermsExample.otx"

<action id="a1">

 <specification>Get the number of segments in the first block</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="segments"/>

 <term xsi:type="flash:GetNumberOfSegments">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a2">

 <specification>Get the number of own idents of block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="ownIdents"/>

 <term xsi:type="flash:GetNumberOfOwnIdents">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a3">

 <specification>Get the number of securities of the session</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="securities"/>

 <term xsi:type="flash:GetNumberOfSecurities">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <!-- omitted block signals session securities -->

 </term>

 </realisation>

</action>

<action id="a4">

 <specification>Get identification of a block</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="identification"/>

 <term xsi:type="flash:GetLogicalBlockID">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a5">

 <specification>Get the compression and encryption method of the block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="format"/>

 <term xsi:type="flash:GetCompressionEncryption">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a6">

 <specification>Get Type of Block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="type"/>

 <term xsi:type="flash:GetType">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

104 © ISO 2012 – All rights reserved

<action id="a7">

 <specification>checks if block 0 is valid for audience "AFTERSALES"</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="BooleanVariable" name="isValid"/>

 <term xsi:type="flash:BlockIsValidForAudience">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:audience xsi:type="flash:AudienceLiteral" value="AFTERSALES"/>

 </term>

 </realisation>

</action>

10.6.5 Flash block segment related terms

10.6.5.1 Description

The following describes terms for retrieving information on flash block segments.

10.6.5.2 Syntax

Figure 52 shows the syntax of all flash block segment related terms.

otx:IntegerTerm

«XSDcomplexType»

GetCompressedSize

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm

+ segment: otx:IntegerTerm

otx:IntegerTerm

«XSDcomplexType»

GetUncompressedSize

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm

+ segment: otx:IntegerTerm

otx:IntegerTerm

«XSDcomplexType»

GetStartAddress

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm

+ segment: otx:IntegerTerm

Figure 52 — Data model view: Flash block segment related terms

10.6.5.3 Semantics

10.6.5.3.1 GetStartAddress

The GetStartAddress term shall return the start address of a segment.

GetStartAddress is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block containing the segment resides.

 <block> : otx:NumericTerm [1]

This element represents the block in which the segment resides. Float values shall be truncated.

 <segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block or segment found with the requested number.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 105

10.6.5.3.2 GetCompressedSize

The GetCompressedSize shall return the number of bytes constituting the compressed data contained by a

segment.

GetCompressedSize is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block containing the segment resides.

 <block> : otx:NumericTerm [1]

This element represents the block in which the segment resides. Float values shall be truncated.

 <segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block or segment found with the requested number.

10.6.5.3.3 GetUncompressedSize

The GetUncompressedSize shall return the number of bytes constituting the uncompressed data contained

by a segment.

GetUncompressedSize is an otx:IntegerTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block containing the segment resides.

 <block> : otx:NumericTerm [1]

This element represents the block in which the segment resides. Float values shall be truncated.

 <segment> : otx:NumericTerm [1]

This element provides the segment number. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block or segment found with the requested number.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

106 © ISO 2012 – All rights reserved

10.6.5.4 Example

The example below shows the flash block segment related terms, embedded in assignment actions.

EXAMPLE Sample of OTX-file "FlashSegmentRelatedTermsExample.otx"

<action id="a1">

 <specification>Get start address of segment</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="startAddress"/>

 <term xsi:type="flash:GetStartAddress">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:segment xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a2">

 <specification>Get the compressed size of the Block</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="compressedSize"/>

 <term xsi:type="flash:GetCompressedSize">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:segment xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

10.6.6 Security related terms

10.6.6.1 Description

The following describes the security related terms of the OTX Flash extension.

10.6.6.2 Syntax

Figure 53 shows the syntax of the security related terms.

otx:StringTerm

«XSDcomplexType»

GetSecurityMethod

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm [0..1]

+ security: otx:IntegerTerm

otx:StringTerm

«XSDcomplexType»

GetSignature

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm [0..1]

+ security: otx:IntegerTerm

otx:StringTerm

«XSDcomplexType»

GetChecksum

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm [0..1]

+ security: otx:IntegerTerm

otx:StringTerm

«XSDcomplexType»

GetValidity

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm [0..1]

+ security: otx:IntegerTerm

Figure 53 — Data model view: Security related terms

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 107

10.6.6.3 Semantics

10.6.6.3.1 GetSignature

The GetSignature shall return the signature information of a block or a session.

GetSignature is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [0..1]

This element represents the number of the block whose signature shall be returned. If the <block>

element is omitted, the signature of the flash session shall be returned instead. Float values shall be

truncated.

 <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values

shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number or the security is not defined.

10.6.6.3.2 GetValidity

The GetValidity term shall return the validity information of a block or a session.

GetValidity is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [0..1]

This element represents the block number. If the <block> element is omitted, the security information of

the flash session shall be returned instead. Float values shall be truncated.

 <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values

shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number or the security is not defined.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

108 © ISO 2012 – All rights reserved

10.6.6.3.3 GetChecksum

The GetChecksum term shall return the checksum information of a block or a session.

GetChecksum is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [0..1]

This element represents the number of the block whose checksum shall be returned. If the <block>

element is omitted, the checksum of the flash session shall be returned instead. Float values shall be

truncated.

 <security> : otx:NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values

shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number or the security is not defined.

10.6.6.3.4 GetSecurityMethod

The GetSecurityMethod shall return the security method information of a block or a session.

GetSecurityMethod is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : NumericTerm [0..1]

This element represents number of the block whose security method shall be returned. If the <block>

element is omitted, the security method of the flash session shall be returned instead. Float values shall

be truncated.

 <security> : NumericTerm [1]

This element defines the number of the security on which the term execution is based. Float values

shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block found with the requested number or the security is not defined.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 109

10.6.6.4 Example

The example below shows the security related terms, embedded in assignment actions.

EXAMPLE Sample of OTX-file "FlashSecurityRelatedTermsExample.otx"

<action id="a1">

 <specification>Get signature 0 of block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="signature"/>

 <term xsi:type="flash:GetSignature">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:security xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a2">

 <specification>Get validity 0 of block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="validity"/>

 <term xsi:type="flash:GetValidity">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:security xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a3">

 <specification>Get checksum 0 of block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="checksum"/>

 <term xsi:type="flash:GetChecksum">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:security xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a4">

 <specification>Get security method 0 of block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="method"/>

 <term xsi:type="flash:GetSecurityMethod">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:security xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

10.6.7 Own ident related terms

10.6.7.1 Description

The following describes the own ident related terms of the OTX Flash extension.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

110 © ISO 2012 – All rights reserved

10.6.7.2 Syntax

Figure 54 shows the syntax of the own ident related terms.

otx:StringTerm

«XSDcomplexType»

GetOwnIdentFromEcu

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm

+ number: otx:IntegerTerm

otx:StringTerm

«XSDcomplexType»

GetOwnIdent

«XSDelement»

+ session: FlashSessionTerm

+ block: otx:IntegerTerm

+ number: otx:IntegerTerm

Figure 54 — Data model view: Own ident related terms

10.6.7.3 Semantics

10.6.7.3.1 GetOwnIdentFromEcu

The GetOwnIdentFromEcu term shall return an identification string which shall be read from an ECU. The

environment shall store the information to access this string.

GetOwnIdentFromEcu is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

 <number> : otx:NumericTerm [1]

This element represents the own identification number. Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If there was no block or own ident number found with the requested number.

10.6.7.3.2 GetOwnIdent

The GetOwnIdent term shall return an identification string which is read from the download data.

GetOwnIdent is an otx:StringTerm. Its members have the following semantics:

 <session> : FlashSessionTerm [1]

This element represents the FlashSession in which the block resides.

 <block> : otx:NumericTerm [1]

This element represents the block number. Float values shall be truncated.

 <number> : otx:NumericTerm [1]

This element represents the own identification number. Float values shall be truncated.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 111

Throws:

 otx:OutOfBoundsException

If there was no block or own ident number found with the requested number.

10.6.7.4 Example

The example below shows the own ident related terms, embedded in assignment actions.

EXAMPLE Sample of OTX-file "FlashOwnIdentRelatedTermsExample.otx"

<action id="a1">

 <specification>Get the own ident 0 of block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="BooleanVariable" name="OwnIdentEcu"/>

 <term xsi:type="flash:GetOwnIdentFromEcu">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:number xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

<action id="a2">

 <specification>Get the identification 0 of block 0</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="StringVariable" name="OwnIdent"/>

 <term xsi:type="flash:GetOwnIdent">

 <flash:session xsi:type="flash:FlashSessionValue" valueOf="mySession"/>

 <flash:block xsi:type="IntegerLiteral" value="0"/>

 <flash:number xsi:type="IntegerLiteral" value="0"/>

 </term>

 </realisation>

</action>

10.6.8 Enumeration related terms

10.6.8.1 Description

The following describes the terms related to the enumerations FlashFileFormat and Audience, as

specified in 10.2.

10.6.8.2 Syntax

Figure 55 shows the syntax of the enumeration related terms.

xsd:string

«enumeration»

FlashFileFormats

 BINARY

 INTEL

 SREC

FlashFileFormatTerm

«XSDcomplexType»

FlashFileFormatLiteral

«XSDattribute»

+ value: FlashFileFormats

FlashFileFormatTerm

«XSDcomplexType»

FlashFileFormatValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

AudienceTerm

«XSDcomplexType»

AudienceLiteral

«XSDattribute»

+ value: Audiences

AudienceTerm

«XSDcomplexType»

AudienceValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

xsd:string

«enumeration»

Audiences

 SUPPLIER

 DEVELOPMENT

 MANUFACTURING

 AFTERSALES

 AFTERMARKET

Figure 55 — Data model view: Enumeration related terms

10.6.8.3 Semantics

10.6.8.3.1 FlashFileFormatTerm

The abstract type FlashFileFormatTerm is an otx:SimpleTerm. It serves as a base for all concrete

terms which return a FlashFileFormat. It has no special members.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

112 © ISO 2012 – All rights reserved

10.6.8.3.2 FlashFileFormatValue

This term returns the FlashFileFormat stored in a FlashFileFormat variable. For more information on

value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to

Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

10.6.8.3.3 FlashFileFormatLiteral

This term shall return a FlashFileFormat value (see 10.2.3.4) from a hard-coded literal.

FlashFileFormatLiteral is a FlashFileFormatTerm. Its members have the following semantics:

 value : FlashFileFormats={BINARY|SREC|INTEL} [1]

This attribute shall contain one of the values defined in the FlashFileFormats enumeration.

10.6.8.3.4 AudienceTerm

The abstract type AudienceTerm is an otx:SimpleTerm. It serves as a base for all concrete terms which

return an Audience. It has no special members.

10.6.8.3.5 AudienceValue

This term returns the Audience stored in an Audience variable. For more information on value-terms and

the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

10.6.8.3.6 AudienceLiteral

This term shall return an Audience value (see 10.2.3.4) from a hard-coded literal.

AudienceLiteral is an AudienceTerm. Its members have the following semantics:

 value :

Audiences={SUPPLIER|DEVELOPMENT|MANUFACTURING|AFTERSALES|AFTERMARKET} [1]

This attribute shall contain one of the values defined in the Audiences enumeration.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 113

11 OTX HMI extension

11.1 Introduction

11.1.1 General

The Human Machine Interface (HMI) extension provides access to data types, terms and actions for
interacting with the user through the display of graphical screens, as well as through additional input and
output devices such as keyboards etc.

ConfirmDialog

action

title:String

message:String

okButton:Event

Warning

Are you sure you want
to continue?

OK

Are you sure you want to continue?

Cancel OK

Figure 56 — Different hardware configurations

Due to the multiple possible variations on runtime systems, and the fact that some of the target runtime
systems do not even have a display (see Figure 56), one of the design goals of the HMI extension was to
abstract the details regarding the layout of the screens on the system, concentrating instead on the
communication aspects between the test sequence and the user interface. To achieve this goal, there are two
ways to operate screens: A set of basic dialogs that all systems should provide and customizable screens that
allow extra flexibility.

11.1.2 Dialogs

The basic dialogs are used to cover the most elemental use cases, such as showing a warning to the user or
asking for simple user input. Dialogs are always modal: It is assumed that the runtime system will pause
execution of the test flow when reaching one of these dialog actions and will provide a way for the user to
dismiss the dialog (normally with an "ok" or "close" button).

Dialogs do not assume any special graphical functionality and shall be supported by all test application
systems. It is possible to implement them in systems without graphical display by using LEDs and reading
static buttons on the device. In this case message information would be ignored.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

114 © ISO 2012 – All rights reserved

11.1.3 Custom screens

Custom screens define an interface to a screen that is externally created. The layout and functionality of the
screen itself is not defined in the OTX file and is only referenced by name, as shown in Figure 57. The call is
similar to a standard procedure call, and it only defines ways to pass parameters in and out from the screen.

runtime system (presentation layer)OTX subsystem (business logic layer)

OTX

test sequence

screen definition

screen

interface

screen

implementation

Figure 57 — Separation of concerns

Custom screens are non-modal. The execution of the test sequence continues after the screen is displayed in
the runtime system. For this effect, there are actions and terms that help control the flow of the screen: A
screen event source term by which execution can be stopped until a screen event has been received and an
action to close the screen.

Screen implementation is up to the client: The client can either have a graphical user interface (UI), a console
based application or a button layout on physical hardware. The screen interface provides a level of abstraction
that decouples the description of the screen from the test sequence.

A screen is connected directly to the model of the test sequence. All input values to the screen are references
to variables and all out parameteres are assigned to variables.

The update of the screen must be performed automatically by the runtime system. When one of the referred
variables is updated, the runtime system must update the display on the screen automatically. It is assumed
that the update will happen asynchronously in a UI thread and that the execution of the main sequence will not
be interrupted.

The screen can communicate events back to the system by using screen event objects. These events can
indicate if any of a screen's output parameters has changed, or if the user has performed any other operation
on the screen such as closing, minimizing or dismissing. The usage of the event mechanism allows building
applications with complex user interaction, without transmitting specific look and feel from the target
applications. To monitor changes in the screen parameters, it is possible to use the terms defined in the OTX
EventHandling extension (see Clause 8, MonitorChangeEventSource term).

Custom screens should be handled by a separate thread by the runtime system. As such, when handling
events from the screen (i.e. when waiting for user interaction) it is often advisable to create a parallel lane in
the OTX sequence dedicated to listen for these events with a WaitForEvent action in case that additional

processing tasks need to be performed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 115

11.1.4 Custom screen usage example

Figure 58 provides a typical usage of the custom screens, represented using an UML activity diagram.

The use case is the following:

 Present a screen that displays a list of values measured with an "exit" button

 Read values from an electronic control unit periodically and refresh the screen

 When the user decides to exit the application, then stop reading values

To achieve this, two different ways are shown in the example:

The sequence shown to the left represents a solution for simple cases where fine-grained event evaluation is
not necessary. After opening the screen, there is a loop for reading out ECU values which stops as soon as
the screen was closed (cf. ScreenIsOpen term, as specified in 11.6.3.3).

The sequence to the right shows a solution which opens up the possibility to fine-grained handling of different
kinds of events which may happen on the screen. After opening the screen, there are two parallel lanes. In
one lane, the test sequence continiously reads new values from the ECU as long as a "finish” flag is false. In
the second lane, a WaitForEvent action is used to react on the events fired by the screen. Once a screen
closed event is received, then the sequence terminates (cf. IsScreenClosedEvent term in 11.6.3.4). Other
event types from the screen might be processed in the event loop also, which is not exemplified here.

Figure 58 — Custom screen usage example

In both solutions, the "exit"-button is not controlled by the OTX sequence – the test applications presentation
layer is responsible for closing the screen as soon as the "exit" button is pressed (note that there is also an
explicit CloseScreen action, cf. 11.5.3.3.2). Furthermore, the update of the ECU values on the screen is
automatic, due to the fact that screens can be connected directly to variables of the OTX sequence. In the
given example, reads are interrupted cleanly, as once the last read is complete the sequence will finish.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

116 © ISO 2012 – All rights reserved

11.2 Data types

11.2.1 Overview

The OTX HMI extension introduces the Screen data type required for the custom screen handling as well as

the MessageType and ConfirmationType enumeration types used for dialogs.

11.2.2 Syntax

The syntax of the datatype declarations of the OTX HMI extension is shown in Figure 59.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

Screen

«XSDcomplexType»

MessageType

«XSDelement»

+ init: MessageTypeLiteral [0..1]

«XSDcomplexType»

otx:SimpleType
«XSDcomplexType»

ConfirmationType

«XSDelement»

+ init: ConfirmationTypeLiteral [0..1]

Figure 59 — Data model view: HMI data types

11.2.3 Semantics

11.2.3.1 General

The data types in the OTX HMI extension are based on otx:ComplexType and on otx:SimpleType.

11.2.3.2 Screen

The Screen data type is a handle to a complex screen resource on the runtime system. Screen handles

represent an interface through which an OTX sequence can display data and receive user input. The current
status of a screen can be checked by using the accessor terms associated to the Screen data type.

Since screens are also sources of screen closed events, they can be used as an argument of the term
ScreenCloseEventSource, as specified 11.6.3.3 (cf. Clause 8, OTX EventHandling extension).

Since Screen has no initialisation parts, a Screen can not be declared constant.

NOTE It is an explicit design goal of the OTX HMI extension not to make assumptions regarding the layout,
positioning or visualization style of a screen in a specific test application. These presentation layer details are left to the

runtime systems.

11.2.3.3 MessageType

MessageType is an enumeration type describing the characteristics of a message shown in a

ConfirmDialog. The type of message also controls which buttons are available in a ConfirmDialog (see

11.5.2.3.2).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 117

The list of allowed enumeration values is defined as follows:

 INFO: Displayed message is just for information

 WARNING: Displayed message is a warning

 ERROR: Displayed message describes an error

 YESNO_QUESTION: Displayed message represents a question answerable by "yes" or "no"

 YESNOCANCEL_QUESTION: Displayed message is a question which does not require a response

IMPORTANT — MessageType values may occur as operands of comparisons (cf. Part 2 of ISO 13209,

relational operations). For this case, the following order relation shall apply:

INFO < WARNING < ERROR < YESNO_QUESTION < YESNOCANCEL_QUESTION.

IMPORTANT — When applying otx:ToString on a MessageType value, the resulting string shall be

the name of the enumeration value, e.g. otx:ToString(INFO)="INFO". Furthermore, applying

otx:ToInteger shall return the index of the value in the MessageTypes enumeration (smallest index

is 0). The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

MessageType is an otx:SimpleType. Its members have the following semantics:

 <init> : MessageTypeLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value :

MessageTypes={INFO|WARNING|ERROR|YESNO_QUESTION|YESNOCANCEL_QUESTION} [1]

This attribute shall contain one of the values defined in the MessageTypes enumeration.

IMPORTANT — If the MessageType declaration is not explicitly initialized (omitted <init> element),

the default value shall be INFO.

11.2.3.4 ConfirmationType

ConfirmationType is an enumeration type describing the button-choice of a user dismissing a

ConfirmDialog (see 11.5.2.3.2). The information may later be used to find out which button was clicked for

confirmation of the dialog.

The list of allowed enumeration values is defined as follows:

 YES: Confirmation by "Yes" button or "OK" button

 NO: Confirmation by "No" button

 CANCEL: Confirmation by "Cancel" button

IMPORTANT — ConfirmationType values may occur as operands of comparisons (cf. Part 2 of

ISO 13209, relational operations). For this case, the following order relation shall apply:

YES < NO < CANCEL.

IMPORTANT — When applying otx:ToString on a ConfirmationType value, the resulting string

shall be the name of the enumeration value, e.g. otx:ToString(YES)="YES". Furthermore, applying

otx:ToInteger shall return the index of the value in the ConfirmationTypes enumeration (smallest

index is 0). The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

118 © ISO 2012 – All rights reserved

ConfirmationType is an otx:SimpleType. Its members have the following semantics:

 <init> : ConfirmationTypeLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : ConfirmationType = {YES|NO|CANCEL} [1]

This attribute shall contain one of the values defined in the ConfirmationTypes enumeration.

IMPORTANT — If the ConfirmationType declaration is not explicitly initialized (omitted <init>

element), the default value shall be YES.

11.3 Exceptions

11.3.1 Overview

All exceptions specified in the following are derived from the otx:Exception type as defined by Part 2 of

ISO 13209. They represent the full set of exceptions added by the OTX HMI extension.

11.3.2 Syntax

The syntax of all OTX HMI exception type declarations is shown in Figure 60.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

«XSDcomplexType»

ScreenException

«XSDcomplexType»

HmiException

Figure 60 — Data model view: HMI exceptions

11.3.3 Semantics

11.3.3.1 General

Since all OTX HMI exception types are implicit exceptions whithout initialisation parts, they can not be
declared constant.

11.3.3.2 HmiException

The HmiComException is the super class for all exceptions in the HMI extension. An HmiException shall

be used in case the more specific exception types described in the remainder of this section do not apply to
the problem at hand.

11.3.3.3 ScreenException

A ScreenException will be thrown by the runtime system in case that there are problems while processing

custom screens.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 119

Situations where a ScreenException will be thrown include e.g.

 non-existing screen definition in the runtime

 parameters of the called screen do not match to the signature of the screen

 errors while updating the screen

11.4 Variable access

11.4.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the HMI extension.

11.4.2 Syntax

Figure 61 shows the syntax of the HMI extension's variable access types.

«XSDcomplexType»

ScreenVariable

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

otx:ExceptionVariable

«XSDcomplexType»

MessageTypeVariable

«XSDcomplexType»

ConfirmationTypeVariable

Figure 61 — Data model view: HMI variable access types

11.4.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for details.

11.5 Actions

11.5.1 Overview

All of the elements described in the following extend the otx:ActionRealisation extension interface as

defined by Part 2 of ISO 13209.

As shown in Figure 62 there are two groups of actions: the dialog actions which serve for opening different
kinds of modal dialogs as well as the custom screen actions for opening and closing custom screens.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

120 © ISO 2012 – All rights reserved

Figure 62 — Data model view: HMI actions overview

11.5.2 Dialog related actions

11.5.2.1 Description

The dialog related actions described in the following provide simple message dialogs, input dialogs, menu-like
choice dialogs as well as displaying static documents. For a general description of dialogs, please refer to the
introduction in 11.1.2.

11.5.2.2 Syntax

Figure 63 shows the syntax of all modal dialog actions of the HMI extension.

«XSDcomplexType»

InputDialog

«XSDelement»

+ initialValue: otx:StringTerm [0..1]
+ instruction: otx:StringTerm [0..1]
+ restriction: otx:StringTerm [0..1]
+ result: otx:StringVariable

«XSDcomplexType»

ChoiceDialog

«XSDelement»

+ options: otx:ListTerm
+ default: otx:IntegerTerm [0..1]
+ result: otx:IntegerVariable

«XSDcomplexType»

ShowDocumentDialog

«XSDelement»

+ document: otx:StringTerm

otx:ActionRealisation

«XSDcomplexType»

Dialog

«XSDelement»

+ title: otx:StringTerm [0..1]
+ message: otx:StringTerm [0..1]

«XSDcomplexType»

ConfirmDialog

«XSDelement»

+ messageType: MessageTypeTerm [0..1]
+ result: ConfirmationTypeVariable [0..1]

Figure 63 — Data model view: Dialog related actions

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 121

11.5.2.3 Semantics

11.5.2.3.1 Dialog

The abstract type Dialog is the base type for all the dialogs used as a part of the dialog usage pattern. It

represents a modal display that blocks the execution of the test sequence until the user has provided an input.
Dialogs are meant to be simple and well suited for basic interactions with the user, such as confirmations and
single inputs.

The members of the Dialog action have the following semantics:

 <title> : otx:StringTerm [0..1]

If the runtime system contains the capability to show a dialog box with a title bar, the title string given by
this element shall be shown. The title should be shown with more prominence than the message
parameter (see below).

 <message> : otx:StringTerm [0..1]

If the runtime system contains the capability to show a message as part of the display, the message
string given by this element shall be shown.

11.5.2.3.2 ConfirmDialog

The ConfirmDialog action shows a dialog asking for user confirmation. The choices of buttons and the

decorations shown to the user can be configured by a parameter. Once one of the confirmation options is
selected, the result field will contain the selected index of the options.

Confirmation dialogs are typically used to ask the user for acceptance before performing a procedure.
Depending on the type of procedure to execute, it is possible to select different levels of severity.

Figure 64 shows a possible layout of a ConfirmDialog instance on a graphical user interface.

Check Ignition

Please make sure that

igniton is turned ON.

OK

Figure 64 — Sample ConfirmDialog layout

ConfirmDialog is a Dialog. Its members have the following semantics:

 <messageType> : MessageTypeTerm [0..1]

This optional element defines the type of message and the buttons that shall be shown to the user to
confirm the action. If the element is omitted, the default MessageType value INFO shall apply. Please

refer to 11.2.3.3 for information about the MessageType enumeration.

The number of buttons displayed depends on the message type:

 INFO, WARNING, ERROR: Show "OK" button

 YESNO_QUESTION: Show "Yes" and "No" buttons

 YESNOCANCEL_QUESTION: Show "Yes", "No" and "Cancel" buttons

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

122 © ISO 2012 – All rights reserved

NOTE Since button labels usually get localized automatically according to test application locale settings, this
standard does not force button labels to be "OK", "Yes", "No" or "Cancel". Any semantically equivalent labels are

allowed.

 <result> : ConfirmationTypeVariable [0..1]

This element represents the variable where the selection from the user will be stored. The element can be
omitted in cases when the result is nonrelevant (this especially applies to message types INFO, WARNING

and ERROR which do only provide a single "OK" button).

Result values shall be one of:

 YES: "OK" or "Yes" button was pressed

 NO: "No" button was pressed

 CANCEL: "Cancel" button was pressed

11.5.2.3.3 InputDialog

The InputDialog action opens a dialog requesting string input from the user. If needed, an initial value can

be passed to the dialog which shall be shown initially in the input field. Also an input restriction can be passed
to the dialog; this shall be used by runtime systems to pre-validate inputs before they are passed back to the
test sequence. Finally the entered value is assigned to a string variable for later use in the test sequence.

InputDialog can only handle simple strings. There are no facilities provided for number parsing etc. It is

assumed that the OTX sequence will perform these actions upon receiving the value.

Figure 65 shows a possible layout of an InputDialog instance on a graphical user interface.

Enter VIN

Please enter VIN

OK

WDD2040481A13

Please note: VIN must contain 17 characters,

only letters and numbers.

Figure 65 — Sample InputDialog layout

InputDialog is a Dialog. Its members have the following semantics:

 <initialValue> : otx:StringTerm [0..1]

This optional element represents the string value that shall be used to initialize the dialog's input field.
Runtime systems should pre-populate the input field with this text, providing an option to the user to
overwrite this value.

 <instruction> : otx:StringTerm [0..1]

The instruction is an additional message that can be shown on the input dialog to provide information
regarding the expected value that should be introduced.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 123

 <restriction> : otx:StringTerm [0..1]

This optional element represents a restriction onto the set of allowed input values. The restriction shall be
formulated by a regular expression which shall be used by runtime systems to pre-validate the input data.
The runtime system should not allow test sequence control to proceed until the input string matches the
given regular expression. The regular expression shall be conforming to the PERL 5 Regular Expression
Description Version 12.

 <result> : otx:StringVariable [1]

After the user dismisses the input dialog, the entered value shall be assigned to the string variable given
by this element.

Throws:

 otx:OutOfBoundsException

If the restriction string is not conforming to the PERL Regular Expression Description.

11.5.2.3.4 ChoiceDialog

The ChoiceDialog shall present a list of options to the user. It shall be possible for the user to select one of

the options and to dismiss the dialog (e.g. by double-clicking an option or by clicking an "OK" button, etc.).
Once the dialog is dismissed, the chosen option's index shall be assigned to a result variable. It shall not be
possible to dismiss the dialog unless a choice has been made.

The test sequence author may also preselect one of the options by using the dialog's optional default-
selection property.

For the options, ChoiceDialog accepts a dynamic list of strings as argument. This is useful as the strings

that will be shown can both be defined by the OTX author statically or they can be generated dynamically (e.g.
by reading a list of values from an ECU).

The ChoiceDialog visual implementation is up to the runtime system. Suggested visualizations are:

 Combination of a combo box with an "OK" button

 A list component with an "OK" button

 A list component which allows dismissing the dialog by double-clicking an option

 A ring menu

Figure 66 shows a possible layout of a ChoiceDialog instance on a graphical user interface. The sample

dialog contains three options which are rendered as a list. The user can select one of the options and then
press the "OK" button commit her/ his choice and continue. The "OK" button should stay disabled as long as
no choice has been made.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

124 © ISO 2012 – All rights reserved

Mode of Drive Selection

Options:

OK

Front Wheel Drive

Rear Wheel Drive

Four Wheel Drive

Please select mode of drive.

Figure 66 — Sample ChoiceDialog layout

ChoiceDialog is a Dialog. Its members have the following semantics:

 <options> : otx:ListTerm [1]

This element specifies a list of strings which contains the possible options that shall be displayed.

Associated checker rules:

 HMI_Chk001 – correct list type for ChoiceDialog options

 <default> : otx:IntegerTerm [0..1]

This optional element represents the index of the option which shall be preselected in the dialog.

 <result> : otx:IntegerVariable [1]

This element indicates the integer variable where the chosen option's index shall be assigned to:

 0 The 1
st
 option was selected.

 n-1 The n
th
 option was selected.

Throws:

 otx:OutOfBoundsException

If the list of options is empty (nothing to choose from) or if the preselection index is not within the range
[0,n-1], where n is the size of the list of options.

11.5.2.3.5 ShowDocumentDialog

The ShowDocumentDialog action will open a dialog that can display a document which is identified by e.g. a

URI. The document can be any resource. The call will block until the user has confirmed reading the
document.

Typical usage of this node is to show additional documentation to the users, such as repair guides and
schematics, or lengthy security information that the user must read before proceeding with a potentially
dangerous operation. If possible, tester applications should display the document in a maximized way, for best
readability. Dismissing the dialog will close the document.

The set of supported document types is tester application specific. However, runtime systems should be able
to display at least basic HTML 2.0 [RFC 1866]. Formatting, style and fonts can be stripped from display if the
runtime system does not support advanced formatting capabilities (i.e. if only a single type, monospace font is
used). Furthermore, popular image formats such as JPEG, GIF and PNG as well as document formats like
plain text, rich text and PDF should be supported by tester applications also.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 125

In case that a document type can not be opened and displayed by the test application itself, the runtime may
delegate the opening of the document to the application which is registered for that document type on the
operating system. If a tester application uses delegation, a dialog window shall pop up in the application,
blocking execution and asking for confirmation from the user that the application can continue. Once the user
confirms, the execution of the test sequence shall continue even if the external viewer is not closed.

Ultimately, if a document type is supported neither by the test application nor by any external viewer, then the
test application shall show a suitable error message indicating that the document type is not supported and
can therefore not be displayed.

ShowDocumentDialog is a Dialog. Its members have the following semantics:

 <document> : otx:StringTerm [1]

This element identifies the external document that should be shown.

Throws:

 otx:InvalidReferenceException

If the document resource given by the <document> element is not available or not accessible.

11.5.2.4 Example

The OTX fragment below shows uses of the ConfirmDialog, InputDialog and ShowDocumentDialog.

Please compare this to Figure 64 and Figure 65 which show graphical equivalents of the dialog actions.

EXAMPLE Sample of OTX-file "HmiDialogsExample.otx"

<action id="a1">

 <specification>Ask user for confirmation that ignition is turned on.</specification>

 <realisation xsi:type="hmi:ConfirmDialog">

 <hmi:title xsi:type="StringLiteral" value="Check Ignition"/>

 <hmi:message xsi:type="StringLiteral" value="Please make sure that ignition is turned ON."/>

 <hmi:messageType xsi:type="hmi:MessageTypeLiteral" value="WARNING"/>

 </realisation>

</action>

<action id="a2">

 <specification>Get VIN from user and store in variable "Vin"</specification>

 <realisation xsi:type="hmi:InputDialog">

 <hmi:title xsi:type="StringLiteral" value="Enter VIN"/>

 <hmi:message xsi:type="StringLiteral" value="Please enter VIN"/>

 <hmi:instruction xsi:type="StringLiteral"

 value="Please note: VIN must contain 17 characters, only letters and numbers"/>

 <hmi:result name="Vin"/>

 </realisation>

</action>

<action id="a3">

 <specification>Show a wiring diagram to user.</specification>

 <realisation xsi:type="hmi:ShowDocumentDialog">

 <hmi:document xsi:type="StringLiteral" value="http://www.myCompany.com/WiringDiagram.svg"/>

 </realisation>

</action>

11.5.3 Custom screen related actions

11.5.3.1 Description

In contrast to the dialog actions described above, the actions below support the handling of custom screens,
as described in the introduction in 11.1.3. In particular, there are the actions, OpenScreen, CloseScreen as

well as HighlightScreen which allow controlling GUI output and input to and from the user and the opening

and closing of screens. Custom screens are also related to so-called screen signatures which define the
interface to application-specific screen definitions (cf. 11.7).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

126 © ISO 2012 – All rights reserved

11.5.3.2 Syntax

Figure 67 shows the syntax of all custom screen related actions of the HMI extension.

«XSDcomplexType»

ScreenTermArgument

«XSDattribute»

+ param: otx:OtxName

«XSDelement»

+ term: otx:Term

«XSDcomplexType»

ScreenArguments

«XSDcomplexType»

ScreenInOutArgument

«XSDattribute»

+ param: otx:OtxName

«XSDelement»

+ variable: otx:Variable

«XSDcomplexType»

ScreenInArgument

«XSDattribute»

+ param: otx:OtxName

«XSDelement»

+ variable: otx:Variable

«XSDcomplexType»

ScreenOutArgument

«XSDattribute»

+ param: otx:OtxName

«XSDelement»

+ variable: otx:Variable

otx:ActionRealisation

«XSDcomplexType»

CloseScreen

«XSDelement»

+ screen: ScreenVariable

otx:ActionRealisation

«XSDcomplexType»

OpenScreen

«XSDattribute»

+ screen: otx:OtxLink

+ modal: xsd:boolean [0..1]

«XSDelement»

+ screenHandle: ScreenVariable [0..1]

otx:ActionRealisation

«XSDcomplexType»

HighlightScreen

«XSDelement»

+ screen: ScreenVariable

termArg 1 inArg 1 outArg 1inoutArg 1

arguments 0..1

Figure 67 — Data model view: Custom screen related actions

11.5.3.3 Semantics

11.5.3.3.1 OpenScreen

The OpenScreen action creates and displays a custom screen at runtime. The screen shall be displayed

immediately and it can accept user input. If other screens are already open when the new screen is opened,
the test application shall ensure that the new screen is not hidden by other screens.

NOTE 1 In systems where screens are shown in separate GUI windows, the new screen should be sent on top of all

other windows.

A screen shall remain opened until the user dismisses the screen via some UI control or a CloseScreen

action is executed explicitly on its screen handle. Also, when there are unclosed screens at the moment when
the procedure which opened the screens exits, only those screens on which at least one screen handle exists
shall remain opened; all other screens shall be disposed of (cf. <screenHandle> element specified below).

When a screen is opened, the runtime system will internally locate a screen definition linked to the given
screen signature name (see 11.7.3.2), or create a screen from scratch that allows displaying the given values
to the user. If the screen can not be opened or the open action is not supported, a ScreenException shall

be thrown.

NOTE 2 It is an explicit design goal of OTX not to describe the graphical layout of screens. Layout and look&feel of
screens should be described by specific screen definitions used by a runtime system. Since these features are highly

application-specific and do not represent semantically relevant information concerning the "pure" test sequence logic,
screen definitions are not part of this standard.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 127

The members of the OpenScreen action have the following semantics:

 screen : otx:OtxLink [1]

This attribute contains a name which points to a ScreenSignature which contains a parameter

description for the screen that shall be opened (it is the interface description to a specific screen definition,
see 11.7.3.2). The arguments of OpenScreen shall match the definitions in the corresponding signature.

It is the task of the runtime system to provide a mapping from screen signatures to a runtime-specific
screen definition (cf. Figure 56) which provides the actual screen layout.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

 HMI_Chk002 – correct target for OpenScreen

 modal : xsd:boolean={false|true} [0..1]

This option tells the runtime system to make this screen modal or non-modal. This means that if modal is

false (the default), the OTX execution flow will immediately move on to the next Action, without

waiting for the screen to close (see Figure 58 for usage examples of non-modal screens). Otherwise, if
modal is true, the screen behaves like the dialog actions – it shall block the execution flow until the

screen was closed (by a user action or a CloseScreen action e.g. in another parallel lane).

NOTE 3 Non-modal screens are well suited for dynamic cases where the test sequence needs to react on and

process input from the screen, or needs to update values shown on the screen, where modal screens are better
suited for the cases where static information is presented to the user.

 <screenHandle> : ScreenVariable [0..1]

This optional element represents the variable which shall be the handle for the opened screen. This can
be later used to query the status of the screen, highlighting the screen or closing the screen explicitly (see
IsScreenOpen term, HighlightScreen or ScreenClose actions below).

 <arguments> : ScreenArguments [0..1]

This simple container element represents a list of arguments for an open screen call. The content-type of
ScreenArguments is <xsd:choice> [1..*] which allows an arbitrary-length list of different screen

argument elements. The given arguments shall correspond to the parameters described in the screen
signature (linked by the screen attribute). There are different argument types:

 <termArg> : ScreenTermArgument

This argument type allows setting a calculated value into the screen. The value passed is always an
input-value to the screen. It shall be calculated exactly once upon opening the screen, no later
recalculations of the term value shall happen.

This type of arguments can be used, when a value that is passed to a screen is not expected to
change during the execution of the test sequence. Hence, it is not required that the runtime system
keeps a "watch" on the value. Because it accepts a term, it becomes possible to calculate the value
that should be set for a screen. For example, it might be desired to show a translated title that
additionally contains a concatenated extra string.

A term argument may be omitted if and only if there's an explicit initial value defined for the
corresponding parameter in the screen signature. In that situation, the initial value shall be used
instead of the omitted argument.

The counterpart to a <termArg> shall be defined in the corresponding screen signature by a

<termParam>.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

128 © ISO 2012 – All rights reserved

 param : otx:OtxName [1]

This attribute indicates a unique parameter of the screen that shall receive the to-be-displayed
value. The indicated parameter shall be defined in the corresponding screen signature. The
screen definition should then contain a widget that will be fed with this value.

 <term> : otx:Term [1]

This element represents the term that shall be evaluated once and set as a value into the screen.

 <inArg> : ScreenInArgument

This argument type shall bind a variable to a parameter of the screen. Changes to the variable shall
be automatically reflected on the screen.

An input argument may be omitted if and only if there's an explicit initial value defined for the
corresponding parameter in the screen signature. In that situation, the initial value shall be used
instead of the omitted argument.

The counterpart to an <inArg> shall be defined in the corresponding screen signature by an

<inParam>.

 param : otx:OtxName [1]

This attribute indicates a unique input-parameter of the screen that shall be bound to a variable.

 <variable> : otx:Variable [1]

This element represents the to-be-bound variable whose value shall be monitored and whose
current value shall be fed into the screen. The screen definition should then contain a widget that
will be fed with this variable's current value.

 <inOutArg> : ScreenInOutArgument

This argument type shall bind a variable to a parameter of the screen, in a bidirectional fashion:
Changes to the variable from the test sequence model shall be automatically reflected on the screen.
Vice versa, changes triggered from the screen (e.g. by user actions) shall automatically change the
value of the variable.

An input/output argument may be omitted if and only if there's an explicit initial value defined for the
corresponding parameter in the screen signature. In that situation, the initial value shall be used
instead of the omitted argument.

The counterpart to an <inOutArg> shall be defined in the corresponding screen signature by an

<inOutParam>.

 param : otx:OtxName [1]

This attribute indicates a unique input/output parameter that shall be bound to a variable.

 <variable> : otx:Variable [1]

This element represents the to-be-bound variable whose value shall be monitored and whose
current value shall be fed into the screen. The variable shall also reflect changes triggered from
the screen, vice versa. The screen definition should then contain a widget that will be fed with
this variable's current value and that also allows for the user to change the value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 129

 <outArg> : ScreenOutArgument

This argument type shall bind a variable to an output parameter of the screen. Changes on the
screen shall trigger an update of the bound variable's value.

Output arguments may be omitted freely (e.g. in the case when there is no interest in one of the
screen data).

The counterpart to the <outArg> shall be defined in the corresponding screen signature by a

<outParam>.

 param : otx:OtxName [1]

This attribute indicates a unique output-parameter that shall be bound to a variable.

 <variable> : otx:Variable [1]

This element represents the to-be-bound variable which shall reflect the value set on the screen
(e.g. entered by the user). The screen definition should then contain an input widget that allows
for the user to change the value.

Associated checker rules:

 HMI_Chk003 – correct OpenScreen arguments

 HMI_Chk004 – OpenScreen term, input and input/output argument omission

 HMI_Chk005 – no Path in connected OpenScreen arguments

Throws:

 ScreenException

If the screen definition can not be found, if the assigned parameters are incorrect or if the runtime system
can not support a screen open operation.

11.5.3.3.2 HighlightScreen

The HighlightScreen action shall highlight a given screen in a way appropriate for drawing the user's

attention to the screen. This supports use cases where user attention is required, e.g. when a situation occurs
which immediately requires user input on a particular screen, or when a screen displays important information
which tells the user which actions to take to solve e.g. a critical situation, etc.

NOTE In systems where screens are shown in separate GUI windows, highlighting a screen should bring the screen
on top of any other windows. For systems where screens are shown e.g. in one partitioned GUI window, highlighting may

be done for instance by making the new screen's portion of the window blink for some time, or similar. Non-GUI systems
may use e.g. warning LEDs to draw user attention.

The members of the HighlightScreen action have the following semantics:

 <screen> : ScreenVariable [1]

This element represents the screen handle of the screen that shall be highlighted.

11.5.3.3.3 CloseScreen

The CloseScreen action shall cause the runtime system to dismiss the screen and release all resources

associated to the screen.

After the execution of the CloseScreen action, the screen shall not send any more events for processing to

the OTX sequence and shall not allow any more user interaction to be performed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

130 © ISO 2012 – All rights reserved

Attempting to close the same screen element twice shall perform no operation and report no errors. It shall be
for all effects a NOP.

The members of the CloseScreen action have the following semantics:

 <screen> : ScreenVariable [1]

This element represents the screen handle of the screen that shall be closed.

11.6 Terms

11.6.1 Overview

The terms of the OTX HMI extension are mainly related to custom screen handling and the events which may
be fired by screens. Furthermore, there are simple enumeration type terms related to the ConfirmDialog
action 11.5.2.3.2).

Figure 68 provides an overview about the different term categories.

Figure 68 — Data model view: HMI term categories

11.6.2 Syntax

Figure 69 shows the syntax of all terms in the OTX HMI extension.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 131

otx:BooleanTerm

«XSDcomplexType»

ScreenIsOpen

«XSDelement»

+ screen: ScreenVariable

event:EventSourceTerm

«XSDcomplexType»

ScreenClosedEv entSource

«XSDelement»

+ screen: ScreenTerm

otx:BooleanTerm

«XSDcomplexType»

IsScreenClosedEv ent

«XSDelement»

+ event: event:EventValue

+ screen: ScreenVariable [0..1]

ScreenTerm

«XSDcomplexType»

ScreenValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

MessageTypeTerm

«XSDcomplexType»

MessageTypeLiteral

«XSDattribute»

+ value: MessageTypes

MessageTypeTerm

«XSDcomplexType»

MessageTypeValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

xsd:string

«enumeration»

MessageTypes

 INFO

 WARNING

 ERROR

 YESNO_QUESTION

 YESNOCANCEL_QUESTION

ConfirmationTypeTerm

«XSDcomplexType»

ConfirmationTypeLiteral

«XSDattribute»

+ value: ConfirmationTypes

ConfirmationTypeTerm

«XSDcomplexType»

ConfirmationTypeValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

xsd:string

«enumeration»

ConfirmationTypes

 YES

 NO

 CANCEL

Figure 69 — Data model view: HMI terms

11.6.3 Semantics

11.6.3.1 ScreenTerm

ScreenTerm is an otx:Term. It serves as the abstract base type for all concrete terms which return a

Screen. It has no further members.

11.6.3.2 ScreenValue

This term returns the Screen stored in a Screen variable. For more information on value-terms and the

syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

11.6.3.3 ScreenClosedEventSource

The ScreenClosedEventSource term accepts a Screen object that is to be made an event source. This

term enables an OTX sequence to use a Screen as a source for events in the context of the OTX

EventHandling extension (please refer to Clause 8). A Screen shall trigger an event every when the specified

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

132 © ISO 2012 – All rights reserved

screen is closed. This can be used within a event:WaitForEventAction to continue execution after a

screen was closed.

NOTE Other events that may happen on a screen (like button presses, values entered into an input field etc.) can be
identified by using the event source terms MonitorChangeEventSource or ThresholdExceededEventSource, as

specified by the OTX EventHandling extension (see Clause ‎9). As screens are executed on an asynchronous thread, user

interaction can be received at any time. Therefore the value monitoring event sources are especially useful with respect to
non-modal custom screens (see Figure 58) in order to react on different user actions.

ScreenClosedEventSource is an event:EventSource. Its members have the following semantics:

 <screen> : ScreenTerm [1]

Represents the Screen that shall be connected to the event source.

11.6.3.4 IsScreenClosedEvent

The IsScreenClosedEvent term accepts an EventValue term yielding an Event object that has been

raised by the OTX runtime, as a result of declaring a Screen object as an event source by using the term

ScreenClosedEventSource. The term shall return true if and only if the Event originates from a

ScreenClosedEventSource term. In case an optional ScreenVariable is specified, the term shall return

true if and only if the Event was fired because that particular Screen was closed.

This term exists because closing a screen is a very common event and many times the execution flow must
continue only when a screen is dismissed. To simplify writing test sequences, it is thus simpler to write a
WaitForEvent node that only listens for this event type, and without requiring additional code to analyze the

type of even as required with a regular screen event.

IsScreenClosedEvent is an otx:BooleanTerm. Its members have the following semantics:

 <event> : event:EventValue [1]

Represents the Event whose type shall be tested.

 <screen> : ScreenVariable [0..1]

Optionally specifies the particular Screen which fired the event.

11.6.3.5 ScreenIsOpen

This is a term used to verify that a Screen is open and active. A Screen is open and active if it has been

opened by using an OpenScreen action, it has not been dismissed by the user and it has not been closed by

using a CloseScreen action.

IMPORTANT — Due to the fact that there may be multiple parallel lanes, and that a screen engine

normally works in a different thread, if the ScreenIsOpen term returns true there is actually no

guarantee that the screen is still open on the next step.

ScreenIsOpen is an otx:BooleanTerm. Its members have the following semantics:

 <screen> : ScreenVariable [1]

This element represents the variable which is a handle to the screen that shall be checked.

11.6.3.6 MessageTypeTerm

The abstract type MessageTypeTerm is an otx:SimpleTerm. It serves as a base for all concrete terms

which return a MessageType value (see 11.2.3.3). It has no special members.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 133

11.6.3.7 MessageTypeValue

This term returns the MessageType stored in a MessageType variable. For more information on value-terms

and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

11.6.3.8 MessageTypeLiteral

This term shall return a MessageType value (see 11.2.3.3) from a hard-coded literal.

MessageTypeLiteral is a MessageTypeTerm. Its members have the following semantics:

 value :

MessageTypes={INFO|WARNING|ERROR|YESNO_QUESTION|YESNOCANCEL_QUESTION} [1]

This attribute shall contain one of the values defined in the MessageTypes enumeration.

11.6.3.9 ConfirmationTypeTerm

The abstract type ConfirmationTypeTerm is an otx:SimpleTerm. It serves as a base for all concrete

terms which return a ConfirmationType value (see 11.2.3.4). It has no special members.

11.6.3.10 ConfirmationTypeValue

This term returns the ConfirmationType stored in a ConfirmationType variable. For more information

on value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to

Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

11.6.3.11 ConfirmationTypeLiteral

This term shall return a ConfirmationType value (see 11.2.3.4) from a hard-coded literal.

ConfirmationTypeLiteral is a ConfirmationTypeTerm. Its members have the following semantics:

 value : ConfirmationTypes={YES|NO|CANCEL} [1]

This attribute shall contain one of the values defined in the ConfirmationTypes enumeration.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

134 © ISO 2012 – All rights reserved

11.7 Signatures

11.7.1 Overview

As specified by Part 2 of ISO 13209, OTX extensions may define new specialialized types of signatures by
extending otx:SignatureRealisation. The OTX HMI extension uses this extensibility by adding the

ScreenSignature type which allows in-document, high-level interface specifications to screen definitions

which are used by the OpenScreen action, as specified in 11.5.3.3.1.

11.7.2 Syntax

Figure 70 shows the syntax of the HMI extension's signature types.

otx:SignatureRealisation

«XSDcomplexType»

ScreenSignature

«XSDcomplexType»

ScreenParameterDeclarations

Declaration

«XSDcomplexType»

ScreenInParameterDeclaration

«XSDattribute»

- category: xsd:string [0..1]

Declaration

«XSDcomplexType»

ScreenTermParameterDeclaration

«XSDattribute»

- category: xsd:string [0..1]

Declaration

«XSDcomplexType»

ScreenInOutParameterDeclaration

«XSDattribute»

- category: xsd:string [0..1]

Declaration

«XSDcomplexType»

ScreenOutParameterDeclaration

«XSDattribute»

- category: xsd:string [0..1]

outParam 1inoutParam 1termParam 1 inParam 1

parameters 0..1

Figure 70 — Data model view: HMI signatures

NOTE The XSD complex type ScreenParameterDeclarations is of <xsd:choice> [1..*] content-type,

which is not explicitly shown in the figure above.

11.7.3 Semantics

11.7.3.1 General

The basic semantics common to all kinds of signatures are specified in Part 2 of ISO 13209.

11.7.3.2 ScreenSignature

The ScreenSignature is a specialisation of the OTX Core type otx:SignatureRealisation that adds

additional interface description functionality along with the OTX Core type otx:ProcedureSignature. A

ScreenSignature represents the interface between OpenScreen actions and the runtime specific screen

definitions.

Typically, all screens supported by a runtime system should be described in a dedicated set of OTX
documents – "screen description documents" – which contain the signatures of all screen definitions available
for the OTX author. This allows the author to create test sequences that use a pre-established UI.

Screen signatures shall also be used to verify that the arguments given by an OpenScreen action are

complete.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 135

Since ScreenSignature is an otx:SignatureRealisation, screen signatures have to be globally

defined in OTX documents: They are located under the <signatures> element right below the root element

<otx>, as defined by Part 2 of ISO 13209.

The members of ScreenSignature have the following semantics:

 <parameters> : ScreenParameterDeclarations [0..1]

This contains a list of parameters of different types. They describe which input- and output-values a
certain screen needs or provides. The parameters of a specific screen signature are the counterparts of
the arguments of a ScreenOpen action (cf. 11.5.3.3.1). Since all parameter types are derived from the

otx:Declaration type as defined in Part 2 of ISO 13209, the parameters have a name, a specification

and a data type declaration (not specified here).

ScreenParameters is of <xsd:choice> [1..*] content-type which allows an arbitrary-length list of

parameter sub-elements of the following types:

 <termParam> : ScreenTermParameter

This represents the counterpart to the <termArg> type of the OpenScreen action (cf. 11.5.3.3.1). It

declares an input parameter for a screen whose value shall be computed once out of a term given in
a corresponding term argument of an OpenScreen action. The value shall be shown by a suitable

widget on the screen.

 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

 <inParam> : ScreenInParameter

This represents the counterpart to the <inArg> type of the OpenScreen action (cf. 11.5.3.3.1). It

declares an input parameter which shall be linked to an OTX variable (by executing an OpenScreen

action at runtime). Value changes of the variable shall automatically trigger an update of the
respective widget on the screen.

 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

 <inoutParam> : ScreenInOutParameter

This represents the counterpart to the <inoutArg> type of the OpenScreen action (cf. 11.5.3.3.1).

It declares an bidirectional input/output parameter which shall be linked to an OTX variable (by
executing an OpenScreen action at runtime). Value changes in the variable shall automatically

trigger an update of the respective widget on the screen and vice versa, if the user changes the value
on the screen, the new value shall be reflected in the linked variable.

 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

 <outParam> : ScreenOutParameter

This represents the counterpart to the <outArg> type of the OpenScreen action (cf. 11.5.3.3.1). It

declares an output parameter of the screen which shall be linked to an OTX variable (by executing
an OpenScreen action at runtime). If the user changes the value on the screen via the

corresponding input widget, the new value shall be reflected in the linked variable.

 category : xsd:string [1]

This attribute indicates the category of the parameter, see below for details.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

136 © ISO 2012 – All rights reserved

As specified above, each of the parameter types contains an additional category attribute. It is an

optional hint to the runtime system regarding the usage of the associated parameter. Some runtime
systems might not have a specific screen definition corresponding to a given screen signature, or do not
support the concept of screen definitions at all. Such systems can use the category to attach semantic

meaning to certain arguments of an OpenScreen action and choose an appropriate representation for

the values.

Runtime systems are not required to implement this functionality. Any text can be used; however, the
following have standardized meanings:

 TITLE: Parameter should be rendered as a title.

 MESSAGE: Parameter should be rendered as a message.

 GRAPH: Parameter should be displayed with a visual graphical representation.

 WARNING: Parameter should be displayed as a warning.

 BUTTON: Parameter should be rendered as a button.

 CHECKBOX: Parameter should be rendered as a checkbox.

 INPUT: Parameter should be rendered as input mask

 CHOICE: Parameter should be rendered as a choice (applies to otx:List and otx:Map only)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 137

12 OTX i18n extension

12.1 Introduction

The OTX i18n (Internationalization) extension provides access to data types, terms and actions for translating
strings, quantity units and values to the language and unit system of the locale of the runtime system.

Due to the international reach of vehicle manufacturers and the existence of research labs, production plants
and repair shops across the globe, it is necessary to provide an API that will make a test sequence agnostic of
the particularities of the language and the system present on the target region. Thus, all strings that will be
presented to the user must be stored in a common format, referenced by keys and translated on the fly.

12.2 Data types

12.2.1 Overview

The OTX i18n extension introduces a single data type named TranslationKey, as described in the

following.

12.2.2 Syntax

The syntax of the TranslationKey datatype declaration of the OTX i18n extension is shown in Figure 71.

«XSDcomplexType»

TranslationKey

«XSDelement»

+ init: TranslationKeyLiteral [0..1]

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:SimpleType

Figure 71 — Data model view: i18n data types

12.2.3 Semantics

12.2.3.1 General

The data types in the OTX i18n extension are derived from otx:SimpleType.

12.2.3.2 TranslationKey

A TranslationKey is a reference to a unique string message which can be internationalized (e.g. by

corresponding entries in a thesaurus database). The concept used in OTX is similar to the concept used in
many programming languages, where all messages that must be shown to the user are externalized and
referenced by keys.

The actual retrieval procedure is defined by the runtime system.

TranslationKey is an otx:SimpleType. Its members have the following semantics:

 <init> : TranslationKeyLiteral [0..1]

This optional element stands for the initialisation of the identifier at declaration time. Initialisation is done
by a hard-coded text ID in the OTX document.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

138 © ISO 2012 – All rights reserved

 value : xsd:string [1]

This attribute contais the text ID value.

IMPORTANT — If the TranslationKey declaration is not explicitly initialized (omitted <init>

element), the default value shall be the empty string.

12.3 Exceptions

12.3.1 Overview

All elements referenced in this clause are derived from the OTX Core Exception type as defined by Part 2 of

ISO 13209. They represent the full set of exceptions added by the OTX i18n extension.

12.3.2 Syntax

The syntax of all OTX i18n exception type declarations is shown in Figure 72.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

«XSDcomplexType»

i18nException

«XSDcomplexType»

UnsupportedLocaleException

Figure 72 — Data model view: i18n exceptions

12.3.3 Semantics

12.3.3.1 General

Since all OTX i18n exception types are implicit exceptions whithout initialisation parts, they can not be
declared constant.

12.3.3.2 i18nException

The i18nException is the super class for all exceptions in the i18n extension. An i18nException shall be

used in case the more specific exception types described in the remainder of this section do not apply to the
problem at hand.

12.3.3.3 UnsupportedLocaleException

The UnsupportedLocaleException shall be thrown when a locale related operation fails because the

runtime system does not support the target locale.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 139

12.4 Variable access

12.4.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the i18n extension.

12.4.2 Syntax

Figure 73 shows the syntax of the i18n extension's variable access types.

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

TranslationKeyVariable

«XSDcomplexType»

otx:ExceptionVariable

Figure 73 — Data model view: i18n variable access types

12.4.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for further
details.

12.5 Terms

12.5.1 Overview

All of the i18n terms shown in Figure 74 extend the otx:Term extension interface (directly and indirectly), as

defined by Part 2 of ISO 13209.

The i18n extension introduces the abstract type TranslationKeyTerm which serves as the base type for all

i18n terms yielding TranslationKey values. TranslationKeyTerm itself is based on the abstract OTX

Core term otx:StringTerm. Therefore, a TranslationKeyTerm can be applied in any place where an

otx:StringTerm is required.

Other i18n terms extend the abstract OTX Core terms otx:ListTerm, otx:StringTerm and

otx:BooleanTerm, furthermore quant:QuantityTerm is used for the localisation of quantities (please

refer to Clause 17).

The i18n terms are assigned to the following categories:

 Locale settings. Terms in this category are related to locale settings of diagnostic applications.

 Translation related. This category is for terms which represent diverse translation functionality.

 Quantity related. These are terms used for localizing quantities.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

140 © ISO 2012 – All rights reserved

Figure 74 — Data model view: i18n term categories

12.5.2 Locale settings related terms

12.5.2.1 Description

The terms in this category are designed for retrieving locale settings of diagnostic applications.

12.5.2.2 Syntax

Figure 75 shows the syntax of all locale setting related terms of the i18n extension.

otx:StringTerm

«XSDcomplexType»

GetCurrentLocale

otx:ListTerm

«XSDcomplexType»

GetAllLocales

Figure 75 — Data model view: Locale setting related terms

12.5.2.3 Semantics

12.5.2.3.1 GetCurrentLocale

The GetCurrentLocale term shall retrieve the current locale code in use by the runtime system. The
returned locale code shall be a combination of the ISO 639-1 two-letter language code followed by a hyphen,
and then the uppercase two letter country code as defined by ISO 3166. Optionally, a variant code may be
added in case of additional customizations (headed by another hyphen). The variant codes are not defined by
this standard.

If no current locale is selected, the system shall return the default locale.

EXAMPLE Following the rules above, a returned locale shall be formed like e.g. "de-CH-1901" (for the variant of
German orthography dating from the 1901 reforms, as seen in Switzerland).

GetCurrentLocale is an otx:StringTerm. It has no members.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 141

12.5.2.3.2 GetAllLocales

The term GetAllLocales should retrieve all available locales from the runtime system that are supported

and for which translations are available.

The fact that a runtime system returns a locale does not guarantee that all translations and units are available.
Rather, this method returns the locales that can be used, regardless of data availability. It is however
recommended that runtime systems consult their translation data store before returning the list of locales, so
the results should be close to the actual available data.

The returned value shall be a list of strings using the same locale format as specified for the
GetCurrentLocale term (see above).

This term allows querying some of the capabilities of the underlying runtime system. It is useful information e.g.
for the TranslateToLocale term, as it is known before hand what can be used as valid locale input.

GetAllLocales is an otx:ListTerm without any further members.

12.5.3 Translation related terms

12.5.3.1 Description

The terms in this category are designed for managing, translating and comparing TranslationKey values.

12.5.3.2 Syntax

Figure 76 shows the syntax of all translation related terms of the i18n extension.

TranslationKeyTerm

«XSDcomplexType»

TranslationKeyValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

TranslationKeyTerm

«XSDcomplexType»

TranslationKeyLiteral

«XSDattribute»

+ value: xsd:string

TranslationKeyTerm

«XSDcomplexType»

CreateTranslationKey

«XSDelement»

+ textId: otx:StringTerm

otx:StringTerm

«XSDcomplexType»

Translate

«XSDelement»

+ translationKey: TranslationKeyTerm

+ arguments: TranslationArguments [0..1]

otx:StringTerm

«XSDcomplexType»

TranslateToLocale

«XSDelement»

+ locale: otx:StringTerm

+ translationKey: TranslationKeyTerm

+ arguments: TranslationArguments [0..1]

otx:BooleanTerm

«XSDcomplexType»

CompareUntranslatedString

«XSDelement»

+ translationKey: TranslationKeyTerm

+ arguments: TranslationArguments [0..1]

+ untranslatedString: otx:StringTerm

«XSDcomplexType»

TranslationArguments

+ arg: otx:Term [1..*]

Figure 76 — Data model view: Translation related terms

12.5.3.3 Semantics

12.5.3.3.1 TranslationKeyTerm

The abstract type TranslationKeyTerm is an otx:StingTerm. It serves as a base for all concrete terms

which return a TranslationKey. It has no special members.

IMPORTANT — If the OTX Core conversion term otx:ToString is applied to a TranslationKey, the

internal text ID string value contained in the TranslationKey shall be returned.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

142 © ISO 2012 – All rights reserved

12.5.3.3.2 TranslationKeyValue

This term returns the TranslationKey stored in a TranslationKey variable. For more information on

value-terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to

Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

12.5.3.3.3 TranslationKeyLiteral

This term shall be used to create a TranslationKey data object based on a hard-coded text ID. The text ID

is a reference to an external thesaurus system. It is assumed that the runtime system contains a data storage
that knows how to create a TranslationKey data based on the literal.

NOTE The creation of the object should always work, as the data should not be loaded from the runtime system

TranslationKeyLiteral is a TranslationKeyTerm. Its members have the following semantics:

 value : xsd:string [1]

The text ID represents a simple string that is used by the runtime system as a reference to its internal
storage of localized string translations. The exact usage and translation is not defined in the standard.

12.5.3.3.4 CreateTranslationKey

The CreateTranslationKey term creates a TranslationKey out of a given string. The string is used as

the text ID that will be used to create the TranslationKey.

This term allows dynamically creating translation keys as a result of, for example, accessing specific parts of
ODX data sources.

CreateTranslationKey is a TranslationKeyTerm. Its members have the following semantics:

 <textId> : otx:StringTerm [1]

The string term value provided that will be used to generate a translation key.

12.5.3.3.5 Translate

The Translate term accepts a TranslationKey which may be supplemented by additional translation

arguments for message parameter substitution (if required by the associated thesaurus entry). It shall return a
localized string in the current user language.

It is assumed that the runtime system contains a user or system selected locale which will be used to
automatically perform the translation.

Recommendation: If no translation is available in the current locale, the runtime system may use a fall back
strategy that consists on consulting a family that share a common base language. Otherwise the default
language may be used. This fallback strategy is out of scope of the specification.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 143

In case that the translation is unknown by the runtime system, the translation key itself shall be returned as
the translation. This is to avoid error conditions in the system due to incorrect translations.

IMPORTANT — It is not in the scope of this standard to specify or expect a certain kind of thesaurus
database structure. However, concerning compound thesaurus entries (messages with parameters),
thesaurus entries should be formed in a similar way like the string patterns specified by the Java

class MessageFormat (java.text.MessageFormat). This allows identifying parameters in the

pattern unambiguously, e.g. the parameters {0} and {1} in "The resistance of injector {0}

is {1}". This provided, Translate shall function like MessageFormat.format(String pattern,

Object[] arguments), where the arguments substitute the message parameters according to their

position in the arguments array.

Translate is an otx:StringTerm. Its members have the following semantics:

 <translationKey> : TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search its internal database for a
translation. Once a translation is found and parameter substitution has taken place, the resulting
message string shall be returned.

 <arguments> : TranslationArguments [0..1]

This optional element represents a list of arguments for the translation. The arguments shall be evaluated
first before being inserted into the translated message. The order of arguments is important; the first
argument shall substitute message parameter {0}, the second parameter {1}, and so on.

 <arg> : Term [1..*]

Represents an argument which will be substituted in the resulting messages at the corresponding
parameter's position. Non-String arguments shall be converted automatically to String prior to

parameter substitution.

EXAMPLE Consider a thesaurus entry in English ID1: "The resistance of injector {0} is {1}" or

similar, in German ID1: "Der Widerstand des Injektors {0} ist {1}". Also consider a quantity Q which

represents 10 Ohm. If the current locale is English, applying Translate(ID1, [3, Q]) will produce the English output

"The resistance of injector 2 is 10 Ohm." or likewise, if the current locale is German, the output "Der

Widerstand des Injektors 2 ist 10 Ohm.".

12.5.3.3.6 TranslateToLocale

The TranslateToLocale term shall perform a similar function to the Translate term, but instead of using

the current locale it shall use a target locale that is given as an argument to the call, formed after the rules of
the ISO 639-1 standard.

NOTE Using this term forces a translation to a specific language. This might be desirable for specific situations such
as for feedback send to a support desk.

TranslateToLocale is an otx:StringTerm. Its members have the following semantics:

 <locale> : otx:StringTerm [1]

The translation process shall use this string as the target locale for the translation. The locale is expected
to be formed after the rules of the ISO 639-1 standard, as explained for the GetCurrentLocale term

(see 12.5.2.3.1).

 <translationKey> : TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search its internal database for a
translation. Once a translation is found and parameter substitution has taken place, the resulting
message string shall be returned.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

144 © ISO 2012 – All rights reserved

 <arguments> : TranslationArguments [0..1]

This optional element represents a list of arguments for the translation. The arguments shall be evaluated
first before being inserted into the translated message. The order of arguments is important; the first
argument shall substitute message parameter {0}, the second parameter {1}, and so on.

 <arg> : Term [1..*]

Represents an argument which will be substituted in the resulting messages at the corresponding
parameter's position. Non-String arguments shall be converted automatically to String prior to

parameter substitution.

Throws:

 UnsupportedLocaleException

If the runtime system does not support the given locale.

12.5.3.3.7 CompareUntranslatedString

The CompareUntranslatedString term compares whether an untranslated string equals at least one of

the translations of a given translation key. While searching for a match, each available locale shall be
considered by the runtime. The term shall return true if and only if a matching translation can be found.

EXAMPLE The CompareUntranslatedString term is useful in cases where e.g. an ECU responds in the form of

a hard-coded string, e.g. "OFFEN" (German for "OPEN"). CompareUntranslatedString may now be used by an OTX

author to find out if whether this is a translation for a given translation key and use that information for further purposes.
This is also important at authoring time since OTX editor tools might show the key translation in the current locale of the

editor, thus making comparisons like myOpenCloseResponseGerman=="OPEN" possible/visible, and therefore localizing
the editor tool.

CompareUntranslatedString is an otx:BooleanTerm. Its members have the following semantics:

 <translationKey> : TranslationKeyTerm [1]

This element represents a unique key that the system shall use to search its internal database for a
matching translation which matches the untranslated string. If message parameters exist, argument
substitution has to be performed first, prior to comparison.

 <arguments> : TranslationArguments [0..1]

This optional element represents a list of arguments for the translation (cf. Translate term). The

arguments shall be evaluated first before being inserted into the translated message. The order of
arguments is important; the first argument shall substitute message parameter {0}, the second

parameter {1}, and so on.

 <arg> : Term [1..*]

Represents an argument which will be substituted in the resulting messages at the corresponding
parameter's position. Non-String arguments shall be converted automatically to String prior to

parameter substitution.

 <untranslatedString> : otx:StringTerm [1]

Represents the string which shall be tested for a match.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 145

12.5.4 Quantity related terms

12.5.4.1 Description

The terms in this category are designed for managing quantities with respect to locale settings.

12.5.4.2 Syntax

Figure 77 shows the syntax of all quantity related terms of the i18n extension.

quant:QuantityTerm

«XSDcomplexType»

LocalizeQuantity

«XSDelement»

+ quantity: quant:QuantityTerm

quant:QuantityTerm

«XSDcomplexType»

LocalizeQuantityToUnitGroup

«XSDelement»

+ quantity: quant:QuantityTerm

+ equivalentUnitGroup: UnitGroupDefinition

«XSDcomplexType»

UnitGroupDefinition

«XSDany»

+ XLink attributes

Figure 77 — Data model view: Quantity related terms

12.5.4.3 Semantics

12.5.4.3.1 Referring to unit group definitions

The LocalizeQuantityToUnitGroup term uses the UnitGroup type in order to refer to unit group

definitions located in an external resource. The OTX i18n extension reuses the unit definition data model
specified by the ODX standard (see UNIT-SPEC data type in 7.3.6.7 in ISO 22901-1:2008). Concerning

references from OTX to UNIT-SPEC entries, the rules below shall apply.

IMPORTANT — Any elements of the OTX i18n terms that work with unit groups shall link to required
ODX unit group definitions by using simple XLinks only, as specified by [W3C XLink]. This means that

the xlink:type attribute shall always be set to "simple". Furthermore, the xlink:href attribute

should follow the pattern "{URI}#{SHORT-NAME}", where {URI} represents the UNIT-SPEC resource

and {SHORT-NAME} identifies the unit group definition by its ODX SHORT-NAME property. The pattern

corresponds to a shorthand notation XPointer, as specified by Clause 3.2 in [W3C XPtr]. However, in
case the shorthand notation is not sufficient to address unit group definitions, the full XPointer

notation may be used (e.g. when one ODX-document contains more than one UNIT-SPEC container).

EXAMPLE For linking to the unit definition for "EU_Metric" given in the exemplary UNIT-SPEC in 17.1, the

element has the form of <unit xlink:type="simple" xlink:href="unit-spec.xml#EU_Metric]"/>.

This is related to the OTX Quantities extension – please refer to Clause 17 for further details.

12.5.4.3.2 LocalizeQuantity

The LocalizeQuantity term is used to create a localized version of a given Quantity.

A Quantity contains a value and display unit information. However, the display unit might be unsuitable for

the current locale (e.g. when a distance-type quantity with a display unit of miles should be displayed to a user
who is used to dealing with metric units). Because OTX test sequences should remain agnostic of localisation
details, it is necessary to express conversions in such a way that both the display unit and the value of a
Quantity can be localized in a consistent way.

NOTE The conversion must take into account factors such as the unit groups, known units and physical dimensions

known to the system. From the point of view of the OTX sequence, quantities are just a data containers and the whole
conversion process happens in the background. For naïve implementations, it is acceptable that the returned value is

exactly the same as the given value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

146 © ISO 2012 – All rights reserved

Localization in the LocalizeQuantity term shall always be performed using the current locale.

LocalizeQuantity is a quant:QuantityTerm. Its members have the following semantics:

 <quantity> : quant:QuantityTerm [1]

This represents the Quantity that shall be localized to the current locale.

Throws:

 quant:InvalidConversionException

If the Quantity can not be converted for any reason.

12.5.4.3.3 LocalizeQuantityToUnitGroup

The LocalizeQuantityToUnitGroup term shall create a version of a Quantity localized to a specific

unit group.

There are two different types of unit groups: country and equivalent unit groups. This term shall create a new
Quantity containing the display unit given by the new group that is equivalent to the display unit of the

original Quantity.

NOTE It is assumed that the runtime system contains a list of known and valid equivalent unit groups. In case that

the runtime system decides to implement a naïve solution, it is valid to return the same quantity as the one that has been
received.

LocalizeQuantityToUnitGroup is a quant:QuantityTerm. Its members have the following semantics:

 <quantity> : quant:QuantityTerm [1]

This represents the quantity that shall be localized using the given country unit group name.

 <equivalentUnitGroup> : UnitGroupDefinition [1]

Represents the UNIT-GROUP definition that shall be used as the target for unit localization.

The element allows all attributes from the namespace "http://www.w3.org/1999/xlink", as

defined by the W3C XLink recommendation [W3C XLink]. For the usage of the attributes, the rules given
in 12.5.4.3.1 shall apply.

Throws:

 quant:UnknownUnitException

if the target unit group is unknown by the runtime system

 quant:InvalidConversionException

if the conversion is physically not possible (i.e. conversion from a length to a voltage measurement)

Associated checker rules:

 Quantities_Chk001 – correct unit linking

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 147

13 OTX Job extension

13.1 Introduction

The OTX Job extension is designed for supporting access to the MCD 3D Job API. This use case is highly
specific to OTX sequences that are used for replacing Java Job code inside an MVCI system [ISO 22900]. A
MVCI Java Job can be understood as a macro sequence providing low-level diagnostic business logic, e.g. for
implementing security access challenge-response mechanisms. From the perspective of a tester application
(on top of the MVCI API) a Java Job looks and behaves like a normal diagnostic service – it is identified by a
name and has a set of request and response parameters. From the perspective of a Java Job this means that
it is being called with a set of input parameters, and has to create and deliver a result structure back to its
caller. This implies the following requirements for OTX sequences that take the place of a Java Job:

a) It needs a well defined entry point

b) It has to be able to create and parameterize result and response structures (as opposed to a tester
application that only has to parameterize request structures)

c) It has to communicate results (and other information) to it's caller

These requirements are addressed by the OTX Job extension. As they are highly specific to the MVCI
standard, in the following actions and terms sections directly refer to the MVCI standard documentation where
applicable.

13.2 Exceptions

13.2.1 Overview

All elements referenced in this clause are derived from the OTX Core Exception type as defined by Part 2 of

ISO 13209. They represent the full set of exceptions added by the OTX Job extension.

13.2.2 Syntax

The syntax of all exception types defined for the OTX Job extension is shown in Figure 78.

«XSDcomplexType»

JobException

«XSDcomplexType»

Inv alidParameterizationException

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

 Figure 78 — Data model view: Job exceptions

13.2.3 Semantics

13.2.3.1 General

Since all OTX Job exception types are implicit exceptions whithout initialisation parts, they can not be
declared constant.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

148 © ISO 2012 – All rights reserved

13.2.3.2 JobException

The JobException is the super class for all exceptions in the Job extension. A JobException shall be

used in case the more specific exception types described in the remainder of this section do not apply to the
problem at hand.

13.2.3.3 InvalidParameterizationException

The InvalidParameterizationException shall be thrown when the type of one or more response

paramters created by a Job OTX sequence do not match with the response database template of the
underlying communication system.

For example when the OTX Job tries to add a response parameter A of type Integer where the response
structure of the Job demands a parameter A of type String, the OTX runtime shall throw an
InvalidParameterizationException.

13.3 Actions

13.3.1 Overview

The OTX Job extension introduces the actions SendFinalResult, SendIntermediateResult,

SetJobInfo, SetProgressInfo, AddElement, AddBranchByName, AddBranchByIndex,

AddBranchByValud and AddEnvDataByDtc as specified in the following.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 149

13.3.2 Syntax

Figure 79 shows the syntax of all actions in the OTX Job extension.

otx:ActionRealisation

«XSDcomplexType»

SendFinalResult

«XSDelement»

+ result: diag:ResultTerm

otx:ActionRealisation

«XSDcomplexType»

SendIntermediateResult

«XSDelement»

+ result: diag:ResultTerm

otx:ActionRealisation

«XSDcomplexType»

SetJobInfo

«XSDelement»

+ info: otx:StringTerm

otx:ActionRealisation

«XSDcomplexType»

SetProgressInfo

«XSDelement»

+ progress: otx:NumericTerm

otx:ActionRealisation

«XSDcomplexType»

AddBranchByIndex

«XSDelement»

+ parameterContainer: diag:ParameterContainerTerm

+ content: diag:ParameterContainerTerm [0..1]

+ index: otx:NumericTerm

otx:ActionRealisation

«XSDcomplexType»

AddBranchByName

«XSDelement»

+ parameterContainer: diag:ParameterContainerTerm

+ content: diag:ParameterContainerTerm [0..1]

+ shortName: otx:StringTerm

otx:ActionRealisation

«XSDcomplexType»

AddBranchByValue

«XSDelement»

+ parameterContainer: diag:ParameterContainerTerm

+ value: quant:QuantityTerm

otx:ActionRealisation

«XSDcomplexType»

AddEnv DataByDtc

«XSDelement»

+ parameterContainer: diag:ParameterContainerTerm

+ dtc: otx:NumericTerm

otx:ActionRealisation

«XSDcomplexType»

AddElement

«XSDelement»

+ parameterContainer: diag:ParameterContainerTerm

+ content: diag:ParameterContainerTerm [0..1]

Figure 79 — Data model view: Job actions

13.3.3 Semantics

13.3.3.1 SendFinalResult

SendFinalResult shall send the last result before the job exits to the instance which started the job. Please

also refer to MVCI API documentation for method MCDJobApi::sendFinalResult.

The members of SendFinalResult have the following semantics:

 <result> : diag:ResultTerm [1]

This represents the result which shall be sent to the tester. The term diag:ResultTerm is specified in

the DiagCom extension (please refer to Clause 6).

Throws:

 otx:TypeMismatchException

If the result structure to be sent does not match with the result template defined for this Job by the
underlying communication kernel.

 diag:InvalidStateException

If a final result has already been sent previously.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

150 © ISO 2012 – All rights reserved

13.3.3.2 SendIntermediateResult

SendIntermediateResult shall send the value of a diag:ResultTerm as an intermediate result to the

instance which started the job. Please also refer to the MVCI API documentation for the method
MCDJobApi::sendIntermediateResult.

 <result> : diag:ResultTerm [1]

This represents the result which shall be sent to the tester as an intermediate result. The term
diag:ResultTerm is specified in the DiagCom extension (please refer to Clause 6).

Throws:

 otx:TypeMismatchException

If the result structure to be sent does not match with the result template defined for this Job by the
underlying communication kernel

 diag:InvalidStateException

If a final result has been sent previously (no more intermediate results allowed).

13.3.3.3 SetJobInfo

SetJobInfo shall set a job information which is sent to the calling tester. Please also refer to MVCI API

documentation for method MCDJobApi::setJobInfo.

The members of SetJobInfo have the following semantics:

 <info> : otx:StringTerm [1]

Represents a string which will be sent to the tester as job information.

Throws:

 diag:InvalidStateException

If a final result has been sent previously (no more job info messages allowed).

13.3.3.4 SetProgressInfo

SetProgressInfo shall send progress information in the form of an integer value to the tester. The value

represents a percentage to completion and should be a number between 0 and 100. In case the provided
value is smaller than 0, the OTX runtime shall set the value to 0. In case the provided value is higher than 100,
the OTX runtime shall set the value to 100. Please also refer to MVCI API documentation for method
MCDJobApi::setProgress.

The members of SetProgressInfo have the following semantics:

 <info> : otx:NumericTerm [1]

Represents the progress information as percentage to completion (0..100). Float values shall be

truncated.

Throws:

 diag:InvalidStateException

If a final result has been sent previously (no more progress info messages allowed).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 151

13.3.3.5 AddElement

AddElement is used to add a parameter or parameter structure to a point in a response structure. Please

also refer to MVCI API documentation for method MCDResponseParameters::addElement (in case that

no <content> element is provided) and MCDResponseParameters::addElementWithContent (in

case a <content> element is provided).

The members of AddElement have the following semantics:

 <parameterContainer> : diag:ParameterContainerTerm [1]

The parameter where new element(s) shall be added

 <content> : diag:ParameterContainerTerm [0..1]

The element(s) to be added to the ParameterContainer. If this element is omitted, the MVCI method

MCDResponseParameter::addElement should be called. Otherwise the MVCI method

MCDResponseParameter::addElementWithContent should be called.

Throws:

 otx:TypeMismatchException

If the element <content> to be added does not match the result template defined for this Job by the

underlying communication kernel.

13.3.3.6 AddBranchByName

AddBranchByName is used to add a set of response parameters to the response structure according to a

multiplexer database definition given by its short name. Please also refer to MVCI API documentation for
method MCDResponseParameters::addMuxBranch (in case no <content> element is provided) and

MCDResponseParameters::addMuxBranchWithContent (in case a <content> element is provided).

The members of AddBranchByName have the following semantics:

 <parameterContainer> : diag:ParameterContainerTerm [1]

The parameter where new element(s) shall be added.

 <content> : diag:ParameterContainerTerm [0..1]

The element(s) to be placed in the newly created multiplexer branch. If this element is omitted, the MVCI
method MCDResponseParameter::addMuxBranch should be called. Otherwise the MVCI

method ,,MCDResponseParameter::addMuxBranchWithContent should be called.

 <shortName> : otx:StringTerm [1]

The name of the multiplexer branch to be added.

Throws:

 otx:TypeMismatchException

If the element <content> to be added does not match the result template defined for this Job by the

underlying communication kernel.

 InvalidParameterizationException

If the <shortName> of the branch to be added does not match the result template defined for this Job by

the underlying communication kernel.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

152 © ISO 2012 – All rights reserved

13.3.3.7 AddBranchByIndex

AddBranchByIndex is used to add a set of response parameters to the response structure according to a

multiplexer database definition given by its index. Please also refer to MVCI API documentation for method
MCDResponseParameters::addMuxBranchByIndex (in case no <content> element is provided) and

MCDResponseParameters::addMuxBranchByIndexWithContent (if <content> element is provided).

The members of AddBranchByIndex have the following semantics:

 <parameterContainer> : diag:ParameterContainerTerm [1]

The parameter where new element(s) shall be added.

 <content> : diag:ParameterContainerTerm [0..1]

The element(s) to be placed in the newly created multiplexer branch. If this element is omitted, the MVCI
method MCDResponseParameter::addMuxBranchByIndex should be called. Otherwise the MVCI

method ,,MCDResponseParameter::addMuxBranchByIndexWithContent should be called.

 <index> : otx:NumericTerm [1]

The index of the multiplexer branch to be added. Float values shall be truncated.

Throws:

 otx:TypeMismatchException

If the element <content> to be added does not match the result template defined for this Job by the

underlying communication kernel.

 otx:OutOfBoundsException

If the <index> of the branch to be added does not exist in the result template defined for this Job by the

underlying communication kernel.

13.3.3.8 AddBranchByValue

AddBranchByIndex is used to add a set of response parameters to the response structure according to a

multiplexer parameter value. Please also refer to MVCI API documentation for method
MCDResponseParameters::addMuxBranchByMuxValue.

The members of AddBranchByValue have the following semantics:

 <parameterContainer> : diag:ParameterContainerTerm [1]

This element represents the parameter where new element(s) shall be added.

 <value> : quant:QuantityTerm [1]

The value of the multiplexer parameter of the branch to be added.

Throws:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 153

 InvalidParameterizationException

If the <value> of the multiplexer parameter to be added does not match the result template defined for

this Job by the underlying communication kernel.

13.3.3.9 AddEnvDataByDtc

AddEnvDataByDtc is used to add an environment data parameter structure to the response structure

according to the value of a DTC. Please also refer to MVCI API documentation for method
MCDResponseParameters::addEnvDataByDTC.

The members of AddEnvDataByDtc have the following semantics:

 <parameterContainer> : diag:ParameterContainerTerm [1]

The parameter where new element(s) shall be added.

 <dtc> : otx:NumericTerm [1]

The value of the DTC for which environment data structures shall be added. Float values shall be

truncated.

Throws:

 InvalidParameterizationException

If the <dtc> of the environment data to be added is not recognized by the underlying communication

kernel.

13.3.4 Example

The example below shows uses of the actions defined for the OTX Job extension.

EXAMPLE Sample of OTX-file "JobActionsExample.otx"

<action id="a1">

 <specification>Send the final result ()stored in variable jobResult</specification>

 <realisation xsi:type="job:SendFinalResult">

 <job:result xsi:type="diag:ResultValue" valueOf="jobResult"/>

 </realisation>

</action>

<action id="a2">

 <specification>Send the intermediate result which is in variable jobResult</specification>

 <realisation xsi:type="job:SendIntermediateResult">

 <job:result xsi:type="diag:ResultValue" valueOf="jobResult"/>

 </realisation>

</action>

<action id="a3">

 <specification>Set the job information to "PENDING"</specification>

 <realisation xsi:type="job:SetJobInfo">

 <job:info xsi:type="StringLiteral" value="PENDING"/>

 </realisation>

</action>

<action id="a4">

 <specification>Set the progress to 50%</specification>

 <realisation xsi:type="job:SetProgressInfo">

 <job:progress xsi:type="IntegerLiteral" value="50"/>

 </realisation>

</action>

13.4 Terms

13.4.1 Overview

The terms introduced by the OTX Job extension are specified in the following.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

154 © ISO 2012 – All rights reserved

13.4.2 Syntax

Figure 80 shows the syntax of all terms in the OTX Job extension.

diag:ResultTerm

«XSDcomplexType»

CreateResult

«XSDattribute»

+ resultType: ResultTypes [0..1]

+ severity: SeverityTypes [0..1]

+ errorCode: xsd:int [0..1]

+ vendorCode: xsd:int [0..1]

«XSDelement»

+ diagService: diag:DiagServiceValue

+ codeDescription: otx:StringTerm [0..1]

+ vendorCodeDescription: otx:StringTerm [0..1]

diag:ResponseTerm

«XSDcomplexType»

CreateResponse

«XSDattribute»

+ responseState: ResponseStates [0..1]

«XSDelement»

+ result: diag:ResultTerm

xsd:string

«enumeration»

ResponseStates

 POSITIVE

 NEGATIVE

xsd:string

«enumeration»

ResultTypes

 REQUEST

 REQUEST_AND_RESPONSE

 RESPONSE

otx:StringTerm

«XSDcomplexType»

GetJobInfo

«XSDelement»

+ diagJob: diag:DiagServiceValue

otx:IntegerTerm

«XSDcomplexType»

GetJobProgress

«XSDelement»

+ diagJob: diag:DiagServiceValue

xsd:string

«enumeration»

Sev erityTypes

 ERROR

 FATAL_ERROR

 MESSAGE

 TERMINATE

 WARNING

Figure 80 — Data model view: Job terms

13.4.3 Semantics

13.4.3.1 CreateResponse

CreateResponse creates a response inside a result object according to a given response state. Please also

refer to MVCI API documentation for method MCDResponses::add.

CreateResponse is a diag:ResponseTerm. Its members have the following semantics:

 responseState : ResponseStates={POSITIVE|NEGATIVE} [0..1]

This optional attribute determines whether a positive or negative response should be created. Allowed
values are defined by the ResponseState enumeration. If the attribute is not set, the default value

POSITIVE shall apply implicitly.

 <result> : diag:ResultTerm [1]

The result the new response shall be added to. The term diag:ResultTerm is specified in the DiagCom

extension (please refer to Clause 7).

Throws:

 InvalidParameterizationException

If the <responseState> of the respsonse to be added is invalid.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 155

13.4.3.2 CreateResult

CreateResult creates a Result object that can be returned to the called of the OTX job sequence. Please

also refer to MVCI API documentation for method MCDJob::createResult.

CreateResult is a diag:ResultTerm. Its members have the following semantics:

 resultType : ResultTypes={REQUEST|RESPONSE|REQUEST_AND_RESPONSE} [0..1]

The type of result which shall be created, allowed values are defined by the ResultTypes enumeration.

If the attribute is not set, the default value REQUEST_AND_RESPONSE shall apply implicitly.

 severity : SeverityTypes={ERROR|FATAL_ERROR|MESSAGE|TERMINATE|WARNING} [0..1]

A severity which shall be associated with the result (if applicable), allowed values are defined by the
ResultTypes enumeration. If the attribute is not set, the default value ERROR shall apply implicitly.

 errorCode : xsd:int [0..1]

An error code which shall be associated with the result (if applicable).

 vendorCode : xsd:int [0..1]

A vendor code which shall be associated with the result (if applicable).

 <diagService> : diag:DiagServiceValue [1]

Represents the DiagService on which the term operates and which the result shall be tailored to.

 <codeDescription> : otx:StringTerm [0..1]

A code description which shall be associated with the error code of the result (if applicable).

 <vendorCodeDescription> : otx:StringTerm [0..1]

A vendor code description to be associated with the vendor code of the result (if applicable).

Throws:

 InvalidParameterizationException

If the <resultType> or <severity> of the result to be added is invalid.

13.4.3.3 GetJobInfo

GetJobInfo retrieves information out of a DiagService object that encapsulates an OTX job. Please also

refer to MVCI API documentation for method MCDJob::getJobInfo.

GetJobInfo is an otx:StringTerm. Its members have the following semantics:

 <diagJob> : diag:DiagServiceValue [0..1]

This diagnostic service object representing a job, where job information should be retrieved.

13.4.3.4 GetJobProgress

GetJobProgress retrieves progress information out of a DiagService object that encapsulates an OTX job.

Please also refer to MVCI API documentation for method MCDJob::getProgress.

GetJobProgress is an otx:IntegerTerm Its members have the following semantics:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

156 © ISO 2012 – All rights reserved

 <diagJob> : diag:DiagServiceValue [0..1]

This diagnostic service object represents the job from which job progress information shall be retrieved.

13.4.4 Example

The example below shows uses of the terms defined for the OTX Job extension.

EXAMPLE Sample of OTX-file "JobTermsExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx name="JobTermsExample" package="org.iso.otx.examples" id="jobTermEx"

 version="1.0" timestamp="2012-03-18T14:40:10" xmlns="http://iso.org/OTX/1.0.0"

 xmlns:diag="http://iso.org/OTX/1.0.0/DiagCom"

 xmlns:job="http://iso.org/OTX/1.0.0/Job"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <imports>

 <import package="org.iso.otx.signatures" document="JobInterfaces" prefix="jobsig"/>

 </imports>

 <procedures>

 <procedure name="execute" implements="jobsig:SingleEcuJob" visibility="PUBLIC" id="p1">

 <specification>Demonstration of OTX Job extension capabilities </specification>

 <realisation>

 <parameters>

 <inParam name="comChannelHandle" id="ip1">

 <realisation><dataType xsi:type="diag:ComChannel"/></realisation>

 </inParam>

 <inParam name="jobHandle" id="ip2">

 <realisation><dataType xsi:type="diag:DiagService"/></realisation>

 </inParam>

 </parameters>

 <declarations>

 <variable name="jobResult" id="v1">

 <realisation><dataType xsi:type="diag:Result"/></realisation>

 </variable>

 <variable name="jobResponse" id="v2">

 <realisation><dataType xsi:type="diag:Response"/></realisation>

 </variable>

 </declarations>

 <flow>

 <!-- do something useful here -->

 <action id="createResult">

 <specification>Create a result</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ResultVariable" name="jobResult"/>

 <term xsi:type="job:CreateResult">

 <job:diagService xsi:type="diag:DiagServiceValue" valueOf="jobHandle"/>

 </term>

 </realisation>

 </action>

 <action id="createResponse">

 <specification>Create a response and set response state </specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ResponseVariable" name="jobResponse"/>

 <term xsi:type="job:CreateResponse" responseState="POSITIVE">

 <job:result xsi:type="diag:ResultValue" valueOf="jobResult"/>

 </term>

 </realisation>

 </action>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 157

 <action id="setParameterValue">

 <specification>Set response parameter value</specification>

 <realisation xsi:type="diag:SetParameterValue">

 <diag:parameter xsi:type="diag:GetParameterByPath">

 <diag:parameterContainer xsi:type="diag:ResponseValue" valueOf="jobResponse"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="ResponseParameterA"/>

 </diag:path>

 </diag:parameter>

 <diag:value xsi:type="IntegerLiteral" value="42"/>

 </realisation>

 </action>

 <action id="sendFinalResult">

 <specification>Send the result</specification>

 <realisation xsi:type="job:SendFinalResult">

 <job:result xsi:type="diag:ResultValue" valueOf="jobResult"/>

 </realisation>

 </action>

 </flow>

 </realisation>

 </procedure>

 </procedures>

</otx>

13.5 Standard signature definitions

13.5.1 General

The following specifies the standard signatures of the OTX Job extension. The signatures shall be part of
every OTX application implementing the Job extension. They can be used by authors for developing local
versions of single ecu jobs, flash jobs and security access jobs, following a uniform interface. By creating
procedures which implement these signatures, exchangeability is improved.

The signatures are all part of the document org.iso.otx.signatures.JobInterfaces. Please refer to

Annex D for the full XML specification (normative OTX instance document "JobInterfaces.otx").

13.5.2 SingleEcuJob

13.5.2.1 Description

The SingleEcuJob standard signature defines an interface for a job entry procedure which implements a so

called Single ECU Job according to ISO 22901 (ISO ODX).

13.5.2.2 Declaration

The declaration of the SingleEcuJob signature is shown below. The signature is contained in the normative

OTX instance document "JobInterfaces.otx" which is defined in Annex D.

<signature name="SingleEcuJob" id="sej">

 <specification>Declaration of a single job entry point</specification>

 <realisation xsi:type="ProcedureSignature">

 <parameters>

 <inParam name="comChannelHandle" id="sej_p1">

 <specification> Communication Channel from Tester Environment</specification>

 <realisation>

 <dataType xsi:type="diag:ComChannel"/>

 </realisation>

 </inParam>

 <inoutParam name="jobHandle" id="sej_p2">

 <specification> Job handle with parameters from outside </specification>

 <realisation>

 <dataType xsi:type="diag:DiagService"/>

 </realisation>

 </inoutParam>

 </parameters>

 </realisation>

</signature>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

158 © ISO 2012 – All rights reserved

13.5.2.3 Semantics

The parameters of the FlashJob standard signature have the following semantics:

 comChannelHandle : ComChannel [inParam]

This input parameter represents the communication channel on which the job shall operate.

 <jobHandle> : DiagService [inoutParam]

This input/output parameter represents the job handle which shall be used to store the input and output
parameters of the job.

13.5.3 FlashJob

13.5.3.1 Description

The FlashJob standard signature defines an interface for a job which shall be used by a diagnostic

application for updating an ECU's flash memory.

13.5.3.2 Declaration

The declaration of the FlashJob signature is shown below. The signature is contained in the normative OTX

instance document "JobInterfaces.otx" which is defined in Annex D.

<signature name="FlashJob" id="fj">

 <specification>Declaration of a flash job entry point</specification>

 <realisation xsi:type="ProcedureSignature">

 <parameters>

 <inParam name="comChannelHandle" id="fj_p1">

 <specification> Communication Channel from Tester Environment</specification>

 <realisation>

 <dataType xsi:type="diag:ComChannel"/>

 </realisation>

 </inParam>

 <inParam name="Session" id="fj_p2">

 <specification>Session variable from Tester</specification>

 <realisation>

 <dataType xsi:type="flash:FlashSession"/>

 </realisation>

 </inParam>

 <inoutParam name="jobHandle" id="fj_p3">

 <specification> Job handle with parameters from outside </specification>

 <realisation>

 <dataType xsi:type="diag:DiagService"/>

 </realisation>

 </inoutParam>

 </parameters>

 </realisation>

</signature>

13.5.3.3 Semantics

The parameters of the FlashJob standard signature have the following semantics:

 comChannelHandle : ComChannel [inParam]

This input parameter represents the communication channel on which the job shall operate.

 jobHandle : DiagService [inoutParam]

This input/output parameter represents the job handle (a DiagService object) which shall be used to

store the input and output parameters of the job.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 159

 sessionHandle : FlashSession [inParam]

This input Parameter represents the FlashSession on which the job shall operate.

13.5.4 SecurityAccessJob

13.5.4.1 Description

The SecurityAccessJob standard signature defines an interface which shall be used calculating an ECU's

security access.

13.5.4.2 Declaration

The declaration of the SecurityAccessJob signature is shown below. The signature is contained in the

normative OTX instance document "JobInterfaces.otx" which is defined in Annex D.

<signature name="SecurityAccessJob" id="saj">

 <specification>Declaration of a security access job entry point</specification>

 <realisation xsi:type="ProcedureSignature">

 <parameters>

 <inParam name="requestParameters" id="saj_p1">

 <realisation>

 <dataType xsi:type="diag:Request"/>

 </realisation>

 </inParam>

 <inParam name="comChannelHandle" id="saj_p2">

 <specification> Communication Channel from Tester Environment</specification>

 <realisation>

 <dataType xsi:type="diag:ComChannel"/>

 </realisation>

 </inParam>

 <inoutParam name="jobHandle" id="saj_p3">

 <specification> Job handle with parameters from outside </specification>

 <realisation>

 <dataType xsi:type="diag:DiagService"/>

 </realisation>

 </inoutParam>

 </parameters>

 </realisation>

</signature>

13.5.4.3 Semantics

The parameters of the SecurityAccessJob standard signature have the following semantics:

 comChannelHandle : ComChannel [inParam]

This input parameter represents the communication channel on which the job shall operate.

 jobHandle : DiagService [inoutParam]

This input/output parameter represents the job handle (a DiagService object) which shall be used to

store the input and output parameters of the job.

 requestParameters : Request [inParam]

This input parameter represents the Request which contains the information to calculate the security

access.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

160 © ISO 2012 – All rights reserved

14 OTX Logging extension

14.1 Introduction

The OTX Logging extension provides functionality which allows for explicitly writing log-messages to a
logging-resource.

Following the approach of the de-facto-standard log4j (which is a Java™-based logging framework), the
extension uses so called severity-levels which are associated to log-messages, and log-levels which can be
set in the logging framework. Depending on the currently set log-level and the severity-level of a log-message
fired by an OTX sequence, the message gets logged or is discarded. For that reason, a log-level represents a
certain threshold which must be exceeded by the severity-level of a log-message in order to be written into the
logging-resource.

The severity-levels for log-messages are shown in Table 5 (in decreasing order of severity).

Table 5 — Severity-levels

Severity Description

FATAL Severe errors that cause premature termination.

ERROR Other runtime errors or unexpected conditions.

WARN Other runtime situations that are undesirable or unexpected, but not necessarily "wrong".

INFO Interesting runtime events.

DEBUG Detailed information on the flow through the sequence.

TRACE Even more detailed information.

Available log-levels are shown in Table 6 (in increasing order of logging verbosity).

Table 6 — Log-levels

Thresold Description

OFF Nothing will be logged.

FATAL Messages with severity FATAL will be logged.

ERROR Messages with severity ERROR or above will be logged.

WARN Messages with severity WARN or above will be logged.

INFO Messages with severity INFO or above will be logged.

DEBUG Messages with severity DEBUG or above will be logged.

TRACE Messages with severity TRACE or above will be logged.

ALL All messages will be logged (this is the default setting).

OTX authors may control which kind of log-messages make it into the logfile and which not by simply setting
the log-level to the desired threshold value. For instance, if the current log-level is set to ERROR, a log-

message with a severity of FATAL passes the log-level threshold, whereas a log-message with a rather

uninteresting severity of TRACE will not pass the threshold.

NOTE The OTX Logging extension makes no assumptions nor does it define any rules concerning the resource into
which log-messages are written. It is entirely up to the specific OTX application whether the messages are written to a

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 161

text-file, a log-queue or a database etc. Also the extension does not define any actions for the handling of the log-resource

like e.g. clearing the log etc. OTX applications may provide specific functionality for such use cases.

14.2 Data types

14.2.1 Overview

The OTX Logging extension defines two data types. These are the enumerations LogLevel and

SeverityLevel.

14.2.2 Syntax

The syntax of the datatype declarations of the OTX Logging extension is shown in Figure 81.

«XSDcomplexType»

Sev erityLev el

«XSDelement»

+ init: SeverityLevelLiteral [0..1]

«XSDcomplexType»

LogLev el

«XSDelement»

+ init: LogLevelLiteral [0..1]

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:SimpleType

Figure 81 — Data model view: Logging data types

14.2.3 Semantics

14.2.3.1 General

The enumeration types in the OTX Logging extension are based on otx:SimpleType.

14.2.3.2 LogLevel

LogLevel is an enumeration type describing log thresholds used by the SetLogLevel action (cf. 14.4.3.1).

The allowed enumeration values are specified in Table 6.

IMPORTANT — LogLevel values may occur as operands of comparisons (cf. Part 2 of ISO 13209,

relational operations). For this case, the following order relation shall apply:

ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF.

IMPORTANT — When applying otx:ToString on a LogLevel value, the resulting string shall be the

name of the enumeration value, e.g. otx:ToString(TRACE)="TRACE". Furthermore, applying

otx:ToInteger shall return the index of the value in the LogLevels enumeration (smallest index is 0).

The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

LogLevel is an otx:SimpleType. Its members have the following semantics:

 <init> : LogLevelLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : LogLevels={ALL|TRACE|DEBUG|INFO|WARN|ERROR|FATAL|OFF} [1]

This attribute shall contain one of the values defined in the LogLevels enumeration.

IMPORTANT — If the LogLevel declaration is not explicitly initialized (omitted <init> element), the

default value shall be ALL.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

162 © ISO 2012 – All rights reserved

14.2.3.3 SeverityLevel

SeverityLevel is an enumeration type describing the severity of a log message written by a WriteLog

action (cf. 14.4.3.2). The allowed enumeration values are specified in Table 5.

IMPORTANT — SeverityLevel values may occur as operands of comparisons (cf. Part 2 of

ISO 13209, relational operations). For this case, the following order relation shall apply:

TRACE < DEBUG < INFO < WARN < ERROR < FATAL.

IMPORTANT — When applying otx:ToString on a SeverityLevel value, the resulting string shall

be the name of the enumeration value, e.g. otx:ToString(TRACE)="TRACE". Furthermore, applying

otx:ToInteger shall return the index of the value in the SeverityLevels enumeration (smallest

index is 0). The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

SeverityLevel is an otx:SimpleType. Its members have the following semantics:

 <init> : SeverityLevelLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : SeverityLevels={TRACE|DEBUG|INFO|WARN|ERROR|FATAL} [1]

This attribute shall contain one of the values defined in the SeverityLevels enumeration.

IMPORTANT — If the SeverityLevel declaration is not explicitly initialized (omitted <init> element),

the default value shall be TRACE.

14.3 Variable access

14.3.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the Logging extension.

14.3.2 Syntax

Figure 82 shows the syntax of the Logging extension's variable access types.

«XSDcomplexType»

Sev erityLev elVariable

«XSDcomplexType»

LogLev elVariable

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

Figure 82 — Data model view: Logging variable access types

14.3.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for details.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 163

14.4 Actions

14.4.1 Overview

There are two complementary action types defined for the OTX Logging extension: SetLogLevel for setting

the log-level and WriteLog for writing a log-message to a file. Both types extend the ActionRealisation

extension interface as defined by Part 2 of ISO 13209.

14.4.2 Syntax

Figure 83 shows the syntax of all actions in the OTX Logging extension.

otx:ActionRealisation

«XSDcomplexType»

WriteLog

«XSDelement»

+ level: SeverityLevelTerm

+ target: otx:StringTerm [0..1]

+ message: otx:StringTerm

otx:ActionRealisation

«XSDcomplexType»

SetLogLev el

«XSDelement»

+ level: LogLevelTerm

Figure 83 — Data model view: Logging actions

14.4.3 Semantics

14.4.3.1 SetLogLevel

As outlined in the introduction (see 14.1), the SetLogLevel action shall cause the OTX runtime system to set

the log-level threshold to a given value.

The members of SetLogLevel have the following semantics:

 <level> : LogLevelTerm [1]

This element represents the log-level which shall be set in the OTX runtime's logging framework (cf.
14.2.3.2 for LogLevel values).

14.4.3.2 WriteLog

As outlined in the introduction (see 14.1), the WriteLog action shall cause the OTX runtime system to write a

log-message into a logging-resource provided that the severity-level of that message is higher or equal than
the currently set log-level threshold. The particular logging-resource to which the log-message shall be written
may be identified by the optional <target> element. Otherwise (if no explicit target is given), the location of

the logging-resource depends on the specific runtime system settings.

The members of WriteLog have the following semantics:

 <level> : SeverityLevelTerm [1]

This element represents the severity-level of the log-message (cf. 14.2.3.3 for SeverityLevel values).

 <target> : otx:StringTerm [0..1]

The optional element shall be used for locating the resource to which the message shall be written. The
target should be defined by a URI. Other resource-location mechanisms may also be used.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

164 © ISO 2012 – All rights reserved

 <message> : otx:StringTerm [1]

This string value represents the log-message. The OTX runtime shall compare the severity-level of the
message to the current log-level after the rules given in Table 6. If the conditions for writing the message
hold, the log-message shall be appended to the logging-resource.

Throws:

 otx:InvalidReferenceException

If the log-resource given by the <target> element is not available or not accessible.

14.4.4 Example

The usage of SetLogLevel and WriteLog is shown below. First, the log-level is set to "ERROR", then two

log-messages with severity-level "INFO" resp. "FATAL" are triggered. The first message's severity does not

pass the log-level threshold, so only the latter message will be logged.

EXAMPLE Sample of OTX-file "LoggingExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx name="LoggingExample" package="org.iso.otx.examples" id="otx1"

 version="1.0" timestamp="2010-03-18T14:40:10"

 xmlns="http://iso.org/OTX/1.0.0"

 xmlns:log="http://iso.org/OTX/1.0.0/Logging"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://iso.org/OTX/1.0.0 Core/otx.xsd

 http://iso.org/OTX/1.0.0/Logging StandardInterface/otxIFD_Logging.xsd">

 <procedures>

 <procedure name="main" visibility="PUBLIC" id="p1">

 <specification>Demonstration of OTX Logging extension capabilities</specification>

 <realisation>

 <flow>

 <action id="a1">

 <specification>Set log-level to ERROR</specification>

 <realisation xsi:type="log:SetLogLevel">

 <log:level xsi:type="log:LogLevelLiteral" value="ERROR"/>

 </realisation>

 </action>

 <action id="a2">

 <specification>Trigger a INFO log-message</specification>

 <realisation xsi:type="log:WriteLog">

 <log:level xsi:type="log:SeverityLevelLiteral" value="INFO"/>

 <log:target xsi:type="StringLiteral" value="file:///c:/myLog.txt"/>

 <log:message xsi:type="StringLiteral" value="This will not be logged."/>

 </realisation>

 </action>

 <action id="a3">

 <specification>Trigger a FATAL log-message</specification>

 <realisation xsi:type="log:WriteLog">

 <log:level xsi:type="log:SeverityLevelLiteral" value="FATAL"/>

 <log:target xsi:type="StringLiteral" value="file:///c:/myLog.txt"/>

 <log:message xsi:type="StringLiteral" value="Houston, we have a problem."/>

 </realisation>

 </action>

 </flow>

 </realisation>

 </procedure>

 </procedures>

</otx>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 165

14.5 Terms

14.5.1 Overview

The terms of the OTX Logging extension are related to the handling of the enumerations LogLevel and

SeverityLevel (see 14.2).

14.5.2 Syntax

Figure 84 shows the syntax of all terms in the OTX Logging extension.

SeverityLevelTerm

«XSDcomplexType»

Sev erityLev elLiteral

«XSDattribute»

+ value: SeverityLevels

SeverityLevelTerm

«XSDcomplexType»

Sev erityLev elValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

xsd:string

«enumeration»

Sev erityLev els

 TRACE

 DEBUG

 INFO

 WARN

 ERROR

 FATAL

LogLevelTerm

«XSDcomplexType»

LogLev elLiteral

«XSDattribute»

+ value: LogLevels

LogLevelTerm

«XSDcomplexType»

LogLev elValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

xsd:string

«enumeration»

LogLev els

 ALL

 TRACE

 DEBUG

 INFO

 WARN

 ERROR

 FATAL

 OFF

Figure 84 — Data model view: Logging terms

14.5.3 Semantics

14.5.3.1 LogLevelTerm

The abstract type LogLevelTerm is an otx:SimpleTerm. It serves as a base for all concrete terms which

return a LogLevel value (see 14.2.3.2). It has no special members.

14.5.3.2 LogLevelValue

This term returns the LogLevel stored in a LogLevel variable. For more information on value-terms and the

syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

166 © ISO 2012 – All rights reserved

14.5.3.3 LogLevelLiteral

This term shall return a LogLevel value (see 14.2.3.2) from a hard-coded literal.

LogLevelLiteral is a LogLevelTerm. Its members have the following semantics:

 value : LogLevels={ALL|TRACE|DEBUG|INFO|WARN|ERROR|FATAL|OFF} [1]

This attribute shall contain one of the values defined in the LogLevels enumeration.

14.5.3.4 SeverityLevelTerm

The abstract type SeverityLevelTerm is an otx:SimpleTerm. It serves as a base for all concrete terms

which return a SeverityLevel value (see 14.2.3.3). It has no special members.

14.5.3.5 SeverityLevelValue

This term returns the SeverityLevel stored in a SeverityLevel variable. For more information on value-

terms and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)#

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

14.5.3.6 SeverityLevelLiteral

This term shall return a SeverityLevel value (see 14.2.3.3) from a hard-coded literal.

SeverityLevelLiteral is a SeverityLevelTerm. Its members have the following semantics:

 value : SeverityLevels={TRACE|DEBUG|INFO|WARN|ERROR|FATAL} [1]

This attribute shall contain one of the values defined in the SeverityLevels enumeration.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 167

15 OTX Math extension

15.1 Introduction

This OTX extension provides a collection of mathematical terms which are not covered by the OTX Core but
may be required for some use cases.

15.2 Terms

15.2.1 Overview

The OTX Math extension provides terms which OTX authors may use for trigonometric, logarithmic and
exponential calculations. Since all terms specified here return Float type values they are derived from the
otx:FloatTerm type as defined by Part 2 of ISO 13209.

15.2.2 Syntax

Figure 85 shows the syntax of all terms of the Math extension.

Figure 85 — Data model view: Math terms

15.2.3 Semantics

15.2.3.1 Power

The Power term shall be used for calculating the power of a given number using a given exponent.

Power is an otx:FloatTerm. Its members have the following semantics:

 <numeral> : otx:NumericTerm [1]

Represents the numeric value on which the power shall be calculated.

 <exponent> : otx:NumericTerm [1]

Represents the numeric value which shall serve as the exponent in the calculation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

168 © ISO 2012 – All rights reserved

IMPORTANT — Special cases concerning the <numeral> and <exponent> arguments shall be taken

into account (e.g. special Float values like 0, -0, INF, -INF and NaN as well as special argument

combinations). The reference implementation for these special cases is the Java method

java.lang.Math.pow(double a, double b). There shall be no deviation from this implementation.

15.2.3.2 Log

The Log term shall be used for calculating the logarithm of a given number to a given base.

Log is an otx:FloatTerm. Its members have the following semantics:

 <numeral> : otx:NumericTerm [1]

Represents the numeric value on which the logarithm shall be calculated. If the value is Integer, it shall

be automatically promoted to Float.

 <base> : otx:NumericTerm [1]

Represents the numeric value which shall serve as the logarithmic base of the calculation. If the value is
Integer, it shall be automatically promoted to Float.

IMPORTANT — Special cases concerning the <numeral> and <base> arguments shall be taken into

account (e.g. special Float values like 0, -0, INF, -INF and NaN as well as special argument

combinations). The reference implementation for these special cases is the Java method

java.lang.Math.log(double a) in combination with the Java /-operator (since java.Math only

provides the natural logarithm, the OTX Log(base,numeral) equals Java

log(numeral)/log(base)). There shall be no deviation from this implementation.

15.2.3.3 Ln

The Ln term shall be used for calculating the natural logarithm of a given number.

Ln is an otx:FloatTerm. Its members have the following semantics:

 <numeral> : otx:NumericTerm [1]

Represents the numeric value on which the logarithm shall be calculated.

IMPORTANT — Special cases concerning the <numeral> argument shall be taken into account (e.g.

special Float values like 0, -0, INF, -INF and NaN). The reference implementation for these special

cases is the Java method java.lang.Math.log(double a). There shall be no deviation from this

implementation.

15.2.3.4 Sin

The Sin term shall be used for calculating the sine of a given angle (in radians).

Sin is an otx:FloatTerm. Its members have the following semantics:

 <rad> : otx:NumericTerm [1]

Represents the angle from which the sine shall be calculated (radian interpretation).

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g. special

Float values like 0, -0, INF, -INF and NaN). The reference implementation for these special cases is

the Java method java.lang.Math.sin(double a). There shall be no deviation from this

implementation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 169

15.2.3.5 Cos

The Cos term shall be used for calculating the cosine of a given angle (in radians).

Cos is an otx:FloatTerm. Its members have the following semantics:

 <rad> : otx:NumericTerm [1]

Represents the angle from which the cosine shall be calculated (radian interpretation).

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g. special

Float values like 0, -0, INF, -INF and NaN). The reference implementation for these special cases is

the Java method java.lang.Math.cos(double a). There shall be no deviation from this

implementation.

15.2.3.6 Tan

The Tan term shall be used for calculating the tangent of a given angle (in radians).

Tan is an otx:FloatTerm. Its members have the following semantics:

 <rad> : otx:NumericTerm [1]

Represents the angle from which the tangent shall be calculated (radian interpretation)

IMPORTANT — Special cases concerning the <rad> argument shall be taken into account (e.g. special

Float values like 0, -0, INF, -INF and NaN). The reference implementation for these special cases is

the Java method java.lang.Math.tan(double a). There shall be no deviation from this

implementation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

170 © ISO 2012 – All rights reserved

16 OTX Measure extension

16.1 Introduction

The OTX Measure extension provides actions, terms and data types for basic measurement and control
operations. Its purpose is to extend OTX to the requirements of vehicle manufacturing.

In manufacturing a significant amount of the overall test steps are electric and electronic measurement and
control actions that are not related to a standardised diagnostic ECU-communication as it is described in the
OTX DiagCom extension. The OTX Measure extension shall serve as a simple interface to describe these
electronic and electric measurement and control actions.

16.2 Data types

16.2.1 Overview

The OTX Measure extension introduces a single data type named Measurement, as described in the

following.

16.2.2 Syntax

The syntax of the Measurement datatype declaration of the OTX Measure extension is shown in Figure 86.

«XSDcomplexType»

Measurement

«XSDcomplexType»

otx:ComplexType

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

Figure 86 — Data model view: Measure data types

16.2.3 Semantics

16.2.3.1 General

Since the OTX Measure data types have no initialisation parts, they can not be declared constant.

16.2.3.2 Measurement

Measurement serves as container for a specific measurement. It includes a timestamp of the measurement,
the status of the measurement and the measured quantity.

The internal properties of a measurement can be acquired by the terms GetMeasurementQuantity,

GetMeasurementTimestamp, GetMeasurementStatus, IsValidMeasurement as well as

GetMeasurementValue.

Since the Measurement data type has no initialisation parts, a Measurement can not be declared constant.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 171

16.3 Exceptions

16.3.1 Overview

All elements referenced in this clause are derived from the OTX Core Exception type as defined by Part 2 of

ISO 13209. They represent the full set of exceptions added by the OTX Measure extension.

16.3.2 Syntax

The syntax of all OTX Measure exception type declarations is shown in Figure 87.

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

«XSDcomplexType»

Dev iceException

«XSDcomplexType»

CommunicationException

«XSDcomplexType»

MeasureException

«XSDcomplexType»

ConfigurationException

«XSDcomplexType»

Serv icePreconditionException

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

Inv alidMeasurementException

Figure 87 — Data model view: Measure exceptions

16.3.3 Semantics

16.3.3.1 General

Since all OTX Measure exception types are implicit exceptions whithout initialisation parts, they can not be
declared constant.

16.3.3.2 MeasureException

The MeasureException is the super class for all exceptions in the Measure extension. A

MeasureException shall be used in case the more specific exception types described in the remainder of

this section do not apply to the problem at hand.

16.3.3.3 ConfigurationException

A ConfigurationException is thrown if there is a configuration problem, e.g. if a channel is not a legal

channel for an intended operation.

16.3.3.4 CommunicationException

A CommunicationException is thrown in case when the communication to a device did not succeed, e.g.

there is no answer from the device or an error occurred in the communication infrastructure.

16.3.3.5 DeviceException

A DeviceException is thrown if there is a measurement device problem. The physical device is reachable

but has problems and sends a hint, e.g. that a contact is broken.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

172 © ISO 2012 – All rights reserved

16.3.3.6 ServicePreconditionException

The ServicePreconditionException is thrown if a precondition is not met which is vital for the execution

of the demanded device service. This may happen e.g. if the minimal speed is not yet reached for a break test.

16.3.3.7 InvalidMeasurementException

The InvalidMeasurementException shall be thrown when an invalid measurement is received from a

measurement device. By contrast to ServicePreconditionException (see above), a thrown

InvalidMeasurementException means that the measurement device is fine, but but the measured value

is nevertheless regarded as invalid by the device. Since there are cases where invalid measurements pose to
exceptional situation or the production of additional return values shall not be hindered, the throw of this
exception can be controlled by the optional suppressInvalidMeasurementException flag of

ExecuteDeviceService action (see 16.6.3.2).

16.4 Variable access

16.4.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the i18n extension.

16.4.2 Syntax

Figure 88 shows the syntax of the Measure extension's variable access types.

«XSDcomplexType»

MeasurementVariable

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

otx:ExceptionVariable

Figure 88 — Data model view: Measure variable access types

16.4.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for further
details.

16.5 Signatures

16.5.1 Overview

As specified by Part 2 of ISO 13209, OTX extensions may define new specialized types of signatures by
extending otx:SignatureRealisation. The OTX Measure extension uses this extensibility by adding the

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 173

DeviceSignature type which allows in-document, high-level interface specifications of measurement

devices and their capabilities.

16.5.2 Syntax

Figure 89 shows the syntax of the Measure extension's signature types.

otx:SignatureRealisation

«XSDcomplexType»

Dev iceSignature

«XSDcomplexType»

Dev iceServ iceParameterDeclarations

«XSDelement»

+ inParam: DeviceServiceInParameterDeclaration

+ outParam: DeviceServiceOutParameterDeclaration
otx:NamedAndSpecified

«XSDcomplexType»

Dev iceServ iceSignature

«XSDcomplexType»

Dev iceServ ices

«XSDcomplexType»

Dev iceServ iceRealisation

«XSDcomplexType»

Throws

«XSDelement»

+ exception: MeasureException [1..*]

services

1

service 1..*

realisation 0..1

parameters

0..1

throws

0..1

Figure 89 — Data model view: Measure signatures

NOTE The XSD complex type DeviceServiceParameterDeclarations is of <xsd:choice> [1..*] content-

type, which is not explicitly shown in the figure above.

16.5.3 Semantics

16.5.3.1 General

The basic semantics common to all kinds of signatures are specified in Part 2 of ISO 13209.

16.5.3.2 DeviceSignature

Each measurement device which is attached to a diagnostic application and which is used by an OTX test
sequence shall be described by a device signature.

The device ids (the signature's name attribute) are symbolic and have to be mapped by some runtime

configuration to the concrete measurement and control device drivers. For the mapping, the use of a
signature's meta data element is recommended by this standard.

A DeviceSignature describes the measurement and control interface of a measurement device or probe. It

comprises a collection of (sub-)signatures for each device service that can be called by an
ExecuteDeviceService action (see 16.6.3.2). The parameters described for such a service serve as a

blueprint for the arguments of an ExecuteDeviceService action.

DeviceSignature is an otx:SignatureRealisation. Its members have the following semantics:

 <services> : DeviceServices [0..1]

This container element holds a collection of device service signatures describing the set of services
available for a measurement device.

 <service> : DeviceServiceSignature [1..*]

Describes a measurement device's service that can be called by an ExecuteDeviceService.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

174 © ISO 2012 – All rights reserved

 name : otx:OtxName [0..1] (derived from otx:NamedAndSpecified)

This represents the service's name. ExecuteDeviceService actions shall identify the to-be-

executed device service by using this.

 <specification> : xsd:string [0..1] (derived from otx:NamedAndSpecified)

This optional string should be used by OTX authors to specify the purpose and
properties/parameters of a device service for human readers.

 <metadata> : otx:MetaData [0..1] (derived from otx:NamedAndSpecified)

In case that a diagnostic application needs to associate any further (tool-specific) information to
a device service, this element shall be used.

 <realisation> : DeviceServiceRealisation [0..1]

This is the formal counterpart of the <specification>. It contains a list of parameter

descriptions adhering to a device service.

 <parameters> : DeviceServiceParameterDeclarations [0..1]

This simple container element represents the list of arguments for a device service call. The
content-type of DeviceServiceParameterDeclarations is <xsd:choice> [1..*]

which allows an arbitrary-length list of in- and output parameters of a device service.

NOTE While it might be pretty seldom that more than one out parameter is described, there are

cases in which the device serves as a kind of gateway or is a complex device like an ECOS
measurement device which is able to return a variety of return values like for instance
numberOfUpperLimitViolations, MeasurementsAfterStopTrigger, etc.

 <inParam> : DeviceServiceInParameterDeclaration

Describes an input parameter for a service. This is needed for measurement services
which require additional arguments for parametrizing their execution.

DeviceServiceInParameterDeclaration is based on type otx:Declaration.

Therefore, a <inParam> element has a name, a specification and a data type

declaration (please refer to Part 2 of ISO 13209 for details about declarations).

 <outParam> : DeviceServiceOutParameterDeclaration

Describes an output parameter for the requested service.

DeviceServiceOutParameterDeclaration is based on type otx:Declaration.

Therefore, a <outParam> element has a name, a specification and a data type

declaration (please refer to Part 2 of ISO 13209 for details about declarations).

 <throws> : Throws [0..1]

This shall declare an arbitrary-length list of measure exception types which this device
service may potentially throw.

 <exception> : MeasureException [1..*]

Describes an exception type which may possibly be thrown by the enclosing device
service.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 175

16.6 Actions

16.6.1 Overview

The OTX Measure extension introduces one action named ExecuteDeviceService, as described in the

following.

16.6.2 Syntax

Figure 90 shows the syntax of the Measure extension's signature types.

otx:ActionRealisation

«XSDcomplexType»

ExecuteDev iceServ ice

«XSDattribute»

+ device: otx:OtxLink

+ service: otx:OtxName

+ suppressInvalidMeasurementException: xsd:boolean

+ executeAsync: xsd:boolean [0..1]

«XSDcomplexType»

Dev iceServ iceInArgument

«XSDattribute»

+ parameter: otx:OtxName

«XSDelement»

+ term: otx:Term

«XSDcomplexType»

Dev iceServ iceOutArgument

«XSDattribute»

+ parameter: otx:OtxName

«XSDelement»

+ target: otx:Variable

«XSDcomplexType»

Dev iceServ iceArguments

outArgument1

arguments

0..1

inArgument 1

Figure 90 — Data model view: Measure actions

NOTE The XSD complex type DeviceServiceArguments is of <xsd:choice> [0..*] content-type, which is

not explicitly shown in the figure above.

16.6.3 Semantics

16.6.3.1 General

The basic semantics common to all kinds of OTX actions are specified in Part 2 of ISO 13209.

16.6.3.2 ExecuteDeviceService

The ExecuteDeviceService action shall execute a service provided by a measurement device. The action

connects to physical devices from where it retrieves measurements. The OTX author may choose which of the
retrieved measurements shall be assigned to OTX variables. The devices to which the
ExecuteDeviceService action connects shall be described by device signatures, as specified in 16.5

(DeviceSignature type).

NOTE There are devices which need to be configured prior to execution of a specific service. Configuration should
be done by previously executing the respective configuration services (triggered also by ExecuteDeviceService

actions). This allows e.g. setting parameters of the test equipment or controlling the object under test (e.g. setting the

speed on a roller test bench).

The members of the ExecuteDeviceService type have the following semantics:

 executeAsync : xsd:boolean={false|true} [0..1]

This option tells the communication backend to make this device service execution non-blocking. This
means that if executeAsync is set to true, the OTX execution flow will immediately move on to the

next Action, without waiting for the result of the ExecuteDeviceService action. An OTX sequence

can make use of the DeviceEventSource term (refer to 16.7.3.3.1) to be notified when a new result

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

176 © ISO 2012 – All rights reserved

from an asynchronously executed device service has arrived. When this happens, the OTX variable(s)
which are linked to a service's output parameter(s) will potentially contain a new value.

 suppressInvalidMeasurementException : xsd:boolean={false|true} [0..1]

This flag shall affect only those device services which declare InvalidMeasurementException in

their <throws> block. For other device services, it shall have no effect.

When the flag is set to false (the default), any InvalidMeasurementException produced by the

executed device service will be passed on to the OTX sequence by the ExecuteDeviceService action.

This supports the most common use case when it is senseless to continue a test sequence if no valid
measurement could be produced. This ensures that later uses of the term isValidMeasurement will

always return true – therefore the OTX author does not have to check each measurement if it is valid,

and he can treat exceptional cases of invalid measurements by using ordinary OTX exception handling
mechanisms.

Otherwise, if the flag is set to true, the action shall hand over invalid-state Measurement values to the

OTX sequence and suppress any throw of an InvalidMeasurementException. An example for the

use of invalid measurements: an embedded system that measures a measurement profile at a fixed rate
or in a loop might produce a few invalid measurements as well (because the measuring situation for these
measurements was bad) but the measurement process should not be interrupted by an exception. In this
case, it may be important to know nevertheless which measurements were invalid and which were not.

An invalid measurement does return a quantity, but the value can be arbitrary. The unit (if any) is defined
by the measuring device and its configuration at measuring time.

 device : otx:OtxLink [1]

This attribute identifies the measurement device to execute the service on. The link shall point to the
corresponding DeviceSignature for that device.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

 Measure_Chk001 – correct target for ExecuteDeviceService and DeviceEventSource

 service : otx:OtxName [1]

Identifies the service which shall be executed. The service name shall be defined within the
corresponding service declaration within the DeviceSignature.

Associated checker rules:

 Measure_Chk002 – executed device service is declarated in device signature

 <arguments> : DeviceServiceArguments [0..1]

The content-type of this simple container element is <xsd:choice> [1..*] which allows an arbitrary-

length list of in- and output arguments for the to-be-executed device service's parameters.

 <inArgument> : DeviceServiceInArgument

Represents an input argument for an input parameter of the to-be-executed device service. An input
argument may be omitted if and only if there's an explicit initial value defined for the corresponding
parameter. This initial value applies in place of the missing argument. The parameter for the
argument is identified by name; the value that shall be passed into that parameter is described by a
term:

 parameter : otx:OtxName [1]

This attribute represents the target parameter to which the argument shall be assigned.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 177

 <term> : otx:Term [1]

Represents the value to be used as input argument for the service parameter. The value data
type shall match to the parameter data type as declared in the corresponding device’s signature.

 <outArgument> : DeviceServiceOutArgument

Represents an ouput argument for an output parameter of the to-be-executed device service. Output
arguments may be omitted freely (e.g. in the case when there is no interest in one of the returned
data). The parameter is identified by name, the argument is a variable:

 parameter : otx:OtxName [1]

This attribute represents the output parameter whose value shall be assigned to the target
OTX variable.

 <target> : otx:Variable [1]

Represents the OTX variable to hold the value of the output parameter of the device service.
The variable's data type shall match to the parameter data type as declared in the corresponding
device’s signature.

Associated checker rules:

 Measure_Chk003 – correct ExecuteDeviceService arguments

 Measure_Chk004 – ExecuteDeviceService input argument omission

 Measure_Chk005 – No Path in ExecuteDeviceService ouput arguments

Throws:

The exceptions that this action may throw depend on the <throws> declarations defined for the executed

device service in the corresponding device signature (this is similar to otx:ProcedureCall which throws

exceptions according to the called procedure).

16.7 Terms

16.7.1 Overview

The OTX Measure extension introduces two categories of terms, the first of which describes terms that allow
measurement value handling while the other supports the handling of events fired from measurement devices.
Figure 91 provides an overview of the OTX Measure term categories.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

178 © ISO 2012 – All rights reserved

Figure 91 — Data model view: Measurement term categories

16.7.2 Measurement related terms

16.7.2.1 Description

The primary purpose of the measurement related terms is to get information out of Measurement objects
which have been retrieved from a measurement device by executing an ExecuteDeviceService action.

16.7.2.2 Syntax

Figure 92 shows the syntax of the measurement related terms of the Measure extension.

otx:StringTerm

«XSDcomplexType»

GetMeasurementStatus

«XSDelement»

+ measurement: MeasurementTerm

otx:IntegerTerm

«XSDcomplexType»

GetMeasurementTimestamp

«XSDelement»

+ measurement: MeasurementTerm

quant:NumericQuantityTerm

«XSDcomplexType»

GetMeasurementQuantity

«XSDelement»

+ measurement: MeasurementTerm

MeasurementTerm

«XSDcomplexType»

MeasurementValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

otx:FloatTerm

«XSDcomplexType»

GetMeasurementFloatValue

«XSDelement»

+ measurement: MeasurementTerm

otx:BooleanTerm

«XSDcomplexType»

IsValidMeasurement

«XSDelement»

+ measurement: MeasurementTerm

Figure 92 — Data model view: Measurement related terms

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 179

16.7.2.3 Semantics

16.7.2.3.1 MeasurementTerm

The abstract type MeasurementTerm is an otx:Term. It serves as a base for all concrete terms which return

a Measurement. It has no special members.

16.7.2.3.2 MeasurementValue

This term returns the Measurement stored in a Measurement variable. For more information on value-terms

and the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of

ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

 otx:InvalidReferenceException

If the variable value is not valid (no value was assigned to the variable before).

16.7.2.3.3 GetMeasurementTimestamp

Get the timestamp of a measurement, expressed in milliseconds elapsed since 1970-01-01 00:00:00 UTC
(cf. time:GetTimestamp as specified in the OTX DateTime extension in Clause 6). If no timestamp exists,

the measurement is not valid and an exception shall be thrown.

GetMeasurementTimestamp is an otx:IntegerTerm. Its members have the following semantics:

 <measurement> : MeasurementTerm [1]

Represents the measurement whose timestamp shall be acquired.

Throws:

 measure:InvalidMeasurementException

If the measurement contains no timestamp (invalid measurement).

16.7.2.3.4 GetMeasurementStatus

Get the status of a measurement. The status of the measurement does reflect the situation of its generation.
The returned status shall be a string. This standard does not specify a set of allowed values for the returned
status strings – however, a listing of commonly used status strings is recommended below.

Recommendation for common status values:

 Status "ok": This state is used for ordinarily measured values (the normal case).

 Status "generated": This state is commonly used for measurements whose value was generated

during an invalid state of the system under test. This state applies only to measurement devices which
return a (fake) value despite the invalid machine state (for other devices, the ExecuteDeviceService

action would have thrown a ServicePreconditionException). This situation may occur e.g. when

the rpm of an engine shall be measured but the engine is not running and does not provide the rpm
signal; therefore the measurement device assumes at this point that the rpm is 0, thus it fakes a 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

180 © ISO 2012 – All rights reserved

measurement. Other than that this state may also be used for measurements whose value was not
measured but generated, e.g. when a measurement device is running in a simulation mode.

 Status "interpolated": Commonly used for measurements whose value was not directly measured

but calculated.

 Status "invalid": Commonly used for measurements whose value could neither be measured correctly

nor interpolated or faked etc.

 Status "normalized": Commonly used for measurements whose value has been normalized, e.g. if a

filter in the measurement device or driver has cut off outliers in a frequency measurement.

 Status "outdated": Commonly used for measurements whose value is outdated. This is the case if the

value is present but not current enough for the used service.

GetMeasurementStatus is an otx:StringTerm. Its members have the following semantics:

 <measurement> : MeasurementTerm [1]

Represents the measurement whose status shall be acquired.

16.7.2.3.5 GetMeasurementQuantity

Get the measured quantity value from a measurement (see Clause 17 about quantities).

GetMeasurementQuantity is a quant:QuantityTerm. Its members have the following semantics:

 <measurement> : MeasurementTerm [1]

The measurement whose quantity value shall be acquired.

Throws:

 measure:InvalidMeasurementException

If the measurement is invalid.

16.7.2.3.6 GetMeasurementFloatValue

Get the raw float value of a measurement as it has been received from the measurement device, disregarding
any physical unit information.

GetMeasurementValue is an otx:FloatTerm. Its members have the following semantics:

 <measurement> : Measurement [1]

The measurement whose raw float value shall be acquired.

Throws:

 measure:InvalidMeasurementException

If the measurement is invalid.

16.7.2.3.7 IsValidMeasurement

Evaluates the status of a measurement. As the status constants are not fixed by this standard (see listing of
recommended states given for GetMeasurementStatus term above) this action can be used to determine

whether the measurement can be used or not.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 181

A measurement shall be considered valid if it contains at least a quantity and a timestamp. Furthermore the
status of the measurement should correspond to the above: if the status is "invalid", "outdated" or has

a value with equivalent semantics, this action should return false. If the status is "generated" or

equivalent, it is application specific whether the measurement is to be considered valid or not.

IsValidMeasurement is an otx:BooleanTerm. Its members have the following semantics:

 <measurement> : MeasurementTerm [1]

The measurement whose status shall be evaluated.

16.7.3 Event related terms

16.7.3.1 Description

The terms introduced in the following support the event handling mechanisms as described for the OTX
EventHandling extension in Clause 8. The terms can be used for creating event sources listening for events
fired by measurement device (DeviceEventSource), for querying the type of event (IsDeviceEvent) and

for identifying the particular device and service which fired an event (GetDeviceServiceFromEvent).

16.7.3.2 Syntax

Figure 93 shows the syntax of the event related terms of the Measure extension.

EventSourceTerm

«XSDcomplexType»

Dev iceEventSource

«XSDattribute»

+ device: otx:OtxLink

otx:BooleanTerm

«XSDcomplexType»

IsDev iceEvent

«XSDelement»

+ event: event:EventValue

otx:StringTerm

«XSDcomplexType»

GetDev iceServ iceNameFromEvent

«XSDelement»

+ event: event:EventValue

Figure 93 — Data model view: Event related terms

16.7.3.3 Semantics

16.7.3.3.1 DeviceEventSource

The DeviceEventSource term accepts a link to a DeviceSignature of a device that is to be made an

event source. This term enables an OTX sequence to use a measurement device as a source for events in
the context of the OTX EventHandling extension (please refer to Clause 8). A measurement device (driver)
shall trigger an event every time a new output parameter from one of its services has arrived. The
DeviceEventSource term is the complementary functionality to the asynchronous execution feature of the

ExecuteDeviceService action: when ExecuteDeviceService is used with executeAsync attribute set

to true, the only way to be notified of incoming measurement values for the executed device service is to use

it as an event source through the DeviceEventSource term.

DeviceEventSource is an event:EventSourceTerm. Its members have the following semantics:

 device : otx:OtxLink [1]

Represents the to-be-monitored device. If an output parameter of an earlier triggered device service
becomes available, the event shall be fired, causing an embedding event:WaitForEventAction to

exit.

Associated checker rules:

 Measure_Chk001 – correct target for ExecuteDeviceService and DeviceEventSource

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

182 © ISO 2012 – All rights reserved

16.7.3.3.2 IsDeviceEvent

The IsDeviceEvent term accepts an EventValue term yielding an Event object that has been raised by

the OTX runtime, as a result of declaring a measurement device as an event source by using the term
DeviceEventSource. The term shall return true if and only if the Event originates from a

DeviceEventSource term.

IsDeviceEvent is an otx:BooleanTerm. Its members have the following semantics:

 <event> : event:EventValue [1]

Represents the Event whose type shall be tested.

16.7.3.3.3 GetDeviceServiceNameFromEvent

The GetDeviceServiceNameFromEvent term accepts an EventValue term yielding an Event object that

has been raised by the OTX runtime, as a result of declaring a measurement device as an event source by
using the term DeviceEventSource. It shall return a string which contains the device and service name of

the device and service that caused the event. By using this term, an OTX sequence can wait for an Event

raised by a device receiving a new result and then evaluate which service of that device caused the event.

The returned string value shall be composed out of two parts: "devicename.servicename", where

"devicename" and "servicename" are the names as given by the corresponding DeviceSignature.

GetDeviceServiceNameFromEvent is an otx:StringTerm. Its members have the following semantics:

 <event> : event:EventValue [1]

Represents the event that was raised after executing a device service.

Throws:

 otx:TypeMismatchException

If the specified event has not been raised by a DeviceEventSource.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 183

17 OTX Quantities extension

17.1 Introduction

The Quantity data types specified in this extension offer an additional layer of abstraction on top of the

numeric data types provided by the OTX Core as specified by Part 2 of ISO 13209. The Quantity type

contains additional information about a value’s physical unit, allowing it to describe actual measurement
values. This allows e.g. the OTX DiagCom extension (see Clause 6) to use quantities for getting data in and
out of diagnostic services.

A Quantity, as mentioned, contains information about a physical unit besides the actual value. To do this,

OTX Quantities reuses the unit definition data model specified by the ODX standard (see UNIT-SPEC data

type in 7.3.6.7 in ISO 22901-1:2008). The intention is to use ODX for defining a set of units that can then be
referenced by elements of the OTX Quantities extension. Please note that the ODX UNIT-SPEC can be used

separately from the rest of the ODX standard. As an example, a minimal UNIT-SPEC definition is provided

below (see following page).

The way an ODX UNIT-SPEC is defined allows an OTX runtime system to automatically convert Quantity

values into different units, as long as these are defined as equivalent units in ODX. Thus, an OTX runtime is
able to automatically perform basic arithmetic operations on Quantity operands, so for example an addition

operation on a Quantity containing a ‘km/h’ value with another Quantity containing a value in ‘m/h’. To

achieve this, an OTX runtime is expected to perform any arithmetic involving quantities using an internal
presentation of the quantities’ values that is normalized to the SI base unit(s) underlying the unit of the
Quantity. For example, to add a Quantity with a unit of “miles per hour” to another Quantity with a unit

of “kilometres per hour”, the OTX runtime should convert both quantities’ values to the underyling base SI
dimensions (in this case “meters per second”) before adding both quantities' values. In subsequent sections,
the user-assigned unit of a Quantity is referred to as a display unit, while the corresponding SI-dimensioned

unit is called base unit. Accordingly, the quantities' value in display units is called physical or display value,
while the value in base SI dimensions is referred to as internal or normalized value.

EXAMPLE An XML instance of the ODX UNIT-SPEC.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ODX MODEL-VERSION="2.2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <DIAG-LAYER-CONTAINER ID="UNIT-SPEC-DLC">

 <SHORT-NAME>DLC_UnitSpec</SHORT-NAME>

 <LONG-NAME>DLCUnitSpec</LONG-NAME>

 <ECU-SHARED-DATAS>

 <ECU-SHARED-DATA ID="UNIT-SPEC-ESD">

 <SHORT-NAME>ESD_UnitSpec</SHORT-NAME>

 <DIAG-DATA-DICTIONARY-SPEC>

 <UNIT-SPEC>

 <UNIT-GROUPS>

 <UNIT-GROUP OID="EU_Metric">

 <SHORT-NAME>EU_Metric</SHORT-NAME>

 <CATEGORY>COUNTRY</CATEGORY>

 <UNIT-REFS>

 <UNIT-REF ID-REF="km"/>

 <UNIT-REF ID-REF="m"/>

 <UNIT-REF ID-REF="mm"/>

 </UNIT-REFS>

 </UNIT-GROUP>

 <UNIT-GROUP OID="UK_Imperial">

 <SHORT-NAME>UK_Imperial</SHORT-NAME>

 <CATEGORY>COUNTRY</CATEGORY>

 <UNIT-REFS>

 <UNIT-REF ID-REF="mi"/>

 <UNIT-REF ID-REF="ft"/>

 <UNIT-REF ID-REF="in"/>

 </UNIT-REFS>

 </UNIT-GROUP>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

184 © ISO 2012 – All rights reserved

 <UNIT-GROUP OID="TravelDistance">

 <SHORT-NAME>TravelDistance</SHORT-NAME>

 <CATEGORY>EQUIV-UNITS</CATEGORY>

 <UNIT-REFS>

 <UNIT-REF ID-REF="mi"/>

 <UNIT-REF ID-REF="km"/>

 </UNIT-REFS>

 </UNIT-GROUP>

 </UNIT-GROUPS>

 <UNITS>

 <UNIT ID="km">

 <SHORT-NAME>km</SHORT-NAME>

 <LONG-NAME>kilometers</LONG-NAME>

 <DISPLAY-NAME>km</DISPLAY-NAME>

 <FACTOR-SI-TO-UNIT>1000</FACTOR-SI-TO-UNIT>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

 </UNIT>

 <UNIT ID="s">

 <SHORT-NAME>s</SHORT-NAME>

 <LONG-NAME>seconds</LONG-NAME>

 <DISPLAY-NAME>s</DISPLAY-NAME>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-s"/>

 </UNIT>

 <UNIT ID="km_h">

 <SHORT-NAME>km_h</SHORT-NAME>

 <LONG-NAME>kilometers per hour</LONG-NAME>

 <DISPLAY-NAME>km/h</DISPLAY-NAME>

 <FACTOR-SI-TO-UNIT>3.6</FACTOR-SI-TO-UNIT>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-m_s"/>

 </UNIT>

 <UNIT ID="min">

 <SHORT-NAME>min</SHORT-NAME>

 <LONG-NAME>minutes</LONG-NAME>

 <DISPLAY-NAME>min</DISPLAY-NAME>

 <FACTOR-SI-TO-UNIT>60</FACTOR-SI-TO-UNIT>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-s"/>

 </UNIT>

 <UNIT ID="m">

 <SHORT-NAME>m</SHORT-NAME>

 <LONG-NAME>meters</LONG-NAME>

 <DISPLAY-NAME>m</DISPLAY-NAME>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

 </UNIT>

 <UNIT ID="mm">

 <SHORT-NAME>mm</SHORT-NAME>

 <LONG-NAME>millimeters</LONG-NAME>

 <DISPLAY-NAME>mm</DISPLAY-NAME>

 <FACTOR-SI-TO-UNIT>0.001</FACTOR-SI-TO-UNIT>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

 </UNIT>

 <UNIT ID="mi">

 <SHORT-NAME>mi</SHORT-NAME>

 <LONG-NAME>mile</LONG-NAME>

 <DISPLAY-NAME>mi</DISPLAY-NAME>

 <FACTOR-SI-TO-UNIT>6.213712E-4</FACTOR-SI-TO-UNIT>

 <OFFSET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

 </UNIT>

 <UNIT ID="ft">

 <SHORT-NAME>ft</SHORT-NAME>

 <LONG-NAME>foot</LONG-NAME>

 <DISPLAY-NAME>ft</DISPLAY-NAME>

 <FACTOR-SI-TO-UNIT>3.28084</FACTOR-SI-TO-UNIT>

 <OFFSET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

 </UNIT>

 <UNIT ID="in">

 <SHORT-NAME>in</SHORT-NAME>

 <LONG-NAME>inch</LONG-NAME>

 <DISPLAY-NAME>in</DISPLAY-NAME>

 <FACTOR-SI-TO-UNIT>39.37008</FACTOR-SI-TO-UNIT>

 <OFFSET-SI-TO-UNIT>0.0</OFFSET-SI-TO-UNIT>

 <PHYSICAL-DIMENSION-REF ID-REF="PD-m"/>

 </UNIT>

 </UNITS>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 185

 <PHYSICAL-DIMENSIONS>

 <PHYSICAL-DIMENSION ID="PD-m">

 <SHORT-NAME>km</SHORT-NAME>

 <LENGTH-EXP>1</LENGTH-EXP>

 </PHYSICAL-DIMENSION>

 <PHYSICAL-DIMENSION ID="PD-s">

 <SHORT-NAME>s</SHORT-NAME>

 <TIME-EXP>1</TIME-EXP>

 </PHYSICAL-DIMENSION>

 <PHYSICAL-DIMENSION ID="PD-m_s">

 <SHORT-NAME>m_s</SHORT-NAME>

 <LENGTH-EXP>1</LENGTH-EXP>

 <TIME-EXP>-1</TIME-EXP>

 </PHYSICAL-DIMENSION>

 <PHYSICAL-DIMENSION ID="PD-m_ss">

 <SHORT-NAME>km_h</SHORT-NAME>

 <LENGTH-EXP>1</LENGTH-EXP>

 <TIME-EXP>-2</TIME-EXP>

 </PHYSICAL-DIMENSION>

 </PHYSICAL-DIMENSIONS>

 </UNIT-SPEC>

 </DIAG-DATA-DICTIONARY-SPEC>

 </ECU-SHARED-DATA>

 </ECU-SHARED-DATAS>

 </DIAG-LAYER-CONTAINER>

</ODX>

17.2 Data types

17.2.1 Overview

The OTX Quantities extension introduces the data types Quantity and Unit, as described in the following.

17.2.2 Syntax

The syntax of the datatype declarations of the OTX Quantities extension is shown in Figure 94.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

Quantity

«XSDelement»

+ init: QuantityLiteral [0..1]
«XSDcomplexType»

otx:SimpleType

«XSDcomplexType»

Unit

«XSDelement»

+ init: UnitLiteral [0..1]

Figure 94 — Data model view: Quantities data types

17.2.3 Semantics

17.2.3.1 General

The following describes the runtime semantics of the OTX Quantities data types.

17.2.3.2 Quantity

A Quantity represents a numeral value which has a display unit associated with it. For instance, the value

"5" is described more specifically by a Quantity that also contains information about the unit of the value,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

186 © ISO 2012 – All rights reserved

e.g. "5 km/h". Furthermore, a Quantity has an optional display precision property which has an effect on

the otx:ToString conversion of a Quantity (17.5.3.3.1).

A Quantity can be initialized at declaration time.

The members of Quantity have the following semantics:

 <init> : QuantityLiteral [0..1]

This optional element represents the hard-coded value from which the declared Quantity shall be

created. The literal includes a float-value, a display unit name and a display precision; when the
Quantity is created, the float value shall be interpreted according to the display unit:

 <numeral> : otx:FloatLiteral [1]

Represents the hard-coded float-value from which the Quantity shall be created.

 <displayUnit> : UnitLiteral [1]

Represents the hard-coded display unit of the QuantityLiteral.

 <displayPrecision> : otx:IntegerLiteral [0..1]

Optionally represents the hard-coded display precision of the Quantity declaration (17.5.3.3.1).

See 17.5.2.3.4 for further details on term QuantityLiteral.

IMPORTANT — If a Quantity declaration is not explicitly initialized (omitted <init> element), the

default value shall be a Quantity with a base value of 0.0 and a dimensionless unit.

17.2.3.3 Unit

A Unit represents a physical unit which is defined in a UNIT-SPEC (cf. 17.1). A Unit can be associated to a

physical value when creating a Quantity, but it can also be used stand-alone, e.g. when comparing the

display Unit of a Quantity to another Unit object.

A Unit can be initialized at declaration time.

The members of Unit have the following semantics:

 <init> : UnitLiteral [0..1]

This optional element describes the initialization value from which the Unit shall be created:

 <value> : UnitDefinition [1]

This element represents the hard-coded link to the appropriate UNIT definition in a UNIT-SPEC

which shall be associated to the declared Unit. For linking, the element allows all attributes from the

namespace "http://www.w3.org/1999/xlink", as defined by the W3C XLink recommendation

[W3C XLink]. For the usage of the attributes, the rules given in 17.5.2.3.1 shall apply.

See 17.5.2.3.8 for further details on term UnitLiteral.

IMPORTANT — If a Unit declaration is not explicitly initialized (omitted <init> element), the default

value shall be a dimensionless unit.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 187

17.3 Exceptions

17.3.1 Overview

All elements referenced in this clause are derived from the OTX Core Exception type as defined by Part 2 of

ISO 13209. They represent the full set of exceptions added by the OTX Quantities extension.

17.3.2 Syntax

The syntax of all OTX Quantities exception type declarations is shown in Figure 95.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

«XSDcomplexType»

QuantityException

«XSDcomplexType»

UnknownUnitException

«XSDcomplexType»

Inv alidConv ersionException

Figure 95 — Data model view: Quantities exceptions

17.3.3 Semantics

17.3.3.1 General

Since all OTX Quantities exception types are implicit exceptions whithout initialisation parts, they can not be
declared constant.

17.3.3.2 QuantityException

The QuantityException type is the base type for all exceptions in the OTX Quantities extension. A

QuantityException shall be used in case the more specific exception types described in the remainder of

this section do not apply to the problem at hand.

17.3.3.3 UnknownUnitException

An UnknownUnitException shall be thrown if a referenced unit is not known by the runtime system. This

exception can for instance occur when using the UnitLiteral term and passing a unit reference that does

not exist in the system’s UNIT-SPEC.

17.3.3.4 InvalidConversionException

An InvalidConversionException shall be thrown if the physical dimensions of Quantity operands in

arithmetic operations are incompatible, e.g. if a speed is added to a voltage.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

188 © ISO 2012 – All rights reserved

17.4 Variable access

17.4.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the OTX Quantities extension.

17.4.2 Syntax

Figure 96 shows the syntax of the Quantities extension's variable access types.

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

QuantityVariable

«XSDcomplexType»

otx:ExceptionVariable

«XSDcomplexType»

UnitVariable

Figure 96 — Data model view: Quantities variable access types

17.4.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for further
details.

17.5 Terms

17.5.1 Overview

All of the OTX Quantities terms shown in Figure 97 extend the Term extension interface as defined by Part 2

of ISO 13209. Information about the specific super class of a term is provided in the individual term description
clauses below.

As shown in Figure 97, there are three OTX Quantity term categories:

 The first category contains terms yielding Quantity values; these are all based on the abstract term

QuantityTerm.

 The second category contains terms which allow accessing various properties of a Quantity, such as

the display value, base unit and display unit.

 The third category contains basic terms for Unit handling.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 189

Figure 97 — Data model view: Quantities term categories

17.5.2 Quantity and Unit related terms

17.5.2.1 Description

The following specifies the terms for creating and accessing Quantity and Unit values.

17.5.2.2 Syntax

Figure 98 shows the syntax of all Quantity related terms of the Quantities extension.

otx:FloatTerm

«XSDcomplexType»

GetDisplayValue

«XSDelement»

+ quantity: QuantityTerm

«XSDcomplexTyp...
UnitDefinition

«XSDany»

+ XLink attributes

QuantityTerm

«XSDcomplexType»

QuantityValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

UnitTerm

«XSDcomplexType»

UnitLiteral

«XSDelement»

+ value: UnitDefinition

UnitTerm

«XSDcomplexType»

UnitValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

UnitTerm

«XSDcomplexType»

GetDisplayUnit

«XSDelement»

+ quantity: QuantityTerm

UnitTerm

«XSDcomplexType»

GetBaseUnit

«XSDelement»

+ quantity: QuantityTerm

QuantityTerm

«XSDcomplexType»

CreateQuantity

«XSDelement»

+ numeral: otx:NumericTerm
+ displayUnit: UnitTerm
+ displayPrecision: otx:NumericTerm [0..1]

QuantityTerm

«XSDcomplexType»

QuantityLiteral

«XSDelement»

+ numeral: otx:FloatLiteral
+ displayUnit: UnitLiteral
+ displayPrecision: otx:IntegerLiteral [0..1]

Figure 98 — Data model view: Quantity related terms

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

190 © ISO 2012 – All rights reserved

17.5.2.3 Semantics

17.5.2.3.1 Referring to unit definitions

Several terms in the OTX Quantities extension use the Unit type in order to refer to unit or unit group

definitions located in an external resource. The extension reuses the unit definition data model specified by
the ODX standard (see UNIT-SPEC data type in 7.3.6.7 in ISO 22901-1:2008). Concerning references from

OTX to UNIT-SPEC entries, the rules below shall apply.

IMPORTANT — Any elements of the OTX Quantities terms that work with units shall link to required
ODX unit definitions by using simple XLinks only, as specified by [W3C XLink]. This means that the

xlink:type attribute shall always be set to "simple". Furthermore, the xlink:href attribute value

should follow the pattern of "{URI}#{SHORT-NAME}", where {URI} represents the UNIT-SPEC

resource and {SHORT-NAME} identifies the unit definition by its ODX SHORT-NAME property. The

pattern corresponds to a shorthand notation XPointer, as specified by Clause 3.2 in [W3C XPtr].
However, in case the shorthand notation is not sufficient to address unit definitions, the full XPointer

notation may be used (e.g. when one ODX-document contains more than one UNIT-SPEC container).

EXAMPLE For linking to the unit definition for "mm" given in the exemplary UNIT-SPEC in 17.1, the element has the

form of <unit xlink:type="simple" xlink:href="unit-spec.xml#mm"/>.

17.5.2.3.2 QuantityTerm

The abstract type QuantityTerm is an otx:FloatTerm. It serves as a base for all concrete terms which

return a Quantity. It has no special members.

17.5.2.3.3 QuantityValue

This term returns the Quantity stored in a Quantity variable. For more information on value-terms and the

syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

17.5.2.3.4 QuantityLiteral

This term shall be used to create a Quantity object based on a hard-coded float value and display unit. The

provided float value shall be interpreted as a display value (i.e. the value of the Quantity in given display

units). Furthermore, the term optionally allows specifying a precision property which has an effect on the
otx:ToString conversion of the resulting Quantity (17.5.3.3.1).

QuantityLiteral is a QuantityTerm. Its members have the following semantics:

 <numeral> : otx:FloatLiteral [1]

Represents the hard-coded value from which the Quantity shall be created. The value shall be

interpreted in display units.

 <displayUnit> : UnitLiteral [1]

Represents the display unit of the Quantity. See 17.5.2.3.8 for further details on term UnitLiteral.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 191

 <displayPrecision> : otx:IntegerLiteral [0..1]

Represents the hard-coded display precision of the QuantityLiteral (17.5.3.3.1).

17.5.2.3.5 CreateQuantity

The CreateQuantity term is the constructor for a Quantity. The provided numeric value shall be

interpreted as a display value (i.e. the value of the Quantity in given display units). Furthermore, the term

optionally allows specifying a precision property which has an effect on the otx:ToString conversion of the

resulting Quantity (17.5.3.3.1).

The exact behaviour of CreateQuantity depends on the type of the passed numeric value:

 Integer or Float type: The value shall be interpreted according to the given display unit. Furthermore,

the resulting internal value shall be Float, even for an Integer type argument. If a display precision is

given, the property shall be set in the created Quantity; otherwise it shall remain unset (17.5.3.3.1).

 Quantity type: This is the copy-constructor-case which shall only work if the physical dimensions of

both original and new Quantity match. Otherwise, an InvalidConversionException shall be

thrown. If the physical dimensions match, the internal value of the original Quantity shall be copied into

the new Quantity. Neither the original display unit nor the display precision shall be copied – instead,

the new display unit and display precision specified in the term shall apply. If no display precision is given,
the property shall remain unset (17.5.3.3.1).

CreateQuantity is a QuantityTerm. Its members have the following semantics:

 <numeral> : NumericTerm [1]

Represents the numeric value from which the NumericQuantity shall be created (in display units). The

value can be either an Integer, a Float or another Quantity.

 <displayUnit> : UnitTerm [1]

Represents the display unit of the to-be-created Quantity. See 17.5.2.3.6 for details on UnitTerm.

 <displayPrecision> : otx:NumericTerm [0..1]

Optionally represents the display precision of the to-be-created Quantity (17.5.3.3.1). Float values shall

be truncated.

Throws:

 InvalidConversionException

If <numeral> is a Quantity and its physical dimension does not match the physical dimension given by

<displayUnit>.

17.5.2.3.6 UnitTerm

The abstract type UnitTerm is an otx:SimpleTerm. It serves as a base for all concrete terms which return

a Unit. It has no special members.

17.5.2.3.7 UnitValue

This term returns the Unit stored in a Unit variable. For more information on value-terms and the syntax

and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

192 © ISO 2012 – All rights reserved

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

17.5.2.3.8 UnitLiteral

This term shall be used to create a Unit object based on a unit definition contained in UNIT-SPEC document.

UnitLiteral allows referencing the unit definition by using XLink methodology [W3C XLink].

UnitLiteral is a UnitTerm. Its members have the following semantics:

 <value> : UnitDefinition [1]

This element represents the link to the UNIT definition in a UNIT-SPEC which shall be associated to the

Unit. The element allows all attributes from the namespace "http://www.w3.org/1999/xlink" for

linking, as defined by the W3C XLink recommendation [W3C XLink]. For the usage of the attributes, the
rules given in 17.5.2.3.1 shall apply.

Throws:

 UnknownUnitException

If the given unit is not defined in the runtime system's unit specification.

Associated checker rules:

 Quantities_Chk001 – correct unit linking

 Quantities_Chk002 – no dangling unit definition links

17.5.2.3.9 GetDisplayValue

The GetDisplayValue term shall return the (dimensionless) Float value of a Quantity according to the

Quantity's display unit. Compare the otx:ToFloat term which, when applied to a Quantity, will result in

the Quantity's value in normalized SI unit representation.

GetDisplayValue is an otx:FloatTerm. Its members have the following semantics:

 <quantity> : QuantityTerm [1]

Represents the Quantity from which the numeral value shall be extracted.

17.5.2.3.10 GetDisplayUnit

The GetDisplayUnitName term shall extract the display unit out of a Quantity value (e.g. "mp/h",

"km/h", "h", "sec" etc.).

GetDisplayUnit is a UnitTerm. Its members have the following semantics:

 <quantity> : QuantityTerm [1]

Represents the Quantity from which the display unit shall be extracted.

Throws:

 UnknownUnitException

If the unit associated with the quantity is not defined in the system's unit specification.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

http://www.w3.org/1999/xlink
https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 193

17.5.2.3.11 GetBaseUnit

The GetBaseUnit term shall return the base unit of a Quantity value, according to its physical dimension

(e.g. "m", "m/s", "s" etc.).

GetBaseUnit is a UnitTerm. Its members have the following semantics:

 <quantity> : QuantityTerm [1]

Represents the Quantity from which the base unit shall be extracted.

Throws:

 UnknownUnitException

If the base unit can not be obtained from the system's unit specification.

17.5.3 Overloading semantics

17.5.3.1 Description

Since QuantityTerm is based on OTX Core FloatTerm, Quantity values may be used in all places

where FloatTerm or NumericTerm arguments are allowed. This is e.g. the OTX Core arithmetic terms,

comparison terms and conversion terms, for which special rules shall apply when the operands are Quantity

values. There are also places where general rules apply, e.g. where a display value can be used, discarding
unit-information.

WARNING — Special care has to be taken by OTX authors when arithmetic operations are applied on

Quantity values with display units involving an offset to the corresponding SI base unit. For instance,

consider the operation 50°C - 10°C which yields 40°K (which is -233.15°C). Physically this is correct
because the OTX runtime treats the operand 10°C as an absolute temperature quantity, not as a
temperature difference. However, OTX authors unaware of the influence of unit offsets might expect a
different result (40°C). To facilitate the handling of unit offsets, it is strongly recommended to use
separate units for absolute values and difference values, where differerence values do not have an
offset to the SI base unit. In the example above, the first operand should use an absolute temperature
unit T[°C], while the second operand should use a difference temperature unit ΔT[°C]. With this, the
operation 50°C - 10°C yields 313.15°K (40°C), which is the expected result.

17.5.3.2 Syntax

The syntax of the OTX Core arithmetic terms, comparison terms and conversion terms is specified in Part 2 of
ISO 13209.

17.5.3.3 Semantics

17.5.3.3.1 Conversions

When applied to a Quantity, the otx:ToFloat term shall return the value of the Quantity normalized to

the SI base units correlated to its display unit. For example a Quantity representing a speed value of 12.4

kilometers per hour will return a float value of 3.44 (as 12.4 km/h equal 3.44 m/s).

When applied to a Quantity, the otx:ToString term shall return a String containing the Quanitity's

display value followed by a space (Unicode character U+0020) followed by the DISPLAY-NAME of the unit

definition of its display unit. For computing the string representation of the display value, the same rules as
specified for otx:ToString(Float) shall apply. However, if the display precision property of the

Quantity is set, the fixed-point-part shall be rounded to the decimal place given by the display precision

property. Negative precision values are also allowed (expressing decimal positions to the left of the point). For
instance, a Quantity representing a speed value of 12.35 kilometers per hour with a display precision of 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

194 © ISO 2012 – All rights reserved

will be rendered as "12.4 km/h", whereas a Quantity of 1234.5 kilometers and a precision of -2 shall be

rendered as "1200 km", etc. For very large or very small values where otx:ToString yields a representation

in scientific notation, the same rules shall apply, so for instance a Quantity of 1.123*10
5
 milliseconds with a

display precision of 2 shall be rendered as "1.12E5 ms". Furthermore, if the display precision is greater than
the number of decimal digits representing the fractional part, the string shall be stuffed by zero, e.g. a
Quantity of 100.1 meters with a display precision of 3 yields "100.100 m".

When applied to a Unit, the otx:ToString term shall return a String containing the DISPLAY-NAME of

the corresponding unit definition. For example a Quantity representing a speed value of 12.4 kilometers per

hour will be rendered as "12.4 km/h".

IMPORTANT — For all other OTX Core conversion terms, the behaviour when applied to Quantity or

Unit values is unspecified. However, OTX applications may provide custom implementations of the

conversion terms for Quantity or Unit arguments, if required. Please refer to Part 2 of ISO 13209 for

further information and restrictions on conversion terms.

17.5.3.3.2 Addition/Subtraction

When Quantity values are added or subtracted, the physical dimensions of the display unit of all Quantity

operands shall be identical. That means that e.g. a distance Quantity shall only be added to another

distance Quantity (or a scalar). Otherwise an InvalidConversionException shall be thrown, e.g. when

a distance is added to a time.

If scalar operands exist, they shall be interpreted as normalized values according to the physical dimension of
the Quantity operands. This allows e.g. the addition of 2 km + 1 m + 11 which will result in a Quantity of

2012 m.

The display unit of the resulting Quantity should be set to the SI base unit corresponding to the Quantity's

physical dimension. Furthermore, the display precision of the resulting Quantity shall be the maximum of

the display precisions of the operands.

17.5.3.3.3 Multiplication, Division and Modulo

When Quantity values are multiplied or divided, a definition of the physical dimension of the resulting

Quantity has to exist in the UNIT-SPEC available to the OTX system. That means that e.g. a distance

Quantity can only be divided by a time Quantity if a distance/time unit is known to the system (e.g. km/h).

Otherwise an InvalidConversionException shall be thrown.

Scalar operands shall be interpreted "as is"; this allows e.g. the multiplication of 2 * 2 km which will result in a
Quantity of 4000 m.

The display unit of the resulting Quantity should be set to the SI base unit corresponding to the physical

dimension resulting from the operation. Furthermore, the display precision of the resulting Quantity shall be

the maximum of the display precisions of the operands.

17.5.3.3.4 Absolute Value and Negation

When the absolute value or the negation is computed from a Quantity, the display unit of the resulting

Quantity should be set to the SI base unit corresponding to the physical dimension of the original

Quantity. Furthermore, the display precision of the resulting Quantity shall be equal to the display

precision of the original Quantity.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 195

17.5.3.3.5 Relational operations

When Quantity values are compared using relational operators, an OTX runtime shall use the quantities'

normalized values for comparison. So if e.g. a Quantity of 8 kilometers is to be compared with a Quantity

of 10 miles, the runtime system shall convert both values into meters before doing the comparison.

Furthermore, the physical dimensions of the display unit of the Quantity values being compared shall be

identical – e.g. it is allowed to compare distances with each other, but it is illegal to compare a distance to a
time – in that case an InvalidConversionException shall be thrown.

If scalar operands exist, they shall be interpreted as normalized values according to the physical dimension of
the Quantity operands. This allows e.g. the comparison of 2 km < 11 which will result in false (because

the comparison is equivalent to comparing 2 km < 11m).

Concerning relational operations, Unit operands are also to be considered here: In comparisons, each Unit

operand shall be treated as if it were a Quantity with a display value of 1 (this corresponds to applying

CreateQuantity(1,unit) on the operands). This allows comparisons like e.g. m < km which equates to 1

m < 1 km which yields true. Hence, comparing units belonging to different physical dimensions shall also

produce an InvalidConversionException.

17.5.3.3.6 Other operations

Generally whenever Quantity values are used in OTX actions or terms for which no specific definition is

provided regarding the behaviour in the case of Quantity arguments, an OTX runtime shall use the

Quantity's otx:ToFloat value for computation. For instance, if a Quantity is used as an operand to the

math:Sin term, the Float value (that is, the Quantity’s normalized value) shall be used as input for the

operation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

196 © ISO 2012 – All rights reserved

18 OTX StringUtil extension

18.1 Introduction

This OTX extension provides a collection of data types and terms which operate on strings.

18.2 Data types

18.2.1 Overview

The OTX StringUtil extension defines one enumeration type named Encoding.

18.2.2 Syntax

The syntax of the Encoding declaration is shown in Figure 99.

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

otx:SimpleType

«XSDcomplexType»

Encoding

«XSDelement»

+ init: EncodingLiteral [0..1]

Figure 99 — Data model view: StringUtil data types

18.2.3 Semantics

18.2.3.1 General

The Encoding enumeration type of the OTX StringUtil extension is based on otx:SimpleType.

18.2.3.2 Encoding

Encoding is an enumeration type describing different kinds of string encodings which shall be supported by

OTX applications.

The list of allowed enumeration values is defined as follows:

 US-ASCII: String encoding specified by [ISO/IEC 646]

 ISO-8859-1: String encoding specified by [ISO/IEC 8859-1]

 UTF-8: String encoding from the UTF encoding family, see [ISO/IEC 10646]

 UTF-16BE: String encoding from the UTF encoding family, see [ISO/IEC 10646]

 UTF-16LE: String encoding from the UTF encoding family, see [ISO/IEC 10646]

 UTF-16: String encoding from the UTF encoding family, see [ISO/IEC 10646]

 BIN: Simple radix-based string encoding for binary-dump strings

 OCT: Simple radix-based string encoding for octal-dump strings

 HEX: Simple radix-based string encoding for hexadecimal-dump strings

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 197

IMPORTANT — Encoding values may occur as operands of comparisons (cf. Part 2 of ISO 13209,

relational operations). For this case, the following order relation shall apply:
US-ASCII < ISO-8859-1 < UTF-8 < UTF-16BE < UTF-16LE < UTF-16 < BIN < OCT < HEX.

IMPORTANT — When applying otx:ToString on an Encoding value, the resulting string shall be the

name of the enumeration value, e.g. otx:ToString(UTF-8)="UTF-8". Furthermore, applying

otx:ToInteger shall return the index of the value in the Encodings enumeration (smallest index is 0).

The behaviour is undefined for other conversion terms (cf. Part 2 of ISO 13209).

Encoding is an otx:SimpleType. Its members have the following semantics:

 <init> : EncodingLiteral [0..1]

This optional element stands for the hard-coded initialisation value of the identifier at declaration time.

 value : Encodings={US-ASCII|ISO-8859-1|UTF-8|UTF-16BE|UTF-16LE|UTF-16|BIN|

OCT|HEX} [1]

This attribute shall contain one of the values defined in the Encodings enumeration.

IMPORTANT — If the Encoding declaration is not explicitly initialized (omitted <init> element), the

default value shall be US-ASCII.

18.3 Exceptions

18.3.1 Overview

All elements referenced in this clause are derived from the OTX Core Exception type as defined by Part 2 of

ISO 13209. They represent the full set of exceptions added by the OTX StringUtil extension.

18.3.2 Syntax

The syntax of all OTX StringUtil exception type declarations is shown in Figure 100.

«XSDcomplexType»

UnsupportedEncodingException

«XSDcomplexType»

otx:ComplexType

«XSDcomplexType»

otx:Exception

otx:ExtensionInterface

«XSDcomplexType»

otx:DataType

«XSDcomplexType»

StringUtilException

Figure 100 — Data model view: StringUtil exceptions

18.3.3 Semantics

18.3.3.1 General

Since all OTX StringUtil exception types are implicit exceptions whithout initialisation parts, they can not be
declared constant.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

198 © ISO 2012 – All rights reserved

18.3.3.2 StringUtilException

The StringUtilException is the super class for all exceptions in the StringUtil extension. A

StringUtilException shall be used in case the more specific exception types described in the remainder

of this section do not apply to the problem at hand.

18.3.3.3 UnsupportedEncodingException

An UnsupportedEncodingException is thrown if the given encoding to be used in instances of the

Decode or Encode terms is not supported by the runtime system.

18.4 Variable access

18.4.1 Overview

As specified in Part 2 of ISO 13209, OTX extensions shall define a variable access type for each datatype
they define (exception types inclusively). All variable access types are derived from the OTX Core Variable

extension interface. The following specifies all variable access types defined for the StringUtil extension.

18.4.2 Syntax

Figure 101 shows the syntax of the StringUtil extension's variable access types.

otx:ExtensionInterface

«XSDcomplexType»

otx:Variable

«XSDattribute»

+ name: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

«XSDcomplexType»

EncodingVariable

«XSDcomplexType»

otx:ExceptionVariable

Figure 101 — Data model view: StringUtil variable access types

18.4.3 Semantics

The general semantics for all variable access types shall apply. Please refer to Part 2 of ISO 13209 for details.

18.5 Terms

18.5.1 Overview

The OTX StringUtil extension provides terms which OTX authors may use for analyzing and manipulating
String values.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 199

18.5.2 Syntax

Figure 102 shows the syntax of all terms of the StringUtil extension.

otx:StringTerm

«XSDcomplexType»

StringConcatenate

«XSDelement»

+ string: otx:StringTerm [2..*]

otx:StringTerm

«XSDcomplexType»

SubString

«XSDelement»

+ string: otx:StringTerm

+ index: otx:NumericTerm

+ count: otx:NumericTerm

otx:BooleanTerm

«XSDcomplexType»

MatchToRegularExpression

«XSDelement»

+ string: otx:StringTerm

+ regexp: otx:StringTerm

otx:IntegerTerm

«XSDcomplexType»

LengthOfString

«XSDelement»

+ string: otx:StringTerm

otx:IntegerTerm

«XSDcomplexType»

IndexOf

«XSDelement»

+ string: otx:StringTerm

+ pattern: otx:StringTerm

otx:ListTerm

«XSDcomplexType»

SplitString

«XSDelement»

+ string: otx:StringTerm

+ delimiter: otx:StringTerm

otx:StringTerm

«XSDcomplexType»

ReplaceSubString

«XSDelement»

+ string: otx:StringTerm

+ replacement: otx:StringTerm

+ index: otx:NumericTerm

otx:StringTerm

«XSDcomplexType»

ToUpper

«XSDelement»

+ string: otx:StringTerm

otx:StringTerm

«XSDcomplexType»

ToLower

«XSDelement»

+ string: otx:StringTerm

otx:StringTerm

«XSDcomplexType»

Decode

«XSDelement»

+ encoding: EncodingTerm

+ bytes: otx:ByteFieldTerm

otx:ByteFieldTerm

«XSDcomplexType»

Encode

«XSDelement»

+ encoding: EncodingTerm

+ string: otx:StringTerm

EncodingTerm

«XSDcomplexType»

EncodingLiteral

«XSDattribute»

+ value: Encodings

xsd:string

«enumerati ...

Encodings

 US-ASCII

 ISO-8859-1

 UTF-8

 UTF-16BE

 UTF-16LE

 UTF-16

 BIN

 OCT

 HEX

EncodingTerm

«XSDcomplexType»

EncodingValue

«XSDattribute»

+ valueOf: otx:OtxLink

«XSDelement»

+ path: otx:Path [0..1]

Figure 102 — Data model view: StringUtil terms

18.5.3 Semantics

18.5.3.1 ReplaceSubString

The ReplaceSubString term shall yield a new string value which is constructed out of an original string

whose contents are overwritten by a replacement string, starting at a given position. If the replacement
exceeds the right end of the original string, the length of the resulting string is expanded accordingly.

EXAMPLE For the string "Hello world" whose contents shall be replaced at index 2 by the new string "yho", the
resulting string is "Heyho world".

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

200 © ISO 2012 – All rights reserved

ReplaceSubString is an otx:StringTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the original String.

 <replacement> : otx:StringTerm [1]

Represents the String value that shall replace the part starting at index of the original String.

 <index> : otx:NumericTerm [1]

The Integer value represents the position in the original String where the replacement starts (the

first character in the original String has the index zero). Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If the index is negative or exceeds the length of the original string.

18.5.3.2 MatchToRegularExpression

The MatchToRegularExpression term shall return true, if and only if the regular expression performed

on the input string is true.

MatchToRegularExpression is an otx:BooleanTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the String which shall be analysed.

 <regexp> : otx:StringTerm [1]

This String value represents the regular expression, which shall be performed on the other String

given by the <string> argument. The regular expression shall be conforming to the PERL 5 Regular

Expression Description Version 12.

Throws:

 otx:OutOfBoundsException

If the regular expression is not conforming to the PERL Regular Expression Description.

18.5.3.3 StringConcatenate

The StringConcatenate term shall yield a new string which is the concatenation of two or more strings.

The term StringConcatenate is an otx:StringTerm. Its members have the following semantics:

 <string> : otx:StringTerm [2..*]

The elements represent the strings that shall be concatenated.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 201

18.5.3.4 SubString

The SubString term shall return a sub-string read out of a given string. The to-be-read sub-string is defined

by index and count arguments.

SubString is an otx:StringTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the input string from which a sub-string shall be extracted.

 <index> : otx:NumericTerm [1]

Represents the index starting from which the sub-string shall be read. Float values shall be truncated.

 <count> : otx:NumericTerm [1]

Represents the number of characters to be read from the original string. Reading shall not exceed the last
character in the input string (so the resulting sub-string length will be less than <count> in some cases).

Float values shall be truncated.

Throws:

 otx:OutOfBoundsException

If index is negative or exceeds the length of the input string, or if count is negative.

18.5.3.5 LengthOfString

The term LengthOfString shall return the number of characters constituting a given string.

LengthOfString is an otx:IntegerTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the input string whose length shall be retrieved.

18.5.3.6 IndexOf

The term IndexOf shall return the index within a string of the first occurrence of the specified pattern string. If

the pattern is not included in the string, the return value shall be -1.

IndexOf is an otx:IntegerTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the input string in which the pattern shall be searched.

 <pattern> : otx:StringTerm [1]

Represents the sub-string which shall be searched for in the input string.

18.5.3.7 SplitString

The term SplitString shall return a list of strings. The returned list shall contain each substring of the

original string that is terminated by a given delimiter string or by the end of the string. The substrings in the
resulting list shall be in the order in which they occur in the original string. If the delimiter does not occur in any
part of the original string, then the resulting list shall have just one element, namely the original string. If the
delimiter is the empty string, the original string shall be split into single characters. The search for delimiters in
the string shall be case sensitive.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

202 © ISO 2012 – All rights reserved

SplitString is an otx:ListTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the original string which shall be split.

 <delimiter> : otx:StringTerm [1]

Represents the delimiter string. The original string is split at each place where a delimiter string occurs.

18.5.3.8 ToUpper

The term ToUpper shall return the uppercase counterpart of a given string.

ToUpper is an otx:StringTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the input string whose uppercase counterpart shall be returned.

18.5.3.9 ToLower

ToLower shall return the lowercase counterpart of a given string.

The term ToLower is an otx:StringTerm. Its members have the following semantics:

 <string> : otx:StringTerm [1]

Represents the input string whose lowercase counterpart shall be returned.

18.5.3.10 Encode

The term Encode shall encode a String by using a given encoding. The result is a ByteField representing

the encoded string.

NOTE Encode corresponds to the method java.lang.String.getBytes(String charsetName) of the

Java™ programming language [1].

Encode is an otx:ByteFieldTerm. Its members have the following semantics:

 <encoding> : EncodingTerm [1]

This represents the encoding to be used. The set of standard encodings which shall be supported by any
runtime system is given by the Encoding enumeration (see 18.2.3.2).

In case of BIN, OCT or HEX encoding, the input string shall only contain numbers and letters defined for

the given radix. Allowed symbols are {0,1} for BIN, {0-7} for OCT and {0-9,A-F} for HEX encoding.

Also the input string shall be of correct length according to the radix. This requires that for BIN, len%8==0,

for OCT len%3==0 and for HEX len%2==0 shall apply, where len is the length of the input string. This

enforces an unambiguous and exact mapping of e.g. every two HEX symbols to exactly one byte in the

output. With this, applying e.g. Encode("A1B2", HEX) is allowed, but applying Encode("A1B2", BIN)

and Encode("A1B", HEX) will cause an OutOfBoundsException.

 <string> : otx:StringTerm [1]

Represents the string which shall be transformed to a ByteField by using the given encoding.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 203

Throws:

 UnknownEncodingException

if the encoding is not known by the runtime system.

 otx:OutOfBoundsException

if the string cannot be encoded with the given encoding.

18.5.3.11 Decode

The term Decode shall construct a String by decoding a given ByteField using a specified encoding.

NOTE Decode corresponds to the constructor java.lang.String(byte[] bytes, String charsetName) of

the Java™ programming language [1].

Decode is an otx:StringTerm. Its members have the following semantics:

 <encoding> : EncodingTerm [1]

This element represents the encoding to be used. The set of standard encodings which shall be
supported by any runtime system is given by the Encoding enumeration (see 18.2.3.2).

When using BIN, OCT or HEX for getting a dump of a ByteField, the resulting string shall not contain

delimiters in between single byte dump parts, nor shall there be a prefix like e.g. "0x" marking the radix.

Furthermore, leading zeros shall not be removed during bytewise translation. Therefore e.g. when
applying decode({00000000,11100001,00001011}, HEX), the result shall be "00E10B".

 <bytes> : otx:ByteFieldTerm [1]

Represents the ByteField which shall be transformed to a String by using the given encoding.

Throws:

 UnknownEncodingException

if the encoding is not known by the runtime system.

 otx:OutOfBoundsException

if the bytes in the ByteField are not valid in the given encoding.

18.5.3.12 EncodingTerm

The abstract type EncodingTerm is an otx:SimpleTerm. It serves as a base for all concrete terms which

return an Encoding value (see 18.2.3.2). It has no special members.

18.5.3.13 EncodingValue

This term returns the Encoding stored in an Encoding variable. For more information on value-terms and

the syntax and semantics of the valueOf attribute and <path> element, please refer to Part 2 of ISO 13209.

Associated checker rules:

 Core_Chk053 – no dangling OtxLink associations (see Part 2 of ISO 13209)

Throws:

 otx:OutOfBoundsException

Only if a <path> is set: The <path> points to a location which does not exist (like a list index

exceeding list length, or a map key which is not part of the map).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

204 © ISO 2012 – All rights reserved

18.5.3.14 EncodingLiteral

This term shall return an Encoding value (see 18.2.3.2) from a hard-coded literal.

EncodingLiteral is an EncodingTerm. Its members have the following semantics:

 value : Encodings={US-ASCII|ISO-8859-1|UTF-8|UTF-16BE|UTF-16LE|UTF-16|BIN|

OCT|HEX} [1]

This attribute shall contain one of the values defined in the Encodings enumeration.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 205

Annex A
(normative)

Comprehensive checker rule listing

A.1 Overview

The checker rules defined in the listing below extend the set of checker rules given by Part 2 of ISO 13209.
The rules are categorized according to the OTX extension they belong to.

NOTE Checker rule names are composed of a prefix relating to respective extension, a running number and a long
name, so for instance "Measure_Chk002 – correct ExecuteDeviceService arguments".

A.2 Listing

A.2.1 Checker rules for DiagCom extension

DiagCom_Chk001 – No Path in ExecuteDiagService response parameter arguments

Severity: Critical

Criterion: The <target> variable in any of an ExecuteDiagService action's response parameter

mappings shall not be part of a compound data structure like an otx:List or otx:Map. Therefore the

<path> member element of <target> shall not be used within any ResponseParameter.

A.2.2 Checker rules for EventHandling extension

Event_Chk001 – Correct data types of ThresholdExceededEventSource arguments

Severity: Critical

Criterion: In a ThresholdExceededEventSource, the data type of the monitored variable (given by the

<variable> element) and the return type of the lower and upper threshold terms (given by

<lowerThreshold> and <upperThreshold>) shall accord.

Event_Chk002 – No Path in MonitorChange related terms

Severity: Critical

Criterion: The <variable> in monitor change event related terms shall not be part of a compound data

structure like an otx:List or otx:Map. Therefore the <path> member element of <variable> shall not

be used in within the scope of such terms. This rule applies to the terms MonitorChangeEventSource, its

descendant ThresholdExceededEventSource as well as IsMonitorChangeEvent.

A.2.3 Checker rules for Measure extension

Measure_Chk001 – correct target for ExecuteDeviceService and DeviceEventSource

Severity: Critical

Criterion: The device attribute of an ExecuteDeviceService action or a DeviceEventSource term

shall refer to a Signature without realisation or a Signature with DeviceSignature realisation. No

other SignatureRealisation type but the DeviceSignature type shall be allowed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

206 © ISO 2012 – All rights reserved

Measure_Chk002 – executed device service is declarated in device signature

Severity: Critical

Criterion: The to-be-executed device service given by an ExecuteDeviceService action (value of the

action's service attribute) shall be declared in the corresponding device signature (given by the action's

device attribute).

Measure_Chk003 – correct ExecuteDeviceService arguments

Severity: Critical

Criterion: In an ExecuteDeviceService action, the given arguments shall match to the corresponding

service parameter declaration in the corresponding device signature. This concerns parameter names as well
as data types.

Measure_Chk004 – ExecuteDeviceService input argument omission

Severity: Critical

Criterion: For any omitted input argument (when calling a device service), an initial value shall be defined in
the declaration of the corresponding parameter in the device signature.

Measure_Chk005 – No Path in ExecuteDeviceService ouput arguments

Severity: Critical

Criterion: The <target> variable in any of the ExecuteDeviceService action's output arguments shall

not be part of a compound data structure like an otx:List or otx:Map. Therefore the <path> member

element of <target> shall not be used within any DeviceServiceOutArgument.

A.2.4 Checker rules for HMI extension

HMI_Chk001 – correct list type for ChoiceDialog options

Severity: Critical

Criterion: The list given by the <options> element in a ChoiceDialog action shall be a list of strings. No

other item types are allowed.

HMI_Chk002 – correct target for OpenScreen

Severity: Critical

Criterion: The screen attribute of an OpenScreen action shall refer to a Signature without realisation or

a Signature with ScreenSignature realisation. No other SignatureRealisation type but the

ScreenSignature type shall be allowed.

HMI_Chk003 – correct OpenScreen arguments

Severity: Critical

Criterion: In an OpenScreen action, the given arguments shall match to the corresponding screen parameter

declaration in the corresponding screen signature. This concerns parameter names as well as data types.
There shall be no arguments which have no counterpart parameter declaration in the signature.

HMI_Chk004 – OpenScreen term, input and input/output argument omission

Severity: Critical

Criterion: For any omitted term, input or input/output argument (when opening a screen by OpenScreen

action), an initial value shall be defined in the declaration of the corresponding parameter in the screen
signature.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 207

HMI_Chk005 – no Path in connected OpenScreen arguments

Severity: Critical

Criterion: The <variable> in any of an OpenScreen action's in-, inout- and out-arguments shall not be part

of a compound data structure like an otx:List or otx:Map. Therefore the <path> member element of

<variable> shall not be used within any of these argument definitions.

A.2.5 Checker rules for Quantities extension

Quantities_Chk001 – correct unit linking

Severity: Critical

Criterion: For all elements of type quant:Unit or i18n:UnitGroup, only simple XLinks shall be allowed,

as specified by [W3C XLink]. Therefore, xlink:type="simple" shall be set as attribute of quant:Unit or

i18n:UnitGroup elements.

Quantities_Chk002 – no dangling unit definition links

Severity: Warning

Criterion: Unit definitions referenced by UnitLiteral terms should exist in the unit specification.

Comment: In addition to this checker rule, the exception UnknownUnitException is defined for

UnitLiteral, since it cannot always be guaranteed that the unit specification available at

authoring/checking time is identical to the unit specification available at runtime.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

208 © ISO 2012 – All rights reserved

Annex B
(normative)

OTX DiagCom extension data type mappings

B.1 General considerations

OTX has a more simplified typing system when compared to the data type definitions of the ODX [ISO 22901]
or MVCI [ISO 22900] standard. When executing test sequences that are using the OTX DiagCom extension
together with an ODX/MVCI based communication component, an OTX runtime system needs to be able to
map OTX data types to ODX/MVCI data types and vice versa. The following rules apply:

 When converting from OTX data types to ODX/MVCI data types, the runtime system has to follow the
mapping laid out in the tables defined in the remainder of this annex.

 The conversion has to work within the groupings as provided by the OTX data type definition. E.g. an
otx:Float can be automatically converted to a MVCI A_FLOAT32 or a MVCI A_FLOAT64,

depending on the target data type required by the diagnostic data set.

 In case a conversion can not be made because the value of an OTX variable exceeds the limits of
the target data type the OTX runtime system should throw an otx:OutOfBoundsException.

 In case a conversion can not be made because the value of an otx:String variable contains

characters that can not be mapped to the target string data type the OTX runtime system should
throw an otx:TypeMismatchException. This can happen when an otx:String containing

Unicode characters outside of the ASCII range is supposed to be mapped onto an A_ASCIISTRING
MVCI data type parameter.

 When converting from ODX/MVCI data types to OTX data types, the runtime system has to follow the
mapping laid out in the tables defined in the remainder of this annex.

B.2 Mapping ODX data types to OTX data types

This mapping definition is provided for OTX runtime systems working in conjunction with an ODX-compliant
communication component not conforming to the MVCI standard.

Table B.1 — Mapping ODX data types to OTX data types

ODX data type OTX data type

A_INT32 otx:Integer

A_UINT32 otx:Integer

A_FLOAT32 otx:Float

A_FLOAT64 otx:Float

A_ASCIISTRING otx:String

A_UTF8STRING otx:String

A_UNICODE2STRING otx:String

A_BYTEFIELD otx:ByteField

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 209

B.3 Mapping MVCI data types to OTX data types

This mapping definition is provided for OTX runtime systems working in conjunction with an MVCI
communication component.

Table B.2 — Mapping MVCI data types to OTX data types

MVCI data type OTX data type

A_BOOLEAN otx:Boolean

A_BITFIELD otx:ByteField

A_BYTEFIELD otx:ByteField

A_FLOAT32 otx:Float

A_FLOAT64 otx:Float

A_INT16 otx:Integer

A_INT32 otx:Integer

A_INT64 otx:Integer

A_UINT16 otx:Integer

A_UINT32 otx:Integer

A_UINT64 otx:Integer

A_UINT8 otx:Integer

A_ASCIISTRING otx:String

A_UNICODE2STRING otx:String

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

210 © ISO 2012 – All rights reserved

Annex C
(normative)

OTX DiagMetaData auxiliary for the OTX DiagCom extension

C.1 Description

In constrast to OTX extensions like OTX DiagCom or OTX HMI, the OTX DiagMetaData auxiliary has a
special role. Its purpose is not to directly extend the feature set of OTX by providing additional actions, terms
and data types for handling a certain runtime usecase – OTX diagnostic sequences can be built and executed
without the use of the DiagMetaData auxiliary. Instead, this interface only serves an auxiliary function and has
no runtime relevance. It is, however, quite important in the actual process of constructing OTX sequences with
an OTX editor.

When an author is building an OTX sequence with OTX DiagCom functionality, one of the desired and most
helpful features of an editor is to support the user by providing access to the underlying diagnostic data (e.g.
ODX data). If the author wants to establish communication and creates a ComChannel using the

GetComChannel term, the editor tool can list all available channels allowing the user to pick the one he wants

to open. After the author has selected one of the channels, he might want to insert a CreateDiagService

action into the sequence. Again, the editor can list all available diagnostic services for a selected
communication channel by looking into the data.

Oftentimes, the author might want to create a sub-procedure and use a DiagService or Parameter as an

input argument to reuse functionality and reduce redundancy in the project. This is possible by using standard
OTX features; the sequence can be executed successfully without a problem. The issue here is, however, that
the editor cannot support the author in creating the sub-procedure by providing a look into the diagnostic data
at authoring time. If a sub-procedure expects a DiagService parameter, the editor cannot – without complex

and time-consuming analysis – know on which communication channel to look for the wanted diagnostic
service before actually executing code.

This is the (authoring time) information gap that the OTX DiagMetaData auxiliary is meant to close.

C.2 Syntax

The OTX DiagMetaData auxiliary represents a standalone XML schema which can be used within any
<metaData> section of OTX documents. The auxiliary schema introduces the top-level XML element

<diagMetaData>, the DiagMetaData type as well as the MetaDataPath type, as shown in Figure C.1

(please refer to Part 2 of ISO 13209 for details on the OTX Core type otx:MetaData).

«XSDcomplexType»

DiagMetaData

«XSDelement»

+ comChannelName: StringLiteral [0..1]

+ ecuVariantName: StringLiteral [0..1]

+ parameterContainerName: StringLiteral [0..1]

+ pathToElement: MetaDataPath [0..1]

«XSDtopLevelElement»

diagMetaData

«XSDcomplexType»

MetaDataPath

«XSDelement»

+ stepByName: StringLiteral

+ stepByIndex: IntegerLiteral

+ stepBySemantic: StringLiteral

+ stepByBranchName: StringLiteral

«XSDchoice»

DiagServ iceIdentification

«XSDelement»

+ diagServiceSemantic: StringLiteral

+ diagServiceName: StringLiteral

+ diagServiceSession: StringLiteral

0..1

Figure C.1 — Data model view: OTX DiagMetaData auxiliary

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 211

NOTE The XSD complex type MetaDataPath is of <xsd:choice> [1..*] content-type, which is not explicitly

shown in the figure above.

C.3 Semantics

The OTX DiagMetaData auxiliary provides a standardized XML structure for being used within <metaData>

elements in OTX documents. More precisely, the <diagMetaData> element shall appear (if used) within the

xsd:any content of a <data> element of a <diagMetaData> element. This way, the information needed to

provide context to e.g. an input argument of a sub-procedure can be attached to the procedure without
affecting the runtime semantics of the procedure.

IMPORTANT — The information in <diagMetaData> is not relevant for execution and shall only

support the author by providing context information at authoring time.

The top-level <diagMetaElement> is of DiagMetaData type. It consists of a set of string literals. These are

identifiers which represent the missing context information that is needed to locate the input arguments in the
data used by the editor. E.g. if a DiagService is used as an input argument, the name of the communication

channel (in ODX terminology: the SHORT-NAME of the LOGICAL-LINK) can be stored here; If a Parameter

is used, the name of both communication channel and diagnostic service can be stored.

There are multiple elements an editor might need information about:

 <comChannelName> : otx:StringLiteral [0..1]

This element represents the name of the used communication channel.

 <ecuVariantName> : otx:StringLiteral [0..1]

This element represents the name of the identified variant.

 DiagServiceIdentification : xsd:choice [0..1]

While the communication channel and variant are represented by their unique names, a diagnostic
service can be created in several different ways in OTX: By the OTX DiagCom extension's creation terms
diag:CreateDiagServiceByName and diag:CreateDiagServiceBySemantic as well as by the

OTX Flash extension's creation terms flash:CreateFlashJob, flash:CreateFlashJobByName

and flash:CreateFlashJobBySemantic. To find data inside a diagnostic service that is used as an

input argument for a procedure, the editor therefore needs the name, the semantic or the flash session's
name, depending on what information is available. Therefore, this optional xsd:choice allows choosing

between the following elements:

 <diagServiceName> : otx:StringLiteral [1]

The diagnostic service shall be identified in the data by the name given by this element.

 <diagServiceSemantic> : otx:StringLiteral [1]

The diagnostic service shall be identified in the data by the semantic given by this element.

 <diagServiceSession> : otx:StringLiteral [1]

The diagnostic service shall be identified in the data by the session-name given by this element.

 <parameterContainerName> : otx:StringLiteral [0..1]

This element represents the name of the parameter container which contains the parameter the editor is
trying to find (e.g. a specific ECU response in a parameter container needs to be located).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

212 © ISO 2012 – All rights reserved

 <pathToElement> : MetaDataPath [0..1] (this type is of xsd:choice [1..*] content)

This element describes the path to a specific parameter within a parameter hierarchy. A parameter path
consists of a series of identifiers (steps) to find a specific parameter within a parameter tree structure:

 <stepByName> : otx:StringLiteral [0..1]

Represents a step by name in the path to the parameter.

 <stepByIndex> : otx:StringLiteral [0..1]

Represents a step by index in the path to the parameter. This is used for structures or fields where
the items in the structure or field do not carry individual names.

NOTE Depending on the runtime implementation, the index of a parameter within a structure might not be
deterministic. Use with care in this situation.

 <stepBySemantic> : otx:StringLiteral [0..1]

Identifies the parameter by semantic (a parameter can be identified via its semantic on each layer of
the parameter structure).

 <stepByBranchName> : otx:StringLiteral [0..1]

The identifier of the branch element in case one is used in the parameter hierarchy.

NOTE In case of an ODX/MVCI based system, the system knows three elements which act as branches of a
decision: TABLE-ROW, CASE and ENV-DATA. The element <stepByBranchName> can be used to store the

name of such an element to reproduce the decision.

C.4 Example

EXAMPLE 1 Sample of "Procedure_A" in OTX-file "DiagMetaDataExample.otx"

<procedure name="Procedure_A" id="p1">

 <specification>Demonstration of DiagMetaData auxiliary features</specification>

 <realisation>

 <declarations>

 <variable name="cc" id="v1">

 <specification>comm channel handle for an ECU</specification>

 <realisation>

 <dataType xsi:type="diag:ComChannel"/>

 </realisation>

 </variable>

 </declarations>

 <flow>

 <action id="a1">

 <specification>open comm channel to "MY_ECU", assign to cc</specification>

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ComChannelVariable" name="cc"/>

 <term xsi:type="diag:GetComChannel">

 <diag:identifier xsi:type="StringLiteral" value="MY_ECU"/>

 <diag:performVariantSelection xsi:type="BooleanLiteral" value="true"/>

 </term>

 </realisation>

 </action>

 <!-- Do something on that communication channel, e.g. execute a service, etc. -->

 <action id="a2">

 <specification>Call "Procedure_B", pass cc as an input argument</specification>

 <realisation xsi:type="ProcedureCall" procedure="Procedure_B">

 <arguments>

 <inArg param="channel">

 <term xsi:type="diag:ComChannelValue" valueOf="cc"/>

 </inArg>

 </arguments>

 </realisation>

 </action>

 </flow>

 </realisation>

</procedure>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 213

EXAMPLE 2 Sample of "Procedure_B" in OTX-file "DiagMetaDataExample.otx"

<procedure name="Procedure_B" id="p2">

 <specification>Demonstration of DiagMetaData auxiliary features</specification>

 <realisation>

 <parameters>

 <inParam name="channel" id="par1">

 <specification>comm channel passed in from the calling procedure</specification>

 <metaData>

 <data key="dmd1">

 <dmd:diagMetaData>

 <dmd:comChannelName value="MY_ECU"/>

 <dmd:ecuVariantName value="VARIANT_A"/>

 </dmd:diagMetaData>

 </data>

 </metaData>

 <realisation>

 <dataType xsi:type="diag:ComChannel"/>

 </realisation>

 </inParam>

 </parameters>

 <flow>

 <!-- Do something on that communication channel, e.g. execute a service, etc. -->

 </flow>

 </realisation>

</procedure>

The OTX code snippets above demonstrate the use of DiagMetaData for a procedure call: In Procedure_A,

a communication channel for an ECU MY_ECU is created and assigned to a ComChannel variable cc. This

variable is passed to Procedure_B via procedure call. Procedure_B might be called by multiple other

procedures, which means that Procedure_B can not know the actual name of the ECU at authoring time.

The actual ECU the ComChannel connects to will only be known at runtime. When the OTX author accesses

the ComChannel variable in Procedure_B, e.g. while implementing a CreateDiagServiceByName term,

the editor cannot support the author. For instance, listing all available diagnostic services for that
ComChannel variable would not be possible.

For supporting this, the author can provide the editor with the missing information by using the
<diagMetaData> element. In the example above, the author specified the actual ECU name and the ECU

variant name for which he wants support.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

214 © ISO 2012 – All rights reserved

Annex D
(normative)

OTX standard signature documents

D.1 OTX Job standard signatures (JobInterfaces.otx)

<?xml version="1.0" encoding="UTF-8"?>

<otx name="JobInterfaces" package="org.iso.otx.signatures" id="otxjobstdsig"

 timestamp="2010-03-18T14:40:10" version="1.0"

 xmlns="http://iso.org/OTX/1.0.0"

 xmlns:diag="http://iso.org/OTX/1.0.0/DiagCom"

 xmlns:job="http://iso.org/OTX/1.0.0/Job"

 xmlns:flash="http://iso.org/OTX/1.0.0/Flash"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <signatures>

 <signature name="SingleEcuJob" id="sej">

 <specification>Declaration of a single job entry point</specification>

 <realisation xsi:type="ProcedureSignature">

 <parameters>

 <inParam name="comChannelHandle" id="sej_p1">

 <specification> Communication Channel from Tester Environment</specification>

 <realisation><dataType xsi:type="diag:ComChannel"/></realisation>

 </inParam>

 <inoutParam name="jobHandle" id="sej_p2">

 <specification> Job handle with parameters from outside </specification>

 <realisation><dataType xsi:type="diag:DiagService"/></realisation>

 </inoutParam>

 </parameters>

 </realisation>

 </signature>

 <signature name="FlashJob" id="fj">

 <specification>Declaration of a flash job entry point</specification>

 <realisation xsi:type="ProcedureSignature">

 <parameters>

 <inParam name="comChannelHandle" id="fj_p1">

 <specification> Communication Channel from Tester Environment</specification>

 <realisation><dataType xsi:type="diag:ComChannel"/></realisation>

 </inParam>

 <inParam name="Session" id="fj_p2">

 <specification>Session variable from Tester</specification>

 <realisation><dataType xsi:type="flash:FlashSession"/></realisation>

 </inParam>

 <inoutParam name="jobHandle" id="fj_p3">

 <specification> Job handle with parameters from outside </specification>

 <realisation><dataType xsi:type="diag:DiagService"/></realisation>

 </inoutParam>

 </parameters>

 </realisation>

 </signature>

 <signature name="SecurityAccessJob" id="saj">

 <specification>Declaration of a security access job entry point</specification>

 <realisation xsi:type="ProcedureSignature">

 <parameters>

 <inParam name="requestParameters" id="saj_p1">

 <realisation><dataType xsi:type="diag:Request"/></realisation>

 </inParam>

 <inParam name="comChannelHandle" id="saj_p2">

 <specification> Communication Channel from Tester Environment</specification>

 <realisation><dataType xsi:type="diag:ComChannel"/></realisation>

 </inParam>

 <inoutParam name="jobHandle" id="saj_p3">

 <specification> Job handle with parameters from outside </specification>

 <realisation><dataType xsi:type="diag:DiagService"/></realisation>

 </inoutParam>

 </parameters>

 </realisation>

 </signature>

 </signatures>

</otx>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 215

Annex E
(informative)

Test sequence examples

E.1 Diagnostic Communication (IFD_DiagCom.xsd)

E.1.1 DiagComInlineExample.otx

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<otx name="DiagComInlineExample" package="otx.diagcom.example" id="otx1"

 version="1.0" timestamp="2001-12-31T12:00:00"

 xmlns="http://iso.org/OTX/1.0.0"

 xmlns:diag="http://iso.org/OTX/1.0.0/DiagCom"

 xmlns:quant="http://iso.org/OTX/1.0.0/Quantities"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <procedures>

 <procedure name="main" visibility="PUBLIC" id="p1">

 <realisation>

 <declarations>

 <variable name="comChannelHandle" id="v1">

 <realisation>

 <dataType xsi:type="diag:ComChannel"/>

 </realisation>

 </variable>

 <variable name="outputParamHandle" id="v2">

 <realisation>

 <dataType xsi:type="diag:Parameter"/>

 </realisation>

 </variable>

 </declarations>

 <flow>

 <action id="id_selectComChannel">

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ComChannelVariable" name="comChannelHandle"/>

 <term xsi:type="diag:GetComChannel">

 <diag:identifier xsi:type="StringLiteral" value="ODX_ComChannelName"/>

 </term>

 </realisation>

 </action>

 <action id="id_ExecuteDiagService">

 <realisation xsi:type="diag:ExecuteDiagService">

 <diag:diagService xsi:type="diag:CreateDiagServiceByName">

 <diag:comChannel xsi:type="diag:ComChannelValue" valueOf="comChannelHandle"/>

 <diag:name xsi:type="StringLiteral" value="ODX_DiagServiceName"/>

 </diag:diagService>

 <diag:requestParameters>

 <diag:requestParam>

 <diag:value xsi:type="StringLiteral" value="ExampleParameterValue"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="ODX_RequestParameterShortName"/>

 </diag:path>

 </diag:requestParam>

 </diag:requestParameters>

 <diag:responseParameters>

 <diag:name xsi:type="StringLiteral" value="ODX_PositiveResponseName"/>

 <diag:responseParam>

 <diag:target xsi:type="diag:ParameterVariable" name="outputParamHandle"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="ODX_ResponseParameterShortName"/>

 </diag:path>

 </diag:responseParam>

 </diag:responseParameters>

 </realisation>

 </action>

 <action id="id_CloseComChannel">

 <realisation xsi:type="diag:CloseComChannel">

 <diag:comChannel xsi:type="diag:ComChannelVariable" name="comChannelHandle"/>

 </realisation>

 </action>

 </flow>

 </realisation>

 </procedure>

 </procedures>

</otx>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

216 © ISO 2012 – All rights reserved

E.1.2 DiagComDynamicExample.otx

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<otx name="DiagComDynamicExample" package="otx.diagcom.example" id="otx1"

 version="1.0" timestamp="2001-12-31T12:00:00"

 xmlns="http://iso.org/OTX/1.0.0"

 xmlns:diag="http://iso.org/OTX/1.0.0/DiagCom"

 xmlns:quant="http://iso.org/OTX/1.0.0/Quantities"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <procedures>

 <procedure name="main" visibility="PUBLIC" id="p1">

 <realisation>

 <declarations>

 <variable name="comChannelHandle" id="v1">

 <realisation>

 <dataType xsi:type="diag:ComChannel"/>

 </realisation>

 </variable>

 <variable name="diagServiceHandle" id="v2">

 <realisation>

 <dataType xsi:type="diag:DiagService"/>

 </realisation>

 </variable>

 <variable name="requestHandle" id="v3">

 <realisation>

 <dataType xsi:type="diag:Request"/>

 </realisation>

 </variable>

 <variable name="inputParamHandle" id="v4">

 <realisation>

 <dataType xsi:type="diag:Parameter"/>

 </realisation>

 </variable>

 <variable name="resultHandle" id="v5">

 <realisation>

 <dataType xsi:type="diag:Result"/>

 </realisation>

 </variable>

 <variable name="responseHandle" id="v6">

 <realisation>

 <dataType xsi:type="diag:Response"/>

 </realisation>

 </variable>

 <variable name="outputParamHandle" id="v7">

 <realisation>

 <dataType xsi:type="diag:Parameter"/>

 </realisation>

 </variable>

 <variable name="diagServiceResultQuantity" id="v8">

 <realisation>

 <dataType xsi:type="quant:Quantity"/>

 </realisation>

 </variable>

 <variable name="diagServiceResultValue" id="v9">

 <realisation>

 <dataType xsi:type="Integer"/>

 </realisation>

 </variable>

 <variable name="diagServiceResultUnit" id="v10">

 <realisation>

 <dataType xsi:type="quant:Unit"/>

 </realisation>

 </variable>

 </declarations>

 <flow>

 <action id="id_selectComChannel">

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ComChannelVariable" name="comChannelHandle"/>

 <term xsi:type="diag:GetComChannel">

 <diag:identifier xsi:type="StringLiteral" value="ODX_ComChannelName"/>

 </term>

 </realisation>

 </action>

 <action id="id_getServiceHandle">

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:DiagServiceVariable" name="diagServiceHandle"/>

 <term xsi:type="diag:CreateDiagServiceByName">

 <diag:comChannel xsi:type="diag:ComChannelValue" valueOf="comChannelHandle"/>

 <diag:name xsi:type="StringLiteral" value="ODX_ExampleServiceShortName"/>

 </term>

 </realisation>

 </action>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 217

 <action id="id_getRequestHandle">

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:RequestVariable" name="requestHandle"/>

 <term xsi:type="diag:GetRequest">

 <diag:diagService xsi:type="diag:DiagServiceValue" valueOf="diagServiceHandle"/>

 </term>

 </realisation>

 </action>

 <action id="id_getParameterFromRequest">

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ParameterVariable" name="inputParamHandle"/>

 <term xsi:type="diag:GetParameterByPath">

 <diag:parameterContainer xsi:type="diag:RequestValue" valueOf="requestHandle"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="ODX_RequestParameterShortName"/>

 </diag:path>

 </term>

 </realisation>

 </action>

 <action id="id_setValueOfParameter">

 <realisation xsi:type="diag:SetParameterValue">

 <diag:parameter xsi:type="diag:ParameterValue" valueOf="inputParamHandle"/>

 <diag:value xsi:type="StringLiteral" value="TestStringValue"/>

 </realisation>

 </action>

 <action id="id_executeDiagService">

 <realisation xsi:type="diag:ExecuteDiagService">

 <diag:diagService xsi:type="diag:DiagServiceValue" valueOf="diagServiceHandle"/>

 <diag:result xsi:type="diag:ResultVariable" name="resultHandle"/>

 </realisation>

 </action>

 <action id="id_getResponseFromResult">

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ResponseVariable" name="responseHandle"/>

 <term xsi:type="diag:GetFirstResponse">

 <diag:result xsi:type="diag:ResultValue" valueOf="resultHandle"/>

 </term>

 </realisation>

 </action>

 <action id="id_getParameterFromResponse">

 <realisation xsi:type="Assignment">

 <result xsi:type="diag:ParameterVariable" name="outputParamHandle"/>

 <term xsi:type="diag:GetParameterByPath">

 <diag:parameterContainer xsi:type="diag:ResponseValue" valueOf="responseHandle"/>

 <diag:path>

 <stepByName xsi:type="StringLiteral" value="ODX_ResponseParameterShortName"/>

 </diag:path>

 </term>

 </realisation>

 </action>

 <action id="id_getResponseParameterQuantity">

 <realisation xsi:type="Assignment">

 <result xsi:type="quant:QuantityVariable" name="diagServiceResultQuantity"/>

 <term xsi:type="diag:GetParameterValueAsQuantity">

 <diag:parameter xsi:type="diag:ParameterValue" valueOf="outputParamHandle"/>

 </term>

 </realisation>

 </action>

 <action id="id_getResponseParameterValue">

 <realisation xsi:type="Assignment">

 <result xsi:type="IntegerVariable" name="diagServiceResultValue"/>

 <term xsi:type="quant:GetDisplayValue">

 <quant:quantity xsi:type="quant:QuantityValue" valueOf="diagServiceResultQuantity"/>

 </term>

 </realisation>

 </action>

 <action id="id_getResponseParameterUnit">

 <realisation xsi:type="Assignment">

 <result xsi:type="quant:UnitVariable" name="diagServiceResultUnit"/>

 <term xsi:type="quant:GetDisplayUnit">

 <quant:quantity xsi:type="quant:QuantityValue" valueOf="diagServiceResultQuantity"/>

 </term>

 </realisation>

 </action>

 <action id="id_closeComChannel">

 <realisation xsi:type="diag:CloseComChannel">

 <diag:comChannel xsi:type="diag:ComChannelVariable" name="comChannelHandle"/>

 </realisation>

 </action>

 </flow>

 </realisation>

 </procedure>

 </procedures>

</otx>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

218 © ISO 2012 – All rights reserved

Annex F
(informative)

OTX DiagComRaw extension for resource-restrained systems

F.1 Introduction

IMPORTANT — The OTX DiagComRaw extension is a recommendation only; it is not a part of the
standard set of OTX extensions. If an extension is needed which supports the use case described
below, it should not be developed as a fully proprietary extension – instead, the OTX DiagComRaw
recommendation described in the following should be followed.

The purpose of the OTX DiagComRaw extension is to provide the necessary OTX elements for performing
diagnostic vehicle communication as a self-sufficient script. In contrast, the OTX DiagCom extension (cf. 6) is
working on a symbolic level, only using identifier references to indicate the ECU or diagnostic service to use.
This means that to execute an OTX sequence that is using elements from the DiagCom extension for vehicle
communication it is always required to have a runtime component that is able to translate the symbolic level of
the DiagCom extension to the bits&bytes level of actual ECU communication. Such functionality is e.g.
provided by an MVCI [ISO 22900] runtime system component. The DiagComRaw extension addresses the
use case where there is no such software component available in a runtime environment, requiring the OTX
sequence to comprise any information that it necessary for performing diagnostic vehicle communication. To
this end, DiagComRaw builds on DiagCom, extending specific DiagCom elements to contain additional
information required for actual diagnostic vehicle communication. The added information is provided in the
form of snippets of ODX [ISO 22901] diagnostic data descriptions.

Specifically, the following diagnostic use case has been considered: Creating diagnostic sequences that can
run stand-alone e.g. on a target environment with limited resources.

NOTE 1 It is an explicit design goal of the DiagComRaw extension to reuse existing standards and definitions where

possible. For this reason this extension only integrates data model definitions from both the OTX and ODX standard where
possible. This way it becomes a trivial task e.g. to create a software converter that accepts an OTX DiagCom-based

sequence and corresponding ODX data definitions as input and generates an all-in-one standalone OTX DiagComRaw
sequence.

NOTE 2 Any of the definitions in this clause are derived from (and are aligned with) the ECU Variant Identification
definitions from the ODX ISO standard. When in doubt, the ODX standard should be referred to for detailed information on

how ECU Variant Identification should be performed and how the relevant ODX data is to be used.

The OTX DiagComRaw extension provides a new action and a new term which are both based on features
specified by the OTX DiagCom extension: the ExecuteDiagService action and the GetComChannel term.

These elements comprise additional information that is necessary to make an OTX sequence executable
without requiring any added external content. Details on these additional information containers are provided
in the following sections.

F.2 Using DiagComRaw

This clause explains how to use the OTX DiagComRaw extension for creating ECU variant-aware diagnostic
sequences and how to use this OTX sequence at runtime.

F.2.1 Creating OTX data for variant identification

When an OTX sequence containing DiagComRaw elements is created, it needs to contain information from
the ODX data set that is referenced by the ExecuteDiagService action nodes in the sequence. Two kinds

of additional information are required: data to enable the DiagComRaw OTX sequence to identify the variants
of ECUs present at runtime, as well as any ODX definitions that are necessary to correctly interpret the
request and response parameters of diagnostic services according to the ECU variant present in the vehicle.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 219

This clause describes how to add the required ODX data for performing ECU variant identification to an OTX
sequence.

Any data that is required for performing ECU variant identification in a DiagComRaw OTX sequence needs to
be added to the VariantIdentExpectations element of any GetComChannel action node in the OTX

sequence. To this end, the author/tool creating the DiagComRaw OTX sequence has to perform the following
steps:

Looking at the ECU BASE-VARIANT pointed to by the identifier of the GetComChannel term:

a) For each DIAG-COMM referenced by any MATCHING-PARAMETER within all ECU-VARIANT-PATTERNs in

the ECU-VARIANTs based on that BASE-VARIANT (ECU-VARIANTs are to be iterated in alphabetical

order)

1) Create an OTX <variantIdentService> element containing this DIAG-COMMs REQUEST

definition

2) For each OUT-PARAM-IF of the DIAG-COMMs referenced by the MATCHING-PARAMETER

i) Create an OTX <RESPONSE> element underneath the <variantIdentService> element

contatining the relevant RESPONSE definition,

ii) Create a <responseAssignment> element containing the SHORT-NAME of the response

parameter referenced by the ODX MATCHING-PARAMETER and assign a unique id to the

uniqueParameterId attribute of this <responseAssignment>

iii) Add any DOPs or UNIT definitions referenced by any of the REQUESTs or RESPONSEs that were

added in the previous steps to the <DIAG-DATA-DICTIONARY-SPEC> element in the

<variantIdentService> container

3) For each ECU-VARIANT-PATTERN in the ECU-VARIANTs inheriting from this ECU BASE-VARIANT

in the ODX data (in the order defined in the ODX data)

i) Create a <variantIdentExpectation> element, setting the variantName attribute to the

SHORT-NAME of the ECU-VARIANT that contains the current ECU-VARIANT-PATTERN

ii) For each MATCHING-PARAMETER element contained in this ECU-VARIANT-PATTERN element

(in the order defined in the ODX data),

I) Create a <matchingPattern> element in the current <variantIdentExpectation>

element, setting its expectedValue attribute to the EXPECTED-VALUE attribute of the

ODX MATCHING-PARAMETER and assigning the unique parameter id pointing to the

appropriate <variantIdentService> element's <responseAssignment>, see steps

above.

F.2.2 Creating OTX data for diagnostic service execution

When an OTX sequence containing DiagComRaw elements is created, it needs to contain information from
the ODX data set that is referenced by the ExecuteDiagService action nodes in the sequence. Two kinds

of additional information are required: data to enable the DiagComRaw OTX sequence to identify the variants
of ECUs present at runtime, as well as any ODX definitions that are necessary to correctly interpret the
request and response parameters of diagnostic services according to the ECU variant present in the vehicle.
This clause describes how to add the required ODX data for executing ECU variant-aware diagnostic services.

Any data that is required for performing ECU variant-aware diagnostic services needs to be added to the
<odxSourceData> element of any ExecuteDiagService action node in the OTX sequence. To this end,

the author/tool creating the DiagComRaw OTX sequence has to perform the following steps:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

220 © ISO 2012 – All rights reserved

a) Analyze the ODX inheritance hierarchy of the ECU the diagnostic service referenced by this
ExecuteDiagService action is defined in,

b) For each ECU-VARIANT that has a NOT-INHERITED relationship to that DIAG-COMM, add a

<nonInheritingVariant> element containing its SHORT-NAME, below <odxSourceData>,

c) If available, add the ODX <REQUEST> element definition of the DIAG-COMM as defined on the ECU

BASE-VARIANT as an OTX <REQUEST> (VariantEnabledRequest) element, with the attribute

isBaseVariant set to true

d) For each set of ECU-VARIANTs that contain identical versions of the DIAG-COMMs REQUEST, add an

OTX <REQUEST> element, putting an <includingVariant> element for each ECU-VARIANT in the set,

each containing the SHORT-NAME of the variant,

e) If available, add the ODX <RESPONSE> element definition of the DIAG-COMM as defined on the ECU

BASE-VARIANT as an OTX <RESPONSE> (VariantEnabledResponse) element, with the

isBaseVariant attribute set to true

f) For each set of ECU-VARIANTs that contain identical versions of the DIAG-COMMs RESPONSE, add an

OTX <RESPONSE> element, putting an <includingVariant> element for each ECU-VARIANT in the

set, each containing the SHORT-NAME of the variant, setting isPositive to true if the response in

question is a positive response, false if otherwise

g) Add any DOPs or UNIT definitions referenced by any of the REQUESTs or RESPONSEs that were added in

the previous steps to the DIAG-DATA-DICTIONARY-SPEC element in the <odxSourceData> container

F.2.3 Performing variant identification

To enable ECU variant-aware execution of diagnostic services in a DiagComRaw OTX sequence, the variant
of an ECU present at runtime has to be identified before diagnostic ECU communication is attempted. ECU
variant identification could either be performed by the DiagComRaw enabled runtime system when the
GetComChannel term is executed, alternatively it might be delayed until the executing of the first OTX node

which requires ECU variant information (e.g. diag:ExecuteDiagService, diag:IsVariant,

diag:GetComChannelEcuVariantName).

NOTE When performing the following steps, diagnostic services only have to be executed once. This means that a

runtime system is allowed to cache the results of previous variant identification-relevant serivces between evaluation of
different VariantPatterns and MatchingPatterns.

To perform ECU variant identification using a DiagComRaw sequence, the following steps shall be performed:

Looking at the <variantIdentExpectations> element of the relevant GetComChannel action:

a) For each <variantIdentExpectation> element,

1) For each <variantPattern> element,

i) For each <matchingPattern> element,

I) Execute the diagnostic service containing the response parameter referenced by the
uniqueParameterId attribute of the <matchingPattern>

II) Compare the runtime value of that response parameter to the expectedValue attribute of

the <matchingPattern> element; if they are equal, this MatchingPattern is

considered to match

ii) In case each MatchingPattern matches

2) In case each VariantPattern matches

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

© ISO 2012 – All rights reserved 221

b) The current VariantIdentExpectation is considered to match the ECU present in the vehicle (the

name of the matching ECU variant can be retrieved from the variantName attribute of this

<variantIdentExpectation> element, abort the variant identification operation

F.2.4 Executing variant-aware diagnostic services

After the variant of an ECU that is present in a vehicle at runtime has been identified, a DiagComRaw OTX
sequence can perform variant-aware diagnostic communication with that ECU. That means that the ODX
sequence can use the correct REQUEST and RESPONSE definitions of a diagnostic service depending on the

variant of an ECU present in the vehicle.

To perform variant-aware diagnostic communication, the following steps have to be implemented when
executing an ExecuteDiagService action:

a) Retrieve the name of the ECU variant identified for the ComChannel the ExecuteDiagService action

is pointing to,

b) If the ECU variant name is contained in the list of <nonInheritingVariant> elements in the

<odxSourceData> element associated with the ExecuteDiagService action, abort diagnostic service

execution

c) Otherwise, iterate through the list of OTX <REQUEST> definitions associated with the <odxSourceData>

element,

1) If the current ECU variant name matches an <includingVariant> element of an OTX

<REQUEST> element, execute this request definition (use this request definition for converting any

request parameters from symbolic OTX level into bits&bytes level)

2) If no match with an <includingVariant> element was found, execute the OTX <REQUEST>

element where isBaseVariant is set to true (use this request definition for converting any

request parameters from symbolic OTX level into bits&bytes level)

3) If no OTX <REQUEST> element exists where isBaseVariant is set to true, abort diagnostic

service execution

d) For interpreting the response of the executed diagnostic service, iterate through the list of
OTX <RESPONSE> definitions associated with the <odxSourceData> element,

1) If the current ECU variant name matches an <includingVariant> element of an OTX

<RESPONSE>, use this response definition for converting any mapped response parameters from

bits&bytes level into symbolic OTX level (the evaluation of the actual ECU response has to be
implemented according to the relevant definitions of the ISO ODX standard, e.g. for determining
whether a response definition matches the ECU response in the first place or whether the ECU
returned a response that is not covered by any ODX data set)

2) If no match with an <includingVariant> element was found, execute the OTX <RESPONSE>

element where isBaseVariant is set to true and use this response definition for converting any

mapped response parameters from bits&bytes level into symbolic OTX level

3) If no OTX <RESPONSE> element exists where isBaseVariant is set to true, abort diagnostic

service response conversion and raise an error (diag:UnknownResponseException)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

ISO 13209-3:2012(E)

222 © ISO 2012 – All rights reserved

F.3 Actions

F.3.1 Overview

The OTX DiagComRaw extension does not invent anything new; rather it is an extension to existing
OTX DiagCom extension elements, adding information from ODX where necessary to enable a DiagComRaw-
based OTX script to be executed without requiring any additional external systems (like an MVCI server).

Generally, there are two kinds of information required to be contained in a DiagComRaw script to make it
executable: any ExecuteDiagService elements needs the required information to translate the symbolic
service- and parameter names to the bits&bytes level required by protocol handlers, plus data needs to be
included that allows a DiagComRaw based standalone runtime system to perform ECU variant identification
on a communication channel (and subsequently execute diagnostic services as applicable for that channel).

NOTE In the OTX DiagComRaw data model (in the diagrams provided in this clause) referenced ODX elements are
assumed to have a XML namespace ("odx"). The actual ODX data model as defined by the ODX ISO standard does not
declare a target namespace; however the representation here has been chosen to enhance readability and make it more
explicit where elements are referenced from the ODX data model. It is advised that for implementation purposes, the ODX
data model should be enhanced to declare its own namespace to enable the usual XML schema mechanisms for
validating XML instance documents or for flexibly interlocking other XML schemas (like the OTX schema) with the ODX
schema by using the xsd:import mechanism.

F.3.2 Syntax

Figure F.1 shows the syntax of the DiagComRaw ExecuteDiagService action with its associated ODX-
derived data container, as well as the ExecuteHexDiagService action.

Figure F.1 — Data model view: DiagComRaw actions

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

20
9-3

:20
12

https://standardsiso.com/api/?name=453b2b2f58ac723c2182982dc3c8ff4b

	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Requirements
	4.1 Basic principles for requirements definition
	4.2 Requirement priorities
	4.3 Requirement listing

	5 Extension overview
	5.3 Basic characteristics of the OTX extensions

	6 OTX DateTime extension
	6.1 Introduction
	6.2 Terms
	6.2.1 Overview
	6.2.2 Syntax
	6.2.3 Semantics
	6.2.3.1 GetTimeStamp
	6.2.3.2 FormatDate
	6.2.3.3 FormatDuration

	7 OTX DiagCom extension
	7.1 Introduction
	7.2 General considerations
	7.2.1 Communication channels
	7.2.2 Diagnostic services
	7.2.3 Diagnostic communication patterns
	7.2.3.1 General
	7.2.3.2 One-shot service, physical addressing, single-part response
	7.2.3.3 One-shot service, physical addressing, multi-part responses
	7.2.3.4 One-shot service, functional addressing, single-part response
	7.2.3.5 One-shot service, functional addressing, multi-part responses
	7.2.3.6 Repeated service, physical addressing, single-part response
	7.2.3.7 Repeated service, functional addressing, single-part response
	7.2.3.8 Repeated service, physical addressing, multi-part responses
	7.2.3.9 Repeated service, functional addressing, multi-part responses
	7.2.3.10 Other patterns

	7.2.4 Special-purpose diagnostic data types

	7.3 Data types
	7.3.1 Overview
	7.3.2 Syntax
	7.3.3 Semantics
	7.3.3.1 General
	7.3.3.2 ComChannel
	7.3.3.3 DiagService
	7.3.3.4 Result
	7.3.3.5 ParameterContainer
	7.3.3.6 Parameter
	7.3.3.7 Message
	7.3.3.8 Response
	7.3.3.9 Request
	7.3.3.10 ResultState
	7.3.3.11 ResponseState

	7.4 Exceptions
	7.4.1 Overview
	7.4.2 Syntax
	7.4.3 Semantics
	7.4.3.1 General
	7.4.3.2 DiagComException
	7.4.3.3 AmbiguousSemanticException
	7.4.3.4 UnknownTargetException
	7.4.3.5 LossOfComException
	7.4.3.6 UnknownResponseException
	7.4.3.7 UnknownComChannelException
	7.4.3.8 InvalidStateException
	7.4.3.9 IncompleteParameterizationException

	7.5 Variable access
	7.5.1 Overview
	7.5.2 Syntax
	7.5.3 Semantics

	7.6 Actions
	7.6.2 ComChannel related actions
	7.6.2.3 Semantics
	7.6.2.3.1 IdentifyAndSelectVariant
	7.6.2.3.2 CloseComChannel

	7.6.3 ComParameter related actions
	7.6.3.1 Description
	7.6.3.2 Syntax
	7.6.3.3 Semantics
	7.6.3.3.1 SetComParameter
	7.6.3.3.2 SetComplexComParameter

	7.6.4 DiagService related actions
	7.6.4.1 Description
	7.6.4.2 Syntax
	7.6.4.3 Semantics
	7.6.4.3.1 ExecuteDiagService
	7.6.4.3.2 ExecuteHexDiagService
	7.6.4.3.3 StartRepeatedExecution
	7.6.4.3.4 StopRepeatedExecution
	7.6.4.3.5 SetRepetitionTime
	7.6.4.3.6 GetAllResultsAndClear
	7.6.4.3.7 SetParameterValue
	7.6.4.3.8 SetParameterValueBySemantic
	7.6.4.3.9 SetPdu

	7.6.4.4 Example

	7.7 Terms
	7.7.1 Overview
	7.7.2 ComChannel related terms
	7.7.2.1 Description
	7.7.2.2 Syntax
	7.7.2.3 Semantics
	7.7.2.3.1 ComChannelTerm
	7.7.2.3.2 ComChannelValue
	7.7.2.3.3 GetComChannel
	7.7.2.3.4 GetComChannelIdentifierFromRes
	7.7.2.3.5 GetComChannelEcuVariantName
	7.7.2.3.6 IsVariant

	7.7.3 DiagService related terms
	7.7.3.1 Description
	7.7.3.2 Syntax
	7.7.3.3 Semantics
	7.7.3.3.1 DiagServiceTerm
	7.7.3.3.2 DiagServiceValue
	7.7.3.3.3 CreateDiagServiceByName
	7.7.3.3.4 CreateDiagServiceBySemantic
	7.7.3.3.5 GetDiagServiceListBySemantic
	7.7.3.3.6 GetDiagServiceFromResult
	7.7.3.3.7 GetDiagServiceFromException
	7.7.3.3.8 GetDiagServiceName
	7.7.3.3.9 GetRepetitionTime

	7.7.4 Request related terms
	7.7.4.1 Description
	7.7.4.2 Syntax
	7.7.4.3 Semantics
	7.7.4.3.1 RequestTerm
	7.7.4.3.2 RequestValue
	7.7.4.3.3 GetRequest
	7.7.4.3.4 GetPdu

	7.7.5 Result related terms
	7.7.5.1 Description
	7.7.5.2 Syntax
	7.7.5.3 Semantics
	7.7.5.3.1 ResultTerm
	7.7.5.3.2 ResultValue
	7.7.5.3.3 GetFirstResult
	7.7.5.3.4 GetAllResults
	7.7.5.3.5 ResultStateTerm
	7.7.5.3.6 ResultStateValue
	7.7.5.3.7 ResultStateLiteral
	7.7.5.3.8 GetResultState

	7.7.6 Response related terms
	7.7.6.1 Description
	7.7.6.2 Syntax
	7.7.6.3 Semantics
	7.7.6.3.1 ResponseTerm
	7.7.6.3.2 ResponseValue
	7.7.6.3.3 GetFirstResponse
	7.7.6.3.4 GetAllResponses
	7.7.6.3.5 GetResponseName
	7.7.6.3.6 ResponseStateTerm
	7.7.6.3.7 ResponseStateValue
	7.7.6.3.8 ResponseStateLiteral
	7.7.6.3.9 GetResponseState
	7.7.6.3.10 IsPositive

	7.7.7 Parameter related terms
	7.7.7.1 Description
	7.7.7.2 Syntax
	7.7.7.3 Semantics
	7.7.7.3.1 ParameterTerm
	7.7.7.3.2 ParameterValue
	7.7.7.3.3 GetParameterBySemantic
	7.7.7.3.4 GetParameterByPath
	7.7.7.3.5 GetParameterName
	7.7.7.3.6 GetParameterSemantic
	7.7.7.3.7 GetParameterTextId
	7.7.7.3.8 GetParameterAsList
	7.7.7.3.9 GetParameterValueAsBoolean
	7.7.7.3.10 GetParameterValueAsString
	7.7.7.3.11 GetParameterValueAsInteger
	7.7.7.3.12 GetParameterValueAsFloat
	7.7.7.3.13 GetParameterValueAsByteField
	7.7.7.3.14 GetParameterValueAsQuantity

	7.7.8 ComParam related terms
	7.7.8.1 Description
	7.7.8.2 Syntax
	7.7.8.3 Semantics
	7.7.8.3.1 ChannelAndParameterName group
	7.7.8.3.2 GetDefaultComplexComParameter
	7.7.8.3.3 GetComplexComParameter
	7.7.8.3.4 GetComParameterValueAsBoolean
	7.7.8.3.5 GetComParameterValueAsString
	7.7.8.3.6 GetComParameterValueAsInteger
	7.7.8.3.7 GetComParameterValueAsFloat
	7.7.8.3.8 GetComParameterValueAsByteFiel
	7.7.8.3.9 GetComParameterValueAsQuantity
	7.7.8.3.10 GetDefaultComParameterValueAs
	7.7.8.3.11 GetDefaultComParameterValueAs
	7.7.8.3.12 GetDefaultComParameterValueAs
	7.7.8.3.13 GetDefaultComParameterValueAs
	7.7.8.3.14 GetDefaultComParameterValueAs
	7.7.8.3.15 GetDefaultComParameterValueAs

	7.7.9 Event related terms
	7.7.9.1 Description
	7.7.9.2 Syntax
	7.7.9.3 Semantics
	7.7.9.3.1 DiagServiceEventSource
	7.7.9.3.2 IsDiagServiceEvent
	7.7.9.3.3 GetDiagServiceFromEvent

	8 OTX DiagDataBrowsing extension
	8.1 Introduction
	8.2 Data types
	8.2.1 Overview
	8.2.2 Syntax
	8.2.3 Semantics
	8.2.3.1 General
	8.2.3.2 ComChannelCategory

	8.3 Variable access
	8.3.1 Overview
	8.3.2 Syntax
	8.3.3 Semantics

	8.4 Terms
	8.4.1 Overview
	8.4.2 Syntax
	8.4.3 Semantics
	8.4.3.1 GetComChannelList
	8.4.3.2 GetEcuVariantList
	8.4.3.3 GetDiagServiceList
	8.4.3.4 GetRequestParameterList
	8.4.3.5 GetResponseParameterList
	8.4.3.6 GetAllowedParameterValueList
	8.4.3.7 IsStringParameter
	8.4.3.8 IsBooleanParameter
	8.4.3.9 IsNumericParameter
	8.4.3.10 IsByteFieldParameter
	8.4.3.11 IsComplexParameter
	8.4.3.12 ComChannelCategoryTerm
	8.4.3.13 ComChannelCategoryValue
	8.4.3.14 ComChannelCategoryLiteral

	9 OTX EventHandling extension
	9.1 Introduction
	9.2 Data types
	9.2.1 Overview
	9.2.2 Syntax
	9.2.3 Semantics
	9.2.3.1 General
	9.2.3.2 Event
	9.2.3.3 EventSource

	9.3 Variable access
	9.3.1 Overview
	9.3.2 Syntax
	9.3.3 Semantics

	9.4 Actions
	9.4.1 Overview
	9.4.2 Syntax
	9.4.3 Semantics
	9.4.3.1 WaitForEvent
	9.4.3.2 CloseEventSource

	9.4.4 Example

	9.5 Terms
	9.5.1 Overview
	9.5.2 Event terms
	9.5.2.3 Semantics
	9.5.2.3.1 EventTerm
	9.5.2.3.2 EventValue

	9.5.3 Event source terms
	9.5.3.1 Description
	9.5.3.2 Syntax
	9.5.3.3 Semantics
	9.5.3.3.1 EventSourceTerm
	9.5.3.3.2 EventSourceValue
	9.5.3.3.3 MonitorChangeEventSource
	9.5.3.3.4 ThresholdExceededEventSource
	9.5.3.3.5 TimerExpiredEventSource

	9.5.4 Event property terms
	9.5.4.1 Description
	9.5.4.2 Syntax
	9.5.4.3 Semantics
	9.5.4.3.1 IsMonitorChangeEvent
	9.5.4.3.2 IsTresholdExceededEvent
	9.5.4.3.3 IsTimerExpiredEvent
	9.5.4.3.4 GetNewValue

	10 OTX Flash extension
	10.1 Introduction
	10.2 Data types
	10.2.1 Overview
	10.2.2 Syntax
	10.2.3 Semantics
	10.2.3.1 General
	10.2.3.2 FlashJob
	10.2.3.3 FlashSession
	10.2.3.4 FlashFileFormat
	10.2.3.5 Audience

	10.3 Exceptions
	10.3.1 Overview
	10.3.2 Syntax
	10.3.3 Semantics
	10.3.3.1 General
	10.3.3.2 FlashException
	10.3.3.3 UnsupportedFormatException

	10.4 Variable access
	10.4.1 Overview
	10.4.2 Syntax
	10.4.3 Semantics

	10.5 Actions
	10.5.1 Overview
	10.5.2 Syntax
	10.5.3 Semantics
	10.5.3.1 GetDownloadData
	10.5.3.2 StoreUploadData
	10.5.3.3 SetFlashSession

	10.5.4 Example

	10.6 Terms
	10.6.1 Overview
	10.6.2 Flash job related terms
	10.6.2.1 Description
	10.6.2.2 Syntax
	10.6.2.3 Semantics
	10.6.2.3.1 FlashJobTerm
	10.6.2.3.2 FlashJobValue
	10.6.2.3.3 CreateFlashJob
	10.6.2.3.4 CreateFlashJobByName
	10.6.2.3.5 CreateFlashJobBySemantic

	10.6.3 Flash session related terms
	10.6.3.1 Description
	10.6.3.2 Syntax
	10.6.3.3 Semantics
	10.6.3.3.1 FlashSessionTerm
	10.6.3.3.2 FlashSessionValue
	10.6.3.3.3 GetListOfValidFlashSessions
	10.6.3.3.4 GetFlashSession
	10.6.3.3.5 GetSessionID
	10.6.3.3.6 GetFlashKey
	10.6.3.3.7 GetSessionPriority
	10.6.3.3.8 GetNumberOfBlocks
	10.6.3.3.9 IsDownloadSession

	10.6.3.4 Example

	10.6.4 Flash block related terms
	10.6.4.1 Description
	10.6.4.2 Syntax
	10.6.4.3 Semantics
	10.6.4.3.1 GetNumberOfSegments
	10.6.4.3.2 GetNumberOfOwnIdents
	10.6.4.3.3 GetNumberOfSecurities
	10.6.4.3.4 GetLogicalBlockID
	10.6.4.3.5 GetCompressionEncryption
	10.6.4.3.6 GetType
	10.6.4.3.7 BlockIsValidForAudience

	10.6.4.4 Example

	10.6.5 Flash block segment related terms
	10.6.5.1 Description
	10.6.5.2 Syntax
	10.6.5.3 Semantics
	10.6.5.3.1 GetStartAddress
	10.6.5.3.2 GetCompressedSize
	10.6.5.3.3 GetUncompressedSize

	10.6.5.4 Example

	10.6.6 Security related terms
	10.6.6.1 Description
	10.6.6.2 Syntax
	10.6.6.3 Semantics
	10.6.6.3.1 GetSignature
	10.6.6.3.2 GetValidity
	10.6.6.3.3 GetChecksum
	10.6.6.3.4 GetSecurityMethod

	10.6.6.4 Example

	10.6.7 Own ident related terms
	10.6.7.1 Description
	10.6.7.2 Syntax
	10.6.7.3 Semantics
	10.6.7.3.1 GetOwnIdentFromEcu
	10.6.7.3.2 GetOwnIdent

	10.6.7.4 Example

	10.6.8 Enumeration related terms
	10.6.8.1 Description
	10.6.8.2 Syntax
	10.6.8.3 Semantics
	10.6.8.3.1 FlashFileFormatTerm
	10.6.8.3.2 FlashFileFormatValue
	10.6.8.3.3 FlashFileFormatLiteral
	10.6.8.3.4 AudienceTerm
	10.6.8.3.5 AudienceValue
	10.6.8.3.6 AudienceLiteral

	11 OTX HMI extension
	11.1 Introduction
	11.1.1 General
	11.1.2 Dialogs
	11.1.3 Custom screens

	11.2 Data types
	11.2.1 Overview
	11.2.2 Syntax
	11.2.3 Semantics
	11.2.3.1 General
	11.2.3.2 Screen
	11.2.3.3 MessageType
	11.2.3.4 ConfirmationType

	11.3 Exceptions
	11.3.1 Overview
	11.3.2 Syntax
	11.3.3 Semantics
	11.3.3.1 General
	11.3.3.2 HmiException
	11.3.3.3 ScreenException

	11.4 Variable access
	11.4.1 Overview
	11.4.2 Syntax
	11.4.3 Semantics

	11.5 Actions
	11.5.1 Overview
	11.5.2 Dialog related actions
	11.5.2.3 Semantics
	11.5.2.3.1 Dialog
	11.5.2.3.2 ConfirmDialog
	11.5.2.3.3 InputDialog
	11.5.2.3.4 ChoiceDialog
	11.5.2.3.5 ShowDocumentDialog

	11.5.2.4 Example

	11.5.3 Custom screen related actions
	11.5.3.1 Description
	11.5.3.2 Syntax
	11.5.3.3 Semantics
	11.5.3.3.1 OpenScreen
	11.5.3.3.2 HighlightScreen
	11.5.3.3.3 CloseScreen

	11.6 Terms
	11.6.3 Semantics
	11.6.3.1 ScreenTerm
	11.6.3.2 ScreenValue
	11.6.3.3 ScreenClosedEventSource
	11.6.3.4 IsScreenClosedEvent
	11.6.3.5 ScreenIsOpen
	11.6.3.6 MessageTypeTerm
	11.6.3.7 MessageTypeValue
	11.6.3.8 MessageTypeLiteral
	11.6.3.9 ConfirmationTypeTerm
	11.6.3.10 ConfirmationTypeValue
	11.6.3.11 ConfirmationTypeLiteral

	11.7 Signatures
	11.7.1 Overview
	11.7.2 Syntax
	11.7.3 Semantics
	11.7.3.1 General
	11.7.3.2 ScreenSignature

	12 OTX i18n extension
	12.1 Introduction
	12.2 Data types
	12.2.1 Overview
	12.2.2 Syntax
	12.2.3 Semantics
	12.2.3.1 General
	12.2.3.2 TranslationKey

	12.3 Exceptions
	12.3.1 Overview
	12.3.2 Syntax
	12.3.3 Semantics
	12.3.3.1 General
	12.3.3.2 i18nException
	12.3.3.3 UnsupportedLocaleException

	12.4 Variable access
	12.4.1 Overview
	12.4.2 Syntax
	12.4.3 Semantics

	12.5 Terms
	12.5.1 Overview
	12.5.2 Locale settings related terms
	12.5.2.3 Semantics
	12.5.2.3.2 GetAllLocales

	12.5.3 Translation related terms
	12.5.3.1 Description
	12.5.3.2 Syntax
	12.5.3.3 Semantics
	12.5.3.3.1 TranslationKeyTerm
	12.5.3.3.2 TranslationKeyValue
	12.5.3.3.3 TranslationKeyLiteral
	12.5.3.3.4 CreateTranslationKey
	12.5.3.3.5 Translate
	12.5.3.3.6 TranslateToLocale
	12.5.3.3.7 CompareUntranslatedString

	12.5.4 Quantity related terms
	12.5.4.1 Description
	12.5.4.2 Syntax
	12.5.4.3 Semantics
	12.5.4.3.1 Referring to unit group definitons
	12.5.4.3.2 LocalizeQuantity
	12.5.4.3.3 LocalizeQuantityToUnitGroup

	13 OTX Job extension
	13.1 Introduction
	13.2 Exceptions
	13.2.1 Overview
	13.2.2 Syntax
	13.2.3 Semantics
	13.2.3.1 General
	13.2.3.2 JobException
	13.2.3.3 InvalidParameterizationException

	13.3 Actions
	13.3.1 Overview
	13.3.2 Syntax
	13.3.3 Semantics
	13.3.3.1 SendFinalResult
	13.3.3.2 SendIntermediateResult
	13.3.3.3 SetJobInfo
	13.3.3.4 SetProgressInfo
	13.3.3.5 AddElement
	13.3.3.6 AddBranchByName
	13.3.3.7 AddBranchByIndex
	13.3.3.8 AddBranchByValue
	13.3.3.9 AddEnvDataByDtc

	13.3.4 Example
	13.4 Terms
	13.4.1 Overview
	13.4.2 Syntax
	13.4.3 Semantics
	13.4.3.1 CreateResponse
	13.4.3.2 CreateResult
	13.4.3.3 GetJobInfo
	13.4.3.4 GetJobProgress

	13.4.4 Example

	13.5 Standard signature definitions
	13.5.1 General
	13.5.2 SingleEcuJob
	13.5.2.1 Description
	13.5.2.2 Declaration
	13.5.2.3 Semantics

	13.5.3 FlashJob
	13.5.3.1 Description
	13.5.3.2 Declaration
	13.5.3.3 Semantics

	13.5.4 SecurityAccessJob
	13.5.4.1 Description
	13.5.4.2 Declaration
	13.5.4.3 Semantics

	14 OTX Logging extension
	14.1 Introduction
	14.2 Data types
	14.2.1 Overview
	14.2.2 Syntax
	14.2.3 Semantics
	14.2.3.1 General
	14.2.3.2 LogLevel
	14.2.3.3 SeverityLevel

	14.3 Variable access
	14.3.1 Overview
	14.3.2 Syntax
	14.3.3 Semantics

	14.4 Actions
	14.4.1 Overview
	14.4.2 Syntax
	14.4.3 Semantics
	14.4.3.1 SetLogLevel
	14.4.3.2 WriteLog

	14.4.4 Example

	14.5 Terms
	14.5.1 Overview
	14.5.2 Syntax
	14.5.3 Semantics
	14.5.3.1 LogLevelTerm
	14.5.3.2 LogLevelValue
	14.5.3.3 LogLevelLiteral
	14.5.3.4 SeverityLevelTerm
	14.5.3.5 SeverityLevelValue
	14.5.3.6 SeverityLevelLiteral

	15 OTX Math extension
	15.2 Terms
	15.2.3 Semantics
	15.2.3.2 Log
	15.2.3.3 Ln
	15.2.3.4 Sin
	15.2.3.5 Cos
	15.2.3.6 Tan

	16 OTX Measure extension
	16.1 Introduction
	16.2 Data types
	16.2.1 Overview
	16.2.2 Syntax
	16.2.3 Semantics
	16.2.3.1 General
	16.2.3.2 Measurement

	16.3 Exceptions
	16.3.1 Overview
	16.3.2 Syntax
	16.3.3 Semantics
	16.3.3.1 General
	16.3.3.2 MeasureException
	16.3.3.3 ConfigurationException
	16.3.3.4 CommunicationException
	16.3.3.5 DeviceException
	16.3.3.6 ServicePreconditionException
	16.3.3.7 InvalidMeasurementException

	16.4 Variable access
	16.4.1 Overview
	16.4.2 Syntax
	16.4.3 Semantics

	16.5 Signatures
	16.5.1 Overview
	16.5.2 Syntax
	16.5.3 Semantics
	16.5.3.1 General
	16.5.3.2 DeviceSignature

	16.6 Actions
	16.6.1 Overview
	16.6.2 Syntax
	16.6.3 Semantics
	16.6.3.1 General
	16.6.3.2 ExecuteDeviceService

	16.7 Terms
	16.7.1 Overview
	16.7.2 Measurement related terms
	16.7.2.3 Semantics
	16.7.2.3.1 MeasurementTerm
	16.7.2.3.2 MeasurementValue
	16.7.2.3.3 GetMeasurementTimestamp
	16.7.2.3.4 GetMeasurementStatus
	16.7.2.3.5 GetMeasurementQuantity
	16.7.2.3.6 GetMeasurementFloatValue
	16.7.2.3.7 IsValidMeasurement

	16.7.3 Event related terms
	16.7.3.1 Description
	16.7.3.2 Syntax
	16.7.3.3 Semantics
	16.7.3.3.1 DeviceEventSource
	16.7.3.3.2 IsDeviceEvent
	16.7.3.3.3 GetDeviceServiceNameFromEvent

	17 OTX Quantities extension
	17.1 Introduction
	17.2 Data types
	17.2.1 Overview
	17.2.2 Syntax
	17.2.3 Semantics
	17.2.3.1 General
	17.2.3.2 Quantity
	17.2.3.3 Unit

	17.3 Exceptions
	17.3.1 Overview
	17.3.2 Syntax
	17.3.3 Semantics
	17.3.3.1 General
	17.3.3.2 QuantityException
	17.3.3.3 UnknownUnitException
	17.3.3.4 InvalidConversionException

	17.4 Variable access
	17.4.1 Overview
	17.4.2 Syntax
	17.4.3 Semantics

	17.5 Terms
	17.5.1 Overview
	17.5.2 Quantity and Unit related terms
	17.5.2.3 Semantics
	17.5.2.3.1 Referring to unit definitions
	17.5.2.3.2 QuantityTerm
	17.5.2.3.3 QuantityValue
	17.5.2.3.4 QuantityLiteral
	17.5.2.3.5 CreateQuantity
	17.5.2.3.6 UnitTerm
	17.5.2.3.7 UnitValue
	17.5.2.3.8 UnitLiteral
	17.5.2.3.9 GetDisplayValue
	17.5.2.3.10 GetDisplayUnit
	17.5.2.3.11 GetBaseUnit

	17.5.3 Overloading semantics
	17.5.3.1 Description
	17.5.3.2 Syntax
	17.5.3.3 Semantics
	17.5.3.3.1 Conversions
	17.5.3.3.2 Addition/Subtraction
	17.5.3.3.3 Multiplication, Division and
	17.5.3.3.4 Absolute Value and Negation
	17.5.3.3.5 Relational operations
	17.5.3.3.6 Other operations

	18 OTX StringUtil extension
	18.1 Introduction
	18.2 Data types
	18.2.1 Overview
	18.2.2 Syntax
	18.2.3 Semantics
	18.2.3.1 General
	18.2.3.2 Encoding

	18.3 Exceptions
	18.3.1 Overview
	18.3.2 Syntax
	18.3.3 Semantics
	18.3.3.1 General
	18.3.3.2 StringUtilException
	18.3.3.3 UnsupportedEncodingException

	18.4 Variable access
	18.4.1 Overview
	18.4.2 Syntax
	18.4.3 Semantics

	18.5 Terms
	18.5.1 Overview
	18.5.2 Syntax
	18.5.3 Semantics
	18.5.3.1 ReplaceSubString
	18.5.3.2 MatchToRegularExpression
	18.5.3.3 StringConcatenate
	18.5.3.4 SubString
	18.5.3.5 LengthOfString
	18.5.3.6 IndexOf
	18.5.3.7 SplitString
	18.5.3.8 ToUpper
	18.5.3.9 ToLower
	18.5.3.10 Encode
	18.5.3.11 Decode
	18.5.3.12 EncodingTerm
	18.5.3.13 EncodingValue
	18.5.3.14 EncodingLiteral

	Annex A (normative) Comprehensive checker rule listing
	A.1 Overview
	A.2 Listing
	A.2.1 Checker rules for DiagCom extensio
	A.2.2 Checker rules for EventHandling ex
	A.2.3 Checker rules for Measure extensio
	A.2.4 Checker rules for HMI extension
	A.2.5 Checker rules for Quantities exten

	Annex B (normative) OTX DiagCom extension data type mappings
	B.1 General considerations
	B.2 Mapping ODX data types to OTX data t
	B.3 Mapping MVCI data types to OTX data

	Annex C (normative) OTX DiagMetaData auxiliary for the OTX DiagCom extension
	C.1 Description
	C.2 Syntax
	C.3 Semantics
	C.4 Example

	Annex D (normative) OTX standard signature documents
	D.1 OTX Job standard signatures (JobInte

	Annex E (informative) Test sequence examples
	E.1 Diagnostic Communication (IFD_DiagCo
	E.1.1 DiagComInlineExample.otx
	E.1.2 DiagComDynamicExample.otx

	Annex F (informative) OTX DiagComRaw extension for resource-restrained systems
	F.1 Introduction
	F.2 Using DiagComRaw
	F.2.1 Creating OTX data for variant iden
	F.2.2 Creating OTX data for diagnostic s
	F.2.3 Performing variant identification
	F.2.4 Executing variant-aware diagnostic

	F.3 Actions
	F.3.3 Semantics

	F.4 Terms
	F.4.1 Overview
	F.4.2 Syntax

	F.5 XML Schema (otxIFD_DiagComRaw.xsd)

	Annex G (normative) XML Schemas
	G.1 OTX DateTime extension (otxIFD_DateT
	G.2 OTX DiagCom extension (otxIFD_DiagCo
	G.3 OTX DiagDataBrowsing extension (IFD_
	G.4 OTX Event extension (IFD_Event.xsd)
	G.5 OTX Flash extension (otxIFD_Flash.xs
	G.6 OTX Human Machine extension (IFD_HMI
	G.7 OTX Internationalization extension (
	G.8 OTX Job extension (otxIFD_Job.xsd)
	G.9 OTX Logging extension (otxIFD_Loggin
	G.10 OTX Math extension (otxIFD_Math.xsd
	G.11 OTX Measurement extension (otxIFD_M
	G.12 OTX Quantities extension (otxIFD_Qu
	G.13 OTX StringUtil extension (otxIFD_St
	G.14 OTX DiagMetaData auxiliary (otxDiag

	Bibliography

