INTERNATIONAL ISO
STANDARD 19014-4

First edition
2020-07

Earth-moving machinery,>-
Functional safety —

Part 4:
Design and evaluation of software and
data transmission for safety-reldted

parts of the control system

Engins de terrassemrent — Sécurité fonctionnelle —

Partie 4: Conception et évaluation du logiciel et de la transmission
des données.pour les parties relatives a la sécurité du systeme de
commande

Reference number
1SO 19014-4:2020(E)

©1S0 2020

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

COPYRIGHT PROTECTED DOCUMENT

© IS0 2020

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 ¢ Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

ii © IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

Contents Page
FFOT@WOTMooccccceeeesse e85 5588585555555 iv
IIMETOUICEIONL. ..ot 8885 v
1 S0P ... 1
2 NOTINATIVE FEEETE@IICESooooiooeee st 1
3 Terms aNd AefiMETIOMNIS ... 1
4' SUftVV dl T dcvc}upulcut 4

4.1 General.......cccoo. 4

4.2 Planning..............)

4.3 ATTFACES e e o | 6

4.4 Software safety requirements SPeCifiCation ... oo 7

4.5 Software architecture design

4.6 Software module design and COAING ... N e

4.7 Language and t00] SElECTION ...z B

4.8 Software module testing.........ccocicsns

4.9 Software module integration and testing

4.10 Software validation ...,
5 Software-based parameterization

5.1 L0T<) 4 1) = OO SO O SO

5.2 Data iNtEGTILY oo S

5.3 Software-based parameterization verification

Transmission protection of safety-relatedmessages on bus systems.............. foee 13
7 Independence by software partitioning, ... e 14

7.1 L0T=Y V=) =) OO OO OO OO OO OO OO IO 14

7.2 Several partitions within a sifigle microcontroller ..., 15

7.3 Several partitions within the scope of an ECU network...........cccccocscssi o, 16
8 INFOrmMAation fOr USE................li s s 17

8.1 General

8.2 INStruction handBOOK ...t e 17
Annex A (informative) Description of software methods/measures...........oc e 18
Annex B (normative) Software validation test environments ... o 31
Annex C (informative) Data integrity assurance calculation.................. o 34
Annex D (informative) Methods and measures for transmission protection ...} 36
Annex E (informative) Methods and measures for data protection internal to microcontroller.....38
BIbJIOGIAPRY ... e | 40
© 1S0 2020 - All rights reserved iii

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The proceglures used to develop this document and those intended for its further maintenanee
described In the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
different types of ISO documents should be noted. This document was drafted in accordance 'with
editorial ryles of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention i
patent righ
any patent
on the ISO

Any trade
constitute

For an ex]
expression
World Trag
iso/forewo

5 drawn to the possibility that some of the elements of this document may.be the subjec
ts. ISO shall not be held responsible for identifying any or all such paténtrights. Detail
rights identified during the development of the document will be in the Introduction ang
ist of patent declarations received (see www.iso.org/patents).

hame used in this document is information given for the convenience of users and does
an endorsement.

planation of the voluntary nature of standards, the.meaning of ISO specific terms
s related to conformity assessment, as well as information about ISO's adherence to
e Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.d
rd.html.

This document was prepared by ISO/TC 127, Earthsmoving machinery, Subcommittee SC 2, Saj

ergonomics
(CEN) Tech

and general requirements, in collaboratiomwith the European Committee for Standardiza
nical Committee CEN/TC 151, Construetion equipment and building material machines - Sqj

in accordance with the Agreement on technical'¢ooperation between ISO and CEN (Vienna Agreemd

This first ¢
ISO 15998;

The main g

additid

requir

requir

requir

dition of ISO 19014-4, together with other parts in the ISO 19014 series, cancels and repl4
2008 and ISO/TS 15998-2:2012; which have been technically revised.

hanges compared to theprevious documents are as follows:

nal requirements for-software development,

bments for software-based parametrization development,

ements for transmission of safety related messages on a communication bus, and

bments-for software validation and verification of machine performance levels.

are
the
the

t of
s of
| /or

not

And
the

rg/

fety,
[ion
fety,
nt).

LCES

A list of all

pants in the ISO 19014 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

© IS0 2020 - All rights reserved

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

Introduction

This document addresses systems comprising any combination of electrical, electronic, and
programmable electronic components [electrical/electronic/programmable electronic systems (E/E/

PES
The

)] used for functional safety in earth-moving machinery.

structure of safety standards in the field of machinery is as follows.

Type-A standards (basis standards) give basic concepts, principles for design, and general aspects that

can

be applied to machinery.

Typ
typ

Typ
ma

Thi

Thi
maj

(0]
ab

Thd
pro

Thd
are

Wh

&

e-B standards (generic safety standards) deal with one or more safety aspect(s), or\0
b (s) of safeguards that can be used across a wide range of machinery:

type-B1 standards on particular safety aspects (e.g. safety distances, surface temperaty

type-B2 standards on safeguards (e.g. two-hands controls, interlocking dévices, pressui
devices, guards).

e-C standards (machinery safety standards) deal with detailed safety-requirements for 3
hine or group of machines.

5 document is a type-C standard as stated in ISO 12100.

5 document is of relevance, in particular, for the following stakeholder groups repreg
ket players with regard to machinery safety:

machine manufacturers (small, medium, and largeenterprises);
health and safety bodies (regulators, accident'prevention organisations, market surveill

rs can be affected by the level of machinery safety achieved with the means of the docuf]
e-mentioned stakeholder groups:

machine users/employers (small, medium, and large enterprises);
machine users/employees {eig. trade unions, organizations for people with special need
service providers, e. g. for maintenance (small, medium, and large enterprises);

above-mentioned stakeholder groups have been given the possibility to participate at t
cess of this docuntent.

machinery. concerned and the extent to which hazards, hazardous situations, or hazard
coveredarne indicated in the Scope of this document.

en pequirements of this type-C standard are different from those which are stated in

1€ Or more

re, noise);

e sensitive

particular

enting the

Ance etc.).

hent by the

r
h—

p

he drafting

ous events

type-A or

typ

the'e

this

©IS

b B-standards, the requirements of this type-C standard take precedence over the requ

type-C standard.

02020 - All rights reserved

rements of

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

INTERNATIONAL STANDARD

ISO 19014-4:2020(E)

Earth-moving machinery — Functional safety —

Part 4:
Design and evaluation of software and data transmission
for safety-related parts of the control system

1

Thi
req
(EM
haz
The

from machine control system inputs.

Cyb
NOTI
Thi

2

Thd
con
und

ISO
ISO

ISO
for

ISO

reldted parts of the control system and performance requirements

ISO
har

Scope

5 document specifies general principles for software development and, signal tr
lirements of safety-related parts of machine-control systems (MCS) in earth-moving
M) and its equipment, as defined in ISO 6165. In addition, this documentiaddresses the
qrds as defined in ISO 12100 related to the software embedded within the machine cont
significant hazards being addressed are the incorrect machine control system output

er security is out of the scope of this document.
E For guidance on cybersecurity, see an appropriate sectirity standard.

5 document is not applicable to EMM manufactured before the date of its publication.

Normative references

following documents are referred to in the text in such a way that some or all of th
Stitutes requirements of this document” For dated references, only the edition cited 4
ated references, the latest edition of the referenced document (including any amendmen

6750-1, Earth-moving machinery=— Operator's manual — Part 1: Contents and format
12100:2010, Safety of machinery — General principles for design — Risk assessment and ris

13849-1, Safety of machinery — Safety-related parts of control systems — Part 1: Generd
lesign

19014-1, Earth-moving machinery — Functional safety — Part 1: Methodology to detern

19014-2:<-1), Earth-moving machinery — Functional safety — Part 2: Design and eV
Hwarezand architecture requirements for safety-related parts of the control system

hinsmission
machinery
significant
ol system.
responses

Pir content
pplies. For
[s) applies.

k reduction

[principles

nine safety-

pluation of

3

Terms and definitions

For the purposes of this document, the terms and definitions in ISO 12100, ISO 19014-1, ISO 13849-1

and

the following apply.

[SO and IEC maintain terminological databases for use in standardization at the following addresses:

ISO Online browsing platform: available at https://www.iso.org/obp

IEC Electropedia: available at http://www.electropedia.org/

1y

Under preparation. Stage at the time of publication: ISO/DIS 19014-2:2020.

© IS0 2020 - All rights reserved

https://www.iso.org/obp/ui
http://www.electropedia.org/
https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

31
bus system
subsystem used in an electronic control system for the transmission of messages (3.6)

Note 1 to entry: The bus system consists of the system unit (sources and sinks of information), a transmission
path/transmission medium (e.g. electrical lines, fiber-optical lines, radio frequency transmission) and the
interface between message source/sink and bus electronics (e.g. protocol application specific integrated circuit,
transceivers).

3.2
encapsulate
bus system[(3
connected
characteris

d bus system

STITOTSIT
to each other th
tics

d XCU NUINoer or a predetermniined mdaxIimulirn nuinoper O [
rough a transmission medium with well-defined and fixed perform

a

3.3
failure of peer communication
situation in which the communication peer is not available

3.4
unintenddd message repetition
situation i which the same message (3.6) is unintentionally sent again

3.5
message I

situation il
Noteltoe
3.6
message

epetition
which the same message (3.6) is intentionally sent again

ry: This technique of resending the same message addresses failures such as message loss (3.10).

electronic

Note 1 to
transmissiol

3.7
ECU
electronic
electronic
machinery|

[SOURCE: I
have been

3.8
reaction t

[ransmission of data

bntry: Transmitted data can include (user data, address, or identifier data and data to en
n integrity.

control unit
device (electronic_programmable controller) used in a control system on earth-moy

SO 22448:2010,/3.3, modified — The admitted terms "ECM" and "electronic control mod
Femoved.]

me

time from

bure

ring

"

l1le

Hedetection of a safety-related event until the initiation of a safety reaction

3.9
artifact

work products that are produced and used during a project to capture and convey information

3.10

message loss
unintended deletion of a message (3.6) due to a fault of a bus participant

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

3.11
incorrect sequence
unintended modification of the sequence of messages (3.6) due to a fault of a bus participant

Note 1 to entry: Bus systems (3.1) can contain elements with stored messages (first-in, first-out (FIFOs), etc.) that

can modify the correct sequence.

3.12
message falsification

unintended modification of messages (3.6) due to an error of a bus participant or due to errors on the

transmission channel

31

message retardation

unintended delay or prevention of the safety function, caused by an overload of the transm
by normal data exchange or by sending incorrect messages (3.6)

31
alive counter
accpunting component initialised with “0” when the object to be monitoted is created or res

Not¢ 1 to entry: The counter increases from time ¢-1 to time ¢t as long,ds the object is alive. Fina
counter shows the period of time for which the object has been alive within a network.

31

bla¢k box testing

tesffing of an object that does not require knowledge of its internal structure or it
implementation

3.1

parjtition

respurce entity allocating a portion of memory, input/output devices, and central processing
to gne or more system tasks (3.21)

Notg 1 to entry: The partitions can be dssigned to one or more subsystems within the microcontrolld

3.17Y
soffware partitioning

software fault (3.26) containment method consisting of assigning resources to specifi
conmponents with the intention of avoiding the propagation of a software fault to multiple parti

3.18
soffware compgnent
one|or more software modules (3.19)

jssion path

fored

ly, the alive

5 concrete

unit usage

r network.

 software
tions (3.16)

[SOPRCE:ISO 26262-1:2018, 3.157, modified — The word "units" has been replaced with "m¢dules".]

3.19

software module

independent piece of software that can be independently tested and traced to a specification

Note 1 to entry: The software module is an indivisible software component.

3.20
software partitions
runtime environment with separate system resources assigned

3.21
system task

runtime entities that are executed within the resource budget of partitions (3.16) and with different

priorities

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

3.22

independence of software
exclusion of unintended interactions between software components, as well as freedom from impact on
the correct operation of a software component resulting from errors of another software component

3.23

operational history
operating data about a software component or a software module (3.19) during its time in service

3.24

maximum cycle time

static time

to access a communication bus between nodes at a bus or node level

Note 1 to enftry: The application of a time-triggered protocol ensures this cycle time is not exceeded.

3.25

maximum
fixed time
time-triggyd

3.26
software f
incorrect
unexpecte

3.27
impact an
documenta

3.28
configura
task of trag

3.29
constant t

situation in which the faulty node continually transmits messages (3.6) that compromises the operag

of the bus

3.30
blocking a
situation
demands

4 Softw

&

response time
hssigned to a system activity to exchange globally-synchronised messages\(3.6) on a bus
red architecture

ault
step, process, or data definition in software which cdusés the system to prod
d results

hlysis
tion that records the understanding and implications of a proposed change

[fion management process
king and controlling changes to the artifacts (3.9) in the development process

ransmission of messages

ccess to the data bus
which the faultynode does not adhere to the expected patterns of use and makes exces
service, theréby reducing its availability to other nodes

are dévelopment

4.1 Gen

in a

uce

—e

on

sive

bral

The main objective of the following requirements is to achieve software reliability by means of
readable, understandable, testable, and maintainable software. This clause gives recommendations for
the design of software and the subsequent related testing. The avoidance of software faults shall be
considered during the entire software development process.

Where an existing software component has been developed to a previous standard and demonstrated
through application usage and validation to reduce the risk to as low as reasonably practicable, there
shall be no requirement to update the software life cycle documentation at the software module level.

Machine control software shall comply with the safety requirements of this clause. In addition, the
machine control software shall be designed and developed according to the principles of ISO 12100:2010
for relevant but not significant hazards which are not dealt with by this document.

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

4.2 Planning

A plan shall be developed to define the relationship between the individual phases of the software
development and the related artifacts.

Appropriate methods and measures from Table 3 through Table 9 shall be selected for software
development according to the machine performance level required (MPLr).

The MPLr of the system may be achieved by adding, in parallel, two systems of a lower performance
level. When adding in parallel (according to ISO 19014-2), the software can be developed in each system
to the lower MPLr requirements. This is only allowable when there are no common cause failures
bet{veen the two systems.

The suitability of the selected methods or measures to the application shall be justified ahd shall be
madle at the beginning of each planned development phase. For a particular application;the dppropriate
conpbination of methods or measures shall be stated during development planning. Methods or
megsures not listed in Table 3 through Table 9 may be used.

N =

From ISO . 150
19014-2:— From system design |« o To system intpgration
Figure 2 + \.19014-2:— Y g

Figure 2 test

Software safety

4.4 requirements 410 Software validatjon
specifications

i T

45 Software architecture 49 Software module
design | ’ integration and testing
2N | Software module design |« 48 Software module
X and coding — : testing

-~

Figure 1 — Software development V-model

Figlire 1 is a representation of one possible design method (V-model). Any organized, proven
lopment precess that meets the requirements of this document may be used for the software

When selecting methods and measures, in addition to manual coding, model-based development may
be 3pplied where the source code is automatically generated from models.

With each method or measure in the tables, there is a different level of provision for each performance
level. Table 1 indicates the requirements.

Table 1 — Software safety requirements specification

Symbol Software safety requirements specification

+ The method or measure shall be used for this MPLr.
In case this method or measure is not used, the related rationale shall be documented during the
safety planning phase.

0 The method or measure may be used for this MPLr.

- The method or measure is not suitable to meet this MPLr.

© IS0 2020 - All rights reserved 5

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

Methods and measures corresponding to the respective MPLr shall be selected. Alternative or
equivalent methods and measures are identified by letters after the number. At least one of the

alternatives or equivalent methods and measures marked with a

“«w,n

+

providing a rationale is not required. An example of this is Table 2.

Table 2 — Example software safety requirements specification

shall be selected, in which case,

In this casq
one mg
one mg(

otherv
satisfy

Rationale g
the listed 1

If a softwalre component has any impact on different safety functions with a different MPLr, then

requireme

If the softv
software

the lowest
component

When reus
performed
on the resy

4.3 Arti

Method/measure MPLr=a |MPLr=b,c| MPLr=d | MPLr=e
1.a Measure 1 + + - -
1.b Measure 2 + + + +
1.c Measure 3 + + + +

)

pasure from Measure 1, Measure2 or Measure 3 shall be fulfilled for MPLr = a}b; c;
pasure from Measure2 or Measure 3 shall be fulfilled for MPLr = d, €;

ise, a rationale shall be provided about the unspecified alternative method/measur
the requirement of the standard for the specific MPLr.

hethods or measures.

nts related to the highest MPLr shall apply.

Fare contains safety-related and non-safety-related components, then the overall embed,
achine performance level achieved (MPLa) shall be limited to the software component y
MPLa; this requirement does not apply whemn adequate independence between the softw
s can be demonstrated in accordance with Clause 7.

ing a software component that.isCintended to be modified, an impact analysis shal
An action plan shall be developédyand implemented for the overall software life cycle, bg
It of the impact analysis, to ensure that the safety goals are met.

facts

P to

r justification shall be provided if other equivalent methods.or measures are used instead of

the

ded
vith
are

be
sed

Once the individual phases of’software development plan have been determined, the artifacts shalll be

defined for

the activities and tasks,Taking into account the extent and complexity of the project, all artifacts in|

individual

each phase to béearried out. Other phases and related artifacts can be added by distribu

phases showh in Figure 1 may be modified.

NOTE I

distinguish|between the phases. For example, the design of the software architecture and the softy
implementation ¢an be generated successively with the same computer-aided development tool, as is done i1
model_base“ dnt'ra]npmanf prnnncc_

is common to combine individual phases if the method/measure used makes it difficult to clg

[ing
the

arly
bare
the

As part of the software development process, the artifacts shall be:

a)
b)

documented according to the outcomes expected from the planned phases;

regression tested;

c)

subject to a configuration management process.

modified as a consequence of an impact analysis, and only the impacted software shall be

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

The first artifact applicable to the process is the software development plan. The subsequent artifacts,
defined by the plan, shall include:

— design specification and related verification report, for each software design phase (descending

branch of the V-model in Figure 1);

— test specification and related test report, for each software (SW) testing phase (rising branch of the

V-model in Figure 1);

executable software.

4.4

Thd
reld

Apq

Software safety requirements specification

software safety requirements specification shall describe requirements forrthe fq
vant:

functions that enable the system to achieve or maintain a safe state;

functions related to the detection, indication, and handling of faults by.the safety-relat
control systems (SRP/CS);

functions related to the detection, indication, and handling of faults in the software;
functions related to the online and offline tests of the safety functions;

NOTE1 An online test is performed while the system being tested is in use. An offline test i
while the system being tested is not in use.

NOTE2 Anexample of an online test would be checking for faults in the steering system whilg
machine. An example of an offline test would be ehecking for faults in the steering system prior
machine movement.

functions that allow modifications of safety-related software parameters;

interfaces with functions that areniot safety-related;

performance and response time;

interfaces between the,software and the hardware of the electronic control unit.

ropriate method or.measures shall be selected from Table 3 to meet the specified MPLr.

Table 3 — Software safety requirements specification

llowing, if

ed parts of

performed

driving the
to allowing

Method/measure Reference | MPLr | MPLr | MPLjr | MPLr
=a =b,c = =
1. Requirements specification in natural language Al + + + +
2. Computer aided specification tools A2 0 0 0 +
3.a Informal methods A3 + + + -
3.b Semi-formal methods A4 + + + +
3.c Formal methods A5 + + + +
4. Forward traceability between the system safety re- 0 0 0 +
quirements and the software safety requirements A6
5. Backward traceability between the software safety - 0 0 0 +
requirements and the system safety requirements
6.a Walk-through of software safety requirements A7 + + + -
6.b Inspection of software safety requirements A8 + + + +
NOTE The detailed description of these methods/measures is in Annex A.

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

4.5 Software architecture design

Software architecture that describes the hierarchical structure of all the safety-related software
components of each safety control system (SCS) shall be developed based on the software safety
requirements. Appropriate methods or measures shall be selected from Table 4 to meet the
specified MPLr.

Table 4 — Software architecture design

Method/measure Reference | MPLr | MPLr | MPLr | MPLr
=a =h,c = =e
1.a Informal methods A3 + + + b
1.b Semi-formal methods A4 + + + +
1.c Forjmal methods A5 + + # +
2. Corpputer-aided design tools A9 0 0 0 +
3.a Cydlic behaviour, with guaranteed maximum 0 0 + +
cydle time
3.b Tinpe-triggered architecture A.10 0) +
3.c Evgnt-driven, with guaranteed maximum re- 0 0 +
spdnse time
4. Forjward traceability between the software safety 0 0 0 +
requirements specification and the software ar-
chitecture Ag
5. Badkward traceability between the software P 0 0) +
architecture and the software safety requirements
specification
6.a Walk-through of software architecture A7 + + + -
6.b Inspection of software architecture A8 + + + +
NOTE The detailed description of these methods/measute is in Annex A.
4.6 Softyare module design and coding

The object

— specif)

the sofftware architecturé;

— generq

— verifying that the'Software architecture has been fully and correctly implemented.

Appropriat
no require

mentto review auto-generated code.

ves of this phase of softwarg development are:

ting readable,testable, and maintainable software modules (e.g. manual code, model, etd.);

ring, in detail, the behaviour of the safety-related software modules that are prescribed by

e methods or measures shall be selected from Table 5 to meet the specified MPLr. Thete is

Table 5 — Software module design and coding

Method/measure Reference | MPLr | MPLr | MPLr | MPLr
=a =b,c =d =e
1.a Informal methods A3 + + - _
1.b Semi-formal methods A4 + + + +
1.c Formal methods A.5 + + + +

NOTE The detailed description of these methods/measures is in Annex A.

a2 The use of trusted and verified software elements is highly recommended.

b These methods or measures are not always applicable for graphical modelling notations used in model-based
development.

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

Table 5 (continued)
Method/measure Reference | MPLr | MPLr | MPLr | MPLr
=a = b, C = =e
2. Computer aided design tool A9 0 0 +
3. Use of design and coding standards 0 + +
4. No unstructured control flow in programs in higher 0 0 + +
level languagesP
5. Limited automatic type conversionP A1l 0 0 + +
6. Limited use of interruptsb 0 0 0 +
7. Limited use of pointersP 0 0 Q +
8. Limited use of recursion 0 0 () +
9.a Dynamic variables or objects without online checkP Al2 0 0 - -
9.b Dynamic variables or objects with online checkP A3 0 o) + +
10. Software module size limit + + +
11. One entry/one exit point in subroutines and func- o + + +
tionsP
12, Fully defined interface Ald 0 + + +
13. Information hiding/encapsulation 0 0 + +
14. Software complexity control 0 0 0 +
15. Structured design or coding A15 0 + + +
16. Defensive design or code Al 0 0 0 +
17. Use of trusted/verified software elements? A17) 0 0 0
18. Forward traceability between the software safety 0 0 0 +
requirements specification and the softwarg-design
19.p |Walk-through of software design, sourceycode or A7 + + + -
both
19.p |Inspection of software design, source code or both A.8 + + + +
NOTE The detailed description of these.methods/measures is in Annex A.
a |The use of trusted and verified software elements is highly recommended.
b IThese methods or measures,are not always applicable for graphical modelling notations used in nodel-based
devkelopment.
4.7| Language andtool selection
The safety integrity of the software being developed can be directly affected by the proagramming
language selected, the tools used during development and testing, and the use of existing, trusted,
ver]fied software modules. Appropriate methods or measures shall be selected from Tablg 6 to meet
the|specified MPLr.
Table 6 — Language and tool selection
Method/measure Reference | MPLr | MPLr | MPLr | MPLr
=a = b, C = =e
1. Suitable programming language A.18 + + + +
2. Language subset support A.19 0 0 +
3.a Tools and translators with increased confidence A.20 0 + + +
from use or validation
3.b |Certified tools and certified translators A.21 0 + + +
NOTE The detailed description of these methods/measures is in Annex A.
© IS0 2020 - All rights reserved 9

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

4.8 Software module testing

The objective of software module testing is to verify that the designed and implemented software
modules correctly fulfil the software safety design. In this phase, a procedure for testing the software
modules against their requirements shall be produced and the tests shall be carried out in accordance
with that procedure.

For a systematic approach to software module testing, the use of appropriate tools for test management
and test automation supports the work-intensive and error-prone tasks in software module testing.
The availability of support tools encourages a more exhaustive approach to both normal and regression
testing.

For easier|verification, validation, assessment, and maintenance, all data, decisions, and ratiohale
should be |documented throughout the software project. Documentation on the softwane“modples
should include:

— testing performed;
— decisiqns and their rationale;

— problems and their solutions.

NOTE ata recording is important for the maintenance of computer systems as the rationale for cerftain
decisions mpde during the development project is not always known by the,maintenance engineers.

Appropriate methods or measures shall be selected from Table 7-to meet the specified MPLr.
Software module testing may be executed in different environpments, for example:

— model{in-the-loop tests,

— softwdre-in-the-loop tests,

— procegsor-in-the-loop tests,

— hardwpre-in-the-loop tests.

Table 7 — Software module testing

Method/measure Reference | MPLr | MPLr | MPLr | MRLr
=a =b,c = =le

1. Boundary value analysis A.22 0 0 +
2. Conftrol flow analysis A.23 0 0 +
3. Datp flow analysis A.24 0 0 +
4. Test case execeution from boundary value analysis A.25 0 0 0
5. Functional/black box testing (including fault insertion A.26 + + +

(FT) testing)
6.a Structure test coverage (entry points) 0 + - -
6.b Structure test coverage (statements) A.27 0 + + -
6.C Structure test coverage (branches) 0 + + +
7. Equivalence classes and input partition testing? A.28 0 0 + +
8. Test case execution from model-based test case genera- A.29 0 0 0 +

tion
NOTE The detailed description of these methods/measures is in Annex A.
a2 The tester may choose not to perform this test method, but shall perform it at the integration level, when required.

10 © IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

Table 7 (continued)
Method/measure Reference | MPLr | MPLr | MPLr | MPLr
=a = b, C = =e

9. Response timings and memory constraints testing? o + + +
10. Performance requirements testing? A.30 o + + +
11. Avalanche/stress testing? 0 0 0 +
12. SW module interface testing A31 0 0 0 +

13 Back-to-back comparison testing A.32 0) + +
14. Forwardtraceabitity betweemnrthesoftwaremmodute yswe) O O v +

design and the module test specifications

NOTE The detailed description of these methods/measures is in Annex A.

a | The tester may choose not to perform this test method, but shall perform it at the integration leyel; when fjequired.
4.9| Software module integration and testing

The objectives of this phase of software development are:

— |integrating the software modules into software components thtoughout the embedded goftware of

the safety control system;
— |verifying that the software requirements are correctly realized by the embedded software.
In this phase, the particular integration steps are tested.against the software safety requirements. The

intgrfaces between the software modules and between software modules and componenits are also
testled. The steps of the integration and the tests of‘the software components shall directly ¢orrespond
to the hierarchical software architecture.
Apgropriate methods/measures shall be selected from Table 8 to meet the specified MPLf. However,
the[tester may choose not to apply a test niethod or measure at the integration level, but sha|l apply the
method or measure at the module level;when required.

Softfware module integration testing-may be executed in different environments, for examplg:

— |model-in-the-loop tests,

— |software-in-the-loop-tests,

— |processor-in-the=leop tests,

— |hardware-inithe-loop tests.

Table 8 — Software module integration and testing
Method/measure Reference | MPLr | MPLr | MPLjr | MPLr
=a =b c =d =—e
1. Functional/black box testing (including fault insertion A.26 + + + +
(FI) testing)

2. Equivalence classes and input partition testing A.28 0 0 + +

3. Response timings and memory constraints 0 + + +

4. Performance requirements testing A.30 0 + + +

5. |Avalanche/stress testing 0 0 0 +

6. |Back-to-back comparison testing A.32 0) + +

7. Forward traceability between the software architec- A.6 0 0 0 +

ture design and the integration test specifications
NOTE The detailed description of these methods/measures is in Annex A.
© IS0 2020 - All rights reserved 11

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

4.10 Software validation

The objective of this phase of software development is showing that the software safety requirements
are correctly realized by the embedded software.

Testing shall be the main verification method for software. Animation and modelling may be used to
supplement the verification activities.

The software shall be exercised by simulation of:

— input signals present during normal operation;

anticip

ated occurrences;

— undesired conditions requiring system action.

The effectiyeness of the test procedures, and of any other measures used, shall be evaluatéd against{the
safety requirements specifications on conclusion of the verification process.
Appropriate methods/measures shall be selected from Table 9 to meet the specified MPLr.
Table 9 — Software validation
Method/measure MPLr | MPLr | MPLr | MHLr
Reference
=a =b,c = =le
1.a |Macljine network test B.1 + + + 4
1.b |Hardware-in-the-loop test B.2 + + + 4
1.c |MachHine level test B.3 + + + 4
2. Forward traceability between the software safety 0 0 0 4
requjrements specification and software verification
(including data verification) plan A6
3. Backjward traceability between the software yer- o 0 0 0 4
ificafion (including data verification) plan.and the
software safety requirements specification
NOTE The detailed description of these methods/measures is in Annex B.
The test mgthod shall be carried out,as specified in Annex B.
5 Software-based parameterization
5.1 General
Software-hased parameterization refers to the possibility of adapting the software system to diffefent
requirements,/{after completion of development, by changing parameters in order to modify |the

functionality-of the software. Software-based parameterization of safety-related parameters shall be
considered part of the SRP/CS and shall be described in the software safety requirements specification.

Software-based parameters include:

12

variant coding (e.g. country code, left-hand/right-hand steering, etc...);

system parameters (e.g. value for low idle speed, engine characteristic diagrams, etc...);

calibration data (e.g. machinery specific, limit stop for throttle setting, etc...).

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

5.2

1ISO 19014-4:2020(E)

Data integrity

The integrity of data used for parameterization shall be maintained, and unauthorized modifications
shall be prevented. This shall be achieved by applying methods or measures to control:

the range of valid inputs;
data corruption before and after transmission;

the errors from the parameter transmission process;

thae offects of incomnlete narametertransmission-—and
ot T 2 11t THPpTrEte-pPoie et r—retio oot

5.3
The

the effects of faults and failures of hardware and software of the tool used for paramete

Software-based parameterization verification
following verification activities shall be performed for software-based parameterizatio

verification of the valid setting for each safety-related parameter (minimum, max
representative values);

verification that the safety-related parameters have been cheéked for plausibility by us
values written in the software during the configuration phase to verify its behaviour;

verification that unauthorized modification of safety-elated parameters is prevented;

verification that the data/signals for parameterization are generated and processed in
that faults cannot lead to a loss of the safety function.

rization.

1:

mum, and

b of invalid

Kuch a way

6 [Transmission protection of safety-related messages on bus systems
Thi} clause gives recommendations for,the transmission protection of safety-related messages used in
SCS|and in the communication that eanrtake place between various components (e.g. microgontrollers,
intglligent sensors, intelligent actuaters) within an SCS as shown in Figure 2.
NOTE1 At the time of publication, only encapsulated bus systems in which the manufacturer has|defined the
nunpber and type of bus participants (i.e. units connected to the bus) are considered. Data and address busses
intefnal to the CPU and ECUrinternal devices are excluded.
Apgropriate methods and measures from Table 11 shall be implemented to control the errorjs as shown
in Table 10.
Table 10 — Control of transmission error and performance levels
Transmission errors MPLr=a,b,c MPLr =d,e

Failur&of peer communication YES2 YES

Message falsification YES2 YES

Message repetition NO YES

Message loss YES2 YES

Message insertion NO YES

Incorrect sequence NO YES

Message retardation YES2 YES

Blocking access to the data bus YES2 YES

Constant transmission of messages YES2 YES

a Does not apply to category B or 1 systems since diagnostic coverage is not required

NOTE 2 Techniques can be implemented on protocols such as SAE J1939 to address the transmission errors.
© IS0 2020 - All rights reserved 13

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

Micro-controller 1

Micro-controller 2

Data bus
Figurg 2 — Micro-controller network consisting of electronic control units on a data bus
Table 11 defines some of the methods and measures to protect against the transinission error§ by
excluding particular fault effects related to the communication or protection of the safety-related data
in the SCS.|[Other methods and measures may be used to protect against errors.
Table 11 — Methods and measures within the scope of a microcontroller network
Transmission errors @&d&uﬂ)
Failure | Unin- \\‘ Blocking ac- Constlﬂnt
of peer |tended I N cess to the | transniis-
. ncors\ essage | Message .
communi- | mes- |Message| Message e data bus sion qf
A A A rect(se- falsifica- | retarda-
cation sage loss insertion B . messages
- ce tion tion
repeti- q@'
tion &
D1 Keepalive | g NO | NO NQ NO NO NO YES YES
messages
D.2 | |Alivecounter| NO YES YES YES NO NO NO NO YES
D.3 Cyclic
redundancy NO NO NO NO NO YES NO NO NO
check (CRC)
Meth- |24 Sequence NO YESS® YES YES YES NO NO NO YES
number
od/
meas- | D.5 Message NO NO | YEs NO YES YES NO NO NO
ure repetition
D.6 Watchdog YES NO YES NO NO NO YES YES YES
D.7 Time-
triggered < YES NO NO YES NO NO YES NO NO
data bus.
D.8 | [Busguardian| NO NO NO NO NO NO NO NO YES
D9 | | Minislotting| NoO NO NO NO NO NO YES NO YES
The fulfilmeént of the MPLr by the measures implemented on the network communication may be

verified by means of the calculation of the data integrity assurance, as reported in Annex C. Annex D
has additional information on Table 11.

7 Independence by software partitioning

7.1 General

Software partitioning is intended to aid the designer in proving independence for software components.
Adequate independence of software components is guaranteed by excluding particular software fault
effects violating this independence.

14

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

For

1ISO 19014-4:2020(E)

that purpose, methods and measures shall be implemented with adequate effectiveness:

— to control hazards that can occur in subsystems so that they cannot affect other subsystems;

to have adequate independence of software components by software partitioning.

In order to achieve adequate independence of software components, the system resources should be
assigned to independent partitions, each representing a particular runtime environment. The use of
software partitioning is not restricted to the co-existence of software of different MPL in the same
runtime environment. It can also support:

a)
b)
For

NOT

within a microcontroller network.

Dep
a)
b)

Thd
soft

Th4

sanmnj

7.2

In g
as s
the

L : 34 e N £ i£3 3 £ difiod £i FRpR
\,uaus\,o Il d lJCll CILIVIT VWWITIIUUL T U VUOIITIILAUIUITI UL U1IITNIUuuIlItcu SvuitvvdIl © qu CILIVUILS,
co-existence of software of a different nature (in-house, third party).
software partitions with MPLr equal to c, d, e, independence is required.

E Partitions can be allocated within a single microcontroller or allocated o several micr

ending on the selected architecture, two approaches can be used:
several partitions within a single microcontroller;
several partitions within the scope of an ECU network.

concept of software partitioning and its associated methods and measures for the inde

ware components shall be taken into account when spécifying the software architecturg.

t part of the software that implements the support for partitioning implementation sh3
e or higher MPLa than the highest MPLr assodiated with the software partitions.

Several partitions within a singlé microcontroller

rder to guarantee adequate independence of software components within a single micr
hown in Figure 3, correct execution of the safety-related function shall be protected agz
following fault effects:

memory corruption (unintended writing to memory of another partition);
NOTE1 Memory eorruption applies to memory mapped input/output (I/0), memory register
blocking of partitions (due to communication deadlocks);

wrong allagation of processor execution time;

bcontrollers

endence of

11 have the

bcontroller
inst any of

E, etc.

wrongcommunication peer (the sender sends messages to the wrong recipient or masqulerades as a

serdér other than himself);

b Falk 7= L £ 1 Co— 1.1 e + L A7~ £ £ +1 P
LOTTUpPLIOII O1'1/U HILET14LT DYy UIIILCITUCU WIILIIZ LU dIl 1/ U TIILCT1dLC U1 dlTIULLICT PdI'LItIU

NOTE 2 Corruption of I/O interface refers only to external devices.

© IS0 2020 - All rights reserved

o

15

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

Micro-controller

Task A.1 Task B.1
Task A.2 Task B.2
Task A.n Task B.n
Partition A Partition B
Operating System

Hardware

Figure 3 — Several partitions within a single mictocontroller

Table 12 d¢fines the measures so that all appropriate fault effects\listed above can be handled to enqure
adequate effectiveness and adequate independence of software.eomponents. Additional informatign is
in Annex E
Table 12 — Methods and measures within microcontroller
\,O Fault effect
\£' - Wrong
Mem ﬁ) Blocking of processor A Corruptiop of
anq q communication .
corrlé& partitions execution eer I/0 interfce
. time allocation p
E1l Unamblguo_us b_1d1rec_t10nal NO NO NO YES NO
communication object
E2 Strictly two un'idirec.tion&_) NO NO NO YES NO
communication ob]@ C
IDs for identifi m:

L3 acknowledgerrll\ 70T both. NO NO NO YES NO

E4 Asy“d‘@‘as.data NO YES NO NO NO
Meth- communication

od/ St @“iority-based
meas- | E:5 § cheduling NO NO YES NO NO
ure Ay
E6 || A ‘fime slicing method NO NO YES NO NO
E7 ”) Memory protection VEQ NO NO NO Vi
mechanisms
ES Verification of safety critical YES NO NO NO NO
data
E9 Static analysis YES NO NO NO NO
E.10 Static allocation YES YES YES YES YES

7.3

Several partitions within the scope of an ECU network

In order to guarantee adequate network communication, when the independence of software
components is implemented by means of a microcontroller network, refer to Clause 6.

16

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

8 Information for use

8.1 General

Information for use shall be provided in accordance with ISO 12100:2010, 6.4.

8.2 Instruction handbook

Information for use shall be included in the machine instruction handbook (i.e., operator’s manual).
This information shall use ISO 6750-1 for guidance. This information can include the following:

— |descriptions of symbols that are displayed to the operator and what action is required;
— |descriptions of error messages that are displayed to the operator and what action lis reqpired;
— |descriptions of warning messages that are displayed to the operator and what'action is fequired;

— | descriptions of calibration procedures that the operator is required to jperform.

© IS0 2020 - All rights reserved 17

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)
Annex A
(informative)

Description of software methods/measures

A.1 Requirementsspecificationinnaturallanguage

The softwz
language a

re safety requirements specification should include a description of the problem innatyiral

Id, if necessary, further informal methods, such as figures and diagrams.

A.2 Computer-aided specification tools

and
of a
this
the

Use of thes
formal spe
database t
method su
project life

e tools to facilitate automatic detection of ambiguity and completeness'in semi-formal
cification methods should be used. The tool should produce specificdtions in the form
nat can be automatically inspected to assess consistency and completeness. In general,
pports not only the creation of the specification but also of,désign and other phases of
cycle.

A.3 Infarmal methods

Informal nethods should provide a means of developing a<déscription of a system at some stage in its
developmet, i.e. specification, design or coding, typically by means of natural language, diagrqms,
figures, etq.

A.4 Semi-formal methods

Semi-form

consistent]

The descri

system be}

Examples
modelling

hl design methods should express a concept, specification or design unambiguously
y, so that some mistakes and'omissions can be detected.

btion should in some ca$es be analysed by machine or animated to display various aspect
aviour. Animation cdn)give extra confidence that the system meets the requirements.

bf semi-formal methods include, but are not limited to: data flow diagrams, pseudo c
ools, finite state'machine/state transition diagrams.

and

s of

bde,

A.5 Formal methods

Formal mefthods prov1de a means of developlng descrlptlon of a system in a StI‘lCt notatlon that sh
be subjected—te S . ’
Moreover, the descrlptlon should in some cases be analysed by machlne with a rlgor 51m11ar to the
syntax checking of source program compiler, or animated to display various aspects of the behaviour of
the system described. Animation can give extra confidence that the system meets the real requirement
as well as the formally specified requirement, because it improves human recognition of the specified
behaviour.

A formal method generally offers a notation (normally some form of discrete mathematics being used), a
way for deriving a description in that notation, and various forms of analysis for checking a description
for different correctness properties.

18 © IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

A.6 Traceability of the safety software

In order to ensure that the software resulting from development activities meets the requirements for
correct operation of the safety-related system, consistency between the software development stages
is essential. Traceability between activities is a key concept that confirms:

1. that decisions made at an earlier stage are adequately implemented in later stages (forward
traceability),

2. thatdecisions made at a later stage are required by earlier decisions (backward traceability).

Forgard traceabtiity 15 broadty concerned with checKing that a Tequirement 15 adequatety] addressed
in later software development stages. Forward traceability is valuable at several pointsin| the safety
soffware development:

— |from the system safety requirements to the software safety requirements;

— |from the software safety requirements specification to the software architecture;
— |from the software safety requirements specification to the softwarg-design;

— |from the software design specification to the module and integration test specifications

— |from the system and software design requirements for.frardware/software integration to the
hardware/software integration test specifications;

— |from the software safety requirements specification.to the software safety validation plan;

— |from the software safety requirements specification to the software modification plan (including
re-verification and re-validation);

— |from the software design specification to the software verification (including data verificption) plan;

Backward traceability is broadly concerned with checking that every implementation (interpreted
in 4 broad context, and not confined\to code implementation) decision is clearly justifigd by some
reqpirement. If this justification is‘absent, then the implementation contains something uhnecessary
that adds to the complexity but not necessarily address any genuine requirement of the safety-related
system. Backward traceability~is'valuable at several points in the safety software developmégnt:

— |from the safety requirements, to the perceived safety needs;

— |from the software.atrchitecture, to the software safety requirements specification;
— |from the softwdre detailed design to the software architecture;

— |from thé software code to the software detailed design;

— |from\the software safety validation plan, to the software safety requirements specificatfion;

£ 4+ £ i L A 1 s | £1 L£o4 H + L3 A
I ITUIIT LIIT SUILVWAlI T 11ITUUITIvativull lJlall, LU LIIT SUItvwdal © DCllCL_y I C\.iull CIIITIILS DPCblllbaLlUll,

— fromthe software verification (including data verification) plan, to the software design specification.

A.7 Walk-through

A walk-through is a systematic, informal verification used to review an aspect of the design. During
a walk through, the author of an artifact provides a step-by-step report to one or more assessors.
The objective is to create a common understanding of the artifact, and to identify any errors, defects,
discrepancies or problems in the artifact. A walk-through is less stringent than an inspection.

A walk-through should be used to detect software faults as soon as economically possible during
development. It consists of a walk-through team selecting a small set of paper test cases, representative

© IS0 2020 - All rights reserved 19

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

sets of inputs, and corresponding expected outputs for the program. The test data is then manually
traced through the logic of the program.

A.8 Inspection

An inspection is a systematic, formal verification method used to review an aspect of the design. During
an inspection, the artifact is checked by one or more assessors to see whether it complies with the
requirements. The inspection is organized and moderated by an inspection leader. The author of the
artifact participates in the inspection but cannot lead the process.

. A
are
nts,
the

Design inspection can be performed at design level to reveal defects in the design of the softwar
design inspection is a formal, documented, comprehensive, and systematic examination of the softw
design to gvaluate the design requirements, the capability of the design to meet these requireme
identify prpblems, and propose solutions. Such a review is primarily intended to verify the.work of
designers gnd should be treated as a confirmation and refining activity.

mal
the
The
the
d at

Code inspégctions can be performed at coding level to reveal defects in a softwape-element. Forj
inspection|is a structured process to inspect software material that is carried out by peers of
person prdducing the material to find defects and to enable the producer to improve the material.
producer should take no part in the inspection process, other than to brief\the inspectors during
familiarization stage. Formal inspections may be carried out on specific sgfftware elements produce
any phase pf the software development life cycle.

Prior to the inspection taking place the inspectors should becomé. familiar with the materials t¢ be

inspected.
agenda sha
for the soft
inspection
specific pr

During the
whoserole

The inspectors’ roles in the inspection process sheuld be clearly defined. An inspec
uld be prepared. Entry and exit criteria should bedefined based on the properties requ
ware element. Entry criteria are the criteria or ¥equirements which shall be met prior to
taking place. Exit criteria are the criteria or requirements which shall be met to comple
hCess.

inspection the findings of the inspection should be formally recorded by the modera3
is to facilitate the inspection. A consensus on the findings should be reached by all inspect]

Defects should be classified as either

a)
b)

requir
requir

Defects idqg
the inspect
the necess

A9 Con

ng rectification prior to acceptance, or
ng rectification by a giventime/milestone.

ntified should be referred to the producer for subsequent rectification after completio

[ion
red
the
te a

tor,
or's.

h of

ion. Depending on,the number and scope of identified defects, the moderator may deternjine

ty for furtherinspection of the software material.

jputer:=aided design tools

the

Computer-aided design tools should be used during the design of both hardware and software
when available and justified by the complexity of the system. The correctness of such tools should
be demonstrated by specific testing, by an extensive history of satisfactory use, or by independent
verification of their output for the particular safety-related system that is being designed.

Support tools should be selected for their degree of integration. In this context, tools are integrated
if they work co-operatively such that the outputs from one tool have suitable content and format for

20 © IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

automatic input to a subsequent tool, thus minimizing the possibility of introducing human error in the
reworking of intermediate results.

NOTE

Integrated Development Environment (IDE) could be employed to provide comprehensive facilities

to computer programmers for software development. They normally consist of a source code editor, build
automation tools, and debugger. Most of them have intelligent code completion; some contain a compiler,
interpreter, or both.

A.10 Safety performance in real time

Th

1l

behaviour

is a

In 4
con

NOT

A.11Design rules

Cod
sho

3] ot ££ AFSrPN | HPoS £oi T 1 1 43 i AN dict
llllPlClllCllLaLlUll Ul TdauIit"tuIitl d1IC T I1TItYU DCIICL)’ crititadarredar T DyDLClllD vVILII Pl cuittaul

Chieved by means of the following solutions:

In a cyclic behaviour with guaranteed maximum cycle time, communication between no|

transmit a message and whether a received message is relevant for the particular electr
or not. Access to the bus is controlled by a cyclic time-division multipledaccess (TDM
derived from the global notion of time.

In a time-triggered architecture (TTA) system, all system activities are initiated and b3
progression of a globally synchronised time-base. Each application is assigned a fixed t
the time-triggered bus, which contains the messages exchangedbetween the jobs of each
which can therefore be exchanged only according to a definied schedule.

n event-driven system, activities triggered by arbitrary events at unpredictable times
Kidered.

E Other time-triggered protocols are FlexRay and TT-Ethernet (time-triggered Ethernet).

ing standards should be used to.facilitate verifiability of the produced code. The det
11d be fully agreed upon before ¢oding. These rules typically require

details of modularization, e.g.interfaces between software module, software module siz

limited use of encapsulation, inheritance (restricted in depth), and polymorphism, in
object-oriented langtiages;

limited use or avpidance of certain language constructs such as “go-to”, “equivalencs
objects, dynamic data, dynamic data structures, recursion, pointers, and exits;

restrictions on interrupts enabled during the execution of safety-critical code;

layott-of the code (listing);

des is done

using a time-triggered protocol class C (TTP/C) according to a static schedule; decidi(lxng when to

ic module
A) scheme

sed on the
ime slot on
hpplication

should be

hiled rules

es;

the case of

”, dynamic

nounconditional jumps (for example “go-to”) in programs in higher-level languages.

These rules enable ease of software module testing, verification, assessment, and maintenance.
Therefore, they should take into account available tools in particular analysers.

The use of interrupts should be restricted. Interrupts may be used if they simplify the system. Software
handling of interrupts should be inhibited during execution of safety-related system tasks. If interrupts
are used, then parts not able to be interrupted should have a specified maximum computation time,
so that the maximum time for which an interrupt is inhibited can be calculated. Interrupt usage and
inhibiting should be thoroughly documented.

In the application software, pointer arithmetic should be used at source code level only if the pointer
data type and value range (to ensure that the pointer reference is within the correct address space) are
checked.

© IS0 2020 - All rights reserved 21

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

If recursion is used, clear criteria should be established on the allowed depth of recursion.

A.12 Dynamic variables or objects without online check

Because of the number of dynamic variables and objects, and the existing free memory space for
allocating new dynamic variables or objects, depends on the state of the system at the moment of
allocation, it is possible for software faults to occur when allocating or using the variables or objects.
For example, when the amount of free memory at the location allocated by the system is insufficient, the
memory contents of another variable can be inadvertently overwritten. If dynamic variables or objects
are not used, these software faults can be avoided.

Restrictiorn
accurately
predictable

(for examplle, after exiting a subroutine) the whole memory which was allocated to it shquld be freed.

A.13 Dyn

Online che
by the allo
not sufficig

all the required variables and objects.

A.14 Mod

A modulary
maintenan
For the me

A softy
Conne
Collect

The sa

sizes, But related to a pre.defined coding standard).

Softw{

neededl, the reason/forthis strategy shall be documented within the software; this ensures pra

execut

Softwae
global

s on the use of dynamic objects are needed where the dynamic behaviour carnnet
predicted by static analysis (i.e. in advance of the program execution), and~there
P program execution cannot be guaranteed. After a dynamic variable or object has been y

amic variables or objects with online check

Ck determines at run time whether that the existing variables, datder code are not impag
Cation. If allocation is not allowed (for example, if the memoryatthe determined addres
nt), appropriate action shall be taken. This is an alternativé,method to statically alloca

Jular approach

approach (modularization) presupposes a number of rules for the design, coding,
ce phases of a software project. These rulesgvary according to the design method emplo
thods of this document, the following apply:

vare module should have a single well-defined system task or function to fulfil.
Ctions between software modulés should be limited and strictly defined.
ions of subprograms should:be built, providing several levels of software modules.

ftware module size should be restricted to a specified value (typically two to four scy

ion and mdintainability of the software.

re modules should communicate with other software modules via their interfaces. W}
or¢ommon variables are used they should be well structured, access should be control

be
fore
sed

ted
s is
[ing

and
red.

een

re modules should have single entry and single exit. If more than one point of entry or exjit is

per

lere
led,

and th

birTuse should be justified in each instance.

All software module interfaces should be fully documented.

Any software module interface should contain only those parameters necessary for its function.

Complexity metrics should be used to predict the attributes of programs from properties of the

software itself or from its development or test history. Software tools are required to evaluate most
of the measures. Some of the metrics which can be applied are, e.g., graph theoretic complexity,
accessibility, number of operators and operands, and number of entries and exits per software module.

Information hiding or encapsulation should be used to prevent unintended access to data or

procedures and thereby support a good program structure. Data that is globally accessible to all
software elements can be accidentally or incorrectly modified by any of these elements. Any changes
to these data structures can require detailed examination of the code and extensive modifications.

22

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

Information hiding is a general approach for minimising these difficulties. The key data

structures

are "hidden" and can only be manipulated through a defined set of access procedures. This allows
the internal structures to be modified or further procedures to be added without affecting the

functional behaviour of the remaining software.

A.15 Structured programming

Structured programming should be used to design and implement the program such that it is practical

to analyse without being executed.

ThdTollowing should be carried out so as to minimize structural complexity:

a) |divide the program into appropriately small software modules, ensuring all.intérqctions are
explicit;

b) |compose the software module control flow using structured constructs, (ire¥sequenceg, iterations
and selection statements);

c) |keep the number of possible paths through a software module small;and the relation between the
input and output parameters as simple as possible;

d) |avoid complicated branching, in particular, avoid unconditional jumps (go-to) in hfigher level
languages;

e) |where possible, use input parameters as loop constraints to perform branching, and 3void using
calculations as the basis of branching and loop decisiens.

Feafures of the programming language which encourage the above approach should be used in

preference to other features which are (allegedly)unore efficient, except where efficiency takps absolute

prigrity.

A.16 Defensive programming

Mamy methods can be used during programming to check for control or data anomalies. T}

use

likelihood of erroneous data processing. There are two overlapping areas of defensive methoc

err
be d

Thi

should be applied systematically throughout the programming of a system to de

r-safe software is designéd to accommodate its own design shortcomings. These shortc
Jue to mistakes in design or coding, or to erroneous requirements. Methods include the fi

range checkingthe variables;
checking values for plausibility;
type, diitension, and range checking parameters of procedures at procedure entry.

5 first set of defensive methods helps to ensure that the numbers manipulated by the pi

e methods
crease the
s. Intrinsic
bmings can
bllowing:

ogram are

by

Larmabla bhaoth 10 tarac oftha nrograma foanction o d sbhocical cignificancn of+ho variabhlac
............................ e-progaruheaoiahepayStcarSigcaice-er+ne-vYariantes

Read-only and read-write parameters should be separated, and their access checked. Functions should
treat all parameters as read-only. Literal constants should not be accessible. This helps detect accidental
overwriting or mistaken use of variables. Fault tolerant software is designed to “expect” failures in its
own environment or use outside nominal or expected conditions, and behave in a predefined manner.
Methods include the following:

— checking input variables and intermediate variables with physical significance for plausibility;

— checking the effect of output variables, preferably by direct observation of associated system state
changes;

© IS0 2020 - All rights reserved 23

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

checking by the software of its configuration, including both the existence and accessibility of

expected hardware, and also that the software itself is complete; this is particularly important for
maintaining integrity after maintenance procedures.

Some of the defensive programming methods, such as control flow sequence checking, also cope with

external fa

A.17 Use

ilures.

of trusted /verified software elements

Trusted/verified software modules and software components may be re-used in new applications. This

allows the
but for wh
required fc

A softwarg
MPLr, or if

the sa

specification;

prior
thus e

no fail

Careful ev
application

To verify t
should be 3

identif]
hardw|

identif]
year o

detect

If alternati
to demons

The descri
to custome
previously

A.18 Suit

developer to take advantage of designs which have not been formally or rigorously Verl
ich considerable operational history is available, thus reducing the amount of valida
r software modules and hardware component designs in new applications.

component or software module can be sufficiently trusted if it is alreadyvefrified to
it fulfils the following criteria:

ety-related function has at least one year or 1 000 hours of operation with no change to

erating history of the software module relates to the intended purpose in the new applicat
tablishing confidence in the software module’s suitability for,the new application;

ires of safety-related functions in the re-used software during the operational history.

hluation of each function should be performed singe’a non-safety-related function in
can be a safety-related function in a different application

vailable to provide the evidence to be documented:

ication of each system and its compouents, including version numbers for software
are used in the verification process;

ication and selection of a sufficient sample of users and time of use of the application (i.e.
1 000 hours of operation);

on and registration of failtres, with related corrective actions.

[ve procedures are followed to collect evidence of suitability, a rationale should be provi
rate that the godl-of trusted software component or software module is still achieved.

bed approachis extendable to supplied complex electronic components (e.g. from supy
r), where~ah unmodified software is integrated with unmodified hardware, and when
described’requirements are fulfilled and documented.

ied,
fion

the
the

ion,

one

hat a component or software module meetstthe above criteria, the following proceduyres

and

one

ded

lier
the

able programming language
(=]

The aim is to choose a programming language that supports the requirements of this document
as much as possible, in particular defensive programming, structured programming, and possibly
assertions statements. The programming language chosen should lead to easily verifiable code and
facilitate program development, verification, and maintenance. Widely used languages or their subsets
are preferred to special-purpose languages. Low-level languages, in particular assembly languages,
present problems due to their processor/platform machine-orientated nature.

A desirable language property is that its design and use should result in programs whose execution is
predictable without running the code. Given a suitably defined programming language, there is a subset

24 © IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

which ensures that program execution is predictable. This subset cannot (in general) be statically
determined, although many static constraints can assist in ensuring predictable execution.

NOTE See IEC 61508-7: 2010, Table C.1 for a list of programming languages.

A.19 Language subset support

The use of a language subset reduces the probability of introducing programming faults and increase
the probability of detecting any remaining software faults. The programming language should be
examined to determine programming constructs which are either error-prone or difficult to analyse

(e-g
lang
sub

NO']
dev

por

A.2

Too
due
pac

unl

defi
reld

As
for

a)

b)

‘)
d)

ruage subset defined. Also, it should be documented as to why the constructs used in't
Set are safe.
E MISRA 'C' (Motor Industry Software Reliability Association) guidelines arejan‘example

ability, and, reliability.

0 Tools with increased confidence from use or validation

|s that are proven in use or that have been validated should be‘applied in order to avoid

ted project.

ftware tool should only be argued as havingsinicreased confidence from use if evidence
the following:

one project producing a software with at least one year or 1 000 hours of operation);
the specification of the'sdftware tool is unchanged;

the occurrence of.mfalfunctions and corresponding erroneous outputs of the software to
during previous-developments are accumulated in a systematic way.

blopment guidelines that define a language subset and, generally, aim to facilitate' code safe

to tool failures which can arise during development, verification, and maintenance d
kages. Software tools without operating history or with any’serious known faults should
bss there is some other assurance of correct performance. If the software tool has sh
ciencies, the related language constructs are noted\down and carefully avoided during a safety-

the software tool has been used previously for the same purpose with comparable u
comparable determined operatingenvironment, and with similar functional constraintg;

the justification for increased confidence from use is based on sufficient and adequate d:

using static analysis methods). These programming constructs snould then be excl ded and a

e language

of software
Ly, security,

difficulties
f software
be avoided
own small

s provided
se cases, a

)

ita (at least

bl acquired

A s¢pftware toel'should only be argued as having increased confidence from validation if gvidence is

proyided showing the validation meets the following criteria:

a) [the: validation measures demonstrate that the software tool complies with it specified
requirements (e.g. the standard for a programming language helps to define the requirfements for
vattdating the associated COMmpiter);

b) the malfunctions and their corresponding erroneous outputs of the software tool occurring during
validation have been analysed together with information on their possible consequences and with
measures to avoid or detect them;

c) the reaction of the software tool to anomalous (out of the specified type of application) operating
conditions has been examined.

© IS0 2020 - All rights reserved 25

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

A.21 Certified tools and certified translators

Tools are necessary to help developers in the different phases of software development. Wherever
possible, tools should be certified so that some level of confidence can be assumed regarding the
correctness of the outputs.

The certification of a tool is generally carried out by an independent third party, against independently
set criteria, typically national or international standards. Ideally, the tools used in all development
phases (specification, design, coding, testing and validation) and those used in configuration

manageme

nt should be subject to certification.

[t is impor
their respe
to safety.

fant to note that certified tools, and certified translators are usually certified only ag
ctive language or process standards; they are usually not certified in any way with(mes

A.22 Boundary value analysis

Boundary

boundaries
values/co
output va
the boundz

Normally,
range. Test
to specify :

If the outp
the last ele]

A.23 Con

Control flo

Control flg
good progl
analysed f¢

inacce

knotte
graph
of sevd

value analysis should be used to detect software errors occurring at parameter limit
. The input domain of the program is divided into a number of input'classes (subsets of ir

nll:binations) according to the equivalence relation (each value of a.elass results in the s
1

e). The tests should cover the boundaries and extremes of theglasses. The tests check
ries in the input domain of the specification coincide with those in the program.

the boundaries for input have a direct correspondenceito the boundaries for the out
cases should be written to force the output to its limited values. Consider also if it is posg
| test case which causes the output to exceed the specification boundary values.

1t is a sequence of data (e.g. a printed table), special attention should be paid to the first
ments, and to lists containing no elements; gne element, and two elements.

krol flow analysis

v analysis should be used to detect poor, and potentially incorrect, program structures.

ajnst

:

ect

5 Oor
put
hme
that

put
ible

and

w analysis is a static testifig method for finding suspect areas of code that do not follow

"amming practice. The pregram analysed produces a directed graph which can be furf
r

5sible code, e.g. unconditional jumps which leave blocks of code unreachable;

d code, wher€)in contrast to well-structured code with a control graph reducible by succes
Feductions toa single node, poorly structured code can only be reduced to a knot compc
ral nodes.

her

Kive
sed

A.24 Data flow analysis

Data flow analysis should be used to detect poor, and potentially incorrect, program structures.

Data flow analysis is a static testing method that combines the information obtained from the control
flow analysis with information about which variables are read or written in different portions of code.

The analys

is can check for the following types of variables:

value when declaring a new variable;

26

those written more than once without being read, which could indicate omitted code;

those written but never read, which could indicate redundant code.

those that can be read before they are assigned a value, which can be avoided by always assigning a

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

A data flow anomaly does not always directly correspond to a program fault; however, if anomalies are
avoided, the code is less likely to contain faults.

A.25 Test case execution from boundary value analysis

Test case execution from boundary value analysis (see A.22) should be used to detect software errors
occurring at parameter limits or boundaries.

A.26 Functional/Black box testing

Fun
avo

Dur
cha
cha
resj
ind
con

being tested with pre-validated partner components.

In 4
par
oth

A.2

Strycture-based testing exercises certain subsets of the program structure. Based on ana

pro
the
rigd

In 4
100
(for
the

ctional testing should be used to reveal failures during the specification and design-phs
d failures during implementation and the integration of software and hardware.

ing the functional tests, reviews should be carried out to determine whether thg
racteristics of the system have been achieved and that the system inputidata which
Facterize the normally expected operation have been given. The outputs-are observe
ponse is compared with that given by the specification. Deviations "from the specif
cations of an incomplete specification should be documented. Functional testing of]
ponents designed for a multi-channel architecture usually involves‘the manufactured c

ddition, it is recommended that the manufactured components be tested in combination
fner components of the same batch, in order to reveal.common mode software faults w
brwise have remained masked.

7 Structure-based testing

bram, a set of input data is chosen so.that a large (and often pre-specified target) pel
program code is exercised. Measures-of code coverage vary as follows, depending upon
ur required.

1l cases, 100 % of the selected-coverage metric should be the aim; if it is not possible
% coverage, the reasons,why 100 % cannot be achieved should be documented in the
example, defensive code which can only be entered if a hardware problem arises). The
following list are widely supported by testing tools:

Entry point (calbgrdph) coverage: ensure that every subprogram (subroutine or functios
called at leastlonce (this is the least rigorous structural coverage measurement).

In object-oriented languages, there can be several subprograms of the same name W
to different variants of a polymorphic type (overriding subprograms) which can be

I

dynamic dispatching. In these cases, every such overriding subprogram should be testedl.

ses, and to

b specified
hdequately
and their
ation and
electronic
bmponents

with other
hich would

ysis of the
centage of
the level of

to achieve
test report
methods in

1) has been

hich apply
nvoked by

Statements: ensure that all statements in the code have been executed at least once

Branches: both sides of every branch should be checked. This can be impractical for some types of

defensive code.

A.28Equivalence classes and input partition testing

Equivalence classes and input partition testing permits to test the software adequately using a
minimum of test data. The test data is obtained by selecting the partitions of the input domain required
to exercise the software.

This testing strategy is based on the equivalence relation of the inputs, which determines a partition of
the input domain. Test cases are selected with the aim of covering all the partitions previously specified.
At least one test case is taken from each equivalence class.

© IS0 2020 - All rights reserved 27

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

There are two basic possibilities for input partitioning which are

equivalence classes derived from the specification - the interpretation of the specification can
be either input orientated, for example the values selected are treated in the same way, or output
orientated, for example the set of values lead to the same functional result;

equivalence classes derived from the internal structure of the program - the equivalence class
results are determined from static analysis of the program, for example the set of values leading to

the same path being executed.

A.29Tes

Test case e
generation

Model-basse
(TCG) and
Additional
functional

Since testing is very expensive, there is a huge demand for automatic*test case generation td

Therefore,
of availablg

guaranteeing to meet certain coverage requirements.

The model
test model
suite and e

Model-base
exposure d
to automg
assess soft
automaticg
assess soft

A.30Perf

Performan
meet the sj

The requir
related fun
resources.

produ

case execution fromr model-based test case generation

xecution from model-based test case generation is to facilitate efficient automatic(test
from system models and to generate highly repeatable test suites.

bd testing (MBT) is an approach in which common testing tasks such as test.case genera
test results evaluation are based on a model of the system (application)sunder test (S|
y, model-based testing can be combined with source code level test coverage measurem|
models can be based on existing source code.

model-based testing is currently a very active field of research;’resulting in a large nun
b TCG tools. These tools typically extract a test suite from £he'behavioural part of the md

is an abstract, partial representation of the desired“vehaviour of the SUT. From this ma
5 are derived, building an abstract test suite. Test@ases are derived from this abstract
xecuted against the system; tests can be run against the system model as well.

bd testing is specifically targeting recently the safety critical domain; it allows for e
f ambiguities in specification, and design. Model-based testing also provides the capab
tically generate many non-repetitive” efficient tests, evaluate regression test su
ware reliability and quality, and.eases updating of test suites. provides the capabilit
lly generate many non-repetitivel efficient tests, to evaluate regression test suites an
ware reliability and quality, and eases updating of test suites.

'ormance testing

ce testing should-be“used to ensure that the working capacity of the system is sufficien
pecified requirenténts.

ements specification shall include throughput and response time requirements for saf
ctions, The requirements specification should include constraints on the use of total sys
The proposed system design is compared with the stated requirements by:

ing a model of the system processes and their interactions;

ase

fion
JT).
ent;

ols.
ber
del,

del,
test

hrly
lity
tes,
y to
1 to

t to

bty-
tem

storage devices, etc.);

condit

ions; and

functions.

determining the use of resources by each process (stack, processor time, communications bandwidth,

determining the distribution of demands placed upon the system under average and worst-case

computing the mean and worst-case throughput and response times for the individual system

Response timing and memory constraints testing can be performed to ensure that the system meets its
temporal and memory requirements. Response time is the total time it takes from when a user/system
makes a request until a response is received. When testing response time, one needs to find out how the
application handles all the requests and how the response time increases/decreases with the load and

28

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

execution through time. Moreover, memory constraints testing verifies that all memory is explicitly
initialized before it is used and blocked from other processes for use. An analysis is performed to
determine the distribution demands under average and worst-case conditions. This analysis requires
estimates of the resource usage and elapsed time of each system function. These estimates can be
obtained in several ways; for example, comparison with an existing system or the prototyping and
benchmarking of time critical systems.

Performance requirements testing are performed to establish demonstrable performance requirements
of a software system. An analysis is performed of both the system and the software requirements
specifications to specify all general and specific, explicit and implicit performance requirements. Each
performance requirement is examined in turn to determine

— |the success criteria to be achieved;

— |whether a measure against the success criteria can be achieved;

— |the potential accuracy of such measurements;

— |the project stages at which the measurements can be estimated; and

— |the project stages at which the measurements can be made.

wotkload in order to show that the test object would stand nopmal workloads easily. It helps|developers
to determine if the system performs sufficiently if the use load' goes well above the expected|maximum.
Thip kind of test is normally used to understand the uppetlimits of capacity within the sysftem. There
arela variety of test conditions applicable to avalanche/stress testing, including the following.

=]

Av]ﬂanche/stress testing can be performed to burden the testlobject with an exceptignally high

— |If working in a polling mode, then the test object'gets many more input changes per timfe unit than
under normal conditions.

— |If working on demands, then the number of demands per time unit to the test object i increased
beyond normal conditions.

— |If the size of a database plays animiportant role, then it is increased beyond normal conditions.
— |Influential devices are tuned\to their maximum speed or lowest speed respectively.

— |For the extreme cases, alljinfluential factors, as far as is possible, are put to the boundary|conditions
at the same time.

Under these test conditions, the time behaviour of the test object can be evaluated, the influgnce of load
chapges observed;.and the correct dimension of internal buffers or dynamic variables, stacks, etc., can
be ¢hecked.

A.31 SWrmodule interface testing

d modules.

Several levels of detail or completeness of testing are feasible. The most important levels are tests for
— all interface variables at their extreme values;

— all interface variables individually at their extreme values with other interface variables at
normal values;

— all values of the domain of each interface variable with other interface variables at normal values;
— all values of all variables in combination (this is only feasible for small interfaces);

— the specified test conditions relevant to each call of each subroutine.

© IS0 2020 - All rights reserved 29

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

These tests are particularly important if the interfaces do not contain assertions that detect incorrect
parameter values; they are also important after new configurations of pre-existing software
components and modules have been generated.

A.32 Back-to-back comparison testing

Back-to-back comparison testing is to determine whether or not an implementation and model
both produce the same outputs when given the same input; this is only applicable for model-based
development.

30 © IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

1ISO 19014-4:2020(E)

Annex B
(normative)

Software validation test environments

B.1Machinenetworktesting —

The software shall be integrated with its host microprocessor in its associated ECU; this
be integrated with the remaining ECUs that are part of the complete machine electrical s

ECU shall
ystem. The

sofffware shall then be tested at the interface to the ECU network, in order to demonstrate that the

soffware performs according to specification.

The software shall be exercised as shown in Figure B.1 by simulation of
— |input signals present during normal operation;

— |anticipated occurrences;

— |undesired conditions requiring system action.

Key

1 |complete’E/E/PES system

2 |real E€Y with real software to be tested
3 |real signals to be monitored

4 signal simulated

5 testbench

Figure B.1 — Machine network testing

B.2 Hardware-in-the-loop testing

The software shall be integrated with its host microprocessor in its associated ECU, while

the rest of

the associated machine electrical system and its environment shall be simulated. The software shall
then be tested in this simulated environment to demonstrate that the software performs according to

specification.

© IS0 2020 - All rights reserved

31

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

ISO 19014-4:2020(E)

The software shall be exercised as shown in Figure B.2 by simulation of:

— input signals present during normal operation;

— anticipated occurrences; and

— undesired conditions requiring system action.

Key

1 comple
2 realEC
3 realsig
4 signal §
6 ECU sin
7

B.3 Mad

The softw
machine ay
performs a

The softwg

simulatled environment (plant model and test'vector)

te E/E/PES system

J with real software to be tested
hals to be monitored

imulated

hulated

Figure B.2 — Hardware-in-the-loop testing

hine level testing

hire and the,associated machine electrical system shall be integrated into the associ:
chitectute) The system shall then be tested in the machine to demonstrate that the softw
ccording'to specification.

re-shall be exercised as shown in Figure B.3 by:

— input signals present during normal operation;

— anticipated occurrences;

— undesi

32

red conditions requiring system action.

ted
are

© IS0 2020 - All rights reserved

https://standardsiso.com/api/?name=8e61f9dc811fc926945a730802fd1671

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Software development
	4.1 General
	4.2 Planning
	4.3 Artifacts
	4.4 Software safety requirements specification
	4.5 Software architecture design
	4.6 Software module design and coding
	4.7 Language and tool selection
	4.8 Software module testing
	4.9 Software module integration and testing
	4.10 Software validation
	5 Software-based parameterization
	5.1 General
	5.2 Data integrity
	5.3 Software-based parameterization verification
	6 Transmission protection of safety-related messages on bus systems
	7 Independence by software partitioning
	7.1 General
	7.2 Several partitions within a single microcontroller
	7.3 Several partitions within the scope of an ECU network
	8 Information for use
	8.1 General
	8.2 Instruction handbook
	Annex A (informative) Description of software methods/measures
	Annex B (normative) Software validation test environments
	Annex C (informative) Data integrity assurance calculation
	Annex D (informative) Methods and measures for transmission protection
	Annex E (informative) Methods and measures for data protection internal to microcontroller
	Bibliography

