INTERNATIONAL ISO
STANDARD 19125-2

First edition
2004-08-01

Geographic information —Simple feature
access —

Part 2:
SQL option

Information géographique.— Accés aux entités simples —
Partie 2: Option SQL

—_— Reference number
= — ISO 19125-2:2004(E)

©1S0 2004

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© 1S0O 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +41 22749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

i © ISO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

Contents Page
0T =NV o iv
L e Yo 11T o2 oY o v
1 — Scope 1
2 L0 o o) 0 o 0 F= T - g A 2
3 NOIrMative refEreNCEeSo e e e e s e e e ety mn e e ee e e e e smneeeas 2
4 Terms and definitioNS e e pade s e e e 2
5 Symbols and abbreviated terms..........ccccoii i N Ve snne e e 3
6 ArchiteCture ... s sar e e e 4
6.1 Architecture — SQL implementation of feature tables based on-predefined data types.............. 4
6.2 Architecture — SQL with Geometry Types implementation of feature tables...............fcccceeeees 7
7 Clause component specifications..........c.ooocceiiriiiiicccccsessten e e 12
71 Components — Implementation of feature tables based-on predefined data types|............. 12
7.2 Components — SQL with Geometry Types implementation of feature tables..............|............. 17
Annex A (informative) Comparison of Simple feature access/SQL and SQL/MM - Spatial...................... 31
Annex B (normative) Conformance tests..........ccccceveeerfhinniiinnmmmiininisccssmrrrr s ssssere e e s s smne e e s e ssssnsnnns 32
© ISO 2004 — Al rights reserved iii

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125

-2:2004(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and

non-govern
Internationg

Internationg
The main {
adopted by

Internationg

Attention is
rights. ISO

ISO 19125-
1ISO 19125
access:

Part 1:

Part 2:

Part 3: CON

mentar,

sk of technical committees is to prepare International Standards. Draft International Stand

shall not be held responsible for identifying any or all such patent rights.

P was prepared by Technical Committee ISO/TC 211, Geogfaphic information/Geomatics fro
base document supplied by the Open GIS Consortium, Inc.

in_fiaison with 1S5S0, also take part in the wWork. IS0 collaborates closely with
| Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

| Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Rart2.

the technical committees are circulated to the member bodies for votingy Publication as
| Standard requires approval by at least 75 % of the member bodies casting'a.vote.

drawn to the possibility that some of the elements of this document miay be the subject of pd

consists of the following parts, under the general title, Geographic information — Simple fea

Common architecture
SQL option

W/OLE option is under preparation.

the

ards

an

tent

m a

ture

© ISO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

Int

ISO 19125-2:2004(E)

roduction

The purpose of this part of ISO 19125 is to define a standard Structured Query Language (SQL) schema that
supports storage, retrieval, query and update of feature collections via the SQL Call-Level Interface (SQL/CLI)
(ISO/IEC 9075-3:2003). A feature has both spatial and non-spatial attributes. Spatial attributes are geometry
valued, and simple features are based on 2D geometry with linear interpolation between vertices. This part of

IS

Fe
is a

Sal
wha
geo
imp

Ina
Key
The
sch

The)
set
SQll
an
SQl

ure collections are stored as tables with geometry valued columns in a SQL-implementation; g
row in the table. The non-spatial attributes of features are mapped onto columns whose’ type
fronmp the set of standard SQL data types. The spatial attributes of features are mapped-onto coly

| data types are based on the underlying concept of additional geometric datal types for S
se rows represent these features is referred to as a feature table. Such actable contains o
metry valued columns. Feature-table schemas are described for“\fwo SQL-imple
ementations based on predefined data types and SQL with Geometry Types.

n implementation based on predefined data types, a geometry-valued.column is implemented 3
reference into a geometry table. A geometry value is stored usirig one or more rows in the ged
geometry table may be implemented using either standard. SQL numeric types or SQL b
bmas for both are described.

term SQL with Geometry Types is used to refer to a,SQL-implementation that has been exte
pf Geometry Types. In this environment, a geometry-valued column is implemented as a col
| type is drawn from this set of Geometry Types’ The mechanism for extending the typg
SQL-implementation is through the definition® of user defined User Defined Types.
 -implementations with user defined type support have been available since mid-1997.

ach feature
5 are drawn
mns whose
QL. A table
ne or more
mentations:

s a Foreign
metry table.
nary types;

nded with a
umn whose
system of
Commercial

© 1SO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

INTERNATIONAL STANDARD 1ISO 19125-2:2004(E)
Geographic information — Simple feature access —

Part 2:

SQL option

1 |Scope

Thig part of ISO 19125 specifies an SQL schema that supports storage, retrieval,~query and update of simple
geoppatial feature collections via the SQL Call Level Interface (SQL/CLI) (ISO/IEC-9075-3:2003).

Thig part of ISO 19125 establishes an architecture for the implementation.offeature tables.

Thig part of ISO 19125 defines terms to use within the architecture.

Thig part of ISO 19125 defines a simple feature profile of ISO 19407.

Thig part of ISO 19125 describes a set of SQL Geometry Types together with SQL functions on those types.
Thel Geometry Types and Functions described in this partef ISO 19125 represent a profile of ISO 13249-3.
Thig part of ISO 19125 does not attempt to standardize and does not depend upon any part of the [mechanism
by which Types are added and maintained in the.SQL environment including the following:

a) |the syntax and functionality provided fer.defining types;

b) |the syntax and functionality provided for defining SQL functions;

c) |the physical storage of type-instances in the database;

d) |specific terminology used to refer to User Defined Types, for example, UDT.

Thig part of ISO 19125-does standardize:

— |names and-geometric definitions of the SQL Types for Geometry;

— | names; signatures and geometric definitions of the SQL Functions for Geometry.

Thig part of ISO 19125 describes a feature access implementation in SQL based on a profile of [ISO 19107.
ISO 197107 does not place any requirements on how to define the Geometry Types in the internal schema.

ISO 19107 does not place any requirements on when or how or who defines the Geometry Types. In
particular, a compliant system may be shipped to the database user with the set of Geometry Types and
Functions already built into the SQL-implementation, or with the set of Geometry Types and Functions
supplied to the database user as a dynamically loaded extension to the SQL-implementation or in any other
manner not mentioned in this part of ISO 19125.

© 1SO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

2 Conformance

In order to conform to this part of ISO 19125, an implementation shall satisfy the requirements of one of the
following three conformance classes, as well as the appropriate components of ISO 19125-1:

a) SQL implementation of feature tables based on predefined data types:
1) using numeric SQL types for geometry storage and SQL/CLI access,
2) using binary SQL types for geometry storage and SQL/CLI access;

b) SQL wjth-Geometry-Types-imptementation-of-feature-tables—supporting-both-textuat-and-binary-S&/CLI
access|to geometry.

Annex B prpvides conformance tests for each implementation of this part of ISO 19125.

3 Normative references

The followi

hg referenced documents are indispensable for the application of .this’ document. For d

references,| only the edition cited applies. For undated references, the latest edition of the referern
document (|ncluding any amendments) applies.

ISO/IEC 90[F5-1:2003, Information technology — Database languages)— SQL — Part 1: Framey
(SQL/Framgwork)

ISO/IEC 90[5-2:2003, Information technology — Database languages — SQL — Part 2: Found3
(SQL/Foundlation)

ISO/IEC 905-3:2003, Information technology — Database-languages — SQL — Part 3: Call-Level Inten
(SQL/CLI)

ISO/IEC 90[5-4:2003, Information technology — Database languages — SQL — Part 4: Persistent St
Modules (SRQL/PSM)

ISO/IEC 90[F5-5:1999, Information technology — Database languages — SQL — Part 5: Host Langy
Bindings (SQL/Bindings)

ISO/IEC 13pR49-3:2003, Information {technology — Database languages — SQL multimedia and applic3
packages —+ Part 3: Spatial

ISO 19107:R003, Geographic.information — Spatial schema

ISO 19109:1—1), Geographic information — Rules for application schema

ISO 19119:R004, Geographic information — Services

ISO 19125

12004, Geographic information — Simple feature access — Part 1: Common architecture

hted
ced

vork

tion

face

bred

age

tion

4 Terms and definitions

For the purposes of this part of ISO 19125, the following terms and definitions apply.

4.1
feature tab

le

table where the columns represent feature attributes, and the rows represent features

1) To be published.

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

4.2
geographic feature
representation of real world phenomenon associated with a location relative to the Earth

5 Symbols and abbreviated terms

FID Feature ID column in the implementation of feature tables based on predefined data types
GID Geometry ID column in the implementation of feature tables based on predefined data types
MM Multimedia

sQl Structured Query Language

SRID Spatial Reference System Identifier

SRTEXT Spatial Reference System Well Known Text

WKB Well-Known Binary (representation for example, geometry)
WK['R Well-Known Text Representation

2D 2-Dimensional

R 1-Dimensional space

R2 2-Dimensional space

%) empty set

N intersection

) union

— difference

€ is a member of

¢ is not a member-of

c is a proper-subset of

c is a subset of

= ifand only if

= implies

v for all

{X } set of X such that

A and

v or

- not

= equal

not equal

< less than

> greater than

© 1SO 2004 - All rights reserved 3

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

6 Architecture

6.1 Architecture — SQL implementation of feature tables based on predefined data types

6.1.1

Overview

This part of ISO 19125 defines a schema for the management of feature table, Geometry, and Spatial
Reference System information in an SQL-implementation based on predefined data types. This part
of 1ISO 19125 does not define SQL functions for access, maintenance, or indexing of Geometry in an
SQL-implementation based on predefined data types.

Figure 1 illy
SQL-impler
a) The GE
b) The SH
c) The fe

while r

logicall

strates the schema to support feature tables, Geometry, and Spatial Reference Information’i
nentation based on predefined data types.

FOMETRY_COLUMNS table describes the available feature tables and their Geometry propert
ATIAL_REF_SYS table describes the coordinate system and transformations_for Geometry.
bture table stores a collection of features. A feature table’s columns represent feature attriby

bws represent individual features. The Geometry of a feature is one ofits feature attributes; W
y a geometric data type, a Geometry Column is implemented as a foreign key to a geometry ta

d) The ggometry table stores geometric objects, and may be implemented using either standard

numeri

C types or SQL binary types.

IGeometry Column Information|
(GEOMETRY_COLUMNS)

Spatial Reference Systems
(SPATIAL_REF.SYS)

G_TABLE_CATALOG

- F_TABLE_CATALOG SRID
—E- F_TABLE_SCHEMA AUTH_NAME
- F_TABLE_NAME AUTH_SRID
— F_GEOMETRY_COLUMN SRTEXT

G_TABLE_SCHEMA

G_TABLE_NAME

STORAGE_TYPE
GEOMETRY_TYPE
COORD_DIMENSION

g:l)é—PPR Geometry Table Geometry Table
(Normalized Schema) (Binary Schema)
H- GID GID
ESEQ YMIN
ETYPE YMAX
E XMIN
Feature Table 21 Q or | xMax
<Attribdtes> Y1 WKB_GEOMETRY
- <Geometry Column (GID)> —
<Attributes> ;(.<M AX PP R>
Y<MAX PP R>

nan

tes,
hile
Dle.

5QL

Figure 1 — Schema for feature tables using predefined data types

Depending upon the storage type specified by the GEOMETRY_COLUMNS table, a geometric object is
stored either as an array of coordinate values or as a single binary value. In the former case, predefined SQL
numeric types are used for the coordinates and these numeric values are obtained from the geometry table
until the geometric object has been fully reconstructed. In the latter case, the complete geometric object is

obtained in the Well-known Binary Representation as a single value.

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

6.1.

ISO 19125-2:2004(E)

2 Identification of feature tables and geometry columns

Feature tables and Geometry columns are identified through the GEOMETRY_COLUMNS table. Each
Geometry Column in the database has an entry in the GEOMETRY_COLUMNS table. The data stored for

eac

h geometry column consists of the following:

a) the identity of the feature table of which this Geometry Column is a member;

b) the name of the Geometry Column;

c) the spatial reference system ID (SRID) for the Geometry Column;

d) |the type of Geometry for the Geometry column;

e) |the coordinate dimension for the Geometry Column;

f) |the identity of the geometry table that stores geometric objects for this Geometry Column;

g) [the information necessary to navigate the geometry table in the case of nermalized geometry gtorage.
6.1.8 Identification of Spatial Reference Systems

Every Geometry Column is associated with a Spatial Referenee\System. The Spatial Referepce System
identifies the coordinate system for all geometric objects stored in the column, and gives megning to the
numeric coordinate values for any geometric object stored in the column. Examples of commonly used Spatial
Reference Systems include “Latitude Longitude” and “UTM Zone 10”.

Thel SPATIAL_REF_SYS table stores information on each Spatial Reference System in the da:l‘abase. The
coldmns of this table are the Spatial Reference System Identifier (SRID), the Spatial Referemce System
Autiority Name (AUTH_NAME), the Authority Specific Spatial Reference System Identifier (AUTH| SRID) and
the Well-known Text description of the Spatial"Reference System (SRTEXT). The Spatial Referepce System
Identifier (SRID) constitutes a unique integer key for a Spatial Reference System within a databassg.

Inte

repriesentation for a Spatial Reference System.

6.1.4 Feature tables
A fgature is an abstraction of a real-world object. Feature attributes are columns in a feature tab
are|rows in a feature~table. The Geometry of a feature is one of its feature attributes; while

geo

Relationships between features may be defined as foreign key references between feature tables.

6.1.

6.1.

roperability between clients is achieved via the SRTEXT column which stores the Well-

Mmetric data typé, a geometry column is implemented as a foreign key to a geometry table.

5 _/Geometry tables

nown Text

e. Features
logically a

51 Normalized geometry schema

The normalized geometry schema stores the coordinates of geometric objects as predefined SQL numeric
types. One or more coordinates (X and Y ordinate values) will be represented by pairs of numeric types in the
geometry table, as shown in Figure 2. Each geometric object is identified by a key (GID) and consists of one
or more primitive elements ordered by an element sequence (ESEQ). Each primitive element in the geometric
object is distributed over one or more rows in the geometry table, identified by a primitive type (ETYPE), and
ordered by a sequence number (SEQ).

©IS

O 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

The rules for geometric object representation in the normalized schema are defined as follows.

a)
b)

c)

d)

e)

g)

h)

ETYPE designates the Geometry Type.

Geometric objects may have multiple elements. The ESEQ value identifies the individual elements.

An element may be built up from multiple parts (rows). The rows and their proper sequence are identified

by the SEQ value.

Polygons may contain holes, as described in the Geometry object model.

PolygopRing
part ordler.

Coordinate pairs that are not used shall be set to Nil in complete sets (both X and Y). This is the‘enly
to ideniify the end of the list of coordinates.

the

way

For gepmetric objects that continue onto an additional row (as defined by a constant,element sequgnce

numbef or ESEQ), the last Point of one row is equal to the first Point of the next.

There is no limit on the number of elements in the geometric object, or the number of rows in an elem
(0,60) (30,60) (60,60) SEQ1
(40,20) 45,20)
(50,15)
GID 3 GID 4
(0,30) (60,30) (45,5)
ESEQ 1 ESEQ 2
/ / SEQ 2

GID 1 GID 2 (40,5) {50,5)

(0,0 (30,0) (60,0)

ent.

GID1 | ESEQ ETYPE SEQ | X0 | YO | X1 | Y1 | X2 | Y2 | X3 [Y3 |X4 | Y4
1 1 3 1 0 0 0|30 (30 |30 |30 0 0 0
1 2 3 1 10 | 10 | 10 | 20 [20 [20 |20 |10 |10 | 10
2 1 3 1 30 0|30 |30 |60 | 30 | 60 0 |30 0
2 2 3 1 40 5|40 | 20 [45 |20 |45 |15 | 50 | 15
2 2 3 1 50 | 15 | 50 5 | 40 § | Nil | Nil | Nil | Nil
3 1 3 1 0 | 30 0 | 60 | 30 [60 |30 | 30 0 [30
4 1 3 1 30 | 30 | 30 | 60 | 60 | 60 | 60 | 30 |30 | 30

Figure 2 — Example of geometry table for Polygon Geometry using SQL

6.1.5.2 Binary geometry schema

The binary Geometry schema is illustrated in Table 1, uses GID as a key and stores the geometric object
using the Well-known Binary Representation for Geometry (WKBGeometry). The geometry table includes the
minimum bounding rectangle for the geometric object as well as the WKBGeometry for the geometric object.
This permits construction of spatial indexes without accessing the actual geometric object structure, if desired.

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125

-2:2004(E)

Table 1 — Example of geometry table for the above Polygon Geometry using the Well-known Binary

Representation for Geometry

GID XMIN YMIN XMAX YMAX Geometry
1 0 0 30 30 < WKBGeometry >
2 30 0 60 30 < WKBGeometry >
3 0 30 30 60 < WKBGeometry >
4 30 30 60 60 < WKBGeometry >

6.1.

SQl
nunj

determined, and casting operators between similar data types are available. Any particular imp
may use alternative data types as long as casting operations shall not lead to difficulties.

6.1/ Notes on SQL/CLI access to Geometry values stored in binary.form

SQL/CLI provides standard mechanisms to bind character, numericand binary data values.

Thig subclause describes the process of retrieving geometric ‘ébject values for the case wherg
storpge alternative is chosen.

Thef WKB_GEOMETRY column in the geometry table js'accessed in SQL/CLI as one of the binaf
typgs (SQL_BINARY, SQL_VARBINARY, or SQL_LONGVARBINARY).

EXAMPLE The application would use the SQLAC_BINARY value for the fCType parameter of SQ
SQUGetData) in order to describe the application data buffer that shall receive the fetched Geometry data va
a dyjnamic parameter whose value is a Geometry would be described using the SQL_C_BINARY value fo
pargmeter of SQLBindParameter.

Thig allows binary values to be both retrieved from and inserted into the geometry tables.

6.2| Architecture — SQL with Geometry Types implementation of feature tables
6.2/ Overview

Thig part of ISQ 19125 defines a schema for the management of feature table, Geometry,

Ref

Figu
SaQl

b Use of numeric data types

brence System information in an SQL-implementation with a Geometry Type extension.

re 3 illustrates the schema to support feature tables, Geometry, and Spatial Reference Inforr
-implementation with a Geometry Type extension.

-implementations usually provide several numeric data types. In this part of 1SO,19125, th
eric data type in examples is not meant to be binding. The data type of any (particular coly

e use of a
mn can be
lementation

the binary

y SQL data

| BindCol (or
ue. Similarly,
r the fCType

and Spatial

nation in an

a) The GEOMETRY_COLUMNS table describes the available feature tables and their Geometry properties.

b)

c)

The SPATIAL_REF_SYS table describes the coordinate system and transformations for Geometry.

The feature table stores a collection of features. A feature table’s columns represent feature attributes,

while rows represent individual features. The Geometry of a feature is one of the feature attrib
an SQL Geometry Type.

© 1SO 2004 - All rights reserved

utes, and is

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

6.2.2 Idern

Feature talples and Geometry columns are identified through the GEOMETRY, COLUMNS table. H

Geometry (
each geom

a) theide
b) the nar
c) the spz
d) the cog
The colum

subset of t
predefined

An alternafive method for identification,*of feature tables and Geometry Columns may be available

SQL-impler
Column ma
Spatial Re
SQL INFOI
need to be

6.2.3 Ider

Every Geo
identifies th

Geometry Column Information
(GEOMETRY_COLUMNS)

Spatial Reference Systems
(SPATIAL_REF_SYS)

| F_TABLE_CATALOG
| F_TABLE_SCHEMA

SRID
AUTH_NAME

L F_TABLE_NAME
—+ F_GEOMETRY_COLUMN
COORD_DIMENSION

SRID

v

Feature Table

AUTH_SRID
SRTEXT

<Attributes>
<G ColumniGiD)>
f

<Attributes>

Figure 3 — Schema for feature tables using SQL with Geometry Types

tification of feature tables and geometry columns
Column in the database has an entry in the GEOMETRY_COLUMNS table. The data storeq
btry column consists of the following:

ntity of the feature table of which this Geometry Column is a member;

he of the Geometry Column;

tial reference system ID for the Geometry Colump;

rdinate dimension for the Geometry column;

s in the GEOMETRY_COLUMNS table for the SQL with Geometry Types environment a

e columns in the GEOMETRY_COLUMNS table defined for the SQL-implementation baseq
Hata types.

hentations with Geometry Tyypes. In the SQL-implementation with Geometry Types, the Geom
y be represented as a(row in the COLUMNS metadata view of the SQL INFORMATION_SCHE
erence System Idéntity and coordinate dimension is, however, not a standard part of
RMATION_SCHEMA. To access this information, the GEOMETRY_COLUMNS table would
referenced.

tification. of Spatial Reference Systems

metry ‘Column is associated with a Spatial Reference System. The Spatial Reference Syg

ach
for

(€ a
on

for
etry
EMA.
the
still

tem
the

ecoordinate system for all geometric objects stored in the column, and gives meaning to

numeric coordinate values for any geometric object stored in the column. Examples of commonly used Spatial
Reference Systems include “Latitude Longitude” and “UTM Zone 10”.

The SPATIAL_REF_SYS table stores information on each Spatial Reference System in the database. The
columns of this table are the Spatial Reference System lIdentifier (SRID), the Spatial Reference System
Authority Name (AUTH_NAME), the Authority Specific Spatial Reference System Identifier (AUTH_SRID) and
the Well-known Text description of the Spatial Reference System (SRTEXT). The Spatial Reference System

Identifier (S

RID) constitutes a unique integer key for a Spatial Reference System within a database.

Interoperability between clients is achieved via the SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System.

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

6.2.4 Feature tables

A feature is an abstraction of a real-world object. Feature attributes are columns in a feature table. Features
are rows in a feature table. The Geometry of a feature is stored in a Geometry Column whose type is drawn
from a set of SQL Geometry Types.

Relationships between features may be defined as foreign key references between feature tables.

6.2.5 Background information on SQL User Defined Types

The

term User Defined Typn (l IDT) refers to a data fylnn that extends the SQI fyIm:\ cycfpm

uD7
tabl

SQl

An

the
of t
sup

The)

SQl
Def
Def

Thidg
that

The
inst
attri
inst
be f
the

6.2.

The

" types can be used to define the column types for tables, this allows values stored incthe c
b to be instances of UDT.

| functions may be declared to take UDT values as arguments, and return UDT valtes as resul

DT may be defined as a subtype of another UDT, referred to as its supertype: This allows an
subtype to be stored in any column where an instance of the supertype is'expected and allows
e subtype to be used as an argument or return value in any SQL function that is declared
brtype as an argument or return value.

above definition of UDT is value based.

| implementations that support User Defined Types may also support the concept of Referen
ned Types instances that are stored as rows in a tablé.whose type corresponds to the type
ned Type. The terms RowType and Reference to Row®ype are also used to describe such typ

specification allows Geometry Types to be implemented as either pure value based Types
support persistent References.

Types for Geometry are defined in blagk-box terms, i.e. all access to information about a Ged
hnce is through SQL functions. No attémpt is made to distinguish functions that may access Ty
butes (such as the dimension of algeometric object) from functions that may compute values g
bnce (such as the centroid of a Polygon). In particular, an implementation of this part of ISO 1
ree to nominate any set of fuiictions as observer methods on attributes of a User Defined Type
signatures of the SQL funetions described in this part of ISO 19125 are preserved.

b SQL Geometry Type hierarchy

SQL Geometry Dypes are organized into a type hierarchy shown in Figure 4.

blumns of a

S.

instance of
an instance
to use the

ces to User
of the User
BS.

br as Types

metry Type
pe instance
ven a Type
9125 would
, as long as

© 1SO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125

-2:2004(E)

Geometry SpatialReferenceSystem

/
A
Lr

Point

l

GeometryCollection

4

Curve

/\

LineString

Surface

A
LN

o r
Polygon |

The root t
GeometryC
MultiCurve
collections
The one-d
two-dimens

SQL functi
representat
Geometry (

6.2.7 Geg

In order to
Types impl
of the indiV
database td
values is a
an insert s
functions th

A Geometr
Identity (SR
System in t

MultiPoint

A\
\
MultiLineString

MultiPolygon

Figure 4 — SQL Geometry Type hierarchy

pliection is a Geometry that is a collection of possibly heterogeneous geometric objects. MultiR
and MultiSurface are specific subtypes of GeometryCellection used to manage homoger
of Points, Curves and Surfaces. The 0 dimensional Geometry Types are Point and MultiP
mensional Geometry Types are Curve and MultiCurve together with their subclasses.
onal Geometry Types are Surface and MultiSurface together with their subclasses.

bns are defined to construct instances of the’above Types given Well-known Text or Bi
ons of the types. SQL functions defined ;on the types implement the methods described in
bject Model.

metry values and spatial reference systems

model Spatial Reference System information, each geometric object in the SQL with Geonm
bmentation is associated with’ a Spatial Reference System. Capturing this association at the |
idual geometric object-allows literal Geometry values that are not yet part of a column in
be associated with@-Spatial Reference System. Examples of such a geometric object, Geom
geometric object that'is used as a parameter to a spatial query or a geometric object that is pa
atement. Capt@ring this association at the level of the individual geometric object also all
At take two geometric objects to check for compatible Spatial Reference Systems.

valueds., associated with a Spatial Reference System by storing the Spatial Reference Syg
ID) forthe Spatial Reference System as a part of the geometric object. Each Spatial Refere
ne-database is identified by a unique value of SRID.

ype, named Geometry, has subtypes for Point, Curve, Surface and GeometryCollection.

A
oint,
ous
bint.
The

hary
the

etry
evel
the
etry
rt of
oWS

tem
nce

The SRID for a geometric object is assigned to it at construction time. This allows the SQL with Geometry
Types implementation to ensure that

a)

declared for the geometry column;

b)
Spatial

Reference Systems.

the geometric object being inserted into a geometry column matches the Spatial Reference System

queries that spatially join columns from different tables operate on geometry columns with consistent

If either of these conditions is violated, a run-time SQL error is generated. These Spatial Reference System
consistency checks are not possible in implementations based on predefined data types.

10

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

The SRID function, defined on the Geometry Type, returns the integer SRID of a geometric object.

In all operations on the Geometry Type, geometric calculations shall be done in the Spatial Reference System
of the first geometric object. Returned objects shall be in the Spatial Reference System of the first geometric
object unless explicitly stated otherwise.

Before a geometric object can be constructed and inserted into a table, the corresponding row for its SRID
shall exist in the SPATIAL_REF_SYS table, else construction of the geometric object shall fail. When defining
a table, a SQL check constraint can be used to enforce the rule that all geometric objects in a geometry
column have the same SRID as that defined for the column in the GEOMETRY_COLUMNS table. The
following example shows the definition of a table, named Countries, with two columns named Name and
Gegmetry of type CHARACTER VARYING and POLYGON, respectively.

CREATE TABLE Countries (
Name CHARACTER VARYING (200) NOT NULL PRIMARY KEY,
Geometry Polygon NOT NULL,
CONSTRAINT spatial reference

CHECK (SRID(Geometry) in (SELECT SRID from GEOMETRY COLUMNS~where F TABLE CATAL(G =
<catalog> and F_TABLE SCHEMA = <schema> and F TABLE NAME = ‘Countries’ and F_GEOMETRY {OLUMN =

‘Geometry))

)

It is| expected that most implementations shall use stored,procedures similar to those shown bglow for the
purpose of adding and dropping geometry columns to and.from a feature table.

The AddGeometryColumn(FEATURE_TABLE_CATALOG, FEATURE_TABLH_SCHEMA,
FEATURE_TABLE_NAME, GEOMETRY_COLUMN;NAME, SRID) procedure shall

a) |ensure that an entry for the SRID exists inithe SPATIAL_REF_SYS table;
b) |add an entry to the GEOMETRY_ECOLUMNS table that stores the SRID for the Geometry Colymn;
c) |add the Geometry column to.the feature table using a SQL ALTER TABLE statement;
d) |add the Spatial Referenée Check Constraint to the feature table.

The) DropGeometryColumn(FEATURE_TABLE_CATALOG, FEATURE_TABLH SCHEMA,
FEATURE_TABLE_NAME, GEOMETRY_COLUMN_NAME) stored procedure shall

a) |drop the Spatial Reference Check Constraint on the feature table;
b) |drop.itheentry from the GEOMETRY_COLUMNS table;

c) |drop the Geometry Column from the feature table.

6.2.8 SQL/CLI access to Geometry values in the SQL with Geometry Type case

Spatial data are accessed using the SQL query language extended with SQL functions on Geometry Types.
The SQL pass-through capabilities of SQL/CLI allow a client to pass these or any extended SQL statements
containing SQL-implementation-specific SQL extensions to a server. (Applications are free to send any SQL
statement to an SQL-implementation, even if the statement is not described within the SQL/CLI conformance
levels.)

Geometry Columns are implemented using the Geometry Types described above.

© 1SO 2004 — Al rights reserved 1

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

GIS applications shall be able to determine the existence of a Geometry Column based on the Geometry Type
or one of its subtypes using one or more of the following SQL/CLI programming techniques.

a) The SQLTypelnfo function can be used to determine both the TYPE_NAME and the underlying
SQL_DATA_TYPE of an SQL Type.

b) The SQLColumns catalog function can be used to determine the TYPE_NAME and the underlying
SQL_DATA_TYPE of a column in a table.

c) The SQLDescribeCol and SQLColAttributes functions can be used to determine a column’s data type and
description.

An SQL/CL] client application uses either one of two SQL functions:
— GeomkromText ([in] String, [in] Integer) : Geometry, or

— GeomkromWKB([in] Binary, [in] Integer) : Geometry,

or their type-specific versions (for example, PolygonFromText and PolygonFromWKB) to pass geomegtric
objects intg the database from a client application that represents them using eithér the Well-known Text or
the Wellkngwn Binary representations.
The input grguments to the above functions are SQL/CLI standard character,-binary and integer data types
(SQL_C_CHAR, SQL_C_BINARY, SQL_C_INTEGER) and clients bind {o\these parameters using stangard
SQL/CLI binding methods.

An SQL/CL] client application uses either one of two SQL functions:

— AsTexj([in]|Geometry) : String, or

— AsBinary([in]Geometry) : Binary

to extract ggometry values from the database as either Well-known Text or Binary values.
The outpufl arguments to the above functions are SQL/CLI standard character and binary data types

(SQL_C_CHAR, SQL_C_BINARY) and clients bind to these parameters using standard SQL/CLI binfling
methods.

7 Clauge component specifications

7.1 Components —implementation of feature tables based on predefined data types

7.1.1 Conventions

Table comgonents are described in the context of a CREATE TABLE statement. Implementations may use Base

tables with \different-names-and properties,—exposing these components-as ||pdnfnnhln views, prn\ndnd that

the base tables defined by the implementation enforce the same constraints.

Table names and column names have been restricted to 18 characters in length to allow for the widest
possible implementation.

7.1.2 Spatial reference system information

71.21 Component overview

The Spatial Reference Systems table, which is named spaTIAL REF svs, stores information on each spatial
reference system used in the database.

12 © 1SO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

71.2.2

ISO 19125

Table constructs

-2:2004(E)

The following cCrREATE TABLE statement creates an appropriately structured spATIAL REF SYs table.

CREATE TABLE SPATIAL REF SYS
(

SRID INTEGER NOT NULL PRIMARY KEY,
AUTH NAME CHARACTER VARYING (256),
AUTH_SRID INTEGER,

SRTEXT CHARACTER VARYING (2048)

71.

The)
a)

b)

c)
d)
71.
Errg

71.

71.

The)
coo

71.

)

2.3 Field description
se fields are described as follows:

SRID — an integer value that uniquely identifies each Spatial Reference System within a data

EPSG would be an example of a valid AUTH NAME;
auTH sSrID — the ID of the Spatial Reference System as defined\by the Authority cited in AUTH

SRTEXT — The Well-known Text Representation of the Spatial Reference System.

2.4 Exceptions, errors and error codes

r handling shall be accomplished by using the standard SQL status returns.
B Geometry columns information

3.1 Component overview

GEOMETRY COLUMNS table provides information on the feature table, spatial reference, geomet
rdinate dimension for each- Geometry column in the database.

3.2 Table or view.-constructs

CREATE TABLE GEOMETRY COLUMNS (

pbase;

auTH NaME — the name of the standard or standards body that is being cited for this reference system.

 NAME;

ry type, and

F TABLE CATALOG CHARACTER VARYING (256) NOT NULL,
PTABLE SCHEMA CHARACTER VARYING (256) NOT NULL,
¥ TABLE NAME CHARACTER VARYING (256) NOT NULL,
F GEOMETRY COLUMN CHARACTER VARYING (256) NOT NULL,
G_TABLE CATALOG CHARACTER VARYING (Z50) NOT NULL,
G TABLE SCHEMA CHARACTER VARYING (256) NOT NULL,
G_TABLE_ NAME CHARACTER VARYING (256) NOT NULL,
STORAGE TYPE INTEGER,

GEOMETRY_TYPE INTEGER,

COORD_DIMENSION INTEGER,

MAX PPR INTEGER,

SRID INTEGER REFERENCES SPATIAL REF SYS,

CONSTRAINT GC_PK PRIMARY KEY

(F_TABLE CATALOG, F TABLE SCHEMA, F TABLE NAME, F GEOMETRY COLUMN)

© 1SO 2004 - All rights reserved

13

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.1.3.3 Field description

These fields are described as follows:

a) F _TABLE CATALOG, F _TABLE SCHEMA, F TABLE NAME — the fully qualified name of the feature table
containing the geometry column;

b) F GEOMETRY coLuMN — the name of the column in the feature table that is the Geometry Column. This
column shall contain a foreign key reference into the geometry table for an implementation based on
predefined data types;

C) G _TABI
and ca

d) STORAG
0 = nor
1 =bin

€) GEOMET
class n
corresl

= GH
= CU
= LI
= SU
= P(
Cd
= MU
= M({
= M({
0 =N
1

R = 0o Jdo U W o
I

f) COORD |
dimens

g) MAX PH
the nur

h) SRID—
foreign

7134 B

E_CATALOG, G TABLE SCHEMA, G TABLE NAME — the name of the geometry table and its sch
alog. The geometry table implements the geometry column;

E_TYPE — the type of storage being used for this geometry column:

malized geometry implementation,
Ary geometry implementation (Well-known Binary Representation for Gegmetry);

RY TYPE — the type of geometry values stored in this column. The use of a non-leaf Geom
ame from the Geometry Object Model for a geometry column jmplies that domain of the col
onds to instances of the class and all of its subclasses;

OMETRY1 = POINT
RVE

NESTRING
RFACE

LYGON
LLECTION
LTIPOINT
LTICURVE
LTILINESTRING
ULTISURFACE
ULTIPOLYGON

DIMENSION — the number of‘ordinates used in the complex, usually corresponds to the numbe
ions in the spatial reference system;

R — (This value contains data for the normalized geometry implementation only) Points per
hber of Points stored as ordinate columns in the geometry table;

- the ID of\the Spatial Reference System used for the coordinate geometry in this table. It
key reference to the sPATIAL REF sYs table.

m
3
)

etry
imn

or of

fow,

is a

xceptions, errors and error codes

Error handli

ng shall be accomplished by using the standard SQL status returns for SQL/CLI.

7.1.4 Feature tables

The columns in a feature table are defined by feature attributes; one or more of the feature attributes will be a
geometric attribute. The basic restriction in this specification for feature tables is that for each geometric
attribute, they include geometry via a FOREIGN KEY to a geometry table. Features may have a feature attribute
that is unique, serving as a PRIMARY KEY for the feature table. Feature-to-feature relations may similarly be
defined as FOREIGN KEY references where appropriate.

14

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

The general format of a feature table shall be as follows:

CREATE TABLE <feature table name> (
<primary key column name> <primary key column type>,
(other attributes for this feature table)
<geometry column name> <geometry column type>,
(other geometry columns for this feature table)
PRIMARY KEY <primary key column name>,

FOREIGN KEY <geometry column name> REFERENCES <geometry table name>,

(other geometry column constraints for this feature table)

The|l geometric attribute foreign key reference applies only for the case where the geometry {able stores
geometry in binary form. In the case where geometry is stored in normalized form, there may be multiple rows
in the geometry table corresponding to a single geometry value. In this case, the ,geometry attribule reference
may be captured by a check constraint that ensures that the Geometry Column’ value in the feature table
corfesponds to the geometry-ID value for one or more rows in the geometry table.

716 Geometry tables

7161 Component overview

Each Geometry table stores geometric objects corresponding to a Geometry column in a fepture table.
Gegmetric objects may be stored as individual ordinate values, using SQL numeric types, or as binary objects,

using the Well-known Binary Representation for Geametry. Table schemas for both implementations are
proyided.

71p5.2 Geometry stored using SQL numeric types

7.1.6.2.1 Table constructs

Thel| following CREATE TABLE statement creates an appropriately structured table for Geometry stored as
indiyidual ordinate values using\SQL numeric types. Implementations shall either use this table format or
proyide stored procedures to(create, populate and maintain this table.

CREATE TABLE <table~riame> (

GID NUMERIC NOT NULL,
ESEQ INTEGER NOT NULL,
ETYRPE INTEGER NOT NULL,
SEQ INTEGER NOT NULL,
X1 <ordinate type>,
T+ OTdITIa e tYPES

. <repeated for each ordinate, repeated for each point>

X<MAX PPR> <ordinate type>,
Y<MAX PPR> <ordinate type>,
<attribute> <attribute type>

CONSTRAINT GID PK PRIMARY KEY (GID, ESEQ, SEQ)

)

© 1SO 2004 — Al rights reserved 15

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.1.5.2.2

These field

a) GID—

Field descriptions

descriptions are follows:

identity of this geometric object;

b) EsEgQ — identifies multiple components within a geometric object;

c) ETYPE — element type of this primitive element for the geometric object. The following values are defined

PE!:

FPOITTt;

= LineString,

= Polygon;

identifies the sequence of rows to define a geometric object;
rst ordinate of first Point;

econd ordinate of first Point;

bpeated for each ordinate, for this Point);

epeated for each coordinate, for this row);

ppr> — first ordinate of last Point. The maximum-number of Points per row ‘MAX PPR

consistent with the information in the GEOMETRY coLumMNs table;

for ETY
1
__ 2.
— 3-
d) SsEQ—
e) x1—f
fy vi—s
g) ...—(r
h) ...— (1]
i) X<MAX |
i) y<max |
k) ...— (1]
) <attri
71523
Error handl
7153 (
7.1.5.31

PPR> — second ordinate of last Point;
bpeated for each ordinate, for this last Point);

bute> — other attributes can be cartied in the Geometry table for specific feature schema.

Exceptions, errors and error.codes

ng shall use the standard SQL status returns for SQL/CLI.
beometry stored using SQL binary types

Table constructs

The following cREATEVTABLE statement creates an appropriately defined table for Geometry stored using
Well-known| Binaty-Representation for Geometry. The size of the wke_GEOMETRY column is defined by
implementgtion. Implementations shall either use this table format or provide stored procedures to cre
populate and-fairtain-thistable-

CREATE

16

TABLE <table name> (

GID NUMERIC NOT NULL PRIMARY KEY,

XMIN <ordinate type>,

YMIN <ordinate type>,

XMAX <ordinate type>,

YMAX <ordinate type>,

WKB GEOMETRY BIT VARYING (implementation size limit),
<attribute> <attribute type>

)

the
the
ate,

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

71.

ISO 19125-2:2004(E)

5.3.2 Field descriptions

These fields are described as follows:

a)
b)
c)
d)
e)
f)
9)

71

GID — identity of this geometric object;
xMIN — the minimum x-coordinate of the geometric object bounding box;
YMIN — the minimum y-coordinate of the geometric object bounding box;

Max — the maximum x-coardinate of the geometric object bounding box;

yMax — the maximum y-coordinate of the geometric object bounding box;
WKB_GEOMETRY — the Well-known Binary Representation of the geometric object;

<attribute> — other attributes can be carried in the Geometry table for specific feature sche

.p.3.3 Exceptions, errors and error codes

Errqr handling shall use the standard SQL status returns for SQL/CLI.

71.

No

7.2

7.2.

b Operators

BQL spatial operators are defined as part of this specification.
Components — SQL with Geometry Types-implementation of feature tables

1 Conventions

The] components of this part of ISO 19125 for feature table implementation in a SQL with Geon

env

Tab

tabl
the

Tab

toa

7.2.

ThelSpatia-Reference-Systems—table—v
reference system used in the database.

ronment consist of the tables, SQL-types and SQL functions discussed in 7.2.

bs with different names and properties, exposing these components as updateable views, p
base tables defined by the implementation enforce the same constraints.

low for the widestpossible implementation.

P Spatial reference system information

2.1 €omponent overview

ma.

hetry Types

e components are described.in\the context of a CREATE TABLE statement. Implementations may use base

rovided that

e names, column names, type names, and function names have been restricted to 18 charactgrs in length

each spatial

This component is identical to the corresponding component described for the implementation based on
predefined data types.

©IS

O 2004 - All rights reserved

17

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.2.2

Table constructs

The following CREATE TABLE statement creates an appropriately structured spATIAL REF SYS table.

CREATE

TABLE SPATIAL_REF_SYS

(

SRID INTEGER NOT NULL PRIMARY KEY,
AUTH NAME CHARACTER VARYING (256),
AUTH SRID INTEGER,

7.22.3 H

These fields
SRID —

a)

b) aura N

EPSG

g

C) AUTH S

d) SRTEXT
7.2.24 B

Error handl
7.2.3 Geg

7231 (

The GEOMET
coordinate

The column
subset of th

7.23.2 1

The followirn

o RTEXT CHARACUTER VARKYING (£ZUZ09)

)
ield description
b are described as follows:

- an integer value that uniquely identifies each Spatial Reference System within a database;

would be an example of a valid AUTH NAME;
rID — the ID of the Spatial Reference System as defined by.the Authority cited AUTH NAME;

— the Well-known Text Representation of the Spatial Reference System.

xceptions, errors and error codes

ng shall be accomplished by using the standard SQL status returns.
metry columns information

fomponent overview

RY COLUMNS table provides-information on the feature table, spatial reference, geometry type
Jimension for each Geemetry Column in the database.

s defined in the geOMETRY corLumns table in the SQL with Geometry Types implementation a
e columns in the implementation based on predefined data types.

able constructs

g CREATE TABLE statement creates an appropriately structured GEOMETRY COLUMNS table.

aME — the name of the standard or standards body that is being cited for this reference system.

and

re a

CREATE

18

TABLE GEOMETRY COLUMNS (

F_TABLE CATALOG CHARACTER VARYING (256) NOT NULL,

F TABLE SCHEMA CHARACTER VARYING (256) NOT NULL,

F_TABLE_NAME CHARACTER VARYING (256) NOT NULL,

F_GEOMETRY_ COLUMN CHARACTER VARYING (256) NOT NULL,

COORD_DIMENSION INTEGER,

SRID INTEGER REFERENCES SPATIAL REF SYS,

CONSTRAINT GC PK PRIMARY KEY

(F_TABLE CATALOG, F TABLE SCHEMA, F TABLE NAME, F GEOMETRY COLUMN)

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.3.3 Field description

These fields are described as follows:

a)

b)

c)

F TABLE CATALOG, F_TABLE SCHEMA, F TABLE NaAME — the fully qualified name of the feature table

containing the geometry column;

F_GEOMETRY COLUMN — the name of the Geometry Column in the feature table;

COORD DIMENSION — the coordinate dimension for the geometric object in this column, which shall be

equal to the number of dimensions in the spatial reference system;

d)

7.2,

Errd

7.24 SQL Geometry Types

7241 Component overview

The)

7.24.2 Language constructs

The)
Cur
Mul
cho

An
the
imnf
spe

Geo
con

An
alig

The)
theq

SsrR1D — the ID of the spatial reference system used for the coordinate geometry in this\t
foreign key reference to the spATIAL REF Sys table.

3.4 Exceptions, errors and error codes

r handling shall be accomplished by using the standard SQL status returns for,SQL/CLI.

SQL Geometry Types extend the set of available predefined data types to include Geometry T]

SQL language shall support a subset of the following set of SQL Geometry Types: {Geomet
e, LineString, Surface, Polygon, GeodometryCollection, MultiCurve, Multil
tiSurface, MultiPolygon, MultiPoint}.\The permissible type subsets that an implen
bse to implement are described in Table 2.

mplementation shall preserve the subtype relationships between Geometry Types shown in
types that are implemented. An(implementation that implements two types A and B, whd
ediate subtype of A in Figure4°and is free to introduce additional types C, is outside the s
Cification.

etry, Curve, Surfacey/MultiCurve and MultiSurface are defined to be non-instantiabl
structors are defined.for these types.

implementation .in)SQL will use the name GeomCollection instead of GeometryCollectior
hment with thesISO/IEC 13249-3 specification.

remaining\seven types are defined to be instantiable. An implementation may support only
e seven-types as instantiable, as defined in Table 2.

able. It is a

ypes.

ry, Point,
lneString,
henter may

Figure 4 for
bre B is an
cope of this

e types. No

to ensure

a subset of

Table 2 — Available and instantiable types by implementation type level

Type level Available types Instantiable types
1 Geometry, Point, Curve, LineString, Point, LineString, Polygon,
Surface, Polygon, GeomCollection GeomCollection
2 Geometry, Point, Curve, LineString, Point, LineString, Polygon,
Surface, Polygon, GeomCollection, MultiPoint,

MultiSurface, MultiPolygon

MultiPoint, MultiCurve, MultilineString, [MultilLineString,MultiPolygon

Geometry, Point, Curve, LineString, Point, LineString, Polygon,
Surface, Polygon, GeomCollection, GeomCollection, MultiPoint,

MultiSurface, MultiPolygon

MultiPoint , MultiCurve, MultilLineString, [MultilLineString, MultiPolygon

© 1SO 2004 - All rights reserved

19

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125

-2:2004(E)

7.2.5 Feature tables

7.2.5.1

Component overview

The columns in a feature table are defined by feature attributes; one or more of the feature attributes will be a
geometric attribute. The basic restriction in this part of ISO 19125 for feature tables is that each geometric
attribute is modeled using a column whose type corresponds to a SQL Geometry Type. Features may have a
feature attribute that is unique, serving as a PRIMARY KEY for the feature table. Feature-to-feature relations
may be defined as FOREIGN KEY references where appropriate.

7.2.5.2

The gener

CREATE

The use of
Alternativel
associated

7.25.3 B

Error handl
7.2.6 SQl

7.2.6.1 q
The functio

The GeomF
described i

ai format of a feature table in the SQL with Geometry Types implementation shall be as follows:

constructs

TABLE <feature table name> (
<primary key column name> <primary key column type>,
(other attributes for this feature table)
<geometry column name> <Geometry Type>,
(other geometry columns for this feature table)
PRIMARY KEY <primary key column name>,

CONSTRAINT SRS 1 CHECK (SRID(<geometry column name>) in (SELECT SRID from
GEOMETRY_ COLUMNS where F_TABLE CATALOG = <catalog> and ¥ TABLE SCHEMA = <schema> and
F TABLE NAME = <feature table name> and F GEOMETRY CODUMN = <geometry column>))

(spatial reference constraints for other geomethy columns in this feature table)

)

a SQL Geometry Type for one of the columngZin the table identifies this table as a feature t3
, applications may check the GEOMETRY cORuUMNS table, where all Geometry Columns and
feature tables and geometry tables are listed.

xceptions, errors and error codés

ng shall be accomplished by using the standard SQL status returns.

functions for constructing a geometry value given its Well-known Text Representation
fomponent overview

ns used to censtruct geometric objects from their text representations are shown in Table 3.

romText function takes a geometry textual representation (a <Geometry Tagged Text>,
h 1ISO19125-1, 6.2), and a Spatial Reference System ID (sriD) and creates an instance off

appropriate

Geometry Type.

ble.
heir

as
the

The return type of the GeomFromText function is the Geometry supertype. For construction of a geometric
object to be stored in columns restricted to a particular subtype, an implementation shall also provide a type-
specific construction function for each instantiable subtype, as described in Table 3.

An implementation may substitute any SQL type suitable for representing text data such as CHARACTER
VARYING for the type string below.

20

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

Table 3 — SQL functions for constructing a geometric object given its Well-known Text
Representation

Function

Description

GeomFromText (
geometryTaggedText String,

construct a geometric object given its Well-known text
Representation

SRID Integer) Geometry

PointFromText (construct a Point
pointTaggedText String, SRID Integer):

Point

LigeFromIexXTt
lineStringTaggedText String,
JRID Integer) LineString

constrocta tmeString

PollyFromText (
golygonTaggedText String,
JRID Integer): Polygon

construct a Polygon

MPgintFromText (multiPointTaggedText String,
RID Integer): MultiPoint

construct a MultiPoint

MLineFromText (
fultilLineStringTaggedText String,
RID Integer): MultilLineString

construct a MultiLineString

MPglyFromText (
nultiPolygonTaggedText String,
JRID Integer): MultiPolygon

construct@ MultiPolygon

GeqmCollFromText (
deometryCollectionTaggedText String,
JRID Integer): GeomCollection

construct a GeometryCollection

As @n optional feature, an implementation may-also support “building” Po1ygon or MultiPolygon Values given
an farbitrary collection of possibly intersecting Rings or closed LineString values. Implementations that

support this feature should include the/functions shown in Table 4.

Table 4 — Optional SQL functions for constructing a geometric object given its Well-known Text
Representation

Function

Description

BdRolyFromText (
nultilineStringTaggedText String,
JRID Integery : Polygon

construct a Polygon given an arbitrary collectipn of closed
linestrings as a MultiLineString text representation

BdNjPolyFremText (
nultilimeStringTaggedText String,
JRIP IEnteger): MultiPolygon

construct a MultiPolygon given an arbitrary co}lection of
closed linestrings as a MultiLineString text regresentation

7.2.6.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.6.3 Example

The following example shows the use of the Polygon type specific constructor:

INSERT INTO Countries
VALUES

(Name, Location)
(‘Kenya’, PolyFromText (‘POLYGON

© 1SO 2004 - All rights reserved

((X ¥, XY, XYy «uny

21

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.7 SQL functions for constructing a geometric object given its Well-known Binary Representation

7.2.71 Component overview

The functions used to construct geometric objects from their Well-known Binary Representations are shown in

Table 5.

The GeomFromWkB function takes a Well-known Binary Representation of Geometry (a <WkBGeometry> as
described in 1ISO 19125-1, 6.3) and a Spatial Reference System ID (sr1D) and creates an instance of the

appropriate

Geometry Type.

The return
to be storeq

construction function for each instantiable subtype as described in Table 5.

ype of the GeomFromwWkB function is the Geometry supertype. For construction of geometric.objects
in columns restricted to a particular subtype, an implementation shall also provide a type specific

An implemg¢ntation may substitute any SQL type used to represent binary values for the type’BInaRrY inf the

definitions |

Table 5 — SQL functions for constructing a geometric object given its Well-known Binary

elow.

Representation

Function Description
GeomFromWKB (WKBGeometry Binary, construct a geometric object given its Well-known Bingry
SRID Infteger) : Geometry Representation
PointFromWKB (WKBPoint BINARY, SRID Integer) : |construct a Point
Point
LineFromWKB (WKBLineString BINARY, construct a LineString
SRID Infteger) : LineString
PolyFromWKB (WKBPolygon BINARY, SRID Integer)s, |constructa Polygon
Polygon
MPointFromWKB (WKBMultiPoint BINARY, construct a MultiPoint
SRID Infteger): MultiPoint
MLineFromWKB (WKBMultilLineString BTNARY, construct a MultiLineString
SRID Integer): MultilLineString
MPolyFromWKB (WKBMultiPolygon ‘BINARY, construct a MultiPolygon
SRID Infteger): MultiPolygon
GeomCollEfromWKB (WKBGeomCollection BINARY, construct GeometryCollection
SRID Integer): Geom@ol¥ection
As an optiopal feature; an implementation may also support “building” Polygon or MultiPolygon values gjven
an arbitrary collection of possibly intersecting Rings or closed Linestring values. Implementations [that
support thig féature shall include the functions shown in Table 6.

Table 6 — Optional SQL functions for constructing a geometric object given its Well-known Binary

Representation

Function Description
BdPolyFromWKB (WKBMultiLineString BINARY, construct a Polygon given an arbitrary collection of closed
SRID Integer): Polygon linestrings as a MultiLineString binary representation
BdMPolyFromWKB (construct a MultiPolygon given an arbitrary collection of
WKBMultiLineString BINARY, closed linestrings as a MultiLineString binary
SRID Integer): MultiPolygon representation
22 © 1SO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.7.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.7.3 Examples

The following example shows the use of the binary polygon type-specific constructor in Dynamic SQL,
the :wkb and :srid parameters are bound to application program variables containing the binary
representation of a Polygon and of the sSrRID, respectively:

INGERT INTO Countri (Nam Location)
VALUES (‘Kenya’, PolyFromWKB (:wkb, :srid))

7.2.8 SQL functions for obtaining Well-known Text Representation of a geometric object

7.281 Component overview

The| asText function, shown in Table 7, takes a single argument of type Geomet »y and returns its Well-known
Text Representation. This function applies to all subtypes of Geometry.

Table 7 — SQL functions for obtaining the Well-known Text Representation of a geometric object

Function Description

AsText (g Geometry) : String returns 'the Well-known Text representation

7.28.2 Exceptions, errors and error codes
Errgr handling shall be accomplished by usingthe standard SQL status returns.
7.28.3 Examples

Thetfollowing example shows the se’of the asText function to extract the name and textual representation of
Gegmetry of all countries whosg Rnames begin with the letter K.

SELECT Name, AsText (I@cation) FROM Countries WHERE Name LIKE ‘K%’
7.2.p SQL functions for obtaining Well-known Binary Representations of a geometric obje¢t

7.2P1 Component overview

Thel asBinary function, shown in Table 8, takes a single argument of type Geometry and| returns its
Well-known Binary Representation. This function applies to all subtypes of Geometry.

Table 8 — SQL functions for obtaining the Well-known Binary Representation of a geometric object

Function Description

AsBinary (g Geometry) : Binary returns the Well-known Binary Representation

7.2.9.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

© ISO 2004 — Al rights reserved 23

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.9.3 Example

The following example shows the use of the asBinary function to extract the name and Well-known Binary
representation of Geometry for all countries whose names begin with the letter K.

SELECT Name, AsBinary(Location) FROM Countries WHERE Name LIKE ‘K%’

7.2.10 Fun

ctions on type Geometry

7.2.10.1 Component overview

The SQL fu
In all opera

object unles

s explicitly stated otherwise.

nctions shown in Table 9 apply to all subtypes of Geometry.

ions on the Geometry Type, geometric calculations shall be done in the Spatial Reference Sys
of the first geometric object. Returned objects shall be in the Spatial Reference System of the first geom

Table 9 — SQL functions on type Geometry

tem
Btric

Function

Description

Dimension

(g Geometry) : Integer

returns the dimension ofithe geometric object, which ig
less than or equaltoithe dimension of the coordinate
space

GeometryT]

ype (g Geometry) : String

returns the,name of the instantiable subtype of Geomsd
of which thissgeometric object is a member, as a string

AsText (g

Geometry) : String

returns the Well-known Text Representation of this
geometric object

AsBinary (

g Geometry) : Binary

returns the Well-known Binary Representation of this
geometric object

SRID (g GH

ometry) : Integer

returns the Spatial Reference System ID for this
geometric object

IsEmpty (g

Geometry) : Integer

The return type is Integer, with a return value of 1 for
TRUE, 0 for FALSE, and —1 for UNKNOWN
corresponding to a function invocation on NULL
arguments.

TRUE if this geometric object corresponds to the empt
set

IsSimple (

g Geometry) s \nteger

The return type is Integer, with a return value of 1 for
TRUE, 0 for FALSE, and —1 for UNKNOWN
corresponding to a function invocation on NULL
arguments.

TRUE if this geometric object is simple, as defined in
Geometry Model

he

Boundary (g Geometry) : Geometry returns a geometric object that is the combinatorial
boundary of g as defined in the Geometry Model
Envelope (g Geometry) : Geometry returns the rectangle bounding g as a Polygon. The

Polygon is defined by the corner points of the bounding

box [(MINX, MINY),(MAXX, MINY), (MAXX, MAXY),
(MINX, MAXY), (MINX, MINY)].

7.210.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

24

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

7.2.11 SQL functions on type Point

7.2.11.1 Component overview

ISO 19125-2:2004(E)

The SQL functions defined on point are shown in Table 10.

Table 10 — SQL functions on type Point

Function Description

X (p—Point) - Double Precision return the x-coordinate of Point p as a double precision
number

Y (g Point) : Double Precision return the y-coordinate of Point p as a.double [precision
number

7.2.11.2 Exceptions, errors and error codes
Errgr handling shall be accomplished by using the standard SQL status returns.
7.2.12 Functions on type Curve
7.2/121 Component overview
Thel SQL functions defined on curve are shown in Table 1.
Table 11 — SQL functions on type Curve
Function Description

StdrtPoint (¢ Curve) : Point return a Point containing the first Point of ¢

EndPoint (¢ Curve) : Point return a Point containing the last Point of ¢

Isdlosed(c Curve) : Integer The return type is Integer, with a return value pf 1 for
TRUE, 0 for FALSE, and —1 for UNKNOWN
corresponding to a function invocation on NULL
arguments;
return TRUE if c is closed, i.e., if
StartPoint(c) = EndPoint(c)

IsHing (c Curvé)~: Integer The return type is Integer, with a return value pf 1 for
TRUE, 0 for FALSE, and —1 for UNKNOWN
corresponding to a function invocation on NULL
arguments;
return TRUE if cis aring, i.e., if ¢ is closed and simple. A
Qimpln Curve does not pass ’rhrnllgh the sama Point more
than once.

Length (c Curve) : Double Precision return the length of ¢

7.212.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

© 1SO 2004 - All rights reserved

25

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.13 SQL functions on type LineString

7.2.13.1

Component overview

The SQL functions defined on LineString are shown in Table 12.

Table 12 — SQL functions on type LineString

Function Description
NumPoints (1 LineString) Integer return the number of Points in the LineString
PointN(l [LineString, n Integer) : Point return a Point containing Point n of |

7.2.13.2 Exceptions, errors and error codes
Error handling shall be accomplished by using the standard SQL status returns.
7.2.14 SQl functions on type Surface
7.214.1 CGomponent overview
The SQL functions defined on surface are shown in Table 13.
Table 13 — SQL functions on type Surface

Function Description
Centroid(s Surface) : Point return the centroid of s, which may lie outside s
PointOnSulrface (s Surface) : Point return a Point guaranteed to lie on the Surface
Area (s Surface) : Double Precision return the area of s

7.214.2 B

Error handl
7.2.15 SQl
7.2151 (

The SQL fu

xceptions, errors and erroricodes

ng shall be accomplished by using the standard SQL status returns.
functions on type Polygon

Lomponentioverview

hctions 'defined on Polygon are shown in Table 14.

H & Dal
—-Fa'b'l‘e'ﬁ_'s'e'l-_fuﬂcm omiypeTorygon

Function Description
ExteriorRing (p Polygon) : LineString return the exteriorRing of p
NumInteriorRing (p Polygon) Integer return the number of interiorRings

InteriorRingN(p Polygon, n Integer)
LineString

geometrically significant.

return the nth interiorRing. The order of Rings is not

7.2.15.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

26

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.16 SQL functions on type GeomCollection

7.2.16.1 Component overview

The SQL functions defined on GeomCollection are shown in Table 15.

Table 15 — SQL functions on type GeomCollection

Function Description
NumGeometries (g GeomCollection) : Integer return the number of geometric objects in the collection
GedmetryN (g GeomCollection, return the nth geometric object in the collection.
1 Integer) : Geometry The order of the elements in the collection-is ot
geometrically significant.

7.2[16.2 Exceptions, errors and error codes

Errgr handling shall be accomplished by using the standard SQL status returns.
7.2/17 SQL functions on type MultiCurve

7.2/17.1 Component overview

The] SQL functions defined on Multicurve are shown in Table 16.

Table 16 — SQL functions on type MultiCurve

Function Description

Is(losed(mc MultiCurve) : Integer The return type is Integer, with a return value pf 1 for
TRUE, 0 for FALSE, and —1 for UNKNOWN
corresponding to a function invocation on NULLL
arguments;

return TRUE if mc is closed

Lerjgth (mc MultiCurve) :(Dgtble Precision return the length of mc

7.2(17.2 Exceptionsyerrors and error codes

Errqr handling shall be accomplished by using the standard SQL status returns.

7.2.18 SQL functions on type MultiSurface

7.2 481—GCempeoenent-everview

The SQL functions defined on MultiSurface are shown in Table 17.

Table 17 — SQL functions on type MultiSurface

Function Description
Centroid(ms MultiSurface) : Point return the centroid of ms, which may lie outside ms
PointOnSurface (ms MultiSurface) : Point return a Point guaranteed to lie on the MultiSurface
Area (ms MultiSurface) : Double Precision return the area of ms

© 1SO 2004 — Al rights reserved 27

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.18.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.
7.2.19 SQL functions that test spatial relationships

7.2.19.1 Component overview

The functions shown in Table 18 test named spatial relationships between two geometric objects. The Relate
function tests if the specified spatial relationship between two geometric objects exists, where the spatial
relationshiprts c)\plcoocd as—a atlillg clluudillg thre abbcptab:c vattes—for—the—DBE=-SHvbetween—the two

geometric dbjects.

Table 18 — SQL functions that test spatial relationships

Function Description
Equals (gl Geometry,g2 Geometry) : The return type is Integer, with a return value of 1 for TRUE, O for
Integen FALSE, and —1 for UNKNOWN corresponding to a function

invocation on NULL arguments.

TRUE if g1 and g2 are equal

Disjoint (gl Geometry, g2 Geometry) : The return type is Integer, with¢a return value of 1 for TRUE, O for
Integery FALSE, and —1 for UNKNOWAN corresponding to a function
invocation on NULL arguments.

TRUE if the intersection of g1 and g2 is the empty set

Touches (gl Geometry, g2 Geometry) : The return typedis Integer, with a return value of 1 for TRUE, O for
Integer FALSE, and =1 for UNKNOWN corresponding to a function
invocation©@n NULL arguments.

TRUE-if the only Points in common between g1 and g2 lie in thg
union.of the boundaries of g1 and g2

Within (gll Geometry, g2 Geometry) : The return type is Integer, with a return value of 1 for TRUE, O for
Integery FALSE, and —1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if g1 is completely contained in g2

Overlaps (gl Geometry, g2 Geometry) : The return type is Integer, with a return value of 1 for TRUE, O for
Integery FALSE, and —1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if the intersection of g1 and g2 results in a value of the sgme
dimension as g1 and g2 that is different from both g1 and g2

Crosses (gl Geomefry, g2 Geometry) : The return type is Integer, with a return value of 1 for TRUE, O for
Integer FALSE, and —1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if the intersection of g1 and g2 results in a value whose
dimension is less than the maximum dimension of g1 and g2 and
the intersection value includes Points interior to both g1 and g2,
and the intersection value is not equal to either g1 or g2

Intersects (gl Geometry, g2 Geometry) : |The return type is Integer, with a return value of 1 for TRUE, O for
Integer FALSE, and —1 for UNKNOWN corresponding to a function
invocation on NULL arguments;

convenience predicate: TRUE if the intersection of g1 and g2 is not
empty

Intersects(g1, g2) < Not (Disjoint(g1, g2))

28 © 1SO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

Table 18 (continued)

Function Description
Contains (gl Geometry, g2 Geometry) : The return type is Integer, with a return value of 1 for TRUE, 0 for
Integer FALSE, and —1 for UNKNOWN corresponding to a function
invocation on NULL arguments;
convenience predicate: TRUE if g2 is completely contained in g1
Contains(g1, g2) < Within(g2, g1)
Relate (gl Geometry, g2 Geometry, The return type is Integer, with a return value of 1 for TRUE, 0 for
patternMatri String) : Tnteger EAI SE _and —1 for UNKNOWN carresponding to a function
invocation on NULL arguments;
returns TRUE if the spatial relationship specified(bythe]
patternMatrix holds
7.2[19.2 Exceptions, errors and error codes

Errd

7.2,

r handling shall be accomplished by using the standard SQL status returns.

19.3 Example queries

The]functions and predicates in this subclause allow the expression’of detailed spatial relationship [queries.
Return all parcels that intersect a specified Polygon:
SELECT Parcel.Name, Parcel.Id FROM Parcels
WHERE Intersects (Parcels.Location, PolyFromWKB (:wkb, : srid)) =1
Retyrn all parcels completely contained in a specified Polygon:
SELECT Parcel.Name, Parcel.Id FROM(Parcels
WHERE Within (Parcels. Location, PolyFromWKB (:wkb, :srid)) =1
The| following adjacency query may. be used to select all parcels that are “adjacent” to a query| parcel and
shafe one or more boundary lines with a query parcel while excluding parcels that share only corngr Points.
SELECT Parcel.Name, (Parcel.Id FROM Parcels
WHERE Touches)(Parcels. Location, PolyFromWKB (:wkb, :srid)) = 1 and
Overlaps (Boundary (Parcels. Location), Boundary (PolyFromWKB (:wkb, :srid))) =|1
7.2.20 SQL functions for distance relationships
7.2.20.1 . Component overview
Thel function shown in Table 19 is used to calculate the distance between two geometric objects.
Table 19 — SQL functions for distance relationships
Function Description
Distance (gl Geometry, return the distance between g1 and g2
g2 Geometry) : Double Precision
7.2.20.2 Exceptions, errors and error codes
Error handling shall be accomplished by using the standard SQL status returns.
© ISO 2004 — Al rights reserved 29

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

7.2.20.3 Example query

The following query returns the name of the state and the fragment(s) of the state that fall within the query

Polygon for

SELECT

WHERE Distance (PointFromText (:pointTaggedText,

each state that intersects the query Polygon.
Airport.Name FROM Airports
< 2000

:srid), Airport.Location)

7.2.21 SQL functions that implement spatial operators

7.2.21.1 CGomponent overview
The functiohs shown in Table 20 implement set-theoretic and constructive operations on geometric objgcts.
These operptions are defined for all types of Geometry.
Table 20 — SQL functions that implement spatial operators
Function Description
Intersectfion (gl Geometry, return a geometric objectithat is the intersection of
g2 Geomfetry) : Geometry geometric objects g1 ,and)g2
Differende (gl Geometry, return a geometric object that is the closure of the set
g2 Geomfetry) : Geometry difference of g1‘and g2
Union (gl| Geometry, return a geometric object that is the set union of g1 ang
g2 Geometry) : Geometry g2
SymDifferfence (gl Geometry, return‘a‘geometric object that is the closure of the set
g2 Geomfetry) : Geometry symmetric difference of g1 and g2 (logical XOR of spage)
Buffer (gl Geometry, return a geometric object defined by buffering a distange
d Doublle Precision) : Geometry d around g1, where d is in the distance units for the
Spatial Reference of g1
ConvexHulll (gl Geometry) : Geometry return a geometric object that is the convex hull of g1
7.2.21.2 Exceptions, errors and error codes
Error handling shall be accomplished by using the standard SQL status returns.
7.2.21.3 Example query

The following query returns the name of the state and the fragment(s) of the state that fall within the q

Polygon for|

SELECT

eachcstate that intersects the query Polygon.

States.Name, Intersection (PolyFromWKB (:wkb, :srid), States.Location)

Llery

FROM States

WHERE Intersects (PolyFromWKB (:wkb,

:srid), States.Location)

7.2.22 SQL function usage and references to Geometry

The SQL Functions that operate on Geometry Types have been defined above to take geometric objects as

arguments.

This conforms to the model for value based UDTs in SQL.

SQL Type may also support the concept of persistent references to instances of the Type. To support the
latter type of implementation, a reference to a Geometry Type instance, REF (Geometry), may be used in
place of a Geometry value in the SQL functions defined in this subclause.

30

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

Annex A
(informative)

ISO 19125-2:2004(E)

Comparison of Simple feature access/SQL and SQL/MM - Spatial

This informative annex provides a comparison of SFA-SQL and SQL/MM — Spatial.

Table A.1 — Comparison of SFA-SQL and SQL/MM — Spatial

SQL with geometry type

ISO/IEC 13249-3:2003
(SQL/MM-Spatial)

Description

Ge¢metry Types |Point ST_Point —
Curve ST_Curve
Linestring ST_Linestring
ST_Circularstring
ST_CompoundCurve
Surface ST_Surface
ST_CurvePolygon
Polygon ST_Polygon
GeomCollection ST_Collection
Multipoint ST_Multipoint
Multicurve ST_MultiCurve
Multilinestring ST_Multilinestring
Multisurface ST_Multisurface
Multipolygon ST_Multipolygon
Stofage Binary Type, Text Type, |Object Tiype —
Object Type
Opérations Equals ST Equals —
Disjoint ST_Disjoint
Touches ST_Touches
Within ST_Within
Overlaps ST_Overlaps
Crosses ST_Crosses
Intersects ST_Intersects
Contains ST_Contains
Relate ST Relate
Furjctions: — — —
Poipt ST_Point() Return the Point
X() ST_X() Return the X-coordinate of point
Y() ST_Y() Return the Y-coordinate of point
— ST_ExplicitPoint() —
Cunve Length() ST_Length() Return the length of curve
Qtarfpninf() QT_qurfDninf() Return the first Point of cunze
EndPoint() ST_EndPoint() Return the last Point of curve
IsClosed() ST_IsClosed() Check whether curve is closed
IsRing() ST_ISRing() Check whether curve is closed and simple
— ST_CurveTolLine Transform Curve to Linestring
Linestring — ST_LineString Return the Linestring
— ST _Points Return a collection of points
NumPoints() ST_NumPoints Return the number of points
PointN() ST_PointN Return a Point containing Point n of linestring

© 1SO 2004 - All rights reserved

31

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-

2:2004(E)

Annex B
(normative)

Conformance tests

B.1 Purpose of this annex

In order to
requiremen

a) SaLin

us

1)

2) us

b) SQL
access

This annex
exercise eq
to test that
not at the l¢
the answer
correctnesy

B.2 Test

B.2.1 Tes|

The data foj
the function
location cal

s of one of the following three conformance classes:

ng numeric SQL types for geometry storage and SQL/CLI access,
ng binary SQL types for geometry storage and SQL/CLI access;

th Geometry Types implementation of feature tables supporting both textual and binary SQL

ch functional aspect of the specification at least once. The)test questions and answers are def

s are further examined for reasonableness (foriexample, the area of a polygon is tested
to two or three significant figures). The following sections further describe each test alternative.

t data semantics

I all of the test alternative’s are the same. It is a synthetic data set, developed by hand, to exern
ality of the specificationy It is a set of features that makes up a map (see Figure B.1) of a ficti

conform to this part of 1ISO 19125 for feature collections, an implementation shall satisfy,

plementation of feature tables based on predefined data types:

to geometry.
provides a conformance test for this part of ISO 19125.:n"general, the scope of the tests

he specified functionality exists and is operable. Careshas been taken to ensure that the tests
vel of rigor that a product quality-control process ar.certification test might be. However, som

data

ed Blue Lake. This. section describes the test data in detail.

32

the

CLI

s to
ned

are

e of

for

cise
bnal

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

State A

Island

X
Key|
X [Easting
Y Northing

1 |watercourse
Route 5

indicates where Route 5 is two lanes wide;
: indicates where Route 5 is four lanes wide

Route 75

Main Street
one-lane road

O bridge

| @ | buildings

4 D fish ponds

Figure’B.1 — Test Data Concept — Joe's Blue Lake vicinity map

N

© N o o b~ w

Thel semantics of\this data set are as follows.

a) |A rectangle of the Earth is shown in UTM coordinates. Horizontal coordinates take meaning from POSC
Horizontal Coordinate System #32214. Note 500,000 m false Easting, and WGS 72 / UTNI zone 14N.
Units are metres.

b) Blue Lake (which has an island named Goose Island) is the prominent feature.

c) There is a watercourse flowing from north to south. The portion from the top neatline to the lake is called
Cam Stream. The portion from the lake to the bottom neatline has no name (Name value is “Null”).

d) There is an area place named Ashton.

e) There is a State Forest whose administrative area includes the lake and a portion of Ashton. Roads form
the boundary of the State Forest. The “Green Forest” is the State Forest minus the lake.

f) Route 5 extends across the map. It is two lanes wide where shown as a heavy black line. It is four lanes
wide where shown as a heavy grey line.

© ISO 2004 — Al rights reserved 33

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

g) Thereis a major divided highway, Route 75, shown as a heavy double black line, one line for each part of
the divided highway. These two lines are seen as a multiline.

h) There is a bridge (Cam Bridge) where the road goes over Cam Stream, a point feature.
i) Main Street shares some pavement with Route 5, and is always four lanes wide.
i) There are two buildings along Main Street; each can be seen either as a point or as a rectangle footprint.

k) There is a one-lane road forming part of the boundary of the State Forest, shown as a grey line with black
borders.

I) There are two fish ponds, which are seen as a collective, not as individuals; that is, they are a multi-polygon.

B.2.2 Test data points and coordinates
Figure B.2 dlepicts the points that are used to represent the map.

Dimensions in métres

Y Y
1e 342 4‘? 2 3 . 4 50
45 48
46 4 6
401 47 50
30 o7

43/
40]_—1
20+ 12/

101 S
@) 18

Island
o]

Key

X Easting,|in metres
Y Northing}, in-metres

Figure B.2 — Points in the Blue Lake data set

34 © 1SO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

Table B.1 gives these coordinates associated with each point.

Table B.1 — Coordinates associated with each point in the Blue Lake data set

Point Easting Northing Point Easting Northing
1 0 48 26 52 31
2 38 48 27 52 29
3 62 48 28 50 29
4 72 48 29 52 30
5 84 48 30 62 34
6 84 42 31 66 34
7 84 30 32 66 32
8 84 0 33 62 82
9 76 0 34 64 33
10 28 0 35 59 13
11 0 0 36 59 18
12 0 18 37 67 18
13 44 41 38 67 13
14 41 36 39 10 48
15 28 26 40 10 21
16 44 31 41 10 0
17 52 18 42 16 48
18 48 6 43 16 23
19 73 9 44 16 0

20 78 4 45 24 44

21 66 23 46 22 42

22 56 30 47 24 40

23 56 34 48 26 44

24 70 38 49 28 42

25 50 31 50 26 40
B.3 _Conformance tests

B.3.1 Normalized geometry schema

B.3.1.1 Conformance test overview

The scope of this test is to determine that the test data (once inserted) are accessible via the schema defined
in the specification. Table B.2 shows the queries that accomplish this test.

© 1SO 2004 — Al rights reserved 35

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

Table B.2 — Queries to determine that test data are accessible via the normalized geometry schema

ID Functionality Tested Query Description Answer

N1 GEOMETRY_COLUMNS For this test, we will check to see |lakes, road_segments, divided_routes,
table/view is created/updated that all of the feature tables are | buildings, buildings, forests, bridges,
properly represented by entries in the named_places, streams, ponds,

GEOMETRY_COLUMNS map_neatlines
table/view.

N2 GEOMETRY_COLUMNS For this test, we will check to see |lake_geom, road_segment_geom,
table/view is created/updated that all of the geometry tables are | divided_route_geom, forest_geom,
praperly represented by entries in the bridge geom stream geom

GEOMETRY_COLUMNS building_pt_geom,

table/view. building_area_geom, pond_geom,
named_place_geom,
map_neatline_geom

N3 GEOMETRY_COLUMNS For this test, we will check to see |0
table/view is created/updated that the correct storage type for
properly the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

N4 GEOMETRY_COLUMNS For this test, we will check to see |3 (corresponds to'LINESTRING’)
table/view is created/updated that the correct geometry type for
properly the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

N5 GEOMETRY_COLUMNS For this test, we will check to'see |2
table/view is created/updated that the correct coordinate
properly dimension for the streams table

is represented in the
GEOMETRY_COLUMNS
table/view.

N6 GEOMETRY_COLUMNS For this test, we will check to see |3
table/view is created/updated that the.earrect value of max_ppr
properly for the)streams table is

represented in the
GEOMETRY_COLUMNS
table/view.

N7 GEOMETRY_COLUMNS For this test, we will check to see | 101
table/view is created/updated that the correct value of srid for
properly the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

N8 SPATIAL_REF _SYS table/view |For this test, we will check to see |'PROJCS["UTM_ZONE_14N",
i$ created/updated properly that the correct value of srtext is | GEOGCS["World Geodetic System 2",

represented in the DATUM["WGS_72",

SPATIAL_REF_SYS table/view. |ELLIPSOID["NWL_10D", 6378135,
208 26]] PRIMEM["Greenwich" Q]
UNIT["Meter", 1.0]],
PROJECTIONI["Transverse_Mercator"],
PARAMETER]["False_Easting",
500000.0],
PARAMETER["False_Northing", 0.0],
PARAMETER["Central_Meridian", -
99.0], PARAMETER]["Scale_Factor",
0.9996],
PARAMETER["Latitude_of_origin",
0.0], UNIT["Meter", 1.0]]'

36 © 1SO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

B.3.1.2 Normalized geometry schema construction

-—- CREATE SPATIAL REF SYS METADATA TABLE

CREATE TABLE spatial ref sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth name VARCHAR(256),
auth srid INTEGER,
srtext VARCHAR (2048)) ;

-— CREATE GEOMETRY COLUMNS METADATA TABLE

CREATE TABLE geometry columns (

f catalog name
f table schema

VARCHAR (256) ,
VARCHAR (256) ,

ISO 19125-2:2004(E)

f table name

VARCHAR (256) ,

f geometry column VARCHAR(256),
g catalog name VARCHAR (256) ,
g_table schema VARCHAR (256) ,

g_table name VARCHAR (256) ,

storage type INTEGER,

geometry type INTEGER,

coord dimension INTEGER,

max ppr INTEGER,

srid INTEGER REFERENCES spatial ref sys,

CONSTRAINT gc_pk PRIMARY KEY (f catalog name, f table_ schema,
f table name, f geometry column));

-- Create geometry tables
-- Lake Geometry

CREATE TABLE lake geom (

gid INTEGER NOT NULL,
eseq INTEGER NOT NULL,
etype INTEGER NOT NULL,
seq INTEGER NOT NULL,
x1 INTEGER,
vl INTEGER,
x2 INTEGER,
v2 INTEGER,
x3 INTEGER,
y3 INTEGER,
x4 INTEGER,
yv4 INTEGER,
x5 INTEGERy
y5 INTEGERYy

CONSTRAINT 1 gid pk PRIMARY KEY (gid, eseq, seq));
-- Road Segment Geometrwy

CREATE TABLE roadsegifient geom (

gid INTEGER NOT NULL,
eseq INTEGER NOT NULL,
etype INTEGER NOT NULL,
seqg INTEGER NOT NULL,
A INTEGER,
pA INTEGER,
X2 INTEGER,
y2 INTEGER,
%3 INTEGER,

> TN T L OmINy

CONSTRAINT rs_gid pk PRIMARY KEY (gid, eseq, seq));
-- Divided Route Geometry

CREATE TABLE divided route geom (

gid INTEGER NOT NULL,
eseq INTEGER NOT NULL,
etype INTEGER NOT NULL,
seq INTEGER NOT NULL,
x1 INTEGER,
vl INTEGER,
x2 INTEGER,
y2 INTEGER,
%3 INTEGER,
y3 INTEGER,

CONSTRAINT dr gid pk PRIMARY KEY (gid, eseq, seq));

© 1SO 2004 - All rights reserved

37

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

—-— Forest Geometry

CREATE TABLE forest geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

vyl INTEGER,

X2 INTEGER,

y2 INTEGER,

%3 INTEGER,

y3 INTEGER,

k3 LINITLGLIIN,

yv4 INTEGER,

x5 INTEGER,

y5 INTEGER,
CONSTRRINT f gid pk PRIMARY KEY (gid, eseq, seq));
-- Brifige Geometry
CREATE| TABLE bridge geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

yl INTEGER,
CONSTRRINT b gid pk PRIMARY KEY (gid, eseq, seq));
-- Strpam Geometry
CREATE| TABLE stream geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

yl INTEGER,

X2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,
CONSTRRINT s gid pk PRIMARY KEY (gid, ‘eseq, seq));
-- BulfPing Point Geometry
CREATE| TABLE building pt geom (

gid INTEGER NQT JNULL,

eseq INTEGER NOT NULL,

etype INTEGER™NOT NULL,

seq INPEGER NOT NULL,

x1 INTEGER,

gt INTEGER,
CONSTRRINT bp gidspk PRIMARY KEY (gid, eseq, seq));
-- Bulfling Area\ Geometry
CREATE| TABLE»building area geom (

gid INTEGER NOT NULL,

eseq INTEGER NOT NULL,

etype INTEGER NOT NULL,

seq INTEGER NOT NULL,

x1 INTEGER,

yl INTEGER,

X2 INTEGER,

y2 INTEGER,

x3 INTEGER,

y3 INTEGER,

x4 INTEGER,

v4 INTEGER,

x5 INTEGER,

y5 INTEGER,
CONSTRAINT ba gid pk PRIMARY KEY (gid, eseq, seq));

-- Pond Geometry

38

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

CREATE TABLE pond_geom (

gid INTEGER NOT NULL,
eseq INTEGER NOT NULL,
etype INTEGER NOT NULL,
seq INTEGER NOT NULL,
x1 INTEGER,
gt INTEGER,
x2 INTEGER,
v2 INTEGER,
x3 INTEGER,
y3 INTEGER,
x4 INTEGER,
v4 INTEGER,

ISO 19125-2:2004(E)

NS PRAFNF—p—g o PRIMARY—KEY—(o = =
-- Named Place Geometry

CREATE TABLE named place geom (

gid INTEGER NOT NULL,
eseq INTEGER NOT NULL,
etype INTEGER NOT NULL,
seq INTEGER NOT NULL,
x1 INTEGER,
gt INTEGER,
X2 INTEGER,
y2 INTEGER,
%3 INTEGER,
y3 INTEGER,
x4 INTEGER,
v4 INTEGER,

CONSTRAINT np gid pk PRIMARY KEY (gid, eseq, seq));
-— Map Neatline Geometry

CREATE TABLE map_neatline geom (

gid INTEGER NOT NULL,
eseq INTEGER NOT NULL,
etype INTEGER NOT NULL,
seq INTEGER NOT NULL,
x1 INTEGER,
vl INTEGER,
X2 INTEGER,
y2 INTEGER,
%3 INTEGER,
y3 INTEGER}
x4 INTEGER,,
v4 INTEGER,
x5 INTEGER,
y5 INTEGER,

CONSTRAINT mn_gid ‘R PRIMARY KEY (gid, eseq, seq));
-- Lakes

CREATE TABLE/Takes (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,
shore gid INTEGER) ;

+>"Road Segments

CREATE TABLE road_segments (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,
aliases VARCHAR (64) ,

num_lanes
centerline gid

-- Divided Routes

INTEGER,
INTEGER) ;

CREATE TABLE divided routes (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

num_ lanes INTEGER,

centerlines gid INTEGER) ;

-— Forests

© 1SO 2004 - All rights reserved

39

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

CREATE

-- Bri

CREATE

-— Str

CREATE

-- Bui

CREATE

-- Pon

CREATE

—— Nam|

CREATE

-- Map

CREATE

B.3.1.3 N

40

—--Spat

INSERT
Geodet
0],UNI
PARAME
0.01,P
0.9996

-- Lak
INSERT
INSERT
INSERT
-- Roa
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT
INSERT

INSERT

TABLE forests (

fid

name VARCHAR (64) ,
boundary gid INTEGER) ;
dges

TABLE bridges (

fid
name
position gid

VARCHAR (64) ,
INTEGER) ;

eams

TABLE streams (

INTEGER NOT NULL PRIMARY KEY,

INTEGER NOT NULL PRIMARY KEY,

ic System 72", DATUM[*WGS 72",

FER["False Easting",
NRAMETER ["Cent¥al Meridian",

ELLIPSOID["NWLiloD",
' ["Meter",1.0] ,.PROJECTION["Transverse Mercator"],
500000.0], PARAMETER["False Northing",

-99.0], PARAMETER["Scale Factor",

L 1O INILGER NUL NULL FPRINMARI QKLT,
name VARCHAR (64) ,

centerline gid INTEGER);

ldings

TABLE buildings (

fid INTEGER NOT NULL PRIMARY KEY,
address VARCHAR (64) ,

position gid INTEGER,

footprint gid INTEGER);

[s

TABLE ponds (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

type VARCHAR (64) ,

shores gid INTEGER) ;

bd Places

TABLE named places (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

boundary gid INTEGER) ;

Neatline

TABLE map_neatlines (

fid INTEGER NOT NULL ,PRIMARY KEY,
neatline gid INTEGER) ;
lormalized geometry schema data loading

fal Reference System

INTO spatial ref sysS\VALUES (101, 'POSC', 32214, 'PROJCS["UTM ZONE 14N", GEOGCS["World

6378135,

, PARAMETER[{"Latitude of origin", 0.0],UNIT["Meter", 1.0]]");

b s

INTO lake geom VALUES (101, 1, 5, 1, 52,18, 66,23, 73,9, 48,6, 52,18);
INTO lake geom VALUES (101, 2, 5, 1, 59,18, 67,18, 67,13, 59,13, 59,18);
INTO lakes VALUES (101, 'BLUE LAKE', 101);

d segments

INTO road segment geom VALUES (101, 1, 3, 1, 0,18, 10,21, 16,23);

INTO road segment geom VALUES (101, 1, 3, 2, 28,26, 44,31, NULL,NULL);
INTO road segment geom VALUES (102, 1, 3, 1, 44,31, 56,34, 70,38);
INTO road segment geom VALUES (103, 1, 3, 1, 70,38, 72,48, NULL,NULL);
INTO road segment geom VALUES (104, 1, 3, 1, 70,38, 84,42, NULL,NULL);
INTO road segment geom VALUES (105, 1, 3, 1, 28,26, 28,0, NULL,NULL);
INTO road segments VALUES (102, 'Route 5', NULL, 2, 101);

INTO road segments VALUES (103, 'Route 5', 'Main Street', 4, 102);

© ISO 2004 - All rights reserved

298.26]],PRIMEM["Greenwich

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

INSERT INTO road segments VALUES (104, 'Route 5', NULL, 2, 103);

INSERT INTO road segments VALUES (105, 'Main Street', NULL, 4, 104);

INSERT INTO road segments VALUES (106, 'Dirt Road by Green Forest', NULL, 1, 105);
-- DividedRoutes

INSERT INTO divided route geom VALUES (101, 1, 9, 1, 10,48, 10,21, 10,0);

INSERT INTO divided route geom VALUES (101, 2, 9, 1, 16,0, 10,23, 16,48);

INSERT INTO divided routes VALUES (119, 'Route 75', 4, 101);

-- Forests

INSERT INTO forest geom VALUES(101, 1, 11, 1, 28,26, 28,0, 84,0, 84,42, 28,26);

INSERT INTO forest geom VALUES(101, 1, 11, 2, 52,18, 66,23, 73,9, 48,6, 52,18);
INSERT INTO forest geom VALUES(101, 2, 11, 1, 59,18, 67,18, 67,13, 59,13, 59,18);
INSERT INTO forests VALUES (109, 'Green Forest', 101);

-- Bridges

INSERT INTO bridge geom VALUES (101, 1, 1, 1, 44, 31);

INSERT INTO bridges VALUES (110, 'Cam Bridge', 101);

-— Streams

INSERT INTO stream geom VALUES (101, 1, 3, 1, 38,48, 44,41, 41,367

INSERT INTO stream geom VALUES (101, 1, 3, 2, 44,31, 52,18, NULDL,NULL);

INSERT INTO stream geom VALUES (102, 1, 3, 1, 76,0, 78,4,/73%9);

INSERT INTO streams VALUES (111, 'Cam Stream', 101);

INSERT INTO streams VALUES (112, 'Cam Stream', 102);

-— Buildings

INSERT INTO building pt geom VALUES (101, 1%, 1, 52,30);

INSERT INTO building pt geom VALUES (102,™3, 1, 1, 64,33);

INSERT INTO building area geom VALUES (01, 1, 5, 1, 50,31, 54,31,
54,29, 50,29, 50,31);

INSERT INTO building area geom (VAMUES (102, 1, 5, 1, 66,34, 62,34, 62,32,
66,32, 66,34);

INSERT INTO buildings VALUES\(113, '123 Main Street', 101, 101);

INSERT INTO buildings YALWES (114, '215 Main Street', 102, 102);

-- Ponds

INSERT INTO pondsgéom VALUES (101, 1, 11, 1, 24,44, 22,42, 24,40, 24,44);
INSERT INTO peghd—=geom VALUES (101, 2, 11, 1, 26,44, 26,40, 28,42, 26,44);
INSERT INTO“ponds VALUES (120, NULL, 'Stock Pond', 101);

-- Named Blaces

=

INSERT\INTO named place geom VALUES (101, 1, 5, , 62,48, 84,48, 84,30, 56,30);

N

INSERT INTO named place geom VALUES (101, 1, 5, , 56,30, 56,34, 62,48, NULL,NULL) ;

INCERT __TANTO = 1 MALLIES (102 il [al 212 219 50 19 50 1232
g I T 4 T T 4 T T T T T T 7

INSERT INTO named place geom VALUES (102, 1, 5, 2, 59,13, 67,13, NULL,NULL, NULL,NULL);
INSERT INTO named places VALUES (117, 'Ashton', 101);

INSERT INTO named places VALUES (118, 'Goose Island', 102);

-- Map Neatlines

INSERT INTO map neatline geom VALUES (101, 1, 5, 1, 0,0, 0,48, 84,48, 84,0, 0,0);
INSERT INTO map neatlines VALUES (115, 101);

-- Geometry Columns

INSERT INTO geometry columns VALUES ('lakes', 'shore gid',
'lake geom',0, 5, 2, 5, 101);

© 1SO 2004 - All rights reserved 41

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

INSERT INTO geometry columns VALUES ('road segments', 'centerline gid',
'road_segment geom',0, 3, 2, 3, 101);

INSERT INTO geometry columns VALUES ('divided routes', 'centerlines gid',
'divided route geom',0, 9, 2, 3, 101);

INSERT INTO geometry columns VALUES ('forests', 'boundary gid',
'forest geom',0, 11, 2, 5, 101);

INSERT INTO geometry columns VALUES ('bridges', 'position gid',
'bridge geom',0, 1, 2, 1, 101);

INSERT INTO geometry columns VALUES ('streams', 'centerline gid',
'stream geom',0, 3, 2, 3, 101);

INSERT _INTOQ geometry columns VALUES ('buildings', 'position gid',
'building pt geom',0, 1, 2, 1, 101);

INSERT| INTO geometry columns VALUES ('buildings', 'footprint gid',
'building area geom',0, 5, 2, 5, 101);

INSERT| INTO geometry columns VALUES ('ponds', 'shores gid',
'pond geom',0, 11, 2, 4, 101);

INSERT| INTO geometry columns VALUES ('named places', 'boundary gid',
'named place geom',0, 5, 2, 4, 101);

INSERT| INTO geometry columns VALUES ('map neatlines', 'neatline gid',

'map neatline geom',0, 5, 2, 5, 101);

B.3.1.4 Normalized geometry schema test queries

-- Conformance Item N1

SELECT| £ table name
FROM gpometry columns;

-- Conformance Item N2

SELECT| g_table name
FROM gpometry columns;
-- Conformance Item N3
SELECT| storage type
FROM gpometry columns
WHERE F table name = 'streams';
-- Conformance Item N4

SELECT| geometry type
FROM gpometry columns
WHERE F table name = 'streams';
-- Conformance Itepml N¥

SELECT| coord_dimension
FROM ggometry ‘codumns
WHERE F tabde’name = 'streams';

—-- Conformdnce Item N6

SELECT max_ppr
FROM geometry columns

WHERE f table name = 'streams';

-- Conformance Item N7

SELECT srid
FROM geometry columns

WHERE f table name = 'streams';

-- Conformance Item N8

SELECT srtext
FROM SPATIAL REF SYS
WHERE SRID = 101;

42

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

B.3.2 Binary geometry schema

B.3.2.1

Conformance test overview

ISO 19125-2:2004(E)

The scope of this test is to determine that the test data (once inserted) are accessible via the schema defined

in the specification. Table B.3 shows the queries that accomplish this test.

Table B.3 — Queries to determine that test data are accessible via the binary geometry schema

is created/updated properly

ID Functionality Tested Query Description Answer

B1 Table B.1 — For this test, we will check to see |lakes, road_segments, divided_routes,
GEOMETRY_COLUMNS that all of the feature tables are | buildings, buildings, ferests] bridges,
table/view is created/updated represented by entries in the named_places, streams, pgnds,
properly GEOMETRY_COLUMNS map_neatlines

table/view.

B2 GEOMETRY_COLUMNS For this test, we will check to see |lake_geomjyroad_segment geom,
table/view is created/updated that all of the geometry tables are | divided\ route_geom, forest| geom,
properly represented by entries in the bridge_geom, stream_geom,

GEOMETRY_COLUMNS building_pt_geom,

table/view. building_area_geom, pond [geom,
named_place_geom,
map_neatline_geom

B3 GEOMETRY_COLUMNS For this test, we will check to’see |1
table/view is created/updated that the correct storagé.type for
properly the streams table is:represented

in the GEOMETRY, COLUMNS
table/view.

B4 GEOMETRY_COLUMNS For this test,;we will check to see | 3 (corresponds to ‘LINESTRING’)
table/view is created/updated that the ¢orrect geometry type for
properly the streams table is represented

in the GEOMETRY_COLUMNS
table/view.

B5 GEOMETRY_COLUMNS For this test, we will check to see |2
table/view is created/updated that the correct coordinate
properly dimension for the streams table

is represented in the
GEOMETRY_COLUMNS
table/view.

B6 GEOMETRY-_.COLUMNS For this test, we will check to see | 101
table/view’is created/updated that the correct value of srid for
properly the streams table is represented

in the GEOMETRY_COLUMNS
table/view.
B7 SPATIAL_REF_SYS table/view |For this test, we will check to see |'PROJCS["UTM_ZONE_14N",

that the correct value of srtext is
rpprpcpnfpd in the

GEOGCS["World Geodetic [System 72",
DATUM[MWGS 72"

SPATIAL_REF_SYS table/view.

ELLIPSOID["NWL_10D", 6378135,
298.26]], PRIMEM["Greenwich", 0],
UNIT["Meter", 1.0]],
PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",
500000.0],
PARAMETER["False_Northing", 0.0],
PARAMETER(["Central_Meridian", -
99.0], PARAMETER["Scale_Factor",
0.9996],
PARAMETER["Latitude_of_origin",
0.0], UNIT["Meter", 1.0]]'

© 1SO 2004 - All rights reserved

43

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

B.3.2.2 Binary geometry schema construction

CREATE TABLE spatial ref sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth name VARCHAR(256),
authfSrid INTEGER,
srtext VARCHAR (2048)) ;

-- Geometry Columns

CREATE TABLE geometry columns (
f table_schema VARCHAR (256) ,

f table_ name

f geometry column

VARCHAR (256) ,
/ARCHAR (256)

g table schema
g_table name

VARCHAR (256) ,
VARCHAR (256) ,

storage type INTEGER,
geometry type INTEGER,
coord dimension INTEGER,
max ppr INTEGER,
srid INTEGER REFERENCES spatial ref sys,

CONSTRRINT gc pk PRIMARY KEY (f table schema, f table name, f geometry colump))

-- Lakg Geometry

CREATE| TABLE lake geom (

gid INTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,

ymin INTEGER,

xmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY) ;

—-— Roafl Segment Geometry

CREATE| TABLE road segment geom (

gid INTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,

ymin INTEGER,

xXmax INTEGER,

ymax INTEGER,

wkbgeometry VARBINARY) ;

-- Divjded Route Geometry

CREATE| TABLE divided route geom (

gid INTEGER NOT{NULL PRIMARY KEY,
xmin INTEGER,
ymin INTEGER,
xmax INTEGERy
ymax INTEGER,

wkbgeometry VARBINARY) ;
—-— Forgest Geometry

CREATE| TABLE fdregst geom (

gid INTEGER NOT NULL PRIMARY KEY,
xXmin INTEGER,
yHin INTEGER,
Xmax INTEGER,
ymax INTEGER,

wkbgeometry VARBINARY) ;
-- Bridge Geometry

CREATE TABLE bridge geom (

gid INTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,
ymin INTEGER,
xXmax INTEGER,
ymax INTEGER,

wkbgeometry VARBINARY) ;
-- Stream Geometry

CREATE TABLE stream geom (
gid INTEGER NOT NULL PRIMARY KEY,

44 © ISO 2004 — All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

xmin INTEGER,
ymin INTEGER,
xmax INTEGER,
ymax INTEGER,

wkbgeometry VARBINARY) ;
-— Bulding Point Geometry

CREATE TABLE building pt geom (

gid INTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,
ymin INTEGER,
xXmax INTEGER,
2o8 TT\T‘T"E‘(“'E"D,

ISO 19125-2:2004(E)

wkbgeometry VARBINARY) ;
-- Bulding Area Geometry

CREATE TABLE building area geom (

gid INTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,
ymin INTEGER,
xmax INTEGER,
ymax INTEGER,

wkbgeometry VARBINARY) ;
-- Pond Geometry

CREATE TABLE pond_geom (

gid INTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,
ymin INTEGER,
xmax INTEGER,
ymax INTEGER,

wkbgeometry VARBINARY) ;
-- Named Place Geometry

CREATE TABLE named place geom (

gid INTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,
ymin INTEGER,
xXmax INTEGER,
ymax INTEGER,

wkbgeometry VARBINARY) ;
-— Map Neatline Geometry

CREATE TABLE map_neatline geom (

gid FNTEGER NOT NULL PRIMARY KEY,
xmin INTEGER,
ymin INTEGER,
xmax INTEGER,
ymax INTEGER,

wkbgeOmetry VARBINARY) ;
-- Lakes

CREATE.TABLE lakes (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,
nore_gid TNTEGER] ;

-- Road Segments

CREATE TABLE road segments (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

aliases VARCHAR (64) ,

num_ lanes INTEGER,

centerline gid INTEGER) ;

-- Divided Routes

CREATE TABLE dividediroutes (
fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

© 1SO 2004 - All rights reserved

45

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

num lanes INTEGER,
centerlines gid INTEGER) ;

—-— Forests

CREATE TABLE forests (
fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

boundary gid INTEGER) ;

-- Bridges

CREATE TABLE bridges (
fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

-— Str

CREATE

-- Bui

CREATE

-- Pon

CREATE

—-— Nam

CREATE

-- Map

CREATE

position gid INTEGER) ;

Eams
TABLE streams (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

centerline gid INTEGER);

ldings

TABLE buildings (

fid INTEGER NOT NULL PRIMARY KEY,
address VARCHAR (64) ,

position gid INTEGER,

footprint gid INTEGER);

s

TABLE ponds (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

type VARCHAR (64) ,

shores gid INTEGER) ;

bd Places

TABLE named places (

fid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,

boundary gid INTEGER) ;

Neatline

TABLE map_neatlines (

fid INTEGER NOT NULL PRIMARY KEY,
neatline gid INTEGER);

B.3.2.3 Bijnary geometry schema data loading

46

-- Spa

INSERT
Geodet
72", DA
PROJEC

Fial Referencé Systems

INTO spatildl ref sys VALUES (101, 'POSC', 32214, 'PROJCS["UTM ZONE 14N", GEOGCS["World

ic System

rUM ['WES_ 72", ELLIPSOID["NWL_10D",6378135,298.26]], PRIMEM["Greenwich",0],UNIT ["Meter", 1.
LON N'Transverse Mercator"], PARAMETER["False Easting", 500000.0],PARAMETER["False North

Lng",

0.0],PPRRAMETER["Central Meridian", -99.0], PARAMETER["Scale Factor",
0.9996], PARAMETER ["Latitude of origin", 0.0],UNIT["Meter", 1.0]]1"');
-- Lakes

INSERT INTO lake geom VALUES (101, 48.0, 6.0, 73.0, 23.0,

HEXTOVARBINARY ('010300000002000000050000000000000000004240000000000000324000000000008050400000000
0000037400000000000405240000000000000224000000000000048400000000000001840000000000000424000000000
000032400500000000000000008044d4000000000000032400000000000c0504000000000000032400000000000c050400
0000000000022400000000000804d4000000000000022400000000000804d400000000000003240") ;

INSERT

INTO lakes VALUES (101, 'BLUE LAKE', 101);

-- Road segments

INSERT

INTO road segment geom VALUES (101, 0.0, 18.0, 44.0, 31.0,

HEXTOVARBINARY ('010200000005000000000000000000000000000000000032400000000000002440000000000000354

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

0000000000000304000000000000037400000000000003c40000000000000324000000000000046400000000000003£40
")
INSERT INTO road segment geom VALUES (102, 44.0, 31.0, 70.0, 38.0,

HEXTOVARBINARY ('01020000000300000000000000000046400000000000003£400000000000004c40000000000000414
000000000008051400000000000004340") ;

INSERT INTO road segment geom VALUES (103, 70.0, 38.0, 72.0, 48.0,
HEXTOVARBINARY ('010200000002000000000000000080514000000000000043400000000000005240000000000000484
0");

INSERT INTO road segment geom VALUES (104, 70.0, 38.0, 84.0, 42.0,
HEXTOVARBINARY ('010200000002000000000000000080514000000000000043400000000000005540000000000000454
0")s

INSERT INTO road segment geom VALUES (105, 28.0, 0.0, 28.0, 26.0,
HEXTOVARBINARY ('0102000000020000000000000000805140000000000000434000000000000055400600p0000000454
0")s

INSERT INTO road segments VALUES (102, 'Route 5', NULL, 2, 101);

INSERT INTO road segments VALUES (103, 'Route 5', 'Main Street', 4, 102);

INSERT INTO road segments VALUES (104, 'Route 5', NULL, 2, 103);

INSERT INTO road segments VALUES (105, 'Main Street', NULL, 4, 104);

INSERT INTO road segments VALUES (106, 'Dirt Road by Green Forest{,~NULL, 1, 105);

-- DividedRoutes

INSERT INTO divided route geom VALUES (101, 10.0, 0.0, 16.0$/48.0,
HEXTOVARBINARY ('0105000000020000000102000000030000000000600000002440000000000000484000§0000000002
44000000000000035400000000000002440000000000000000001029000000300000000000000000030400p0000000000
00000000000000002440000000000000374000000000000030400000000000004840") ;

INSERT INTO divided routes VALUES (119, 'Route 75', %, 101);
-— Forests

INSERT INTO forest geom VALUES (101, 28.0, 020, 84.0, 42.0,
HEXTOVARBINARY ('010600000002000000010300000902000000050000000000000000003c400000000000p0324000000
00000003c4000000000000000000000000000005520000000000000000000000000000055400000000000094540000000
0000003c40000000000000324005000000000©00000000424000000000000032400000000000805040000090000000374
000000000004052400000000000002240000H00000004840000000000000184000000000000042400000090000003240
0103000000010000000500000000000040660804d4000000000000032400000000000c0504000000000000082400000000
000c050400000000000002a2400000000000804d4000000000000022400000000000804d400000000000003%240") ;

INSERT INTO forests VALUES (M09, 'Green Forest', 101);
-- Bridges

INSERT INTO bridge geom=VALUES (101, 44.0, 31.0, 44.0, 31.0,
HEXTOVARBINARY ('010100000000000000000046400000000000003£40") ;

INSERT INTO bridges VALUES (110, 'Cam Bridge', 101);
—-— Streams

INSERT INTO™stream geom VALUES (101, 38.0, 18.0, 52.0, 48.0,
HEXTOVARBINARY ('010200000005000000000000000000434000000000000048400000000000004640000090000080444
00000000000804440000000000000424000000000000046400000000000003£4000000000000042400000000000003240
")

INSERT INTO stream geom VALUES (102, 73.0, 0.0, 78.0, 9.0,
HEXTOVARBINARY (010Z00000003000000000000000000534000000000000000000000000000805340000000000000104
000000000004052400000000000002240") ;

INSERT INTO streams VALUES (111, 'Cam Stream', 101);
INSERT INTO streams VALUES (112, 'Cam Stream', 102);
-— Buildings

INSERT INTO building pt geom VALUES (101, 52.0, 30.0, 52.0, 30.0,
HEXTOVARBINARY ('010100000000000000000042400000000000003e€40") ;

INSERT INTO building pt geom VALUES (102, 64.0, 33.0, 64.0, 33.0,
HEXTOVARBINARY ('010100000000000000000050400000000000804040") ;

INSERT INTO building area geom VALUES (101, 50.0, 29.0, 54.0, 31.0,
HEXTOVARBINARY ('0103000000010000000500000000000000000049400000000000003£4000000000000040400000000

© 1SO 2004 — All rights reserved 47

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

48

000003£4000000000000040400000000000003d4000000000000049400000000000003d40000000000000494000000000
00003£40") ;

INSERT

INTO building area geom VALUES (102, 62.0, 32.0, 66.0, 34.0,

HEXTOVARBINARY ('01030000000100000005000000000000000080504000000000000041400000000000004£400000000
0000041400000000000004£40000000000000404000000000008050400000000000004040000000000080504000000000

00004140") ;

INSERT INTO buildings VALUES (113, '123 Main Street', 101, 101);
INSERT INTO buildings VALUES (114, '215 Main Street', 102, 102);
-- Ponds

INSERT INTO pond geom VALUES (101, 22.0, 40.0, 28.0, 44.0,

HEXTOV
000000
000001
c40000

INSERT
—-— Nam|

INSERT
HEXTOV]
000004
000041

INSERT
HEXTOV.
000003
00002a

INSERT
INSERT
-- Map

INSERT
HEXTOV.
000004
000000

INSERT
—-—Geom|

INSERT

INSERT

INSERT

INSERT

INSERT

INSERT

FRBINARY (01000000000 2Z0000000 030000000 I00000004000000000000000000382000000000000026400
D36400000000000004540000000000000384000000000000044400000000000003840000000000000464.00%
D00000040000000000000000003240000000000000464000000000000032400000000000004440000060000
D00000000454000000000000032400000000000004640") ;

INTO ponds VALUES (120, NULL, 'Stock Pond', 101);
bd Places

INTO named place geom VALUES (101, 56.0, 30.0, 84.0, 48.0,

NRBINARY ('010300000001000000060000000000000000004£4000000000000048400000000000005540000
B4000000000000055400000000000003e400000000000004c400000000000003e400000000000004c400000
100000000000004£400000000000004840") ;

INTO named place geom VALUES (102, 59.0, 13.0, 67.0, 18.0,
NRBINARY ('010300000001000000050000000000000000c050400000000800002a400000000000c05040000

P400000000000804d4000000000000032400000000000804d40000000@00800022400000000000c050400000
10');

INTO named places VALUES (117, 'Ashton', 101);

INTO named places VALUES (118, 'Goose Island', 102);

Neatlines

INTO map neatline geom VALUES (101, 0.0, 0.@7,84.0, 48.0,

ARBINARY ('01030000000100000005000
B40000000000000554000000000000048400000060000005540000000000000000000000000000000000000
0");

INTO map neatlines VALUES (115, 1Q&);
try Columns

INTO geometry columns VALUES\Y('lakes', 'shore gid',
'lake geom',1, 5, 2, 0);

INTO geometry columns, VALUES ('road segments',
'centerline gid', lroad segment geom',1, 3, 2, 0);

INTO geometry cglumns VALUES ('divided routes',
'centerlines gid", 'divided route geom',1, 9, 2, 0);

INTO geometry columns VALUES ('forests', 'boundary gid',
'forest gedm’',1, 11, 2, 0);

INTO_geometry columns VALUES ('bridges', 'position gid',
'bridge geom',1, 1, 2, 0);

INSERT

INSERT

INSERT

INSERT

INSERT

INTO geometry columns VALUES ('streams', 'centerline gid',
TStream geom', I, 3, Z, 0);
INTO geometry columns VALUES ('buildings', 'position gid',

'building pt geom',1, 1, 2, 0);

INTO geometry columns VALUES ('buildings', 'footprint gid',
'building area geom',1, 5, 2, 0);

INTO geometry columns VALUES ('ponds', 'shores gid',
'pond geom',1, 11, 2, 0);

INTO geometry columns VALUES ('named places', 'boundary gid',
'named place geom',1, 5, 2, 0);

INTO geometry columns VALUES ('map neatlines', 'neatline gid',
'map neatline geom',1, 5, 2, 0);

000
300
003

000
000

000
000

000
000

© ISO 2004 - All rights reserved

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

