

Reference number
ISO 19125-2:2004(E)

© ISO 2004

INTERNATIONAL
STANDARD

ISO
19125-2

First edition
2004-08-01

Geographic information — Simple feature
access —
Part 2:
SQL option

Information géographique — Accès aux entités simples —

Partie 2: Option SQL

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2004
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2004 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved iii

Contents Page

Foreword.. iv
Introduction .. v
1 Scope.. 1
2 Conformance ... 2
3 Normative references ... 2
4 Terms and definitions... 2
5 Symbols and abbreviated terms.. 3
6 Architecture ... 4
6.1 Architecture — SQL implementation of feature tables based on predefined data types.............. 4
6.2 Architecture — SQL with Geometry Types implementation of feature tables................................ 7
7 Clause component specifications... 12
7.1 Components — Implementation of feature tables based on predefined data types 12
7.2 Components — SQL with Geometry Types implementation of feature tables............................. 17
Annex A (informative) Comparison of Simple feature access/SQL and SQL/MM – Spatial...................... 31
Annex B (normative) Conformance tests... 32

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

iv © ISO 2004 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19125-2 was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics from a
base document supplied by the Open GIS Consortium, Inc.

ISO 19125 consists of the following parts, under the general title Geographic information — Simple feature
access:

— Part 1: Common architecture

— Part 2: SQL option

Part 3: COM/OLE option is under preparation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved v

Introduction

The purpose of this part of ISO 19125 is to define a standard Structured Query Language (SQL) schema that
supports storage, retrieval, query and update of feature collections via the SQL Call-Level Interface (SQL/CLI)
(ISO/IEC 9075-3:2003). A feature has both spatial and non-spatial attributes. Spatial attributes are geometry
valued, and simple features are based on 2D geometry with linear interpolation between vertices. This part of
ISO 19125 is dependent on the common architectural components defined in ISO 19125-1.

Feature collections are stored as tables with geometry valued columns in a SQL-implementation; each feature
is a row in the table. The non-spatial attributes of features are mapped onto columns whose types are drawn
from the set of standard SQL data types. The spatial attributes of features are mapped onto columns whose
SQL data types are based on the underlying concept of additional geometric data types for SQL. A table
whose rows represent these features is referred to as a feature table. Such a table contains one or more
geometry valued columns. Feature-table schemas are described for two SQL-implementations:
implementations based on predefined data types and SQL with Geometry Types.

In an implementation based on predefined data types, a geometry-valued column is implemented as a Foreign
Key reference into a geometry table. A geometry value is stored using one or more rows in the geometry table.
The geometry table may be implemented using either standard SQL numeric types or SQL binary types;
schemas for both are described.

The term SQL with Geometry Types is used to refer to a SQL-implementation that has been extended with a
set of Geometry Types. In this environment, a geometry-valued column is implemented as a column whose
SQL type is drawn from this set of Geometry Types. The mechanism for extending the type system of
an SQL-implementation is through the definition of user defined User Defined Types. Commercial
SQL-implementations with user defined type support have been available since mid-1997.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

INTERNATIONAL STANDARD ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 1

Geographic information — Simple feature access —

Part 2:
SQL option

1 Scope

This part of ISO 19125 specifies an SQL schema that supports storage, retrieval, query and update of simple
geospatial feature collections via the SQL Call Level Interface (SQL/CLI) (ISO/IEC 9075-3:2003).

This part of ISO 19125 establishes an architecture for the implementation of feature tables.

This part of ISO 19125 defines terms to use within the architecture.

This part of ISO 19125 defines a simple feature profile of ISO 19107.

This part of ISO 19125 describes a set of SQL Geometry Types together with SQL functions on those types.
The Geometry Types and Functions described in this part of ISO 19125 represent a profile of ISO 13249-3.

This part of ISO 19125 does not attempt to standardize and does not depend upon any part of the mechanism
by which Types are added and maintained in the SQL environment including the following:

a) the syntax and functionality provided for defining types;

b) the syntax and functionality provided for defining SQL functions;

c) the physical storage of type instances in the database;

d) specific terminology used to refer to User Defined Types, for example, UDT.

This part of ISO 19125 does standardize:

 names and geometric definitions of the SQL Types for Geometry;

 names, signatures and geometric definitions of the SQL Functions for Geometry.

This part of ISO 19125 describes a feature access implementation in SQL based on a profile of ISO 19107.
ISO 19107 does not place any requirements on how to define the Geometry Types in the internal schema.
ISO 19107 does not place any requirements on when or how or who defines the Geometry Types. In
particular, a compliant system may be shipped to the database user with the set of Geometry Types and
Functions already built into the SQL-implementation, or with the set of Geometry Types and Functions
supplied to the database user as a dynamically loaded extension to the SQL-implementation or in any other
manner not mentioned in this part of ISO 19125.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

2 © ISO 2004 – All rights reserved

2 Conformance

In order to conform to this part of ISO 19125, an implementation shall satisfy the requirements of one of the
following three conformance classes, as well as the appropriate components of ISO 19125-1:

a) SQL implementation of feature tables based on predefined data types:

1) using numeric SQL types for geometry storage and SQL/CLI access,

2) using binary SQL types for geometry storage and SQL/CLI access;

b) SQL with Geometry Types implementation of feature tables supporting both textual and binary SQL/CLI
access to geometry.

Annex B provides conformance tests for each implementation of this part of ISO 19125.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9075-1:2003, Information technology — Database languages — SQL — Part 1: Framework
(SQL/Framework)

ISO/IEC 9075-2:2003, Information technology — Database languages — SQL — Part 2: Foundation
(SQL/Foundation)

ISO/IEC 9075-3:2003, Information technology — Database languages — SQL — Part 3: Call-Level Interface
(SQL/CLI)

ISO/IEC 9075-4:2003, Information technology — Database languages — SQL — Part 4: Persistent Stored
Modules (SQL/PSM)

ISO/IEC 9075-5:1999, Information technology — Database languages — SQL — Part 5: Host Language
Bindings (SQL/Bindings)

ISO/IEC 13249-3:2003, Information technology — Database languages — SQL multimedia and application
packages — Part 3: Spatial

ISO 19107:2003, Geographic information ― Spatial schema

ISO 19109:―1), Geographic information ― Rules for application schema

ISO 19119:2004, Geographic information ― Services

ISO 19125-1:2004, Geographic information — Simple feature access — Part 1: Common architecture

4 Terms and definitions

For the purposes of this part of ISO 19125, the following terms and definitions apply.

4.1
feature table
table where the columns represent feature attributes, and the rows represent features

1) To be published.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 3

4.2
geographic feature
representation of real world phenomenon associated with a location relative to the Earth

5 Symbols and abbreviated terms

FID Feature ID column in the implementation of feature tables based on predefined data types

GID Geometry ID column in the implementation of feature tables based on predefined data types

MM Multimedia

SQL Structured Query Language

SRID Spatial Reference System Identifier

SRTEXT Spatial Reference System Well Known Text

WKB Well-Known Binary (representation for example, geometry)

WKTR Well-Known Text Representation

2D 2-Dimensional

ℜ1 1-Dimensional space

ℜ2 2-Dimensional space

∅ empty set

∩ intersection

∪ union

 difference

∈ is a member of

∉ is not a member of

⊂ is a proper subset of

⊆ is a subset of

⇔ if and only if

⇒ implies

∀ for all

{ X | … } set of X such that…

∧ and

∨ or

¬ not

= equal

≠ not equal

< less than

> greater than

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

4 © ISO 2004 – All rights reserved

6 Architecture

6.1 Architecture — SQL implementation of feature tables based on predefined data types

6.1.1 Overview

This part of ISO 19125 defines a schema for the management of feature table, Geometry, and Spatial
Reference System information in an SQL-implementation based on predefined data types. This part
of ISO 19125 does not define SQL functions for access, maintenance, or indexing of Geometry in an
SQL-implementation based on predefined data types.

Figure 1 illustrates the schema to support feature tables, Geometry, and Spatial Reference Information in an
SQL-implementation based on predefined data types.

a) The GEOMETRY_COLUMNS table describes the available feature tables and their Geometry properties.

b) The SPATIAL_REF_SYS table describes the coordinate system and transformations for Geometry.

c) The feature table stores a collection of features. A feature table’s columns represent feature attributes,
while rows represent individual features. The Geometry of a feature is one of its feature attributes; while
logically a geometric data type, a Geometry Column is implemented as a foreign key to a geometry table.

d) The geometry table stores geometric objects, and may be implemented using either standard SQL
numeric types or SQL binary types.

Figure 1 — Schema for feature tables using predefined data types

Depending upon the storage type specified by the GEOMETRY_COLUMNS table, a geometric object is
stored either as an array of coordinate values or as a single binary value. In the former case, predefined SQL
numeric types are used for the coordinates and these numeric values are obtained from the geometry table
until the geometric object has been fully reconstructed. In the latter case, the complete geometric object is
obtained in the Well-known Binary Representation as a single value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 5

6.1.2 Identification of feature tables and geometry columns

Feature tables and Geometry columns are identified through the GEOMETRY_COLUMNS table. Each
Geometry Column in the database has an entry in the GEOMETRY_COLUMNS table. The data stored for
each geometry column consists of the following:

a) the identity of the feature table of which this Geometry Column is a member;

b) the name of the Geometry Column;

c) the spatial reference system ID (SRID) for the Geometry Column;

d) the type of Geometry for the Geometry column;

e) the coordinate dimension for the Geometry Column;

f) the identity of the geometry table that stores geometric objects for this Geometry Column;

g) the information necessary to navigate the geometry table in the case of normalized geometry storage.

6.1.3 Identification of Spatial Reference Systems

Every Geometry Column is associated with a Spatial Reference System. The Spatial Reference System
identifies the coordinate system for all geometric objects stored in the column, and gives meaning to the
numeric coordinate values for any geometric object stored in the column. Examples of commonly used Spatial
Reference Systems include “Latitude Longitude” and “UTM Zone 10”.

The SPATIAL_REF_SYS table stores information on each Spatial Reference System in the database. The
columns of this table are the Spatial Reference System Identifier (SRID), the Spatial Reference System
Authority Name (AUTH_NAME), the Authority Specific Spatial Reference System Identifier (AUTH_SRID) and
the Well-known Text description of the Spatial Reference System (SRTEXT). The Spatial Reference System
Identifier (SRID) constitutes a unique integer key for a Spatial Reference System within a database.

Interoperability between clients is achieved via the SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System.

6.1.4 Feature tables

A feature is an abstraction of a real-world object. Feature attributes are columns in a feature table. Features
are rows in a feature table. The Geometry of a feature is one of its feature attributes; while logically a
geometric data type, a geometry column is implemented as a foreign key to a geometry table.

Relationships between features may be defined as foreign key references between feature tables.

6.1.5 Geometry tables

6.1.5.1 Normalized geometry schema

The normalized geometry schema stores the coordinates of geometric objects as predefined SQL numeric
types. One or more coordinates (X and Y ordinate values) will be represented by pairs of numeric types in the
geometry table, as shown in Figure 2. Each geometric object is identified by a key (GID) and consists of one
or more primitive elements ordered by an element sequence (ESEQ). Each primitive element in the geometric
object is distributed over one or more rows in the geometry table, identified by a primitive type (ETYPE), and
ordered by a sequence number (SEQ).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

6 © ISO 2004 – All rights reserved

The rules for geometric object representation in the normalized schema are defined as follows.

a) ETYPE designates the Geometry Type.

b) Geometric objects may have multiple elements. The ESEQ value identifies the individual elements.

c) An element may be built up from multiple parts (rows). The rows and their proper sequence are identified
by the SEQ value.

d) Polygons may contain holes, as described in the Geometry object model.

e) PolygonRings shall close when assembled from an ordered list of parts. The SEQ value designates the
part order.

f) Coordinate pairs that are not used shall be set to Nil in complete sets (both X and Y). This is the only way
to identify the end of the list of coordinates.

g) For geometric objects that continue onto an additional row (as defined by a constant element sequence
number or ESEQ), the last Point of one row is equal to the first Point of the next.

h) There is no limit on the number of elements in the geometric object, or the number of rows in an element.

Figure 2 — Example of geometry table for Polygon Geometry using SQL

6.1.5.2 Binary geometry schema

The binary Geometry schema is illustrated in Table 1, uses GID as a key and stores the geometric object
using the Well-known Binary Representation for Geometry (WKBGeometry). The geometry table includes the
minimum bounding rectangle for the geometric object as well as the WKBGeometry for the geometric object.
This permits construction of spatial indexes without accessing the actual geometric object structure, if desired.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 7

Table 1 — Example of geometry table for the above Polygon Geometry using the Well-known Binary
Representation for Geometry

GID XMIN YMIN XMAX YMAX Geometry

1 0 0 30 30 < WKBGeometry >

2 30 0 60 30 < WKBGeometry >

3 0 30 30 60 < WKBGeometry >

4 30 30 60 60 < WKBGeometry >

6.1.6 Use of numeric data types

SQL-implementations usually provide several numeric data types. In this part of ISO 19125, the use of a
numeric data type in examples is not meant to be binding. The data type of any particular column can be
determined, and casting operators between similar data types are available. Any particular implementation
may use alternative data types as long as casting operations shall not lead to difficulties.

6.1.7 Notes on SQL/CLI access to Geometry values stored in binary form

SQL/CLI provides standard mechanisms to bind character, numeric and binary data values.

This subclause describes the process of retrieving geometric object values for the case where the binary
storage alternative is chosen.

The WKB_GEOMETRY column in the geometry table is accessed in SQL/CLI as one of the binary SQL data
types (SQL_BINARY, SQL_VARBINARY, or SQL_LONGVARBINARY).

EXAMPLE The application would use the SQL_C_BINARY value for the fCType parameter of SQLBindCol (or
SQLGetData) in order to describe the application data buffer that shall receive the fetched Geometry data value. Similarly,
a dynamic parameter whose value is a Geometry would be described using the SQL_C_BINARY value for the fCType
parameter of SQLBindParameter.

This allows binary values to be both retrieved from and inserted into the geometry tables.

6.2 Architecture — SQL with Geometry Types implementation of feature tables

6.2.1 Overview

This part of ISO 19125 defines a schema for the management of feature table, Geometry, and Spatial
Reference System information in an SQL-implementation with a Geometry Type extension.

Figure 3 illustrates the schema to support feature tables, Geometry, and Spatial Reference Information in an
SQL-implementation with a Geometry Type extension.

a) The GEOMETRY_COLUMNS table describes the available feature tables and their Geometry properties.

b) The SPATIAL_REF_SYS table describes the coordinate system and transformations for Geometry.

c) The feature table stores a collection of features. A feature table’s columns represent feature attributes,
while rows represent individual features. The Geometry of a feature is one of the feature attributes, and is
an SQL Geometry Type.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

8 © ISO 2004 – All rights reserved

Figure 3 — Schema for feature tables using SQL with Geometry Types

6.2.2 Identification of feature tables and geometry columns

Feature tables and Geometry columns are identified through the GEOMETRY_COLUMNS table. Each
Geometry Column in the database has an entry in the GEOMETRY_COLUMNS table. The data stored for
each geometry column consists of the following:

a) the identity of the feature table of which this Geometry Column is a member;

b) the name of the Geometry Column;

c) the spatial reference system ID for the Geometry Column;

d) the coordinate dimension for the Geometry column;

The columns in the GEOMETRY_COLUMNS table for the SQL with Geometry Types environment are a
subset of the columns in the GEOMETRY_COLUMNS table defined for the SQL-implementation based on
predefined data types.

An alternative method for identification of feature tables and Geometry Columns may be available for
SQL-implementations with Geometry Types. In the SQL-implementation with Geometry Types, the Geometry
Column may be represented as a row in the COLUMNS metadata view of the SQL INFORMATION_SCHEMA.
Spatial Reference System Identity and coordinate dimension is, however, not a standard part of the
SQL INFORMATION_SCHEMA. To access this information, the GEOMETRY_COLUMNS table would still
need to be referenced.

6.2.3 Identification of Spatial Reference Systems

Every Geometry Column is associated with a Spatial Reference System. The Spatial Reference System
identifies the coordinate system for all geometric objects stored in the column, and gives meaning to the
numeric coordinate values for any geometric object stored in the column. Examples of commonly used Spatial
Reference Systems include “Latitude Longitude” and “UTM Zone 10”.

The SPATIAL_REF_SYS table stores information on each Spatial Reference System in the database. The
columns of this table are the Spatial Reference System Identifier (SRID), the Spatial Reference System
Authority Name (AUTH_NAME), the Authority Specific Spatial Reference System Identifier (AUTH_SRID) and
the Well-known Text description of the Spatial Reference System (SRTEXT). The Spatial Reference System
Identifier (SRID) constitutes a unique integer key for a Spatial Reference System within a database.

Interoperability between clients is achieved via the SRTEXT column which stores the Well-known Text
representation for a Spatial Reference System.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 9

6.2.4 Feature tables

A feature is an abstraction of a real-world object. Feature attributes are columns in a feature table. Features
are rows in a feature table. The Geometry of a feature is stored in a Geometry Column whose type is drawn
from a set of SQL Geometry Types.

Relationships between features may be defined as foreign key references between feature tables.

6.2.5 Background information on SQL User Defined Types

The term User Defined Type (UDT) refers to a data type that extends the SQL type system.

UDT types can be used to define the column types for tables, this allows values stored in the columns of a
table to be instances of UDT.

SQL functions may be declared to take UDT values as arguments, and return UDT values as results.

An UDT may be defined as a subtype of another UDT, referred to as its supertype. This allows an instance of
the subtype to be stored in any column where an instance of the supertype is expected and allows an instance
of the subtype to be used as an argument or return value in any SQL function that is declared to use the
supertype as an argument or return value.

The above definition of UDT is value based.

SQL implementations that support User Defined Types may also support the concept of References to User
Defined Types instances that are stored as rows in a table whose type corresponds to the type of the User
Defined Type. The terms RowType and Reference to RowType are also used to describe such types.

This specification allows Geometry Types to be implemented as either pure value based Types or as Types
that support persistent References.

The Types for Geometry are defined in black-box terms, i.e. all access to information about a Geometry Type
instance is through SQL functions. No attempt is made to distinguish functions that may access Type instance
attributes (such as the dimension of a geometric object) from functions that may compute values given a Type
instance (such as the centroid of a Polygon). In particular, an implementation of this part of ISO 19125 would
be free to nominate any set of functions as observer methods on attributes of a User Defined Type, as long as
the signatures of the SQL functions described in this part of ISO 19125 are preserved.

6.2.6 SQL Geometry Type hierarchy

The SQL Geometry Types are organized into a type hierarchy shown in Figure 4.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

10 © ISO 2004 – All rights reserved

Figure 4 — SQL Geometry Type hierarchy

The root type, named Geometry, has subtypes for Point, Curve, Surface and GeometryCollection. A
GeometryCollection is a Geometry that is a collection of possibly heterogeneous geometric objects. MultiPoint,
MultiCurve and MultiSurface are specific subtypes of GeometryCollection used to manage homogenous
collections of Points, Curves and Surfaces. The 0 dimensional Geometry Types are Point and MultiPoint.
The one-dimensional Geometry Types are Curve and MultiCurve together with their subclasses. The
two-dimensional Geometry Types are Surface and MultiSurface together with their subclasses.

SQL functions are defined to construct instances of the above Types given Well-known Text or Binary
representations of the types. SQL functions defined on the types implement the methods described in the
Geometry Object Model.

6.2.7 Geometry values and spatial reference systems

In order to model Spatial Reference System information, each geometric object in the SQL with Geometry
Types implementation is associated with a Spatial Reference System. Capturing this association at the level
of the individual geometric object allows literal Geometry values that are not yet part of a column in the
database to be associated with a Spatial Reference System. Examples of such a geometric object, Geometry
values is a geometric object that is used as a parameter to a spatial query or a geometric object that is part of
an insert statement. Capturing this association at the level of the individual geometric object also allows
functions that take two geometric objects to check for compatible Spatial Reference Systems.

A Geometry value is associated with a Spatial Reference System by storing the Spatial Reference System
Identity (SRID) for the Spatial Reference System as a part of the geometric object. Each Spatial Reference
System in the database is identified by a unique value of SRID.

The SRID for a geometric object is assigned to it at construction time. This allows the SQL with Geometry
Types implementation to ensure that

a) the geometric object being inserted into a geometry column matches the Spatial Reference System
declared for the geometry column;

b) queries that spatially join columns from different tables operate on geometry columns with consistent
Spatial Reference Systems.

If either of these conditions is violated, a run-time SQL error is generated. These Spatial Reference System
consistency checks are not possible in implementations based on predefined data types.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 11

The SRID function, defined on the Geometry Type, returns the integer SRID of a geometric object.

In all operations on the Geometry Type, geometric calculations shall be done in the Spatial Reference System
of the first geometric object. Returned objects shall be in the Spatial Reference System of the first geometric
object unless explicitly stated otherwise.

Before a geometric object can be constructed and inserted into a table, the corresponding row for its SRID
shall exist in the SPATIAL_REF_SYS table, else construction of the geometric object shall fail. When defining
a table, a SQL check constraint can be used to enforce the rule that all geometric objects in a geometry
column have the same SRID as that defined for the column in the GEOMETRY_COLUMNS table. The
following example shows the definition of a table, named Countries, with two columns named Name and
Geometry of type CHARACTER VARYING and POLYGON, respectively.

CREATE TABLE Countries (

 Name CHARACTER VARYING(200) NOT NULL PRIMARY KEY,

 Geometry Polygon NOT NULL,

 CONSTRAINT spatial_reference

 CHECK (SRID(Geometry) in (SELECT SRID from GEOMETRY_COLUMNS where F_TABLE_CATALOG =
<catalog> and F_TABLE_SCHEMA = <schema> and F_TABLE_NAME = ‘Countries’ and F_GEOMETRY_COLUMN =
‘Geometry))

)

It is expected that most implementations shall use stored procedures similar to those shown below for the
purpose of adding and dropping geometry columns to and from a feature table.

The AddGeometryColumn(FEATURE_TABLE_CATALOG, FEATURE_TABLE_SCHEMA,
FEATURE_TABLE_NAME, GEOMETRY_COLUMN_NAME, SRID) procedure shall

a) ensure that an entry for the SRID exists in the SPATIAL_REF_SYS table;

b) add an entry to the GEOMETRY_COLUMNS table that stores the SRID for the Geometry Column;

c) add the Geometry column to the feature table using a SQL ALTER TABLE statement;

d) add the Spatial Reference Check Constraint to the feature table.

The DropGeometryColumn(FEATURE_TABLE_CATALOG, FEATURE_TABLE_SCHEMA,
FEATURE_TABLE_NAME, GEOMETRY_COLUMN_NAME) stored procedure shall

a) drop the Spatial Reference Check Constraint on the feature table;

b) drop the entry from the GEOMETRY_COLUMNS table;

c) drop the Geometry Column from the feature table.

6.2.8 SQL/CLI access to Geometry values in the SQL with Geometry Type case

Spatial data are accessed using the SQL query language extended with SQL functions on Geometry Types.
The SQL pass-through capabilities of SQL/CLI allow a client to pass these or any extended SQL statements
containing SQL-implementation-specific SQL extensions to a server. (Applications are free to send any SQL
statement to an SQL-implementation, even if the statement is not described within the SQL/CLI conformance
levels.)

Geometry Columns are implemented using the Geometry Types described above.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

12 © ISO 2004 – All rights reserved

GIS applications shall be able to determine the existence of a Geometry Column based on the Geometry Type
or one of its subtypes using one or more of the following SQL/CLI programming techniques.

a) The SQLTypeInfo function can be used to determine both the TYPE_NAME and the underlying
SQL_DATA_TYPE of an SQL Type.

b) The SQLColumns catalog function can be used to determine the TYPE_NAME and the underlying
SQL_DATA_TYPE of a column in a table.

c) The SQLDescribeCol and SQLColAttributes functions can be used to determine a column’s data type and
description.

An SQL/CLI client application uses either one of two SQL functions:

 GeomFromText ([in] String, [in] Integer) : Geometry, or

 GeomFromWKB([in] Binary, [in] Integer) : Geometry,

or their type-specific versions (for example, PolygonFromText and PolygonFromWKB) to pass geometric
objects into the database from a client application that represents them using either the Well-known Text or
the Wellknown Binary representations.

The input arguments to the above functions are SQL/CLI standard character, binary and integer data types
(SQL_C_CHAR, SQL_C_BINARY, SQL_C_INTEGER) and clients bind to these parameters using standard
SQL/CLI binding methods.

An SQL/CLI client application uses either one of two SQL functions:

 AsText([in]Geometry) : String, or

 AsBinary([in]Geometry) : Binary

to extract geometry values from the database as either Well-known Text or Binary values.

The output arguments to the above functions are SQL/CLI standard character and binary data types
(SQL_C_CHAR, SQL_C_BINARY) and clients bind to these parameters using standard SQL/CLI binding
methods.

7 Clause component specifications

7.1 Components — Implementation of feature tables based on predefined data types

7.1.1 Conventions

Table components are described in the context of a CREATE TABLE statement. Implementations may use base
tables with different names and properties, exposing these components as updateable views, provided that
the base tables defined by the implementation enforce the same constraints.

Table names and column names have been restricted to 18 characters in length to allow for the widest
possible implementation.

7.1.2 Spatial reference system information

7.1.2.1 Component overview

The Spatial Reference Systems table, which is named SPATIAL_REF_SYS, stores information on each spatial
reference system used in the database.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 13

7.1.2.2 Table constructs

The following CREATE TABLE statement creates an appropriately structured SPATIAL_REF_SYS table.

CREATE TABLE SPATIAL_REF_SYS
 (
 SRID INTEGER NOT NULL PRIMARY KEY,
 AUTH_NAME CHARACTER VARYING(256),
 AUTH_SRID INTEGER,
 SRTEXT CHARACTER VARYING(2048)
)

7.1.2.3 Field description

These fields are described as follows:

a) SRID — an integer value that uniquely identifies each Spatial Reference System within a database;

b) AUTH_NAME — the name of the standard or standards body that is being cited for this reference system.
EPSG would be an example of a valid AUTH_NAME;

c) AUTH_SRID — the ID of the Spatial Reference System as defined by the Authority cited in AUTH_NAME;

d) SRTEXT — The Well-known Text Representation of the Spatial Reference System.

7.1.2.4 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.1.3 Geometry columns information

7.1.3.1 Component overview

The GEOMETRY_COLUMNS table provides information on the feature table, spatial reference, geometry type, and
coordinate dimension for each Geometry column in the database.

7.1.3.2 Table or view constructs

CREATE TABLE GEOMETRY_COLUMNS (
 F_TABLE_CATALOG CHARACTER VARYING(256) NOT NULL,
 F_TABLE_SCHEMA CHARACTER VARYING(256) NOT NULL,
 F_TABLE_NAME CHARACTER VARYING(256) NOT NULL,
 F_GEOMETRY_COLUMN CHARACTER VARYING(256) NOT NULL,
 G_TABLE_CATALOG CHARACTER VARYING(256) NOT NULL,
 G_TABLE_SCHEMA CHARACTER VARYING(256) NOT NULL,
 G_TABLE_NAME CHARACTER VARYING(256) NOT NULL,
 STORAGE_TYPE INTEGER,
 GEOMETRY_TYPE INTEGER,
 COORD_DIMENSION INTEGER,
 MAX_PPR INTEGER,
 SRID INTEGER REFERENCES SPATIAL_REF_SYS,
 CONSTRAINT GC_PK PRIMARY KEY
 (F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN)
)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

14 © ISO 2004 – All rights reserved

7.1.3.3 Field description

These fields are described as follows:

a) F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME — the fully qualified name of the feature table
containing the geometry column;

b) F_GEOMETRY_COLUMN — the name of the column in the feature table that is the Geometry Column. This
column shall contain a foreign key reference into the geometry table for an implementation based on
predefined data types;

c) G_TABLE_CATALOG, G_TABLE_SCHEMA, G_TABLE_NAME — the name of the geometry table and its schema
and catalog. The geometry table implements the geometry column;

d) STORAGE_TYPE — the type of storage being used for this geometry column:

0 = normalized geometry implementation,

1 = binary geometry implementation (Well-known Binary Representation for Geometry);

e) GEOMETRY_TYPE — the type of geometry values stored in this column. The use of a non-leaf Geometry
class name from the Geometry Object Model for a geometry column implies that domain of the column
corresponds to instances of the class and all of its subclasses;

0 = GEOMETRY1 = POINT
2 = CURVE
3 = LINESTRING
4 = SURFACE
5 = POLYGON
6 = COLLECTION
7 = MULTIPOINT
8 = MULTICURVE
9 = MULTILINESTRING
10 = MULTISURFACE
11 = MULTIPOLYGON

f) COORD_DIMENSION — the number of ordinates used in the complex, usually corresponds to the number of
dimensions in the spatial reference system;

g) MAX_PPR — (This value contains data for the normalized geometry implementation only) Points per row,
the number of Points stored as ordinate columns in the geometry table;

h) SRID — the ID of the Spatial Reference System used for the coordinate geometry in this table. It is a
foreign key reference to the SPATIAL_REF_SYS table.

7.1.3.4 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns for SQL/CLI.

7.1.4 Feature tables

The columns in a feature table are defined by feature attributes; one or more of the feature attributes will be a
geometric attribute. The basic restriction in this specification for feature tables is that for each geometric
attribute, they include geometry via a FOREIGN KEY to a geometry table. Features may have a feature attribute
that is unique, serving as a PRIMARY KEY for the feature table. Feature-to-feature relations may similarly be
defined as FOREIGN KEY references where appropriate.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 15

The general format of a feature table shall be as follows:

CREATE TABLE <feature table name> (
 <primary key column name> <primary key column type>,
 … (other attributes for this feature table)
 <geometry column name> <geometry column type>,
 … (other geometry columns for this feature table)
 PRIMARY KEY <primary key column name>,
 FOREIGN KEY <geometry column name> REFERENCES <geometry table name>,
 … (other geometry column constraints for this feature table)
)

The geometric attribute foreign key reference applies only for the case where the geometry table stores
geometry in binary form. In the case where geometry is stored in normalized form, there may be multiple rows
in the geometry table corresponding to a single geometry value. In this case, the geometry attribute reference
may be captured by a check constraint that ensures that the Geometry Column value in the feature table
corresponds to the geometry-ID value for one or more rows in the geometry table.

7.1.5 Geometry tables

7.1.5.1 Component overview

Each Geometry table stores geometric objects corresponding to a Geometry column in a feature table.
Geometric objects may be stored as individual ordinate values, using SQL numeric types, or as binary objects,
using the Well-known Binary Representation for Geometry. Table schemas for both implementations are
provided.

7.1.5.2 Geometry stored using SQL numeric types

7.1.5.2.1 Table constructs

The following CREATE TABLE statement creates an appropriately structured table for Geometry stored as
individual ordinate values using SQL numeric types. Implementations shall either use this table format or
provide stored procedures to create, populate and maintain this table.

CREATE TABLE <table name> (
 GID NUMERIC NOT NULL,
 ESEQ INTEGER NOT NULL,
 ETYPE INTEGER NOT NULL,
 SEQ INTEGER NOT NULL,
 X1 <ordinate type>,
 Y1 <ordinate type>,
 ... <repeated for each ordinate, repeated for each point>
 X<MAX_PPR> <ordinate type>,
 Y<MAX_PPR> <ordinate type>,
 ...,
 <attribute> <attribute type>

 CONSTRAINT GID_PK PRIMARY KEY (GID, ESEQ, SEQ)
)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

16 © ISO 2004 – All rights reserved

7.1.5.2.2 Field descriptions

These field descriptions are follows:

a) GID — identity of this geometric object;

b) ESEQ — identifies multiple components within a geometric object;

c) ETYPE — element type of this primitive element for the geometric object. The following values are defined
for ETYPE:

 1 = Point,

 2 = LineString,

 3 = Polygon;

d) SEQ — identifies the sequence of rows to define a geometric object;

e) X1 — first ordinate of first Point;

f) Y1 — second ordinate of first Point;

g) ... — (repeated for each ordinate, for this Point);

h) ... — (repeated for each coordinate, for this row);

i) X<MAX_PPR> — first ordinate of last Point. The maximum number of Points per row ‘MAX_PPR' is
consistent with the information in the GEOMETRY_COLUMNS table;

j) Y<MAX_PPR> — second ordinate of last Point;

k) ... — (repeated for each ordinate, for this last Point);

l) <attribute> — other attributes can be carried in the Geometry table for specific feature schema.

7.1.5.2.3 Exceptions, errors and error codes

Error handling shall use the standard SQL status returns for SQL/CLI.

7.1.5.3 Geometry stored using SQL binary types

7.1.5.3.1 Table constructs

The following CREATE TABLE statement creates an appropriately defined table for Geometry stored using the
Well-known Binary Representation for Geometry. The size of the WKB_GEOMETRY column is defined by the
implementation. Implementations shall either use this table format or provide stored procedures to create,
populate and maintain this table.

CREATE TABLE <table name> (
 GID NUMERIC NOT NULL PRIMARY KEY,
 XMIN <ordinate type>,
 YMIN <ordinate type>,
 XMAX <ordinate type>,
 YMAX <ordinate type>,
 WKB_GEOMETRY BIT VARYING(implementation size limit),
 <attribute> <attribute type>
)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 17

7.1.5.3.2 Field descriptions

These fields are described as follows:

a) GID — identity of this geometric object;

b) XMIN — the minimum x-coordinate of the geometric object bounding box;

c) YMIN — the minimum y-coordinate of the geometric object bounding box;

d) XMAX — the maximum x-coordinate of the geometric object bounding box;

e) YMAX — the maximum y-coordinate of the geometric object bounding box;

f) WKB_GEOMETRY — the Well-known Binary Representation of the geometric object;

g) <attribute> — other attributes can be carried in the Geometry table for specific feature schema.

7.1.5.3.3 Exceptions, errors and error codes

Error handling shall use the standard SQL status returns for SQL/CLI.

7.1.6 Operators

No SQL spatial operators are defined as part of this specification.

7.2 Components — SQL with Geometry Types implementation of feature tables

7.2.1 Conventions

The components of this part of ISO 19125 for feature table implementation in a SQL with Geometry Types
environment consist of the tables, SQL types and SQL functions discussed in 7.2.

Table components are described in the context of a CREATE TABLE statement. Implementations may use base
tables with different names and properties, exposing these components as updateable views, provided that
the base tables defined by the implementation enforce the same constraints.

Table names, column names, type names, and function names have been restricted to 18 characters in length
to allow for the widest possible implementation.

7.2.2 Spatial reference system information

7.2.2.1 Component overview

The Spatial Reference Systems table, which is named SPATIAL_REF_SYS, stores information on each spatial
reference system used in the database.

This component is identical to the corresponding component described for the implementation based on
predefined data types.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

18 © ISO 2004 – All rights reserved

7.2.2.2 Table constructs

The following CREATE TABLE statement creates an appropriately structured SPATIAL_REF_SYS table.

CREATE TABLE SPATIAL_REF_SYS
 (
 SRID INTEGER NOT NULL PRIMARY KEY,
 AUTH_NAME CHARACTER VARYING(256),
 AUTH_SRID INTEGER,
 SRTEXT CHARACTER VARYING(2048)
)

7.2.2.3 Field description

These fields are described as follows:

a) SRID — an integer value that uniquely identifies each Spatial Reference System within a database;

b) AUTH_NAME — the name of the standard or standards body that is being cited for this reference system.
EPSG would be an example of a valid AUTH_NAME;

c) AUTH_SRID — the ID of the Spatial Reference System as defined by the Authority cited AUTH_NAME;

d) SRTEXT — the Well-known Text Representation of the Spatial Reference System.

7.2.2.4 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.3 Geometry columns information

7.2.3.1 Component overview

The GEOMETRY_COLUMNS table provides information on the feature table, spatial reference, geometry type and
coordinate dimension for each Geometry Column in the database.

The columns defined in the GEOMETRY_COLUMNS table in the SQL with Geometry Types implementation are a
subset of the columns in the implementation based on predefined data types.

7.2.3.2 Table constructs

The following CREATE TABLE statement creates an appropriately structured GEOMETRY_COLUMNS table.

CREATE TABLE GEOMETRY_COLUMNS (
 F_TABLE_CATALOG CHARACTER VARYING(256) NOT NULL,
 F_TABLE_SCHEMA CHARACTER VARYING(256) NOT NULL,
 F_TABLE_NAME CHARACTER VARYING(256) NOT NULL,
 F_GEOMETRY_COLUMN CHARACTER VARYING(256) NOT NULL,
 COORD_DIMENSION INTEGER,
 SRID INTEGER REFERENCES SPATIAL_REF_SYS,
 CONSTRAINT GC_PK PRIMARY KEY
 (F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN)
)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 19

7.2.3.3 Field description

These fields are described as follows:

a) F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME — the fully qualified name of the feature table
containing the geometry column;

b) F_GEOMETRY_COLUMN — the name of the Geometry Column in the feature table;

c) COORD_DIMENSION — the coordinate dimension for the geometric object in this column, which shall be
equal to the number of dimensions in the spatial reference system;

d) SRID — the ID of the spatial reference system used for the coordinate geometry in this table. It is a
foreign key reference to the SPATIAL_REF_SYS table.

7.2.3.4 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns for SQL/CLI.

7.2.4 SQL Geometry Types

7.2.4.1 Component overview

The SQL Geometry Types extend the set of available predefined data types to include Geometry Types.

7.2.4.2 Language constructs

The SQL language shall support a subset of the following set of SQL Geometry Types: {Geometry, Point,
Curve, LineString, Surface, Polygon, GeometryCollection, MultiCurve, MultiLineString,
MultiSurface, MultiPolygon, MultiPoint}. The permissible type subsets that an implementer may
choose to implement are described in Table 2.

An implementation shall preserve the subtype relationships between Geometry Types shown in Figure 4 for
the types that are implemented. An implementation that implements two types A and B, where B is an
immediate subtype of A in Figure 4 and is free to introduce additional types C, is outside the scope of this
specification.

Geometry, Curve, Surface, MultiCurve and MultiSurface are defined to be non-instantiable types. No
constructors are defined for these types.

An implementation in SQL will use the name GeomCollection instead of GeometryCollection to ensure
alignment with the ISO/IEC 13249-3 specification.

The remaining seven types are defined to be instantiable. An implementation may support only a subset of
these seven types as instantiable, as defined in Table 2.

Table 2 — Available and instantiable types by implementation type level

Type level Available types Instantiable types

1 Geometry, Point, Curve, LineString,
Surface, Polygon, GeomCollection

Point, LineString, Polygon,
GeomCollection

2 Geometry, Point, Curve, LineString,
Surface, Polygon, GeomCollection,
MultiPoint, MultiCurve, MultiLineString,
MultiSurface, MultiPolygon

Point, LineString, Polygon,
MultiPoint,
MultiLineString,MultiPolygon

3 Geometry, Point, Curve, LineString,
Surface, Polygon, GeomCollection,
MultiPoint , MultiCurve, MultiLineString,
MultiSurface, MultiPolygon

Point, LineString, Polygon,
GeomCollection, MultiPoint,
MultiLineString, MultiPolygon

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

20 © ISO 2004 – All rights reserved

7.2.5 Feature tables

7.2.5.1 Component overview

The columns in a feature table are defined by feature attributes; one or more of the feature attributes will be a
geometric attribute. The basic restriction in this part of ISO 19125 for feature tables is that each geometric
attribute is modeled using a column whose type corresponds to a SQL Geometry Type. Features may have a
feature attribute that is unique, serving as a PRIMARY KEY for the feature table. Feature-to-feature relations
may be defined as FOREIGN KEY references where appropriate.

7.2.5.2 Table constructs

The general format of a feature table in the SQL with Geometry Types implementation shall be as follows:

CREATE TABLE <feature table name> (
 <primary key column name> <primary key column type>,
 … (other attributes for this feature table)
 <geometry column name> <Geometry Type>,
 … (other geometry columns for this feature table)
 PRIMARY KEY <primary key column name>,
 CONSTRAINT SRS_1 CHECK (SRID(<geometry column name>) in (SELECT SRID from
 GEOMETRY_COLUMNS where F_TABLE_CATALOG = <catalog> and F_TABLE_SCHEMA = <schema> and
 F_TABLE_NAME = <feature table name> and F_GEOMETRY_COLUMN = <geometry column>))
 ... (spatial reference constraints for other geometry columns in this feature table)
)

The use of a SQL Geometry Type for one of the columns in the table identifies this table as a feature table.
Alternatively, applications may check the GEOMETRY_COLUMNS table, where all Geometry Columns and their
associated feature tables and geometry tables are listed.

7.2.5.3 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.6 SQL functions for constructing a geometry value given its Well-known Text Representation

7.2.6.1 Component overview

The functions used to construct geometric objects from their text representations are shown in Table 3.

The GeomFromText function takes a geometry textual representation (a <Geometry Tagged Text>, as
described in ISO 19125-1, 6.2), and a Spatial Reference System ID (SRID) and creates an instance of the
appropriate Geometry Type.

The return type of the GeomFromText function is the Geometry supertype. For construction of a geometric
object to be stored in columns restricted to a particular subtype, an implementation shall also provide a type-
specific construction function for each instantiable subtype, as described in Table 3.

An implementation may substitute any SQL type suitable for representing text data such as CHARACTER
VARYING for the type String below.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 21

Table 3 — SQL functions for constructing a geometric object given its Well-known Text
Representation

Function Description

GeomFromText(
 geometryTaggedText String,
 SRID Integer) : Geometry

construct a geometric object given its Well-known text
Representation

PointFromText (
 pointTaggedText String, SRID Integer):
Point

construct a Point

LineFromText(
 lineStringTaggedText String,
 SRID Integer) : LineString

construct a LineString

PolyFromText(
 polygonTaggedText String,
 SRID Integer): Polygon

construct a Polygon

MPointFromText (multiPointTaggedText String,
 SRID Integer): MultiPoint

construct a MultiPoint

MLineFromText (
 multiLineStringTaggedText String,
 SRID Integer): MultiLineString

construct a MultiLineString

MPolyFromText(
 multiPolygonTaggedText String,
 SRID Integer): MultiPolygon

construct a MultiPolygon

GeomCollFromText(
 geometryCollectionTaggedText String,
 SRID Integer): GeomCollection

construct a GeometryCollection

As an optional feature, an implementation may also support “building” Polygon or MultiPolygon values given
an arbitrary collection of possibly intersecting Rings or closed LineString values. Implementations that
support this feature should include the functions shown in Table 4.

Table 4 — Optional SQL functions for constructing a geometric object given its Well-known Text
Representation

Function Description

BdPolyFromText(
 multiLineStringTaggedText String,
 SRID Integer): Polygon

construct a Polygon given an arbitrary collection of closed
linestrings as a MultiLineString text representation

BdMPolyFromText(
 multiLineStringTaggedText String,
 SRID Integer): MultiPolygon

construct a MultiPolygon given an arbitrary collection of
closed linestrings as a MultiLineString text representation

7.2.6.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.6.3 Example

The following example shows the use of the Polygon type specific constructor:

INSERT INTO Countries (Name, Location)
 VALUES (‘Kenya’, PolyFromText(‘POLYGON ((x y, x y, x y, ..., x y))’, 14))

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

22 © ISO 2004 – All rights reserved

7.2.7 SQL functions for constructing a geometric object given its Well-known Binary Representation

7.2.7.1 Component overview

The functions used to construct geometric objects from their Well-known Binary Representations are shown in
Table 5.

The GeomFromWKB function takes a Well-known Binary Representation of Geometry (a <WKBGeometry> as
described in ISO 19125-1, 6.3) and a Spatial Reference System ID (SRID) and creates an instance of the
appropriate Geometry Type.

The return type of the GeomFromWKB function is the Geometry supertype. For construction of geometric objects
to be stored in columns restricted to a particular subtype, an implementation shall also provide a type specific
construction function for each instantiable subtype as described in Table 5.

An implementation may substitute any SQL type used to represent binary values for the type BINARY in the
definitions below.

Table 5 — SQL functions for constructing a geometric object given its Well-known Binary
Representation

Function Description

GeomFromWKB (WKBGeometry Binary,
 SRID Integer) : Geometry

construct a geometric object given its Well-known Binary
Representation

PointFromWKB (WKBPoint BINARY, SRID Integer):
Point

construct a Point

LineFromWKB(WKBLineString BINARY,
 SRID Integer) : LineString

construct a LineString

PolyFromWKB(WKBPolygon BINARY, SRID Integer):
Polygon

construct a Polygon

MPointFromWKB (WKBMultiPoint BINARY,
 SRID Integer): MultiPoint

construct a MultiPoint

MLineFromWKB (WKBMultiLineString BINARY,
 SRID Integer): MultiLineString

construct a MultiLineString

MPolyFromWKB (WKBMultiPolygon BINARY,
 SRID Integer): MultiPolygon

construct a MultiPolygon

GeomCollFromWKB (WKBGeomCollection BINARY,
 SRID Integer): GeomCollection

construct GeometryCollection

As an optional feature, an implementation may also support “building” Polygon or MultiPolygon values given
an arbitrary collection of possibly intersecting Rings or closed LineString values. Implementations that
support this feature shall include the functions shown in Table 6.

Table 6 — Optional SQL functions for constructing a geometric object given its Well-known Binary
Representation

Function Description

BdPolyFromWKB(WKBMultiLineString BINARY,
 SRID Integer): Polygon

construct a Polygon given an arbitrary collection of closed
linestrings as a MultiLineString binary representation

BdMPolyFromWKB(
 WKBMultiLineString BINARY,
 SRID Integer): MultiPolygon

construct a MultiPolygon given an arbitrary collection of
closed linestrings as a MultiLineString binary
representation

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 23

7.2.7.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.7.3 Examples

The following example shows the use of the binary Polygon type-specific constructor in Dynamic SQL,
the :wkb and :srid parameters are bound to application program variables containing the binary
representation of a Polygon and of the SRID, respectively:

INSERT INTO Countries (Name, Location)
 VALUES (‘Kenya’, PolyFromWKB(:wkb, :srid))

7.2.8 SQL functions for obtaining Well-known Text Representation of a geometric object

7.2.8.1 Component overview

The AsText function, shown in Table 7, takes a single argument of type Geometry and returns its Well-known
Text Representation. This function applies to all subtypes of Geometry.

Table 7 — SQL functions for obtaining the Well-known Text Representation of a geometric object

Function Description

AsText (g Geometry) : String returns the Well-known Text representation

7.2.8.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.8.3 Examples

The following example shows the use of the AsText function to extract the name and textual representation of
Geometry of all countries whose names begin with the letter K.

SELECT Name, AsText(Location) FROM Countries WHERE Name LIKE ‘K%’

7.2.9 SQL functions for obtaining Well-known Binary Representations of a geometric object

7.2.9.1 Component overview

The AsBinary function, shown in Table 8, takes a single argument of type Geometry and returns its
Well-known Binary Representation. This function applies to all subtypes of Geometry.

Table 8 — SQL functions for obtaining the Well-known Binary Representation of a geometric object

Function Description

AsBinary (g Geometry) : Binary returns the Well-known Binary Representation

7.2.9.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

24 © ISO 2004 – All rights reserved

7.2.9.3 Example

The following example shows the use of the AsBinary function to extract the name and Well-known Binary
representation of Geometry for all countries whose names begin with the letter K.

SELECT Name, AsBinary(Location) FROM Countries WHERE Name LIKE ‘K%’

7.2.10 Functions on type Geometry

7.2.10.1 Component overview

The SQL functions shown in Table 9 apply to all subtypes of Geometry.

In all operations on the Geometry Type, geometric calculations shall be done in the Spatial Reference System
of the first geometric object. Returned objects shall be in the Spatial Reference System of the first geometric
object unless explicitly stated otherwise.

Table 9 — SQL functions on type Geometry

Function Description

Dimension(g Geometry) : Integer returns the dimension of the geometric object, which is
less than or equal to the dimension of the coordinate
space

GeometryType(g Geometry) : String returns the name of the instantiable subtype of Geometry
of which this geometric object is a member, as a string

AsText(g Geometry) : String returns the Well-known Text Representation of this
geometric object

AsBinary(g Geometry) : Binary returns the Well-known Binary Representation of this
geometric object

SRID(g Geometry) : Integer returns the Spatial Reference System ID for this
geometric object

IsEmpty(g Geometry) : Integer The return type is Integer, with a return value of 1 for
TRUE, 0 for FALSE, and –1 for UNKNOWN
corresponding to a function invocation on NULL
arguments.

TRUE if this geometric object corresponds to the empty
set

IsSimple(g Geometry): Integer The return type is Integer, with a return value of 1 for
TRUE, 0 for FALSE, and –1 for UNKNOWN
corresponding to a function invocation on NULL
arguments.

TRUE if this geometric object is simple, as defined in the
Geometry Model

Boundary(g Geometry) : Geometry returns a geometric object that is the combinatorial
boundary of g as defined in the Geometry Model

Envelope(g Geometry) : Geometry returns the rectangle bounding g as a Polygon. The
Polygon is defined by the corner points of the bounding
box [(MINX, MINY),(MAXX, MINY), (MAXX, MAXY),
(MINX, MAXY), (MINX, MINY)].

7.2.10.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 25

7.2.11 SQL functions on type Point

7.2.11.1 Component overview

The SQL functions defined on Point are shown in Table 10.

Table 10 — SQL functions on type Point

Function Description

X(p Point) : Double Precision return the x-coordinate of Point p as a double precision
number

Y(p Point) : Double Precision return the y-coordinate of Point p as a double precision
number

7.2.11.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.12 Functions on type Curve

7.2.12.1 Component overview

The SQL functions defined on Curve are shown in Table 11.

Table 11 — SQL functions on type Curve

Function Description

StartPoint(c Curve) : Point return a Point containing the first Point of c

EndPoint(c Curve) : Point return a Point containing the last Point of c

IsClosed(c Curve) : Integer The return type is Integer, with a return value of 1 for
TRUE, 0 for FALSE, and –1 for UNKNOWN
corresponding to a function invocation on NULL
arguments;

return TRUE if c is closed, i.e., if
StartPoint(c) = EndPoint(c)

IsRing(c Curve) : Integer The return type is Integer, with a return value of 1 for
TRUE, 0 for FALSE, and –1 for UNKNOWN
corresponding to a function invocation on NULL
arguments;

return TRUE if c is a ring, i.e., if c is closed and simple. A
simple Curve does not pass through the same Point more
than once.

Length(c Curve) : Double Precision return the length of c

7.2.12.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

26 © ISO 2004 – All rights reserved

7.2.13 SQL functions on type LineString

7.2.13.1 Component overview

The SQL functions defined on LineString are shown in Table 12.

Table 12 — SQL functions on type LineString

Function Description
NumPoints(l LineString) : Integer return the number of Points in the LineString
PointN(l LineString, n Integer) : Point return a Point containing Point n of l

7.2.13.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.14 SQL functions on type Surface

7.2.14.1 Component overview

The SQL functions defined on Surface are shown in Table 13.

Table 13 — SQL functions on type Surface

Function Description
Centroid(s Surface) : Point return the centroid of s, which may lie outside s
PointOnSurface(s Surface) : Point return a Point guaranteed to lie on the Surface
Area(s Surface) : Double Precision return the area of s

7.2.14.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.15 SQL functions on type Polygon

7.2.15.1 Component overview

The SQL functions defined on Polygon are shown in Table 14.

Table 14 — SQL functions on type Polygon

Function Description
ExteriorRing(p Polygon) : LineString return the exteriorRing of p
NumInteriorRing(p Polygon) : Integer return the number of interiorRings
InteriorRingN(p Polygon, n Integer) :
LineString

return the nth interiorRing. The order of Rings is not
geometrically significant.

7.2.15.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 27

7.2.16 SQL functions on type GeomCollection

7.2.16.1 Component overview

The SQL functions defined on GeomCollection are shown in Table 15.

Table 15 — SQL functions on type GeomCollection

Function Description
NumGeometries(g GeomCollection) : Integer return the number of geometric objects in the collection
GeometryN(g GeomCollection,
 n Integer) : Geometry

return the nth geometric object in the collection.
The order of the elements in the collection is not
geometrically significant.

7.2.16.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.17 SQL functions on type MultiCurve

7.2.17.1 Component overview

The SQL functions defined on MultiCurve are shown in Table 16.

Table 16 — SQL functions on type MultiCurve

Function Description
IsClosed(mc MultiCurve) : Integer The return type is Integer, with a return value of 1 for

TRUE, 0 for FALSE, and –1 for UNKNOWN
corresponding to a function invocation on NULL
arguments;
return TRUE if mc is closed

Length(mc MultiCurve) : Double Precision return the length of mc

7.2.17.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.18 SQL functions on type MultiSurface

7.2.18.1 Component overview

The SQL functions defined on MultiSurface are shown in Table 17.

Table 17 — SQL functions on type MultiSurface

Function Description

Centroid(ms MultiSurface) : Point return the centroid of ms, which may lie outside ms

PointOnSurface(ms MultiSurface) : Point return a Point guaranteed to lie on the MultiSurface

Area(ms MultiSurface) : Double Precision return the area of ms

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

28 © ISO 2004 – All rights reserved

7.2.18.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.19 SQL functions that test spatial relationships

7.2.19.1 Component overview

The functions shown in Table 18 test named spatial relationships between two geometric objects. The Relate
function tests if the specified spatial relationship between two geometric objects exists, where the spatial
relationship is expressed as a string encoding the acceptable values for the DE-9IM between the two
geometric objects.

Table 18 — SQL functions that test spatial relationships

Function Description

Equals(g1 Geometry,g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if g1 and g2 are equal

Disjoint(g1 Geometry, g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if the intersection of g1 and g2 is the empty set

Touches(g1 Geometry, g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if the only Points in common between g1 and g2 lie in the
union of the boundaries of g1 and g2

Within(g1 Geometry, g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if g1 is completely contained in g2

Overlaps(g1 Geometry, g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if the intersection of g1 and g2 results in a value of the same
dimension as g1 and g2 that is different from both g1 and g2

Crosses(g1 Geometry, g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments.

TRUE if the intersection of g1 and g2 results in a value whose
dimension is less than the maximum dimension of g1 and g2 and
the intersection value includes Points interior to both g1 and g2,
and the intersection value is not equal to either g1 or g2

Intersects(g1 Geometry, g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments;

convenience predicate: TRUE if the intersection of g1 and g2 is not
empty

Intersects(g1, g2) ⇔ Not (Disjoint(g1, g2))

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 29

Table 18 (continued)

Function Description

Contains(g1 Geometry, g2 Geometry) :
 Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments;

convenience predicate: TRUE if g2 is completely contained in g1

Contains(g1, g2) ⇔ Within(g2, g1)

Relate(g1 Geometry, g2 Geometry,
 patternMatrix String) : Integer

The return type is Integer, with a return value of 1 for TRUE, 0 for
FALSE, and –1 for UNKNOWN corresponding to a function
invocation on NULL arguments;

returns TRUE if the spatial relationship specified by the
patternMatrix holds

7.2.19.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.19.3 Example queries

The functions and predicates in this subclause allow the expression of detailed spatial relationship queries.

Return all parcels that intersect a specified Polygon:

SELECT Parcel.Name, Parcel.Id FROM Parcels
 WHERE Intersects(Parcels.Location, PolyFromWKB(:wkb, : srid)) = 1

Return all parcels completely contained in a specified Polygon:

SELECT Parcel.Name, Parcel.Id FROM Parcels
 WHERE Within(Parcels. Location, PolyFromWKB(:wkb, :srid)) = 1

The following adjacency query may be used to select all parcels that are “adjacent” to a query parcel and
share one or more boundary lines with a query parcel while excluding parcels that share only corner Points.

SELECT Parcel.Name, Parcel.Id FROM Parcels
 WHERE Touches(Parcels. Location, PolyFromWKB(:wkb, :srid)) = 1 and
 Overlaps(Boundary(Parcels. Location), Boundary(PolyFromWKB(:wkb, :srid))) = 1

7.2.20 SQL functions for distance relationships

7.2.20.1 Component overview

The function shown in Table 19 is used to calculate the distance between two geometric objects.

Table 19 — SQL functions for distance relationships

Function Description

Distance(g1 Geometry,
 g2 Geometry) : Double Precision

return the distance between g1 and g2

7.2.20.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

30 © ISO 2004 – All rights reserved

7.2.20.3 Example query

The following query returns the name of the state and the fragment(s) of the state that fall within the query
Polygon for each state that intersects the query Polygon.

SELECT Airport.Name FROM Airports

WHERE Distance(PointFromText(:pointTaggedText, :srid), Airport.Location) < 2000

7.2.21 SQL functions that implement spatial operators

7.2.21.1 Component overview

The functions shown in Table 20 implement set-theoretic and constructive operations on geometric objects.
These operations are defined for all types of Geometry.

Table 20 — SQL functions that implement spatial operators

Function Description

Intersection (g1 Geometry,
 g2 Geometry) : Geometry

return a geometric object that is the intersection of
geometric objects g1 and g2

Difference (g1 Geometry,
 g2 Geometry) : Geometry

return a geometric object that is the closure of the set
difference of g1 and g2

Union (g1 Geometry,
 g2 Geometry) : Geometry

return a geometric object that is the set union of g1 and
g2

SymDifference(g1 Geometry,
 g2 Geometry) : Geometry

return a geometric object that is the closure of the set
symmetric difference of g1 and g2 (logical XOR of space)

Buffer (g1 Geometry,
 d Double Precision) : Geometry

return a geometric object defined by buffering a distance
d around g1, where d is in the distance units for the
Spatial Reference of g1

ConvexHull(g1 Geometry) : Geometry return a geometric object that is the convex hull of g1

7.2.21.2 Exceptions, errors and error codes

Error handling shall be accomplished by using the standard SQL status returns.

7.2.21.3 Example query

The following query returns the name of the state and the fragment(s) of the state that fall within the query
Polygon for each state that intersects the query Polygon.

SELECT States.Name, Intersection(PolyFromWKB(:wkb, :srid), States.Location)
FROM States
WHERE Intersects(PolyFromWKB(:wkb, :srid), States.Location)

7.2.22 SQL function usage and references to Geometry

The SQL Functions that operate on Geometry Types have been defined above to take geometric objects as
arguments. This conforms to the model for value based UDTs in SQL.

SQL Type may also support the concept of persistent references to instances of the Type. To support the
latter type of implementation, a reference to a Geometry Type instance, REF(Geometry), may be used in
place of a Geometry value in the SQL functions defined in this subclause.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 31

Annex A
(informative)

Comparison of Simple feature access/SQL and SQL/MM – Spatial

This informative annex provides a comparison of SFA-SQL and SQL/MM — Spatial.

Table A.1 — Comparison of SFA-SQL and SQL/MM — Spatial

 SQL with geometry type ISO/IEC 13249-3:2003
(SQL/MM-Spatial) Description

Geometry Types Point
Curve
Linestring

Surface

Polygon
GeomCollection
Multipoint
Multicurve
Multilinestring
Multisurface
Multipolygon

ST_Point
ST_Curve
ST_Linestring
ST_Circularstring
ST_CompoundCurve
ST_Surface
ST_CurvePolygon
ST_Polygon
ST_Collection
ST_Multipoint
ST_MultiCurve
ST_Multilinestring
ST_Multisurface
ST_Multipolygon

—

Storage Binary Type, Text Type,
Object Type

Object Type —

Operations Equals
Disjoint
Touches
Within
Overlaps
Crosses
Intersects
Contains
Relate

ST_Equals
ST_Disjoint
ST_Touches
ST_Within
ST_Overlaps
ST_Crosses
ST_Intersects
ST_Contains
ST_Relate

—

Functions: — — —

Point
X()
Y()
—

ST_Point()
ST_X()
ST_Y()
ST_ExplicitPoint()

Return the Point
Return the X-coordinate of point
Return the Y-coordinate of point
—

Curve Length()
StartPoint()
EndPoint()
IsClosed()
IsRing()
—

ST_Length()
ST_StartPoint()
ST_EndPoint()
ST_IsClosed()
ST_ISRing()
ST_CurveToLine

Return the length of curve
Return the first Point of curve
Return the last Point of curve
Check whether curve is closed
Check whether curve is closed and simple
Transform Curve to Linestring

Linestring —
—
NumPoints()
PointN()

ST_LineString
ST_Points
ST_NumPoints
ST_PointN

Return the Linestring
Return a collection of points
Return the number of points
Return a Point containing Point n of linestring

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

32 © ISO 2004 – All rights reserved

Annex B
(normative)

Conformance tests

B.1 Purpose of this annex

In order to conform to this part of ISO 19125 for feature collections, an implementation shall satisfy the
requirements of one of the following three conformance classes:

a) SQL implementation of feature tables based on predefined data types:

1) using numeric SQL types for geometry storage and SQL/CLI access,

2) using binary SQL types for geometry storage and SQL/CLI access;

b) SQL with Geometry Types implementation of feature tables supporting both textual and binary SQL/CLI
access to geometry.

This annex provides a conformance test for this part of ISO 19125. In general, the scope of the tests is to
exercise each functional aspect of the specification at least once. The test questions and answers are defined
to test that the specified functionality exists and is operable. Care has been taken to ensure that the tests are
not at the level of rigor that a product quality-control process or certification test might be. However, some of
the answers are further examined for reasonableness (for example, the area of a polygon is tested for
correctness to two or three significant figures). The following sections further describe each test alternative.

B.2 Test data

B.2.1 Test data semantics

The data for all of the test alternatives are the same. It is a synthetic data set, developed by hand, to exercise
the functionality of the specification. It is a set of features that makes up a map (see Figure B.1) of a fictional
location called Blue Lake. This section describes the test data in detail.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 33

Key

X Easting
Y Northing

1 watercourse
2 Route 5

indicates where Route 5 is two lanes wide;
indicates where Route 5 is four lanes wide

3 Route 75
4 Main Street
5 one-lane road

6 bridge
7 buildings

8 fish ponds

Figure B.1 — Test Data Concept — Joe's Blue Lake vicinity map

The semantics of this data set are as follows.

a) A rectangle of the Earth is shown in UTM coordinates. Horizontal coordinates take meaning from POSC
Horizontal Coordinate System #32214. Note 500,000 m false Easting, and WGS 72 / UTM zone 14N.
Units are metres.

b) Blue Lake (which has an island named Goose Island) is the prominent feature.

c) There is a watercourse flowing from north to south. The portion from the top neatline to the lake is called
Cam Stream. The portion from the lake to the bottom neatline has no name (Name value is “Null”).

d) There is an area place named Ashton.

e) There is a State Forest whose administrative area includes the lake and a portion of Ashton. Roads form
the boundary of the State Forest. The “Green Forest” is the State Forest minus the lake.

f) Route 5 extends across the map. It is two lanes wide where shown as a heavy black line. It is four lanes
wide where shown as a heavy grey line.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

34 © ISO 2004 – All rights reserved

g) There is a major divided highway, Route 75, shown as a heavy double black line, one line for each part of
the divided highway. These two lines are seen as a multiline.

h) There is a bridge (Cam Bridge) where the road goes over Cam Stream, a point feature.

i) Main Street shares some pavement with Route 5, and is always four lanes wide.

j) There are two buildings along Main Street; each can be seen either as a point or as a rectangle footprint.

k) There is a one-lane road forming part of the boundary of the State Forest, shown as a grey line with black
borders.

l) There are two fish ponds, which are seen as a collective, not as individuals; that is, they are a multi-polygon.

B.2.2 Test data points and coordinates

Figure B.2 depicts the points that are used to represent the map.

Dimensions in metres

Key

X Easting, in metres
Y Northing, in metres

Figure B.2 — Points in the Blue Lake data set
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O 19
12

5-2
:20

04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 35

Table B.1 gives these coordinates associated with each point.

Table B.1 — Coordinates associated with each point in the Blue Lake data set

Point Easting Northing Point Easting Northing

1 0 48 26 52 31

2 38 48 27 52 29

3 62 48 28 50 29

4 72 48 29 52 30

5 84 48 30 62 34

6 84 42 31 66 34

7 84 30 32 66 32

8 84 0 33 62 32

9 76 0 34 64 33

10 28 0 35 59 13

11 0 0 36 59 18

12 0 18 37 67 18

13 44 41 38 67 13

14 41 36 39 10 48

15 28 26 40 10 21

16 44 31 41 10 0

17 52 18 42 16 48

18 48 6 43 16 23

19 73 9 44 16 0

20 78 4 45 24 44

21 66 23 46 22 42

22 56 30 47 24 40

23 56 34 48 26 44

24 70 38 49 28 42

25 50 31 50 26 40

B.3 Conformance tests

B.3.1 Normalized geometry schema

B.3.1.1 Conformance test overview

The scope of this test is to determine that the test data (once inserted) are accessible via the schema defined
in the specification. Table B.2 shows the queries that accomplish this test.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

36 © ISO 2004 – All rights reserved

Table B.2 — Queries to determine that test data are accessible via the normalized geometry schema

ID Functionality Tested Query Description Answer

N1 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that all of the feature tables are
represented by entries in the
GEOMETRY_COLUMNS
table/view.

lakes, road_segments, divided_routes,
buildings, buildings, forests, bridges,
named_places, streams, ponds,
map_neatlines

N2 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that all of the geometry tables are
represented by entries in the
GEOMETRY_COLUMNS
table/view.

lake_geom, road_segment_geom,
divided_route_geom, forest_geom,
bridge_geom, stream_geom,
building_pt_geom,
building_area_geom, pond_geom,
named_place_geom,
map_neatline_geom

N3 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct storage type for
the streams table is represented
in the GEOMETRY_COLUMNS
table/view.

0

N4 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct geometry type for
the streams table is represented
in the GEOMETRY_COLUMNS
table/view.

3 (corresponds to‘LINESTRING’)

N5 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct coordinate
dimension for the streams table
is represented in the
GEOMETRY_COLUMNS
table/view.

2

N6 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct value of max_ppr
for the streams table is
represented in the
GEOMETRY_COLUMNS
table/view.

3

N7 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct value of srid for
the streams table is represented
in the GEOMETRY_COLUMNS
table/view.

101

N8 SPATIAL_REF_SYS table/view
is created/updated properly

For this test, we will check to see
that the correct value of srtext is
represented in the
SPATIAL_REF_SYS table/view.

'PROJCS["UTM_ZONE_14N",
GEOGCS["World Geodetic System 72",
DATUM["WGS_72",
ELLIPSOID["NWL_10D", 6378135,
298.26]], PRIMEM["Greenwich", 0],
UNIT["Meter", 1.0]],
PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",
500000.0],
PARAMETER["False_Northing", 0.0],
PARAMETER["Central_Meridian", -
99.0], PARAMETER["Scale_Factor",
0.9996],
PARAMETER["Latitude_of_origin",
0.0], UNIT["Meter", 1.0]]'

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 37

B.3.1.2 Normalized geometry schema construction

-- CREATE SPATIAL_REF_SYS METADATA TABLE
CREATE TABLE spatial_ref_sys (
 srid INTEGER NOT NULL PRIMARY KEY,
 auth_name VARCHAR(256),
 auth_srid INTEGER,
 srtext VARCHAR(2048));
-- CREATE GEOMETRY_COLUMNS METADATA TABLE
CREATE TABLE geometry_columns (
 f_catalog_name VARCHAR(256),
 f_table_schema VARCHAR(256),
 f_table_name VARCHAR(256),
 f_geometry_column VARCHAR(256),
 g_catalog_name VARCHAR(256),
 g_table_schema VARCHAR(256),
 g_table_name VARCHAR(256),
 storage_type INTEGER,
 geometry_type INTEGER,
 coord_dimension INTEGER,
 max_ppr INTEGER,
 srid INTEGER REFERENCES spatial_ref_sys,
CONSTRAINT gc_pk PRIMARY KEY (f_catalog_name, f_table_schema,
 f_table_name, f_geometry_column));
-- Create geometry tables
-- Lake Geometry
CREATE TABLE lake_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
 x4 INTEGER,
 y4 INTEGER,
 x5 INTEGER,
 y5 INTEGER,
CONSTRAINT l_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Road Segment Geometry
CREATE TABLE road_segment_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
CONSTRAINT rs_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Divided Route Geometry
CREATE TABLE divided_route_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
CONSTRAINT dr_gid_pk PRIMARY KEY (gid, eseq, seq));

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

38 © ISO 2004 – All rights reserved

-- Forest Geometry
CREATE TABLE forest_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
 x4 INTEGER,
 y4 INTEGER,
 x5 INTEGER,
 y5 INTEGER,
CONSTRAINT f_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Bridge Geometry
CREATE TABLE bridge_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
CONSTRAINT b_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Stream Geometry
CREATE TABLE stream_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
CONSTRAINT s_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Bulding Point Geometry
CREATE TABLE building_pt_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
CONSTRAINT bp_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Bulding Area Geometry
CREATE TABLE building_area_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
 x4 INTEGER,
 y4 INTEGER,
 x5 INTEGER,
 y5 INTEGER,
CONSTRAINT ba_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Pond Geometry

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 39

CREATE TABLE pond_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
 x4 INTEGER,
 y4 INTEGER,
CONSTRAINT p_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Named Place Geometry
CREATE TABLE named_place_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
 x4 INTEGER,
 y4 INTEGER,
CONSTRAINT np_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Map Neatline Geometry
CREATE TABLE map_neatline_geom (
 gid INTEGER NOT NULL,
 eseq INTEGER NOT NULL,
 etype INTEGER NOT NULL,
 seq INTEGER NOT NULL,
 x1 INTEGER,
 y1 INTEGER,
 x2 INTEGER,
 y2 INTEGER,
 x3 INTEGER,
 y3 INTEGER,
 x4 INTEGER,
 y4 INTEGER,
 x5 INTEGER,
 y5 INTEGER,
CONSTRAINT mn_gid_pk PRIMARY KEY (gid, eseq, seq));
-- Lakes
CREATE TABLE lakes (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 shore_gid INTEGER);
-- Road Segments
CREATE TABLE road_segments (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 aliases VARCHAR(64),
 num_lanes INTEGER,
 centerline_gid INTEGER);
-- Divided Routes
CREATE TABLE divided_routes (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 num_lanes INTEGER,
 centerlines_gid INTEGER);
-- Forests

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

40 © ISO 2004 – All rights reserved

CREATE TABLE forests (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 boundary_gid INTEGER);
-- Bridges
CREATE TABLE bridges (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 position_gid INTEGER);
-- Streams
CREATE TABLE streams (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 centerline_gid INTEGER);
-- Buildings
CREATE TABLE buildings (
 fid INTEGER NOT NULL PRIMARY KEY,
 address VARCHAR(64),
 position_gid INTEGER,
 footprint_gid INTEGER);
-- Ponds
CREATE TABLE ponds (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 type VARCHAR(64),
 shores_gid INTEGER);
-- Named Places
CREATE TABLE named_places (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 boundary_gid INTEGER);
-- Map Neatline
CREATE TABLE map_neatlines (
 fid INTEGER NOT NULL PRIMARY KEY,
 neatline_gid INTEGER);

B.3.1.3 Normalized geometry schema data loading

--Spatial Reference System
INSERT INTO spatial_ref_sys VALUES(101, 'POSC', 32214, 'PROJCS["UTM_ZONE_14N", GEOGCS["World
Geodetic System 72",DATUM["WGS_72", ELLIPSOID["NWL_10D", 6378135, 298.26]],PRIMEM["Greenwich",
0],UNIT["Meter",1.0]],PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting", 500000.0],PARAMETER["False_Northing",
0.0],PARAMETER["Central_Meridian", -99.0],PARAMETER["Scale_Factor",
0.9996],PARAMETER["Latitude_of_origin", 0.0],UNIT["Meter", 1.0]]');
-- Lakes
INSERT INTO lake_geom VALUES(101, 1, 5, 1, 52,18, 66,23, 73,9, 48,6, 52,18);
INSERT INTO lake_geom VALUES(101, 2, 5, 1, 59,18, 67,18, 67,13, 59,13, 59,18);
INSERT INTO lakes VALUES (101, 'BLUE LAKE', 101);
-- Road segments
INSERT INTO road_segment_geom VALUES (101, 1, 3, 1, 0,18, 10,21, 16,23);
INSERT INTO road_segment_geom VALUES (101, 1, 3, 2, 28,26, 44,31, NULL,NULL);
INSERT INTO road_segment_geom VALUES (102, 1, 3, 1, 44,31, 56,34, 70,38);
INSERT INTO road_segment_geom VALUES (103, 1, 3, 1, 70,38, 72,48, NULL,NULL);
INSERT INTO road_segment_geom VALUES (104, 1, 3, 1, 70,38, 84,42, NULL,NULL);
INSERT INTO road_segment_geom VALUES (105, 1, 3, 1, 28,26, 28,0, NULL,NULL);
INSERT INTO road_segments VALUES(102, 'Route 5', NULL, 2, 101);
INSERT INTO road_segments VALUES(103, 'Route 5', 'Main Street', 4, 102);

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 41

INSERT INTO road_segments VALUES(104, 'Route 5', NULL, 2, 103);
INSERT INTO road_segments VALUES(105, 'Main Street', NULL, 4, 104);
INSERT INTO road_segments VALUES(106, 'Dirt Road by Green Forest', NULL, 1, 105);
-- DividedRoutes
INSERT INTO divided_route_geom VALUES(101, 1, 9, 1, 10,48, 10,21, 10,0);
INSERT INTO divided_route_geom VALUES(101, 2, 9, 1, 16,0, 10,23, 16,48);
INSERT INTO divided_routes VALUES(119, 'Route 75', 4, 101);
-- Forests
INSERT INTO forest_geom VALUES(101, 1, 11, 1, 28,26, 28,0, 84,0, 84,42, 28,26);
INSERT INTO forest_geom VALUES(101, 1, 11, 2, 52,18, 66,23, 73,9, 48,6, 52,18);
INSERT INTO forest_geom VALUES(101, 2, 11, 1, 59,18, 67,18, 67,13, 59,13, 59,18);
INSERT INTO forests VALUES(109, 'Green Forest', 101);
-- Bridges
INSERT INTO bridge_geom VALUES(101, 1, 1, 1, 44, 31);
INSERT INTO bridges VALUES(110, 'Cam Bridge', 101);
-- Streams
INSERT INTO stream_geom VALUES(101, 1, 3, 1, 38,48, 44,41, 41,36);
INSERT INTO stream_geom VALUES(101, 1, 3, 2, 44,31, 52,18, NULL,NULL);
INSERT INTO stream_geom VALUES(102, 1, 3, 1, 76,0, 78,4, 73,9);
--
INSERT INTO streams VALUES(111, 'Cam Stream', 101);
INSERT INTO streams VALUES(112, 'Cam Stream', 102);
-- Buildings
INSERT INTO building_pt_geom VALUES(101, 1, 1, 1, 52,30);
INSERT INTO building_pt_geom VALUES(102, 1, 1, 1, 64,33);
INSERT INTO building_area_geom VALUES(101, 1, 5, 1, 50,31, 54,31,
 54,29, 50,29, 50,31);
INSERT INTO building_area_geom VALUES(102, 1, 5, 1, 66,34, 62,34, 62,32,
 66,32, 66,34);
INSERT INTO buildings VALUES(113, '123 Main Street', 101, 101);
INSERT INTO buildings VALUES(114, '215 Main Street', 102, 102);
-- Ponds
INSERT INTO pond_geom VALUES(101, 1, 11, 1, 24,44, 22,42, 24,40, 24,44);
INSERT INTO pond_geom VALUES(101, 2, 11, 1, 26,44, 26,40, 28,42, 26,44);
INSERT INTO ponds VALUES(120, NULL, 'Stock Pond', 101);
-- Named Places
INSERT INTO named_place_geom VALUES(101, 1, 5, 1, 62,48, 84,48, 84,30, 56,30);
INSERT INTO named_place_geom VALUES(101, 1, 5, 2, 56,30, 56,34, 62,48, NULL,NULL);
INSERT INTO named_place_geom VALUES(102, 1, 5, 1, 67,13, 67,18, 59,18, 59,13);
INSERT INTO named_place_geom VALUES(102, 1, 5, 2, 59,13, 67,13, NULL,NULL, NULL,NULL);
INSERT INTO named_places VALUES(117, 'Ashton', 101);
INSERT INTO named_places VALUES(118, 'Goose Island', 102);
-- Map Neatlines
INSERT INTO map_neatline_geom VALUES(101, 1, 5, 1, 0,0, 0,48, 84,48, 84,0, 0,0);
INSERT INTO map_neatlines VALUES(115, 101);
-- Geometry Columns
INSERT INTO geometry_columns VALUES ('lakes', 'shore_gid',
 'lake_geom',0, 5, 2, 5, 101);

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

42 © ISO 2004 – All rights reserved

INSERT INTO geometry_columns VALUES ('road_segments', 'centerline_gid',
 'road_segment_geom',0, 3, 2, 3, 101);
INSERT INTO geometry_columns VALUES ('divided_routes', 'centerlines_gid',
 'divided_route_geom',0, 9, 2, 3, 101);
INSERT INTO geometry_columns VALUES ('forests', 'boundary_gid',
 'forest_geom',0, 11, 2, 5, 101);
INSERT INTO geometry_columns VALUES ('bridges', 'position_gid',
 'bridge_geom',0, 1, 2, 1, 101);
INSERT INTO geometry_columns VALUES ('streams', 'centerline_gid',
 'stream_geom',0, 3, 2, 3, 101);
INSERT INTO geometry_columns VALUES ('buildings', 'position_gid',
 'building_pt_geom',0, 1, 2, 1, 101);
INSERT INTO geometry_columns VALUES ('buildings', 'footprint_gid',
 'building_area_geom',0, 5, 2, 5, 101);
INSERT INTO geometry_columns VALUES ('ponds', 'shores_gid',
 'pond_geom',0, 11, 2, 4, 101);
INSERT INTO geometry_columns VALUES ('named_places', 'boundary_gid',
 'named_place_geom',0, 5, 2, 4, 101);
INSERT INTO geometry_columns VALUES ('map_neatlines', 'neatline_gid',
 'map_neatline_geom',0, 5, 2, 5, 101);

B.3.1.4 Normalized geometry schema test queries

-- Conformance Item N1
SELECT f_table_name
FROM geometry_columns;
-- Conformance Item N2
SELECT g_table_name
FROM geometry_columns;
-- Conformance Item N3
SELECT storage_type
FROM geometry_columns
WHERE f_table_name = 'streams';
-- Conformance Item N4
SELECT geometry_type
FROM geometry_columns
WHERE f_table_name = 'streams';
-- Conformance Item N5
SELECT coord_dimension
FROM geometry_columns
WHERE f_table_name = 'streams';
-- Conformance Item N6
SELECT max_ppr
FROM geometry_columns
WHERE f_table_name = 'streams';
-- Conformance Item N7
SELECT srid
FROM geometry_columns
WHERE f_table_name = 'streams';
-- Conformance Item N8
SELECT srtext
FROM SPATIAL_REF_SYS
WHERE SRID = 101;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 43

B.3.2 Binary geometry schema

B.3.2.1 Conformance test overview

The scope of this test is to determine that the test data (once inserted) are accessible via the schema defined
in the specification. Table B.3 shows the queries that accomplish this test.

Table B.3 — Queries to determine that test data are accessible via the binary geometry schema

ID Functionality Tested Query Description Answer

B1 Table B.1 —
GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that all of the feature tables are
represented by entries in the
GEOMETRY_COLUMNS
table/view.

lakes, road_segments, divided_routes,
buildings, buildings, forests, bridges,
named_places, streams, ponds,
map_neatlines

B2 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that all of the geometry tables are
represented by entries in the
GEOMETRY_COLUMNS
table/view.

lake_geom, road_segment_geom,
divided_route_geom, forest_geom,
bridge_geom, stream_geom,
building_pt_geom,
building_area_geom, pond_geom,
named_place_geom,
map_neatline_geom

B3 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct storage type for
the streams table is represented
in the GEOMETRY_COLUMNS
table/view.

1

B4 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct geometry type for
the streams table is represented
in the GEOMETRY_COLUMNS
table/view.

3 (corresponds to ‘LINESTRING’)

B5 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct coordinate
dimension for the streams table
is represented in the
GEOMETRY_COLUMNS
table/view.

2

B6 GEOMETRY_COLUMNS
table/view is created/updated
properly

For this test, we will check to see
that the correct value of srid for
the streams table is represented
in the GEOMETRY_COLUMNS
table/view.

101

B7 SPATIAL_REF_SYS table/view
is created/updated properly

For this test, we will check to see
that the correct value of srtext is
represented in the
SPATIAL_REF_SYS table/view.

'PROJCS["UTM_ZONE_14N",
GEOGCS["World Geodetic System 72",
DATUM["WGS_72",
ELLIPSOID["NWL_10D", 6378135,
298.26]], PRIMEM["Greenwich", 0],
UNIT["Meter", 1.0]],
PROJECTION["Transverse_Mercator"],
PARAMETER["False_Easting",
500000.0],
PARAMETER["False_Northing", 0.0],
PARAMETER["Central_Meridian", -
99.0], PARAMETER["Scale_Factor",
0.9996],
PARAMETER["Latitude_of_origin",
0.0], UNIT["Meter", 1.0]]'

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

44 © ISO 2004 – All rights reserved

B.3.2.2 Binary geometry schema construction

CREATE TABLE spatial_ref_sys (
 srid INTEGER NOT NULL PRIMARY KEY,
 auth_name VARCHAR(256),
 auth_srid INTEGER,
 srtext VARCHAR(2048));
-- Geometry Columns
CREATE TABLE geometry_columns (
 f_table_schema VARCHAR(256),
 f_table_name VARCHAR(256),
 f_geometry_column VARCHAR(256),
 g_table_schema VARCHAR(256),
 g_table_name VARCHAR(256),
 storage_type INTEGER,
 geometry_type INTEGER,
 coord_dimension INTEGER,
 max_ppr INTEGER,
 srid INTEGER REFERENCES spatial_ref_sys,
CONSTRAINT gc_pk PRIMARY KEY (f_table_schema, f_table_name, f_geometry_column));
-- Lake Geometry
CREATE TABLE lake_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Road Segment Geometry
CREATE TABLE road_segment_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Divided Route Geometry
CREATE TABLE divided_route_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Forest Geometry
CREATE TABLE forest_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Bridge Geometry
CREATE TABLE bridge_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Stream Geometry
CREATE TABLE stream_geom (
 gid INTEGER NOT NULL PRIMARY KEY,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 45

 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Bulding Point Geometry
CREATE TABLE building_pt_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Bulding Area Geometry
CREATE TABLE building_area_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Pond Geometry
CREATE TABLE pond_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Named Place Geometry
CREATE TABLE named_place_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Map Neatline Geometry
CREATE TABLE map_neatline_geom (
 gid INTEGER NOT NULL PRIMARY KEY,
 xmin INTEGER,
 ymin INTEGER,
 xmax INTEGER,
 ymax INTEGER,
 wkbgeometry VARBINARY);
-- Lakes
CREATE TABLE lakes (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 shore_gid INTEGER);
-- Road Segments
CREATE TABLE road_segments (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 aliases VARCHAR(64),
 num_lanes INTEGER,
 centerline_gid INTEGER);
-- Divided Routes
CREATE TABLE divided_routes (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

46 © ISO 2004 – All rights reserved

 num_lanes INTEGER,
 centerlines_gid INTEGER);
-- Forests
CREATE TABLE forests (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 boundary_gid INTEGER);
-- Bridges
CREATE TABLE bridges (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 position_gid INTEGER);
-- Streams
CREATE TABLE streams (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 centerline_gid INTEGER);
-- Buildings
CREATE TABLE buildings (
 fid INTEGER NOT NULL PRIMARY KEY,
 address VARCHAR(64),
 position_gid INTEGER,
 footprint_gid INTEGER);
-- Ponds
CREATE TABLE ponds (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 type VARCHAR(64),
 shores_gid INTEGER);
-- Named Places
CREATE TABLE named_places (
 fid INTEGER NOT NULL PRIMARY KEY,
 name VARCHAR(64),
 boundary_gid INTEGER);
-- Map Neatline
CREATE TABLE map_neatlines (
 fid INTEGER NOT NULL PRIMARY KEY,
 neatline_gid INTEGER);

B.3.2.3 Binary geometry schema data loading

-- Spatial Reference Systems
INSERT INTO spatial_ref_sys VALUES(101, 'POSC', 32214, 'PROJCS["UTM_ZONE_14N", GEOGCS["World
Geodetic System
72",DATUM["WGS_72",ELLIPSOID["NWL_10D",6378135,298.26]],PRIMEM["Greenwich",0],UNIT["Meter",1.0]],
PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting", 500000.0],PARAMETER["False_Northing",
0.0],PARAMETER["Central_Meridian", -99.0],PARAMETER["Scale_Factor",
0.9996],PARAMETER["Latitude_of_origin", 0.0],UNIT["Meter", 1.0]]');
-- Lakes
INSERT INTO lake_geom VALUES(101, 48.0, 6.0, 73.0, 23.0,
HEXTOVARBINARY('010300000002000000050000000000000000004a40000000000000324000000000008050400000000
00000374000000000004052400000000000002240000000000000484000000000000018400000000000004a4000000000
00003240050000000000000000804d4000000000000032400000000000c0504000000000000032400000000000c050400
000000000002a400000000000804d400000000000002a400000000000804d400000000000003240');
INSERT INTO lakes VALUES (101, 'BLUE LAKE', 101);
-- Road segments
INSERT INTO road_segment_geom VALUES (101, 0.0, 18.0, 44.0, 31.0,
HEXTOVARBINARY('010200000005000000000000000000000000000000000032400000000000002440000000000000354

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

© ISO 2004 – All rights reserved 47

0000000000000304000000000000037400000000000003c400000000000003a4000000000000046400000000000003f40
');
INSERT INTO road_segment_geom VALUES (102, 44.0, 31.0, 70.0, 38.0,
HEXTOVARBINARY('01020000000300000000000000000046400000000000003f400000000000004c40000000000000414
000000000008051400000000000004340');
INSERT INTO road_segment_geom VALUES (103, 70.0, 38.0, 72.0, 48.0,
HEXTOVARBINARY('010200000002000000000000000080514000000000000043400000000000005240000000000000484
0');
INSERT INTO road_segment_geom VALUES (104, 70.0, 38.0, 84.0, 42.0,
HEXTOVARBINARY('010200000002000000000000000080514000000000000043400000000000005540000000000000454
0');
INSERT INTO road_segment_geom VALUES (105, 28.0, 0.0, 28.0, 26.0,
HEXTOVARBINARY('010200000002000000000000000080514000000000000043400000000000005540000000000000454
0');
INSERT INTO road_segments VALUES(102, 'Route 5', NULL, 2, 101);
INSERT INTO road_segments VALUES(103, 'Route 5', 'Main Street', 4, 102);
INSERT INTO road_segments VALUES(104, 'Route 5', NULL, 2, 103);
INSERT INTO road_segments VALUES(105, 'Main Street', NULL, 4, 104);
INSERT INTO road_segments VALUES(106, 'Dirt Road by Green Forest', NULL, 1, 105);
-- DividedRoutes
INSERT INTO divided_route_geom VALUES(101, 10.0, 0.0, 16.0, 48.0,
HEXTOVARBINARY('010500000002000000010200000003000000000000000000244000000000000048400000000000002
4400000000000003540000000000000244000000000000000000102000000030000000000000000003040000000000000
00000000000000002440000000000000374000000000000030400000000000004840');
INSERT INTO divided_routes VALUES(119, 'Route 75', 4, 101);
-- Forests
INSERT INTO forest_geom VALUES(101, 28.0, 0.0, 84.0, 42.0,
HEXTOVARBINARY('010600000002000000010300000002000000050000000000000000003c400000000000003a4000000
00000003c4000000000000000000000000000005540000000000000000000000000000055400000000000004540000000
0000003c400000000000003a40050000000000000000004a4000000000000032400000000000805040000000000000374
000000000004052400000000000002240000000000000484000000000000018400000000000004a400000000000003240
010300000001000000050000000000000000804d4000000000000032400000000000c0504000000000000032400000000
000c050400000000000002a400000000000804d400000000000002a400000000000804d400000000000003240');
INSERT INTO forests VALUES(109, 'Green Forest', 101);
-- Bridges
INSERT INTO bridge_geom VALUES(101, 44.0, 31.0, 44.0, 31.0,
HEXTOVARBINARY('010100000000000000000046400000000000003f40');
INSERT INTO bridges VALUES(110, 'Cam Bridge', 101);
-- Streams
INSERT INTO stream_geom VALUES(101, 38.0, 18.0, 52.0, 48.0,
HEXTOVARBINARY('010200000005000000000000000000434000000000000048400000000000004640000000000080444
00000000000804440000000000000424000000000000046400000000000003f400000000000004a400000000000003240
');
INSERT INTO stream_geom VALUES(102, 73.0, 0.0, 78.0, 9.0,
HEXTOVARBINARY('010200000003000000000000000000534000000000000000000000000000805340000000000000104
000000000004052400000000000002240');
INSERT INTO streams VALUES(111, 'Cam Stream', 101);
INSERT INTO streams VALUES(112, 'Cam Stream', 102);
-- Buildings
INSERT INTO building_pt_geom VALUES(101, 52.0, 30.0, 52.0, 30.0,
HEXTOVARBINARY('01010000000000000000004a400000000000003e40');
INSERT INTO building_pt_geom VALUES(102, 64.0, 33.0, 64.0, 33.0,
HEXTOVARBINARY('010100000000000000000050400000000000804040');
INSERT INTO building_area_geom VALUES(101, 50.0, 29.0, 54.0, 31.0,
HEXTOVARBINARY('0103000000010000000500000000000000000049400000000000003f400000000000004b400000000

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

ISO 19125-2:2004(E)

48 © ISO 2004 – All rights reserved

000003f400000000000004b400000000000003d4000000000000049400000000000003d40000000000000494000000000
00003f40');
INSERT INTO building_area_geom VALUES(102, 62.0, 32.0, 66.0, 34.0,
HEXTOVARBINARY('01030000000100000005000000000000000080504000000000000041400000000000004f400000000
0000041400000000000004f40000000000000404000000000008050400000000000004040000000000080504000000000
00004140');
INSERT INTO buildings VALUES(113, '123 Main Street', 101, 101);
INSERT INTO buildings VALUES(114, '215 Main Street', 102, 102);
-- Ponds
INSERT INTO pond_geom VALUES(101, 22.0, 40.0, 28.0, 44.0,
HEXTOVARBINARY('010600000002000000010300000001000000040000000000000000003840000000000000464000000
0000000364000000000000045400000000000003840000000000000444000000000000038400000000000004640010300
000001000000040000000000000000003a4000000000000046400000000000003a4000000000000044400000000000003
c4000000000000045400000000000003a400000000000004640');
INSERT INTO ponds VALUES(120, NULL, 'Stock Pond', 101);
-- Named Places
INSERT INTO named_place_geom VALUES(101, 56.0, 30.0, 84.0, 48.0,
HEXTOVARBINARY('010300000001000000060000000000000000004f40000000000000484000000000000055400000000
00000484000000000000055400000000000003e400000000000004c400000000000003e400000000000004c4000000000
000041400000000000004f400000000000004840');
INSERT INTO named_place_geom VALUES(102, 59.0, 13.0, 67.0, 18.0,
HEXTOVARBINARY('010300000001000000050000000000000000c050400000000000002a400000000000c050400000000
0000032400000000000804d4000000000000032400000000000804d400000000000002a400000000000c0504000000000
00002a40');
INSERT INTO named_places VALUES(117, 'Ashton', 101);
INSERT INTO named_places VALUES(118, 'Goose Island', 102);
-- Map Neatlines
INSERT INTO map_neatline_geom VALUES(101, 0.0, 0.0, 84.0, 48.0,
HEXTOVARBINARY('01030000000100000005000
00000484000000000000055400000000000004840000000000000554000
00000000');
INSERT INTO map_neatlines VALUES(115, 101);
--Geometry Columns
INSERT INTO geometry_columns VALUES ('lakes', 'shore_gid',
 'lake_geom',1, 5, 2, 0);
INSERT INTO geometry_columns VALUES ('road_segments',
 'centerline_gid', 'road_segment_geom',1, 3, 2, 0);
INSERT INTO geometry_columns VALUES ('divided_routes',
 'centerlines_gid', 'divided_route_geom',1, 9, 2, 0);
INSERT INTO geometry_columns VALUES ('forests', 'boundary_gid',
 'forest_geom',1, 11, 2, 0);
INSERT INTO geometry_columns VALUES ('bridges', 'position_gid',
 'bridge_geom',1, 1, 2, 0);
INSERT INTO geometry_columns VALUES ('streams', 'centerline_gid',
 'stream_geom',1, 3, 2, 0);
INSERT INTO geometry_columns VALUES ('buildings', 'position_gid',
 'building_pt_geom',1, 1, 2, 0);
INSERT INTO geometry_columns VALUES ('buildings', 'footprint_gid',
 'building_area_geom',1, 5, 2, 0);
INSERT INTO geometry_columns VALUES ('ponds', 'shores_gid',
 'pond_geom',1, 11, 2, 0);
INSERT INTO geometry_columns VALUES ('named_places', 'boundary_gid',
 'named_place_geom',1, 5, 2, 0);
INSERT INTO geometry_columns VALUES ('map_neatlines', 'neatline_gid',
 'map_neatline_geom',1, 5, 2, 0);

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

12
5-2

:20
04

https://standardsiso.com/api/?name=575f8f93c986355735c351425b945e96

