INTERNATIONAL ISO
STANDARD 25119-3

First edition
2010-06-01

Tractors and machinery for.agriculture
and forestry — Safety-related parts
of control systems —

Part 3:
Series development, hardware
and software

Tracteurs et matériels agricoles et forestiers — Parties des ystémes
de commande relatives a la sécurité —

Partie 3: Développement en série, matériels et logiciels

= —_—— Reference number
=, — ISO 25119-3:2010(E)

© SO 2010

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© 1S0 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO 2010 — Al rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

Contents

o] =NV o
Lo Yo 11T o)
1 — Scope

2 Normative referenCes ... e S
3 Terms and definitionNscoo i Lt
4 Abbreviated terms.........cccccciiiiiiiiiin T e e
5 o325 0] 4 e [T T | o T S S
5.1 L0] o 1= o3 Y- U 0 SRS
5.2 =Y 0T - N
5.3 g =Y =T TU Ty 1= 4 e
54 =T o LT =Y 4 L= o 3, oS
6 g P 10 LTV T N
6.1 ODJECLIVES ..ooieieiiierr iR e ————
6.2 =Y 0T -
6.3 e =Y =0 [Ty =
6.4 LYo [T = 4 L= o
6.5 [=T e ATV T = o= 1 1= Lo e
6.6 LTA" LT 5 Q] o T L1 T o2 =
7 LT = = -
71 Software development Planning ... coceerriiiinccisscerrr s ssss e e s s sanmnenes
7.2 Software safety requirements specificationccccccoccmriicccniiccscer s
7.3 Software architecture and design..........cccocviiriiniin e ————
7.4 Software module design and implementation...........cccccvniininniin
7.5 Software module testing......ccccc i ————————————
7.6 Software integration and-testingccccciiiii e ———————
7.7 Software safety validationccccciiiiimiinii i ———————
7.8 Software-based parameterization.............cccceriiiccccceiii e ————
Annex A (informative) . Example of agenda for assessment of functional safety at AgPL =e ...
Annex B (informative)~Independence by software partitioning............cccccvvriicriiiiccnnccccnnnccee,
= 0 [oY e T T o] 4 20

I1ISO 25119-3:2010(E)

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119

-3:2010(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and

non-govern
Internationg

Internationg
The main t
adopted by

Internationg

Attention is
rights. ISO

ISO 25119
forestry, Su

ISO 25119
forestry —

Part 1:
Part 2:
Part 3:

Part 4:

mental, in_fiaison with 150, also take part in the Work. 1SO colfaborates closely with
| Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

| Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Rart2.
hsk of technical committees is to prepare International Standards. Draft International Stand
the technical committees are circulated to the member bodies for voting-, Publication as

| Standard requires approval by at least 75 % of the member bodies casting avote.

drawn to the possibility that some of the elements of this document miay be the subject of p3
shall not be held responsible for identifying any or all such patent rights.

3 was prepared by Technical Committee ISO/TC 23, Tractors_and machinery for agriculture
bcommittee SC 19, Agricultural electronics.

consists of the following parts, under the general title,Tractors and machinery for agriculture
Safety-related parts of control systems:

General principles for design and development
Concept phase
Series development, hardware and software

Production, operation, modifieation and supporting processes

the

ards

an

tent

and

and

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119

Introduction

-3:2010(E)

ISO 25119 sets out an approach to the design and assessment, for all safety life cycle activities, of
safety-relevant systems comprising electrical and/or electronic and/or programmable electronic components
(E/E/PES) on tractors used in agriculture and forestry, and on self-propelled ride-on machines and mounted,
semi- mounted and tralled machlnes used in agrlculture It is also apphcable to mun|0|pal equ|pment It covers

rdous situation) under all conditions of use of the machine. This can be achieved by apply
protective measures (both SRP/CS and non-SRP/CS) with the end result of achieving a safe condi
ISO
con
fact

25119 allocates the ability of safety-related parts toperform a critical function under
Hitions into five performance levels. The performance, level of a controlled channel depends|
brs, including system structure (category), the extentof fault detection mechanisms (diagnostig
the [reliability of components (mean time to dangerous failure, common-cause failure), design
opefating stress, environmental conditions and operation procedures. Three types of failures are
sysfematic, common-cause and random.

rder to guide the designer during design, and to facilitate the assessment of the achieved g
I, ISO 25119 defines an approach based on a classification of structures with different design f
cific behaviour in case of a fault.

In o
leve
spe

The
fronp simple systems (e.g. auxiliary valves) to complex systems (e.g. steer by wire), as well as tg
systems of protective equipment (e.g. interlocking devices, pressure sensitive devices).

ISO[25119 adopts a_Customer risk-based approach for the determination of the risks, while providi

of gpecifying the target performance level for the safety-related functions to be implemented |
safgty-related channels. It gives requirements for the whole safety life cycle of E/E/PES (design),

production, operation, maintenance, decommissioning), necessary for achieving the required func
for E/E/PES-that are linked to the performance levels.

listinct from
of E/E/PES

functions of
are, can be
form part of

ipn of these
/CS as part of the risk assessment. The objective is to reduce the frisk associated with a given hazard (or

ing various
tion.

foreseeable
on several
coverage),
processes,
considered:

erformance
eatures and

performance levels and categories can be applied to the control systems of all kinds of mobil¢ machines:

the control

ng a means
by E/E/PES

validation,
ional safety

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

INTERNATIONAL STANDARD ISO 25119

-3:2010(E)

Tractors and machinery for agriculture and forestry —
Safety-related parts of control systems —

rianc davalanmaoant arcdwara and coffwaro
HCo Qe VCIOpPMCHG T GvwarCana—Sotwairc

1

Thidg
safe

Scope

part of 1ISO 25119 provides general principles for the series development, hardware and
ty-related parts of control systems (SRP/CS) on tractors used in agficulture and forestry, &

propelled ride-on machines and mounted, semi-mounted and trailed machines used in agriculture

be
catg

Thig

applied to municipal equipment (e.g. street-sweeping machines).) It specifies the charact
gories required of SRP/CS for carrying out their safety functiops.

part of ISO 25119 is applicable to the safety-related parts.ef electrical/electronic/programmab

systems (E/E/PES). As these relate to mechatronic systems, it does not specify which safety

catg

Itis

2

The]
refe
doc

ISO
sys

ISO
sys

ISO
sys

gories are to be used in a particular case.

not applicable to non-E/E/PES systems (e.g. hydraulic, mechanic or pneumatic).

Normative references

following referenced documents._are indispensable for the application of this document,
rences, only the edition cited, applies. For undated references, the latest edition of the
iment (including any amendments) applies.

25119-1:2010, Tractors and machinery for agriculture and forestry — Safety-related part
ems — Part 1: General-principles for design and development

25119-2:2010, Tractors and machinery for agriculture and forestry — Safety-related part
ems — Part 2{concept phase

25119-4:2010, Tractors and machinery for agriculture and forestry — Safety-related part
ems ~="Part 4: Production, operation, modification and supporting processes

software of
nd on self-
It can also
pristics and

e electronic
unctions or

For dated
referenced

5 of control

5 of control

5 of control

3

For

Terms and definitions

the purposes of this document, the terms and definitions given in ISO 25119-1 apply.

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

4 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

AgPL agricultural performance level

AgPL, required agricultural performance level
CAD computer-aided design

Cat hardware category

CCF common-cause failure

DC diagnostic coverage

DCavg average diagnostic coverage

ECU electronic control unit

ETA event tree analysis

E/E/PES | electrical/electronic/programmable electronic systems

EMC electromagnetic compatibility
EUC equipment under control
FMEA failure mode and effects analysis

FMECA failure mode effects and criticality analysis
EPROM erasable programmable read only memory
FSM functional safety management

FTA fault tree analysis

HAZOP hazard and operability study

HIL hardware in the loop
MTTF mean time to failure
MTTF4 mean time to dangerous failure

MTTF 4¢ mean time te*dangerous failure for each channel

PES programmable electronic system
QM guality measures

RAM random-access memory

SOP start of production

SRL software requirement level

SRP safety-related parts

SRP/CS safety-related parts of control systems
SRS safety-related system

UML unified modelling language.

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

5 System design

5.1 Objectives

The objective is to define a development process for producing a design that fulfils the safety requirements for
the entire safety-related system.

5.2 General

Safety requirements constitute all requirements aimed at achieving and ensuring functional safety. During the
safdty life cycle, safety requirements are detailed and specified in ever greater detail at hierarchical levels.
The| different levels for safety requirements are illustrated in Figure 1. For the overall representation of the
prog¢edure for developing safety requirements, see also 5.4. In order to support management of safety
reqlirements, the use of suitable tools for requirements management is recommended.

2/6°]

Risk analysis

Y IS L]

2/7 | Specification of 4/6 4/6
system design
requirements Concept of Safety validation

(functional safety concept) safety validation

! f |
3/5 377 | |37]

System design Concept for >
(technical safety system test
concept)

Y

Integration test
hardware/software

A A

<

3/
N\, - .

A\ ™| Software safety requirements

(design and implementation)
A

Y

3/6

™1 Hardware safety requirements
(design and implementation)

— result
<~— verification

- validation

a8 The first of two numbers separated by a slash refers to the respective part of ISO 25119, and the second to the clause
in that document: 2/6 is ISO 25119-2:2010/Clause 6, 3/5 is ISO 25119-3:2010/Clause 5, and so on.

Figure 1 — Structuring of safety requirements

© 1SO 2010 — All rights reserved 3

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

5.3 Prerequisites

Before beginning system design, define the safety-related function requirements, application and operation

environment.
5.4 Requirements

5.4.1 Structuring safety requirements

The functional safety concept specifies the basic functioning of the safety-related system with which the safety

goals are t¢ be fUIfiiied. The basic aflocation of functional saftety requirements to the system architectu
specified by the technical safety concept in the form of technical safety requirements. This system archited
is comprisefd of both hardware and software.

The hardwgre safety requirements refine and solidify the requirements of the technical ;safety cond
Clause 6 dgscribes how to specify the hardware requirements in detail.

The softwafe safety requirements are derived from the requirements of the technical safety concept and
underlying hardware. The requirements for the software defined in Clause 7 shall be'taken into account.

This claus€| specifies the approach to be used in the specification of the safefy\concept requirements dy
system desjgn, thereby providing a basis for error-free system design.

5.4.2 Fungctional safety concept

5.4.2.1 eneral requirements of functional safety concept

Safety fungtions are normally identified during the system-risk analysis, and the functional safety con
document includes the functional safety requirements for the system.

The implementation for each safety concept requirement shall consider the following.
— Feasibjility
When listing functional safety requitements, attention shall be paid to the feasibility of the requirem
considg¢ring constraints, such as ravailable technology, as well as financial and time resources.
persong in charge of implementation shall understand and accept the technical safety requirements.
— Unambiguousness

The funpctional safetydequirements shall be formulated as precisely and unambiguously as possible.

NOTE | A funetional safety requirement is unambiguously formulated when it permits only one interpretation b
anticipated readers.

e is
ture

ept.

the

ring

Cept

ent,
The

the

— Consisteney

Functional safety requirements shall not be self-contradicting (internal consistency), nor shall they

contradict other requirements (external consistency).

Analyses of the requirements and comparisons between different requirements are necessary to ensure

external consistency. This is a requirement management task.
— Completeness

The functional safety concept shall take all relevant norms, standards and statutory regulations
account.

into

4 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119

-3:2010(E)

The functional safety concept shall take into account all relevant safety goals derived from the risk

analysis according to 1ISO 25119-2.

The completeness of the functional safety concept increases iteratively during system design
completeness:

. To ensure

1) the version of the functional safety concept and the version of the relevant underlying sources shall

be specified;

2) the requirements from change management (see ISO 25119-4:2010, Clause 10) shall be met and,
for this reason, the functional safety requirements shall be structured and formulated to provide

The)
ope

5.4.

Thid
fung

Eac

5.4.

5.4.

The

Ead

support for a modification process;

3) the functional safety requirements shall be reviewed (see ISO 25119-4:2010, Clausge-6).

ration, servicing and decommissioning).

.2 Specification of the functional safety concept

tional safety concept may be derived from the machine failure scenarios evaluated during a ris
h failure scenario description shall include the following:

environmental conditions (moving on an ice covered road; up-hill, down-hill, weather, etc.);
machine conditions (engine running, in-gear, standing still, etc.);

resulting AgPL;

safe state descriptions (engine stoppeéd, valve off, transmission in park, continue function
performance, etc.).

B Technical safety concept

B.1 General requirements of technical safety concept
technical safety concept document includes the technical safety requirements for the system.

h technical <saféty concept shall be associated (e.g. by cross-reference) with higher-|

reqlirements,~which may be

othertechnical safety requirements,

functional safety concept shall consider all phases of the life cycle (includingyproduction, customer

clause presents the information that is required to be specified in the functional safety concept. The

K analysis.

at reduced

evel safety

functional safatv raauiramaents or
HHGHORS-SaHe v eSOt

oo

safety goals and objectives.

NOTE Traceability can be greatly facilitated by the use of suitable requirement management tools.

Just as for the functional safety concept, the implementation of each technical safety concept requirement
shall take account of feasibility, unambiguousness, consistency and completeness.

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

— Feasib

ility

When listing technical safety requirements, attention shall be paid to the feasibility of the requirement
considering constraints, such as available technology, as well as financial and time resources. Those in

charge

of implementation shall understand and accept the technical safety requirements.

— Unambiguousness

The technical safety requirements shall be formulated as precisely and unambiguously as possible.

NOTE

A technical safety requirement is unambiguously formulated when it permits only one interpretation b

the

— Cons

Techni
contrad

Analys
externa

— Completeness

anticip]\ed readers.
i

tency

cal safety requirements shall not be self-contradicting (internal consistency)Oror shall
ict other requirements (external consistency).

bs of the requirements and comparisons between different requirements-are’necessary to en
| consistency. This is a requirement management task.

hnical safety concept shall take the following into account:
safety objectives and functional safety requirements;

relevant norms, standards and statutory regulations;

The teq
1) all
2) all
3) th

itefative support for the technical safety concept during system development.

The ¢

complgteness:

4) th
sp

5) theé requirements from-change management (see 1ISO 25119-4:2010, Clause 10) shall be met
for this reason, the-~technical safety requirements shall be structured and formulated to pro

su

6) the technical-safety requirements shall be reviewed (see ISO 25119-4:2010, Clause 6).

The techni

operation, dervicing and decommissioning).

relevant results from safety analysis tools\(FMEA, FTA, etc.); the safety analysis prov

pleteness of the technical safety concept increases iteratively during system design. To en

Bcified;

bport for a modification process;

cal safety concept shall consider all phases of the life cycle (including production, custo

pure

des

pure

version of the technical safety:Concept and the version of the relevant underlying sources shall be

and,
vide

mer

5.4.3.2 Specification of the technical safety concept

5.4.3.21

General

The technical safety concept shall include hardware and software safety requirements sufficient for the design
of the unit of observation, and shall be determined in accordance with 5.4.3.1.

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

5.4.3.2.2 States and times

The behaviour of the unit of observation, its modules and their interfaces shall be specified for all relevant
operating states, including

start-up,
normal operation,

shut-down,

In darticular, failure behaviour and the required reaction shall be described exactly-2Additional
opefation functions may be included.

The)

the pafe state, and the maintenance of the safe state. In particular, it shall.be)specified whether shy

unit
shu

The
elap
time

If np safe state can be achieved by a direct shut down, a time shall be defined during whic

emse

opefation function shall be documented in the technical safety concept.

5.4.3.2.3 Safety architecture, interfacés-and marginal conditions

The

spetified. The technical safety congept shall separately describe the following modules (as applica

restart after reset, and

reasonably foreseeable unusual operating states (e.g. degraded operating states).

technical safety concept shall specify a safe state for each functional saféty requirement, the

of observation immediately represents a safe state, or if a safe state can only be attained by
down.

technical safety concept shall specify for each functional safety requirement the maximum tin
se between the occurrence of an error and the attainment.of a safe state (response time). A
s for subsystems and sub-functions shall be specified in\the technical safety concept.

rgency operation function has to be sustained-for all subsystems and sub-functions. This

safety architecture and its sub-modules shall be described. In particular, the technical measu

sensor system, separatefor each physical parameter recorded;
miscellaneous digital’and analogue input and output units;
processing, separate for each arithmetic unit/discrete logical unit;
actuator system, separate for each actuator;

displays, separate for each indicator unit;

emergency

transition to
tting off the
A controlled

he that may
Il response

h a special
emergency

res shall be
ble):

miscellaneous electromechanical components;
signal transmission between modules;
signal transmission from/to systems external to the unit of observation;

power supply.

The interfaces between the modules of the unit of observation, interfaces to other systems and functions in
the machine, as well as user interfaces, shall be specified.

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

Limitations and marginal conditions of the unit of observation shall be specified. This applies in particular to
extreme values for all ambient conditions in all phases of the life cycle.

6 Hardware

6.1 Objectives

The objective is to define acceptable hardware architectures for safety-related control systems.

6.2 General

Improving the hardware structure of the safety-related parts of a control system can provide méasures for
avoiding, detecting or tolerating faults. Practical measures can include redundancy, diversity and monitoring.

In general, the following fault criteria should be taken into account.

— If, as p consequence of a fault, further components fail, the first fault and-all” following faults|are
considered to be a single fault.

— Two or more separate faults having a common cause are regarded as,a single fault (known as common
cause failure).

— The sirultaneous occurrence of two independent faults is considered highly unlikely.

6.3 Prerequisites

The prerequisite is AgPL,, determined for each safety function to be realized by the hardware.

6.4 Requirements

The hardwgre development process shall begin at the system level where safety functions and associated
requirements are identified (see Figure 2).

The hardware safety analysis shall be‘used to identify the performance level (AgPL,) for each system sgfety
function (se€le ISO 25119-2).

The designer shall group functions into appropriate architectures (hardware category) with associated
MTTF4c, DL and CCF.

The system may be broken down into subsystems for easier development.

Each phasg of the’development cycle shall be verified.

8 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

From Figure 1:
V-Model
System design

\

I1ISO 25119-3:2010(E)

To Figure 1:

V-Model

Intergration test
hardware/software

r

B

Hardware safety
requirements and analysis

Concept for

" | hardware validation

]

A

Y

Hardware safety validation

3/6

A

Key,|

I . result
<~— verification
| — validation
a

Figure 2 — Hardware development V-model

The| design procedure for the hardware system architecture is as follows.

a) |Select achardware category (see ISO 25119-2:2010, Annex A).

b) |ldentify the component operating environment and stress level.

nic.

Yy v]
3/6 Concept for 3/6
Hardware system hardware system > Hardware system
architecture and design integration integration
P L !
3/6 3/6
Hardware
. Hardware subsystem test
subsystem design
!
Concept for
hardware <
subsystem test O(
S
Z
O

The first of two numbers separated by a slash refers to this part of ISO 25119 and the second to Clause §.

oAl 3 NV
Cc OCTCCT CUTTTPOUTCTIIST

d) Calculate and verify that the MTTF 4 meets the required level (see ISO 25119-2:2010, Annex B).

e) Determine and verify that the DC meets the required level (see ISO 25119-2:2010, Annex C).

f) Consider CCF (see ISO 25119-2:2010, Annex D).

g) Consider systematic failures (see ISO 25119-2:2010, Annex E).

h) Consider other safety functions (see ISO 25119-2:2010, Annex F).

NOTE

© 1SO 2010 — All rights reserved

Iteration could be required for the above steps.

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

6.5 Hardware categories

The safety-related parts of control systems shall be designed in accordance with the requirements of one or
more of the five categories specified in ISO 25119-2:2010, Annex A.

When a safety function is realized by an integrated combination of multiple hardware categories, the resulting
safety function, AgPL, is limited by the overall hardware category: MTTF 4, DC, SRL, CCF, etc. (see Figure 3).

To determine the overall SRL, see 7.3.4.7.

Cat B/ Cat B/
s s
| - L -l O . L O of| | - L »1-0
A A /
o E]
L =
|
|
Y
s
TE ° 4 ote

Cat 2 (complete system)

Key

| input device (e.g. sensor) S, interconnecting signal input
L logic Sy interconnecting signal output
(0] outpuf device (e.g. actuator) m monitoring

TE test efjuipment Cat hardware category

OTE outpuf of test equipment

Figure 3 = Integrated system with maximum AgPL for category 2

6.6 Work products

The following-work products are applicable to hardware design:

a) hardware safety validation test plan;

b) hardware safety validation test specification;

c) hardware safety validation test results;

d) hardware system integration test plan/hardware subsystem test plan;
e) hardware system integration test specification;

f) hardware system integration test results/hardware subsystem test results.

10 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

7 Software

7.1 Software development planning

7.1.1 Objectives

The objective is to determine and plan the individual phases of software development. This includes the
process of software development itself, which is described in this clause, as well as the necessary supporting
processes described in ISO 25119-4:2010, Clause 10.

7.1.2 General

Figdre 4 illustrates the process for developing software. In the following paragraphs and tables, pach box in
the diagram is explained in detail.

Appropriate techniques/measures should be selected according to the required SRL. 'Given the large number
of factors that affect software safety integrity, it is not possible to give an~algorithm for combining the
techniques and measures that are correct for any given application. Fer @ particular appljcation, the

appfopriate combination of techniques or measures should be stated during.safety planning, with [appropriate
techniques or measures being selected according to the requirements in, 7:474.

7.1.B Prerequisites

The| prerequisites in this phase are

— |the required SRL as determined by the AgPL, for each’safety function to be realized,
— |the project plan (including system developmentplan),

— |the system verification plan,

— |the technical safety concept,

— |the system design specificatioh, and

— |the safety plan.
714 Requirements

7.1.41 Phase.determination

For|the softivafe development process, it shall be determined which phases of software development (see
Figdre 4)\are to be carried out. The extent and complexity of the project shall be taken into agcount. The
phapes.can be carried out according to Figure 4, without modification, or individual phases can bg combined,

if allbwork-products-of the combined-phases-are generated
L L ~J

NOTE It is common to combine individual phases if the method used makes it difficult to clearly distinguish between
the phases. For example, the design of the software architecture and the software implementation can be generated
successively with the same computer-aided development tool, as is done in the model-based development process.

Other phases can be added by distributing the activities and tasks.

EXAMPLE The application of data can be inserted as a separate phase before the safety validation of the electronic
control unit. The safety validation of the ECU can be conducted differently depending on the distribution of the functions —
as a test of particular ECU or as a test of the combined control network. It could be conducted at the test location of the
component systems or at the laboratory vehicle.

© 1SO 2010 — All rights reserved 11

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

71.4.2

Process flexibility

Activities and tasks may be moved from one phase to another.

7143

Process timetable

A timetable shall be set up showing the relationship between the individual phases of the software
development and the product development process including the integration steps at machine level.

71.4.4

Applicability

After the schtware safety requirement specification has been completed according to Table 1, it shoulg

determined

9

L

7145
Supporting

a) thewo

b) changs

c) the wor

g

4

NOTE
result from c

7.1.4.6 H
For each

measures,
tools shall b

These sele
made at thg

When sele
model-basg
generated f

NOTE T
software deVv

which software safety requirements shall be applied to which integration steps.

upporting processes

processes shall be planned and implemented as part of the software development process:
k products shall be documented according to ISO 25119-4:2010, Clause\12;

s to the software shall be dealt with according ISO 25119-4:2010, Clause 10;

k products shall be subject to the configuration managementprocess.

bupporting process b), above, includes a strategy for dealingwith' the different branches of the software
hanges, including the merging of these branches.

hases of software development

bhase of software development, the selection of the appropriate development methods
he corresponding tools, and the guidelinesfor the implementation of the methods, measures
e carried out according to the SRL.

ctions shall be justified with regard to the appropriateness to the application area, and sha
beginning of each development phase.

Cting methods and measures, it needs to be kept in mind that, in addition to manual cog
d development can-be)applied in which the source code or the object code is automati
fom models.

[he selection gf.coordinated methods and measures offers the possibility of reducing the complexi
elopment.

be

that

and
and

| be

ing,
cally

y of

12

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

From Figure 1: T(i/_F&/?:(;ZH:
V-Model . Intergration test
System planning hardware/software

A

Y v
377 317

Concept for
Software safety software validation Software safety validation
requirements and analysis

V¥ L |

37 Concept for 3T
Software > software system > Integration testing
architecture and design integration (module)
v L f
37 Concept for 37
Software module design [®| software module =% Soft e testi
and implementation test oftware modulle testing

<
C
\O
AN
N
%
&
\

Key,|
I . result
<~— verification
| — validation
a

The first of the two numbers separated by a slash refers to this part of ISO 25119 and the second to Claupe 7.
Figure 4 — Software development V-model

71.4.7 Using thetables

Forlevery development method and measure, Tables 1 to 6 present an entry for each of the four|SRL, using

“,» “ o,

either the symbol “+” or “0”:

+ . the'method or measure shall be used for this SRL, unless there is reason not to, in whigh case that
reason shall be documented during the planning phase;

o there is no recommendation for or against the use of this method or measure for this SRL.

In a table, an “0” may appear to the right of a
available for the same SRL.

“w,

+”. This means a more rigorous measure or technique is

Methods and measures corresponding to the respective SRL shall be selected. Alternative or equivalent
methods and measures are identified by letters after the number. At least one of the alternative or equivalent
methods and measures marked with a “+” shall be selected.

If a special method or measure is not listed in the tables, this does not mean that such a method or measure

may not be used. If an unlisted method or measure is substituted for one listed in the table, it shall be one that
has an equivalent or higher value.

© 1SO 2010 — All rights reserved 13

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.1.5 Work products

The work product applicable to this phase is the software project plan resulting from 7.1.4.2 to 7.1.4.4 (see
also 1ISO 25119-4:2010, Clause 6).

7.2 Software safety requirements specification

7.2.1 Objectives

The first objective is to derive the software safety requirements, including the SRL, from the technical safety
requiremens:

The second objective is to verify that the software safety requirements are consistent with the technical sgfety
concept.

7.2.2 Gernleral

The softwafe safety requirements specification should be derived from the requirements of the techmical
safety congept of the system, and labelled as software safety requirements. At least-the following should be
taken into dccount:

a) adequate implementation of the technical safety concept in the softwaré;

b) system configuration and architecture;

c) design|of the E/E/PES system hardware;

d) responpe times of the safety functions;

e) externgl interfaces, such as communication;

f) physical requirements and environmental conditions as far as they affect the software;

g) requirements for safe software modification.

NOTE Iterations are required between the hardware and software development of the system. During the procegs of
further spedifying and detailing the software safety requirements and the software architecture, there may be
repercussions on the hardware architecture. For this reason, close cooperation between the hardware development and

the software

7.2.3 Pre

The followin

development is necessary.
equisites

g are the\prerequisites for the software safety requirements specification:

— softwarle preject plan according to 7.1.4.2 to 7.1.4.4;

7.24 Req

7.241

technical safety concept according to 5.4.3;

hardware categories according to 6.5.

uirements

Software safety requirements specification methods

The software safety requirements specification shall be in accordance with Table 1.

14

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

Table 1 — Software safety requirements specification

Technique/measure? Subclause SRL=B SRL=1 SRL=2 SRL=3
1 Requirements specification in natural 792411 + + + +
language
2a Informal design methods? 72412 + + o] o]
2b Semi-formal design methods 72413 o] o] + +
2c Formal design methods 72414 o o] + +
3 —Computer-aided-specification-tosls F2-4-4-5 o o ' +
4a Inspgctlon ofasoftware safety ISO 25119-1:2010, 3.28 N N) N
requirements
4b Walk_-through of software safety ISO 25119-1:2010, 3.56 + + o o
requirements
Seg 7.1.4.7 for instructions on the use of this and the other tables.

@ | Appropriate techniques/measures shall be selected according to the SRL. Alternative (oryequivalent techniques/
indi¢ated by a letter following the number. Only one of the alternative or equivalent techniques/nieasures need be satisfied

[neasures are

NOTE 1 Ways of modelling which possess a complete syntax definition and a complete semantic definition with
summarized in item 2c. Formal methods admit to formal verification and automatic ‘test case generation. Examples
madhines connected to formal verification.

NOTE 2 Ways of modelling which possess a complete syntax definition and a semantic definition without calculus ar
in itgm 2b. Examples include structured analysis/design and graphic ways of modelling, such as UML class diagrams or bl

NOT
have

E 3 In case of model-based development with code generation,, the methods and measures for software archit
to be applied to the functional model, which will serve as the basis for code generation.

calculus are
include state

b summarized
ck diagrams.

bctural design

7.24.11 Requirements specification in natural language

724111 Aim

The

7.24.1.1.2 Description

The)
and

72412 Informal design methods

7.24.1.24 Aim

Toé

specification requirements shall be introduced in natural language (i.e. ordinary spoken and wiitten).

software safety requitfements specification shall include a description of the problem in natura
if necessary, further informal methods, such as figures and diagrams.

language,

7.241.2.2 Description

Informal methods shall provide a means of developing a description of a system at some stage in its
development, i.e. specification, design or coding, typically by means of natural language, diagrams, figures,

etc.

© 1SO 2010 — All rights reserved

15

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

72413

7.2.4.1.31

Semi-formal design methods

Aim

Semi-formal design methods shall express a concept, specification or design unambiguously and consistently,

so that some mistakes and omissions can be detected.

7.2.4.1.3.2 Description

Semi-formal methods for software design shall be used to provide a means of developing a description of a
system at spme-stage-in-itsdevetopmentte: Dpcuiﬂuatiuu, designor-coding:

EXAMPLE Data flow diagrams, finite state machines/state transition diagrams.

The descrigtion shall in some cases be analysed by machine or animated to display various_aspects of| the
system behaviour. Animation shall give extra confidence that the system meets the requirements.

7.2.41.4 |Formal desigh methods

7.24.1.41 Aim

The development of software in a way that is based on mathematics shall\include formal design and fofmal
coding techhiques.

7.241.4.2 Description

Formal methods shall provide a means of developing a description of a system at some stage in its
specification, design or implementation. The resulting description is in a strict notation that shall be subjefted
to mathemfatical analysis to detect various classes_\0f inconsistency or incorrectness. Moreover, [the
description [shall in some cases be analysed by machine with a rigour similar to the syntax checking pf a
source program by a compiler, or animated to.display various aspects of the behaviour of the sydqtem
described. Animation shall give extra confidence\that the system meets the real requirement as well as| the

formally spgcified requirement, because it improyes human recognition of the specified behaviour.

A formal m
technique fi
for different

7.241.5

7.241.51

To facilitate

br deriving a description jn that notation, and various forms of analysis for checking a descrig
correctness properties.

Computer-aided_specification tools
Aim

automatic detection of ambiguity and completeness, formal specification techniques shall be U

7.2.4.1.5.2

bthod shall generally offer a-notation (normally some form of discrete mathematics being used), a

tion

sed.

Description

The technique shall produce specifications in the form of a database that can be automatically inspected to
assess consistency and completeness. The specification tool shall animate various aspects of the specified
system for the user. In general, the technique supports not only the creation of the specification but also of the
design and other phases of the project life cycle.

7.24.2 Non-safety—related functions

If functions additional to the safety functions are carried out by the E/E/PES, these shall be specified, or
reference shall be made to their specifications.

16 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

If the requirements specification includes both the functional requirements and the safety requirements, the
latter should be clearly identified as such.

7.24.3 Level of detail

The software safety requirements specification shall contain enough detail to implement the safety function in
the software.

7.2.4.4 Consistency

Th
safe

7.24.5 Hardware and software co-dependency

The]
harg

7.24.6 Software safety requirements specification

The]
rele

£, £k : 4 laalllo + ol ol ik & aklatlo H+ ' £
SUTIWAIT odiTly TCTUUITTTIITITIS STidll VT TTUalt aulT ariu CUTTISTSITTIU WILIT TS SpPTuliuatiultis - Ul

ty requirements and the system architecture.

software safety requirements specification shall specify the safety-related depenhdencies b
ware and the software, if relevant.

software safety requirements specification shall describe software safety requirements for the
vant.

Functions that enable the system to achieve or maintain a'safe state.

Functions related to the detection, indication and handling of faults in the ECU, sensors, ag
communication system.

Functions related to the detection, indication\and handling of faults in the software itself (self
of the software).

NOTE 1 This includes both the self-monitoring of the software in the operating system, and an applic
self-monitoring of the software aimed(atjdetecting systematic faults in the application software.

Functions related to the onlineand offline tests of the safety functions.
NOTE 2 Self-testing can-be carried out during operation and when the vehicle is started.

NOTE 3 This refers”in particular to the testability of the safety functions in customer service or t
E/E/PES systems:

Functions.that allow modifications of the software to be carried out safely.

Interfaces with functions that are not safety-related.

the system

etween the

following, if

tuators and

supervision

ation-specific

hrough other

Petformance and reaction time

Interfaces between the software and the hardware of the electronic control unit.

NOTE 4 The interfaces also include programming and configuration.

The requirements for the safety integrity of the software are

the SRL for each of the functions listed above, and

the acceptance criteria for the software safety validation of the software safety requirements.

© 1SO 2010 — All rights reserved

17

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.2.4.7 Software safety requirements verification

The software safety requirements shall be examined to determine if they comply with the requirements given
in7.24.1 to 7.2.4.6. The software safety requirements shall also be examined to determine it they are
consistent with the technical safety concept. The software developers shall participate in the verification
activities. The verification methods may be either of two types: inspection or walk-through (as defined in

ISO 25119-

1).

7.2.5 Work products

The followingwark products are applicable to this phase-

a)
b) non-sa
c) accept
d)

7.3 Softyware architecture and design

7.3.1 Obj
The objecti
using softw
software co

7.3.2 Gen

The softwal
another in 3
component
described.

7.3.3 Pre

The softwa
reached a g

softwafe safety requirements specification according to 7.2.4.1 and 7.2.4.3 to 7.2.4.6;

verification report on the software safety requirements specification resulting fronTv7.2.4.7.

fety-related software requirements specification according to 7.2.4.2;

hnce criteria for the software safety requirements, according to 7.2.4.6;

bctives
e of the software architecture is the implementation and)structuring of all software requirem

are components. It should be ensured that all software safety requirements are fulfilled byj
mponents allocated to them.

eral

re architecture is a representation of all*software components and their interactions with
hierarchical structure. The static aspécts, such as the interfaces and data paths of all the softy
5, as well as the dynamic aspects, jsuch as process sequences and time behaviour, shoulg

equisites

re architecture is dnly“to be started after the software safety requirements specification
ufficient degree of-maturity.

ents
the

one
vare
be

has

18

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-

7.3.4 Requirements

7.3.41

The

Software architecture and design methods

software architecture and design shall be developed in accordance with Table 2.

Table 2 — Software architecture and design

3:2010(E)

Technique/measure? Subclause SRL=B SRL=1 SRL=2 SRL=3
1a _Informal dpqign methods?@ 712412 + + Q lo}
1b | Semi-formal design methods 72413 o] o] + +
1c | Formal design methods 72414 o] o] + +
2 | Computer-aided specification tools 72415 o] o + +
3 | Bottom-up failure analysis 7.3.4.11 o] o] o] +
4 | Top-down failure analysis 7.34.1.2 o] o] + +
5a | Inspection of software architecture® 1ISO 25119-1:2010, 3.28 + + + +
5b | Walk-through of software architecture | ISO 25119-1:2010, 3.56 + + o] 0
Seg 7.1.4.7 for instructions on the use of this and the other tables.
@ | Appropriate techniques/measures shall be selected according to the<SRL. Alternative or equivalent techniques/ineasures are
indi¢ated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied
7.3.4.1.1 Failure analysis — Bottom-up methods
734111 Aim
Thel analysis of events or combinations\of“events that will lead to a hazard or serious consequence shall be
supported by bottom-up methods.
7.3.4.1.1.2 Description
Stafting at an event which would be the immediate cause of a hazard or serious consequence (the “bottom
eveft”), analysis shall\bé/carried out along a tree path. Combinations of causes are described [with logical
opefators (and, or, efc’). Intermediate causes are analysed in the same way, and so on, back to hasic events
whdre analysis stops. The method is graphical, and a set of standardized symbols is used to draw the fault
tree
EXAMPLE FMEA, HAZOP or FMECA method.
7.3.4.12 Failure analysis — Top-down methods
7.3.41.21 Aim

Top-down methods shall be used to rank the criticality of components which could result in injury, damage or
system degradation through single-point failures, in order to determine which components might need special
attention and necessary control measures during design or operation.

7.3.41.2.2 Description

Criticality can be ranked in many ways. The criticality number is a function of a number of parameters, most of
which have to be measured. A very simple method for criticality determination is to multiply the probability of

© 1SO 2010 — All rights reserved 19

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

component failure by the damage that could be generated; this method is similar to simple risk factor
assessment.

NOTE These techniques are mainly intended for the analysis of hardware systems, but there have also been
attempts to apply this approach to software failure analysis, examples being FTA, ETA and “cause and effect” diagrams.

7.3.4.2 Design method characteristics

The selected design method shall have characteristics supporting

a) abstraction, modularity, encapsulation and other characteristics that make complexity manageable,

b) the degcription of

— funpctionality,

— the information flow between the components,

— process control and information regarding time,

— time limitations,

— copcurrent processes, if relevant,

— dafa structures and their characteristics, and

— aspumptions in the design and their dependencies,
c) the understanding of the developers and others involved,
d) capability for software modification, and
e) verification and validation.
7.3.4.3 Software architecture structure

A software |architecture shall be developed that describes the hierarchical structure, based on the softyare
safety requirements, of all the safety-related software components.

NOTE At the top level of-thie/software architecture, there is usually a separation into basic software and application
software.

7.3.4.4 Level of detail

The hierarchicalsstructure of the software architecture shall end with the software modules at the lowest level.

When developing the software architecture, the extent of the safety-related components should be kept as
small as possible.

7.3.4.5 Software architecture traceability
Bi-directional traceability between software architecture and software safety requirements shall be realized.

7.3.4.6 Software architecture verification

The software architecture shall be verified. It shall be examined whether the designed architecture satisfies
the software safety requirements. The software developers shall participate in the verification activities. The
verification method may be either of two types: inspection or walk-through (as defined in ISO 25119-1).

20 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

7.3.4.7 Combination of safety-related software components
If the embedded software has to implement software components with different SRL or safety-related and
non-safety-related software components, then the overall SRL is limited to the component implemented with

the lowest SRL, unless adequate independence (see Annex B) between the software components can be
demonstrated.

7.3.5 Work products

The following work products are applicable to this phase:

a) |software architecture according to 7.3.4.1 to0 7.3.4.5;

b) |a software architecture verification report resulting from 7.3.4.6.
7.4| Software module design and implementation

7.4/1 Objectives

Thel first objective is to specify in detail the behaviour of the safety-related software modulgs that are
pregcribed by the software architecture.

The| second objective is to generate a readable, testable and maintainable source (code, model, gtc.) suitable
to be translated into object code.

Thel third objective is to verify that the software architecture has been fully and correctly implementgd.
7.4 General

7.4.3 Prerequisites

Thelfollowing are the prerequisites for seftware module design and implementation:
— | software project plan (see 7.14.2'to 7.1.4.4);

— |software requirements [see 7.2.5 a) and b)];

— | software architecture’(see 7.3.4.1 to 7.3.4.5);

— | software verification plan (see ISO 25119-4:2010, Clause 6).

7.44 Requirements

7.4.|4.1 Software module design and implementation methods

Software shall be designed and developed in accordance with Table 3.

© 1SO 2010 — All rights reserved 21

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

Table 3 — Software design and development — Support tools and programming language

Technique/measure? Subclause SRL=B | SRL=1 SRL=2 | SRL=3
1 Tools and programming language
1.1 Suitable programming language 74411 + + + +
1.2 Strongly typed programming language 74412 o] + + +
1.3 Language subset 74413 o] + + +
1.4 Ig?llzz:g‘;rrfgrsr:al::;s: increased 74414 o N N N
1.5 Uge of trusted/verified s_oftware modules 74415 o o + N
and components (if available)
2 Design/methods
2.1a Infermal design methods? 72412 + + o] o]
2.1b Semi-formal design methods 72413 o o + +
2.1c Formal design methods 72414 o] o + +
2.2 Defensive programming 74416 o] o] o] +
2.3 Strlctured programming 74417 o + + +
2.4 Mogdular approach 74418 o o] o] +
2.5 Libfary of trusted/verified software modules 74419 + + 4 4
andl components
2.6 Computer-aided design tools 7.4.4.1.10 o] o] o] +
3 Design|and coding standard
3.1 Use of coding standard 7.4.4.1.11 o] o] + +
3.2 No|dynamic variables or objects 7.4.41.12 o] o o] +
3.3 Linited use of interrupts 7.4.41.13 o o] o] +
3.4 Defined use of pointers 7.4.41.14 o o] o +
3.5 Linited use of recursion 7.4.41.15 o] o o] +
4 Design|land coding verification
4a Inspection of software@esign and/or ISO 25119-1:2010, 3.28 N N N N
sogrce code?
4b Wﬂlk-through ofiseftware design and/or ISO 25119-1:2010. 3.56 + + o o
soyrce code
See 7.1.4.7 ffor instructions on the use of this and the other tables.
@ Appropriité_techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/measures| are
indicated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied.

7.4.4.1.1 Suitable programming language

744111 Aim

The aim is to choose a programming language to support the requirements of ISO 25119 as much as possible,
in particular defensive programming, structured programming and possibly assertions. The programming
language chosen shall lead to easily verifiable code, and facilitate program development, verification and
maintenance.

22 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119

74.411.2 Description

-3:2010(E)

The language shall be fully and unambiguously defined. The language shall be user- or problem-orientated
rather than processor/platform machine-orientated. Widely used languages or their subsets are preferred to
special-purpose languages.

In addition to the already referenced features, the language shall provide for

block structure,

translation time checking. and

If s
for

app
dev
lang
sha

run-time type and array bounds checking.

language shall encourage:

the use of small and manageable software modules,

restriction of access to data in specific software modules,

definition of variable sub-ranges, and

any other type of error-limiting constructs.

exception/interrupt handling. It is desirable that the_language be supported by a suitablg
ropriate libraries of pre-existing software modulesyca~debugger, and tools for both version
blopment. At the time of developing this part of 1SO 25119, it is not clear whether objed
uages are to be preferred to procedural languages. The following features which make verifice
| be avoided:

unconditional jumps, excluding subroutine calls;

recursion;

pointers, heaps, or any type-o0f dynamic variables or objects;

handling of interruptsat,source code level,

multiple entries dr-exits of loops, blocks or subprograms;

implicit variable initialization or declaration;

variantrecords and equivalence;

procedural parameters.

fe operation of the system is dependent upon real-time constraints, then the language shall also provide

translator,
control and
t-orientated
tion difficult

Low-level languages, in particular assembly languages, present problems due to their processor/platform
machine-orientated nature. A desirable language property is that the design and use result in programs whose
execution is predictable. Given a suitably defined programming language, there is a subset which ensures that
program execution is predictable. This subset cannot (in general) be statically determined, although many
static constraints can assist in ensuring predictable execution. This would typically require a demonstration

that

array indices are within bounds, and that numeric overflow cannot arise, etc.

© 1SO 2010 — All rights reserved

23

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.4.4.1.2

7.441.21

Strongly typed programming language or guideline checking

Aim

The probability of faults shall be reduced by using a language or programming practice which permits a high
level of checking by the compiler or static analysis tool.

7.4.41.2.2

Description

When a strongly typed programmmg Ianguage is complled or statlcaIIy analysed many checks need to be

made on h
shall fail an

g

4

NOTE
as integer, rq
ensure the ¢
compiled uni
from separat]

74413

7.4.41.31

The use of
probability d

7.4.413.2
The progrg
error-prone

then be exa
in the langu

74414

7.4.41.41

Tools and
translator fa

7.4414.2

A translato
number of
avoided un

\A' VaIIaIJIC LypGD al'c UOUU \IUI GAGIII}JIG III pIUbGUUIU deID allu CI\LUIIIGI ual.a auucaa} \JUIII}JII

i produce an error message for any usage that does not conform to predefined rules.

buch languages usually allow user-defined data types to be defined from the basic language data types (
bal). These types can then be used in exactly the same way as the basic type. Strict checks are impos¢
prrect type is used. These checks are imposed over the whole program, even if this is built)from separ
[s. The checks also ensure that the number and type of procedure arguments match, even when refere
ely compiled software modules.

Language subset
Aim

A language subset shall reduce the probability of introducing{programming faults and increase
f detecting any remaining faults.

Description
mming language shall be examined to determine programming constructs which are e
or difficult to analyse (e.g. using static analysis methods). These programming constructs §

luded and a language subset defined. Also; it shall be documented as to why the constructs U
age subset are safe.

Tools and translators — Increased confidence from use
Aim

translators which aré-proven in use shall be applied, in order to avoid any difficulties du
ilures which can arise during development, verification and maintenance of software packages

Description

shall Be*used where there has been no evidence of improper performance over a substa
briof, projects. Translators without operating experience or with any serious known faults sha
ess there is some other assurance of correct performance. If the translator has shown s

tion

such
bd to
ately
hced

the

ther
hall
sed

to

11

ntial
| be
mall

deficiencies,

project.

NOTE 1

the related language constructs are noted down, and caretully avoided during a satety-rel

a serious handicap to software development and make a safety-related software development generally unfeasible.

NOTE 2

24

It is recognized that no method currently exists to prove the correctness for all tool or translator parts.

ated

This description is based on experience from many projects. It has been shown that immature translators are

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

74415

744151

ISO 25119-

Use of trusted/verified software modules and components (if available)

Aim

3:2010(E)

Trusted/verified software modules and components shall be used to avoid the need for software modules and
hardware component designs to be extensively revalidated or redesigned for each new application. This
allows the developer to take advantage of designs which have not been formally or rigorously verified, but for
which considerable operational history is available.

7.4.415.2

Description

Thi

measure shall verify that the software modules and components are sufficiently free from

des|gn faults and/or operational failures. Only in rare cases will the employment of trusted softwg
and| components (i.e. those which are proven in use) be sufficient as the sole measure to ens
necgssary SRL is achieved. For complex components with many possible functions (e.g. operating
is epsential to establish which functions are actually sufficiently proven in use. For example, wher|

rou
self:

Ac
fulfi

NOT

To

ne is provided to detect hardware faults, but no hardware failure occurs withinsthe operating
test routine cannot be considered as being proven by use.

bmponent or software module can be sufficiently trusted if it is already‘verified to the required
s the following criteria:

unchanged specification;

systems in different applications;

at least one year of service history;

all of the operating experience of the software,module shall relate to known demand profilg
that increased operating experience leads t6 an increased knowledge of the behaviour of {

module;

no safety-related failures.
E Failures which might not.be\safety-critical in one context can be safety-critical in another, and vice

bnable verification that alcomponent or software module fulfils the above criteria, the follow

systematic
re modules
ire that the
j system), it
B a self-test
period, the

SRL, orif it

s, ensuring
ne software

versa.

ng shall be

pftware and

docpmented:

a) |exact identification of each system and its components, including version numbers (for s
hardware);

b) |identification of users and time of application;

c) |opérating time;

d) procedure for the selection of the user-applied systems and application cases;

e) procedures for detecting and registering failures, and for removing faults.

7.4.41.6 Defensive programming

74.416.1 Aim

Defensive programming shall be used to produce programs which detect anomalous control flow, data flow or
data values during their execution, and which react to these in a predetermined and acceptable manner.

© 1SO 2010 — All rights reserved

25

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.4.4.1.6.2 Description

Many techniques can be used during programming to check for control or data anomalies. The techniques
used shall be applied systematically throughout the programming of a system to decrease the likelihood of
erroneous data processing. There are two overlapping areas of defensive techniques. Intrinsic error-safe
software is designed to accommodate its own design shortcomings. These shortcomings can be due to
mistakes in design or coding, or to erroneous requirements. Techniques include the following:

— range checking the variables;

— checking values for plausibility;

— type, d|mension and range checking parameters of procedures at procedure entry.

This first set of defensive techniques helps to ensure that the numbers manipulated by the ‘program|are
reasonable) both in terms of the program function and physical significance of the variables.

Read-only and read-write parameters shall be separated, and their access checked. Functions shall tregt all
parameters| as read-only. Literal constants shall not be write accessible. Thishelps detect accidgntal
overwriting [or mistaken use of variables. Fault tolerant software is designed to ¢expect” failures in its pwn
environmerft or use outside nominal or expected conditions, and behave in a predefined manner. Technidques
include the following:

— checking input variables and intermediate variables with physical significance for plausibility;

— checking the effect of output variables, preferably by directiobservation of associated system dtate
changgs;

— checking by the software of its configuration, including-both the existence and accessibility of expegted
hardwdre, and also that the software itself is complete — particularly important for maintaining integrity
after miaintenance procedures.

Some of tHe defensive programming techniques,’such as control flow sequence checking, also cope with
external failures.

7.4.41.7 |Structured programming

744171 Aim

Structured programming shall’be used to design and implement the program such that it is practical to analyse
without being executed.

7.4.41.7.2 Description

The following-shall be carried out so as to minimize structural complexity.

a) Divide the program into appropriately small software modules, ensuring they are decoupled as far as
possible and all interactions are explicit.

b) Compose the software module control flow using structured constructs, i.e. sequences, iterations and
selection.

c) Keep the number of possible paths through a software module small, and the relation between the input
and output parameters as simple as possible.

d) Avoid complicated branching. In particular, avoid unconditional jumps (go-to) in higher-level languages.

e) Where possible, relate loop constraints and branching to input parameters.

26 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

f) Avoid using complex calculations as the basis of branching and loop decisions. Features of the
programming language which encourage the above approach shall be used in preference to other
features which are (allegedly) more efficient, except where efficiency takes absolute priority.

7.44.1.8 Modular approach

7.4.4.1.8.1 Aim

A modular approach shall be used for a decomposition of the software system into small comprehensible
parts, in order to manage the complexity of the system.

7.4.|4.1 8.2 Description

A modular approach (modularization) presupposes a number of rules for the design, codirig“and maintenance
phapes of a software project. These rules vary according to the design method employed: For the|methods of
this|part of ISO 25119, the following apply.

— | A software module shall have a single well-defined task or function to fulfil,

— |Connections between software modules shall be limited and strictly ‘defined; coherence in ophe software
module shall be strong.

— | Collections of subprograms shall be built, providing several levels of software modules.
— | Software module size shall be restricted to a specified Value, typically two to four screen sizes
— | Software modules shall have a single entry and a single exit.

— | Software modules shall communicate with other software modules via their interfaces. Where global or
common variables are used they shall be~well structured, access shall be controlled, and thgir use shall
be justified in each instance.

— | All software module interfaces shall be fully documented.

— | Any software module interfaceshall contain only those parameters necessary for its function.
7.44.1.9 Library of trusted/verified software modules and components

744191 Aim

A library of trusted/verified software modules and components shall be used to avoid the need for extensive
revalidation «0r_redesign for each new application. This method allows the developer to reuse degsigns which
havg not been formally or rigorously validated, but for which considerable operational history is avdilable.

744192 Description

In order to be well-designed and structured, E/E/PES shall be composed of hardware components, software
components and software modules which are clearly distinct, and which interact with one another in clearly
specified ways.

E/E/PES designed for differing applications can contain a number of software modules or components which
are the same or very similar. Building up a library of such generally applicable software modules allows many
of the resources necessary for validating the designs to be shared by more than one application.

Furthermore, the use of such software modules in multiple applications provides empirical evidence of

successful operational use. This empirical evidence justifiably enhances the trust which users are likely to
have in the software modules.

© 1SO 2010 — All rights reserved 27

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.4.4.1.10 Computer-aided design tools

7.4.41.10.1 Aim

CAD tools shall be used to carry out the design procedure more systematically, and to include appropriate
automatic construction elements which are already available and tested.

7.4.4.1.10.2 Description

CAD tools shall be used during the design of both hardware and software when available and justified by the
complexity ift i
extensive
related sys

istory of satisfactory use, or by independent verification of their output for the applicable_safety-
m.

7.4.4.1.11 |Use of coding standards

7.44.1.11.1 Aim

Coding standards shall be used to facilitate verifiability of the produced code.

7.4.4.1.11.3 Description
The detailed rules shall be fully agreed upon before coding. These rulesitypically require
— details jof modularization, e.g. interface shapes, software module'sizes,

— use of encapsulation, inheritance (restricted in depth) and polymorphism, in the case of object-orientated
languages,

— limited|use or avoidance of certain language constructs such as “go-to”, “equivalence”, dynamic objgcts,
dynam|c data, dynamic data structures, recursion, pointers and exits,

— restrictlons on interrupts enabled during,the’execution of safety-critical code,
— layout ¢f the code (listing), and
— no uncpnditional jumps (for example “go-to”) in programs in higher-level languages.

These ruleg enable ease of'software module testing, verification, assessment and maintenance. Therefore,
they shall take into account\available tools in particular analysers.

7.4.4.1.12 [Design'and coding standards — No dynamic variables or objects

7.4.4.1.12.1 Aim

Design and coding standards shall exclude dynamic variables or objects to be avoided, such as
— unwanted or undetected overlay of memory, and
— Dbottlenecks of resources during (safety-related) run-time.

7.4.41.12.2 Description

For the purposes of this measure, dynamic variables and dynamic objects are those variables and objects that
have their memory allocated and absolute addresses determined at run-time. The value of allocated memory

28 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

and its address depends on the state of the system at the moment of allocation, which means that it cannot be
checked by the compiler or any other off-line tool.

Because the number of dynamic variables and objects, and the existing free memory space for allocating new
dynamic variables or objects, depends on the state of the system at the moment of allocation, it is possible for
faults to occur when allocating or using the variables or objects. For example, when the amount of free
memory at the location allocated by the system is insufficient, the memory contents of another variable can be
inadvertently overwritten. If dynamic variables or objects are not used, these faults are avoided.

7.4.

7.4.

4.1.13 Design and coding standards — Limited use of interrupts

I4.1.13.1 Aim

Thel software developer shall limit the use of interrupts, in order to keep the software verifiable and

7.4.

#1.13.2 Description

Thejuse of interrupts shall be restricted. Interrupts may be used if they simplify the system. Softwa
of interrupts shall be inhibited during execution of critical software. If interrupts_ are used, then partg

be
inte

7.4

7.4.

Def

nterrupted shall have a specified maximum computation time, so thatthe maximum time f
rrupt is inhibited can be calculated. Interrupt usage and inhibiting shallbe thoroughly document

.#.1.14 Design and coding standards — Defined use of pointers

#.1.14.1 Aim

ned use of pointers shall be used to avoid the problems caused by accessing data without fir

range and type of the pointer, to support modulartesting and verification of software, and

con

7.4.

sequence of failures.

B1.14.2 Description

testable.

re handling
not able to
br which an
ed.

st checking
to limit the

In the application software, pointer arithmetic shall be used at source code level only if the point¢r data type

and

7.4.

7.4.

Lim

7.4.

If r

7.4.

value range (to ensure that thé.pointer reference is within the correct address space) are chec
#.1.15 Design and coding standards — Limited use of recursion

#.1.15.1 Aim

ted use of recursion shall be employed to avoid unverifiable and unstable use of subroutine ca

.1.15.2 Description

ursion is used, clear criteria shall be established on the allowed depth of recursion.

ked.

Is.

4.2 Software module design and coding verification

The software module design and its coding shall be verified. It shall be examined whether the design and
coding fulfil the software safety requirements. The software developers shall participate in the verification
activities. The verification methods may be either of two types: inspection or walk-through (as defined in
ISO 25119-1).

©IS

O 2010 — All rights reserved

29

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.4.5 Work products

The following work products are applicable to this phase:
a) detailed design of the software according to 7.4.4.1;
b) software according to 7.4.4.1;

c) software module design and coding verification report resulting from 7.4.4.2.

7.5 Soft

7.5.1 Objectives

The objectiye of the software module test is to verify that the designed and coded software modules corrgctly
implement the software requirements.

7.5.2 General

In this phage, a procedure for testing the software modules against their requirements is established, and the
tests carriedl out in accordance with that procedure.

7.5.3 Prefequisites

The following are the prerequisites for software module testing:
— softwate project plan (see 7.1.4.2to 7.1.4.4);

— softwale requirements [see 7.2.5 a) and b)];

— software verification plan (see ISO 25119-4:2010, Clause 6);

— softwalfe modules according to 7.4.4.1.
7.5.4 Requirements

7.5.41 Software module testing methods

The softwafe module testing-shall be in accordance with Table 4.

30 © I1SO 2010 — Al rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

Table 4 — Software module testing

Technique/measure? Subclause SRL=B SRL=1 SRL=2 SRL=3

1 Dynamic analysis and testing 7.5.4.1.1

1.1 Zﬁ:fy(::e execution from boundary value 75412 o o o +

1.2 Structure-based testing 75413 o] o] o] +
2 Static analysis

2 1 _Boundary valile analysis 75414 + + + 4

2.2 Checklists 75415 + + + +

2.3 Control flow analysis 7.54.1.6 o o] + +

2.4 Data flow analysis 75417 o o] + +

2.5 Walk-through/design reviews 7.54.1.8 o o] + +
3 Functional and black-box testing

3.1 II::e(:‘sl:ii‘\]/galence classes and input partition 75419 o o + o

3.2 Boundary value analysis 75414 0 o] o] +
4 Performance testing 7.5.4.1.10

4.1 Resource budget testing 7.54.1.11 o] + o] o]

4.2 ?fﬁsﬁ?;ifstimings and memory 7 54442 o o + +

4.3 Performance requirements 76.4.1.13 o o] + +

4.4 Avalanche/stress testing 7.5.4.1.14 o] o o +
5 | Interface testing 7.54.1.15 o o] o] +
Seq 7.1.4.7 for instructions on the use of this\and the other tables.
a8 | Appropriate techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/fneasures are
indi¢ated by a letter following the numper: \Only one of the alternative or equivalent techniques/measures need be satisfied

7.5.4.1.1 Dynamic.analysis and testing

754111 Aim

Dyn
beh

amic analysis and testing shall be used to detect specification failures by inspection of t
Bviourof a prototype at an advanced state of completion.

he dynamic

754112 Description

The dynamic analysis of a safety-related system is carried out by subjecting a near-operational prototype of
the safety-related system to input data which is typical of the intended operating environment. The analysis is
satisfactory if the observed behaviour of the safety-related system conforms to the required behaviour. Any
failure of the safety-related system shall be corrected and the new operational version shall then be
re-analysed.

© 1SO 2010 — All rights reserved

31

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.5.4.1.2

7.54.1.21

Test case execution from boundary value analysis

Aim

Test case execution from boundary value analysis shall be used to detect software errors occurring at

parameter |

7.5.4.1.2.2

imits or boundaries.

Description

The input domain of the program is divided into a number of input classes according to the equivalence

Z L A4 0Tl

relation (se
that the bou
value zero,
to the follow
zero di
blank A
empty

full ma

zero ta

Normally, the boundaries for input have a direct correspondencecto the boundaries for the output range.

cases shall
case which

If the outpu

elements afd to lists containing no elements, one element and two elements.

75413

7.5.4.1.31

Structure-b

7.5.4.1.3.2

Based on a
percentage
the level of

Staten

4 4 [| o o ol H ol & £ Ll 1 Tlo 4 4
 .J.5.T.9). TITC 1TCOoLlS Slldll CUVTT UIT DUUTIUATTTS dlTu TAUTITITS UT UITTC UldooTo. TTIT 1TTOoLS Ul

ndaries in the input domain of the specification coincide with those in the program. The use.of
in a direct as well as in an indirect translation, is often error-prone and demands special atter
ing:

visor,;

SCIl characters;
stack or list element;
rix;

ble entry.

be written to force the output to its limited valuesxConsider also if it is possible to specify a
causes the output to exceed the specification boundary values.

| is a sequence of data (e.g. a printed table) special attention shall be paid to the first and the

Structure-based testing
Aim
hsed testing shall be used to apply tests which exercise certain subsets of the program structuri

Description

of the program code is exercised. Measures of code coverage vary as follows, depending U
rigour_required.

ents

eck
the
tion

lest
test

last

©

halysis of the.program, a set of input data is chosen so that a large (and often pre-specified target)

pon

This is the least rigorous test since it is possible to execute all code statements without exercising both
branches of a conditional statement.

Branches

Both sides of every branch shall be checked. This may be impractical for some types of defensive code.

Compound conditions

Every condition in a compound conditional branch (i.e. linked by AND/OR) is exercised.

32

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

7.5.

7.5.

I1ISO 25119-3:2010(E)

Linear code sequence and jump

Applicable to any linear sequence of code statements, including conditional statements, terminated by a

jump. Many potential sub-paths will not be feasible due to constraints on the input data imp
execution of earlier code.

Data flow

osed by the

The execution path is selected on the basis of data usage, for example, a path where the same variable

is both written and read.

Call graph

the tree of subroutine invocations in the program. Tests are designed to cover all invocations i
Basis path
One of a minimal set of finite paths from start to finish, such that all~arcs are included

combinations of paths in this basis set can form any path through thatpart of the program).
basis paths have been shown to be efficient for locating errors.

#.1.4 Boundary value analysis

#.1.4.1 Aim

Boundary value analysis shall be used to detect softwaré errors occurring at parameter limits or bo

7.5.

B14.2 Description

Thel| input domain of the program is dividedvinto a number of input classes according to the

rela
that
valy

lion (see 7.5.4.1.9). The tests shall.cOyer the boundaries and extremes of the classes. The
the boundaries in the input domaif of the specification coincide with those in the program. Th

to the following:

zero divisor;

blank ASCII charactefs;
empty stack‘orlist element;
full matrix;

zéro'table entry.

A program is composed of subroutines which can be invoked from other subroutines.| The gall graph is

h the tree.

overlapping
Tests of all

undaries.

bquivalence
tests check
b use of the

e zero, in a direct as well as in an indirect translation, is often error-prone and demands spedial attention

Normally, the boundaries for input have a direct correspondence to the boundaries for the output range. Test
cases shall be written to force the output to its limited values. Consider also if it is possible to specify a test
case which causes the output to exceed the specification boundary values.

If the output is a sequence of data (e.g. a printed table) special attention shall be paid to the first and the last
elements and to lists containing no elements, one element and two elements.

© 1SO 2010 — All rights reserved

33

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.5.4.1.5 Checklists

7.54.1.51 Aim

Checklists shall be used to draw attention to, and manage critical appraisal of, all important aspects of the
system by safety life cycle phase, ensuring comprehensive coverage without the laying down of exact

requirements.

7.5.4.1.5.2 Description

A checklist W i
are of a gemeral nature and the assessor shall mterpret them as seems most approprlate Checkllsts sha
used for all|phases of the overall E/E/PES software safety life cycle, and are particularly useful as a ool tq
in the functional safety assessment. To accommodate wide variations in the systems being validated, n
checklists ¢ontain questions which are applicable to many types of systems. As a result, there cari
questions i) the checklists being used which are not relevant to the system being dealt with and which nee
be ignored.| Equally, there may be a need for a particular system to supplement the standard checklist
questions specifically directed at the system being dealt with. In any case, it needs to be clear that the ug
checklists depends on the expertise and judgement of the engineer selecting and applying the checklist. 4
result, the flecisions taken by the engineer, with regard to the checklist(s) seleeted, and any additiona
superfluouq questions, shall be fully documented and justified. The objective isito ensure that the applicg
of the checklists can be reviewed, and that the repeatable results will be achieved, unless different criteria
used. The pbject in completing a checklist is to be as concise as possible. When extensive justificatio
necessary, [this shall be done by reference to additional documentation./Pass, fail and inconclusive, or s
similar restficted set of responses, shall be used to document the resuilts for each question. This conciser
greatly simplifies the procedure of reaching an overall conclusion as.to the results of the checklist assessr

7.5.4.1.6 |[Static analysis — Control flow analysis

7.5.4.1.6.1 Aim
Control flow analysis shall be used to detect poor@and potentially incorrect program structures.

7.5.4.1.6.2 Description

Control flow analysis is a static testing-technique for finding suspect areas of code that do not follow g
programming practice. The program analysed produces a directed graph which can be further analysed fo

— inaccessible code, e.g. unconditional jumps which leave blocks of code unreachable,

— knotted code, wheré~ in contrast to well-structured code with a control graph reducible by succes|
graph feductionsto’a single node — poorly structured code can only be reduced to a knot compose
severa| nodes,

7.5.4.1.7 |Static analysis — Data flow analysis

jons
| be
aid
nost
be
dto
with
e of
\s a
| or
tion
are
n is
bme
ess
hent.

ood

Sive
d of

7.54.1.71 Aim

Data flow analysis shall be used to detect poor and potentially incorrect program structures.

34 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

7.5.4.1.7.2 Description

Data flow analysis is a static testing technique that combines the information obtained from the control flow
analysis with information about which variables are read or written in different portions of code. The analysis
can check for the following types of variables:

— those that may be read before they are assigned a value, which can be avoided by always assigning a
value when declaring a new variable;

— those written more than once without being read, which could indicate omitted code;

— [those WTIen but never read, Wnicr COuld IndicCate reaundant code.

A data flow anomaly does not always directly correspond to a program fault; however,(if, anpmalies are
avo|ded, the code is less likely to contain faults.

7.5.4.1.8 Static analysis — Walk-through/design review

7.54.1.8.1 Aim

A walk-through/design review shall be used to detect faults as soonvas economically possible during
development.

7.5.4.1.8.2 Description

A fdrmal design review shall be conducted for all new produtcts/processes, new applications, and Jrevisions to
exigting products and manufacturing processes which-affect the function, performance, safety, reliability,
ability to inspect, maintainability, availability, cost, and ether characteristics affecting the end product/process
(users or bystanders).

A code walk-through consists of a walk-through,team selecting a small set of paper test cases, representative

setd of inputs and corresponding expected outputs for the program. The test data is then manpally traced
through the logic of the program.

7.5.4.1.9 Equivalence classes«and input partition testing

7.54.1.91 Aim
Equivalence classes and input partition testing shall be used to test the software adequately usingla minimum

of tgst data. The test data shall be obtained by selecting the partitions of the input domain required to exercise
the poftware.

7.5.4.1.9.2 Description

Thig testing strategy shall be based on the equivalence relation of the inputs, which determines g partition of
the |nput domain.

Test cases are selected with the aim of covering all the partitions previously specified. At least one test case is
taken from each equivalence class.

There are two basic possibilities for input partitioning:

— equivalence classes derived from the specification — the interpretation of the specification may be either
input orientated (e.g. the values selected are treated in the same way) or output orientated (e.g. the set of
values lead to the same functional result);

— equivalence classes derived from the internal structure of the program — the equivalence class results

are determined from static analysis of the program (e.g. the set of values leading to the same path being
executed).

© ISO 2010 — Al rights reserved 35

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.5.4.1.10 Performance testing

7.5.4.1.10.1 Aim

Performance testing shall be used to ensure that the working capacity of the system is sufficient to meet the
specified requirements.

7.5.4.1.10.2 Description

The requirements specification shall include throughput and response time requirements for specific functions,
perhaps combimed—with—constraints—on—the—tse of-totat system—resources—Hhe—proposed—system—design is

compared dgainst the stated requirements by:

— producjng a model of the system processes and their interactions,

— determjning the use of resources by each process (processor time, communications bandwidth, storage
devices, etc.),

— determjning the distribution of demands placed upon the system under.‘average and worst-gase
conditipns, and

— compufing the mean and worst-case throughput and response times for the individual system functions.
7.5.4.1.11 |Performance testing — Resource budget testing

7.5.4.1.11.1 Aim
Resource budget testing shall be used according to the complexity of the system:
— for simple systems, an analytic solution may be sufficient;

— for mofe complex systems, some form of. simulation may be more appropriate for obtaining accurate
results

7.5.4.1.11.3 Description

Before detailed modelling, a simpler “resource budget” check can be used which sums the resoufces
requiremenfs of all the processes. If the requirements exceed designed system capacity, the desigh is
unfeasible. |Even if the design‘passes this check, performance modelling can show that excessive delays|and
response times occur due 1o resource starvation. To avoid this situation, engineers often design systems to
use some fraction (for example 50 %) of the total resources, so that the probability of resource starvatign is
reduced.

7.5.4.1.12 |Performance testing — Response time and memory constraints

7.5.4.1.121 Aim

Response time and memory constraints shall be used to ensure that the system will meet its temporal and
memory requirements.

7.5.4.1.12.2 Description

The requirements specification for the system and the software includes memory and response requirements
for specific functions, perhaps combined with constraints on the use of total system resources. An analysis is
performed to determine the distribution demands under average and worst-case conditions. This analysis
requires estimates of the resource usage and elapsed time of each system function. These estimates can be

36 © I1SO 2010 — Al rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

obtained in several ways (e.g. comparison with an existing system, or the prototyping and benchmarking of
time-critical systems).

7.5.4.1.13 Performance testing — Performance requirements

7.5.4.1.131 Aim

Testing shall be established to demonstrate the performance requirements of a software system.

7.5.41.13.2 Description

An gnalysis is performed on both the system and the software requirements specifications ‘tq specify all
gengral/specific and explicit/implicit performance requirements.

Each performance requirement shall be examined to determine

— |that the success criteria is obtained,

— |whether a failure to meet the success criteria is obtained,

— |the potential accuracy of such measurements,

— |the project stages at which the measurements can be estimated, and
— |the project stages at which the measurements can be made.

The| practicability of each performance requirement shall be analysed in order to obtain a list of gerformance
reqliirements, success criteria and potential measurements. The main objectives are as follows.

a) |Each performance requirement is associated with at least one measurement.

b) |Where possible, accurate and efficient measurements are selected which can be used as fearly in the
development as possible.

c) |Essential and optional perfofmance requirements and success criteria are specified.

d) |Where possible, advantagée shall be taken of the possibility of using a single measurement for more than
one performance requirement.

7.5.4.1.14 Performance testing — Avalanche/stress testing

7.5.4.1.141 Aim

Avalanche/stress testing shall be used to burden the test object with an exceptionally high workloagl in order to
show'that the test object would stand normal workloads easily.

7.5.41.14.2 Description
There are a variety of test conditions applicable to avalanche/stress testing, including the following.

— If working in a polling mode, then the test object gets many more input changes per time unit than under
normal conditions.

— If working on demands, then the number of demands per time unit to the test object is increased beyond
normal conditions.

— If the size of a database plays an important role, then it is increased beyond normal conditions.

© 1SO 2010 — All rights reserved 37

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

Influential devices are tuned to their maximum speed or lowest speed respectively.

the same time.

For the extreme cases, all influential factors, as far as is possible, are put to the boundary conditions at

Under these test conditions, the time behaviour of the test object can be evaluated, the influence of load
changes observed, and the correct dimension of internal buffers or dynamic variables, stacks, etc., can be

checked.

7.5.4.1.15

Interface testing

7.5.4.1.15.1

Interface te

7.5.4.1.15.2
Several lev
all inte
all inte
all valu
all valu
the spsg
These test
parameter
generated.
The errors
performed.

return to th
accordance

7.5.5 Woi

The followir

Aim
5ting shall be used to detect errors in the interfaces of subprograms.
Description
bls of detail or completeness of testing are feasible. The most important levels“are tests for
face variables at their extreme values,
face variables individually at their extreme values, with other interface variables at normal valu
es of the domain of each interface variable, with other interface variables at normal values,
es of all variables in combination (only feasible for small interfaces), and
cified test conditions relevant to each call of eachisubroutine.

5 are particularly important if the interfages do not contain assertions that detect inco
alues. They are also important after new’ configurations of pre-existing subprograms have b

Hetected during this phase shall be eliminated. For each modification, an impact analysis sha
All modifications which have-an impact on the work products of any previous phase shall initig
at phase of the software- safety life cycle. All subsequent phases shall then be carried ot
with the respective parts of ISO 25119.

k products

g work produtts are applicable to this phase:

a) softwafe module*test plan resulting from 7.5.4.1;

rect
een

| be
te a
tin

b) softwarle module test specification in accordance with 7.5.4.1;

c)

38

software module test report resulting from the performance of the tests.

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

I1ISO 25119-3:2010(E)

7.6 Software integration and testing

7.6.1 Objectives

The first objective of software integration and testing is to integrate the software units step by step into
software components up to the entire embedded software of the ECU.

NOTE The embedded software of the ECU can consist of either safety-related or non-safety-related software
components.

The_second objective is to verify that the software requirements are correctly realized by the embedded
softjvare.

7.6.2 General
In this phase, the particular integration levels are tested against the software requirements. The interfaces

between the software modules and/or software components are also tested. The steps of the intggration and
the tests of the software components should directly correspond to the hierarchical-software architgcture.

7.6.3 Prerequisites

Thelfollowing are the prerequisites for software integration and testing:
— | software project plan (see 7.1.4.2 to 7.1.4.4);

— |software requirements [see 7.2.5 a) and b)];

— |software architecture (see 7.3.4.1 to 7.3.4.5);

— | software verification plan (see ISO 25119-4:2010, Clause 6);

— |tested software modules according 10(7:4.4.1.
7.6.4 Requirements

7.6.4.1 Software integration and test plan
A plan shall be developédifor the software integration and tests that shall include at least the following:
a) |a software integration strategy;

b) |planninglof the software integration tests.

Thel software integration strategy and software test plan should be developed during the software prchitecture
and|design phase.

7.6.4.2 Software integration strategy
The software integration strategy shall describe at least the following:

a) the steps to be taken for integrating the individual software modules hierarchically into software
components until the entire embedded software of the ECU is integrated;

b) functional dependencies that are relevant to the software integration.

© ISO 2010 — Al rights reserved 39

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

NOTE 1 If the hardware—software integration and the test of the embedded software on the target hardware are not
already planned and carried out, this could be part of the integration strategy. This procedure can sometimes make the
software integration and tests considerably easier.

NOTE 2 In the case of model-based development, the software integration might be replaced with integration at the
model level and subsequent code generation for the integrated model.

NOTE 3 Depending on the constraints, the software might be integrated in a host environment, a target-like
environment (e.g. an evaluation board) or the target environment (the ECU).

7.6.4.3 Software integration and test procedures

Appropriatd test procedures shall be developed in the planning of the software integration tests.

NOTE The software integration tests always combine different procedures, because there is no test-proeedure| that
covers equally well all the aspects that have to be taken into account.

7.6.4.4 Software integration and test methods

A hardware|and software integration test shall be conducted in accordance with Table 5.

Table 5 — Integration testing (module)

Technique/measure? Subclause SRL=-B SRL=1 SRL=2 SRU=3
1 Functignal and black-box testing 7.6.4.41
1.1 II::e!sl:ii‘\]/galence classes and input partition 75419 o o + a
1.2 Béundary value analysis 7.5&1.4 o] o] o] H
2 Performance testing
2.1 Resource budget analysis 75411 o] + o] [o
2.2 Response timings and memory constraints 7.54.1.12 o] o + +
2.3 Pe¢rformance requirements 7.54.1.13 o o] + +
2.4 Ayalanche/stress testing 7.54.1.14 o] o] o] H

See 7.1.4.7 ffor instructions on the usé of this and the other tables.

a8 Approprifite techniques/measures.shall be selected according to the SRL. Alternative or equivalent techniques/measures| are
indicated by { letter following thesfiumber. Only one of the alternative or equivalent techniques/measures need be satisfied.

7.6.4.4.1 |[Functional testing

7.6.4.41.1 Aim

Functional testing shall be used to reveal failures during the specification and design phases, and to avoid
failures during implementation and the integration of software and hardware.

7.6.4.4.1.2 Description

During the functional tests, reviews shall be carried out to determine whether the specified characteristics of
the system have been achieved and that the system input data which adequately characterize the normally
expected operation have been given. The outputs are observed and their response is compared with that
given by the specification. Deviations from the specification and indications of an incomplete specification
shall be documented. Functional testing of electronic components designed for a multi-channel architecture
usually involves the manufactured components being tested with pre-validated partner components.

40 © 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119

-3:2010(E)

In addition, it is recommended that the manufactured components be tested in combination with other partner
components of the same batch, in order to reveal common mode faults which would otherwise have remained
masked.

7.6.4.5 Elimination of defects

The errors detected during this phase shall be eliminated. For each modification, an impact analysis shall be
performed. All modifications which have an impact on the work products of any previous phase shall initiate a
return to that phase of the software safety life cycle. All subsequent phases shall then be carried out in
accordance with the respective parts of ISO 25119.

7.6.

The

1.7

7.7.

The)
real

The)
leve

NOT
ClaJ
safe
all o
that

NOT
carr

1.7.

7.7.

The)

5 Work products

following work products are applicable to this phase:

software integration test specification as required by 7.6.4.3;

software integration test report according to 7.6.4.1.
Software safety validation

I Objectives

zed by the embedded software.

| are qualified, complete and completely achieved.

E1 The software safety validation is a¢part of the safety validation of the E/E/PES system (see ISO 2

by goals may be tested at E/E/PES system level, and which may be tested at the software level. In the s
f the safety goals are covered by the safety validation of the E/E/PES system with the software taken int
no separate software safety validation is necessary.

E 2 The prerequisite of the software safety validation is that the hardware—software integration has
ed out.

P General

B Prerequisites

following are the prerequisites for software safety validation:

first objective of the software safety validation is tozshow that the software requirements 4

second objective is to provide proof that the :requirements of the technical safety concept at t

software integration test plan, with a software integration strategy resulting from :6)4.1 to 7.6.4.3;

re correctly

he machine

5119-4:2010,

se 6). During the planning of the safety\validation of the complete E/E/PES system, it has to be detefmined which

mplest case,
b account, so

blready been

software project plan (see 7.1.4.2 to 7.1.4.4);

software requirements [see 7.2.5 a) and b)];

software architecture (see 7.3.4.1 to 7.3.4.5);

software verification plan (see 1ISO 25119-4:2010, Clause 6);
integrated software;

ECU.

© 1SO 2010 — All rights reserved

41

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

7.74 Req

7.7.41

uirements

Software safety validation methods

Testing shall be the main verification method for software; animation and modelling may be used to
supplement the verification activities; adequate measures/techniques shall be selected according to Table 6.

Table 6 — Software safety validation

indicated by 4

Technique/measure? Subclause SRL=B SRL=1 SRL=2 SRL=3
1 Tests (f software safety requirements
1.1 lest interface 77411 + + + +
1.2a [ests within the ECU network?@ 7.741.2 o + + o]
1.2b Hardware-in-the-loop tests 77413 o] o] + +
1.2c [ests in the test machine 7.741.4 o o] o] +
See 7.1.4.7 ffor instructions on the use of this and the other tables.
NOTE Measures in points 1.2a, 1.2b and 1.2c represent test environments.
@ Approprifite techniques/measures shall be selected according to the SRL. Alternativeé<or equivalent techniques/measures| are

letter following the number. Only one of the alternative or equivalent technigues/measures need be satisfied.

77411

The softwa
for determir

7.7.4.1.2

The softwa
integrated
tested at th

Test interface

e shall be integrated with its host microprocessorin its associated ECU. The test interface is (
ing the inner state of the ECU while testing as well as monitoring internal results.

Tests within the electronic control unit-network

e shall be integrated with its host microprocessor in its associated ECU, and this ECU sha
vith the remaining ECUs that are‘part of the complete E/E/PES system. The software shall the
e interface to the ECU netwerk; in order to demonstrate that the software performs accordin

sed

| be
h be
g to

the
this

specificatiof.

7.7.41.3 |Hardware-in-the-loop-tests

The softwafe shall be integhated with its host microprocessor in its associated ECU, while the rest of]
associated [E/E/PES system and its environment shall be simulated. The software shall then be tested in
simulated environment,to demonstrate that the software performs according to specification.

7.7.41.4 |Tests'in the machine

The software and the associated EJE/PES System shall be integrated nio the associated machine architecture.
The system shall then be tested in the machine to demonstrate that the software performs according to
specification.

7.7.4.2 Extent of tests

The software shall be exercised by simulation of

42

input signals present during normal operation,
anticipated occurrences, and

undesired conditions requiring system action.

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

1.7.

I1ISO 25119-3:2010(E)

4.3 Software safety requirements validation

The effectiveness of the test procedures, and of any other measures used, shall be evaluated against the
safety concept on conclusion of the verification process, in order to validate the software safety requirements.

7.7.

44 Documentation

The supplier and/or developer shall make the documented results of the software safety validation and all
pertinent documentation available to the system developer to enable him to meet the requirements of
ISO 25119-4.

7.7.

|4.5 Elimination of defects

Errgrs or defects detected during this phase shall be eliminated. For each modification,-am imp

sha

| be performed. All modifications which have an impact on the work products of any, previous

initiate a return to that phase of the software safety life cycle. All subsequent phases.shall then bsg

ina

7.7.

ccordance with the respective parts of ISO 25119.

5 Work products

Thel following work products are applicable to this phase:

7.8

7.8.

software validation plan resulting from 7.7.4.1 t0 7.7.4.4;
software validation test specification resulting from 7.7.4.yand 7.7.4.2;

software validation test report according to 7.7.4.3.

Software-based parameterization
I Objective
Soffware-based parameterization refers to the possibility of adapting the software system
reqirements, after completion of development, by changing parameters in order to modify the fun
software.

the

Thel objective is to derive the requirements for safety-related parameters.

7.8.

Soff

of

P General

BRP/CS.4design to be described in the software safety requirement specification. Soff]

parametersiinclude

7.8.

hct analysis
phase shall
carried out

to different
ctionality of

ware-based parameterization of safety-related parameters should be considered as safety-relgted aspects

ware-based

variant coding (e.g. country code, left-hand/right-hand steering),

parameters (e.g. value for low idle speed, engine characteristic diagrams), and

calibration data (e.g. vehicle specific, limit stop for throttle setting).

3 Prerequisites

The following are the prerequisites for software-based parameterization:

©IS

software project plan (see 7.1.4.2 to 7.1.4.4);

software requirements [see 7.2.5 a) and b)];

O 2010 — All rights reserved

43

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

ISO 25119-3:2010(E)

software architecture (see 7.3.4.1 to 7.3.4.5);
software verification plan (see 1ISO 25119-4:2010, Clause 6);

tested software modules according to 7.4.4.1.

7.8.4 Requirements

7.8.4.1

The integri
prevented.

a) theran
b) data cd
ch
pe
us
us
c) theerr
d) the effe
e) the effe
7.8.42

Parameter

7843 (

Software-bgsed parameterization shall

ISO 25119

g

\

7.84.4

The followin

Data integrity

Of data used for parameterization shall be maimntained, and unauthorized modiications sha
[his shall be achieved by applying measures to control

ge of valid inputs,

rruption before and after transmission, including
ecking configuration data for a valid range,
rforming plausibility checks on configuration data,
ng redundant data storage, and

ng error detecting and correcting codes,

brs from the parameter transmission process,

cts of incomplete parameter transmission, and

cts of faults and failures of hardware and seftware of the tool used for parameterization.

xecutable code in parameter data

jata shall not contain executable code.

ponfiguration management

be part of the version -configuration management

4:2010, Clause 6)-

oftware-based parameterization verification

g verification activities shall be undertaken for software-based parameterization:

verification’ of the correct setting for each safety-related parameter (minimum, maximum

representative values);

etc.;

verification that unauthorized modification of safety-related parameters is prevented;

faults can not lead to a loss of the safety function.

44

| be

see

and

verification that the safety-related parameters have been checked for plausibility, by use of invalid values,

verification that the data/signals for parameterization are generated and processed in such a way that

© 1SO 2010 — All rights reserved

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

7.8.5 Work products

The following work products are applicable to this phase:

a) validated safety-related software parameter configurations;
b) software validation plan resulting from 7.7.4.1 to 7.7.4.3;
c) software validation test specification resulting from 7.7.4.1;

d) software validation test report resulting from 7.7.4.3.

I1ISO 25119-3:2010(E)

© 1SO 2010 — All rights reserved

45

https://standardsiso.com/api/?name=691729ca0a9df93c160f55052f6adb77

	Scope
	Normative references
	Terms and definitions
	Abbreviated terms
	System design
	Objectives
	General
	Prerequisites
	Requirements
	Structuring safety requirements
	Functional safety concept
	General requirements of functional safety concept
	Specification of the functional safety concept

	Technical safety concept
	General requirements of technical safety concept
	Specification of the technical safety concept
	General
	States and times
	Safety architecture, interfaces and marginal conditions

	Hardware
	Objectives
	General
	Prerequisites
	Requirements
	Hardware categories
	Work products

	Software
	Software development planning
	Objectives
	General
	Prerequisites
	Requirements
	Phase determination
	Process flexibility
	Process timetable
	Applicability
	Supporting processes
	Phases of software development
	Using the tables

	Work products

	Software safety requirements specification
	Objectives
	General
	Prerequisites
	Requirements
	Software safety requirements specification methods
	Requirements specification in natural language
	Aim
	Description

	Informal design methods
	Aim
	Description

	Semi-formal design methods
	Aim
	Description

	Formal design methods
	Aim
	Description

	Computer-aided specification tools
	Aim
	Description

	Non-safety–related functions
	Level of detail
	Consistency
	Hardware and software co-dependency

	Work products

	Software architecture and design
	Objectives
	General
	Prerequisites
	Requirements
	Failure analysis — Bottom-up methods
	Aim
	Description

	Failure analysis — Top-down methods
	Aim
	Description

	Design method characteristics
	Software architecture structure
	Level of detail
	Software architecture traceability
	Software architecture verification
	Combination of safety-related software components

	Work products

	Software module design and implementation
	Objectives
	General
	Prerequisites
	Requirements
	Software module design and implementation methods
	Suitable programming language
	Aim
	Description

	Strongly typed programming language or guideline checking
	Aim
	Description

	Language subset
	Aim
	Description

	Tools and translators — Increased confidence from use
	Aim
	Description

	Use of trusted/verified software modules and components (if
	Aim
	Description

	Defensive programming
	Aim
	Description

	Structured programming
	Aim
	Description

	Modular approach
	Aim
	Description

	Library of trusted/verified software modules and components
	Aim
	Description

	Computer-aided design tools
	Aim
	Description

	Use of coding standards
	Aim
	Description

	Design and coding standards — No dynamic variables or object
	Aim
	Description

	Design and coding standards — Limited use of interrupts
	Aim
	Description

	Design and coding standards — Defined use of pointers
	Aim
	Description

	Design and coding standards — Limited use of recursion
	Aim
	Description

	Software module design and coding verification

	Work products

	Software module testing
	Objectives
	General
	Prerequisites
	Requirements
	Software module testing methods
	Dynamic analysis and testing
	Aim
	Description

	Test case execution from boundary value analysis
	Aim
	Description

	Structure-based testing
	Aim
	Description

	Boundary value analysis
	Aim
	Description

	Checklists
	Aim
	Description

	Static analysis — Control flow analysis
	Aim
	Description

	Static analysis — Data flow analysis
	Aim
	Description

	Static analysis — Walk-through/design review
	Aim
	Description

	Equivalence classes and input partition testing
	Aim
	Description

	Performance testing
	Aim
	Description

	Performance testing — Resource budget testing
	Aim
	Description

	Performance testing — Response time and memory constraints
	Aim
	Description

	Performance testing — Performance requirements
	Aim
	Description

	Performance testing — Avalanche/stress testing
	Aim
	Description

	Interface testing
	Aim
	Description

	Work products

	Software integration and testing
	Objectives
	General
	Prerequisites
	Requirements
	Software integration and test plan
	Software integration strategy
	Software integration and test procedures
	Software integration and test methods
	Functional testing
	Aim
	Description

	Elimination of defects

	Work products

	Software safety validation
	Objectives
	General
	Prerequisites
	Requirements
	Software safety validation methods
	Test interface
	Tests within the electronic control unit network
	Hardware-in-the-loop tests
	Tests in the machine

	Extent of tests
	Software safety requirements validation
	Documentation
	Elimination of defects

	Work products

	Software-based parameterization
	Objective
	General
	Prerequisites
	Requirements
	Data integrity
	Executable code in parameter data
	Configuration management
	Software-based parameterization verification

	Work products

