

INTERNATIONAL STANDARD

ISO
4586-2

Fourth edition
1997-04-15

AMENDMENT 4
2000-04-01

High-pressure decorative laminates — Sheets made from thermosetting resins —

Part 2: Determination of properties

AMENDMENT 4: Resistance to surface wear

*Stratifiés décoratifs haute pression — Plaques à base de résines
thermodurcissables —*

Partie 2: Détermination des caractéristiques

AMENDEMENT 4: Résistance de la surface à l'abrasion

Reference number
ISO 4586-2:1997/Amd.4:2000(E)

© ISO 2000

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this amendment may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

Amendment 4 to International Standard ISO 4586-2:1997 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 11, *Products*.

High-pressure decorative laminates — Sheets made from thermosetting resins —

Part 2: Determination of properties

AMENDMENT 4: Resistance to surface wear

This clause replaces clause 6 of ISO 4586-2:1997.

6 Resistance to surface wear

6.1 Principle

The test measures the ability of the decorative surface of the sheet under test to resist abrasive wear-through to the sub-layer. Abrasion is achieved by rotating a specimen in contact with a pair of loaded cylindrical wheels covered with abrasive paper. The wheels are positioned so that their cylindrical faces are equidistant from the specimen's axis of rotation but not tangential to it. As they are turned by the rotating specimen, they abrade an annular track on the specimen's surface. The numbers of revolutions of the specimen required to cause defined degrees of abrasion are used as measures of resistance to surface wear.

6.2 Materials

6.2.1 Calibration plates of rolled zinc sheet (Taber S-34 or equivalent), having a thickness of $0,8 \text{ mm} \pm 0,1 \text{ mm}$ and a Brinell hardness of 48 ± 2 when tested in accordance with ISO 6506, except that the ball diameter shall be 5 mm and the load 360 N.

6.2.2 Abrasive paper strips (Taber S-42 or equivalent), of width $12,7 \text{ mm} \pm 0,1 \text{ mm}$ and length about 160 mm, having the following composition:

- paper of grammage 70 g/m^2 to 100 g/m^2 ;
- open coated 180 grit powdered aluminium oxide (Al_2O_3) having a particle size such that it will pass through a sieve of aperture $100 \mu\text{m}$ and remain on a sieve having an aperture of $63 \mu\text{m}$;
- adhesive backing (optional).

6.2.3 Double-sided adhesive tape, required only if the abrasive paper has no adhesive backing.

6.3 Apparatus

6.3.1 Test machine, as specified in ISO 9352.

NOTE A suitable machine is available from Taber Acquisition Corp., Taber Industries, 455 Bryant St, P.O. Box 164, North Tonawanda, NY 14120, USA.

6.3.2 Conditioning chamber, with a standard atmosphere of $23^\circ\text{C} \pm 2^\circ\text{C}$, relative humidity of $(50 \pm 5)\%$.

6.4 Test specimens

Each specimen shall be a piece of the sheet under test, shaped to fit the type of clamping device used. It will usually be a disc of diameter about 130 mm, or a square of side about 120 mm with its corners rounded to give a diagonal of about 130 mm, and it will usually have a hole of diameter 6 mm in its centre. Three specimens shall be prepared.

6.5 Preparation of specimens and abrasive paper

Clean the surface of the specimens with a non-hazardous organic solvent which is immiscible with water. Using a suitable marker pen, mark the surface of each specimen with two lines at right angles to each other so that the surface area is divided into quadrants. Precondition the specimens and the abrasive strips for at least 72 h in the conditioning atmosphere (see 6.3.2) before testing. After preconditioning, seal the paper strips in suitable polyethylene bags (maximum 10 strips per bag) until required for immediate use.

6.6 Procedure

6.6.1 Preparation of abrasive wheels

Bond a strip of preconditioned unused abrasive paper (6.2.2) to each of the rubber-covered wheels, using either the adhesive backing, if present, or the double-sided adhesive tape (6.2.3), in such a way that the cylindrical surface is completely covered, but without any overlapping of the abrasive paper.

6.6.2 Calibration of abrasive paper

Prepare two abrasive wheels with preconditioned unused strips of abrasive paper from the batch to be used for testing (see 6.6.1).

Clamp a zinc plate (6.2.1) in the specimen holder, start the suction device, set the revolution-counter to zero, lower the wheels and abrade the zinc plate for 500 revolutions. Wipe the zinc plate clean and weigh to the nearest 1 mg. Replace the abrasive paper on the wheels with preconditioned unused strips from the same batch, clamp the same zinc plate in the specimen holder, lower the abrasive wheels and operate the suction device. Abrade the zinc plate for an additional 500 revolutions, then wipe it clean and reweigh it to the nearest 1 mg. Its loss in mass shall be $130 \text{ mg} \pm 20 \text{ mg}$.

Any batch of abrasive paper which causes a loss in mass of the zinc plate outside this permitted range shall not be used for testing.

6.6.3 Abrasion of specimen

Perform the test immediately after removal of the specimen and calibrated abrasive paper from the preconditioning atmosphere.

Prepare two wheels with preconditioned unused abrasive paper from the same batch previously approved by calibration. Fit the wheels to the machine and set the revolution counter to zero.

Clamp the specimen in the holder, ensuring that its surface is flat. Lower the abrasive wheels on to the specimen, start the suction device and begin abrading the specimen. Examine the specimen for wear after each 25 revolutions and examine the abrasive paper for clogging with abraded particles. Replace the abrasive paper if it becomes clogged, or after 500 revolutions, whichever happens first.

Continue the test in this way until the initial wear point (IP) is reached. Record the number of revolutions and resume the test until the final wear point (FP) is reached. Record the number of revolutions again.