
 

 

 

 

 

Reference number
ISO/IEC 14496-11:2005/Amd.6:2009(E)

© ISO/IEC 2009
 

 

 

INTERNATIONAL 
STANDARD 

ISO/IEC
14496-11

First edition
2005-12-15

AMENDMENT 6
2009-03-15

Information technology — Coding of 
audio-visual objects — 
Part 11: 
Scene description and application engine

AMENDMENT 6 

Technologies de l'information — Codage des objets audiovisuels — 

Partie 11: Description de scène et moteur d'application 

AMENDEMENT 6 
 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

PDF disclaimer 
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but 
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In 
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat 
accepts no liability in this area. 

Adobe is a trademark of Adobe Systems Incorporated. 

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation 
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In 
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. 

 

 COPYRIGHT PROTECTED DOCUMENT 
 
©   ISO/IEC 2009 
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, 
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or 
ISO's member body in the country of the requester. 

ISO copyright office 
Case postale 56 • CH-1211 Geneva 20 
Tel.  + 41 22 749 01 11 
Fax  + 41 22 749 09 47 
E-mail  copyright@iso.org 
Web  www.iso.org 

Published in Switzerland 
 

ii © ISO/IEC 2009 – All rights reserved
 

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved iii

Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. 

Amendment 6 to ISO/IEC 14496-11:2005 was prepared by Joint Technical Committee ISO/IEC JTC 1, 
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia 
information. 

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

 

© ISO/IEC 2009 – All rights reserved 1

Information technology — Coding of audio-visual objects — 

Part 11: 
Scene description and application engine 

AMENDMENT 6 

After 8.13, add the following new subclause: 

8.14 Scene Partitioning 

8.14.1 Overview 

In 3D streaming applications, a server often holds a compressed binary representation of the whole scene 
data. At the time a client connects, it receives a coarse version of the environment that suits more or less its 
actual location and requested precision. For the rest of the navigation, refinement data will be sent according 
to the observer trajectory within the scene. 

At this stage, two scenarios are possible. The first one is called server-driven scenario; in this case, the server 
is assumed to be able to cope with the necessary computations for deciding exactly what refinements the 
client needs. Usually, the client has already sent his position and some hints of what he already has in his 
cache. According to this information, the server extracts a subset of the compressed binary representation, 
using some kind of MPEG-21 gBSD file. 

The second possible scenario is the so-called client-based one. In this case, it is the client task to compute 
and request the necessary refinement data. In a perfect world, the server would have enough capability to 
constantly remain in server-driven mode. But in practical applications, when the number of clients grows, often 
reaching several thousands of terminals, the server can not cope anymore and has to cast to the most 
effective clients the task of identifying the needed refinements. 

Another important thing to note, also raised after our practical implementations, is that this becomes general 
rule when dealing with peer-to-peer applications, i.e. when terminals can arbitrarily be considered as servers 
as well. 

While the client-driven mode reduces the amount of information to send to the server (namely the hints on the 
cache content), one noticeable difference is that the client does not know exactly what could or should be sent 
in function of his position and orientation. What was known on the server side in the server-driven mode is 
unknown by the client in the client-driven mode. 

The schema is based on an extensible syntax, such as the AFX backchannel. The purpose of this framework 
is to be able to any space partitioning conception, including the most general ones, as well as the most 
specific. The partitioning types considered so far are: 

1) BSP: this had already been proposed at the Fairfax meeting, but the activity had not followed up at 
that time by lack of support and efficient design of the node. However, the technology itself has 
proved to be useful for adaptive transmission and rendering of large scenes, and applies to the most 
arbitrary scenes, independently on the tools used to compress the objects. 

2) Cells / Portals: another widely used representation for selective transmission / rendering of large 
interior scenes is the Cell / Portal paradigm. This representation is a graph in which the nodes figure 
the various rooms in the building and the edges denote the possible visibility from one room to 
another. 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

2 © ISO/IEC 2009 – All rights reserved
 

3) PVS (Potentially Visible Sets): also very widely used for exterior scenes, the purpose of PVS is the 
same as Cells and Portals with the difference that areas are not related to other visible areas but 
instead linked to the set of objects that are visible from this area. 

4) WaveletSubdivisionSurfaces: this is a specific partitioning design, suited to the accommodation of 
geometric wavelet coefficients. This is based on bounding volumes that are strongly dependent on the 
shape of the base mesh.  

5) FootPrints: this is the specific design that was originally demonstrated and that showed significant 
gain in both bandwidth and reconstruction time. 

Generic tools, such as BSP, Cells and Portals and PVS are supposed to handle portions of scenes 
independently of the encoding scheme. This can be used for VRML scenes, or with objects for which the 
partitioning does not have to have finer granularity than the object itself, namely because its encoding does 
not provide multiresolution. 

8.14.2 Node interface 

PROTO SpacePartition [ #%NDT=SFWorldNode,SF3DNode %COD=N 
eventIn      MF3DNode   addChildren 
eventIn      MF3DNode   removeChildren 
exposedField MF3DNode   children       [] 
exposedField SFUrl      SPStream NULL 

]{} 
 

8.14.2.1 Semantics and functionality 

children: this is the target node. The partitioning information may apply to the children nodes and to its 
descent. 

SPStream: this is the stream containing the Scene Partitioning information. 

NOTE The partitioning nodes obey the following criteria: 

• Each partitioning node is attached to a rendered node; 

• The partitioning node influences the descent of the rendered node it is attached to; 

• The partitioning nodes combine themselves according to the hierarchy of the scene graph; 

Figure AMD6.1 shows an example illustrating these points. 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved 3

 

Figure AMD6.1 — example of organization of space partitioning nodes within a scene graph 

In this example, one can see various space partitioning nodes (the SPs) occurring at various depth in the 
scene hierarchy. The type of each SP node is suited to the type of the object it is linked to. For example 
IndexedFaceSets representing the Earth and the Boat are partitioned using BSP and PVS. The museum, 
which is an interior subscene, is partitioned with Cells and Portals. The statue inside the museum, 
represented by WaveletSubdivisionSurfaces, is partitioned with the according declination of the node. Each 
SP node is dependent on every other SP node upper in the hierarchy. For instance the rendering of the statue 
is subject to adaptation lead by SP4, but is constrained by the visibility induced by SP3 and SP1, that are 
linked to parent nodes. 

 

8.14.3 Scene Partitioning stream definition 

8.14.3.1 SpacePartitionDecoderConfig 

8.14.3.1.1 Syntax 

class SpacePartitionDecoderConfig { 
 int (8) DSItag; 
 int (8) type; 
   switch(type) { 
      0: BSPDecoderConfig; 

  1: CellPortalDecoderConfig; 
 2: PVSDecoderConfig; 
 3: SPFootprintDecoderConfig; 
 4: WaveletDecoderConfig; 
) 

} 
 

Earth 

Boat Museum 

Plane 
Visitor Statue 

  SP1 

  SP2 

  SP3 

  SP4 

IndexedFaceSet 

IndexedFaceSet IndexedFaceSet 

NURBS

WaveletSubdivision 

WaveletSubdivision 
Partitioning 

Cells / Portals 

PVS 

BSP 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

4 © ISO/IEC 2009 – All rights reserved
 

8.14.3.1.2 Semantics 

DSItag: Space Partition tag (0x0C) 

type: space partition type 

 

8.14.3.2 BSPDecoderConfig  

8.14.3.2.1 Syntax 

class BSPDecoderConfig { 
int(6) indexNbBits; 

  int(6) coefNbBits; 
 int(6) objCountNbBits; 
 int(1) is3D; 
} 
 

8.14.3.2.2 Semantics 

indexNbBits: number of bits used to encode BSP plane IDs 

coefNbBits: number of bits used to encode BSP plane coefficients 

objCountNbBits: number of bits used to encode the number of objects 

is3D: identifier of the 2D (value 0) or 3D (value 1). 

 

8.14.3.3 CellPortalDecoderConfig  

8.14.3.3.1 Syntax 

class CellPortalDecoderConfig { 
 int(6) cellCountNbBits; 
 int(6) totalCountNbBits; 
 int(6) cellGeomNbBits; 

int(1) is3D; 
} 
 

8.14.3.3.2 Semantics 

cellCountNbBits: number of bits used to encode number of cells in the stream 

totalCountNbBits: number of bits used to encode total number of cells as well as cell IDs 

cellGeomNbBits: number of bits used to encode cell geometry parameters 

is3D: identifier of the 2D (value 0) or 3D (value 1). 

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved 5

8.14.3.4 PVSDecoderConfig  

8.14.3.4.1 Syntax 

class PVSDecoderConfig { 
 int(6) cellCountNbBits; 
 int(6) objCountNbBits; 
      int(6) pvsGeomNbBits; 
} 
 

8.14.3.4.2 Semantics 

cellCountNbBits: number of bits used to encode the total number of cells 

objCountNbBits: number of bits used to encode the total number of objects 

 

8.14.3.5 SPFootprintDecoderConfig 

8.14.3.5.1 Syntax 

class SPFootprintDecoderConfig {  
int(8) type; 

 unsigned int(5) rootChildrenRadiusNbBits; 
 unsigned int(5) nbChildrenNbBits; 
 unsigned int(5) nbSubTreesNbBits; 
 float(32) acquisitionPrecision; 

float(32) minMetricError; 
float(32) maxMetricErrorEncodingFunction; 
unsigned int(16) nbRootChildren; 
unsigned int(5) indexNbBits; 
unsigned int(5) nbNodesInSubTreeNbBits; 
unsigned int(5) nbNodesOnFirstLevelOfSubTreeNbBits; 
unsigned int(5) nbSubTreesChildrenNbBits; 
unsigned int(5) nbNodesOnLastLevelNbBits; 
unsigned int(5) networkType; 
switch(networkType) { 
 0: // no additional information; 
 1: int(5) subTreeSizeNbBits; 
    Int(5) geometryNodesSizeNbBits; 

} 
 

8.14.3.5.2 Semantics 

type: type of the description structure 

rootChildrenRadiusNbBits: number of bits used to decode the radius of the children (i.e. the bounding 
sphere) 

nbChildrenNbBits: number of bits used to decode the number of hierarchical description node's children 

nbSubTreesNbBits: number of bits used to decode number of sub-trees in a packet. 

acquisitionPrecision: precision used during data acquisition. 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

6 © ISO/IEC 2009 – All rights reserved
 

minMetricError: smallest metric error that is greater than 0. 

maxMetricErrorEncodingFunction: maximum metric error used in the encoding function. 

nbRootChildren: number of children nodes for current node.  

indexNbBits: number of bits used to decode description node indices. 

nbNodesInSubTreeNbBits: number of bits to used to decode the number of sub-tree nodes.  

nbNodesOnFirstLevelOfSubTreeNbBits: number of bits used to decode the number of nodes included in 
the first level sub-tree. 

NbSubTreesChildrenNbBits: number of bits used to decode the number of current sub-tree childrens. 

nbNodesOnLastLevelNbBits: number of bits used to decode the number of nodes in the sub-tree first level. 

networkType: communication type. 

Type 0: client - server 

Type 1: P2P  

-subTreeSizeNbBits: number of bits used to decode the sub-tree size. 

-geometryNodeSizeNbBits: number of bits used to decode the geometry size. 

 

8.14.3.6 WaveletDecoderConfig 

8.14.3.6.1 Syntax 

class WaveletDecoderConfig { 
 int(6) unitCountNbBits; 

int(6) faceCountNbBits; 
int(6) geomNbBits; 

} 
 

8.14.3.6.2 SpacePartitionNodeMessage 

class SpacePartitionNodeMessage { 
  switch(SpacePartitionDecoderConfig.type) {   
    0: BSPNodeMessage; 
    1: CellPortalNodeMessage; 
    2: PVSNodeMessage; 
    3: FootprintMessage; 
    4: WaveletMessage; 
  } 
}    
 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved 7

8.14.3.7 BSPNodeMessage  

8.14.3.7.1 Overview 

BSP Message 

 

NbUnits BSPUnit  BSPUnit 

  

 

NbUnits : number of BSP Units defined below 

 

BSP Unit 

 

Header Front Overlap Back 

  

 

with: 

 

Header 

 

nIndex nIndexParent A b c d nIndexFront nIndexOverlap nIndexBack 

 

 

 

Front 

 

nFrontObjCount nFrontObjID  nFrontObjID 

  

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

8 © ISO/IEC 2009 – All rights reserved
 

Overlap 

 

nOverlapObjCount nOverlapObjID  nOverlapObjID 

  

 

Back 

 

nBackObjCount nBackObjID  nBackObjID 

  

 

8.14.3.7.2 Syntax 

class BSPNodeMessage { 
    unsigned int(8) NbUnits; 
    for (i=0; i<NbUnits; i++) { 
 int(BSPDecoderConfig.indexNbBits) nIndex; 
 int(BSPDecoderConfig.indexNbBits) nParentIndex; 
 float(BSPDecoderConfig.coefNbBits) a; 
 float(BSPDecoderConfig.coefNbBits) b; 
 if (BSPDecoderConfig.is3D) { 

float(BSPDecoderConfig.coefNbBits) c; 
} 

 float(BSPDecoderConfig.coefNbBits) d; 
 int(BSPDecoderConfig.indexNbBits) nIndexFront; 
 int(BSPDecoderConfig.indexNbBits) nIndexOverlap; 

int(BSPDecoderConfig.indexNbBits) nIndexBack; 
 int(BSPDecoderConfig.objCountNbBits) nFrontObjCount ; 
 for (j=0 ; j<nFrontObjCount ; j++) { 

 int(BSPDecoderConfig.indexNbBits) nFrontObjID; 
} 

 int(BSPDecoderConfig.objCountNbBits) nOverlapObjCount ; 
 for (k=0 ; k<nOverlapObjCount ; k++) { 

 int(BSPDecoderConfig.indexNbBits) nOverlapObjID; 
} 
int(BSPDecoderConfig.objCountNbBits) nBackObjCount ; 

 for (k=0 ; k<nBackObjCount ; k++) { 
 int(BSPDecoderConfig.indexNbBits) nBackObjID; 
} 
 

    } 
} 
 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved 9

8.14.3.7.3 Semantics 

NbUnits: number of nodes in the BSP tree 

nIndex: node ID 

nParentIndex: parent node ID (-1 if none) 

a: plane coefficient, following equation ax+by+cz+d=0 

b: plane coefficient, following equation ax+by+cz+d=0 

c: plane coefficient, following equation ax+by+cz+d=0 

d: plane coefficient, following equation ax+by+cz+d=0 

nIndexFront: front child node ID (-1 if none) 

nIndexOverlap: overlap child node ID (-1 if none) 

nIndexBack: back child node ID (-1 if none) 

nFrontObjCount: number of objects front-side of the plane 

nFrontObjID: front-side object ID 

nOverlapObjCount: number of objects overlaping the plane 

nOverlapObjID: overlaping object ID 

nBackObjCount: number of objects back-side of the plane 

nBackObjID: back-side object ID 

 

8.14.3.8 Stream specific to cell&portals 

8.14.3.8.1 Overview 

 

Cell&Portal Message 

  

cellCount totalCount Cell  Cell 

  

 

cellCount: number of cells in stream 

totalCount: total number of cells 

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

10 © ISO/IEC 2009 – All rights reserved
 

Cell 

 

cellID CellGeometry cellArray 

  

 

CellGeometry 

 

centerX centerY centerZ dX dY dZ 

  

 

8.14.3.8.2 Syntax 

class CellPortalNodeMessage { 
    unsigned int(CellPortalDecoderConfig.cellCountNbBits) cellCount; 
    unsigned int(CellPortalDecoderConfig.totalCountNbBits) totalCount; 
   
    for (i=0; i<cellCount; i++) { 
     int(CellPortalDecoderConfig.totalCountNbBits) cellID; 
     int(CellPortalDecoderConfig.cellGeomNbBits) centerX; 
     int(CellPortalDecoderConfig.cellGeomNbBits) centerY; 
     if (CellPortalDecoderConfig.is3D) 
     { 
  int(CellPortalDecoderConfig.cellGeomNbBits) centerZ; 
     } 
     int(CellPortalDecoderConfig.cellGeomNbBits) dX; 
     int(CellPortalDecoderConfig.cellGeomNbBits) dY; 
    if (CellPortalDecoderConfig.is3D) 
     { 
      int(CellPortalDecoderConfig.cellGeomNbBits) dZ; 
     } 
     for (i=0; i<totalCount; i++) 
  unsigned int cellArray; 
      } 
} 
 

8.14.3.8.3 Semantics 

cellCount: number of cells in stream 

totalCount: total number of cells 

cellID: cell ID 

centerX: cell Bounding Box position in X 

centerY: cell Bounding Box position in Y 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved 11

centerZ: cell Bounding Box position in Z 

dX: cell Bounding Box size in X 

dY: cell Bounding Box size in Y 

dZ: cell Bounding Box size in Z 

PortalID: portal ID, inside cellule 

cellArray: array giving list of visible cells from cell i 

 

8.14.3.9 Stream specific to PVS 

8.14.3.9.1 Overview 

 

PVS Message 

 

cellCount objCount PVSGrid Cell Cell  Cell 

  

 

cellCount: total number of cells 

objCount: total number of objects  

PVSGrid: grid partition parameters (optional) 

 

PVSGrid 

 

zmin zmax xmin xmax ymin ymax dx Dy 

  

 

Cell 

 

CellID pvsArray 

  

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

12 © ISO/IEC 2009 – All rights reserved
 

8.14.3.9.2 Syntax 

class PVSNodeMessage { 
    unsigned int(PVSDecoderConfig.cellCountNbBits) cellCount; 
    unsigned int(PVSDecoderConfig.objCountNbBits) objCount; 
    bool(1) bRegular; 
    if (bRegular) { 
        float(PVSDecoderConfig.pvsGeomNbBits) zmin; 
        float(PVSDecoderConfig.pvsGeomNbBits) zmax; 
        float(PVSDecoderConfig.pvsGeomNbBits) xmin; 
        float(PVSDecoderConfig.pvsGeomNbBits) xmax; 
        float(PVSDecoderConfig.pvsGeomNbBits) ymin; 
        float(PVSDecoderConfig.pvsGeomNbBits) ymax; 
   float(PVSDecoderConfig.pvsGeomNbBits) dx; 
        float(PVSDecoderConfig.pvsGeomNbBits) dy; 
    } else { 
   PVSMesh; 
    } 
    for (i=0; i<nbCellCount; i++) { 
   unsigned int(PVSDecoderConfig.cellCountNbBits) nCellID ; 
   for (j=0; j<totalCount; j++) 
  unsigned int pvsArray; 
    } 
 
    } 
} 
 

8.14.3.9.3 Semantics 

cellCount: total number of cells 

objCount: total number of objects 

bRegular: partition based on a regular grid (1) or based on indexedfaceset (0) 

zmin: minimum in Z 

zmax: maximum in Z 

xmin: grid minimum in X 

xmax: grid maximum in Y 

ymin: grid minimum in Y 

ymax: grid maximum in Y 

dx: grid step in X 

dy: grid step in Y 

nCellID: cell ID 

pvsArray: array giving list of visible objects from cell i 

PVSMesh: this is the mesh describing the cells in the non-regular case. 

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved 13

8.14.3.10 PVSMesh 

8.14.3.10.1 Syntax 

class PVSMesh { 
     unsigned int(32) NbVertices; 
 unsigned int(32) NbFaces; 
 for (int i=0; i< NbVertices; i++) { 
  int(32)VArray[i]; 
 for (int i=0; i< NbFaces; i++) { 

 int(32) FArray[i]; 
} 

  
} 
 

8.14.3.10.2 Semantics 

NbVertices: this is the number of vertices in the mesh. 

NbFaces: this is the number of faces in the mesh. 

VArray: this is the array of points of the mesh. It has to be interpreted in the same way as the Coordinates 
field of an indexedFaceSet. 

FArray: this is the array of facets of the mesh. It has to be interpreted in the same way as the CoordIndex 
field of an indexedFaceSet. 

 

8.14.3.11 HierarchicalDescriptionPacket  

8.14.3.11.1 Syntax 

class HierarchicalDescriptionPacket { 
unsigned int(HierarchicalDescriptionDecoderConfig.nbSubTreesNbBits) 
nbSubTrees; 
for (i= 0; i < nbSubTrees; i++) { 

HierarchicalDescriptionSubTree subTree; 
} 

} 
 

8.14.3.11.2 Semantics 

nbSubTrees: number of hierarchical description sub-trees that are embedded in this packet. 

The HierachicalDescriptionSubTree is the base class used only with description trees. 

class HierarchicalDescriptionSubTree { 
switch(SPFootprintDecoderConfig.type) { 

0: FPHDescSubTree; 
1: // to be defined 

} 
} 
 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

14 © ISO/IEC 2009 – All rights reserved
 

8.14.3.12 FPHDDescSubTree 

8.14.3.12.1 Syntax 

The FPHDDescSubTree is the specific class used only with description trees. 

 

class FPHDescSubTree extends HierarchicalDescriptionSubTree { 
unsigned int(SPFootprintDecoderConfig.nbNodesInSubTreeNbBits) 
nbNodesInSubTree; 
unsigned int(SPFootprintDecoderConfig.nbNodesOnFirstLevelOfSubTreeNbBits) 
nbNodesOnFirstLevelOfSubTree; 
unsigned int(SPFootprintDecoderConfig.indexNbBits) 
indexParentFirstNodeInSubTree; 
unsigned int(SPFootprintDecoderConfig.indexNbBits) indexFirstNodeInSubTree; 
int(SPFootprintDecoderConfig.nbSubTreesChildrenNbBits) nbSubTreesChildren 
for (i= 0; i < nbSubTreesChildren; i++) { 

int(SPFootprintDecoderConfig.nbSubTreesNbBits) indexSubTreeChild 
int(SPFootprintDecoderConfig.nbNodesOnLastLevelNbBits) 
nbNodesOnLastLevel 
switch (SPFootprintDecoderConfig.networkType) { 

0: // no additionnal informations 
1: int(SPFootprintDecoderConfig.subTreeSizeNbBits) 
subTreeChildSize 

} 
for (i= 0; i < nbNodesInSubTree; i++) { 

SPFootprintNodeMessage node; 
} 

      } 
} 
 

8.14.3.12.2 Semantics 

nbNodesInSubTree: number of nodes in the sub-tree. 

nbNodesOnFirstLevelOfSubTree: number of nodes in the sub-tree first level. 

indexParentFirstNodeInSubTree: father node index. 

indexFirstNodeInSubTree: index of first node in the sub-tree. 

nbSubTreesChildren: number of sub-tree children. 

indexSubTreeChild: sub-tree child index. 

nbNodesOnLastLevel: number of nodes in the sub-tree first level. 

subTreeChildSize: size of current sub-tree. 

 
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-1

1:2
00

5/A
md 6

:20
09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b


ISO/IEC 14496-11:2005/Amd.6:2009(E) 

© ISO/IEC 2009 – All rights reserved 15

8.14.3.13 SPFootprintNodeMessage 

8.14.3.13.1 Syntax 

class SPFootprintNodeMessage { 
unsigned int(SPFootprintDecoderConfig.nbChildrenNbBits) nbChildren; 
if (nbChildren > 0) { 

unsigned int(8) encodedMetricError; 
} 
int(1) isFirstLevel;//this is a temporary non-parsable variable 
if (isFirstLevel) { 

float(32) gcX; 
float(32) gcY; 
float(32) gcZ; 
unsigned int(SPFootprintDecoderConfig.rootChildrenRadiusNbBits) 
radius; 

} 
else { 

unsigned int(5) nbBitsDelta; 
int(1) isDeltaXNeg; 
unsigned int(nbBitsDelta) deltaX; 
int(1) isDeltaYNeg; 
unsigned int(nbBitsDelta) deltaY; 
int(1) isDeltaYNeg; 
unsigned int(nbBitsDelta) deltaZ; 
int(1) isDeltaRadiusNeg; 
unsigned int(nbBitsDelta) deltaRadius; 

} 
} 
 
8.14.3.13.2 Semantics 

nbChildren: number of children nodes. 

encodedMetricError: metric error of the node. 

isFirstLevel: if true, node is assigned to root node. 

gcX, gcY, gcZ: node gravity centre coordinates. 

Radius: node radius. 

nbBitsDelta: number of bits used to decode deltaX, deltaY, deltaZ and deltaRadius. 

isDeltaXNeg: specifies whether deltaX is negative. 

deltaX: used to determine child x sphere coordinate (i.e the difference between father node gravity centre X 
coordinate and current node gravity centre X coordinate). 

deltaY and deltaZ: are the equivalents of deltaX but for the y and z coordinate respectively. 

deltaRadius: used to determine the child sphere radius. 

 

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
1:2

00
5/A

md 6
:20

09

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

