INTERNATIONAL ISO/IEC
STANDARD 14496-11

First edition
2005-12-15

AMENDMENT 6
2009-03-15

Information technology — Coding of
audio-visual objects —

Part 11:
Scene description and application engine

AMENDMENT 6

Technologies de-information — Codage des objets audiovisuels —
Partie 11: Desgcription de scene et moteur d'application
AMENDEMENT 6

Reference number
ISO/IEC 14496-11:2005/Amd.6:2009(E)

1SO|IEC
vz g © ISO/IEC 2009

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© [SO/IEC 2009
AlLrights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,

lectronic_or monhanir\al‘ innlnmﬁng phr\fnr\r\pying and miﬁrnfilnﬂ1 without pnrmiccinn in \uriﬁng from either 1SO _at the address helow. or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11
Fax + 41227490947
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members)of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISOcand IEC]
technical committees collaborate in fields of mutual interest. Other international organizations, gévernmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field ‘of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any.or’all such patent rights.

Amendment 6 to ISO/IEC 14496-11:2005 was prepared by_dJoint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of “audio, picture, multimedia and hypermedia
information.

© ISO/IEC 2009 — Al rights reserved iii

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

Information technology — Coding of audio-visual objects —

Part 11:
Scene description and application engine

AMENDMENT 6

After 8.13, add the following new subclause:
8.14 Scene Partitioning

8.14.1 Overview

In 3D streaming applications, a server often holds a compressed binary representation of the whole scene
data. At the time a client connects, it receives a coarse version 6f\the environment that suits more or less its|
actual location and requested precision. For the rest of the navigation, refinement data will be sent according
to the observer trajectory within the scene.

At this stage, two scenarios are possible. The first one/is‘called server-driven scenario; in this case, the server
is assumed to be able to cope with the necessary/ecomputations for deciding exactly what refinements the
client needs. Usually, the client has already senthis position and some hints of what he already has in his
cache. According to this information, the server extracts a subset of the compressed binary representation,
using some kind of MPEG-21 gBSD file.

The second possible scenario is the so-galled client-based one. In this case, it is the client task to compute)
and request the necessary refinement<ata. In a perfect world, the server would have enough capability to
constantly remain in server-driven mode. But in practical applications, when the number of clients grows, often
reaching several thousands of terminals, the server can not cope anymore and has to cast to the most
effective clients the task of identifying the needed refinements.

Another important thing tonote, also raised after our practical implementations, is that this becomes general
rule when dealing withtpeer-to-peer applications, i.e. when terminals can arbitrarily be considered as servers
as well.

While the client-dtiven mode reduces the amount of information to send to the server (namely the hints on the
cache content);-0ne noticeable difference is that the client does not know exactly what could or should be sent]
in function 0fhis position and orientation. What was known on the server side in the server-driven mode is
unknown'by the client in the client-driven mode.

The\schema is based on an extensible syntax, such as the AFX backchannel. The purpose of this framework
is\0 be able to any space partitioning conception, including the most general ones, as well as the mosf
specific. The partitioning types considered so far are:

1) BSP: this had already been proposed at the Fairfax meeting, but the activity had not followed up at

that time by lack of support and efficient design of the node. However, the technology itself has
proved to be useful for adaptive transmission and rendering of large scenes, and applies to the most
arbitrary scenes, independently on the tools used to compress the objects.

2) Cells / Portals: another widely used representation for selective transmission / rendering of large
interior scenes is the Cell / Portal paradigm. This representation is a graph in which the nodes figure
the various rooms in the building and the edges denote the possible visibility from one room to
another.

© ISO/IEC 2009 - All rights reserved 1

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

3) PVS (Potentially Visible Sets): also very widely used for exterior scenes, the purpose of PVS is the
same as Cells and Portals with the difference that areas are not related to other visible areas but
instead linked to the set of objects that are visible from this area.

4) WaveletSubdivisionSurfaces: this is a specific partitioning design, suited to the accommodation of
geometric wavelet coefficients. This is based on bounding volumes that are strongly dependent on the

chana aof tha haca mach
ST P C-orteoaSCTTeoT

5) FootPrints: this is the specific design that was originally demonstrated and that showed significant
gain in both bandwidth and reconstruction time.

Generic tools, such as BSP, Cells and Portals and PVS are supposed to handle portions of seenes
independently of the encoding scheme. This can be used for VRML scenes, or with objects for which the
partitioning does not have to have finer granularity than the object itself, namely because its encoding does
not provide multiresolution.

8.14.2 Node interface

PROTO SpacePartition [#%$NDT=SFWorldNode, SF3DNode $%COD=N
eventIn MF3DNode addChildren
eventIn MF3DNode removeChildren
exposedField MF3DNode children [1]
exposedField SFUrl SPStream NULL

1{}

8.14.2.1 Semantics and functionality

children: this is the target node. The partitioning information may apply to the children nodes and to its
descent.

SPStream: this is the stream containing the ScenexPRartitioning information.
NOTE The partitioning nodes obey the following criteria:
e Each partitioning node is attached-to a rendered node;
e The partitioning node influences the descent of the rendered node it is attached to;
e The partitioning nodés-combine themselves according to the hierarchy of the scene graph;

Figure AMDG6.1 shows.an:example illustrating these points.

2 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

e - IndexedFaceSet

SN BN Museum
[osp2 y oo
PVS
Cells/Portals — ___---
____________ WaveletSubdivision
O ospa 4T
WaveletSubdivision
Partitioning

Figure AMD6.1 — example of organization of space partitioning nodes within a scene graph

In this example, one can see various space partitioning nodes (the SPs) occurring at various depth in the
scene hierarchy. The type of each SP node is suited.to the type of the object it is linked to. For example
IndexedFaceSets representing the Earth and the Boat are partitioned using BSP and PVS. The museum,
which is an interior subscene, is partitioned.~with Cells and Portals. The statue inside the museum,
represented by WaveletSubdivisionSurfaces, ds partitioned with the according declination of the node. Each
SP node is dependent on every other SP node upper in the hierarchy. For instance the rendering of the statue
is subject to adaptation lead by SP4, but\is constrained by the visibility induced by SP3 and SP1, that are
linked to parent nodes.

8.14.3 Scene Partitioning stream definition
8.14.3.1 SpacePartitionDecoderConfig

8.14.3.1.1 Syntax

class ,SpacePartitionDecoderConfig {
int/(8) DSItag;
int (8) type;
switch (type) ({
0: BSPDecoderConfig;
1: CellPortalDecoderConfig;
2: PVSDecoderConfig;

3: SPFootprintDecoderConfig;
4: WaveletDecoderConfig;

)

© ISO/IEC 2009 - All rights reserved 3

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

8.14.3.1.2 Semantics
DSltag: Space Partition tag (0x0C)

type: space partition type

8.14.3.2 BSPDecoderConfig

8.14.3.2.1 Syntax
class BSPDecoderConfig {
int (6) indexNbBits;
int (6) coefNbBits;
int (6) objCountNbBits;
int (1) 1is3D;
}

8.14.3.2.2 Semantics

indexNbBits: number of bits used to encode BSP plane IDs
coefNbBits: number of bits used to encode BSP plane coefficients
objCountNbBits: number of bits used to encode the number of ebjects

is3D: identifier of the 2D (value 0) or 3D (value 1).

8.14.3.3 CellPortalDecoderConfig

8.14.3.3.1 Syntax

class CellPortalDecoderConfig:{
int (6) cellCountNbBitsg;
int (6) totalCountNbBits;

int (6) cellGeomNbBit's;
int (1) is3D;

8.14.3.3.2 Semantics
cellCountNbBits: number of bits used to encode number of cells in the stream

totalCountNbBits: number of bits used to encode total number of cells as well as cell IDs

cellGeomNbBIits: number of bits used to encode cell geometry parameters

is3D: identifier of the 2D (value 0) or 3D (value 1).

4 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

8.14.3.4 PVSDecoderConfig

8.14.3.41 Syntax

class PVSDecoderConfig {
int (6) cellCountNbBits;

1nt (o) objCountNOBi1ts;
int (6) pvsGeomNbBits;

8.14.3.4.2 Semantics
cellCountNbBits: number of bits used to encode the total number of cells

objCountNbBits: number of bits used to encode the total number of objects

8.14.3.5 SPFootprintDecoderConfig

8.14.3.5.1 Syntax

class SPFootprintDecoderConfig {

int (8) type;

unsigned int(5) rootChildrenRadiusNbBits;

unsigned int(5) nbChildrenNbBits;

unsigned int (5) nbSubTreesNbBits;

float(32) acquisitionPrecision;
float (32) minMetricError;
float (32) maxMetricErrorEngodingFunction;
unsigned int(16) nbRootChdildren;
unsigned int(5) indexNhBits;
unsigned int(5) nbNodegsInSubTreeNbBits;
unsigned int(5) nbNédesOnFirstLevelOfSubTreeNbBits;
unsigned int(5) nbSubTreesChildrenNbBits;
unsigned int (5)snbNodesOnLastLevelNbBits;
unsigned int (5)) networkType;
switch (networkType) {
0: // no~additional information;
1: int/(5) subTreeSizeNbBits;

Int (5) geometryNodesSizeNbBits;

8.14.3.5.2 Semantics
type: type of the description structure

rootChildrenRadiusNbBits: number of bits used to decode the radius of the children (i.e. the bounding

sphere)
nbChildrenNbBits: number of bits used to decode the number of hierarchical description node's children
nbSubTreesNbBits: number of bits used to decode number of sub-trees in a packet.

acquisitionPrecision: precision used during data acquisition.

© ISO/IEC 2009 - All rights reserved 5

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

minMetricError: smallest metric error that is greater than 0.
maxMetricErrorEncodingFunction: maximum metric error used in the encoding function.

nbRootChildren: number of children nodes for current node.

nbNodesInSubTreeNbBits: number of bits to used to decode the number of sub-tree nodes.

nbNodesOnFirstLevelOfSubTreeNbBits: number of bits used to decode the number of nodes included ‘in
the first level sub-tree.

NbSubTreesChildrenNbBits: number of bits used to decode the number of current sub-tree childrens.
nbNodesOnLastLevelNbBits: number of bits used to decode the number of nodes in the sub-tree first level.
networkType: communication type.
Type 0: client - server
Type 1: P2P
-subTreeSizeNbBits: number of bits used to decode the sub-tree size.

-geometryNodeSizeNbBits: number of bits used te.decode the geometry size.

8.14.3.6 WaveletDecoderConfig

8.14.3.6.1 Syntax

class WaveletDecoderConfig {
int (6) unitCountNbBits;
int (6) faceCountNbBits;
int (6) geomNbBits;

8.14.3.6.2 SpacePartitionNodeMessage

class SpacePartitionNodeMessage {
switch (SpadePartitionDecoderConfig.type) {
0: BSPNedeMessage;
1: CeldPortalNodeMessage;
2 : (PVSNodeMessage;
3v=FootprintMessage;
4T WaveletMessage;

[

6 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

8.14.3.7 BSPNodeMessage

8.14.3.7.1 Overview

BSP Message

NbUnits BSPUnit BSPUnit

NbUnits : number of BSP Units defined below

BSP Unit

Header Front Overlap Back

with:
Header

nindex nindexParent ~"A b c d nindexFront nindexOverlap nindexBack
Front

nFrontObjCount nFrontObjlD nFrontObjID

© ISO/IEC 2009 - All rights reserved 7

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

Overlap

nOverlapObjCount nOverlapObjID nOverlapObjID

Back

nBackObjCount nBackObjlD nBackObjID

8.14.3.7.2 Syntax

class BSPNodeMessage {
unsigned int(8) NbUnits;
for (i=0; i1<NbUnits; i++) {
int (BSPDecoderConfig.indexNbBits) nIndex;
int (BSPDecoderConfig.indexNbBits) nParentIrddex;
float (BSPDecoderConfig.coefNbBits) a;
float (BSPDecoderConfig.coefNbBits) b;
if (BSPDecoderConfig.is3D) {
float (BSPDecoderConfig.coefNbBits) c;
}
float (BSPDecoderConfig.coefNbBigs) d;
int (BSPDecoderConfig.indexNbBits) nIndexFront;
int (BSPDecoderConfig.indexNbBits) nIndexOverlap;
int (BSPDecoderConfig.indexNbBits) nIndexBack;
int (BSPDecoderConfig.objCountNbBits) nFrontObjCount ;
for (j=0 ; j<nFrontObjCount ; Jj++) {
int (BSPDecoderConfig.indexNbBits) nFrontObjID;
}
int (BSPDecoderCenfig.objCountNbBits) nOverlapObjCount ;
for (k=0 ; k<nOverlapObjCount ; k++) {
int (BSPDecoderConfig.indexNbBits) nOverlapObjID;
}
int (BSPPécoderConfig.objCountNbBits) nBackObjCount ;
for (k&€06-"; k<nBackObjCount ; k++) {
int (BSPDecoderConfig.indexNbBits) nBackObjID;
}

8 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

8.14.3.7.3 Semantics
NbUnits: number of nodes in the BSP tree
nindex: node ID

HParthlnde : % Al N (. 4 . f AY
A DATTTIUTTIUUT T (7T 1T TTUTTIG)

a: plane coefficient, following equation ax+by+cz+d=0

b: plane coefficient, following equation ax+by+cz+d=0

c: plane coefficient, following equation ax+by+cz+d=0

d: plane coefficient, following equation ax+by+cz+d=0
nindexFront: front child node ID (-1 if none)
nindexOverlap: overlap child node ID (-1 if none)
nindexBack: back child node ID (-1 if none)
nFrontObjCount: number of objects front-side of the plane
nFrontODbjID: front-side object ID

nOverlapObjCount: number of objects overlaping the plane
nOverlapObjID: overlaping object ID

nBackObjCount: number of objects back-side,of'the plane

nBackObjID: back-side object ID

8.14.3.8 Stream specific to(cell&portals

8.14.3.8.1 Overview

Cell&Portal Message

cellCount totalCount Cell Cell

cellCount: number of cells in stream

totalCount: total number of cells

© ISO/IEC 2009 - All rights reserved 9

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

Cell
celllD CellGeometry cellArray
CellGeometry
centerX centerY centerZ dX dy dz
8.14.3.8.2 Syntax
class CellPortalNodeMessage {
unsigned int(CellPortalDecoderConfig.cellCountNbBdts) cellCount;
unsigned int(CellPortalDecoderConfig.totalCountNbBits) totalCount;

for (i=0; i<cellCount; i++) {

if
{

}

unsigned int“~tcellArray;

8.14.3.8.3"'Semantics

cellCount: number of cells in stream

int (CellPortalDecoderConfig.
int (CellPortalDecoderConfig.
int (CellPortalDecoderConfig.

(CellPortalDecoderConfig.

int (CellPortalDecoderConfig.
int (CellPortalDecoderConfig.

int (CellPortalDecoderCGonfig.
if (CellPortalDecoderConfig.is3D)

{
int (CellPortalDecoderConfig.
}
for (i=0; i<totalCount; i++)

totalCountNbBits)
cellGeomNbBits)
cellGebmNbBits)
1s3D)

¢ellGeomNbBits)
cellGeomNbBits) dX;

cellGeomNbBits) dy;

cellGeomNbBits) dz;

cellID;
centerX;
centerY;

centerz;

totalCounttotatmumberof cetts
celllD: cell ID
centerX: cell Bounding Box position in X

centerY: cell Bounding Box position in Y

10

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

centerZ: cell Bounding Box position in Z
dX: cell Bounding Box size in X

dY: cell Bounding Box size in Y

P b LD P~ H Im] H H Z
V. UTITT DUUTIUT IH DUA OIZC TTT <
PortallD: portal ID, inside cellule

cellArray: array giving list of visible cells from cell i

8.14.3.9 Stream specific to PVS

8.14.3.9.1 Overview

PVS Message

cellCount objCount PVSGrid Cell Cell Cell

cellCount: total number of cells
objCount: total number of objects

PVSGrid: grid partition parameters'(optional)

PVSGrid

zmin Zmax xmin Xxmax ymin ymax dx Dy

Cell

CelllD pvsArray

© ISO/IEC 2009 — Al rights reserved 1

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

8.14.3.9.2 Syntax

class PVSNodeMessage {
unsigned int (PVSDecoderConfig.cellCountNbBits) cellCount;
unsigned int (PVSDecoderConfig.objCountNbBits) objCount;
bool (1) bRegular;

———fF—{(bRegutar—t

float (PVSDecoderConfig.pvsGeomNbBits) zmin;
float (PVSDecoderConfig.pvsGeomNbBits) zmax;
float (PVSDecoderConfig.pvsGeomNbBits) xmin;
float (PVSDecoderConfig.pvsGeomNbBits) xmax;
float (PVSDecoderConfig.pvsGeomNbBits) ymin;
float (PVSDecoderConfig.pvsGeomNbBits) ymax;

float (PVSDecoderConfig.pvsGeomNbBits) dx;
float (PVSDecoderConfig.pvsGeomNbBits) dy;
} else {
PVSMesh;
}
for (i=0; i<nbCellCount; i++) {
unsigned int (PVSDecoderConfig.cellCountNbBits) nCellID ;
for (j=0; j<totalCount; j++)
unsigned int pvsArray;

8.14.3.9.3 Semantics
cellCount: total number of cells
objCount: total number of objects
bRegular: partition based on a regular grid (1) or based on indexedfaceset (0)
zmin: minimum in Z

zmax: maximum in Z

xmin: grid minimum in X

xmax: grid maximum inyY:

ymin: grid minimum'in Y

ymax: grid maximum in'Y

dx: grid:step in X

dyogrid step in Y

nCelllD: cell ID
pvsArray: array giving list of visible objects from cell i

PVSMesh: this is the mesh describing the cells in the non-regular case.

12 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

8.14.3.10 PVSMesh

8.14.3.10.1 Syntax

class PVSMesh {
unsigned int(32) NbVertices;

unsigned 1nt(32) NbFaces;

for (int i=0; i< NbVertices; i++) {
int (32)VArrayl[i];

for (int i=0; i< NbFaces; i++) {
int (32) FArrayl[i];
}

8.14.3.10.2 Semantics
NbVertices: this is the number of vertices in the mesh.
NbFaces: this is the number of faces in the mesh.

VArray: this is the array of points of the mesh. It has to be interpreted in the same way as the Coordinates|
field of an indexedFaceSet.

FArray: this is the array of facets of the mesh. It has to bé)interpreted in the same way as the Coordindex
field of an indexedFaceSet.

8.14.3.11 HierarchicalDescriptionPacket

8.14.3.11.1 Syntax

class HierarchicalDescriptilonPacket {
unsigned int (HierarchicalDescriptionDecoderConfig.nbSubTreesNbBits)
nbSubTrees;
for (i= 0; 1 <.nbSubTrees; i++) {
HieraxchicalDescriptionSubTree subTree;

}

8.14.3.11.2)Semantics
nbSubTrees: number of hierarchical description sub-trees that are embedded in this packet.

The HierachicalDescriptionSubTree is the base class used only with description trees.

class HierarchicalDescriptionSubTree {

switch (SPFootprintDecoderConfig.type) {
0: FPHDescSubTree;
1: // to be defined

© ISO/IEC 2009 — Al rights reserved 13

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

ISO/IEC 14496-11:2005/Amd.6:2009(E)

8.14.3.12 FPHDDescSubTree

8.14.3.12.1 Syntax

The FPHDDescSubTree is the specific class used only with description trees.

class FPHDescSubTree extends HierarchicalDescriptionSubTree {
unsigned int (SPFootprintDecoderConfig.nbNodesInSubTreeNbBits))
nbNodesInSubTree;
unsigned int (SPFootprintDecoderConfig.nbNodesOnFirstLevelOfSubTreeNbBits)
nbNodesOnFirstLevelOfSubTree;
unsigned int (SPFootprintDecoderConfig.indeXNbBits)
indexParentFirstNodeInSubTree;
unsigned int (SPFootprintDecoderConfig.indexNbBits) indexFirstNodelInSubTree;
int (SPFootprintDecoderConfig.nbSubTreesChildrenNbBits) nbSubTreesChildren
for (i= 0; i < nbSubTreesChildren; i++) {
int (SPFootprintDecoderConfig.nbSubTreesNbBits) indexSubTreeChild
int (SPFootprintDecoderConfig.nbNodesOnLastLevelNbBits)
nbNodesOnLastLevel
switch (SPFootprintDecoderConfig.networkType) ¥
0: // no additionnal informations
1: int (SPFootprintDecoderConfig.subTreeSizeNbBits)
subTreeChildSize
}
for (i= 0; i1 < nbNodesInSubTree; i+{) |
SPFootprintNodeMessage node;

8.14.3.12.2 Semantics

nbNodesInSubTree: number of nodes in‘the sub-tree.
nbNodesOnFirstLevelOfSubTree: number of nodes in the sub-tree first level.
indexParentFirstNodelnSubTree: father node index.
indexFirstNodelnSubTree: index of first node in the sub-tree.
nbSubTreesChildren: number of sub-tree children.

indexSubTreeChild: sub-tree child index.

nbNodesOnLastLevel: number of nodes in the sub-tree first level.

subTreeChildSize: size of current sub-tree.

14 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

8.14.3.13 SPFootprintNodeMessage

8.14.3.13.1 Syntax

class SPFootprintNodeMessage {

unsigned int (SPFootprintDecoderConfig.nbChildrenNbBits)

ISO/IEC 14496-11:2005/Amd.6:2009(E)

nbChildren;

TT (nbChildren 0T 1
unsigned int (8) encodedMetricError;
}
int (1) isFirstLevel;//this is a temporary non-parsable variable
if (isFirstLevel) {
float (32) gcX;
float (32) gcy;
float (32) gcz;
unsigned int (SPFootprintDecoderConfig.rootChildrenRadiusNbBits)
radius;
}
else {

unsigned int (5) nbBitsDelta;

int (1) isDeltaXNeg;
unsigned int (nbBitsDelta)
int (1) isDelta¥Neg;
unsigned int (nbBitsDelta)
int (1) isDelta¥Neg;
unsigned int (nbBitsDelta)
int (1) isDeltaRadiusNeg;
unsigned int (nbBitsDelta)

8.14.3.13.2 Semantics

nbChildren: number of children nodes.

encodedMetricError: metric error of'the node.

isFirstLevel: if true, node is assigned to root node.

gcX, gcY, gcZ: node gravity centre coordinates.

Radius: node radius.

deltaX;

deltaY;

deltaz;

deltwaRadius;

nbBitsDelta: number of bits used to decode deltaX, deltaY, deltaZ and deltaRadius.

isDeltaXNeg: specifies whether deltaX is negative.

deltaX: used to determine child x sphere coordinate (i.e the difference between father node gravity centre X|

coordinate and current node gravity centre X coordinate).

deltaY and deltaZ: are the equivalents of deltaX but for the y and z coordinate respectively.

deltaRadius: used to determine the child sphere radius.

© ISO/IEC 2009 - All rights reserved

15

https://standardsiso.com/api/?name=9d93294565f13b96b4c896e699bcc47b

