
Information technology — Coding of
audio-visual objects —
Part 22:
Open Font Format
AMENDMENT 2: Extending colour font
functionality and other updates
Technologies de l'information — Codage des objets audiovisuels —
Partie 22: Format de police de caractères ouvert
AMENDEMENT 2: Extension de la fonctionnalité des polices de
couleur et autres mises à jour

INTERNATIONAL
STANDARD

ISO/IEC
14496-22

Fourth edition
2019-01

AMENDMENT 2
2023-01

Reference number
ISO/IEC 14496-22:2019/Amd. 2:2023(E)

© ISO/IEC 2023

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ii

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

	 ﻿� © ISO/IEC 2023 – All rights reserved
�

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://www.iso.org
https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance
are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria
needed for the different types of document should be noted. This document was drafted in
accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC
list of patent declarations received (see https://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

A list of all parts in the ISO/IEC 14496 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-committees.

iii© ISO/IEC 2023 – All rights reserved	 ﻿

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Information technology — Coding of audio-visual
objects —

Part 22:
Open Font Format

AMENDMENT 2: Extending colour font functionality and other
updates

4.3

Add the following row to the table defining data types before the row that specifies Offset32:

Offset24 24-bit offset to a table, same as uint24, NULL offset = 0x000000

5.7.1

Replace the entire content of the subclause with the following:

The DSIG table contains the digital signature of the OFF font. Signature formats are widely documented
and rely on a key pair architecture. Software developers, or publishers posting material on the Internet,
create signatures using a private key. Operating systems or applications authenticate the signature
using a public key.

The W3C and major software and operating system developers have specified security standards that
describe signature formats, specify secure collections of web objects, and recommend authentication
architecture. OFF fonts with signatures will support these standards.

OFF fonts offer many security features:

—	 Operating systems and browsing applications can identify the source and integrity of font files
before using them,

—	 Font developers can specify embedding restrictions in OFF fonts, and these restrictions cannot be
altered in a font signed by the developer.

The enforcement of signatures is an administrative policy that may be supported by the host
environment in which fonts are used. Systems may restrict use of unsigned fonts, or may allow policy to
be controlled by a system administrator.

Anyone can obtain identity certificates and encryption keys from a certifying agency, such as Verisign
or GTE's Cybertrust, free or at a very low cost.

The DSIG table is organized as follows. The first portion of the table is the header.

DSIG Header

Type Name Description
uint32 version Version number of the DSIG table

(0x00000001)

1© ISO/IEC 2023 – All rights reserved	 ﻿

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
uint16 numSignatures Number of signatures in the table
uint16 flags Shall be set to 0x0001
SignatureRecord signatureRecords[numSignatures] Array of signature records

The version of the DSIG table is expressed as a uint32, beginning at 0. The version of the DSIG table
currently used is version 1 (0x00000001).

Permission bit 0 allows a party signing the font to prevent any other parties from also signing the font
(counter-signatures). If this bit is set to zero (0) the font may have a signature applied over the existing
digital signature(s). A party who wants to ensure that their signature is the last signature can set this
bit.

The DSIG header has an array of signature records that specify the format and offset of signature blocks.

SignatureRecord

Type Name Description
uint32 format Format of the signature
uint32 length Length of signature in bytes
Offset32 signatureBlockOffset Offset to the signature block from the beginning of the table

Signatures are contained in one or more signature blocks. Signature blocks may have various formats;
currently one format is defined. The format identifier specifies both the format of the signature block,
as well as the hashing algorithm used to create and authenticate the signature.

Signature Block Format 1

Type Name Description
uint16 reserved1 Reserved for future use; set to zero.
uint16 reserved2 Reserved for future use; set to zero.
uint32 signatureLength Length (in bytes) of the PKCS#7 packet in the signature field.
uint8 signature[signatureLength] PKCS#7 packet

For more information about PKCS#7 signatures see [10].

For more information about counter-signatures, see [11].

Format 1: For whole fonts, with either TrueType outlines and/or CFF data

PKCS#7 or PKCS#9. The signed content digest is created as follows:

1)	 If there is an existing DSIG table in the font:

a)	 Remove the DSIG table from font.

b)	 Remove the DSIG table entry from the Table Directory.

c)	 Adjust table offsets as necessary.

d)	 Recalculate the checksumAdjustment in the ‘head’ table.

2)	 Hash the revised font data using a secure one-way hash (such as MD5) to create the content digest.

3)	 Create the PKCS#7 signature block using the content digest.

4)	 Create a new DSIG table containing the signature block.

5)	 Add the DSIG table to the font, adjusting table offsets as necessary.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

6)	 Add a DSIG table entry to the Table Directory.

7)	 Recalculate the checksumAdjustment in the ‘head’ table.

Validation of a signature in a font is done by repeating steps 1 – 4 in an in-memory copy of the font
file. Note that changing the checksumAdjustment in the last step does not break the signature because
verification is done on an in-memory copy with these changes.

Prior to signing a font file, ensure that all the following attributes are true:

—	 The magic number in the ‘head’ table is correct.

—	 Given the numTables value in the Table Directory, the other values in the Table Directory are
consistent.

—	 The table records in the Table Directory are ordered alphabetically by the table tags, and there are
no duplicate tags.

—	 The offset of each table is a multiple of 4. (That is, tables are long word aligned.)

—	 The first actual table in the file comes immediately after the directory of tables.

—	 If the tables are sorted by offset, then for all tables i (where index 0 means the table with the smallest
offset), Offset[i] + Length[i] <= Offset[i+1] and Offset[i] + Length[i] >= Offset[i+1] - 3. In other words,
the tables do not overlap, and there are at most 3 bytes of padding between tables.

—	 The pad bytes between tables are all zeros.

—	 The offset of the last table in the file plus its length is not greater than the size of the file.

—	 The checksums of all tables are correct.

—	 The ‘head’ table's checksumAdjustment field is correct.

Signatures for Font Collections

The DSIG table for a Font Collection (TTC) shall be the last table in the TTC file. The offset to the table is
put in the TTCHeader (version 2). Signatures of TTC files are expected to be Format 1 signatures.

The signature of a TTC file applies to the entire file, not to the individual fonts contained within the
TTC. Signing the TTC file ensures that other contents are not added to the TTC.

Individual fonts included in a font collection should not be individually signed as the process of making
the TTC could invalidate the signature on the font.

When DSIG table is created for a collection file, the steps given above are used, with these revisions:

—	 In step 1: if there is an existing DSIG table referenced in a version 2.0 TTC header, the DSIG table is
removed, and the DSIG fields in the header is set to NULL. No recalculation of a checksumAdjustment
is required.

—	 In steps 6 and 7: the DSIG table is added to the file, not to any individual font within the collection. A
version 2.0 TTC header is required, with the DSIG fields in the header set to reference the DSIG table.

—	 Step 8 is not applicable.

See the TTC Header description (subclause 4.6.3) for related information.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11

Replace the content of subclause 5.7.11 with the following:

The COLR table adds support for multi-colored glyphs in a manner that integrates with the rasterizers
of existing text engines and that is designed to be easy to support with current OpenType font files.

The COLR table defines color presentations for glyphs. The color presentation of a glyph is specified as a
graphic composition using other glyphs, such as a layered arrangement of glyphs, each with a different
color. The term “color glyph” is used informally to refer to such a graphic composition defined in the
COLR table; and the term “base glyph” is used to refer to a glyph for which a color glyph is provided.
Processing of the COLR table is done on glyph sequences after text layout processing is completed and
prior to final presentation of glyphs. Typically, a base glyph is a glyph that may occur in a sequence that
results from the text layout process.

For example, the Unicode character U+1F600 is the grinning face emoji. Suppose in an emoji font the
‘cmap’ table maps U+1F600 to glyph ID 718. Assuming no glyph substitutions, glyph ID 718 would be
considered the base glyph. Suppose the COLR table has data describing a color presentation for this
using a layered arrangement of other glyphs with different colors assigned: that description and its
presentation result would be considered the corresponding color glyph.

Two versions of the COLR table are defined.

Version 0 allows for a simple composition of colored elements: a linear sequence of glyphs that are
stacked vertically as layers in bottom-up z-order. Each layer combines a glyph outline from the ‘glyf’,
CFF or CFF2 table (referenced by glyph ID) with a solid color fill. These capabilities are sufficient to
define color glyphs such as those illustrated in Figure 5.6.

Figure 5.6 — Examples of the graphic capabilities of COLR version 0

Version 1 supports additional graphic capabilities. In addition to solid colors, gradient fills can be
used, as well as more complex fills using other graphic operations, including affine transformations
and various blending modes. Version 1 capabilities allow for color glyphs such as those illustrated in
Figure 5.7:

Figure 5.7 — Examples of the graphic capabilities of COLR version 1

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Version 1 also extends capabilities in variable fonts. A COLR version 0 table can be used in variable
fonts with glyph outlines being variable, but no other aspect of the color composition being variable. In
version 1, all of the new constructs for which it could be relevant have been designed to be variable; for
example, the placement of color stops in a gradient, or the alpha values applied to colors. The graphic
capabilities supported in version 0 and in version 1 are described in more detail below.

The COLR table is used in combination with the CPAL table (5.7.12): all color values are specified as
entries in color palettes defined in the CPAL table. If the COLR table is present in a font but no CPAL
table exists, then the COLR table is ignored.

 5.7.11.1 Graphic compositions

The graphic compositions in a color glyph definition use a set of 2D graphic concepts and constructs:

—	 Shapes (or geometries)

—	 Fills (or shadings)

—	 Layering—a z-order—of elements

—	 Composition and blending modes—different ways that the content of a layer is combined with the
content of layers above or below it

—	 Affine transformations

For both version 0 and version 1, shapes are obtained from glyph outlines in the ‘glyf’, ‘CFF’ or CFF2
table, referenced by glyph ID. Colors used in fills are obtained from the CPAL table.

The simplest color glyphs use just a few of the concepts above: shapes, solid color fills, and layering.
This is the set of capabilities provided by version 0 of the COLR table. In version 0, a base glyph record
specifies the color glyph for a given base glyph as a sequence of layers. Each layer is specified in a layer
record and has a shape (a glyph ID) and a solid color fill (a CPAL palette entry). The filled shapes in the
layer stack are composed using only alpha blending.

Figure 5.8 illustrates the version 0 capabilities: three shapes are in a layered stack: a blue square in the
bottom layer, an opaque green circle in the next layer, and a red triangle with some transparency in the
top layer.

Key
1 layer 0 (bottom)
2 layer 1
3 layer 2 (top)

Figure 5.8 — Basic graphic capabilities of COLR version 0

The basic concepts also apply to color glyphs defined using the version 1 formats: shapes have fills and
can be arranged in layers. But the additional formats of version 1 support much richer capabilities. In

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

a version 1 color glyph, graphic constructs and capabilities are represented primarily in Paint tables,
which are linked together in a directed, acyclic graph. Several different Paint formats are defined, each
describing a particular type of graphic operation:

—	 A PaintColrLayers table provides a layering structure used for creating a color glyph from layered
elements. A PaintColrLayers table can be used at the root of the graph, providing a base layering
structure for the entire color glyph definition. A PaintColrLayers table can also be nested within the
graph, providing a set of layers to define some graphic sub-component within the color glyph.

—	 The PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient,
PaintVarRadialGradient, PaintSweepGradient, and PaintVarSweepGradient tables provide basic
fills, using color entries from the CPAL table.

—	 The PaintGlyph table provides glyph outlines as the basic shapes.

—	 The PaintTransform and PaintVarTransform tables are used to apply an affine transformation
matrix to a sub-graph of paint tables, and the graphic operations they represent. Several Paint
formats are also provided for specific transformation types: translate, scale, rotate, or skew, with
additional variants of these formats for variations and other options.

—	 The PaintComposite table supports alternate compositing and blending modes for two sub-graphs.

—	 The PaintColrGlyph table allows a color glyph definition, referenced by a base glyph ID, to be re-
used as a sub-graph within multiple color glyphs.

NOTE	 Some paint formats come in Paint* and PaintVar* pairs. In these cases, the latter format supports
variations in variable fonts, while the former provides a more compact representation for the same graphic
capability but without variation capability.

In a simple color glyph description, a PaintGlyph table might be linked to a PaintSolid table, for example,
representing a glyph outline filled using a basic solid color fill. But the PaintGlyph table could instead be
linked to a much more complex sub-graph of Paint tables, representing a shape that gets filled using the
more-complex set of operations described by the sub-graph of Paint tables.

The graphic capabilities are described in more detail in 5.7.11.1.1 – 5.7.11.1.9. The formats used for each
are specified in 5.7.11.2.

5.7.11.1.1 Colors and solid color fills

All colors are specified as a base zero index into CPAL (5.7.12) palette entries. A font can define alternate
palettes in its CPAL table; it is up to the application to determine which palette is used. A palette
entry index value of 0xFFFF is a special case indicating that the text foreground color (defined by the
application) should be used, and shall not be treated as an actual index into the CPAL ColorRecord array.

The CPAL color data includes alpha information, as well as RGB values. In the COLR version 0 formats, a
color reference is made in a LayerRecord as a palette entry index alone. In the formats added for COLR
version 1, color references include a palette entry index and a separate alpha value within the COLR
structure for a solid color fill or gradient color stop (described below). Separation of alpha from palette
entries in version 1 allows use of transparency in a color glyph definition independent of the choice of
palette. The alpha value in the COLR structure is multiplied into the alpha value given in the CPAL color
entry.

Two color index record formats are defined: ColorIndex, and VarColorIndex. The latter can be used in
variable fonts to make the alpha value variable.

In version 1, a solid color fill is specified using a PaintVarSolid or PaintSolid table, with or without
variation support, respectively. See 5.7.11.2.6.2 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

6

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.1.2 Gradients

5.7.11.1.2.1 General

COLR version 1 supports three types of gradients: linear gradients, radial gradients, and sweep
gradients. For each type, non-variable and variable formats are defined. Each type of gradient is
specified using a color line.

5.7.11.1.2.2 Color Lines

A color line is a function that maps real numbers to color values to define a one-dimensional gradation
of colors, to be used in the definition of linear, radial, or sweep gradients. A color line is defined as a set
of one or more color stops, each of which maps a particular real number to a specific color.

On its own, a color line has no positioning, orientation or size within a design grid. The definition of a
linear, radial, or sweep gradient will reference a color line and map it onto the design grid by specifying
positions in the design grid that correspond to the real values 0 and 1 in the color line. The specification
for linear, radial and sweep gradients also include rules for where to draw interpolated colors of the
color line, following from the placement of 0 and 1.

A color stop is defined by a real number, the stop offset, and a color. A color line shall have at least
one color stop. (Stop offsets are represented using F2DOT14 values, therefore color stops can only be
specified within the range [-2, 2). See 5.7.11.2.5 for format details.) If only one color stop is specified,
that color is used for the entire color line; at least two color stops are needed to create color gradation.

Color gradation is defined over the interval from the color stop with the minimum offset, through the
successive color stops, to the color stop with the maximum offset. Between numerically-adjacent color
stops, color values are linearly interpolated. See Interpolation of Colors in 5.7.12 for requirements on
how colors are interpolated.

Color values outside the defined interval are determined by the color line’s extend mode, described
below. In this way, colors are defined for all stop offset values, from negative infinity to positive infinity.

For example, a gradient color line could be defined with two color stops at 0.2 and 1.5. Colors for offsets
between 0.2 and 1.5 are interpolated. Colors for offsets above 1.5 and below 0.2 are determined by the
color line’s extend mode.

If there are multiple color stops defined for the same stop offset, the first one is used for computing
color values on the color line below that stop offset, and the last one is used for computing color values
at or above that stop offset. All other color stops for that stop offset are ignored.

The color patterns outside the defined interval are determined by the color line’s extend mode. Three
extend modes are supported:

—	 Pad: outside the defined interval, the color of the closest color stop is used. Using a sequence of
letters as an analogy, given a sequence “ABC”, it is extended to “…AA ABC CC…”.

—	 Repeat: The color line is repeated over repeated multiples of the defined interval. For example, if
color stops are specified for a defined interval of [0.2, 1.5], then the pattern is repeated above the
defined interval for intervals (1.5, 2.8], (2.8, 4.1], etc.; and also repeated below the defined interval
for intervals [-1.1, 0.2), [-2.4, -1.1), etc. In each repeated interval, the first color is that of the farthest
defined color stop. By analogy, given a sequence “ABC”, it is extended to “…ABC ABC ABC…”.

—	 Reflect: The color line is repeated over repeated intervals, as for the repeat mode. However, in each
repeated interval, the ordering of color stops is the reverse of the adjacent interval. By analogy,
given a sequence “ABC”, it is extended to “…ABC CBA ABC CBA ABC…”.

Figures 5.9–5.11 illustrate the different color line extend modes. The figures show the color line
extended over a limited interval, but the extension is unbounded in either direction.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Key
1 pad with starting color
2 defined interval
3 pad with ending color

Figure 5.9 — Color gradation extended using pad mode

Key
1 repeated intervals
2 defined interval
3 repeated intervals

Figure 5.10 — Color gradation extended using repeat mode

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

8

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Key
1 reflected intervals
2 defined interval
3 reflected intervals

Figure 5.11 — Color gradation extended using reflect mode

NOTE 1	 The extend modes are the same as the spread Method attribute used for linear and radial gradients in
the Scalable Vector Graphics (SVG) 1.1 (2nd Edition) specification.

When combining a color line with the geometry of a particular gradient definition, one might want
to achieve a certain number of repetitions of the gradient pattern over a particular geometric range.
Assuming that geometric range will correspond to placement of stop offsets 0 and 1, the following steps
can be used:

—	 In order to get a certain number of repetitions of the gradient pattern (without reflection), divide 1
by the number of desired repetitions, use the result as the maximum stop offset for specified color
stops, and set the extend mode to repeat.

—	 In order to get a certain number of repetitions of the reflected gradient pattern, divide 1 by two
times the number of desired repetitions, use the result as the maximum stop offset for specified
color stops, and set the extend mode to reflect.

NOTE 2	 Special considerations apply to color line extend modes for sweep gradients. See 5.7.11.1.2.5 for
details.

Color lines are specified using color line tables, which contain arrays of color stop records. Two color
line table and two color stop record formats are defined:

—	 ColorLine table and ColorStop record

—	 VarColorLine table and VarColorStop record

The VarColorLine and VarColorStop formats can be used in variable fonts and allow for stop offsets
and color alpha values to be variable. The ColorLine and ColorStop formats provide a more compact
representation when variation is not required. See 5.7.11.2.5 for format details.

5.7.11.1.2.3 Linear gradients

A linear gradient provides gradation of colors along a straight line. The gradient is defined by three
points, p0, p1 and p2, plus a color line. The color line is positioned in the design grid with stop offset 0
aligned to p0 and stop offset 1.0 aligned to p1. (The line passing through p0 and p1 will be referred to
as line p0p1.) Colors at each position on line p0p1 are interpolated using the color line. For each position
along line p0p1, the color at that position is projected on either side of the line.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

The additional point, p2, is used to rotate the gradient orientation in the space on either side of the line
p0p1. The line passing through points p0 and p2 (line p0p2) determines the direction in which colors
are projected on either side of the color line. That is, for each position on line p0p1, the line that passes
through that position on line p0p1 and that is parallel to line p0p2 will have the color for that position on
line p0p1.

NOTE 1	 For convenience, point p2 can be referred to as the rotation point, and the vector from p0 to p2 can be
referred to as the rotation vector. However, neither the magnitude of the vector nor the direction (from p0 to p2,
versus from p2 to p0) has significance.

If either point p1 or p2 is the same as point p0, the gradient is ill-formed and shall not be rendered.

If line p0p2 is parallel to line p0p1 (or near-parallel for an implementation-determined definition), then
the gradient is ill-formed and shall not be rendered.

NOTE 2	 An implementation can derive a single vector, from p0 to a point p3, by computing the orthogonal
projection of the vector from p0 to p1 onto a line perpendicular to line p0p2 and passing through p0 to obtain
point p3. The linear gradient defined using p0, p1 and p2 as described above is functionally equivalent to a linear
gradient defined by aligning stop offset 0 to p0 and aligning stop offset 1.0 to p3, with each color projecting on
either side of that line in a perpendicular direction. This specification uses three points, p0, p1 and p2, as that
provides greater flexibility in controlling the placement and rotation of the gradient, as well as variations thereof.

Figures 5.12 to 5.14 illustrate linear gradients using the three different color line extend modes. Each
figure illustrates linear gradients with two different rotation vectors. In each case, three color stops
are specified: red at 0.0, yellow at 0.5, and blue at 1.0.

Figure 5.12 — Linear gradients with different rotations using the pad extend mode

Figure 5.13 — Linear gradients with different rotations using the repeat extend mode

Figure 5.14 — Linear gradients with different rotations using the reflect extend mode

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

10

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

NOTE 3	 When a linear gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the
same as if the gradient were defined using the transformed positions of points p0, p1 and p2.

Linear gradients are specified using a PaintVarLinearGradient or PaintLinearGradient table, with or
without variation support, respectively. See 5.7.11.2.6.3 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.

5.7.11.1.2.4 Radial gradients

A radial gradient provides gradation of colors along a cylinder defined by two circles. The gradient is
defined by circles with center c0 and radius r0, and with center c1 and radius r1, plus a color line. The
color line aligns with the two circles by associating stop offset 0 with the first circle (with center c0)
and aligning stop offset 1.0 with the second circle (with center c1).

NOTE 1	 The term “radial gradient” is used in some contexts for more limited capabilities. In some contexts,
the type of gradient defined here is referred to as a “two point conical” gradient.

The drawing algorithm for radial gradients follows the HTML WHATWG Canvas specification for
createRadialGradient() [32], but adapted with alternate color line extend modes, as described in
5.7.11.1.2.2. Radial gradients shall be rendered with results that match the results produced by the
following steps.

With circle center points c0 and c1 defined as c0 = (x0, y0) and c1 = (x1, y1):

1)	 If c0 = c1 and r0 = r1 then paint nothing and return.

2)	 For real values of ω: Let x(ω) = (x1-x0)ω + x0 Let y(ω) = (y1-y0)ω + y0 Let r(ω) = (r1-r0)ω + r0 Let the
color at ω be the color at position ω on the color line.

3)	 For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and
ending with the value of ω nearest to negative infinity, draw the circular line with radius r(ω)
centered at position (x(ω), y(ω)), with the color at ω, but only painting on the parts of the bitmap
that have not yet been painted on in this step of the algorithm for earlier values of ω.

The algorithm provides results in various cases as follows:

—	 When the circles are identical, then nothing is painted.

—	 When both radii are 0 (r0 = r1 = 0), then r(ω) is always 0 and nothing is painted.

—	 If the centers of the circles are distinct, the radii of the circles are different, and neither circle is
entirely contained within the radius of the other circle, then the resulting shape resembles a cone
that is open to one side. The surface outside the cone is not painted (see Figures 5.15 to 5.17).

—	 If the centers of the circles are distinct but the radii are the same, and neither circle is contained
within the other, then the result will be a strip, similar to the flattened projection of a circular
cylinder. The surface outside the strip is not painted (see Figures 5.18 to 5.20).

—	 If the radii of the circles are different but one circle is entirely contained within the radius of the
other circle, the gradient will radiate in all directions from the inner circle, and the entire surface
will be painted (see Figures 5.24 to 5.26).

Figures 5.15 to 5.17 illustrate radial gradients using the three different color line extend modes. The
color line is defined with stops for the interval [0, 1]: red at 0.0, yellow at 0.5, and blue at 1.0. Note that
the circles that define the gradient are not stroked as part of the gradient itself. Stroked circles have
been overlaid in the figure to illustrate the color line and the region that is painted in relation to the two
circles.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.15 — Radial gradient using pad extend mode.

Figure 5.16 — Radial gradient using repeat extend mode.

Figure 5.17 — Radial gradient using reflect extend mode.

Figures 5.18 to 5.20 illustrate the case in which the circles have distinct centers but the same radii, and
neither circle is contained within the other, giving the appearance of a strip. The color stops are as in
the previous figures.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

12

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.18 — Radial gradient with same-size circles appearing as a strip, using pad extend
mode.

Figure 5.19 — Radial gradient with same-size circles appearing as a strip, using repeat extend
mode.

Figure 5.20 — Radial gradient with same-size circles appearing as a strip, using reflect extend
mode.

Because the rendering algorithm progresses ω in a particular direction, from positive infinity to
negative infinity, and because pixels are not re-painted as ω progresses, the appearance will be affected
by which circle is considered circle 0 and which is circle 1. This is illustrated in Figures 5.21 – 5.23. The
gradient in Figure 5.21 is the same as that in Figure 5.15, using the pad extend mode. In this gradient,
circle 0 is the small circle, on the left. In Figure 5.22, the start and end circles are reversed: circle 0 is
the large circle, on the right. The color line is kept the same, and so the red end starts at circle 0, now on
the right. In Figure 5.23, the order of stops in the color line is also reversed to put red on the left. The
key difference to notice between the gradients in these Figures is the way that colors are painted in the
interior: when the two circles are not overlapping, the arcs of constant color bend in the same direction
as the near side of circle 1.

NOTE 2	 This difference does not exist if one circle is entirely contained within the other: in that case, the arcs
of constant color are complete circles.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.21 — Cone-shaped radial gradient with circle 0 on the left.

Figure 5.22 — Cone-shaped radial gradient with start and end circles swapped.

Figure 5.23 — Cone-shaped radial gradient with start and end circles swapped and color line
reversed.

When one circle is contained within the other, the extension of the gradient beyond the larger circle
will fill the entire surface. Colors in the areas inside the inner circle and outside the outer circle are
determined by the extend mode. Figures 5.24 – 5.26 illustrate this for the different extend modes.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

14

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.24 — Radial gradient with one circle contained within the other, pad extend mode.

Figure 5.25 — Radial gradient with one circle contained within the other, repeat extend mode.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.26 — Radial gradient with one circle contained within the other, reflect extend mode.

NOTE 3	 When a radial gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be
the same as if the geometry of the two circles were transformed and step 3 of the algorithm were performed
by interpolating the shapes derived from the two transformed circles. For the condition r(ω) > 0, the pre-
transformation values of r(ω) can be used.

NOTE 4	 A scale transformation can flatten shapes to resemble lines. If a radial gradient is nested in the child
sub-graph of a transformation that flattens the circles so that they are nearly lines, the centers could still be
separated by some distance. In that case, the radial gradient would appear as a strip or a cone filled with a linear
gradient.

If a radial gradient is nested in the sub-graph of a transformation that flattens the circles so that they
form a single line (or nearly a line, for an implementation-determined definition), with both centers on
that line, then the resulting gradient is degenerate and shall not be rendered.

NOTE 5	 As seen in the figures above, the gradient fills the space when one circle is contained within the other,
but not when neither circle is contained within the other. In a variable font, if the placement or radii of the circles
vary, then a sharp transition can occur if the variation results in one circle being contained within the other for
some instances but not for other instances. This transition will occur when the inner circle just touches the outer
circle (i.e., they have exactly one point in common). In this case, the gradient will fill exactly one half of the space.
This is illustrated in Figure 5.27 using the pad extend mode.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

16

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.27 — Radial gradient with inner circle just touching the outer circle, pad extend mode

When the repeat or reflect extend modes are used, having the two circles in very close proximity results
in very high spatial-frequency transitions that can lead to Moiré patterns or other display artifacts.
This is illustrated in Figure 5.28, which shows the display result, for one particular rendering context,
of a radial gradient defined using nearly-identical circles and the reflect extend mode.

Figure 5.28 — Radial gradient defined using nearly-identical circles, showing interference
patterns

The artifacts seen can be affected by a combination of several factors, such as image scaling, sub-pixel
rendering, display technology, and limitations in software implementation or display capabilities. For
this reason, the appearance can be very different in different situations. Font designers should exercise
caution if the circles are in close proximity (either in a static design or for some variable font instances),
and should not rely on these display artifacts to obtain a particular pattern.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Radial gradients are specified using a PaintVarRadialGradient or PaintRadialGradient table, with or
without variation support, respectively. See 5.7.11.2.6.4 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.

5.7.11.1.2.5 Sweep gradients

A sweep gradient provides a gradation of colors that sweep around a center point. For a given color on
a color line, that color projects as a ray from the center point in a given direction. This is illustrated in
Figure 5.29.

NOTE 1	 The following figures illustrate sweep gradients clipped to a circular region. Sweep gradients are not
bounded, however, and fill the entire space.

Figure 5.29 — Sweep gradient

NOTE 2	 In some contexts, this type of gradient is referred to as a “conic” gradient, or as an “angular” gradient.

A sweep gradient is defined by a center point, starting and ending angles, and a color line. The angles
are expressed in counter-clockwise degrees from the direction of the positive x-axis on the design grid.

The color line is aligned to a circular arc around the center point, with arbitrary radius, with stop
offset 0 aligned with the starting angle, and stop offset 1 aligned with the ending angle. The color line
progresses from the start angle to the end angle in the counter-clockwise direction; for example, if the
start and end angles are both 0°, then stop offset 0.1 is at 36° counter-clockwise from the direction of
the positive x-axis. For each position along the circular arc, from start to end in the counter-clockwise
direction, a ray from the center outward is painted with the color of the color line at the point where the
ray passes through the arc.

The color line may be defined using color stops outside the range [0, 1], and color stops outside the
range [0, 1] can be used to interpolate color values within the range [0, 1], but only color values for the
range [0, 1] are painted. If the specified color stops cover the entire [0, 1] range (or beyond), then the
extend mode is not relevant and may be ignored. If the specified color stops do not cover the entire [0, 1]
range, the extend mode is used to determine color values for the remainder of that range. For example,
if a color line is specified with two color stops, red at stop offset 0.3 and yellow at stop offset 0.6, and
the pad extend mode is specified, then the extend mode is used to derive color values from 0.0 to 0.3
(red), and from 0.6 to 1.0 (yellow).

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

18

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Because a sweep gradient is defined using start and end angles, the gradient does not need to cover a
full 360° sweep around the center. This is illustrated in Figure 5.30:

Figure 5.30 — A sweep gradient with start angle of 30° and an end angle of 150°

Start and end angle values can be outside the range [0, 360), and are converted to values within that
range by applying a modulus operation. For example, an angle -60° is treated the same as 300. As a
consequence, the [0, 1] range of the color line covers at most one full rotation around the center, never
more.

If the starting and ending angle are the same, a sharp color transition can occur if the colors at stop
offsets 0 and 1 are different. This is illustrated in Figure 5.31, showing a gradient from red to yellow
that starts and stops at 0°.

Figure 5.31 — A sweep gradient with a sharp transition at the start/end angle 0°

To avoid such a sharp transition, the stop offsets 0 and 1 on the color line need to have the same color
value. Figure 5.32 illustrates a sweep gradient that transitions from red at stop offset 0, to yellow at
stop offset 0.5, and back to red at stop offset 1.0.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.32 — A sweep gradient with a smooth transition at the start/end angle 0°

NOTE 3	 When a sweep gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the
same as if a circular arc of some non-zero radius were computed from the start and end angles; the center point
and arc transformed; the color line aligned to the transformed arc; and then a gradient derived from the result,
with rays from the transformed center point passing through the transformed color arc. When aligning the color
line to the transformed arc, stop offset 0 would be aligned to the transformed point derived from the start angle,
with stop offset 1 aligned to the transformed point derived from the end angle. Thus, a transform can result in
the color line progressing in a clockwise rather than counter-clockwise direction.

Sweep gradients are specified using a PaintVarSweepGradient or PaintSweepGradient table, with or
without variation support, respectively. See 5.7.11.2.6.5 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.

5.7.11.1.3 Filling shapes

All basic shapes used in a color glyph are obtained from glyph outlines, referenced using a glyph ID. In a
color glyph description, a PaintGlyph table is used to represent a basic shape.

NOTE	 Shapes can also be derived using PaintGlyph tables in combination with other tables, such as
PaintTransform (see 5.7.11.1.5) or PaintComposite (see 5.7.11.1.6).

The PaintGlyph table has a field for the glyph ID, plus an offset to a child paint table that is used as the
fill for the shape. The glyph outline is not rendered; only the fill is rendered.

Any of the basic fill formats (PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient,
PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient) can be
used as the child paint table. This is illustrated in Figure 5.33: a PaintGlyph table has a glyph ID for an
outline in the shape of a triangle, and it links to a child PaintLinearGradient table. The combination is
used to represent a triangle filled with the linear gradient.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

20

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.33 — PaintGlyph and PaintLinearGradient tables used to fill a shape with a linear
gradient.

The child of a PaintGlyph table is not, however, limited to one of the basic fill formats. Rather, the child
can be the root of a sub-graph that describes some graphic composition that is used as a fill. Another
way to describe the relationship between a PaintGlyph table and its child sub-graph is that the glyph
outline specified by the PaintGlyph table defines a bounds, or clip region, that is applied to the fill
composition defined by the child sub-graph.

To illustrate this, the example in Figure 5.33 is extended in Figure 5.34 so that a PaintGlyph table links
to a second PaintGlyph that links to a PaintLinearGradient: the parent PaintGlyph will clip the filled
shape described by the child sub-graph.

Figure 5.34 — A PaintGlyph table defines a clip region for the composition defined by its child
sub-graph.

A PaintGlyph table on its own does not add content: if there is no child paint table, then the graph is not
well formed. See 5.7.11.1.9 for details regarding well-formedness and validity of the graph.

5.7.11.1.4 Layering

Layering of visual elements was introduced above, in the introduction to 5.7.11.1. Both version 0 and
version 1 support use of multiple layers, though in different ways.

For version 0, layers are fundamental: they are the sole way in which separate elements are composed
into a color glyph. An array of LayerRecords is created, with each LayerRecord specifying a glyph ID and

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

a CPAL entry (a shape and solid color fill). Each color glyph definition is a slice from that array (that is,
a contiguous sub-sequence), specified in a BaseGlyphRecord for a particular base glyph. Within a given
slice, the first record specifies the content of the bottom layer, and each subsequent record specifies
content that overlays the preceding content (increasing z-order). A single array is used for defining all
color glyphs. The LayerRecord slices for two base glyphs may overlap, though often will not overlap.

Figure 5.35 illustrates layers using version 0 formats.

Figure 5.35 — Version 0: Color glyphs are defined by slices of a layer records array.

When using version 1 formats, use of multiple layers is supported but is optional. For example, a simple
glyph description need not use any layering, as illustrated in Figure 5.36:

Figure 5.36 — Complete color glyph definition without use of layers.

The version 1 formats define a color glyph as a directed, acyclic graph of paint tables, and the concept
of layering corresponds roughly to the number of distinct leaf nodes in the graph (see 5.7.11.1.9).
The basic fill formats (PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient,
PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient) do
not have child paint tables and so can only be leaf nodes in the graph. Some paint tables, such as the

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

22

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

PaintGlyph table, have only a single child, so can be used within a layer but do not provide any means of
adding additional layers. Increasing the number of layers requires paint tables that have two or more
children, creating a fork in the graph.

The version 1 formats include two paint formats that have two or more children, and so can increase
the number of layers in the graph:

—	 The PaintComposite table allows two sub-graphs to be composed together using different
compositing or blending modes.

—	 The PaintColrLayers table supports defining a sequence of several layers.

NOTE 1	 The PaintColrGlyph table provides a means of incorporating the graph of one color glyph as a
sub-graph in the definition of another color glyph. In this way, PaintColrGlyph provides an indirect means of
introducing additional layers into a color glyph definition: forks in the resulting graph do not come from the
PaintColrGlyph table itself, but can come from PaintColrLayers or PaintComposite tables that are nested in the
incorporated sub-graph. See 5.7.11.1.7.4 for a description of the PaintColrGlyph table.

While the PaintComposite table only combines two sub-graphs, other PaintComposite tables can be
nested to provide additional layers. The primary purpose of PaintComposite is to support compositing
or blending modes other than simple alpha blending. The PaintComposite table is covered in more detail
in 5.7.11.1.6. The remainder of this clause will focus on the PaintColrLayers table.

The PaintColrLayers table is used to define a bottom-up z-order sequence of layers. Similar to version 0,
it defines a layer set as a slice in an array, but in this case the array is an array of offsets to paint tables,
contained in a LayerList table. Each referenced paint table is the root of a sub-graph of paint tables that
specifies a graphic composition to be used as a layer. Within a given slice, the first offset provides the
content for the bottom layer, and each subsequent offset provides content that overlays the preceding
content. Definition of a layer set—a slice within the layer list—is given in a PaintColrLayers table.

Figure 5.37 illustrates the organizational relationship between PaintColrLayers tables, the LayerList,
and referenced paint tables that are roots of sub-graphs.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.37 — Version 1: PaintColrLayers tables specify slices within the LayerList, providing a
layering of content defined in sub-graphs.

NOTE 2	 Paint table offsets in the LayerList table are only used in conjunction with PaintColrLayers tables. If
a paint table does not need to be referenced via a PaintColrLayers table, its offset does not need to be included in
the LayerList array.

A PaintColrLayers table can be used as the root of a color glyph definition, providing a base
layering structure for the color glyph. In this usage, the PaintColrLayers table is referenced by a
BaseGlyphPaintRecord, which specifies the root of the graph of a color glyph definition for a given base
glyph. This is illustrated in Figure 5.38.

Figure 5.38 — PaintColrLayers table used as the root of a color glyph definition.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

24

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

A PaintColrLayers table can also be nested more deeply within the graph, providing a layer structure
to define some component within a larger color glyph definition (see 5.7.11.1.7.3 for more information).
The ability to nest a PaintColrLayers table within a graph creates the potential to introduce a cycle
within the graph, which would be invalid (see 5.7.11.1.9).

5.7.11.1.5 Transformations

A 2 × 3 transformation matrix can be used within a color glyph description to apply an affine
transformation to a sub-graph. Affine transformations supported by a matrix can be a combination of
scale, skew, mirror, rotate, or translate. The transformation is applied to all nested paints in the child
sub-graph.

A transformation matrix is specified using a PaintVarTransform or PaintTransform table, with or
without variation support, respectively. See 5.7.11.2.6.8 for format details.

The effect of a transformation is illustrated in Figure 5.39: a PaintTransform table is used to specify a
rotation, and both the glyph outline and gradient in the sub-graph are rotated.

Figure 5.39 — A rotation transformation rotates the fill content defined by the child sub-graph.

If the sub-graph of a transformation table contains another nested transformation table, then the second
transformation also applies to its child sub-graph. For the sub-sub-graph, the two transformations
are combined. To illustrate this, the example in Figure 5.39 is extended in Figure 5.40 by inserting a
mirroring transformation between the PaintGlyph and PaintLinearGradient tables: the glyph outline
is rotated as before, but the gradient is mirrored in its (pre-rotation) y-axis as well as being rotated.
Notice that both visible elements—the shape and the gradient fill—are affected by the rotation, but
only the gradient is affected by the mirroring.

Figure 5.40 — Combined effects of a transformation nested within the child sub-graph of
another transformation.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

While the PaintTransform and PaintVarTransform tables support several types of transforms,
additional paint formats are defined to support specific transformations:

—	 PaintTranslate and PaintVarTranslate support translation only, without or with variation support,
respectively. See 5.7.11.2.6.9 for format details.

—	 PaintScale and PaintVarScale support scaling only, without or with variation support. These two
formats scale relative to the origin, and allow for different scale factors in X and Y directions.
PaintScaleAroundCenter, PaintVarScaleAroundCenter, PaintScaleUniform, PaintVarScaleUniform,
PaintScaleUniformAroundCenter, and PaintVarScaleUniformAroundCenter support scaling relative
to a different center, scaling uniformly in both X and Y directions, or both. See 5.7.11.2.6.10 for
format details.

—	 PaintRotate and PaintVarRotate support rotation only, without or with variation support. These two
formats rotate around the origin; the PaintRotateAroundCenter and PaintVarRotateAroundCenter
formats support rotation around a different center. See 5.7.11.2.6.11 for format details.

—	 PaintSkew and PaintVarSkew support skew only, without or with variation support. These two
formats skew using the origin as a center for the skew rotation; the PaintSkewAroundCenter and
PaintVarSkewAroundCenter formats support skews using a different center. See 5.7.11.2.6.12 for
format details.

NOTE 1	 Horizontal mirroring is done by scaling using a scale factor in the x direction of -1. Vertical mirroring
is done by scaling with a -1 scale factor in the y direction.

When only one of these specific types of transformation is required, these formats provide a more
compact representation than the PaintTransform or PaintVarTransform formats. Another significant
difference of the rotation and skew formats is that the rotations and skews are specified as angles, in
counter-clockwise degrees.

NOTE 2	 Specifying the rotation or skew as an angle can have a significant benefit in variable fonts if an angle
of skew or rotation needs to vary, since it is easier to implement variation of angles when specified directly
rather than as matrix elements. This is because the matrix elements for a rotation or skew are the sine, cosine or
tangent of the rotation angle, which do not change in linear proportion to the angle. To achieve a linear variation
of rotation using matrix elements would require approximating the variation using multiple delta sets.

The rotations and skews specified using PaintRotate, PaintSkew and their variants can also be
represented as a matrix using a PaintTransform or PaintVarTransform table. The behavior for the
PaintRotate or PaintSkew formats and their variants shall be the same as if the rotation or skew were
represented using an equivalent matrix. See 5.7.11.2.6.11 for details regarding the matrix equivalent
for a rotation expressed as an angle; and see 5.7.11.2.6.12 for similar details in relation to skews.

5.7.11.1.6 Compositing and blending

When a color glyph has overlapping content in two layers, the pixels in the two layers must be combined
in some way. If the content in the top layer has full opacity, then normally the pixels from that layer are
shown, occluding overlapping pixels from lower layers. If the top layer has some transparency (some
portion has alpha less than 1.0), then blending of colors for overlapping pixels occurs by default. The
default interaction between layers uses simple alpha compositing, as described in W3C Compositing
and Blending Level 1 specification [33].

A PaintComposite table can be used to get other compositing or blending effects. The PaintComposite
table combines content defined by two sub-graphs: a source sub-graph; and a destination, or backdrop,
sub-graph. First, the paint operations for the backdrop sub-graph are executed, then the drawing
operations for the source sub-graph are executed and combined with backdrop using a specified
compositing or blending mode. The available modes are given in the CompositeModes enumeration
(see 5.7.11.2.6.13). The effect and processing rule of each mode are specified in W3C Compositing and
Blending Level 1 specification [33].

The available modes fall into two general types: compositing modes, also referred to as “Porter-Duff”
modes; and blending modes. In rough terms, the Porter-Duff modes determine how much effect pixels

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

26

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

from the source and the backdrop each contribute in the result, while blending modes determine how
color values for pixels from the source and backdrop are combined. These are illustrated with examples
in Figures 5.41 and 5.42: in each case, red and blue rectangles are the source and backdrop content.

Figure 5.41 shows the effect of a Porter-Duff mode, XOR, which has the effect that only non-overlapping
pixels contribute to the result.

Figure 5.41 — Two content elements combined using the Porter-Duff XOR mode.

Figure 5.42 shows the effect of a lighten blending mode, which has the effect that the R, G, and B color
components for each pixel in the result is the greater of the R, G, and B values from corresponding pixels
in the source and backdrop.

Figure 5.42 — Two content elements combined using the lighten blending mode.

For complete details on each of the Porter-Duff and blending modes, see W3C Compositing and Blending
Level 1 specification [33].

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.43 illustrates how the PaintComposite table is used in combination with content sub-graphs
to implement an alternate compositing effect. The source sub-graph defines a green capital A; the
backdrop sub-graph defines a black circle. The compositing mode used is Source Out, which has the
effect that the source content punches out a hole in the backdrop. (For this mode, the fill color of the
source is irrelevant; a black or yellow ″A″ would have the same effect.) A red rectangle is included as a
lower layer to show that the backdrop has been punched out by the source, making that portion of the
lower layer visible.

Figure 5.43 — A color glyph using a PaintComposite table to punch out a shape from the fill of a
circle.

NOTE	 In Figure 5.43, the ″A″ is filled with green to illustrate that the color of the fill has no affect for the
Source Out composite mode. Because that is the case, the black or red PaintSolid could have been re-used instead
of adding a separate PaintSolid table. See 5.7.11.1.7.2 for more information on re-use of paint tables for such
situations.

Scalable Vector Graphics (SVG) supports alpha channel masking using the <mask> element. The same
effects can be implemented in COLR version 1 using a PaintComposite table by setting a pattern of
alpha values in the source sub-graph and selecting the Source In composite mode. This is illustrated in
Figure 5.44.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

28

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.44 — An alpha mask implemented using a PaintComposite table and the Source In
mode.

5.7.11.1.7 Re-usable components

5.7.11.1.7.1 Overview

Within a color font, many color glyphs might share components in common. For example, in emoji fonts,
many different “smilies” or clock faces share a common background. This can be seen in Figure 5.45,
which shows color glyphs for three emoji clock faces.

Figure 5.45 — Emoji clock faces for 12 o’clock, 1 o’clock and 2 o’clock.

Several components are shared between these color glyphs: the entire face, with a gradient background
and dots at the 3, 6, 9 and 12 positions; the minute hand pointing to the 12 position; and the circles in
the center. Also, note that the four dots have the same shape and fill, and differ only in their position. In
addition, the hour hands have the same shape and fill, and differ only in their orientation.

There are several ways in which elements of a color glyph description can be re-used:

—	 Reference to shared subtables

—	 Use of a PaintColrLayers table

—	 Use of a PaintColrGlyph table

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

The PaintColrLayers and PaintColrGlyph table formats create a potential for introducing cycles within
the graph of a color glyph, which would be invalid (see 5.7.11.1.9).

5.7.11.1.7.2 Re-use by referencing shared subtables

Several of the paint table formats link to a child paint table using a forward offset within the file:

—	 PaintGlyph

—	 PaintComposite

—	 PaintTransform, PaintVarTransform

—	 PaintTranslate, PaintVarTranslate

—	 PaintScale, PaintVarScale, and the other variant scaling paint formats

—	 PaintRotate, PaintVarRotate, PaintRotateAroundCenter, PaintVarRotateAroundCenter

—	 PaintSkew, PaintVarSkew, PaintSkewAroundCenter, PaintVarSkewAroundCenter

A child subtable can be shared by several tables of these formats. For example, several PaintGlyph tables
might link to the same PaintSolid table, or to the same node for a sub-graph describing a more complex
fill. The only limitation is that child paint tables are referenced using a forward offset from the start of
the referencing table, so a re-used paint table can only occur later in the file than any of the paint tables
that use it.

The clock faces shown in Figure 5.45 provide an example of how PaintRotate tables can be combined
with re-use of a sub-graph. As noted above, the hour hands have the same shape and fill, but have a
different orientation. The glyph outline could point to the 12 position, then in color glyph descriptions
for other times, PaintRotate tables could link to the same glyph/fill sub-graph, re-using that component
but rotated as needed.

This is illustrated in Figures 5.46 and 5.47. Figure 5.46 shows a sub-graph defining the hour hand, with
upright orientation, using a PaintGlyph and a PaintSolid table. Example file offsets for the tables are
indicated.

Figure 5.46 — A PaintGlyph and PaintSolid table are used to define the clock hour hand
pointing to 12.

Figure 5.47 shows this sub-graph of paint tables being re-used, in some cases linked from PaintRotate
tables that rotate the hour hand to point to different clock positions as needed. All of the paint tables
that reference this sub-graph occur earlier in the file.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

30

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.47 — The sub-graph for the hour hand is re-used with PaintRotate tables to point to
different hours.

5.7.11.1.7.3 Re-use using PaintColrLayers

As described above (see 5.7.11.1.4), a PaintColrLayers table defines a set of paint sub-graphs arranged
in bottom-up z-order layers, and an example was given of a PaintColrLayers table used as the root of
a color glyph definition. A PaintColrLayers table can also be nested more deeply within the graph of a
color glyph. One purpose for doing this is to reference a re-usable component defined as a contiguous
set of layers in the LayerList table.

This is readily explained using the clock faces as an example. As described above, each clock face shares
several elements in common. Some of these form a contiguous set of layers. Suppose four sub-graphs for
shared clock face elements are given in the LayerList as contiguous layers, as shown in Figure 5.48. (For
brevity, the visual result for each sub-graph is shown, but not the paint details.)

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.48 — Common clock face elements given as a slice within the LayerList table.

A PaintColrLayers table can reference any contiguous slice of layers in the LayerList table. Thus, the set
of layers shown in Figure 5.48 can be referenced by PaintColrLayers tables anywhere in the graph of any
color glyph. In this way, this set of layers can be re-used in multiple clock face color glyph definitions.

This is illustrated in Figure 5.49: The color glyph definition for the one o’clock emoji has a PaintColrLayers
table as its root, referencing a slice of three layers in the LayerList table. The upper two layers are the
hour hand, which is specific to this color glyph; and the cap over the pivot for the minute and hour
hands, which is common to other clock emoji but in a layer that is not contiguous with other common
layers. The bottom layer of these three layers is the composition for all the remaining common layers.
It is represented using a nested PaintColrLayers table that references the slice within the LayerList for
the common clock face elements shown in Figure 5.48.

Figure 5.49 — A PaintColrLayers table is used to reference a set of layers that define a shared
clock face composition.

The color glyphs for other clock face emoji could be structured in exactly the same way, using a nested
PaintColrLayers table to re-use the layer composition of the common clock face elements.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

32

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.1.7.4 Re-use using PaintColrGlyph

A third way to re-use components in color glyph definitions is to use a nested PaintColrGlyph table.
This format references a base glyph ID, which is used to access a corresponding BaseGlyphPaintRecord.
That record will provide the offset of a paint table that is the root of a graph for a color glyph definition.
That graph can potentially be used as an independent color glyph, but it can also define a shared
composition that gets re-used in multiple color glyphs. Each time the shared composition is to be re-
used, it is referenced by its base glyph ID using a PaintColrGlyph table. The graph of the referenced
color glyph is thereby incorporated into the graph of the PaintColrGlyph table as its child sub-graph.

When a PaintColrGlyph table is used, a BaseGlyphPaintRecord with the specified glyph ID is expected.
If no BaseGlyphPaintRecord with that glyph ID is found, the color glyph is not well formed. See 5.7.11.1.9
for details regarding well-formedness and validity of the graph.

The example from 5.7.11.1.7.3 is modified to illustrate use of a PaintColrGlyph table. In Figure 5.50, a
PaintColrLayers table references a slice within the LayerList that defines the shared component. Now,
however, this PaintColrLayers table is treated as the root of a color glyph definition for base glyph ID
63163. The color glyph for the one o’clock emoji is defined with three layers, as before, but now the
bottom layer uses a PaintColrGlyph table that references the color glyph definition for glyph ID 63163.

Figure 5.50 — A PaintColrGlyph table is used to reference the shared clock face composition via
a glyph ID.

While the PaintColrGlyph and PaintColrLayers tables are similar in being able to reference a layer
set as a re-usable component, they could be handled differently in implementations. In particular, an
implementation could process and cache the result of the color glyph description for a given base glyph
ID. In that case, subsequent references to that base glyph ID using a PaintColrGlyph table would not
require the corresponding graph of paint tables to be re-processed. As a result, using a PaintColrGlyph
for re-used graphic components could provide performance benefits.

5.7.11.1.8 Glyph metrics and boundedness

5.7.11.1.8.1 Metrics for color glyphs using version 0 formats

For color glyphs using version 0 formats, the advance width of glyphs used for each layer shall be the
same as the advance width of the base glyph. If the font has vertical metrics, the glyphs used for each
layer shall also have the same advance height and vertical Y origin as the base glyph.

5.7.11.1.8.2 Metrics and boundedness of color glyphs using version 1 formats

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

For color glyphs using version 1 formats, the advance width of the base glyph shall be used as the
advance width for the color glyph. If the font has vertical metrics, the advance height and vertical
Y origin of the base glyph shall be used for the color glyph. The advance width and height of glyphs
referenced by PaintGlyph tables are not required to be the same as that of the base glyph and are
ignored.

A valid color glyph definition shall define a bounded region—that is, it shall paint within a region for
which a finite bounding box could be defined. A clip box can be specified to set overall bounds for a color
glyph (see below). Otherwise, boundedness is determined by the graph of paint tables that describe the
color glyph content. The different paint formats have different boundedness characteristics:

—	 PaintGlyph is inherently bounded.

—	 PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient,
PaintVarRadialGradient, PaintSweepGradient, and PaintVarSweepGradient are inherently
unbounded.

—	 PaintColrLayers is bounded if and only if all referenced sub-graphs are bounded.

—	 PaintColrGlyph is bounded if and only if the color glyph definition for the referenced base glyph ID
is bounded.

—	 Paint formats for transformations (PaintTransform, PaintVarTransform, PaintTranslate, PaintScale,
etc.) are bounded if and only if the referenced sub-graph is bounded.

—	 PaintComposite is either bounded or unbounded, according to the composite mode used and the
boundedness of the referenced sub-graphs. See 5.7.11.2.6.13 for details.

A ClipBox table (5.7.11.2.4) may be associated with a color glyph to define overall bounds for the color
glyph. The clip box may vary in a variable font. If a clip box is provided for a color glyph, the color glyph
is bounded, and no inspection of the Paint graph is required to determine boundedness. If no clip box is
defined for a color glyph, however, applications shall confirm that the color glyph definition is bounded,
and shall not render the color glyph if the defining graph is not bounded.

NOTE 1	 If present, the clip box for a color glyph can be used to allocate a drawing surface without needing to
traverse the graph of the color glyph definition.

NOTE 2	 If no ClipBox table is present but a bounding box is required by the implementation, it can be computed
for a given color glyph by traversing the graph of Paint tables that defines that color glyph.

To ensure that rendering implementations do not clip any part of a color glyph, the clip box needs to
be large enough to encompass the entire color glyph composition. In a variable font, glyph outlines can
vary, but transformations in a color glyph description can also vary, affecting the portions of the design
grid to be painted. For example, a filled rectangle that is wide but not tall for one variation instance
can be variably rotated to be tall but not wide for other instances. The clip box either should be large
enough to encompass the color glyph for all instances, or should itself vary such that each instance of
the clip box encompasses the instance color glyph.

5.7.11.1.9 Color glyphs as a directed acyclic graph

When using version 1 formats, a color glyph is defined by a directed, acyclic graph of linked paint tables.
For each BaseGlyphPaintRecord, the paint table referenced by that record is the root of a graph defining
a color glyph composition.

The graph for a given color glyph is made up of all paint tables reachable from the BaseGlyphPaintRecord.
The BaseGlyphPaintRecord and several paint table formats use direct links; that is, they include a
forward offset to a paint subtable. Two paint formats make indirect links:

—	 A PaintColrLayers table references a slice of offsets within the LayerList. The paint tables referenced
by those offsets are considered to be linked within the graph as children of the PaintColrLayers
table.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

34

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

—	 A PaintColrGlyph table references a base glyph ID, for which a corresponding BaseGlyphPaintRecord
is expected. That record points to the root of a graph that is a complete color glyph definition on
its own. But when referenced in this way by a PaintColrGlyph table, that entire graph is considered
to be a child sub-graph of the PaintColrGlyph table, and a continuation of the graph of which the
PaintColrGlyph table is a part.

The graph for a color glyph is a combination of paint tables using any of the paint table formats.
The simplest color glyph definition would consist of a PaintGlyph table linked to a basic fill table
(PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient,
PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient). But the graph can be arbitrarily
complex, with an arbitrary depth of paint nodes (to the limits inherent in the formats).

The graph can define a visual element in a single layer, or many elements in many layers. The concept
of layers, as distinct visual elements stacked in a z-order, is not precisely defined in relation to the
complexity of the graph. Each separate visual element requires a leaf node, but nodes in the graph,
including leaf nodes, can be re-used (see 5.7.11.1.7). Also, each separate visual element requires a fork
in the graph, and a separate root-to-leaf path, but not all paths necessarily result in a distinct visual
element. For example, a gradient mask effect can be created with a gradient with gradation of alpha
values, and then using that as the source of a PaintComposite table with the Source In compositing
mode. In that case, the leaf has a visual affect but does not result in a distinct visual element. This was
illustrated in Figure 5.44, repeated here as Figure 5.51: the PaintLinearGradient is a leaf node in the
graph and creates a masking effect but does not add a distinct visual element.

Figure 5.51 — Graph with a leaf node that isn’t a distinct visual element.

Thus, the generalization that can be made regarding the relationship between the number of layers and
the nature of the graph is that the number of distinct root-to-leaf paths will be greater than or equal to
the number of layers.

The following are necessary for the graph to be well-formed and valid:

—	 All subtable links shall satisfy the following criteria:

—	 Forward offsets are within the COLR table bounds.

—	 If a PaintColrLayers table is present, then a LayerList is also present, and the referenced slice is
within the length of the LayerList.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

35

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

—	 If a PaintColrGlyph table is present, there is a BaseGlyphPaintRecord for the referenced base
glyph ID.

—	 The graph shall be acyclic.

NOTE 1	 These constraints imply that all leaf nodes will be one of PaintSolid, PaintVarSolid, PaintLinearGradient,
PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, or
PaintVarSweepGradient.

For the graph to be acyclic, no paint table shall have any child or descendent paint table that is also
its parent or ancestor within the graph. In particular, because the PaintColrLayers and PaintColrGlyph
tables use indirect child references rather than forward offsets, they provide a possibility for
introducing cycles. Applications should track paint tables within a path in the graph, checking whether
any paint table was already encountered within that path. The following pseudo-code algorithm can be
used:

 // called initially with the root paint and an empty set pathPaints
 function paintIsAcyclic(paint, pathPaints)
 if paint is in pathPaints
 return false // cycle detected
 add paint to pathPaints
 for each childPaint referenced by paint as a child subtable
 call paintIsAcyclic(childPaint, pathPaints)
 remove paint from pathPaints

For the graph to be valid, it shall also be visually bounded, as described in 5.7.11.1.8.2.

NOTE 2	 Implementations can combine testing for cycles and other well-formedness or validity requirements
together with other processing for rendering the color glyph.

If the graph contains a cycle or is otherwise not well formed or valid, the paint table at which the error
occurs should be ignored, that sub-graph should not be rendered, and that node in the graph should
be considered to be visually bounded. The application should attempt to render the remainder of the
graph, if well-formed and valid.

Future minor version updates of the COLR table could introduce new paint formats. If a paint table
with an unrecognized format is encountered, it and its sub-graph should similarly be ignored, the
node should be considered to be visually bounded, and the application should attempt to render the
remainder of the graph.

If an application is not able to recover from errors while traversing the graph, it may ignore the color
glyph entirely. If the base glyph ID has an outline, that may be rendered as a non-color glyph instead.

5.7.11.2 COLR table formats

5.7.11.2.1 Overview

Various table and record formats are defined for COLR version 0 and version 1. Several values contained
within the version 1 formats are variable.

For items that vary in a variable font, the variation data is contained in an ItemVariationStore table
(7.2.3). To associate each variable item with the corresponding variation data, a DeltaSetIndexMap
table (7.2.3.1) is used. Within a given table that has variable items, a base/sequence scheme is used to
index into the mapping data. See 5.7.11.4 for details.

Future minor version updates of the COLR table could introduce new formats that extend the capabilities
for color glyph descriptions using version 1 formats. Unrecognized formats should be ignored. See
5.7.11.1.9 for more information.

All table offsets are from the start of the parent table in which the offset is given, unless otherwise
indicated.

The COLR table begins with a header. Two versions have been defined. Offsets in the header are from
the start of the table.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

36

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.2.2 COLR header

5.7.11.2.2.1 COLR version 0

COLR version 0:

Type Name Description
uint16 version Table version number—set to 0.
uint16 numBaseGlyphRecords Number of BaseGlyph records.
Offset32 baseGlyphRecordsOffset Offset to baseGlyphRecords array.
Offset32 layerRecordsOffset Offset to layerRecords array.
uint16 numLayerRecords Number of Layer records.

NOTE	 For fonts that use COLR version 0, some early implementations of the COLR table require glyph ID 1 to
be the .null glyph.

5.7.11.2.2.2 COLR version 1

COLR version 1:

Type Name Description
uint16 version Table version number—set to 1.
uint16 numBaseGlyphRecords Number of BaseGlyph records; may be 0 in a version 1 table.
Offset32 baseGlyphRecordsOffset Offset to baseGlyphRecords array (may be NULL).
Offset32 layerRecordsOffset Offset to layerRecords array (may be NULL).
uint16 numLayerRecords Number of Layer records; may be 0 in a version 1 table.
Offset32 baseGlyphListOffset Offset to BaseGlyphList table.
Offset32 layerListOffset Offset to LayerList table (may be NULL).
Offset32 clipListOffset Offset to ClipList table (may be NULL).
Offset32 varIndexMapOffset Offset to DeltaSetIndexMap table (may be NULL).
Offset32 itemVariationStoreOffset Offset to ItemVariationStore (may be NULL).

The BaseGlyphList and its subtables are only used in COLR version 1.

The LayerList is only used in conjunction with the BaseGlyphList and, specifically, with PaintColrLayers
tables (5.7.11.2.6.1); it is not required if no color glyphs use a PaintColrLayers table. If not used, set
layerListOffset to NULL.

The ClipList is only used in conjunction with the BaseGlyphList. If not used, set clipListOffset to NULL.

The ItemVariationStore (7.2.3) is used in conjunction with a BaseGlyphList and its subtables, but only in
variable fonts. If it is not used, set itemVariationStoreOffset to NULL.

The DeltaSetIndexMap table is described in 7.2.3.1. Within the COLR table, either format 0 or
format 1 of the DeltaSetIndexMap can be used. A DeltaSetIndexMap is used in conjunction with the
ItemVariationStore in a variable font. The DeltaSetIndexMap is optional: if an ItemVariationStore is
present but a DeltaSetIndexMap is not included (varIndexMapOffset is NULL), then an implicit mapping
is used. See 5.7.11.4 for details.

5.7.11.2.2.3 Mixing version 0 and version 1 formats

A font that uses COLR version 1 and that includes a BaseGlyphList can also include BaseGlyph and Layer
records for compatibility with applications that only support COLR version 0.

Color glyphs that can be implemented in COLR version 0 using BaseGlyph and Layer records can also
be implemented using the version 1 BaseGlyphList and subtables. Thus, a font that uses the version
1 formats does not need to use the version 0 BaseGlyph and Layer records. However, a font may use

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

the version 1 structures for some base glyphs and the version 0 structures for other base glyphs. A
font may also include a version 1 color glyph definition for a given base glyph ID that is equivalent to a
version 0 definition, though this should never be needed.

A font may define a color glyph for a given base glyph ID using version 0 formats, and also define a
different color glyph for the same base glyph ID using version 1 formats. Applications that support
COLR version 1 should give preference to the version 1 color glyph.

For applications that support COLR version 1, the application should search for a base glyph ID first in
the BaseGlyphList. Then, if not found, search in the baseGlyphRecords array, if present.

5.7.11.2.3 BaseGlyph and Layer records

BaseGlyph and Layer records are required for COLR version 0, but optional for version 1 (see
5.7.11.2.2.3).

A BaseGlyph record is used to map a base glyph to a sequence of layer records that define the
corresponding color glyph. The BaseGlyph record includes a base glyph index, an index into the
layerRecords array, and the number of layers.

BaseGlyph record:

Type Name Description
uint16 glyphID Glyph ID of the base glyph.
uint16 firstLayerIndex Index (base 0) into the layerRecords array.
uint16 numLayers Number of color layers associated with this glyph.

The glyph ID shall be less than the numGlyphs value in the ‘maxp’ table (5.2.6).

The BaseGlyph records shall be sorted in increasing glyphID order. It is assumed that a binary search
can be used to find a matching BaseGlyph record for a specific glyphID.

The color glyph for a given base glyph is defined by the consecutive records in the layerRecords array
for the specified number of layers, starting with the record indicated by firstLayerIndex. The first
record in this sequence is the bottom layer in the z-order, and each subsequent layer is stacked on top of
the previous layer.

The layer record sequences for two different base glyphs may overlap, with some layer records used in
multiple color glyph definitions.

The Layer record specifies the glyph used as the graphic element for a layer and the solid color fill.

Layer record:

Type Name Description
uint16 glyphID Glyph ID of the glyph used for a given layer.
uint16 paletteIndex Index (base 0) for a palette entry in the CPAL table.

The glyphID in a Layer record shall be less than the numGlyphs value in the ‘maxp’ table. That is, it shall
be a valid glyph with outline data in the ‘glyf’ (5.3.4), ‘CFF’ (5.4.2) or CFF2 (5.4.3) table. See 5.7.11.1.8.2
for requirements regarding glyph metrics of referenced glyphs.

The paletteIndex value shall be less than the numPaletteEntries value in the CPAL table (5.7.12). A
paletteIndex value of 0xFFFF is a special case, indicating that the text foreground color (as determined
by the application) is to be used.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

38

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.2.4 BaseGlyphList, LayerList and ClipList

The BaseGlyphList table is, conceptually, similar to the baseGlyphRecords array in COLR version 0,
providing records that map a base glyph to a color glyph definition. The color glyph definitions that
each refer to are significantly different, however—see 5.7.11.1.

BaseGlyphList table:

Type Name Description
uint32 numBaseGlyphPaintRecords
BaseGlyphPaintRecord baseGlyphPaintRecords[numBaseGlyphPaintRecords]

BaseGlyphPaintRecord:

Type Name Description
uint16 glyphID Glyph ID of the base glyph.
Offset32 paintOffset Offset to a Paint table.

The glyphID value shall be less than the numGlyphs value in the ‘maxp’ table (5.2.6).

The records in the baseGlyphPaintRecords array shall be sorted in increasing glyphID order. It is
intended that a binary search can be used to find a matching BaseGlyphPaintRecord for a specific
glyphID.

The paint table referenced by the BaseGlyphPaintRecord is the root of the graph for a color glyph
definition.

NOTE 1	 Often the paint table that is the root of the graph for the color glyph definition will be a PaintColrLayers
table, though this is not required. See 5.7.11.1.9 for more information regarding the graph of a color glyph, and
5.7.11.1.4 for background information regarding the PaintColrLayers table.

A LayerList table is used in conjunction with PaintColrLayers tables to represent layer structures. A
single LayerList is defined and can be used by multiple PaintColrLayers tables, each of which references
a slice of the layer list.

LayerList table:

Type Name Description
uint32 numLayers
Offset32 paintOffsets[numLayers] Offsets to Paint tables.

The sequence of offsets to paint tables corresponds to a bottom-up z-order layering of the graphic
compositions defined by the sub-graph of each referenced paint table graph. For a given slice of the list,
the sub-graph of the first paint table defines the element at the bottom of the z-order, and the sub-graph
of each subsequent paint table defines an element that is layered on top of the previous element. As
each element is a composition defined in a sub-graph, one of these elements may itself be multi-layered.
In that case, the layers of this element are stacked above all previous layers, and layers of following
elements are stacked above the top layer of this element.

Offsets for paint tables not referenced by any PaintColrLayers table should not be included in the
paintOffsets array.

A ClipList table is used to provide precomputed clip boxes for color glyphs. It contains an array of Clip
records, each of which associates a range of base glyph IDs with a ClipBox table. The ClipBox table
provides a precomputed clip box for the associated color glyphs. Clip boxes are optional: a font may
provide clip boxes for some color glyphs but not others.

ClipList table:

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
uint8 format Set to 1.
uint32 numClips Number of Clip records.
Clip clips[numClips] Clip records. Sorted by startGlyphID.

Clip record:

Type Name Description
uint16 startGlyphID First glyph ID in the range.
uint16 endGlyphID Last glyph ID in the range.
Offset32 clipBoxOffset Offset to a ClipBox table.

Within a ClipList table, the glyph ID ranges of Clip records shall not overlap.

Two Clipbox table formats are defined: format 1 for clip boxes without variation, and format 2 allowing
for clip boxes that can vary in a variable font.

ClipBoxFormat1 table, static clip box:

Type Name Description
uint8 format Set to 1.
FWORD xMin Minimum x of clip box.
FWORD yMin Minimum y of clip box.
FWORD xMax Maximum x of clip box.
FWORD yMax Maximum y of clip box.

ClipBoxFormat2 table, variable clip box:

Type Name Description
uint8 format Set to 2.
FWORD xMin Minimum x of clip box. For variation, use varIndex-

Base + 0.
FWORD yMin Minimum y of clip box. For variation, use varIndex-

Base + 1.
FWORD xMax Maximum x of clip box. For variation, use varIndex-

Base + 2.
FWORD yMax Maximum y of clip box. For variation, use varIndex-

Base + 3.
uint32 varIndexBase Base index into DeltaSetIndexMap.

Any content drawn outside the clip box shall not render.

The clip box is not required to be a tight bounding box around the content. As it may be used by
implementations to allocate resources, however, it should not be unnecessarily large.

NOTE 2	 At runtime, when computing a variable ClipBox, compute the min/max coordinates using floating
point values and then round to integer values such that the clip box expands. That is, round xMin and yMin
towards negative infinity and round xMax and yMax towards positive infinity.

For variable data, a base/sequence scheme is used to index into variation mapping data. See 5.7.11.4 for
details.

5.7.11.2.5 Color references, ColorStop and ColorLine

Colors are used in solid color fills for graphic elements, or as stops in a color line used to define a gradient.
Colors are defined by reference to palette entries in the CPAL table (5.7.12). While CPAL entries include

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

40

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

an alpha component, formats for COLR version 1 that reference palette entries also includes a separate
alpha specification to allow different graphic elements to use the same color but with different alpha
values, and to allow for variation of the alpha in variable fonts.

A paletteIndex value of 0xFFFF is a special case, indicating that the text foreground color (as determined
by the application) is to be used.

The alpha value is always set explicitly. Values for alpha outside the range [0., 1.] (inclusive) are reserved;
values outside this range shall be clipped. A value of zero means no opacity (fully transparent); 1.0
means fully opaque (no transparency). The alpha indicated in this record is multiplied with the alpha
component of the CPAL entry (converted to float—divide by 255). Note that the resulting alpha value
can be combined with and does not supersede alpha or opacity attributes set in higher-level, application-
defined contexts.

See 5.7.11.1.1 for more information regarding color references and solid color fills. Solid color fills are
defined using a PaintSolid or PaintVarSolid table, described below—see 5.7.11.2.6.2.

Gradients are defined using a color line. A color line is a mapping of real numbers to color values, defined
using color stops. See 5.7.11.1.2.2 for an overview and additional details.

Two color-stop record formats are defined: one that allows for variation of stop offset position or of
alpha, and one that does not. The format supporting variations uses a base/sequence scheme to index
into mapping data; see 5.7.11.4 for details.

ColorStop record:

Type Name Description
F2DOT14 stopOffset Position on a color line.
uint16 paletteIndex Index for a CPAL palette entry.
F2DOT14 alpha Alpha value.

VarColorStop record:

Type Name Description
F2DOT14 stopOffset Position on a color line. For

variation, use varIndex-
Base + 0.

uint16 paletteIndex Index for a CPAL palette
entry.

F2DOT14 alpha Alpha value. For variation,
use varIndexBase + 1.

uint32 varIndexBase Base index into DeltaSetIn-
dexMap.

A color line is defined by an array of color stop records plus an extend mode. Two color-line table formats
are defined: one that allows for variation of color stop offsets positions or of alpha values, and one that
does not. Different paint table formats for gradients use one or the other of the color line formats.

ColorLine table:

Type Name Description
uint8 extend An Extend enum value.
uint16 numStops Number of ColorStop records.
ColorStop colorStops[numStops]

VarColorLine table:

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
uint8 extend An Extend enum value.
uint16 numStops Number of ColorStop records.
VarColorStop colorStops[numStops] Allows for variations.

Applications shall apply the colorStops entries in increasing stopOffset order. Within a variable font,
the stopOffset values can vary, and the relative orderings of color stop records along the color line can
change as a result of variation. With a variable font, the colorStops entries shall be ordered after the
instance values for the stop offsets have been derived.

A color line defines stops for only certain positions along the line, but the color line extends infinitely in
either direction. The extend field is used to indicate how the color line is extended. The same behavior
is used for extension in both directions. The extend field uses the following enumeration:

Extend enumeration:

Value Name Description
0 EXTEND_PAD Use nearest color stop.
1 EXTEND_REPEAT Repeat from farthest color stop.
2 EXTEND_REFLECT Mirror color line from nearest end.

The extend mode behaviors are described in detail in 5.7.11.1.2.2. If a ColorLine in a font has an
unrecognized extend value, applications should use EXTEND_PAD by default.

5.7.11.2.6 Paint tables

Paint tables are used for COLR version 1 color glyph definitions. Thirty-two paint table formats are
defined (formats 1 to 32). Some formats come in non-variable and variable pairs, but otherwise,
each provides different graphic capability for defining the composition for a color glyph. The graphic
capability of each format and the manner in which they are combined to represent a color glyph has
been described above—see 5.7.11.1.

Each paint table format has a one-byte format field as the first field. When parsing font data, the format
field can be read first to determine the format of the table.

5.7.11.2.6.1 Format 1: PaintColrLayers

Format 1 is used to define a vector of layers. The layers are a slice of layers from the LayerList table.
The first layer is the bottom of the z-order, and subsequent layers are composited on top using the
COMPOSITE_SRC_OVER composition mode (see 5.7.11.2.6.13).

For general information on the PaintColrLayers table, see 5.7.11.1.4. For information about its use for
shared, re-usable components, see 5.7.11.1.7.3.

PaintColrLayers table (format 1):

Type Name Description
uint8 format Set to 1.
uint8 numLayers Number of offsets to paint tables to read from LayerList.
uint32 firstLayerIndex Index (base 0) into the LayerList.

NOTE	 An 8-bit value is used for numLayers to minimize size for common scenarios. If more than 256 layers
are needed, then two or more PaintColrLayers tables can be combined in a tree using a PaintComposite table or
another PaintColrLayers table to combine them.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

42

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.2.6.2 Formats 2 and 3: PaintSolid, PaintVarSolid

Formats 2 and 3 are used to specify a solid color fill. Format 3 allows for variation of alpha in a variable
font; format 2 provides a more compact representation when variation is not required. Format 3 shall
not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.

For general information about specifying color values, see 5.7.11.1.1. For information about applying a
fill to a shape, see 5.7.11.1.3.

PaintSolid table (format 2):

Type Name Description
uint8 format Set to 2.
uint16 paletteIndex Index for a CPAL palette entry.
F2DOT14 alpha Alpha value.

PaintVarSolid table (format 3):

Type Name Description
uint8 format Set to 3.
uint16 paletteIndex Index for a CPAL palette entry.
F2DOT14 alpha Alpha value. For variation, use varIn-

dexBase + 0.
uint32 varIndexBase Base index into DeltaSetIndexMap.

5.7.11.2.6.3 Formats 4 and 5: PaintLinearGradient, PaintVarLinearGradient

Formats 4 and 5 are used to specify a linear gradient fill. Format 4 allows for variation of color stop
positions or of alpha in a variable font; format 5 provides a more compact representation when variation
is not required. Format 5 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

For general information about linear gradients, see 5.7.11.1.2.3. For information about applying a fill to
a shape, see 5.7.11.1.3.

The PaintLinearGradient and PaintVarLinearGradient tables have a ColorLine and VarColorLine
subtable, respectively. For the ColorLine and VarColorLine table formats, see 5.7.11.2.5. For background
information on the color line, see 5.7.11.1.2.2.

PaintLinearGradient table (format 4):

Type Name Description
uint8 format Set to 4.
Offset24 colorLineOffset Offset to ColorLine table.
FWORD x0 Start point (p0) x coordinate.
FWORD y0 Start point (p0) y coordinate.
FWORD x1 End point (p1) x coordinate.
FWORD y1 End point (p1) y coordinate.
FWORD x2 Rotation point (p2) x coordinate.
FWORD y2 Rotation point (p2) y coordinate.

PaintVarLinearGradient table (format 5):

Type Name Description
uint8 format Set to 5.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
Offset24 colorLineOffset Offset to VarColorLine table.
FWORD x0 Start point (p0) x coordinate. For variation, use

varIndexBase + 0.
FWORD y0 Start point (p0) y coordinate. For variation, use

varIndexBase + 1.
FWORD x1 End point (p1) x coordinate. For variation, use

varIndexBase + 2.
FWORD y1 End point (p1) y coordinate. For variation, use

varIndexBase + 3.
FWORD x2 Rotation point (p2) x coordinate. For variation,

use varIndexBase + 4.
FWORD y2 Rotation point (p2) y coordinate. For variation,

use varIndexBase + 5.
uint32 varIndexBase Base index into DeltaSetIndexMap.

The PaintVarLinearGradient format uses a base/sequence scheme to index into mapping data; see
5.7.11.4 for details.

5.7.11.2.6.4 Formats 6 and 7: PaintRadialGradient, PaintVarRadialGradient

Formats 6 and 7 are used to specify a radial gradient fill. Format 7 allows for variation of color stop
positions or of alpha in a variable font; format 6 provides a more compact representation when variation
is not required. Format 7 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

For general information about radial gradients supported in COLR version 1, see 5.7.11.1.2.4. For
information about applying a fill to a shape, see 5.7.11.1.3.

The PaintRadialGradient and PaintVarRadialGradient tables have a ColorLine and VarColorLine
subtable, respectively. For the ColorLine and VarColorLine table formats, see in 5.7.11.2.5. For
background information on the color line, see 5.7.11.1.2.2.

PaintRadialGradient table (format 6):

Type Name Description
uint8 format Set to 6.
Offset24 colorLineOffset Offset to ColorLine table.
FWORD x0 Start circle center x coordinate.
FWORD y0 Start circle center y coordinate.
UFWORD radius0 Start circle radius.
FWORD x1 End circle center x coordinate.
FWORD y1 End circle center y coordinate.
UFWORD radius1 End circle radius.

PaintVarRadialGradient table (format 7):

Type Name Description
uint8 format Set to 7.
Offset24 colorLineOffset Offset to VarColorLine table.
FWORD x0 Start circle center x coordinate. For vari-

ation, use varIndexBase + 0.
FWORD y0 Start circle center y coordinate. For vari-

ation, use varIndexBase + 1.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

44

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
UFWORD radius0 Start circle radius. For variation, use

varIndexBase + 2.
FWORD x1 End circle center x coordinate. For varia-

tion, use varIndexBase + 3.
FWORD y1 End circle center y coordinate. For varia-

tion, use varIndexBase + 4.
UFWORD radius1 End circle radius. For variation, use var-

IndexBase + 5.
uint32 varIndexBase Base index into DeltaSetIndexMap.

The PaintVarRadialGradient format uses a base/sequence scheme to index into mapping data; see
5.7.11.4 for details.

5.7.11.2.6.5 Formats 8 and 9: PaintSweepGradient, PaintVarSweepGradient

Formats 8 and 9 are used to specify a sweep gradient fill. Format 9 allows for variation of color stop
positions or of alpha in a variable font; format 8 provides a more compact representation when variation
is not required. Format 9 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

For general information about sweep gradients, see 5.7.11.1.2.5. For information about applying a fill to
a shape, see 5.7.11.1.3.

The PaintSweepGradient and PaintVarSweepGradient table have a ColorLine and VarColorLine
subtable, respectively. For the ColorLine and VarColorLine table formats, see 5.7.11.2.5. For background
information on the color line, see 5.7.11.1.2.2.

PaintSweepGradient table (format 8):

Type Name Description
uint8 format Set to 8.
Offset24 colorLineOffset Offset to ColorLine table.
FWORD centerX Center x coordinate.
FWORD centerY Center y coordinate.
F2DOT14 startAngle Start of the angular range of the gradient, 180° in

counter-clockwise degrees per 1.0 of value.
F2DOT14 endAngle End of the angular range of the gradient, 180° in

counter-clockwise degrees per 1.0 of value.

PaintVarSweepGradient table (format 9):

Type Name Description
uint8 format Set to 9.
Offset24 colorLineOffset Offset to VarColorLine table.
FWORD centerX Center x coordinate. For variation, use varIn-

dexBase + 0.
FWORD centerY Center y coordinate. For variation, use varIn-

dexBase + 1.
F2DOT14 startAngle Start of the angular range of the gradient,

180° in counter-clockwise degrees per 1.0 of
value. For variation, use varIndexBase + 2.

F2DOT14 endAngle End of the angular range of the gradient,
180° in counter-clockwise degrees per 1.0 of
value. For variation, use varIndexBase + 3.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

45

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
uint32 varIndexBase Base index into DeltaSetIndexMap.

The PaintVarSweepGradient format uses a base/sequence scheme to index into mapping data; see
5.7.11.4 for details.

Angles are expressed in counter-clockwise degrees from the direction of the positive x-axis in the
design grid.

5.7.11.2.6.6 Format 10: PaintGlyph

Format 10 is used to specify a glyph outline to use as a shape to be filled or, equivalently, a clip region.
The outline sets a clip region that constrains the content of a separate paint subtable and the sub-graph
linked from that subtable.

For information about applying a fill to a shape, see 5.7.11.1.3.

PaintGlyph table (format 10):

Type Name Description
uint8 format Set to 10.
Offset24 paintOffset Offset to a Paint table.
uint16 glyphID Glyph ID for the source outline.

The glyphID value shall be less than the numGlyphs value in the ‘maxp’ table (5.2.6). That is, it shall
be a valid glyph with outline data in the ‘glyf’ (5.3.4), ‘CFF’ (5.4.2) or CFF2 (5.4.3) table. Only that
outline data is used. In particular, if this glyph ID has a description in the COLR table (glyphID appears
in a COLR BaseGlyph record or the BaseGlyphList), that COLR data is not relevant for purposes of the
PaintGlyph table.

5.7.11.2.6.7 Format 11: PaintColrGlyph

Format 11 is used to allow a color glyph definition from the BaseGlyphList to be a re-usable component
that can be incorporated into multiple color glyph definitions. See 5.7.11.1.7.4 for more information.

PaintColrGlyph table (format 11):

Type Name Description
uint8 format Set to 11.
uint16 glyphID Glyph ID for a BaseGlyphList base glyph.

The glyphID value shall be a glyphID found in a BaseGlyphPaintRecord within the BaseGlyphList. The
BaseGlyphPaintRecord provides an offset to a paint table; that paint table and the graph linked from
it are incorporated as a child sub-graph of the PaintColrGlyph table within the current color glyph
definition.

5.7.11.2.6.8 Formats 12 and 13: PaintTransform, PaintVarTransform

Formats 12 and 13 are used to apply an affine transformation to a sub-graph. The paint table that is the
root of the sub-graph is linked as a child.

Format 13 allows for variation of the transformation in a variable font; format 12 provides a more
compact representation when variation is not required. Format 13 shall not be used in non-variable
fonts or if the COLR table does not have an ItemVariationStore subtable.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintTransform table (format 12):

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

46

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
uint8 format Set to 12.
Offset24 paintOffset Offset to a Paint subtable.
Offset24 transformOffset Offset to an Affine2x3 table.

PaintVarTransform table (format 13):

Type Name Description
uint8 format Set to 13.
Offset24 paintOffset Offset to a Paint subtable.
Offset24 transformOffset Offset to a VarAffine2x3 table.

The affine transformation is defined by a 2×3 matrix, specified in an Affine2x3 or VarAffine2x3
record. The 2×3 matrix supports scale, skew, reflection, rotation, and translation transformations.
The VarAffine2x3 table supports mapping into variation data, allowing the transform definition to be
variable in a variable font.

Affine2x3 table:

Type Name Description
Fixed xx x-component of transformed x-basis vector.
Fixed yx y-component of transformed x-basis vector.
Fixed xy x-component of transformed y-basis vector.
Fixed yy y-component of transformed y-basis vector.
Fixed dx Translation in x direction.
Fixed dy Translation in y direction.

VarAffine2x3 table:

Type Name Description
Fixed xx x-component of transformed x-basis vector.

For variation, use varIndexBase + 0.
Fixed yx y-component of transformed x-basis vector.

For variation, use varIndexBase + 1.
Fixed xy x-component of transformed y-basis vector.

For variation, use varIndexBase + 2.
Fixed yy y-component of transformed y-basis vector.

For variation, use varIndexBase + 3.
Fixed dx Translation in x direction. For variation, use

varIndexBase + 4.
Fixed dy Translation in y direction. For variation, use

varIndexBase + 5.
uint32 varIndexBase Base index into DeltaSetIndexMap.

The VarAffine2x3 format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for
details.

For a pre-transformation position (x, y), the post-transformation position (x′, y′) is calculated as follows:

x′ = xx * x + xy * y + dx	
y′ = yx * x + yy * y + dy

NOTE	 It is helpful to understand linear transformations by their effect on x- and y-basis vectors î = (1, 0) and
ĵ = (0, 1). The transform described by the Affine2x3 or VarAffine2x3 table maps the basis vectors to î′ = (xx, yx)
and ĵ′ = (xy, yy), and translates the origin to (dx, dy).

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

When the transformed composition from the referenced paint table (and its sub-graph) is composed
into the destination (represented by the parent of this table), the source design grid origin is aligned
to the destination design grid origin. The transform can translate the source such that a pre-transform
position (0,0) is moved elsewhere. The post-transform origin, (0,0), is aligned to the destination origin.

5.7.11.2.6.9 Formats 14 and 15: PaintTranslate, PaintVarTranslate

Formats 14 and 15 are used to apply a translation to a sub-graph. The paint table that is the root of the
sub-graph is linked as a child.

Format 15 allows for variation of the translation in a variable font; format 14 provides a more compact
representation when variation is not required. Format 15 shall not be used in non-variable fonts or if
the COLR table does not have an ItemVariationStore subtable.

These tables use reduced precision for compactness. Where higher precision is required use
PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintTranslate table (format 14):

Type Name Description
uint8 format Set to 14.
Offset24 paintOffset Offset to a Paint subtable.
FWORD dx Translation in x direction.
FWORD dy Translation in y direction.

PaintVarTranslate table (format 15):

Type Name Description
uint8 format Set to 15.
Offset24 paintOffset Offset to a Paint subtable.
FWORD dx Translation in x direction. For

variation, use varIndexBase +
0.

FWORD dy Translation in y direction. For
variation, use varIndexBase +
1.

uint32 varIndexBase Base index into DeltaSetIn-
dexMap.

The PaintVarTranslate format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for
details.

NOTE	 Pure translation can also be represented using the PaintTransform or PaintVarTransform table
by setting xx = 1, yy = 1, xy and yx = 0, and setting dx and dy to the translation values. The PaintTranslate or
PaintVarTranslate table provides a more compact representation when only translation is required.

The translation will result in the pre-transform position (0,0) being moved elsewhere. See 5.7.11.2.6.8
regarding alignment of the transformed content with the destination.

5.7.11.2.6.10 Formats 16 to 23: PaintScale and variant scaling formats

Formats 16 to 23 are used to scale a sub-graph. The paint table that is the root of the sub-graph is linked
as a child. Several variant formats are provided:

—	 Formats 16 and 17: scale in x or y directions relative to the origin. Format 17 allows for variation of
the x and y scale factors in a variable font; format 16 provides a more compact representation when
variation is not required.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

48

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

—	 Formats 18 and 19: scale in x or y directions relative to a specified center. Format 19 allows for
variation of the x and y scale factors or of the center position; format 18 provides a more compact
representation when variation is not required.

—	 Formats 20 and 21: scale uniformly in x and y directions relative to the origin. Format 21 allows for
variation of the scale factor in a variable font; format 20 provides a more compact representation
when variation is not required.

—	 Formats 22 and 23: scale uniformly in x and y directions relative to a specified center. Format 23
allows for variation of the scale factor or of the center position; format 22 provides a more compact
representation when variation is not required.

Formats 17, 19, 21 and 23 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

These tables use reduced precision for compactness. Where higher precision is required use
PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintScale table (format 16):

Type Name Description
uint8 format Set to 16.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 scaleX Scale factor in x direction.
F2DOT14 scaleY Scale factor in y direction.

PaintVarScale table (format 17):

Type Name Description
uint8 format Set to 17.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 scaleX Scale factor in x direction. For variation, use varIn-

dexBase + 0.
F2DOT14 scaleY Scale factor in y direction. For variation, use varIn-

dexBase + 1.
uint32 varIndexBase Base index into DeltaSetIndexMap.

PaintScaleAroundCenter table (format 18):

Type Name Description
uint8 format Set to 18.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 scaleX Scale factor in x direction.
F2DOT14 scaleY Scale factor in y direction.
FWORD centerX x coordinate for the center of scaling.
FWORD centerY y coordinate for the center of scaling.

PaintVarScaleAroundCenter table (format 19):

Type Name Description
uint8 format Set to 19.
Offset24 paintOffset Offset to a Paint subtable.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

49

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
F2DOT14 scaleX Scale factor in x direction. For variation, use varIn-

dexBase + 0.
F2DOT14 scaleY Scale factor in y direction. For variation, use varIn-

dexBase + 1.
FWORD centerX x coordinate for the center of scaling. For variation,

use varIndexBase + 2.
FWORD centerY y coordinate for the center of scaling. For variation,

use varIndexBase + 3.
uint32 varIndexBase Base index into DeltaSetIndexMap.

PaintScaleUniform table (format 20):

Type Name Description
uint8 format Set to 20.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 scale Scale factor in x and y directions.

PaintVarScaleUniform table (format 21):

Type Name Description
uint8 format Set to 21.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 scaleX Scale factor in x and y directions. For variation, use

varIndexBase + 0.
uint32 varIndexBase Base index into DeltaSetIndexMap.

PaintScaleUniformAroundCenter table (format 22):

Type Name Description
uint8 format Set to 22.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 scale Scale factor in x and y directions.
FWORD centerX x coordinate for the center of scaling.
FWORD centerY y coordinate for the center of scaling.

PaintVarScaleUniformAroundCenter table (format 23):

Type Name Description
uint8 format Set to 23.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 scale Scale factor in x and y directions. For variation, use

varIndexBase + 0.
FWORD centerX x coordinate for the center of scaling. For variation,

use varIndexBase + 1.
FWORD centerY y coordinate for the center of scaling. For variation,

use varIndexBase + 2.
uint32 varIndexBase Base index into DeltaSetIndexMap.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

50

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

The PaintVarScale, PaintVarScaleAroundCenter, PaintVarScaleUniform, and
PaintVarScaleUniformAroundCenter formats use a base/sequence scheme to index into mapping data;
see 5.7.11.4 for details.

NOTE	 Pure scaling can also be represented using the PaintTransform or PaintVarTransform table. For
scaling about the origin, this could be done by setting xx and yy to x and y scale factors, and setting xy, yx, dx and
dy = 0. The PaintScale table and variants provide more compact representation when only scaling is required.

5.7.11.2.6.11 Formats 24 to 27: PaintRotate, PaintVarRotate, PaintRotateAroundCenter,
PaintVarRotateAroundCenter

Formats 24 to 27 are used to apply a rotation to a sub-graph. The paint table that is the root of the
sub-graph is linked as a child. The amount of rotation is expressed directly as an angle, using a floating
point value where 1.0 represents an angle of 180°.

Formats 24 and 25 apply rotations using the origin as the center of rotation. Format 25 allows for
variation of the rotation in a variable font; format 24 provides a more compact representation when
variation is not required.

Formats 26 and 27 apply rotations around a specified center of rotation. Format 27 allows for variation
of the rotation or of the position of the center of rotation in a variable font; format 26 provides a more
compact representation when variation is not required.

Formats 25 and 27 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

These tables use reduced precision for compactness. Where higher precision is required use
PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintRotate table (format 24):

Type Name Description
uint8 format Set to 24.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 angle Rotation angle, 180° in counter-clockwise degrees per

1.0 of value.

PaintVarRotate table (format 25):

Type Name Description
uint8 format Set to 25.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 angle Rotation angle, 180° in counter-clockwise degrees

per 1.0 of value. For variation, use varIndexBase +
0.

uint32 varIndexBase Base index into DeltaSetIndexMap.

PaintRotateAroundCenter table (format 26):

Type Name Description
uint8 format Set to 26.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 angle Rotation angle, 180° in counter-clockwise degrees per

1.0 of value.
FWORD centerX x coordinate for the center of rotation.
FWORD centerY y coordinate for the center of rotation.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

51

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

PaintVarRotateAroundCenter table (format 27):

Type Name Description
uint8 format Set to 27.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 angle Rotation angle, 180° in counter-clockwise degrees

per 1.0 of value. For variation, use varIndexBase +
0.

FWORD centerX x coordinate for the center of rotation. For varia-
tion, use varIndexBase + 1.

FWORD centerY y coordinate for the center of rotation. For varia-
tion, use varIndexBase + 2.

uint32 varIndexBase Base index into DeltaSetIndexMap.

The PaintVarRotate and PaintVarRotateAroundCenter formats use a base/sequence scheme to index
into mapping data; see 5.7.11.4 for details.

NOTE 1	 Pure rotation about a point can also be represented using the PaintTransform or PaintVarTransform
table. For rotation about the origin, this could be done by setting matrix values as follows for angle θ:

—	 xx = cos(θ)

—	 yx = sin(θ)

—	 xy = -sin(θ)

—	 yy = cos(θ)

—	 dx = dy = 0

The important difference of the PaintRotate table and its variants is in allowing an angle to be specified
directly in degrees, rather than as changes to basis vectors. In variable fonts, if a rotation angle needs to
vary, it is easier to get smooth variation if an angle is specified directly than when using trigonometric
functions to derive matrix elements.

NOTE 2	 The rotation angle is represented using an F2DOT14 value, which supports values in the range [-2,
2). Since each 1.0 unit represents a change of 180°, rotation angles of [-360, 360) can be represented directly.
Variations of the rotation angle are not limited to that range, however.

NOTE 3	 If representation of rotation directly as an angle is preferred but higher precision is required to
specify a center of rotation, a chained sequence of transforms can be used. For example, a PaintTransform can be
used to align the origin to the desired center of rotation, then PaintRotate can be used for the desired rotation,
and a second PaintTransform can be used to reset the origin.

When combining the transform effect of a PaintRotate table (or variants) with other transforms, the
result shall be the same as if the rotation were represented using an equivalent matrix or sequence of
matrices.

A rotation can result in the pre-transform position (0, 0) being moved elsewhere. See 5.7.11.2.6.8
regarding alignment of the transformed content with the destination.

5.7.11.2.6.12 Format 28 to 31: PaintSkew, PaintVarSkew, PaintSkewAroundCenter,
PaintVarSkewAroundCenter

Formats 28 to 31 are used to apply a skew to a sub-graph. The paint table that is the root of the sub-
graph is linked as a child. The amounts of skew in the x or y direction are expressed directly as angles,
using floating point values where 1.0 represents an angle of 180°.

Formats 28 and 29 apply skews using the origin as the center of rotation for the skew. Format 29 allows
for variation of the rotation in a variable font; format 28 provides a more compact representation when
variation is not required.

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

52

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Formats 30 and 31 apply skews around a specified center of rotation. Format 31 allows for variation
of the rotation or of the position of the center of rotation in a variable font; format 30 provides a more
compact representation when variation is not required.

Formats 29 and 31 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

These tables use reduced precision for compactness. Where higher precision is required use
PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintSkew table (format 28):

Type Name Description
uint8 format Set to 28.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 xSkewAngle Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees per

1.0 of value.
F2DOT14 ySkewAngle Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees per

1.0 of value.

PaintVarSkew table (format 29):

Type Name Description
uint8 format Set to 29.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 xSkewAngle Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees

per 1.0 of value. For variation, use varIndexBase + 0.
F2DOT14 ySkewAngle Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees

per 1.0 of value. For variation, use varIndexBase + 1.
uint32 varIndexBase Base index into DeltaSetIndexMap.

PaintSkewAroundCenter table (format 30):

Type Name Description
uint8 format Set to 30.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 xSkewAngle Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees per

1.0 of value.
F2DOT14 ySkewAngle Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees per

1.0 of value.
FWORD centerX x coordinate for the center of rotation.
FWORD centerY y coordinate for the center of rotation.

PaintVarSkewAroundCenter table (format 31):

Type Name Description
uint8 format Set to 31.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 xSkewAngle Angle of skew in the direction of the x-axis, 180° in counter-clockwise

degrees per 1.0 of value. For variation, use varIndexBase + 0.
F2DOT14 ySkewAngle Angle of skew in the direction of the y-axis, 180° in counter-clockwise

degrees per 1.0 of value. For variation, use varIndexBase + 1.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

53

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
FWORD centerX x coordinate for the center of rotation. For variation, use varIndexBase +

2.
FWORD centerY y coordinate for the center of rotation. For variation, use varIndexBase +

3.
uint32 varIndexBase Base index into DeltaSetIndexMap.

The PaintVarSkew and PaintVarSkewAroundCenter formats use a base/sequence scheme to index into
mapping data; see 5.7.11.4 for details.

NOTE 1	 Pure skews about a point can also be represented using the PaintTransform or PaintVarTransform
table. For skews about the origin, this could be done by setting matrix values as follows for x skew angle φ and y
skew angle ψ:

—	 xx = yy = 1

—	 yx = tan(ψ)

—	 xy = -tan(φ)

—	 dx = dy = 0

The important difference of the PaintSkew table and its variants is in being able to specify skew as an
angle, rather than as changes to basis vectors. In variable fonts, if a skew angle needs to vary, it is easier
to get smooth variation if an angle is specified directly than when using trigonometric functions to
derive matrix elements.

NOTE 2	 The skew angles are represented using F2DOT14 values, which support values in the range [-2, 2).
Since each 1.0 unit represents a change of 180°, skew angles of [-360, 360) can be represented directly. Variations
of the skew angle are not limited to that range, however.

NOTE 3	 If representation of skew directly as an angle is preferred but higher precision is required to specify a
center of rotation, a chained sequence of transforms can be used. For example, a PaintTransform can be used to
align the origin to the desired center of rotation, then PaintSkew can be used for the desired skew rotation, and a
second PaintTransform can be used to reset the origin.

When combining the transform effect of a PaintSkew table (or variants) with other transforms, the
result shall be the same as if the skew were represented using an equivalent matrix or sequence of
matrices.

A skew can result in the pre-transform position (0, 0) being moved elsewhere. See 5.7.11.2.6.8 regarding
alignment of the transformed content with the destination.

5.7.11.2.6.13 Format 32: PaintComposite

Format 32 is used to combine two layered compositions, referred to as source and backdrop, using
different compositing or blending modes. The available compositing and blending modes are defined in
an enumeration. For general information and examples, see 5.7.11.1.6.

NOTE	 The backdrop is also referred to as the “destination”.

PaintComposite table (format 32):

Type Name Description
uint8 format Set to 32.
Offset24 sourcePaintOffset Offset to a source Paint table.
uint8 compositeMode A CompositeMode enumeration value.
Offset24 backdropPaintOffset Offset to a backdrop Paint table.

The compositeMode value shall be one of the values defined in the CompositeMode enumeration, which
are taken from the W3C Compositing and Blending Level 1 specification [33]. Details on each mode,

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

54

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

including specifications of the required calculations using pixel color and alpha values, are provided in
that specification. If an unrecognized value is encountered, COMPOSITE_CLEAR shall be used.

CompositeMode enumeration:

Value Name Description
 Porter-Duff modes
0 COMPOSITE_CLEAR Clear
1 COMPOSITE_SRC Source ("Copy" in [33])
2 COMPOSITE_DEST Destination
3 COMPOSITE_SRC_OVER Source Over
4 COMPOSITE_DEST_OVER Destination Over
5 COMPOSITE_SRC_IN Source In
6 COMPOSITE_DEST_IN Destination In
7 COMPOSITE_SRC_OUT Source Out
8 COMPOSITE_DEST_OUT Destination Out
9 COMPOSITE_SRC_ATOP Source Atop
10 COMPOSITE_DEST_ATOP Destination Atop
11 COMPOSITE_XOR XOR
12 COMPOSITE_PLUS Plus (“Lighter” in [33])
 Separable color blend modes:
13 COMPOSITE_SCREEN screen
14 COMPOSITE_OVERLAY overlay
15 COMPOSITE_DARKEN darken
16 COMPOSITE_LIGHTEN lighten
17 COMPOSITE_COLOR_DODGE color-dodge
18 COMPOSITE_COLOR_BURN color-burn
19 COMPOSITE_HARD_LIGHT hard-light
20 COMPOSITE_SOFT_LIGHT soft-light
21 COMPOSITE_DIFFERENCE difference
22 COMPOSITE_EXCLUSION exclusion
23 COMPOSITE_MULTIPLY multiply
 Non-separable color blend modes:
24 COMPOSITE_HSL_HUE hue
25 COMPOSITE_HSL_SATURATION saturation
26 COMPOSITE_HSL_COLOR color
27 COMPOSITE_HSL_LUMINOSITY luminosity

The graphic compositions are defined by the source and backdrop paint tables and their respective
sub-graphs. Conceptually, they are rendered into bitmaps, and the source is composited or blended into
the backdrop using the specified composite mode.

While color values obtained from the CPAL table are represented in sRGB using the non-linear transfer
function defined in the sRGB specification, the compositing and blending calculations are done after
applying the inverse transfer function to derive linear-light RGB values. For more information regarding
the non-linear and linear-light representations for sRGB, see Interpolation of Colors in 5.7.12.

As mentioned in 5.7.11.1.8.2, a color glyph definition shall be bounded. A sub-graph that has
PaintComposite as its root is either bounded or unbounded, depending on the mode used and the

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

55

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

boundedness of the source and backdrop sub-graphs. For each mode, boundedness is determined by
the boundedness of the source and backdrop as follows:

—	 Always bounded:

—	 COMPOSITE_CLEAR

—	 Bounded if and only if the source is bounded:

—	 COMPOSITE_SRC

—	 COMPOSITE_SRC_OUT

—	 Bounded if and only if the backdrop is bounded:

—	 COMPOSITE_DEST

—	 COMPOSITE_DEST_OUT

—	 Bounded if and only if either the source or backdrop is bounded:

—	 COMPOSITE_SRC_IN

—	 COMPOSITE_DEST_IN

—	 Bounded if and only if both the source and backdrop are bounded:

—	 All other modes

5.7.11.3 COLR version 1 rendering algorithm

The various graphic concepts represented by COLR version 1 formats were individually described
in 5.7.11.1, and the various formats were described in 5.7.11.2. Together, these provide most of the
necessary details regarding how a color glyph is rendered. The following provides a comprehensive
description of the rendering process, considering the graph as a whole.

The following algorithm can be used to render color glyphs defined using version 1 formats. Applications
are not required to implement rendering using this algorithm, but shall produce equivalent results.

NOTE	 Checks for well-formedness and validity, as described in 5.7.11.1.9, are not repeated here. Actual
implementations can integrate such checks with rendering processing.

1)	 Start with an initial drawing surface. As mentioned in 5.7.11.1.8.2, if a clip box is provided, it can be
used to determine the size. Otherwise, the graph can be traversed to compute a required size.

2)	 Traverse the graph of a color glyph definition, starting with the root paint table referenced by a
BaseGlyphPaintRecord, using the following pseudo-code function.

// render a paint table and its sub-graph
function renderPaint(paint)

 if format 1: // PaintColrLayers
 for each referenced child paint table, in bottom-up z-order:
 // for ordering, see 5.7.11.1.4, 5.7.11.2.6.1
 call renderPaint() passing the child paint table
 compose the returned graphic onto the surface using simple alpha blending

 if format 2 or 3: // PaintSolid, PaintVarSolid
 paint the specified color onto the surface

 if format 4, 5, 6, 7, 8 or 9:
 // PaintLinearGradient, PaintVarLinearGradient
 // PaintRadialGradient, PaintVarRadialGradient
 // PaintSweepGradient, PaintVarSweepGradient
 paint the gradient onto the surface following the gradient algorithm

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

56

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

 if format 10: // PaintGlyph
 apply the outline of the referenced glyph to the clip region
 // take the intersection of clip regions—see 5.7.11.1.3
 call renderPaint() passing the child paint table
 restore the previous clip region

 if format 11: // PaintColrGlyph
 call renderPaint() passing the paint table referenced by the base glyph ID

 if format 12 to 31:
 // PaintTransform, PaintVarTransform
 // PaintTranslate, PaintVarTranslate
 // PaintScale*, PaintVarScale*
 // PaintRotate*, PaintVarRotate*
 // PaintSkew*, PaintVarSkew*
 apply the specified transform
 // compose the transform with the current transform state—see 5.7.11.1.5
 call renderPaint() passing the child paint table
 restore the previous transform state

 if format 32: // PaintComposite

 // render backdrop sub-graph
 call renderPaint() passing the backdrop child paint table and save the result

 // render source sub-graph
 call renderPaint() passing the source child paint table and save the result

 // compose source and backdrop
 compose the source and backdrop using the specified composite mode

 // compose final result
 compose the result of the above composition onto the surface using simple
 alpha blending

5.7.11.4 COLR table and OFF Font Variations

The COLR table can be used in variable fonts. For color glyphs defined using version 0 formats, the glyph
outlines can be variable, but no other aspect of the color glyph is variable. For color glyphs defined
using version 1 formats, items that can be variable include the glyph outlines plus other aspects of the
color glyph definition:

—	 Alpha values

—	 Color stop offsets in gradient color lines

—	 Placement of gradients onto the design grid

—	 The arguments of transformations (matrix elements, angles, etc.)

Variation data is provided in an Item Variation Store table (7.2.3) contained within the COLR table.

In a variable font, each value within the COLR version 1 formats that is variable needs to be associated
with corresponding variation data (delta sets) in the Item Variation Store. This is done using a
DeltaSetIndexMap table (defined in 7.3.5.2). The delta-set index mapping table contains an array of
entries that provide indices mapping into sets of delta data in the Item Variation Store. Each variable
item in the COLR table is given an index (base 0) into the mapping data. For example, if a variable item
in the COLR table is given an index value of 5, the sixth entry in the mapping data is used to index into
the Item Variation Store.

The indices for variable items in the COLR table are indicated using a base/sequence scheme. Each
table or record that contains variable items will use a contiguous sequence of entries in the mapping
array, and will include a varIndexBase field that indicates the first entry in the mapping array to be
used. The variable fields within that table or record use entries in the mapping array, starting with the
varIndexBase entry, in the order the fields occur in the table or record.

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

57

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

For example, the VarAffine2x3 table (5.7.11.2.6.8) has eight variable fields followed by the varIndexBase
field. For the first variable field (xx), varIndexBase + 0 is used as the index into the mapping array; for
the second variable field (yx), varIndexBase + 1 is used as the index into the mapping array; and so on.

If the index for a variable item is greater than or equal to the number of entries in the mapping array,
the last mapping array entry shall be used.

The sequence of indices derived from a varIndexBase value do not wrap on overflow and shall not
exceed 0xFFFFFFFF. A varIndexBase value of 0xFFFFFFFF is assigned a special meaning indicating that
the variable fields in the given table or record do not have variation data.

Similarly, a delta-set index mapping entry with values 0xFFFF/0xFFFF can be used to indicate that an
item has no variation data (see 7.2.3.2).

If the COLR table does not contain an Item Variation Store subtable, the varIndexBase field of variable
tables or records shall be ignored by applications, and should be set to zero.

If the COLR table contains an Item Variation Store but does not contain a mapping table
(varIndexMapOffset in the COLR header is NULL), then an implicit identity mapping is used: the
sequence of values beginning with varIndexBase are treated directly as delta-set indices with 16-bit
sub-fields for outer (high word) and inner (low word) index values. See 7.2.3.3 for more information
regarding delta set indices.

For variable fonts that use COLR version 1 formats, special considerations apply to the effect of variation
on the bounding box. See 5.7.11.1.8.2 for details.

For general information on OFF font variations, see 7.1.

5.7.12

Replace the first sentence of the first paragraph with the following:

The palette table is a set of one or more palettes, each containing a predefined number of color records.

Replace the second paragraph with the following text:

Palettes are defined by a set of color records. Each color record specifies a color in the sRGB color
space using 8-bit BGRA (blue, green, red, alpha) representation. The sRGB color space is specified in
IEC 61966-2-1. Details on the specification for the sRGB color space, including the color primaries and
“gamma” transfer function, are also provided in CSS Color Module Level 4, section 10.2 [34].

All palettes have the same number of color records, specified by numColorRecords. All color records for
all palettes are arranged in a single array, and the color records for any given palette are a contiguous
sequence of color records within that array. The first color record of each palette is provided in the
colorRecordIndices array.

Add the following paragraphs at the end of the subclause with the heading “Interpolation of colors”:

Interpolation of Colors

The SVG table and version 1 of the COLR table both support color gradient fills. The gradients are
defined using color stops to specify color values at specific positions along a color line, with color values
for other positions on the color line derived by interpolation.

When interpolating color values, linear interpolation between color stop positions is used. For example,
suppose adjacent color stops are specified for positions 0.5 and 0.9 on a color line, and a color value is
being calculated for position 0.8. The color value of the first color stop will contribute 75 % of the value

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

58

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

((0.8 - 0.5) / (0.9 - 0.5)), and the color value of the second color stop will contribute 25 % of the value.
Interpolated values at each position of the color line are computed in this way for each of the R, G and B
color components.

When interpolating color values, specific aspects of the representation of colors as well as handling of
alpha need to be considered.

Representations of sRGB color values are expressed as levels of red, green and blue color “primaries”
with specific, absolute chromaticity values, which are defined in the sRGB specification. Color-primary
levels can potentially be expressed using a linear-light scale that correlates directly to light energy. (On
a linear-light scale, for example, a doubling of a color value would correspond to a doubling of display
luminance.) For sRGB, however, standard practice is to represent levels using a scale defined by a non-
linear transfer function, sometimes referred to as “gamma”. This transfer function is also defined in the
sRGB specification (see CSS Color Module Level 4, section 10.2 [34] for details). In the CPAL table, sRGB
color values are always specified in terms of the non-linear, sRGB transfer function.

NOTE 1	 An advantage of representing colors using a non-linear scale is that it allows more effective use of
limited bit depth when color-primary levels are represented as integers: smaller differences in light energy can
be represented for lower levels than for higher levels. This is beneficial since the human visual system is more
sensitive to differences at low luminance levels than to differences at high luminance levels.

When interpolating colors, different results will be obtained if the interpolation is computed using the
non-linear scale for color levels than if using the linear-light scale. For interoperable results, whether
the non-linear or linear-light scale is to be used needs to be specified.

For gradient color values in the SVG table, the required interpolation behavior is defined in the SVG 1.1
specification: the ‘color-interpolation’ property can be used in an SVG document to declare whether
interpolation is done using the non-linear sRGB scale (the default), or using a linear-light scale by
applying the inverse sRGB transfer function.

For gradient color values in the COLR table, interpolation shall be computed using linear-light values
(i.e., after applying the inverse sRGB transfer function).

After an interpolated color value is computed, whether or not the non-linear sRGB transfer function
needs to be re-applied is determined by the requirements of the implementation context.

For both the COLR and SVG tables, interpolation shall be done with alpha pre-multiplied into each
linearized R, G and B component. For alpha specified in a CPAL ColorRecord, the value is converted to a
floating value in the range [0, 1.0] by dividing by 255, then multiplied into each R, G and B component.
In the COLR table, color references in formats used for version 1 include a separate alpha value; that
alpha value (with variation, in a variable font) is multiplied into the R, G and B components as well.
Interpolated values are then calculated by linear interpolation using these pre-multiplied, linear-light
R, G and B values.

NOTE 2	 Alpha components use a linear scale and can be directly interpolated apart from the R, G and B
components without any linearization step.

Once interpolation of the pre-multiplied red, green and blue values and of the alpha value is complete,
the red, green and blue results are then un-premultiplied by dividing each interpolated value by the
corresponding interpolated alpha.

While color values are specified as 8-bit integers, the interpolation computations will require greater
precision in each of the linearization, pre-multiply, and interpolation steps. Also, when rendered results
are to be presented on an imaging device with known characteristics, visual banding artifacts in
a gradient can be minimized by taking full advantage of the color bit depth supported by the device.
For instance, if a display supports 10- or 12-bit quantization per color channel, then ideally the ramp
of color values in a gradient would use that level of quantization. Other factors from the presentation
context may, however, also affect the available capabilities. Therefore, no minimum level of precision is
specified as a requirement

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

59

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

6.4.1

Replace the Script tags table with the following:

Script Script Tag
Adlam 'adlm'
Ahom 'ahom'
Anatolian Hieroglyphs 'hluw'
Arabic 'arab'
Armenian 'armn'
Avestan 'avst'
Balinese 'bali'
Bamum 'bamu'
Bassa Vah 'bass'
Batak 'batk'
Bengali 'beng'
Bengali v.2 'bng2'
Bhaiksuki 'bhks'
Bopomofo 'bopo'
Brahmi 'brah'
Braille 'brai'
Buginese 'bugi'
Buhid 'buhd'
Byzantine Music 'byzm'
Canadian Syllabics 'cans'
Carian 'cari'
Caucasian Albanian 'aghb'
Chakma 'cakm'
Cham 'cham'
Cherokee 'cher'
Chorasmian 'chrs'
CJK Ideographic 'hani'
Coptic 'copt'
Cypriot Syllabary 'cprt'
Cypro-Minoan ‘cpmn’
Cyrillic 'cyrl'
Default 'DFLT'
Deseret 'dsrt'
Devanagari 'deva'
Devanagari v.2 'dev2'
Dives Akuru 'diak'
Dogra 'dogr'
Duployan 'dupl'
Egyptian hieroglyphs 'egyp'
Elbasan 'elba'
Elymaic 'elym'
Ethiopic 'ethi'

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

60

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Script Script Tag
Georgian 'geor'
Glagolitic 'glag'
Gothic 'goth'
Grantha 'gran'
Greek 'grek'
Gujarati 'gujr'
Gujarati v.2 'gjr2'
Gunjala Gondi 'gong'
Gurmukhi 'guru'
Gurmukhi v.2 'gur2'
Hangul 'hang'
Hangul Jamo 'jamo'
Hanifi Rohingya 'rohg'
Hanunoo 'hano'
Hatran 'hatr'
Hebrew 'hebr'
Hiragana 'kana'
Imperial Aramaic 'armi'
Inscriptional Pahlavi 'phli'
Inscriptional Parthian 'prti'
Javanese 'java'
Kaithi 'kthi'
Kannada 'knda'
Kannada v.2 'knd2'
Katakana 'kana'
Kayah Li 'kali'
Kharosthi 'khar'
Khitan Small Script 'kits'
Khmer 'khmr'
Khojki 'khoj'
Khudawadi 'sind'
Lao 'lao '
Latin 'latn'
Lepcha 'lepc'
Limbu 'limb'
Linear A 'lina'
Linear B 'linb'
Lisu (Fraser) 'lisu'
Lycian 'lyci'
Lydian 'lydi'
Mahajani 'mahj'
Makasar 'maka'
Malayalam 'mlym'
Malayalam v.2 'mlm2'
Mandaic, Mandaean 'mand'

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

61

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Script Script Tag
Manichaean 'mani'
Masaram Gondi 'gonm'
Marchen 'marc'
Mathematical Alphanumeric Symbols 'math'
Medefaidrin (Oberi Okaime, Oberi Ɔkaimɛ) 'medf'
Meitei Mayek (Meithei, Meetei) 'mtei'
Mende Kikakui 'mend'
Meroitic Cursive 'merc'
Meroitic Hieroglyphs 'mero'
Miao 'plrd'
Modi 'modi'
Mongolian 'mong'
Mro 'mroo'
Multani 'mult'
Musical Symbols 'musc'
Myanmar 'mymr'
Myanmar v.2 'mym2'
Nabataean 'nbat'
Nandinagari 'nand'
Newa 'newa'
New Tai Lue 'talu'
Nyiakeng Puachue Hmong 'hmnp'
N'Ko 'nko '
Nüshu 'nshu'
Odia (formerly Oriya) 'orya'
Odia (formerly Oriya) v.2 'ory2'
Ogham 'ogam'
Ol Chiki 'olck'
Old Italic 'ital'
Old Hungarian 'hung'
Old North Arabian 'narb'
Old Permic 'perm'
Old Persian Cuneiform 'xpeo'
Old Sogdian 'sogo'
Old South Arabian 'sarb'
Old Turkic, Orkhon Runic 'orkh'
Old Uyghur ‘ougr’
Osage 'osge'
Osmanya 'osma'
Pahawh Hmong 'hmng'
Palmyrene 'palm'
Pau Cin Hau 'pauc'
Phags-pa 'phag'
Phoenician 'phnx'
Psalter Pahlavi 'phlp'

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

62

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Script Script Tag
Rejang 'rjng'
Runic 'runr'
Samaritan 'samr'
Saurashtra 'saur'
Sharada 'shrd'
Shavian 'shaw'
Siddham 'sidd'
Sign Writing 'sgnw'
Sinhala 'sinh'
Sogdian 'sogd'
Sora Sompeng 'sora'
Soyombo 'soyo'
Sumero-Akkadian Cuneiform 'xsux'
Sundanese 'sund'
Syloti Nagri 'sylo'
Syriac 'syrc'
Tagalog 'tglg'
Tagbanwa 'tagb'
Tai Le 'tale'
Tai Tham (Lanna) 'lana'
Tai Viet 'tavt'
Takri 'takr'
Tamil 'taml'
Tamil v.2 'tml2'
Tangsa ‘tnsa’
Tangut 'tang'
Telugu 'telu'
Telugu v.2 'tel2'
Thaana 'thaa'
Thai 'thai'
Tibetan 'tibt'
Tifinagh 'tfng'
Tirhuta 'tirh'
Toto ‘toto’
Ugaritic Cuneiform 'ugar'
Vai 'vai '
Vithkuqi ‘vith’
Wancho 'wcho'
Warang Citi 'wara'
Yezidi 'yezi'
Yi 'yi '
Zanabazar Square (Zanabazarin Dörböljin Useg, Xewtee
Dörböljin Bicig, Horizontal Square Script)

'zanb'

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

63

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

6.4.2

Replace the Language systems and tags table with the following:

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Abaza 'ABA ' abq
Abkhazian 'ABK ' abk
Acholi 'ACH ' ach
Achi 'ACR ' acr
Adyghe 'ADY ' ady
Afrikaans 'AFK ' afr
Afar 'AFR ' aar
Agaw 'AGW ' ahg
Aiton 'AIO ' aio
Akan 'AKA ' aka, fat, twi
Batak Angkola 'AKB ' akb
Alsatian 'ALS ' gsw
Altai 'ALT ' atv, alt
Amharic 'AMH ' amh
Anglo-Saxon 'ANG ' ang
Phonetic transcription—
Americanist conventions

APPH

Arabic 'ARA ' ara
Aragonese 'ARG ' arg
Aari 'ARI ' aiw
Rakhine 'ARK ' mhv, rmz, rki
Assamese 'ASM ' asm
Asturian 'AST ' ast
Athapaskan languages 'ATH ' aht, apa, apk, apj, apl, apm, apw, ath, bea, sek, bcr, caf, chp,

clc, coq, crx, ctc, den, dgr, gce, gwi, haa, hoi, hup, ing, kkz,
koy, ktw, kuu, mvb, nav, qwt, scs, srs, taa, tau, tcb, tce, tfn,
tgx, tht, tol, ttm, tuu, txc, wlk, xup, xsl

Avatime 'AVN ' avn
Avar 'AVR ' ava
Awadhi 'AWA ' awa
Aymara 'AYM ' aym
Torki 'AZB ' azb
Azerbaijani 'AZE ' aze
Badaga 'BAD ' bfq
Banda BAD0 bad, bbp, bfl, bjo, bpd, bqk, gox, kuw, liy, lna, lnl, mnh,

nue, nuu, tor, yaj, zmz
Baghelkhandi 'BAG ' bfy
Balkar 'BAL ' krc
Balinese 'BAN ' ban
Bavarian 'BAR ' bar
Baulé 'BAU ' bci
Batak Toba 'BBC ' bbc

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

64

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Berber 'BBR ' auj, ber, cnu, gha, gho, grr, jbe, jbn, kab, mzb, oua, rif, sds,
shi, shy, siz, sjs, swn, taq, tez, thv, thz, tia, tjo, tmh, ttq,
tzm, zen, zgh

Bench 'BCH ' bcq
Bible Cree 'BCR '
Bandjalang 'BDY ' bdy
Belarussian 'BEL ' bel
Bemba 'BEM ' bem
Bengali 'BEN ' ben
Haryanvi 'BGC ' bgc
Bagri 'BGQ ' bgq
Bulgarian 'BGR ' bul
Bhili 'BHI ' bhi, bhb
Bhojpuri 'BHO ' bho
Bikol 'BIK ' bik, bhk, bcl, bto, cts, bln, fbl, lbl, rbl, ubl
Bilen 'BIL ' byn
Bislama 'BIS ' bis
Kanauji 'BJJ ' bjj
Blackfoot 'BKF ' bla
Baluchi 'BLI ' bal
Pa’o Karen 'BLK ' blk
Balante 'BLN ' bjt, ble
Balti 'BLT ' bft
Bambara (Bamanankan) 'BMB ' bam
Bamileke 'BML ' bai, bbj, bko, byv, fmp, jgo, nla, nnh, nnz, nwe, xmg, ybb
Bosnian 'BOS ' bos
Bishnupriya Manipuri 'BPY ' bpy
Breton 'BRE ' bre
Brahui 'BRH ' brh
Braj Bhasha 'BRI ' bra
Burmese 'BRM ' mya
Bodo 'BRX ' brx
Bashkir 'BSH ' bak
Burushaski 'BSK ' bsk
Batak Dairi (Pakpak) 'BTD ' btd
Beti 'BTI ' btb, beb, bum, bxp, eto, ewo, mct
Batak languages 'BTK ' akb, bbc, btd, btk, btm, bts, btx, btz
Batak Mandailing 'BTM ' btm
Batak Simalungun 'BTS ' bts
Batak Karo 'BTX ' btx
Batak Alas-Kluet 'BTZ ' btz
Bugis 'BUG ' bug
Medumba 'BYV ' byv
Kaqchikel 'CAK ' cak
Catalan 'CAT ' cat

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

65

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Zamboanga Chavacano 'CBK ' cbk
Chinantec CCHN cco, chj, chq, chz, cle, cnl, cnt, cpa, csa, cso, cte, ctl, cuc,

cvn
Cebuano 'CEB ' ceb
Chiga 'CGG ' cgg
Chamorro 'CHA ' cha
Chechen 'CHE ' che
Chaha Gurage 'CHG ' sgw
Chattisgarhi 'CHH ' hne
Chichewa (Chewa, Nyanja) 'CHI ' nya
Chukchi 'CHK ' ckt
Chuukese CHK0 chk
Choctaw 'CHO ' cho
Chipewyan 'CHP ' chp
Cherokee 'CHR ' chr
Chuvash 'CHU ' chv
Cheyenne 'CHY ' chy
Western Cham 'CJA ' cja
Eastern Cham 'CJM ' cjm
Comorian 'CMR ' swb, wlc, wni, zdj
Coptic 'COP ' cop
Cornish 'COR ' cor
Corsican 'COS ' cos
Creoles 'CPP ' abs, acf, afs, aig, aoa, bah, bew, bis, bjs, bpl, bpq, brc, bxo,

bzj, bzk, cbk, ccl, ccm, chn, cks, cpe, cpf, cpi, cpp, cri, crp,
crs, dcr, dep, djk, fab, fng, fpe, gac, gcf, gcl, gcr, gib, goq,
gpe, gul, gyn, hat, hca, hmo, hwc, icr, idb, ihb, jam, jvd,
kcn, kea, kmv, kri, kww, lir, lou, lrt, max, mbf, mcm, mfe,
mfp, mkn, mod, msi, mud, mzs, nag, nef, ngm, njt, onx,
oor, pap, pcm, pea, pey, pga, pih, pis, pln, pml, pmy, pov,
pre, rcf, rop, scf, sci, skw, srm, srn, sta, svc, tas, tch, tcs,
tgh, tmg, tpi, trf, tvy, uln, vic, vkp, wes, xmm

Cree 'CRE ' cre
Carrier 'CRR ' crx, caf
Crimean Tatar 'CRT ' crh
Kashubian 'CSB ' csb
Church Slavonic 'CSL ' chu
Czech 'CSY ' ces
Wayanad Chetti 'CTT ' ctt
Chittagonian 'CTG ' ctg
San Blas Kuna 'CUK ' cuk
Dagbani 'DAG ' dag
Danish 'DAN ' dan
Dargwa 'DAR ' dar
Dayi 'DAX ' dax
Woods Cree 'DCR ' cwd
German 'DEU ' deu

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

66

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Dogri (individual language) 'DGO ' dgo
Dogri (macrolanguage) 'DGR ' doi
Dhangu 'DHG ' dhg
Divehi (Dhivehi, Maldivian) 'DHV ' (deprecated) div
Dimli 'DIQ ' diq
Divehi (Dhivehi, Maldivian) 'DIV ' div
Zarma 'DJR ' dje
Djambarrpuyngu DJR0 djr
Dangme 'DNG ' ada
Dan 'DNJ ' dnj
Dinka 'DNK ' din
Dari 'DRI ' prs
Dhuwal 'DUJ ' duj, dwu, dwy
Dungan 'DUN ' dng
Dzongkha 'DZN ' dzo
Ebira 'EBI ' igb
Eastern Cree 'ECR ' crj, crl
Edo 'EDO ' bin
Efik 'EFI ' efi
Greek 'ELL ' ell
Eastern Maninkakan 'EMK ' emk
English 'ENG ' eng
Erzya 'ERZ ' myv
Spanish 'ESP ' spa
Central Yupik 'ESU ' esu
Estonian 'ETI ' est
Basque 'EUQ ' eus
Evenki 'EVK ' evn
Even 'EVN ' eve
Ewe 'EWE ' ewe
French Antillean 'FAN ' acf
Fang FAN0 fan
Persian 'FAR ' fas
Fanti 'FAT ' fat
Finnish 'FIN ' fin
Fijian 'FJI ' fij
Dutch (Flemish) 'FLE ' vls
Fe’fe’ 'FMP ' fmp
Forest Enets 'FNE ' enf
Fon 'FON ' fon
Faroese 'FOS ' fao
French 'FRA ' fra
Cajun French 'FRC ' frc
Frisian 'FRI ' fry

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

67

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Friulian 'FRL ' fur
Arpitan 'FRP ' frp
Futa 'FTA ' fuf
Fulah 'FUL ' ful
Nigerian Fulfulde 'FUV ' fuv
Ga 'GAD ' gaa
Scottish Gaelic (Gaelic) 'GAE ' gla
Gagauz 'GAG ' gag
Galician 'GAL ' glg
Garshuni 'GAR '
Garhwali 'GAW ' gbm
Geez 'GEZ ' gez
Githabul 'GIH ' gih
Gilyak 'GIL ' niv
Kiribati (Gilbertese) GIL0 gil
Kpelle (Guinea) 'GKP ' gkp
Gilaki 'GLK ' glk
Gumuz 'GMZ ' guk
Gumatj 'GNN ' gnn
Gogo 'GOG ' gog
Gondi 'GON ' gon
Greenlandic 'GRN ' kal
Garo 'GRO ' grt
Guarani 'GUA ' grn
Wayuu 'GUC ' guc
Gupapuyngu 'GUF ' guf
Gujarati 'GUJ ' guj
Gusii 'GUZ ' guz
Haitian (Haitian Creole) 'HAI ' hat
Haida 'HAI0' hai, hax, hdn
Halam (Falam Chin) 'HAL ' cfm
Harauti 'HAR ' hoj
Hausa 'HAU ' hau
Hawaiian 'HAW ' haw
Haya 'HAY ' hay
Hazaragi 'HAZ ' haz
Hammer-Banna 'HBN ' amf
Heiltsuk 'HEI ' hei
Herero 'HER ' her
Hiligaynon 'HIL ' hil
Hindi 'HIN ' hin
High Mari 'HMA ' mrj
A-Hmao 'HMD ' hmd
Hmong 'HMN ' hmn

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

68

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Hiri Motu 'HMO ' hmo
Hmong Shuat 'HMZ ' hmz
Hindko 'HND ' hno, hnd
Ho 'HO ' hoc
Harari 'HRI ' har
Croatian 'HRV ' hrv
Hungarian 'HUN ' hun
Armenian 'HYE ' hye, hyw
Armenian East HYE0 hye
Iban 'IBA ' iba
Ibibio 'IBB ' ibb
Igbo 'IBO ' ibo
Ido 'IDO ' ido
Ijo languages 'IJO ' iby, ijc, ije, ijn, ijo, ijs, nkx, okd, okr, orr
Interlingue 'ILE ' ile
Ilokano 'ILO ' ilo
Interlingua 'INA ' ina
Indonesian 'IND ' ind
Ingush 'ING ' inh
Inuktitut 'INU ' iku
Nunavik Inuktitut ‘INUK’ ike, iku
Inupiat 'IPK ' ipk
Phonetic transcription—IPA
conventions

IPPH

Irish 'IRI ' gle
Irish Traditional 'IRT ' gle
Irula 'IRU ' iru
Icelandic 'ISL ' isl
Inari Sami 'ISM ' smn
Italian 'ITA ' ita
Hebrew 'IWR ' heb
Jamaican Creole 'JAM ' jam
Japanese 'JAN ' jpn
Javanese 'JAV ' jav
Lojban 'JBO ' jbo
Krymchak 'JCT ' jct
Yiddish 'JII ' yid
Ladino 'JUD ' lad
Jula 'JUL ' dyu
Kabardian 'KAB ' kbd
Kabyle KAB0 kab
Kachchi 'KAC ' kfr
Kalenjin 'KAL ' kln
Kannada 'KAN ' kan

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

69

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Karachay 'KAR ' krc
Georgian 'KAT ' kat
Kawi (Old Javanese) ‘KAW ’ kaw
Kazakh 'KAZ ' kaz
Makonde 'KDE ' kde
Kabuverdianu (Crioulo) 'KEA ' kea
Kebena 'KEB ' ktb
Kekchi 'KEK ' kek
Khutsuri Georgian 'KGE ' kat
Khakass 'KHA ' kjh
Khanty-Kazim 'KHK ' kca
Khmer 'KHM ' khm
Khanty-Shurishkar 'KHS ' kca
Khamti Shan 'KHT ' kht
Khanty-Vakhi 'KHV ' kca
Khowar 'KHW ' khw
Kikuyu (Gikuyu) 'KIK ' kik
Kirghiz (Kyrgyz) 'KIR ' kir
Kisii 'KIS ' kqs, kss
Kirmanjki 'KIU ' kiu
Southern Kiwai 'KJD ' kjd
Eastern Pwo Karen 'KJP ' kjp
Bumthangkha 'KJZ ' kjz
Kokni 'KKN ' kex
Kalmyk 'KLM ' xal
Kamba 'KMB ' kam
Kumaoni 'KMN ' kfy
Komo 'KMO ' kmw
Komso 'KMS ' kxc
Khorasani Turkic 'KMZ ' kmz
Kanuri 'KNR ' kau
Kodagu 'KOD ' kfa
Korean Old Hangul 'KOH ' kor, okm
Konkani 'KOK ' kok
Komi 'KOM ' kom
Kikongo 'KON ' ktu
Kongo KON0 kon
Komi-Permyak 'KOP ' koi
Korean 'KOR ' kor
Kosraean 'KOS ' kos
Komi-Zyrian 'KOZ ' kpv
Kpelle 'KPL ' kpe
Krio 'KRI ' kri
Karakalpak 'KRK ' kaa

	 ﻿� © ISO/IEC 2023 – All rights reserved
�﻿

70

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System
Tag

Corresponding ISO 639 ID (if applicable)

Karelian 'KRL ' krl
Karaim 'KRM ' kdr
Karen 'KRN ' blk, bwe, eky, ghk, jkm, jkp, kar, kjp, kjt, ksw, kvl, kvq,

kvt, kvu, kvy, kxf, kxk, kyu, pdu, pwo, pww, wea
Koorete 'KRT ' kqy
Kashmiri 'KSH ' kas
Ripuarian KSH0 ksh
Khasi 'KSI ' kha
Kildin Sami 'KSM ' sjd
S’gaw Karen 'KSW ' ksw
Kuanyama 'KUA ' kua
Kui 'KUI ' kxu
Kulvi 'KUL ' kfx
Kumyk 'KUM ' kum
Kurdish 'KUR ' kur
Kurukh 'KUU ' kru
Kuy 'KUY ' kdt
Kwakʼwala 'KWK ' kwk
Koryak 'KYK ' kpy
Western Kayah 'KYU ' kyu
Ladin 'LAD ' lld
Lahuli 'LAH ' bfu
Lak 'LAK ' lbe
Lambani 'LAM ' lmn
Lao 'LAO ' lao
Latin 'LAT ' lat
Laz 'LAZ ' lzz
L-Cree 'LCR ' crm
Ladakhi 'LDK ' lbj
Lelemi 'LEF ' lef
Lezgi 'LEZ ' lez
Ligurian 'LIJ ' lij
Limburgish 'LIM ' lim
Lingala 'LIN ' lin
Lisu 'LIS ' lis
Lampung 'LJP ' ljp
Laki 'LKI ' lki
Low Mari 'LMA ' mhr
Limbu 'LMB ' lif
Lombard 'LMO ' lmo
Lomwe 'LMW ' ngl
Loma 'LOM ' lom
Lipo 'LPO ' lpo
Luri 'LRC ' lrc, luz, bqi, zum

© ISO/IEC 2023 – All rights reserved	 ﻿
﻿

71

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
2:2

01
9/A

MD2:2
02

3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

