INTERNATIONAL ISO/IEC
STANDARD 14496-22

Fourth edition
2019-01

AMENDMEN'T
2023;01

Information technology —'Coding of
audio-visual objects —

Part 22:
Open Font Format

AMENDMENT 2:»Extending colour font
functionality‘and other updates

Technologies dée\linformation — Codage des objets audiovisuels —
Partie 22: Format de police de caracteres ouvert

AMENDEMENT 2: Extension de la fonctionnalité des polices de
couleur'et autres mises a jour

Reference number
ISO/IEC 14496-22:2019/Amd. 2:2023(E)

© ISO/IEC 2023

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

COPYRIGHT PROTECTED DOCUMENT

(©1SO/IEC 2023

Al} lis}ltb I'TOCT Vcd. Ulllcbb Ut}lCl VVibC)pcl,ificd, Ul lCL{uil Cd ill t}lC LUlltCAt Uf itb illlp‘lb’lllclltdtiull, 11U pdlt Uf t}lib }Ju‘U‘lil,dtiUll llldy
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

ii © ISO/IEC 2023 - All rights reserved

https://www.iso.org
https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical

committaac actahlichad hy tha vracnnctivgn arganigatingy 0 Anal vath navtisnlay £i0lde Af thchnicn
y—ene—¥es SFEaHAatioh—to—aear—wWie—pat ot

corrIrIIrert co— e St oot oo < peeerve (=) P It T T Te T O Tt e CTITITIC

activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other internatiphal
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in,the
work.

The procedures used to develop this document and those intended for its further _maintenance
are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria
needed for the different types of document should be noted. This documentOwas drafted in
accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or
www.iec.ch/members_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development\of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see'www.iso.org/patents) or the IEG
list of patent declarations received (see https://patents.iec.ch).

Any trade name used in this document is information given (for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standatds, the meaning of ISO specific terms and
expressions related to conformity assessment, asy'well as information about ISO's adherence to
the World Trade Organization (WTO) principles”in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, seewww.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

Alist of all parts in the ISO/IEC 14496 series can be found on the ISO and IEC websites.

Any feedback or questions on“this document should be directed to the user’s national standards
body. A complete listing Cof these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-comniittees.

© ISO/IEC 2023 - All rights reserved iil

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Information technology — Coding of audio-visual
objects —

Part 22:
Open Font Format

AMENDMENT 2: Extending colour font functionality and other
updates

4.3

Add the following row to the table defining data types before the row'that specifies Offset32:

Offset24 24-bit offset to a table, same as uint24,NULL offset = 0x000000

5.7.1
Replace the entire content of the subclause with the\following:

The DSIG table contains the digital signaturefithe OFF font. Signature formats are widely documented
and rely on a key pair architecture. Software,developers, or publishers posting material on the Internet
create signatures using a private key. @pérating systems or applications authenticate the signaturg
using a public key.

The W3C and major software and operating system developers have specified security standards that
describe signature formats, spécify secure collections of web objects, and recommend authentication
architecture. OFF fonts withssignatures will support these standards.

OFF fonts offer many security features:

— Operating systems and browsing applications can identify the source and integrity of font fileg
before using them,

— Font detvelopers can specify embedding restrictions in OFF fonts, and these restrictions cannot be
alterédin a font signed by the developer.

The _‘enforcement of signatures is an administrative policy that may be supported by the host
environment in which fonts are used. Systems may restrict use of unsigned fonts, or may allow policy to
be‘Controlled by a system administrator.

Anyone can obtain identity certificates and encryption keys from a certifying agency, such as Verisign

or GTE's (‘yhnrh‘ncf} free orata very low caost

The DSIG table is organized as follows. The first portion of the table is the header.

DSIG Header
Type Name Description
uint32 version Version number of the DSIG table
(0x00000001)

© ISO/IEC 2023 - All rights reserved 1

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description

uint16 numSignatures Number of signatures in the table
uint16 flags Shall be set to 0x0001
SignatureRecord |[signatureRecords[numSignatures]| |Array of signature records

sk} - £ 4] A nYal Yol iy | = pa rad2 1 = H A0 T H £ 4] A nYal Yol iy |
THICT VET SIUIDN UNHHIT DUOIU TdUIT IS5 TAPITSSTU dS5 d UllIto 4, UTGIIIIIITS dU U. T1IT VCI SIUID UL LT UJSITU LdUIT

currently used is version 1 (0x00000001).

Permission bit 0 allows a party signing the font to prevent any other parties from also signing the font
(counter-signatures). If this bit is set to zero (0) the font may have a signature applied over the existing
digital signature(s). A party who wants to ensure that their signature is the last signature can set\this
bit.

The DSIG header has an array of signature records that specify the format and offset of signature blocks.

SignatureRecord

Type Name Description

uint32 format Format of the signature

uint32 length Length of signature in bytes

Offset32 signatureBlockOffset Offset to the signature block from the beginning of the table

Signatures are contained in one or more signature blocks. Signature blocks may have various formats;
currently one format is defined. The format identifier specifiesboth the format of the signature block,
s well as the hashing algorithm used to create and authenticate’the signature.

Signature Block Format 1

Type Name Description

uintl6 reservedl Reserwed for future use; set to zero.

uint16 reserved?2 Reserved for future use; set to zero.

uint32 signatureLength Length (in bytes) of the PKCS#7 packet in the signature field.
uint8 signature[signatureLength] PKCS#7 packet

For more information about PKCS#Z75ignatures see [10].

For more information about counter-signatures, see [11].

Format 1: For whole fonts) with either TrueType outlines and/or CFF data
PKCS#7 or PKCS#9, The'signed content digest is created as follows:

1) Ifthere is a-existing DSIG table in the font:

a) Remove the DSIG table from font.

b)«—Rémove the DSIG table entry from the Table Directory.

¢) Adjust table offsets as necessary.

d) Recalculate the checksumAdjustment in the ‘head’ table.
2) Hash the revised font data using a secure one-way hash (such as MD5) to create the content digest.
3) Create the PKCS#7 signature block using the content digest.
4) Create a new DSIG table containing the signature block.

5) Add the DSIG table to the font, adjusting table offsets as necessary.

2 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

6) Add a DSIG table entry to the Table Directory.
7) Recalculate the checksumAdjustment in the ‘head’ table.

Validation of a signature in a font is done by repeating steps 1 - 4 in an in-memory copy of the font
file. Note that changing the checksumAdjustment in the last step does not break the signature because
verification is done on an in-memory copy with these changes

Prior to signing a font file, ensure that all the following attributes are true:
— The magic number in the ‘head’ table is correct.

— Given the numTables value in the Table Directory, the other values in the Table Birectory areg
consistent.

— The table records in the Table Directory are ordered alphabetically by the table\tags, and there are
no duplicate tags.

— The offset of each table is a multiple of 4. (That is, tables are long wordalighed.)
— The first actual table in the file comes immediately after the directory of tables.

— Ifthe tables are sorted by offset, then for all tables i (where index 0 means the table with the smallest
offset), Offset[i] + Length[i] <= Offset[i+1] and Offset[i] + Length[i] >= Offset[i+1] - 3. In other words
the tables do not overlap, and there are at most 3 bytes of padding between tables.

— The pad bytes between tables are all zeros.

— The offset of the last table in the file plus its length is not greater than the size of the file.
— The checksums of all tables are correct.

— The ‘head’ table's checksumAdjustment field is correct.

Signatures for Font Collections

The DSIG table for a Font Collection\(‘TTC) shall be the last table in the TTC file. The offset to the table ig
put in the TTCHeader (version 2)-Signatures of TTC files are expected to be Format 1 signatures.

The signature of a TTC file @pplies to the entire file, not to the individual fonts contained within the
TTC. Signing the TTC filelemsures that other contents are not added to the TTC.

Individual fonts included in a font collection should not be individually signed as the process of making
the TTC could invalidate the signature on the font.

When DSIG tdble'is created for a collection file, the steps given above are used, with these revisions:

— In step1: if there is an existing DSIG table referenced in a version 2.0 TTC header, the DSIG table is
removed, and the DSIG fields in the header is set to NULL. No recalculation of a checksumAdjustment
isrequired.

= Insteps 6 and 7: the DSIG table is added to the file, not to any individual font within the collection. A
version 2.0 TTC header is required, with the DSIG fields in the header set to reference the DSIG table

— —Step 8 isTotapplicabte:

See the TTC Header description (subclause 4.6.3) for related information.

© ISO/IEC 2023 - All rights reserved 3

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5711
Replace the content of subclause 5.7.11 with the following:

The COLR table adds support for multi-colored glyphs in a manner that integrates with the rasterizers
of existing text engines and that is designed to be easy to support with current OpenType font files.

The COLR table defines color presentations for glyphs. The color presentation of a glyph is specified as a
oraphic composition using other glyphs, such as a layered arrangement of glyphs, each with a different
color. The term “color glyph” is used informally to refer to such a graphic composition defined in the
COLR table; and the term “base glyph” is used to refer to a glyph for which a color glyph is providéd.
Processing of the COLR table is done on glyph sequences after text layout processing is completed.and
prior to final presentation of glyphs. Typically, a base glyph is a glyph that may occur in a sequence‘that
results from the text layout process.

For example, the Unicode character U+1F600 is the grinning face emoji. Suppose in ancemoji font the
cmap’ table maps U+1F600 to glyph ID 718. Assuming no glyph substitutions, glyph(lD-718 would be
considered the base glyph. Suppose the COLR table has data describing a color presentation for this
using a layered arrangement of other glyphs with different colors assigned: that-description and its
presentation result would be considered the corresponding color glyph.

Two versions of the COLR table are defined.

Version 0 allows for a simple composition of colored elements: a linear sequence of glyphs that are
stacked vertically as layers in bottom-up z-order. Each layer combines a glyph outline from the ‘glyf’,
CFF or CFF2 table (referenced by glyph ID) with a solid color fills" These capabilities are sufficient to
define color glyphs such as those illustrated in Figure 5.6.

25 A

Figure 5.6 —Examples of the graphic capabilities of COLR version 0

Version 1 supports additional graphic capabilities. In addition to solid colors, gradient fills can be
used, as well as more’complex fills using other graphic operations, including affine transformations
and various bledding modes. Version 1 capabilities allow for color glyphs such as those illustrated in
Figure 5.7:

Figure 5.7 — Examples of the graphic capabilities of COLR version 1

4 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Version 1 also extends capabilities in variable fonts. A COLR version 0 table can be used in variable
fonts with glyph outlines being variable, but no other aspect of the color composition being variable. In
version 1, all of the new constructs for which it could be relevant have been designed to be variable; for
example, the placement of color stops in a gradient, or the alpha values applied to colors. The graphic
capabilities supported in version 0 and in version 1 are described in more detail below.

Thao COLDR +ohhla 3 bha CPAL +obla (0 719). 211 oalos ©
TIe—cono aoTC— O T

ac

R-table-is—used-incombination-with-the-CPAL+ £ Y—aH-eelorvaluesare-speeified=
entries in color palettes defined in the CPAL table. If the COLR table is present in a font but no C,{h
table exists, then the COLR table is ignored. (19

5.7.11.1 Graphic compositions Q‘L
The graphic compositions in a color glyph definition use a set of 2D graphic concepts an@structs:
— Shapes (or geometries) ,\%

Q
Vv
9/‘1/
)

— Composition and blending modes—different ways that the contenygf’ a layer is combined with the
content of layers above or below it N

— Fills (or shadings)

— Layering—a z-order—of elements

O
— Affine transformations \\Q/

For both version 0 and version 1, shapes are obtained fr@)g yph outlines in the ‘glyf’, ‘CFF’ or CFF2
table, referenced by glyph ID. Colors used in fills are obtéip d from the CPAL table.

The simplest color glyphs use just a few of the c <§pts above: shapes, solid color fills, and layering
This is the set of capabilities provided by VersiorQOQf the COLR table. In version 0, a base glyph record
specifies the color glyph for a given base glyph:as a sequence of layers. Each layer is specified in a layer
record and has a shape (a glyph ID) and a so olor fill (a CPAL palette entry). The filled shapes in the
layer stack are composed using only alp nding.

&

Figure 5.8 illustrates the version 0 c ilities: three shapes are in a layered stack: a blue square in the
bottom layer, an opaque green cir the next layer, and a red triangle with some transparency in the
top layer. \O
O
o

OQ.

% 1 laver O (bottom)
4 AY J

layer 1
layer 2 (top)

Figure 5.8 — Basic graphic capabilities of COLR version 0

The basic concepts also apply to color glyphs defined using the version 1 formats: shapes have fills and
can be arranged in layers. But the additional formats of version 1 support much richer capabilities. In

© ISO/IEC 2023 - All rights reserved 5

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

a version 1 color glyph, graphic constructs and capabilities are represented primarily in Paint tables,
which are linked together in a directed, acyclic graph. Several different Paint formats are defined, each
describing a particular type of graphic operation:

— A PaintColrLayers table provides a layering structure used for creating a color glyph from layered
elements. A PaintColrLayers table can be used at the root of the graph, providing a base layering

f13ma o+ i 1 L daf + AD +Calel cunrc +oh] o | honacta

abla oo Slco dunthin +tha
J\'l O LUAUIC CAITAIOU UL TICoLlUCUuU VviILIIIIr LIIe

graph, providing a set of layers to define some graphic sub-component within the color glyph.

— The PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient,
PaintVarRadialGradient, PaintSweepGradient, and PaintVarSweepGradient tables provide basic
fills, using color entries from the CPAL table.

— The PaintGlyph table provides glyph outlines as the basic shapes.

— The PaintTransform and PaintVarTransform tables are used to apply an affine tnansformation
matrix to a sub-graph of paint tables, and the graphic operations they represefit.- Several Paint
formats are also provided for specific transformation types: translate, scale, rotate, or skew, with
additional variants of these formats for variations and other options.

— The PaintComposite table supports alternate compositing and blending modes for two sub-graphs.

— The PaintColrGlyph table allows a color glyph definition, referencéd by a base glyph ID, to be re-
used as a sub-graph within multiple color glyphs.

NOTE Some paint formats come in Paint* and PaintVar* pairs. In\these cases, the latter format supports
variations in variable fonts, while the former provides a more compact representation for the same graphic
capability but without variation capability.

[n a simple color glyph description, a PaintGlyph table might be linked to a PaintSolid table, for example,
representing a glyph outline filled using a basic solid celor fill. But the PaintGlyph table could instead be
linked to a much more complex sub-graph of Paint tables, representing a shape that gets filled using the
more-complex set of operations described by the@ub-graph of Paint tables.

The graphic capabilities are described in more‘detail in 5.7.11.1.1 - 5.7.11.1.9. The formats used for each
are specified in 5.7.11.2.

5.7.11.1.1 Colors and solid color fills

All colors are specified as a base(zero index into CPAL (5.7.12) palette entries. A font can define alternate
palettes in its CPAL table; it is up to the application to determine which palette is used. A palette
entry index value of OXFEEE:is a special case indicating that the text foreground color (defined by the
application) should be used; and shall not be treated as an actual index into the CPAL ColorRecord array.

The CPAL color data includes alpha information, as well as RGB values. In the COLR version 0 formats, a
color reference is.mrdde in a LayerRecord as a palette entry index alone. In the formats added for COLR
version 1, colerréferences include a palette entry index and a separate alpha value within the COLR
structure for@a-solid color fill or gradient color stop (described below). Separation of alpha from palette
entries imversion 1 allows use of transparency in a color glyph definition independent of the choice of
palette~The alpha value in the COLR structure is multiplied into the alpha value given in the CPAL color
entry.

Twro color index record formats are defined: (‘n]nrlnr‘]nv’ and VarColorindex. The latter can be used in

variable fonts to make the alpha value variable.

In version 1, a solid color fill is specified using a PaintVarSolid or PaintSolid table, with or without
variation support, respectively. See 5.7.11.2.6.2 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.

6 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.1.2 Gradients
5.7.11.1.2.1 General

COLR version 1 supports three types of gradients: linear gradients, radial gradients, and sweep
gradients. For each type, non-variable and variable formats are defined. Each type of gradient is
specified using a color line

5.7.11.1.2.2 Color Lines

A color line is a function that maps real numbers to color values to define a one-dimensional gradation
of colors, to be used in the definition of linear, radial, or sweep gradients. A color line is defined as a sef]
of one or more color stops, each of which maps a particular real number to a specific coloft

On its own, a color line has no positioning, orientation or size within a design grid. The definition of a
linear, radial, or sweep gradient will reference a color line and map it onto the design grid by specifying
positions in the design grid that correspond to the real values 0 and 1 in the coler linie. The specification
for linear, radial and sweep gradients also include rules for where to draw intérpolated colors of the
color line, following from the placement of 0 and 1.

A color stop is defined by a real number, the stop offset, and a coleriA color line shall have at least
one color stop. (Stop offsets are represented using F2DOT14 values, therefore color stops can only be
specified within the range [-2, 2). See 5.7.11.2.5 for format details;)'If only one color stop is specified
that color is used for the entire color line; at least two color steps'are needed to create color gradation.

Color gradation is defined over the interval from the colorstop with the minimum offset, through the
successive color stops, to the color stop with the maximum offset. Between numerically-adjacent color
stops, color values are linearly interpolated. See Inferpolation of Colors in 5.7.12 for requirements on
how colors are interpolated.

Color values outside the defined interval are‘determined by the color line’s extend mode, described
below. In this way, colors are defined for allstop offset values, from negative infinity to positive infinity.

For example, a gradient color line couldbe defined with two color stops at 0.2 and 1.5. Colors for offsets
between 0.2 and 1.5 are interpolatedZColors for offsets above 1.5 and below 0.2 are determined by the
color line’s extend mode.

If there are multiple color steps defined for the same stop offset, the first one is used for computing
color values on the color line-below that stop offset, and the last one is used for computing color values
at or above that stop offset. All other color stops for that stop offset are ignored.

The color patternsoutside the defined interval are determined by the color line’s extend mode. Three
extend modes ar€ supported:

— Pad: outside the defined interval, the color of the closest color stop is used. Using a sequence of
letters.as an analogy, given a sequence “ABC”, it is extended to “...AA ABC CC...".

— _Repeat: The color line is repeated over repeated multiples of the defined interval. For example, if
color stops are specified for a defined interval of [0.2, 1.5], then the pattern is repeated above the
defined interval for intervals (1.5, 2.8], (2.8, 4.1], etc.; and also repeated below the defined interval
for intervals [-1.1, 0.2), [-2.4, -1.1), etc. In each repeated interval, the first color is that of the farthest
defined color stop. By analogy, given a sequence “ABC”, it is extended to “...ABC ABC ABC...".

— Reflect: The color line is repeated over repeated intervals, as for the repeat mode. However, in each
repeated interval, the ordering of color stops is the reverse of the adjacent interval. By analogy,
given a sequence “ABC”, it is extended to “...ABC CBA ABC CBA ABC...".

Figures 5.9-5.11 illustrate the different color line extend modes. The figures show the color line
extended over a limited interval, but the extension is unbounded in either direction.

© ISO/IEC 2023 - All rights reserved 7

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Key
1 pad with starting color ('1/(1/
2 defined interval 0_5%/
3 pad with ending color b‘b‘
'\
Figure 5.9 — Color gradation extended usmg
O\\O
Key ‘

1 repeated intervals O®

P defined interval O

3 repeated interva%o :
N\

<Q Figure 5.10 — Color gradation extended using repeat mode
S

?\
%

8 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

S

Key
1 reflected intervals (1/(]/
2 defined interval o
3 reflected intervals b?‘)
X

Figure 5.11 — Color gradation extended l.éé reflect mode
\

NOTE1 The extend modes are the same as the spread Metho@gibute used for linear and radial gradients in
the Scalable Vector Graphics (SVG) 1.1 (2nd Edition) specificagqn.

When combining a color line with the geometry particular gradient definition, one might want
to achieve a certain number of repetitions of th dient pattern over a particular geometric range
Assuming that geometric range will correspon placement of stop offsets 0 and 1, the following steps
can be used:

— In order to get a certain number of rﬁ&:titions of the gradient pattern (without reflection), divide 1
by the number of desired repetit'eﬁs, use the result as the maximum stop offset for specified color
stops, and set the extend mod%@epeat.

— In order to get a certain ﬁgber of repetitions of the reflected gradient pattern, divide 1 by two
times the number of % ed repetitions, use the result as the maximum stop offset for specified
color stops, and set the'extend mode to reflect.

NOTE 2 Special co@e}ations apply to color line extend modes for sweep gradients. See 5.7.11.1.2.5 for
details.

Color lines ane specified using color line tables, which contain arrays of color stop records. Two color
line table a@two color stop record formats are defined:

— ?ne table and ColorStop record
—Q%rColorLine table and VarColorStop record

he VarColorLine and VarColorStop formats can be used in variable fonts and allow for stop offsetg
and color alpha values to be variable. The ColorLine and ColorStop formats provide a more compact

representationwhen variationisnotrequired.See 5.711.2.5 for format details
5.7.11.1.2.3 Linear gradients

A linear gradient provides gradation of colors along a straight line. The gradient is defined by three
points, p,, p; and p,, plus a color line. The color line is positioned in the design grid with stop offset 0
aligned to p, and stop offset 1.0 aligned to p;. (The line passing through p, and p; will be referred to
as line pyp,.) Colors at each position on line pyp, are interpolated using the color line. For each position
along line p,p;, the color at that position is projected on either side of the line.

© ISO/IEC 2023 - All rights reserved 9

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

The additional point, p,, is used to rotate the gradient orientation in the space on either side of the line
pop;- The line passing through points p, and p, (line pyp,) determines the direction in which colors
are projected on either side of the color line. That is, for each position on line p,p;, the line that passes
through that position on line pyp; and that is parallel to line p,p, will have the color for that position on

line pyp;.

IOTLE 1 Lo Bizanrian p 1t pz anbo wofore o d o oo thn porarion pn.‘mi- and tho s o £ o p() £ pz an bao

o —erconventencepoitpreanbereferredtoasthe rotationpoirtand-thevector fFrompytopreanbe
referred to as the rotation vector. However, neither the magnitude of the vector nor the direction (from p to p,, "b
versus from p, to py) has significance. Qq/

-

[f either point p; or p, is the same as point p,, the gradient is ill-formed and shall not be rendered. (],

[f line p,p, is parallel to line pyp; (or near-parallel for an implementation-determined definiti@wn
the gradient is ill-formed and shall not be rendered. Cb\

NOTE 2 An implementation can derive a single vector, from p, to a point p;, by computin@ orthogonal
projection of the vector from p, to p; onto a line perpendicular to line p,p, and passing th;at6 po to obtain
point p;. The linear gradient defined using p,, p; and p, as described above is functionally alent to a linear
cradient defined by aligning stop offset 0 to p, and aligning stop offset 1.0 to p3, with @1 color projecting on
either side of that line in a perpendicular direction. This specification uses three po% Do, P; and p,, as that
provides greater flexibility in controlling the placement and rotation of the gradient@‘ ell as variations thereof.

Figures 5.12 to 5.14 illustrate linear gradients using the three differen @or line extend modes. Each
figure illustrates linear gradients with two different rotation vector% each case, three color stops
pare specified: red at 0.0, yellow at 0.5, and blue at 1.0. O

Figure 5.12 — Linear gradierg{gyvith different rotations using the pad extend mode

N~

Figure 5.14 — Linear gradients with different rotations using the reflect extend mode

10 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

NOTE3 When alinear gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the
same as if the gradient were defined using the transformed positions of points p,, p; and p,.

Linear gradients are specified using a PaintVarLinearGradient or PaintLinearGradient table, with or
without variation support, respectively. See 5.7.11.2.6.3 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.

5.7.11.1.2.4 Radial gradients

A radial gradient provides gradation of colors along a cylinder defined by two circles. The gradiént is
defined by circles with center ¢, and radius rj, and with center c; and radius ry, plus a color)line. The
color line aligns with the two circles by associating stop offset 0 with the first circle (with center c)
and aligning stop offset 1.0 with the second circle (with center c;).

NOTE1 The term “radial gradient” is used in some contexts for more limited capabilities. In some contexts
the type of gradient defined here is referred to as a “two point conical” gradient.

The drawing algorithm for radial gradients follows the HTML WHATWG- €anvas specification for
createRadialGradient() [32], but adapted with alternate color line exténd modes, as described in
5.7.11.1.2.2. Radial gradients shall be rendered with results that mateh the results produced by the
following steps.

With circle center points cy and c¢; defined as ¢ = (X, ¥o) and c =%, y1):
1) Ifcy=cyandry=r; then paint nothing and return.

2) For real values of w: Let x(w) = (x;-Xg)w + Xy Let y(ud)= (y1-yo)w +y, Let r(w) = (ry-ro)w + ry Let the
color at w be the color at position w on the colorline.

3) For all values of w where r(w) > 0, starting with the value of w nearest to positive infinity and
ending with the value of w nearest to fiegative infinity, draw the circular line with radius r(w)
centered at position (x(w), y(w)), with &he color at w, but only painting on the parts of the bitmap
that have not yet been painted on in‘this step of the algorithm for earlier values of w.

The algorithm provides results in various cases as follows:
— When the circles are identi¢al, then nothing is painted.
— When both radii are 9'(ry’= r; = 0), then r(w) is always 0 and nothing is painted.

— If the centers of the‘circles are distinct, the radii of the circles are different, and neither circle is
entirely contained within the radius of the other circle, then the resulting shape resembles a cone
that is open(o,one side. The surface outside the cone is not painted (see Figures 5.15 to 5.17).

— If the centers of the circles are distinct but the radii are the same, and neither circle is contained
withinh,the other, then the result will be a strip, similar to the flattened projection of a circulay
cylinder. The surface outside the strip is not painted (see Figures 5.18 to 5.20).

—\ If'the radii of the circles are different but one circle is entirely contained within the radius of th¢
other circle, the gradient will radiate in all directions from the inner circle, and the entire surface
will be painted (see Figures 5.24 to 5.26).

Fignrnc 515 to 517 illustrate radial grndipnfc ncing the three different color line extend modes. Thd

color line is defined with stops for the interval [0, 1]: red at 0.0, yellow at 0.5, and blue at 1.0. Note that
the circles that define the gradient are not stroked as part of the gradient itself. Stroked circles have
been overlaid in the figure to illustrate the color line and the region that is painted in relation to the two
circles.

© ISO/IEC 2023 - All rights reserved 11

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.16 — Radial gradient using repeat extend mode.

S
¥

S

Q?“ Figure 5.17 — Radial gradient using reflect extend mode.

Fg(s 5.18 to 5.20 illustrate the case in which the circles have distinct centers but the same radii, and
neither circle is contained within the other, giving the appearance of a strip. The color stops are as in
the previous figures.

12 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

S

?‘ the near side of circle 1.

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Q
Figure 5.18 — Radial gradient with same-size circles appearing as a strip, using padQ erﬁafﬁd

mode.
QN

Figure 5.19 — Radial gradient with same-size circles ap8§/ng as a strip, using repeat extend
mode. q
AN

4\

Figure 5.20 — Radial gradiel\g/vith same-size circles appearing as a strip, using reflect extend

. mode.

™
Because the rendering algorithm progresses w in a particular direction, from positive infinity tq
negative infinity, ecause pixels are not re-painted as w progresses, the appearance will be affected
by which circle i sidered circle 0 and which is circle 1. This is illustrated in Figures 5.21 - 5.23. The
gradient in Figure 5.21 is the same as that in Figure 5.15, using the pad extend mode. In this gradient
circle 0 is 5'9 mall circle, on the left. In Figure 5.22, the start and end circles are reversed: circle 0 is
the largefeircle, on the right. The color line is kept the same, and so the red end starts at circle 0, now on
i In Figure 5.23, the order of stops in the color line is also reversed to put red on the left. The
erence to notice between the gradients in these Figures is the way that colors are painted in the
ior: when the two circles are not overlapping, the arcs of constant color bend in the same direction

NOTE 2 This difference does not exist if one circle is entirely contained within the other: in that case, the arcg

Of COTISTATt COI0T are COMpPIEte CITTIES:

© ISO/IEC 2023 - All rights reserved 13

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

S
Figure 5.22 — Cone-shaped radial gra 'Knt with start and end circles swapped.
s@
¥
xO

C)O

2
Figureéﬁ— Cone-shaped radial gradient with start and end circles swapped and color line
é reversed.

When one circle is contained within the other, the extension of the gradient beyond the larger circle
will fill the entire surface. Colors in the areas inside the inner circle and outside the outer circle are
determined by the extend mode. Figures 5.24 - 5.26 illustrate this for the different extend modes.

14 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

N
Figure 5.24 — Radial gradient with one circle contained within the other, pad extend mode.

N

© ISO/IEC 2023 - All rights reserved 15

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.26 — Radial gradient with one circle contained within thQ/ er, reflect extend mode.
\

Q

NOTE3 When a radial gradient is combined with a transformatio @ee 5.7.11.1.5), the appearance will be
the same as if the geometry of the two circles were transformed anétep 3 of the algorithm were performed
by interpolating the shapes derived from the two transforme%ci@les. For the condition r(w) > 0, the pre-
transformation values of r(w) can be used. Q

NOTE 4 A scale transformation can flatten shapes to re %le lines. If a radial gradient is nested in the child
sub-graph of a transformation that flattens the circles og;t they are nearly lines, the centers could still be
separated by some distance. In that case, the radial gra@e t would appear as a strip or a cone filled with a linear
oradient. ;\‘Q

[f a radial gradient is nested in the sub-gr f a transformation that flattens the circles so that they
form a single line (or nearly a line, for an implementation-determined definition), with both centers on
that line, then the resulting gradient is\@generate and shall not be rendered.

NOTE5 Asseen in the figures abov c-fhe gradient fills the space when one circle is contained within the other,
but not when neither circle is contained within the other. In a variable font, if the placement or radii of the circles
vary, then a sharp transition can occur if the variation results in one circle being contained within the other for
some instances but not for o instances. This transition will occur when the inner circle just touches the outer
circle (i.e., they have exac@)e point in common). In this case, the gradient will fill exactly one half of the space.
This is illustrated in Fi@ e’5.27 using the pad extend mode.

16 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

)

&v Figure 5.28 — Radial gradient defined using nearly-identical circles, showing interference

N

Figure 5.27 — Radial gradient with inner circle just touchiréﬂe outer circle, pad extend mode
\

When the repeat or reflect extend modes are used, having Eggvo circles in very close proximity results

in very high spatial-frequency transitions that can lead«to Moiré patterns or other display artifacts

This is illustrated in Figure 5.28, which shows the di @y result, for one particular rendering context
&s and the reflect extend mode.

of a radial gradient defined using nearly-identical ci

patterns

The artifacts seen can be affected by a combination of several factors, such as image scaling, sub-pixel
rendering, display technology, and limitations in software implementation or display capabilities. For
this reason, the appearance can be very different in different situations. Font designers should exercise
caution if the circles are in close proximity (either in a static design or for some variable font instances),
and should not rely on these display artifacts to obtain a particular pattern.

© ISO/IEC 2023 - All rights reserved 17

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Radial gradients are specified using a PaintVarRadialGradient or PaintRadialGradient table, with or
without variation support, respectively. See 5.7.11.2.6.4 for format details.

See 5.7.11.1.3 for details on how fills are applied to a shape.
5.7.11.1.2.5 Sweep gradients

A sweep gradient provides a gradation of colors that sweep around a center point. For a given color on 0y
A color line, that color projects as a ray from the center point in a given direction. This is illustrated in q,
Figure 5.29. Q

-

NOTE1 The following figures illustrate sweep gradients clipped to a circular region. Sweep gradients a
bounded, however, and fill the entire space.

xO
. ure 5.29 — Sweep gradient
O\\é% g

NOTE 2 In some contexts, %type of gradient is referred to as a “conic” gradient, or as an “angular” gradient.

A sweep gradient is de by a center point, starting and ending angles, and a color line. The angles
are expressed in cou@r-clockwise degrees from the direction of the positive x-axis on the design grid.

%gned to a circular arc around the center point, with arbitrary radius, with stop
ith the starting angle, and stop offset 1 aligned with the ending angle. The color line
the start angle to the end angle in the counter-clockwise direction; for example, if the
angles are both 0°, then stop offset 0.1 is at 36° counter-clockwise from the direction of
the po@ e x-axis. For each position along the circular arc, from start to end in the counter-clockwise
dir; c?bn, aray from the center outward is painted with the color of the color line at the point where the
ray)passes through the arc.

The color line may be defined using color stops outside the range [0, 1], and color stops outside the
range [0, 1] can be used to interpolate color values within the range [0, 1], but only color values for the
range [0, 1] are painted. If the specified color stops cover the entire [0, 1] range (or beyond), then the
extend mode is not relevant and may be ignored. If the specified color stops do not cover the entire [0, 1]
range, the extend mode is used to determine color values for the remainder of that range. For example,
if a color line is specified with two color stops, red at stop offset 0.3 and yellow at stop offset 0.6, and
the pad extend mode is specified, then the extend mode is used to derive color values from 0.0 to 0.3
(red), and from 0.6 to 1.0 (yellow).

18 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Because a sweep gradient is defined using start and end angles, the gradient does not need to cover a
full 360° sweep around the center. This is illustrated in Figure 5.30:

Figure 5.30 — A sweep gradient with start angle of 30° ang‘ end angle of 150°
N

Start and end angle values can be outside the range [0, 360), a@e converted to values within that
range by applying a modulus operation. For example, an angle\=60° is treated the same as 300. As a
consequence, the [0, 1] range of the color line covers at mo e full rotation around the center, neveq

more. s\\

If the starting and ending angle are the same, a sh golor transition can occur if the colors at stop
offsets 0 and 1 are different. This is illustrated i&@ure 5.31, showing a gradient from red to yellow
that starts and stops at 0°. \\

Figure 5.31 — A sweep gradient with a sharp transition at the start/end angle 0°

To avoid such a sharp transition, the stop offsets 0 and 1 on the color line need to have the same color
value. Figure 5.32 illustrates a sweep gradient that transitions from red at stop offset 0, to yellow at
stop offset 0.5, and back to red at stop offset 1.0.

© ISO/IEC 2023 - All rights reserved 19

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.32 — A sweep gradient with a smooth transiti\é)t the start/end angle 0°

N

NOTE3 When a sweep gradient is combined with a transformation (see 5.7.11.1.5), the appearance will be the
same as if a circular arc of some non-zero radius were compu rom the start and end angles; the center point
and arc transformed; the color line aligned to the transfor arc; and then a gradient derived from the result,
with rays from the transformed center point passing thr%@the transformed color arc. When aligning the color
line to the transformed arc, stop offset 0 would be alig o the transformed point derived from the start angle,
with stop offset 1 aligned to the transformed point@/ed from the end angle. Thus, a transform can result in
the color line progressing in a clockwise rather t}@ unter-clockwise direction.

Sweep gradients are specified using a P ‘\%/arSweepGradient or PaintSweepGradient table, with or
without variation support, respectivel('éee 5.7.11.2.6.5 for format details.

See 5.7.11.1.3 for details on how f{k&e applied to a shape.

@)

.

5.7.11.1.3 Filling shapes -

All basic shapes used in a r glyph are obtained from glyph outlines, referenced using a glyph ID. In a
color glyph description@ aintGlyph table is used to represent a basic shape.

NOTE Shapes (2150 be derived using PaintGlyph tables in combination with other tables, such as
PaintTransforméﬁ;p .7.11.1.5) or PaintComposite (see 5.7.11.1.6).

The Paint table has a field for the glyph ID, plus an offset to a child paint table that is used as the
fill for t ape. The glyph outline is not rendered; only the fill is rendered.

An @e basic fill formats (PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient,
adialGradient, PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient) can be

.SE\’A actha child ottt +abh]a Thic icillnctratad 19 Tigyen B 29, o DatntClyph +oahla hac o glynh TN fo3 o

oottt O pot ta ot T I o o oo tratC O T T I T CO0700 T T alfiitury P taoiC oS o gty pPit T TOT ofr

outline in the shape of a triangle, and it links to a child PaintLinearGradient table. The combination is
used to represent a triangle filled with the linear gradient.

20 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

PaintGlyph PaintLinearGradient
glyphlID: 270

Color glyph data:

Color glyph presentation: r

Figure 5.33 — PaintGlyph and PaintLinearGradient tables used to filla’shape with a linear
gradient.

The child of a PaintGlyph table is not, however, limited to one of the basic fill formats. Rather, the child
can be the root of a sub-graph that describes some graphic coniposition that is used as a fill. Another
way to describe the relationship between a PaintGlyph table-and its child sub-graph is that the glyph
outline specified by the PaintGlyph table defines a bounds, or clip region, that is applied to the fill
composition defined by the child sub-graph.

To illustrate this, the example in Figure 5.33 is extended in Figure 5.34 so that a PaintGlyph table linkg
to a second PaintGlyph that links to a PaintLinedarGradient: the parent PaintGlyph will clip the filled
shape described by the child sub-graph.

PaintGlyph PaintGlyph PaintLinearGradient
glyphlID: 258 glyphlID: 270

Color glyph data:

v
v

Color glyph presentation:

Figure 5.34 — A PaintGlyph table defines a clip region for the composition defined by its child
sub-graph.

A PaintGlyph table on its own does not add content: if there is no child paint table, then the graph is not

well formed. See 5.7.11.1.9 for details regarding well-formedness and validity of the graph.
5.7.11.1.4 Layering

Layering of visual elements was introduced above, in the introduction to 5.7.11.1. Both version 0 and
version 1 support use of multiple layers, though in different ways.

For version 0, layers are fundamental: they are the sole way in which separate elements are composed
into a color glyph. An array of LayerRecords is created, with each LayerRecord specifying a glyph ID and

© ISO/IEC 2023 - All rights reserved 21

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

a CPAL entry (a shape and solid color fill). Each color glyph definition is a slice from that array (that is,
a contiguous sub-sequence), specified in a BaseGlyphRecord for a particular base glyph. Within a given
slice, the first record specifies the content of the bottom layer, and each subsequent record specifies
content that overlays the preceding content (increasing z-order). A single array is used for defining all
color glyphs. The LayerRecord slices for two base glyphs may overlap, though often will not overlap.

C 20 21l
DT ITOTIT

1
T

o
TS

A ratac lavzarc ot g rnncinns) o oo
A>3 J LY UoLlrdlco Au_y A2 wre J udllls VI OIUIT U ITUILIIIIALO,.

BaseGlyphRecords LayerRecords array Color glyphs

glyphID:713 < >

4
N\

ann i

- 3

glyphID:527 <

Y
oV
: N\
glyphID:486 < ' 9\\\} > ﬁ
2 glyg@, palettelndex
1 \@}HHD, palettelndex

_ OA‘\Q)glyphID, palettelndex D,

Figure 5.35 — Version 0:'Color glyphs are defined by slices of a layer records array.

When using version 1 formats, use of multiple layers is supported but is optional. For example, a simple

clyph description need not-use any layering, as illustrated in Figure 5.36:
g 1 A

PaintGlyph PaintLinearGradient ~

BaseGlyphPaintRecord glyphID: 270

glyphID: 1198
paintOffset

\ 4
\ 4

Z

Figure 5.36 — Complete color glyph definition without use of layers.

The version 1 formats define a color glyph as a directed, acyclic graph of paint tables, and the concept
of layering corresponds roughly to the number of distinct leaf nodes in the graph (see 5.7.11.1.9).
The basic fill formats (PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient,
PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient) do
not have child paint tables and so can only be leaf nodes in the graph. Some paint tables, such as the

22 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

PaintGlyph table, have only a single child, so can be used within a layer but do not provide any means of
adding additional layers. Increasing the number of layers requires paint tables that have two or more
children, creating a fork in the graph.

The version 1 formats include two paint formats that have two or more children, and so can increase
the number of layers in the graph:

— The PaintComposite table allows two sub-graphs to be composed together using different
compositing or blending modes.

— The PaintColrLayers table supports defining a sequence of several layers.

NOTE1 The PaintColrGlyph table provides a means of incorporating the graph of one color glyph as a
sub-graph in the definition of another color glyph. In this way, PaintColrGlyph provides an.indirect means of
introducing additional layers into a color glyph definition: forks in the resulting graph de.net come from the
PaintColrGlyph table itself, but can come from PaintColrLayers or PaintComposite tables\that are nested in the
incorporated sub-graph. See 5.7.11.1.7.4 for a description of the PaintColrGlyph table.

While the PaintComposite table only combines two sub-graphs, other PaintComposite tables can be
nested to provide additional layers. The primary purpose of PaintCompgsite is to support compositing
or blending modes other than simple alpha blending. The PaintCompogsitetable is covered in more detail
in 5.7.11.1.6. The remainder of this clause will focus on the PaintColrLayers table.

The PaintColrLayers table is used to define a bottom-up z-order'sequence of layers. Similar to version 0
it defines a layer set as a slice in an array, but in this case thelavray is an array of offsets to paint tables
contained in a LayerList table. Each referenced paint table\is-the root of a sub-graph of paint tables that
specifies a graphic composition to be used as a layer. Within a given slice, the first offset provides the
content for the bottom layer, and each subsequent offset provides content that overlays the preceding
content. Definition of a layer set—a slice within theé\ayer list—is given in a PaintColrLayers table.

Figure 5.37 illustrates the organizational relationship between PaintColrLayers tables, the LayerList
and referenced paint tables that are roots of.sub-graphs.

© ISO/IEC 2023 - All rights reserved 23

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

LayerList table
paintOffsets array Paint table
PaintColrL
AmTLOTLAYers a Offset: 0x16A0 S;‘;tt(’f
numLayers, p Offset: 0x148E L sub-graph [= = =
firstLayerdex S
Offset: 0x13EA ({/b
>
é Paint table @0
— . ?\

PaintColrLayers Root of '{b\

y

paint % L -
numlLayers, I Subf?fa?
firstLayerIndex a0,

o

- g

PaintColrLayers . Q/C) Paint table
. i<
numLayers, 2 | Offset: 0x04B2 & 0O Root of
firstL Ind) | paint I
irsthayerindex < 1 | Offset: 0x03D6 n " sub-graph -
|\
(| |0 [Offset: 0x03A0 <\€<
YO
\\\

Figure 5.37 — Version 1: PaintColrLayers table Qecify slices within the LayerList, providing a
layering of conte%éfined in sub-graphs.

N

NOTE 2 Paint table offsets in the LayerLis@%le are only used in conjunction with PaintColrLayers tables. If
A paint table does not need to be referencetbia a PaintColrLayers table, its offset does not need to be included in
the LayerList array.

o5
A PaintColrLayers table can lg\hcéed as the root of a color glyph definition, providing a base
layering structure for the colorglyph. In this usage, the PaintColrLayers table is referenced by a
BaseGlyphPaintRecord, which-specifies the root of the graph of a color glyph definition for a given base
clyph. This is illustratet igure 5.38.

O . LayerList table
\ paintOffsets array PaintGlyph PaintSolid
\
Q% N glyphID: 1653
BaseGl; @t;ecord PaintColrLayers
yp}\ 4 alpha: 0.2
SIRILY: 253 numLayers, Offset: 0x148E
|/BQintOffset » firstLayerIndex
9 Offset: 0x13EA >
Dninf{‘lvph PaintRadialGradient
glyphID: 1654 *
4
_/

Figure 5.38 — PaintColrLayers table used as the root of a color glyph definition.

24 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

A PaintColrLayers table can also be nested more deeply within the graph, providing a layer structure
to define some component within a larger color glyph definition (see 5.7.11.1.7.3 for more information).
The ability to nest a PaintColrLayers table within a graph creates the potential to introduce a cycle
within the graph, which would be invalid (see 5.7.11.1.9).

5.7.11.1.5 Transformations

A 2 x 3 transformation matrix can be used within a color glyph description to apply an affineg
transformation to a sub-graph. Affine transformations supported by a matrix can be a combinatien of
scale, skew, mirror, rotate, or translate. The transformation is applied to all nested paints in the child
sub-graph.

A transformation matrix is specified using a PaintVarTransform or PaintTransformstable, with o
without variation support, respectively. See 5.7.11.2.6.8 for format details.

The effect of a transformation is illustrated in Figure 5.39: a PaintTransform table-is used to specify 3
rotation, and both the glyph outline and gradient in the sub-graph are rotated,

PaintTransform PaintGlyph PdintLinearGradient
glyphID: 270
Transformation:
rotate 30°
Color glyph data: >
Color glyph presentation: ‘

Figure 5.39 — A rotation transformation rotates the fill content defined by the child sub-graph.

If the sub-graph of a transformation table contains another nested transformation table, then the second
transformation also appliesto its child sub-graph. For the sub-sub-graph, the two transformations
are combined. To illustrate this, the example in Figure 5.39 is extended in Figure 5.40 by inserting 4
mirroring transformation between the PaintGlyph and PaintLinearGradient tables: the glyph outline
is rotated as beforegbiit the gradient is mirrored in its (pre-rotation) y-axis as well as being rotated
Notice that both-visible elements—the shape and the gradient fill—are affected by the rotation, but
only the gradient-s affected by the mirroring.

PaintTransform PaintGlyph PaintTransform PaintLinearGradient
glyphlID: 270
Transformation: Transformation:
rotate 30° .| mirror in y-axis R

€olor glyph data:

i

Color glyph presentation:

Figure 5.40 — Combined effects of a transformation nested within the child sub-graph of
another transformation.

© ISO/IEC 2023 - All rights reserved 25

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

While the PaintTransform and PaintVarTransform tables support several types of transforms,
additional paint formats are defined to support specific transformations:

— PaintTranslate and PaintVarTranslate support translation only, without or with variation support,
respectively. See 5.7.11.2.6.9 for format details.

— PaintScale and PaintVarScale support scaling only, without or with variation support. These two
formats scale relative to the origin, and allow for different scale factors in X and Y directions.
PaintScaleAroundCenter, PaintVarScaleAroundCenter, PaintScaleUniform, PaintVarScaleUniform,
PaintScaleUniformAroundCenter, and PaintVarScaleUniformAroundCenter support scaling relative
to a different center, scaling uniformly in both X and Y directions, or both. See 5.7.11.2.6.10-fop
format details.

— PaintRotate and PaintVarRotate supportrotation only, without or with variation support.(Fhese two
formats rotate around the origin; the PaintRotateAroundCenter and PaintVarRotateAroundCenter
formats support rotation around a different center. See 5.7.11.2.6.11 for format details.

— PaintSkew and PaintVarSkew support skew only, without or with variation_support. These two
formats skew using the origin as a center for the skew rotation; the PaintSkewAroundCenter and
PaintVarSkewAroundCenter formats support skews using a different center. See 5.7.11.2.6.12 for
format details.

NOTE 1 Horizontal mirroring is done by scaling using a scale factor in the &direction of -1. Vertical mirroring
is done by scaling with a -1 scale factor in the y direction.

When only one of these specific types of transformation is required, these formats provide a more
compact representation than the PaintTransform or PaintVarTransform formats. Another significant
difference of the rotation and skew formats is that the rotations and skews are specified as angles, in
counter-clockwise degrees.

NOTE 2 Specifying the rotation or skew as an angle can have a significant benefit in variable fonts if an angle
of skew or rotation needs to vary, since it is easier tgrimplement variation of angles when specified directly
rather than as matrix elements. This is because the niatrix elements for a rotation or skew are the sine, cosine or
tangent of the rotation angle, which do not change.in linear proportion to the angle. To achieve a linear variation
pof rotation using matrix elements would requir€approximating the variation using multiple delta sets.

The rotations and skews specified uSing PaintRotate, PaintSkew and their variants can also be
represented as a matrix using a PaintTransform or PaintVarTransform table. The behavior for the
PaintRotate or PaintSkew formatsiand their variants shall be the same as if the rotation or skew were
represented using an equivalent-matrix. See 5.7.11.2.6.11 for details regarding the matrix equivalent
for a rotation expressed as airangle; and see 5.7.11.2.6.12 for similar details in relation to skews.

5.7.11.1.6 Compositing and blending

When a color glyphthas overlapping content in two layers, the pixels in the two layers must be combined
in some way. If the content in the top layer has full opacity, then normally the pixels from that layer are
shown, occluding overlapping pixels from lower layers. If the top layer has some transparency (some
portion has_alpha less than 1.0), then blending of colors for overlapping pixels occurs by default. The
default interaction between layers uses simple alpha compositing, as described in W3C Compositing
and Blending Level 1 specification [33].

APaintComposite table can be used to get other compositing or blending effects. The PaintComposite

ablc LUlllbillCD LUlltCllt dcﬁucd by tVVU bub sl CllJllD- d ouvurcc suv 51 Clyh, aud [=} dcatiuatiuu, Ul llubl’\dl UIJ,
sub-graph. First, the paint operations for the backdrop sub-graph are executed, then the drawing
operations for the source sub-graph are executed and combined with backdrop using a specified
compositing or blending mode. The available modes are given in the CompositeModes enumeration
(see 5.7.11.2.6.13). The effect and processing rule of each mode are specified in W3C Compositing and
Blending Level 1 specification [33].

The available modes fall into two general types: compositing modes, also referred to as “Porter-Duff”
modes; and blending modes. In rough terms, the Porter-Duff modes determine how much effect pixels

26 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

from the source and the backdrop each contribute in the result, while blending modes determine how
color values for pixels from the source and backdrop are combined. These are illustrated with examples
in Figures 5.41 and 5.42: in each case, red and blue rectangles are the source and backdrop content.

Figure 5.41 shows the effect of a Porter-Duff mode, XOR, which has the effect that only non-overlapping
pixels contribute to the result.

O

N

Figure 5.41 — Two content elements\ ined using the Porter-Duff XOR mode.
>

Figure 5.42 shows the effect of a lighten blénding mode, which has the effect that the R, G, and B color
components for each pixel in the result is‘the greater of the R, G, and B values from corresponding pixels
in the source and backdrop.

NS

Figure 5.42 — Two content elements combined using the lighten blending mode.

For complete details on each of the Porter-Duff and blending modes, see W3C Compositing and Blending
Level 1 specification [33].

© ISO/IEC 2023 - All rights reserved 27

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Figure 5.43 illustrates how the PaintComposite table is used in combination with content sub-graphs
to implement an alternate compositing effect. The source sub-graph defines a green capital A; the
backdrop sub-graph defines a black circle. The compositing mode used is Source Out, which has the
effect that the source content punches out a hole in the backdrop. (For this mode, the fill color of the
source is irrelevant; a black or yellow "A” would have the same effect.) A red rectangle is included as a
lower layer to show that the backdrop has been punched out by the source, making that portion of the

OWer fayer visibie.

PaintGlyph PaintSolid -~
LayerList table PaintComposite glyphID: 1182
paintOffsets array sourcePaintOffset > A >

» backdropPaintOffset

Mode: source out

PaintGlyph PaintSolid

Offset: 0x2116 glyphID: 573

Offset: 0x20CA > . >

PaintGlyph PaintSolid

glyphID: 573

_/

Figure 5.43 — A color glyph using a PaintCompositetable to punch out a shape from the fill of a
circle:

NOTE In Figure 5.43, the "A” is filled with greento illustrate that the color of the fill has no affect for the
Source Out composite mode. Because that is the case, the black or red PaintSolid could have been re-used instead
pbf adding a separate PaintSolid table. See 5.7.1411.7.2 for more information on re-use of paint tables for such
Situations.

Scalable Vector Graphics (SVG) suppaérts alpha channel masking using the <mask> element. The same
effects can be implemented in GOLR version 1 using a PaintComposite table by setting a pattern of
alpha values in the source sub-graph and selecting the Source In composite mode. This is illustrated in
Figure 5.44.

28 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

PaintLinearGradient

LayerList table PaintComposite

alpha 1
to

A 4

paintOffsets array sourcePaintOffset

alpha 0

A\ 4

backdropPaintOffset

Mode: source in

PaintGlyph PaintSolid

glyphID: 573

Offset: 0x23AA
Offset: 0x20CA

A\ 4

PaintGlyph PaintSolid

glyphID: 573

Figure 5.44 — An alpha mask implemented using a PaintCompesite table and the Source In
mode.
5.7.11.1.7 Re-usable components
5.711.1.7.1 Overview

Within a color font, many color glyphs might sharejeomponents in common. For example, in emoji fonts
many different “smilies” or clock faces share axcommon background. This can be seen in Figure 5.45
which shows color glyphs for three emoji clock faces.

Figure 5.45 — Emoji clock faces for 12 o’clock, 1 o’clock and 2 o’clock.

Several components are shared between these color glyphs: the entire face, with a gradient background
and dots at the 3, 6, 9 and 12 positions; the minute hand pointing to the 12 position; and the circles in
the center. Also, note that the four dots have the same shape and fill, and differ only in their position. In
addition, the hour hands have the same shape and fill, and differ only in their orientation.

There are several ways in which elements of a color glyph description can be re-used:
— Reference to shared subtables
— Use of a PaintColrLayers table

— Use of a PaintColrGlyph table

© ISO/IEC 2023 - All rights reserved 29

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

The PaintColrLayers and PaintColrGlyph table formats create a potential for introducing cycles within
the graph of a color glyph, which would be invalid (see 5.7.11.1.9).

5.7.11.1.7.2 Re-use by referencing shared subtables

Several of the paint table formats link to a child paint table using a forward offset within the file:

— PaintGlyph

— PaintComposite

— PaintTransform, PaintVarTransform

— PaintTranslate, PaintVarTranslate

— PaintScale, PaintVarScale, and the other variant scaling paint formats

— PaintRotate, PaintVarRotate, PaintRotateAroundCenter, PaintVarRotateAroundCenter
— PaintSkew, PaintVarSkew, PaintSkewAroundCenter, PaintVarSkewAroundCenter

A child subtable can be shared by several tables of these formats. For example, several PaintGlyph tables
might link to the same PaintSolid table, or to the same node for a sub-graph describing a more complex
fill. The only limitation is that child paint tables are referenced using a forward offset from the start of
the referencing table, so a re-used paint table can only occur later inthe'file than any of the paint tables
that use it.

The clock faces shown in Figure 5.45 provide an example of how PaintRotate tables can be combined
with re-use of a sub-graph. As noted above, the hour hands have the same shape and fill, but have a
different orientation. The glyph outline could point to the'12 position, then in color glyph descriptions
for other times, PaintRotate tables could link to the sarme glyph/fill sub-graph, re-using that component
but rotated as needed.

This is illustrated in Figures 5.46 and 5.47. Figure 5.46 shows a sub-graph defining the hour hand, with
upright orientation, using a PaintGlyph and.a‘PaintSolid table. Example file offsets for the tables are
indicated.

PaintGlyph @ 0x0f980a PaintSolid @ 0x0fa14
STyphID: 308

Color glyph data; ' >

Component presentation: '

Figure 5.46 — A PaintGlyph and PaintSolid table are used to define the clock hour hand

pointing to 12.

Figure 5.47 shows this sub-graph of paint tables being re-used, in some cases linked from PaintRotate
tables that rotate the hour hand to point to different clock positions as needed. All of the paint tables
that reference this sub-graph occur earlier in the file.

30 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Paint
@ 0x0f814
L]
! Root of color
glyph for
b e U+1F55B f-----
N~ '
Paint PaintRotate PaintGlyph PaintSolid
@ 0x0f846 @ 0x0f950 @ 0x0f980 @ 0x0fa14
£ Root of color > glyphID: 308
y glyph for Transformation:
* e U+1F550 [===== " rotate -30° > '
- /
' N
Paint PaintRotate
@ 0x0f872 @ 0x0f968
2 Root of color
L glyph for Transformation:
L4 L] U+1F551 p===== —

rotate -60°

N

Figure 5.47 — The sub-graph for the hour hand is re-used with PaintRotate tables to point to

differenthours.

5.7.11.1.7.3 Re-use using PaintColrLayers

As described above (see 5.7.11.1.4), a PaintColrLayers table defines a set of paint sub-graphs arranged
in bottom-up z-order layers, and an example was given of a PaintColrLayers table used as the root of
a color glyph definition. A PaintColxLayers table can also be nested more deeply within the graph of a
color glyph. One purpose for doingthis is to reference a re-usable component defined as a contiguous

set of layers in the LayerList table:

This is readily explained using the clock faces as an example. As described above, each clock face shareg
several elements in common. Some of these form a contiguous set of layers. Suppose four sub-graphs for
shared clock face elements are given in the LayerList as contiguous layers, as shown in Figure 5.48. (For

brevity, the visual(result for each sub-graph is shown, but not the paint details.)

© ISO/IEC 2023 - All rights reserved

31

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

LayerList table

\
paintOffsets array — - l
) - > L L]
Offset: 0x18E0 . "
Offset: 0x1926

Offset: 0x1954
Offset: 0x198A

Figure 5.48 — Common clock face elements given as a slice within the LayerList table.

A PaintColrLayers table can reference any contiguous slice of layers in the\lsayerList table. Thus, the set
of layers shown in Figure 5.48 can be referenced by PaintColrLayers tables anywhere in the graph of any
color glyph. In this way, this set of layers can be re-used in multiple-¢lock face color glyph definitions.

Thisisillustrated in Figure 5.49: The color glyph definition for the'one o’clock emoji has a PaintColrLayers
table as its root, referencing a slice of three layers in the LagerList table. The upper two layers are the
hour hand, which is specific to this color glyph; and the'cap over the pivot for the minute and hour
hands, which is common to other clock emoji but in a layer that is not contiguous with other common
layers. The bottom layer of these three layers is the,composition for all the remaining common layers.
[t is represented using a nested PaintColrLayers tahle that references the slice within the LayerList for
the common clock face elements shown in Figure\5.48.

LayerList table

painﬁff&cs array N
A

Offset: 0x18E0
Offset: 0x1926
Offset: 0x1954
= Offset: 0x198A .

: ya»

H -5 0
PaintColrLayers -> 4
Offset: 0x26CC T r

T

e

numlLayers: 3
Root of graph: firstLayerIndex: 87 Offset: 0x26B8 PaintColrLayers
Offset: 0x26A2 | numLayers: 4
A = P firstLayerIndex: 251

Figure 5.49 — A PaintColrLayers table is used to reference a set of layers that define a shared
clock face composition.

The color glyphs for other clock face emoji could be structured in exactly the same way, using a nested
PaintColrLayers table to re-use the layer composition of the common clock face elements.

32 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.1.7.4 Re-use using PaintColrGlyph

A third way to re-use components in color glyph definitions is to use a nested PaintColrGlyph table.
This format references a base glyph ID, which is used to access a corresponding BaseGlyphPaintRecord.
That record will provide the offset of a paint table that is the root of a graph for a color glyph definition.
That graph can potentially be used as an independent color glyph, but it can also deflne a shared

nnnnnn 1o +h o SeEs—Fe ad 1t alorglunbhe DToch 41000 +bh o oo d 11 taba v

ar XL
CUTTTPUSTOIOUIT ot gCTtS 1T HSeett Anlululyl\, €010t Sy PSSy LatIT tHRe-—te-Saafree \,UAAAPUQALAUAA 1S—t6—Be-fe

used, it is referenced by its base glyph ID using a PaintColrGlyph table. The graph of the referenced
color glyph is thereby incorporated into the graph of the PaintColrGlyph table as its child sub-graph.

When a PaintColrGlyph table is used, a BaseGlyphPaintRecord with the specified glyph ID is-expected
If no BaseGlyphPaintRecord with that glyph ID is found, the color glyph is not well formed, See’5.7.11.1.9
for details regarding well-formedness and validity of the graph.

The example from 5.7.11.1.7.3 is modified to illustrate use of a PaintColrGlyph table:In Figure 5.50, 3
PaintColrLayers table references a slice within the LayerList that defines the shared component. Now,
however, this PaintColrLayers table is treated as the root of a color glyph definition for base glyph ID
63163. The color glyph for the one o’clock emoiji is defined with three layers; as before, but now the
bottom layer uses a PaintColrGlyph table that references the color glyph,définition for glyph ID 63163.

LayerList table

paintOffsets array N
'Y

N7

e

BaseGlyphPaintRecord PaintColrLayers Offset: 0x18E0

glyphID: 63163 numlLayers: 4 Offset: 0x1926
aintOffset | firstLayerIndex: 251
P irsilayerindex Offset: 0x954

Offset: 0£198A

4

: -% 0
BaseGlyphPaintRecord PaintColrLayers -» 4
glyphlID: 3542 numlLayers: 3 Offset: 0x26CC Tl
paintOffset | firstLayerIndex: 87 Offset: 0x26B8 PaintColrGlyph

Offset: 0x26A2
4

glyphID: 63163

Figure 5.50 — A PaintColrGlyph table is used to reference the shared clock face composition via
a glyph ID.

While the PaintColrGlyph and PaintColrLayers tables are similar in being able to reference a layer
set as¢a re-usable component, they could be handled differently in implementations. In particular, an
implementation could process and cache the result of the color glyph description for a given base glyph
ID."In that case, subsequent references to that base glyph ID using a PaintColrGlyph table would not
require the corresponding graph of paint tables to be re-processed. As a result, using a PaintColrGlyph
for re-used graphic components could provide performance benefits.

5.7.11.1.8 Glyph metrics and boundedness
5.7.11.1.8.1 Metrics for color glyphs using version 0 formats

For color glyphs using version 0 formats, the advance width of glyphs used for each layer shall be the
same as the advance width of the base glyph. If the font has vertical metrics, the glyphs used for each
layer shall also have the same advance height and vertical Y origin as the base glyph.

5.7.11.1.8.2 Metrics and boundedness of color glyphs using version 1 formats

© ISO/IEC 2023 - All rights reserved 33

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

For color glyphs using version 1 formats, the advance width of the base glyph shall be used as the
advance width for the color glyph. If the font has vertical metrics, the advance height and vertical
Y origin of the base glyph shall be used for the color glyph. The advance width and height of glyphs
referenced by PaintGlyph tables are not required to be the same as that of the base glyph and are
ignored.

A lox ol afina o bhoadad wagion

+ H onaint izt

walid co &)’P]A dafiniticon chall 4 & thaot 1o 1+ o1l pf\ hin o wr\g"r\v\ for
L vVvdliiu CuUIvl I IT " UCITIITICIVIT OIIdIT ULTIlIllfv a vuvuuIliIiutu 1 v TUIT CIIdl 10, 1L OoIIdIl AU VVILIIIITI a 1'© TUIT 1TUI
which a finite bounding box could be defined. A clip box can be specified to set overall bounds for a color
clyph (see below). Otherwise, boundedness is determined by the graph of paint tables that describe the

color glyph content. The different paint formats have different boundedness characteristics:
— PaintGlyph is inherently bounded.

— PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient,
PaintVarRadialGradient, PaintSweepGradient, and PaintVarSweepGradient are- ‘inherently
unbounded.

— PaintColrLayers is bounded if and only if all referenced sub-graphs are bounded.

— PaintColrGlyph is bounded if and only if the color glyph definition for the réferenced base glyph ID
is bounded.

— Paint formats for transformations (PaintTransform, PaintVarTransfornm, PaintTranslate, PaintScale,
etc.) are bounded if and only if the referenced sub-graph is bounded:

— PaintComposite is either bounded or unbounded, accordingto’the composite mode used and the
boundedness of the referenced sub-graphs. See 5.7.11.2.6.13)for details.

A ClipBox table (5.7.11.2.4) may be associated with a colof glyph to define overall bounds for the color
clyph. The clip box may vary in a variable font. If a clip:-box is provided for a color glyph, the color glyph
is bounded, and no inspection of the Paint graph is required to determine boundedness. If no clip box is
defined for a color glyph, however, applications shall confirm that the color glyph definition is bounded,
and shall not render the color glyph if the definitig'graph is not bounded.

NOTE 1 If present, the clip box for a color glyph can be used to allocate a drawing surface without needing to
traverse the graph of the color glyph definition:

NOTE 2 Ifno ClipBox table is presentbut a bounding box is required by the implementation, it can be computed
for a given color glyph by traversing the-graph of Paint tables that defines that color glyph.

To ensure that rendering implementations do not clip any part of a color glyph, the clip box needs to
be large enough to encompass the entire color glyph composition. In a variable font, glyph outlines can
vary, but transformationsyin a color glyph description can also vary, affecting the portions of the design
orid to be painted. Eer, example, a filled rectangle that is wide but not tall for one variation instance
can be variably rotated to be tall but not wide for other instances. The clip box either should be large
enough to encompass the color glyph for all instances, or should itself vary such that each instance of
the clip box erfcompasses the instance color glyph.

5.7.11.1,9-\Color glyphs as a directed acyclic graph

Whermrusing version 1 formats, a color glyph is defined by a directed, acyclic graph of linked paint tables.
For each BaseGlyphPaintRecord, the paint table referenced by that record is the root of a graph defining

color glunh comnosition
o Jrr r

The graph for a given color glyph is made up of all paint tables reachable from the BaseGlyphPaintRecord.
The BaseGlyphPaintRecord and several paint table formats use direct links; that is, they include a
forward offset to a paint subtable. Two paint formats make indirect links:

— APaintColrLayers table references a slice of offsets within the LayerList. The paint tables referenced
by those offsets are considered to be linked within the graph as children of the PaintColrLayers
table.

34 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

— APaintColrGlyph table references a base glyph ID, for which a corresponding BaseGlyphPaintRecord
is expected. That record points to the root of a graph that is a complete color glyph definition on
its own. But when referenced in this way by a PaintColrGlyph table, that entire graph is considered
to be a child sub-graph of the PaintColrGlyph table, and a continuation of the graph of which the
PaintColrGlyph table is a part.

A

The simplest color glyph definition would consist of a PaintGlyph table linked to a basic fill tabls
(PaintSolid, PaintVarSolid, PaintLinearGradient, PaintVarLinearGradient, PaintRadialGradient
PaintVarRadialGradient, PaintSweepGradient, PaintVarSweepGradient). But the graph can be arbitrarily
complex, with an arbitrary depth of paint nodes (to the limits inherent in the formats).

The graph can define a visual element in a single layer, or many elements in many layefs~The concept
of layers, as distinct visual elements stacked in a z-order, is not precisely defined in ‘relation to the
complexity of the graph. Each separate visual element requires a leaf node, but(hodes in the graph
including leaf nodes, can be re-used (see 5.7.11.1.7). Also, each separate visual element requires a forK
in the graph, and a separate root-to-leaf path, but not all paths necessarily cesult in a distinct visual
element. For example, a gradient mask effect can be created with a gradient with gradation of alpha
values, and then using that as the source of a PaintComposite table with the Source In compositing
mode. In that case, the leaf has a visual affect but does not result in a distinct visual element. This was
illustrated in Figure 5.44, repeated here as Figure 5.51: the PaintLinearGradient is a leaf node in the
graph and creates a masking effect but does not add a distinct visual element.

PaintKinearGradient

LayerList table PaintComposite R
alpha 1
paintOffsets array sourcePaintOffset ¥ to
» backdropPaintOffset alpha 0
Mode: source in
PaintGlyph PaintSolid
Offset: 0x23AA glyphiD: 573]
Offset: 0x20CA > > >
RaintGlyph PaintSolid
glyphID: 573
-/

Eigure 5.51 — Graph with a leaf node that isn’t a distinct visual element.

Thus{the generalization that can be made regarding the relationship between the number of layers and
the wature of the graph is that the number of distinct root-to-leaf paths will be greater than or equal to
the/number of layers.

The following are necessary for the graph to be well-formed and valid:

— All subtable links shall satisfy the following criteria:
— Forward offsets are within the COLR table bounds.

— IfaPaintColrLayers table is present, then a LayerList is also present, and the referenced slice is
within the length of the LayerList.

© ISO/IEC 2023 - All rights reserved 35

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

— If a PaintColrGlyph table is present, there is a BaseGlyphPaintRecord for the referenced base
glyph ID.

— The graph shall be acyclic.

NOTE1 Theseconstraintsimplythatallleafnodeswill be one of PaintSolid, PaintVarSolid, PaintLinearGradient,
PaintVarLinearGradient, PaintRadialGradient, PaintVarRadialGradient, PaintSweepGradient, or

PaintVarSweepGradient.

For the graph to be acyclic, no paint table shall have any child or descendent paint table that is also
its parent or ancestor within the graph. In particular, because the PaintColrLayers and PaintColrGlyph
tables use indirect child references rather than forward offsets, they provide a possibilitys for
introducing cycles. Applications should track paint tables within a path in the graph, checking whether
any paint table was already encountered within that path. The following pseudo-code algorithn¥ can be
used:

// called initially with the root paint and an empty set pathPaints
function paintIsAcyclic (paint, pathPaints)

if paint is in pathPaints
return false // cycle detected

add paint to pathPaints

for each childPaint referenced by paint as a child subtable
call paintIsAcyclic(childPaint, pathPaints)

remove paint from pathPaints

For the graph to be valid, it shall also be visually bounded, as describedin 5.7.11.1.8.2.

NOTE 2 Implementations can combine testing for cycles and otherwell-formedness or validity requirements
together with other processing for rendering the color glyph.

[f the graph contains a cycle or is otherwise not well forfned or valid, the paint table at which the error
occurs should be ignored, that sub-graph should notbe rendered, and that node in the graph should
be considered to be visually bounded. The applicatien should attempt to render the remainder of the
oraph, if well-formed and valid.

Future minor version updates of the COLR table could introduce new paint formats. If a paint table
with an unrecognized format is encountered, it and its sub-graph should similarly be ignored, the
node should be considered to be visually bounded, and the application should attempt to render the
remainder of the graph.

[f an application is not able to recover from errors while traversing the graph, it may ignore the color
clyph entirely. If the base glyph.ID has an outline, that may be rendered as a non-color glyph instead.

5.7.11.2 COLR table forimats
5.7.11.2.1 Overview

Various table andvécord formats are defined for COLR version 0 and version 1. Several values contained
within the version 1 formats are variable.

For itemS that vary in a variable font, the variation data is contained in an ItemVariationStore table
(7.2.3)To associate each variable item with the corresponding variation data, a DeltaSetIndexMap
table (7.2.3.1) is used. Within a given table that has variable items, a base/sequence scheme is used to
index into the mapping data. See 5.7.11.4 for details.

Future minor version updates of the COLR table could introduce new formats that extend the capabilities
for color glyph descriptions using version 1 formats. Unrecognized formats should be ignored. See
5.7.11.1.9 for more information.

All table offsets are from the start of the parent table in which the offset is given, unless otherwise
indicated.

The COLR table begins with a header. Two versions have been defined. Offsets in the header are from
the start of the table.

36 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.2.2 COLR header
5.7.11.2.2.1 COLR version 0
COLR version 0:

Type Name Description

uint16 version Table version number—set to 0.
uint16 numBaseGlyphRecords Number of BaseGlyph records.
Offset32 |baseGlyphRecordsOffset Offset to baseGlyphRecords array.
Offset32 |layerRecordsOffset Offset to layerRecords array.
uint16 numLayerRecords Number of Layer records.

NOTE For fonts that use COLR version 0, some early implementations of the COLR table'vequire glyph ID 1 to
be the .null glyph.

5.7.11.2.2.2 COLRversion 1

COLR version 1:

Type Name Description

uint16 version Table version number—set.to 1.

uint16 numBaseGlyphRecords Number of BaseGlyplirecords; may be 0 in a version 1 table.
Offset32 |baseGlyphRecordsOffset Offset to baseGlyphRécords array (may be NULL).
Offset32 |layerRecordsOffset Offset to layerRecords array (may be NULL).

uint16 numLayerRecords Number of hayer records; may be 0 in a version 1 table.
Offset32 |baseGlyphListOffset Offset to-BaseGlyphList table.

Offset32 |layerListOffset Offset'to LayerList table (may be NULL).

Offset32 |clipListOffset Offset to ClipList table (may be NULL).

Offset32 |varlndexMapOffset Offset to DeltaSetIndexMap table (may be NULL).
Offset32 |itemVariationStoreOffset Offset to ItemVariationStore (may be NULL).

The BaseGlyphList and its subtables are only used in COLR version 1.

The LayerList is only used in conjunction with the BaseGlyphList and, specifically, with PaintColrLayers
tables (5.7.11.2.6.1); it is not required if no color glyphs use a PaintColrLayers table. If not used, set
layerListOffset to NUEL.

The ClipList is-only used in conjunction with the BaseGlyphList. If not used, set clipListOffset to NULL.

The ItemVaridationStore (7.2.3) is used in conjunction with a BaseGlyphList and its subtables, but only in
variable-fonts. If it is not used, set itemVariationStoreOffset to NULL.

The>DeltaSetIndexMap table is described in 7.2.3.1. Within the COLR table, either format 0 oy
format 1 of the DeltaSetIndexMap can be used. A DeltaSetIndexMap is used in conjunction with the
ItemVariationStore in a variable font. The DeltaSetIndexMap is optional: if an ItemVariationStore ig
present but a DeltaSetIndexMap is not included (varIndexMapOffset is NULL), then an implicit mapping
is used. See 5.7.11.4 for details.

5.7.11.2.2.3 Mixing version 0 and version 1 formats

A font that uses COLR version 1 and that includes a BaseGlyphList can also include BaseGlyph and Layer
records for compatibility with applications that only support COLR version 0.

Color glyphs that can be implemented in COLR version 0 using BaseGlyph and Layer records can also
be implemented using the version 1 BaseGlyphList and subtables. Thus, a font that uses the version
1 formats does not need to use the version 0 BaseGlyph and Layer records. However, a font may use

© ISO/IEC 2023 - All rights reserved 37

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

the version 1 structures for some base glyphs and the version 0 structures for other base glyphs. A
font may also include a version 1 color glyph definition for a given base glyph ID that is equivalent to a
version 0 definition, though this should never be needed.

A font may define a color glyph for a given base glyph ID using version 0 formats, and also define a
different color glyph for the same base glyph ID using Versmn 1 formats. Applications that support

nnnnnnnnnnnnnnnnnnnnnnn

OLDR 1 ala nh
TV eFSHO TSR0t er slvu l_ll erefreRte-tote-vVerSoh—T€610F 51] P

For applications that support COLR version 1, the application should search for a base glyph ID first in
the BaseGlyphList. Then, if not found, search in the baseGlyphRecords array, if present.

5.7.11.2.3 BaseGlyph and Layer records

BaseGlyph and Layer records are required for COLR version 0, but optional for versient1l (see
5.7.11.2.2.3).

A BaseGlyph record is used to map a base glyph to a sequence of layer recordsthat define the
corresponding color glyph. The BaseGlyph record includes a base glyph index, ‘an”index into the
[ayerRecords array, and the number of layers.

BaseGlyph record:

Type Name Description
uintl6 |glyphID Glyph ID of the base glyph.
uintl6 |firstLayerIndex |Index (base 0) into the layerRecords array.

uintl6 |numLayers Number of color layers asSociated with this glyph.

The glyph ID shall be less than the numGlyphs value in the\maxp’ table (5.2.6).

The BaseGlyph records shall be sorted in increasing.glyphlD order. It is assumed that a binary search
can be used to find a matching BaseGlyph record for a specific glyphlID.

The color glyph for a given base glyph is defined'by the consecutive records in the layerRecords array
for the specified number of layers, starting,with the record indicated by firstLayerIndex. The first
record in this sequence is the bottom layerin the z-order, and each subsequent layer is stacked on top of
the previous layer.

The layer record sequences for two.different base glyphs may overlap, with some layer records used in
multiple color glyph definitions.

The Layer record specifies-the glyph used as the graphic element for a layer and the solid color fill.

L.ayer record:
Type Name Description
uintleé | glyphlID Glyph ID of the glyph used for a given layer.
uintl6 |palettelndex |Index (base 0) for a palette entry in the CPAL table.

The glyphID in a Layer record shall be less than the numGlyphs value in the ‘maxp’ table. That is, it shall
be-awvalid glyph with outline data in the ‘glyf’ (5.3.4), ‘CFF’ (5.4.2) or CFF2 (5.4.3) table. See 5.7.11.1.8.2
for requirements regarding glyph metrics of referenced glyphs.

The palettelndex value shall be less than the numPaletteEntries value in the CPAL table (5.7.12). A
palettelndex value of OXFFFF is a special case, indicating that the text foreground color (as determined
by the application) is to be used.

38 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.2.4 BaseGlyphList, LayerList and ClipList

The BaseGlyphList table is, conceptually, similar to the baseGlyphRecords array in COLR version 0,
providing records that map a base glyph to a color glyph definition. The color glyph definitions that
each refer to are significantly different, however—see 5.7.11.1.

BaseGlyphlist table:

Type Name Description
uint32 numBaseGlyphPaintRecords

BaseGlyphPaintRecord |baseGlyphPaintRecords[numBaseGlyphPaintRecords]

BaseGlyphPaintRecord:

Type Name Description
uint1l6 glyphID Glyph ID of the base glyph.
Offset32 |paintOffset |Offsetto a Paint table.

The glyphID value shall be less than the numGlyphs value in the ‘maxpftable (5.2.6).

The records in the baseGlyphPaintRecords array shall be sortedjin increasing glyphlID order. It is
intended that a binary search can be used to find a matching{BaseGlyphPaintRecord for a specific
glyphlD.

The paint table referenced by the BaseGlyphPaintRecdrd*is the root of the graph for a color glyph
definition.

NOTE1 Oftenthe painttable thatis the root of the gtaph for the color glyph definition will be a PaintColrLayers
table, though this is not required. See 5.7.11.1.9 forrmore information regarding the graph of a color glyph, and
5.7.11.1.4 for background information regarding the’PaintColrLayers table.

A LayerList table is used in conjunction<with PaintColrLayers tables to represent layer structures. A
single LayerList is defined and can be used by multiple PaintColrLayers tables, each of which references
a slice of the layer list.

LayerList table:

Type Name Description

uint32 numLayers
Offset32 |paintOffsets[numLayers] Offsets to Paint tables.

The sequence-ef offsets to paint tables corresponds to a bottom-up z-order layering of the graphig
compositionsydefined by the sub-graph of each referenced paint table graph. For a given slice of the list
the sub-graph of the first paint table defines the element at the bottom of the z-order, and the sub-graph
of eachihsubsequent paint table defines an element that is layered on top of the previous element. Ag
each.glement is a composition defined in a sub-graph, one of these elements may itself be multi-layered
[that case, the layers of this element are stacked above all previous layers, and layers of following
elements are stacked above the top layer of this element.

Offsets for paint tables not referenced by any PaintColrLayers table should not be included in th¢

paintOffsetsarray:

A ClipList table is used to provide precomputed clip boxes for color glyphs. It contains an array of Clip
records, each of which associates a range of base glyph IDs with a ClipBox table. The ClipBox table
provides a precomputed clip box for the associated color glyphs. Clip boxes are optional: a font may
provide clip boxes for some color glyphs but not others.

ClipList table:

© ISO/IEC 2023 - All rights reserved 39

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description

uint8 format Setto 1.

uint32 numClips Number of Clip records.

Clip clips[numClips] Clip records. Sorted by startGlyphlID.

I =
ll[J rceuru.

Type Name Description

uint16 startGlyphID First glyph ID in the range.
uint16 endGlyphID Last glyph ID in the range.
Offset32 clipBoxOffset Offset to a ClipBox table.

Within a ClipList table, the glyph ID ranges of Clip records shall not overlap.

Two Clipbox table formats are defined: format 1 for clip boxes without variation, and-format 2 allowing
for clip boxes that can vary in a variable font.

ClipBoxFormatl table, static clip box:

Type Name Description

uint8 format Setto 1.

FWORD xMin Minimum x of clip bex.
FWORD yMin Minimum y of clip‘box.
FWORD xMax Maximum x of elip box.
FWORD yMax Maximumnyyof clip box.

ClipBoxFormat2 table, variable clip box:

Type Name Description

uint8 format Set to-2:

FWORD |xMin Minimum x of clip box. For variation, use varindex-
Base + 0.

FWORD |yMin Minimum y of clip box. For variation, use varIndex-
Base + 1.

FWORD |xMax Maximum x of clip box. For variation, use varindex-
Base + 2.

FWORD | yMax Maximum y of clip box. For variation, use varIndex-
Base + 3.

uint32” |varindexBase |Base index into DeltaSetIndexMap.

Any content dfawn outside the clip box shall not render.

The clip,box is not required to be a tight bounding box around the content. As it may be used by
implementations to allocate resources, however, it should not be unnecessarily large.

NOTE 2 At runtime, when computing a variable ClipBox, compute the min/max coordinates using floating
oint values and then round to integer values such that the clip box expands. That is, round xMin and yMin

towards negative infinity and round xMax and yMax towards positive infinity.

For variable data, a base/sequence scheme is used to index into variation mapping data. See 5.7.11.4 for
details.

5.7.11.2.5 Color references, ColorStop and ColorLine

Colors are used in solid color fills for graphic elements, or as stops in a color line used to define a gradient.
Colors are defined by reference to palette entries in the CPAL table (5.7.12). While CPAL entries include

40 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

an alpha component, formats for COLR version 1 that reference palette entries also includes a separate
alpha specification to allow different graphic elements to use the same color but with different alpha
values, and to allow for variation of the alpha in variable fonts.

A palettelndex value of OXFFFF is a special case, indicating that the text foreground color (as determined
by the application) is to be used.

The alpha value is always set explicitly. Values for alpha outside the range [0., 1.] (inclusive) are reserved
values outside this range shall be clipped. A value of zero means no opacity (fully transparent}; .0
means fully opaque (no transparency). The alpha indicated in this record is multiplied with thee|alpha
component of the CPAL entry (converted to float—divide by 255). Note that the resulting alpha valug
can be combined with and does not supersede alpha or opacity attributes set in higher-level,‘application-
defined contexts.

See 5.7.11.1.1 for more information regarding color references and solid color fills~Selid color fills are
defined using a PaintSolid or PaintVarSolid table, described below—see 5.7.11.2.6.2:

Gradients are defined using a color line. A color line is a mapping of real numbets to color values, defined
using color stops. See 5.7.11.1.2.2 for an overview and additional details.

Two color-stop record formats are defined: one that allows for variation of stop offset position or of
alpha, and one that does not. The format supporting variations uses a base/sequence scheme to index
into mapping data; see 5.7.11.4 for details.

ColorStop record:

Type Name Description

F2D0T14 stopOffset Position on a color line.

uint16 palettelndex Index for a CPAL palette entry.
F2D0T14 alpha Alpha value.

VarColorStop record:

Type Name Description

F2D0T14 stopOffset Position on a color line. For
variation, use varlndex-
Base + 0.

uint16 palettelndex Index for a CPAL palette
entry.

F2D0T14 alpha Alpha value. For variation,
use varindexBase + 1.

uint32 varIndexBase Base index into DeltaSetIn-
dexMap.

A colepline is defined by an array of color stop records plus an extend mode. Two color-line table formatg
are'defined: one that allows for variation of color stop offsets positions or of alpha values, and one that
does not. Different paint table formats for gradients use one or the other of the color line formats.

ColorLine table:

Type Name Description
uint8 extend An Extend enum value.
uint16 numsStops Number of ColorStop records.
ColorStop colorStops[numStops]

VarColorLine table:

© ISO/IEC 2023 - All rights reserved 41

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description

uint8 extend An Extend enum value.
uint16 numsStops Number of ColorStop records.
VarColorStop colorStops[numStops] Allows for variations.

Ayy}i\,atiuuo oha}} Cllel_y thC \,U}Ul StUl)D Clltl ;CD ill ;ll\,l Cao;us DtUlJCffDCt Ul dCl- ‘anrithill a vdl iqb}C fUllt,
the stopOffset values can vary, and the relative orderings of color stop records along the color line can
change as a result of variation. With a variable font, the colorStops entries shall be ordered after the
instance values for the stop offsets have been derived.

A color line defines stops for only certain positions along the line, but the color line extends infinitely’in
either direction. The extend field is used to indicate how the color line is extended. The same behavior
is used for extension in both directions. The extend field uses the following enumeration:

Extend enumeration:

Value |Name Description

0 EXTEND_PAD Use nearest color stop.

1 EXTEND_REPEAT Repeat from farthest color stop.

2 EXTEND_REFLECT Mirror color line from nearest end.

The extend mode behaviors are described in detail in 5.7.11.1.2.2)lf a ColorLine in a font has an
unrecognized extend value, applications should use EXTEND_PAD'%%y default.

5.7.11.2.6 Paint tables

Paint tables are used for COLR version 1 color glyph definitions. Thirty-two paint table formats are
defined (formats 1 to 32). Some formats come in non-variable and variable pairs, but otherwise,
each provides different graphic capability for defining the composition for a color glyph. The graphic
capability of each format and the manner in which they are combined to represent a color glyph has
been described above—see 5.7.11.1.

Each paint table format has a one-byte format field as the first field. When parsing font data, the format
field can be read first to determine the format of the table.

5.7.11.2.6.1 Format 1: PaintColrlayers

Format 1 is used to define a vector of layers. The layers are a slice of layers from the LayerList table.
The first layer is the bottom“of the z-order, and subsequent layers are composited on top using the
COMPOSITE_SRC_OVER domposition mode (see 5.7.11.2.6.13).

For general information on the PaintColrLayers table, see 5.7.11.1.4. For information about its use for
shared, re-usable components, see 5.7.11.1.7.3.

PaintColrLayers table (format 1):

Type Name Description

uint8 |format Setto 1.

uint8 |numLayers Number of offsets to paint tables to read from LayerList.
umt3Z |lirstLayerlndex |Index (base U) into the LayerList.

NOTE An 8-bit value is used for numLayers to minimize size for common scenarios. If more than 256 layers
are needed, then two or more PaintColrLayers tables can be combined in a tree using a PaintComposite table or
another PaintColrLayers table to combine them.

42 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

5.7.11.2.6.2 Formats 2 and 3: PaintSolid, PaintVarSolid

Formats 2 and 3 are used to specify a solid color fill. Format 3 allows for variation of alpha in a variable
font; format 2 provides a more compact representation when variation is not required. Format 3 shall
not be used in non-variable fonts or if the COLR table does not have an ItemVariationStore subtable.

For general information about specifying color values, see 5.711.1.1. For information about applying

fill to a shape, see 5.7.11.1.3.
PaintSolid table (format 2):

Type Name Description
uint8 format Setto 2.
uint16 palettelndex Index for a CPAL palette entry.
F2D0T14 alpha Alpha value.
PaintVarSolid table (format 3):
Type Name Description
uint8 format Setto 3.
uint16 palettelndex Index for a CPAL palette entry.
F2DO0T14 alpha Alpha value.'For variation, use varln-
dexBaSe+ 0.
uint32 varIndexBase Bage index into DeltaSetIndexMap.

5.7.11.2.6.3 Formats 4 and 5: PaintLinearGradient, PaintVarLinearGradient

Formats 4 and 5 are used to specify a linear gradient fill. Format 4 allows for variation of color stop
positions or of alpha in a variable font; formatS-provides a more compact representation when variation
is not required. Format 5 shall not be useddn non-variable fonts or if the COLR table does not have an|
[temVariationStore subtable.

For general information about lineargradients, see 5.7.11.1.2.3. For information about applying a fill tg
a shape, see 5.7.11.1.3.

The PaintLinearGradient .and™ PaintVarLinearGradient tables have a ColorLine and VarColorLine
subtable, respectively. Far the ColorLine and VarColorLine table formats, see 5.7.11.2.5. For background
information on the color line, see 5.7.11.1.2.2.

PaintLinearGradient table (format 4):

Type Name Description

uint8 format Set to 4.

Offset24 colorLineOffset Offset to ColorLine table.
FWORD x0 Start point (p,) x coordinate.
FWORD y0 Start point (p,) y coordinate.
FWORD x1 End point (p;) x coordinate.
FWORD yl End point (p;) y coordinate.
FWORD X2 Rotation point (p,) x coordinate.
FWORD y2 Rotation point (p,) y coordinate.

PaintVarLinearGradient table (format 5):

Type Name Description

Setto 5.

uint8 format

© ISO/IEC 2023 - All rights reserved 43

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
Offset24 |colorLineOffset |Offsetto VarColorLine table.
FWORD |x0 Start point (p,) x coordinate. For variation, use

varlndexBase + 0.

FWORD |y0 Start point (p,) y coordinate. For variation, use

SO | n 4
VdlTITUTADdST T 1.

FWORD |x1 End point (p;) x coordinate. For variation, use
varindexBase + 2.

FWORD |y1 End point (p;) y coordinate. For variation, use
varindexBase + 3.

FWORD |x2 Rotation point (p,) x coordinate. For variation,
use varindexBase + 4.

FWORD |y2 Rotation point (p,) y coordinate. For variation,
use varindexBase + 5.

uint32 varlndexBase |Base index into DeltaSetIndexMap.

The PaintVarLinearGradient format uses a base/sequence scheme to index into mapping data; see
5.7.11.4 for details.

5.7.11.2.6.4 Formats 6 and 7: PaintRadialGradient, PaintVarRadialGradient

Formats 6 and 7 are used to specify a radial gradient fill. Format_ 7 allows for variation of color stop
positions or of alpha in a variable font; format 6 provides a more compact representation when variation
is not required. Format 7 shall not be used in non-variable fonts.or if the COLR table does not have an
[temVariationStore subtable.

For general information about radial gradients supported in COLR version 1, see 5.7.11.1.2.4. For
information about applying a fill to a shape, see 5.7.11:1\3.

The PaintRadialGradient and PaintVarRadialGradient tables have a ColorLine and VarColorLine
subtable, respectively. For the ColorLine and-VarColorLine table formats, see in 5.7.11.2.5. For
background information on the color line, seg5.7.11.1.2.2.

PaintRadialGradient table (format 6):

Type Name Description

uint8 format Setto 6.

Offset24 colorLineOffset Offset to ColorLine table.
FWORD x0 Start circle center x coordinate.
FWORD y0 Start circle center y coordinate.
UFWORD radius0 Start circle radius.

FWORD x1 End circle center x coordinate.
FWORD yl End circle center y coordinate.
UFWORD radiusl End circle radius.

PaintVarRadialGradient table (format 7):

Type Name Description

uint8 format Setto 7.

Offset24 |colorLineOffset |Offsetto VarColorLine table.

FWORD [x0 Start circle center x coordinate. For vari-

ation, use varIndexBase + 0.

FWORD |y0 Start circle center y coordinate. For vari-
ation, use varIndexBase + 1.

44 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name
UFWORD (radiusO

Description

Start circle radius. For variation, use
varlndexBase + 2.

FWORD x1 End circle center x coordinate. For varia-
tion, use varIlndexBase + 3.

LIAILOD D 4 I 1 - 1 o 12 e I -

' VVUI\D _yL LITU CITUIT CTLILTT _y COUIUIIIALC,. T'UI vdlid~=

tion, use varIlndexBase + 4.

UFWORD |radiusl End circle radius. For variation, use var-

IndexBase + 5.

uint32 varlndexBase |Base index into DeltaSetIndexMap.

The PaintVarRadialGradient format uses a base/sequence scheme to index into mapping data; se¢
5.7.11.4 for details.

5.7.11.2.6.5 Formats 8 and 9: PaintSweepGradient, PaintVarSweepGradient

Formats 8 and 9 are used to specify a sweep gradient fill. Format 9 allows-for variation of color stop
positions or of alpha in a variable font; format 8 provides a more compactirepresentation when variation
is not required. Format 9 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

For general information about sweep gradients, see 5.7.11.1.2.5.'For information about applying a fill tg
a shape, see 5.7.11.1.3.

The PaintSweepGradient and PaintVarSweepGradientitable have a ColorLine and VarColorLing
subtable, respectively. For the ColorLine and VarColorLire table formats, see 5.7.11.2.5. For background
information on the color line, see 5.7.11.1.2.2.

PaintSweepGradient table (format 8):

Type Name Description

uint8 format Setto 8.

Offset24 colorLineQffset Offset to ColorLine table.

FWORD centerX Center x coordinate.

FWORD centerY Center y coordinate.

F2DOT14 startAngle Start of the angular range of the gradient, 180° in
counter-clockwise degrees per 1.0 of value.

F2DOT414 endAngle End of the angular range of the gradient, 180° in
counter-clockwise degrees per 1.0 of value.

PaintVarSweep@radient table (format 9):

Type Name Description

uint8 format Setto 9.

Offset24 colorLineOffset |Offset to VarColorLine table.

FWORD centerX Center x coordinate. For variation, use varln-
dexBase + 0.

FWORD CETItETY €enter y coordinate. For variatiorn, use varinr-
dexBase + 1.

F2D0T14 startAngle Start of the angular range of the gradient,
180° in counter-clockwise degrees per 1.0 of
value. For variation, use varIndexBase + 2.

F2D0T14 endAngle End of the angular range of the gradient,
180° in counter-clockwise degrees per 1.0 of
value. For variation, use varIndexBase + 3.

© ISO/IEC 2023 - All rights reserved

45

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description

uint32 varIlndexBase Base index into DeltaSetIndexMap.

The PaintVarSweepGradient format uses a base/sequence scheme to index into mapping data; see
5.7.11.4 for detalils.

Angles are expressed In counter-clockwise degrees from the direction of the positive x-axis In the
design grid.

5.7.11.2.6.6 Format 10: PaintGlyph

Format 10 is used to specify a glyph outline to use as a shape to be filled or, equivalently, a clip region.
The outline sets a clip region that constrains the content of a separate paint subtable and the sub=graph
linked from that subtable.

For information about applying a fill to a shape, see 5.7.11.1.3.

PaintGlyph table (format 10):

Type Name Description

uint8 format Set to 10.

Offset24 |paintOffset |Offsetto a Paint table.

uint16 glyphID Glyph ID for the source outline.

The glyphID value shall be less than the numGlyphs value in the¥maxp’ table (5.2.6). That is, it shall
be a valid glyph with outline data in the ‘glyf’ (5.3.4), ‘CEF’ '(5.4.2) or CFF2 (5.4.3) table. Only that
outline data is used. In particular, if this glyph ID has a description in the COLR table (glyphID appears
in a COLR BaseGlyph record or the BaseGlyphList), that.COLR data is not relevant for purposes of the
PaintGlyph table.

5.7.11.2.6.7 Format 11: PaintColrGlyph

Format 11 is used to allow a color glyph definition from the BaseGlyphList to be a re-usable component
that can be incorporated into multiple colorglyph definitions. See 5.7.11.1.7.4 for more information.

PaintColrGlyph table (format 11):

Type Name Description
uint8 format Setto 11.
uint16 glyphID Glyph ID for a BaseGlyphList base glyph.

The glyphlID value shall-be a glyphID found in a BaseGlyphPaintRecord within the BaseGlyphList. The
BaseGlyphPaintReeord provides an offset to a paint table; that paint table and the graph linked from
it are incorpordted as a child sub-graph of the PaintColrGlyph table within the current color glyph
definition.

5.7.11.2¢6:8 Formats 12 and 13: PaintTransform, PaintVarTransform

Formats 12 and 13 are used to apply an affine transformation to a sub-graph. The paint table that is the
rgot of the sub-graph is linked as a child.

Format 13 allows for variation of the transformation in a variable font; format 12 provides a more
compact representation when variation is not required. Format 13 shall not be used in non-variable
fonts or if the COLR table does not have an IltemVariationStore subtable.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintTransform table (format 12):

46 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description

uint8 format Setto 12.

Offset24 paintOffset Offset to a Paint subtable.
Offset24 transformOffset |Offsetto an Affine2x3 table.

Dot T o T £ ol o (£ £12)
rurricvurir MIIDJUI nmrtuuic LIUI e LJJ.

Type Name Description

uint8 format Setto 13.

Offset24 |paintOffset Offset to a Paint subtable.
Offset24 |transformOffset |Offsetto a VarAffine2x3 table.

The affine transformation is defined by a 2x3 matrix, specified in an Affine2x3"or VarAffine2x3
record. The 2x3 matrix supports scale, skew, reflection, rotation, and translatien transformations
The VarAffine2x3 table supports mapping into variation data, allowing the trafsform definition to be
variable in a variable font.

Affine2x3 table:
Type Name Description
Fixed XX x-component of transformed x-basis vector.
Fixed yX y-component of transfotméd x-basis vector.
Fixed Xy x-component of transformed y-basis vector.
Fixed yy y-component of transformed y-basis vector.
Fixed dx Translation ifux'direction.
Fixed dy Translationin y direction.

VarAffine2x3 table:
Type Name Description
Fixed XX x-component of transformed x-basis vector.

For variation, use varlndexBase + 0.

Fixed yX y-component of transformed x-basis vector.
For variation, use varIndexBase + 1.

Fixed Xy x-component of transformed y-basis vector.
For variation, use varIndexBase + 2.

Fixed yy y-component of transformed y-basis vector.
For variation, use varIndexBase + 3.

Fixed dx Translation in x direction. For variation, use
varlndexBase + 4.

Fixed dy Translation in y direction. For variation, use
varlndexBase + 5.

uint32 |varIndexBase Base index into DeltaSetIndexMap.

The VarAffine2x3 format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for
details

For a pre-transformation position (¥, y), the post-transformation position (x’, y’) is calculated as follows:

X' =xx*Xx+xy*y+dx
y' =yx*x+yy*y+dy
NOTE It is helpful to understand linear transformations by their effect on x- and y-basis vectors i = (1, 0) and

j = (0, 1). The transform described by the Affine2x3 or VarAffine2x3 table maps the basis vectors to i’ = (xx, yx)
andj’ = (xy, yy), and translates the origin to (dx, dy).

© ISO/IEC 2023 - All rights reserved 47

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

When the transformed composition from the referenced paint table (and its sub-graph) is composed
into the destination (represented by the parent of this table), the source design grid origin is aligned
to the destination design grid origin. The transform can translate the source such that a pre-transform
position (0,0) is moved elsewhere. The post-transform origin, (0,0), is aligned to the destination origin.

5.7.11.2.6.9 Formats 14 and 15: PaintTranslate, PaintVarTranslate

Formats 14 and 15 are used to apply a translation to a sub-graph. The paint table that is the root of the
sub-graph is linked as a child.

Format 15 allows for variation of the translation in a variable font; format 14 provides a more compddt
representation when variation is not required. Format 15 shall not be used in non-variable fonts.or'if
the COLR table does not have an ItemVariationStore subtable.

These tables use reduced precision for compactness. Where higher precision is required use
PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7/11.1.5.

PaintTranslate table (format 14):

Type Name Description

uint8 format Set to 14.

Offset24 |paintOffset |Offset to a Paint subitable.
FWORD dx Translation in x diréction.
FWORD dy Translation.in\y direction.

PaintVarTranslate table (format 15):

Type Name Description

uint8 format Set to 15.

Offset24 |paintOffset Offset to a Paint subtable.

FWORD |dx Translation in x direction. For
variation, use varIndexBase +
0.

FWORD dy Translation in y direction. For
variation, use varlndexBase +
1.

uint32 varindexBase |Base index into DeltaSetIn-
dexMap.

The PaintVarTranslate’format uses a base/sequence scheme to index into mapping data; see 5.7.11.4 for
details.

NOTE Pupe-translation can also be represented using the PaintTransform or PaintVarTransform table
by setting-xx= 1, yy = 1, xy and yx = 0, and setting dx and dy to the translation values. The PaintTranslate or
PaintVarlranslate table provides a more compact representation when only translation is required.

Thétranslation will result in the pre-transform position (0,0) being moved elsewhere. See 5.7.11.2.6.8
regarding alignment of the transformed content with the destination.

5.7.11.2.6.10 Formats 16 to 23: PaintScale and variant scaling formats

Formats 16 to 23 are used to scale a sub-graph. The paint table that is the root of the sub-graph is linked
as a child. Several variant formats are provided:

— Formats 16 and 17: scale in x or y directions relative to the origin. Format 17 allows for variation of
the x and y scale factors in a variable font; format 16 provides a more compact representation when
variation is not required.

48 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

— Formats 18 and 19: scale in x or y directions relative to a specified center. Format 19 allows for
variation of the x and y scale factors or of the center position; format 18 provides a more compact
representation when variation is not required.

— Formats 20 and 21: scale uniformly in x and y directions relative to the origin. Format 21 allows for
variation of the scale factor in a variable font; format 20 provides a more compact representation

wihan xzoiab o 1o ot e
VVIICII vAILI ITALUIVUITI 10O 11IUL T b\.iull \>Aw ¥

— Formats 22 and 23: scale uniformly in x and y directions relative to a specified center. Format|23
allows for variation of the scale factor or of the center position; format 22 provides a more compact

representation when variation is not required.

Formats 17, 19, 21 and 23 shall not be used in non-variable fonts or if the COLR table dees'not have an|

ItemVariationStore subtable.

These tables use reduced precision for compactness. Where higher precision is required use

PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintScale table (format 16):

Type Name Description

uint8 format Set to 16.

Offset24 paintOffset Offset tosaPaint subtable.

F2D0T14 scaleX Scale factor in x direction.

F2D0T14 scaleY Scale factor in y direction.

PaintVarScale table (format 17):

Type Name Description

uint8 format Setto 17.

Offset24 |paintOffset Offset to a Paint subtable.

F2DOT14 |scaleX Scale factor in x direction. For variation, use varln-
dexBase + 0.

F2DOT14 |scaleY Scale factor in y direction. For variation, use varln-
dexBase + 1.

uint32 varlndexBase |Base index into DeltaSetIndexMap.

PaintScaleAroundCenter table (format 18):

Type Name Description

uint8 format Setto 18.

Offset24 paintOffset Offset to a Paint subtable.

F2DOT14 scaleX Scale factor in x direction.

F2D0T14 scaleY Scale factor in y direction.

FWORD centerX x coordinate for the center of scaling.
FWORD TEMtETY ycoordinmate for thretenter of stating:

PaintVarScaleAroundCenter table (format 19):

Type Name Description
uint8 format Set to 19.
Offset24 |paintOffset Offset to a Paint subtable.

© ISO/IEC 2023 - All rights reserved

49

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description

F2DOT14 |scaleX Scale factor in x direction. For variation, use varln-
dexBase + 0.

F2DOT14 |scaleY Scale factor in y direction. For variation, use varln-
dexBase + 1.

F‘AV,GRD \,ClltClX A CUUL C‘lilldtC fUl t}lC \,ClltCl Uf Dbdlills- FUl vdl idtiUll,
use varlndexBase + 2.

FWORD |centerY y coordinate for the center of scaling. For variation,
use varlndexBase + 3.

uint32 varlndexBase |Base index into DeltaSetIndexMap.

PaintScaleUniform table (format 20):

Type Name Description

uint8 format Set to 20.

Offset24 paintOffset Offset to a Paint subtable.
F2D0T14 scale Scale factor in x and y directions.

PaintVarScaleUniform table (format 21):

Type Name Description

uint8 format Setto 21.

Offset24 |paintOffset Offset to a Paint subtable:

F2DOT14 |scaleX Scale factor in x andy directions. For variation, use
varindexBase + 0«

uint32 varIndexBase |Base index intd-BeltaSetIndexMap.

PaintScaleUniformAroundCenter table (format 22);

Type Name Description

uint8 format Setto 22.

Offset24 paintOffset Offset to a Paint subtable.

F2D0T14 scale Scale factor in x and y directions.
FWORD centerX x coordinate for the center of scaling.
FWORD centerY y coordinate for the center of scaling.

PaintVarScaleUniformAroundCenter table (format 23):

50

Type Name Description

uint8 format Setto 23.

Offset24 |paintOffset Offset to a Paint subtable.

F2DOT14 |scale Scale factor in x and y directions. For variation, use
varlndexBase + 0.

FWORD centerX x coordinate for the center of scaling. For variation,
use varlndexBase + 1.

FWORD centerY y coordinate for the center of scaling. For variation,
use varlndexBase + 2.

uint32 varlndexBase |Base index into DeltaSetIndexMap.

© ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

The PaintVarScale, PaintVarScaleAroundCenter, PaintVarScaleUniform, and
PaintVarScaleUniformAroundCenter formats use a base/sequence scheme to index into mapping data;
see 5.7.11.4 for details.

NOTE Pure scaling can also be represented using the PaintTransform or PaintVarTransform table. For
scaling about the origin, this could be done by setting xx and yy to x and y scale factors, and setting xy, yx, dx and

dv =0 _The PaintScale table and variants prnvidp more compact representation when only crnling is rpqnirpd

5.7.11.2.6.11 Formats 24 to 27: PaintRotate, PaintVarRotate, PaintRotateAroundCenter;
PaintVarRotateAroundCenter

Formats 24 to 27 are used to apply a rotation to a sub-graph. The paint table that is the‘rgoot of the
sub-graph is linked as a child. The amount of rotation is expressed directly as an angle, uSing a floating
point value where 1.0 represents an angle of 180°.

Formats 24 and 25 apply rotations using the origin as the center of rotation. Fevmat 25 allows for
variation of the rotation in a variable font; format 24 provides a more compact.representation when
variation is not required.

Formats 26 and 27 apply rotations around a specified center of rotation.\Format 27 allows for variation
of the rotation or of the position of the center of rotation in a variable font; format 26 provides a more
compact representation when variation is not required.

Formats 25 and 27 shall not be used in non-variable fonts_or“if the COLR table does not have an|
[temVariationStore subtable.

These tables use reduced precision for compactnesss Where higher precision is required use
PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5.

PaintRotate table (format 24):

Type Name Description

uint8 format Set to 24.

Offset24 |paintOffset |Offset to a Paint subtable.

F2DOT14 |angle Rotation angle, 180° in counter-clockwise degrees per
1.0 of value.

PaintVarRotate table (format 25):

Type Name Description

1int8 format Setto 25.

Offset24 |paintOffset Offset to a Paint subtable.

F2DOT14 |angle Rotation angle, 180° in counter-clockwise degrees
per 1.0 of value. For variation, use varIndexBase +

0.

varlndexBase |Base index into DeltaSetIndexMap.

uint32

PaintRotateAroundCenter table (format 26):

Type Name Description

uint8 format Set to 26.

Offset24 |paintOffset |Offset to a Paint subtable.

F2DOT14 |angle Rotation angle, 180° in counter-clockwise degrees per
1.0 of value.

FWORD centerX x coordinate for the center of rotation.

FWORD |centerY y coordinate for the center of rotation.

© ISO/IEC 2023 - All rights reserved

51

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

PaintVarRotateAroundCenter table (format 27):

Type Name Description

uint8 format Set to 27.

Offset24 |paintOffset Offset to a Paint subtable.

o hAaTtTa4 1 DRDaotats 1 109000 4 1 1 a pa |

1I'apul 1T allslc I\NULAltIUIT allslc, 10U IIT CUUIILCT"CIUCNKNVWIOSU chl CCS
per 1.0 of value. For variation, use varIndexBase +
0.

FWORD centerX x coordinate for the center of rotation. For varia-

tion, use varIlndexBase + 1.

FWORD |centerY y coordinate for the center of rotation. For varia-
tion, use varIlndexBase + 2.

uint32 varindexBase |Base index into DeltaSetIndexMap.

The PaintVarRotate and PaintVarRotateAroundCenter formats use a base/sequence(scheme to index
into mapping data; see 5.7.11.4 for details.

NOTE 1 Pure rotation about a point can also be represented using the PaintTransform or PaintVarTransform
table. For rotation about the origin, this could be done by setting matrix values as follows for angle 6:

— xx=cos(0)
— yx=sin(0)
— xy =-sin(0)

— Yy =cos(0)
— dx=dy=0

The important difference of the PaintRotate table and its variants is in allowing an angle to be specified
directly in degrees, rather than as changes to basis:vectors. In variable fonts, if a rotation angle needs to
vary, it is easier to get smooth variation if an angle is specified directly than when using trigonometric
functions to derive matrix elements.

NOTE 2 The rotation angle is representéd using an F2D0OT14 value, which supports values in the range [-2,
2). Since each 1.0 unit represents a change of 180°, rotation angles of [-360, 360) can be represented directly.
Variations of the rotation angle are notlimited to that range, however.

NOTE 3 If representation of, rotation directly as an angle is preferred but higher precision is required to
specify a center of rotation, a chained sequence of transforms can be used. For example, a PaintTransform can be
used to align the origin to-the'desired center of rotation, then PaintRotate can be used for the desired rotation,
and a second PaintTransform can be used to reset the origin.

When combining the transform effect of a PaintRotate table (or variants) with other transforms, the
result shall be the’same as if the rotation were represented using an equivalent matrix or sequence of
matrices.

A rotation) can result in the pre-transform position (0, 0) being moved elsewhere. See 5.7.11.2.6.8
regardifig alignment of the transformed content with the destination.

5(7:11.2.6.12 Format 28 to 31: PaintSkew, PaintVarSkew, PaintSkewAroundCenter,

aintvarskewAroundlenter

Formats 28 to 31 are used to apply a skew to a sub-graph. The paint table that is the root of the sub-
graph is linked as a child. The amounts of skew in the x or y direction are expressed directly as angles,
using floating point values where 1.0 represents an angle of 180°.

Formats 28 and 29 apply skews using the origin as the center of rotation for the skew. Format 29 allows
for variation of the rotation in a variable font; format 28 provides a more compact representation when
variation is not required.

52 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Formats 30 and 31 apply skews around a specified center of rotation. Format 31 allows for variation
of the rotation or of the position of the center of rotation in a variable font; format 30 provides a more
compact representation when variation is not required.

Formats 29 and 31 shall not be used in non-variable fonts or if the COLR table does not have an
ItemVariationStore subtable.

These tables use reduced precision for compactness. Where higher precision is required use
PaintTransform/PaintVarTransform.

For general information regarding transformations in a color glyph definition, see 5.7.11.1.5,

PaintSkew table (format 28):

Type Name Description
uint8 format Set to 28.
Offset24 paintOffset Offset to a Paint subtable.
F2DOT14 |xSkewAngle |Angle of skew in the direction of the x-axis, 180° in eolinter-clockwise degrees per
1.0 of value.
F2DOT14 |ySkewAngle |Angle of skew in the direction of the y-axis, 180<in counter-clockwise degrees per
1.0 of value.
PaintVarSkew table (format 29):
Type Name Description
uint8 format Set to 29.
Offset24 paintOffset Offset to a Paint subtable:
F2DOT14 |xSkewAngle Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees
per 1.0 of value. Fot'variation, use varIndexBase + 0.
F2DOT14 |ySkewAngle Angle of skew-in.the direction of the y-axis, 180° in counter-clockwise degrees
per 1.0 of value: For variation, use varIndexBase + 1.
uint32 varlndexBase |Base indeXinto DeltaSetIndexMap.

PaintSkewAroundCenter table (fermat 30):

Type Name Description

uint8 format Setto 30.

Offset24 |paintOffset Offset to a Paint subtable.

F2DOT14 |xSkéwAngle |Angle of skew in the direction of the x-axis, 180° in counter-clockwise degrees per
1.0 of value.

F2DOT14_~\[ySkewAngle |Angle of skew in the direction of the y-axis, 180° in counter-clockwise degrees per
1.0 of value.

FWORD centerX x coordinate for the center of rotation.

EFWORD centerY y coordinate for the center of rotation.

PaintVarSkewAroundCenter table (format 31):

Type Nanre Pescription

uint8 format Setto 31.

Offset24 paintOffset Offset to a Paint subtable.

F2D0T14 xSkewAngle Angle of skew in the direction of the x-axis, 180° in counter-clockwise
degrees per 1.0 of value. For variation, use varIndexBase + 0.

F2D0T14 ySkewAngle Angle of skew in the direction of the y-axis, 180° in counter-clockwise
degrees per 1.0 of value. For variation, use varIndexBase + 1.

© ISO/IEC 2023 - All rights reserved

53

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Type Name Description
FWORD centerX x coordinate for the center of rotation. For variation, use varIndexBase +
2.
FWORD centerY y coordinate for the center of rotation. For variation, use varindexBase +
3.
-) L | im) D - 1 - b I 1o L L 1 DAL
uIrito 4 vdlllIITUTADdAdST DdAdST IIIUTA T11ILU UClLdQCLllluCAlVldp.

The PaintVarSkew and PaintVarSkewAroundCenter formats use a base/sequence scheme to index into
mapping data; see 5.7.11.4 for details.

NOTE 1 Pure skews about a point can also be represented using the PaintTransform or PaintVarTransform
table. For skews about the origin, this could be done by setting matrix values as follows for x skew angle~«p-and y
skew angle U:

— xx=yy=1

— yx=tan(y)

— xy =-tan(y)

— dx=dy=0

The important difference of the PaintSkew table and its variants is in being able to specify skew as an
angle, rather than as changes to basis vectors. In variable fonts, if a skew angle needs to vary, it is easier

to get smooth variation if an angle is specified directly than whea-tsing trigonometric functions to
derive matrix elements.

NOTE 2 The skew angles are represented using F2DOT14 values, which support values in the range [-2, 2).
Since each 1.0 unit represents a change of 180°, skew angles of{-360, 360) can be represented directly. Variations
of the skew angle are not limited to that range, however.

NOTE 3 Ifrepresentation of skew directly as an angle is'preferred but higher precision is required to specify a
center of rotation, a chained sequence of transforms\Can be used. For example, a PaintTransform can be used to
plign the origin to the desired center of rotation, thenPaintSkew can be used for the desired skew rotation, and a
second PaintTransform can be used to reset theorigin.

When combining the transform effect ©f a PaintSkew table (or variants) with other transforms, the
result shall be the same as if the skew were represented using an equivalent matrix or sequence of
matrices.

A skew can result in the pre-transform position (0, 0) being moved elsewhere. See 5.7.11.2.6.8 regarding
plignment of the transformed content with the destination.

5.7.11.2.6.13 Format 32: PaintComposite

Format 32 is used t0 combine two layered compositions, referred to as source and backdrop, using
different compositing or blending modes. The available compositing and blending modes are defined in
an enumeration. For general information and examples, see 5.7.11.1.6.

NOTE The backdrop is also referred to as the “destination”.

PaintComposite table (format 32):

Type Name Description

uint8 format Setto 32.

Offset24 sourcePaintOffset Offset to a source Paint table.

uint8 compositeMode A CompositeMode enumeration value.
Offset24 backdropPaintOffset Offset to a backdrop Paint table.

The compositeMode value shall be one of the values defined in the CompositeMode enumeration, which
are taken from the W3C Compositing and Blending Level 1 specification [33]. Details on each mode,

54 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

including specifications of the required calculations using pixel color and alpha values, are provided in
that specification. If an unrecognized value is encountered, COMPOSITE_CLEAR shall be used.

CompositeMode enumeration:

Value Name Description
Porter-Dujf modes
0 COMPOSITE_CLEAR Clear
1 COMPOSITE_SRC Source ("Copy" in [33])
2 COMPOSITE_DEST Destination
3 COMPOSITE_SRC_OVER Source Over
4 COMPOSITE_DEST _OVER Destination Over
5 COMPOSITE_SRC_IN Source In
6 COMPOSITE_DEST_IN Destination In
7 COMPOSITE_SRC_OUT Source Out
8 COMPOSITE_DEST_OUT Destination‘Qut
9 COMPOSITE_SRC_ATOP Source Atop
10 COMPOSITE_DEST_ATOP Destination Atop
11 COMPOSITE_XOR XOR
12 COMPOSITE_PLUS Plus (“Lighter” in [33])
Separable color blend modes:
13 COMPOSITE_SCREEN screen
14 COMPOSITE_OVERLAY overlay
15 COMPOSITE_DARKEN darken
16 COMPOSITE_LIGHTEN lighten
17 COMPOSITE_COLOR(DODGE color-dodge
18 COMPOSITE_COLOR_BURN color-burn
19 COMPOSITE_HARD_LIGHT hard-light
20 COMPOSITE) SOFT_LIGHT soft-light
21 COMPOSITE_DIFFERENCE difference
22 COMPOSITE_EXCLUSION exclusion
23 COMPOSITE_MULTIPLY multiply
Non-separable color blend modes:
24 COMPOSITE_HSL_HUE hue
25 COMPOSITE_HSL_SATURATION saturation
26 COMPOSITE_HSL_COLOR color
27 COMPOSITE_HSL_LUMINOSITY luminosity
The graphic compositions are defined by the source and backdrop paint tables and their respective
sub-graphs. Conceptually, they are rendered into bitmaps, and the source is composited or blended into
the backdrop using the specified composite mode.

While color values obtained from the CPAL table are represented in sRGB using the non-linear transfer
function defined in the sRGB specification, the compositing and blending calculations are done after
applying the inverse transfer function to derive linear-light RGB values. For more information regarding
the non-linear and linear-light representations for sRGB, see Interpolation of Colors in 5.7.12.

As mentioned in 5.7.11.1.8.2, a color glyph definition shall be bounded. A sub-graph that has
PaintComposite as its root is either bounded or unbounded, depending on the mode used and the

© ISO/IEC 2023 - All rights reserved 55

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

boundedness of the source and backdrop sub-graphs. For each mode, boundedness is determined by
the boundedness of the source and backdrop as follows:

— Always bounded:
— COMPOSITE_CLEAR

— Bounded if and only if the source is bounded:
— COMPOSITE_SRC
— COMPOSITE_SRC_OUT
— Bounded if and only if the backdrop is bounded:
— COMPOSITE_DEST
— COMPOSITE_DEST OUT
— Bounded if and only if either the source or backdrop is bounded:
— COMPOSITE_SRC_IN
— COMPOSITE_DEST_IN
— Bounded if and only if both the source and backdrop are bounded:
— All other modes
5.7.11.3 COLR version 1 rendering algorithm

The various graphic concepts represented by COLR-version 1 formats were individually described
in 5.7.11.1, and the various formats were describedvin 5.7.11.2. Together, these provide most of the
necessary details regarding how a color glyph is@endered. The following provides a comprehensive
description of the rendering process, consideringthe graph as a whole.

The following algorithm can be used to rendé¥ color glyphs defined using version 1 formats. Applications
are not required to implement rendering.using this algorithm, but shall produce equivalent results.

NOTE Checks for well-formedness and validity, as described in 5.7.11.1.9, are not repeated here. Actual
implementations can integrate such checks with rendering processing.

1) Startwith an initial drawing surface. As mentioned in 5.7.11.1.8.2, if a clip box is provided, it can be
used to determine thé size. Otherwise, the graph can be traversed to compute a required size.

2) Traverse the graph-of a color glyph definition, starting with the root paint table referenced by a
BaseGlyphPaintRecord, using the following pseudo-code function.

// render a gaint table and its sub-graph
function re&p@€rPaint (paint)

if f£drmat 1: // PaintColrLayers
f@r" each referenced child paint table, in bottom-up z-order:
// for ordering, see 5.7.11.1.4, 5.7.11.2.6.1
call renderPaint () passing the child paint table

compose the veotyrned crgagohi onto the urface ysing imole glohg blending
T 7 T) T T)

if format 2 or 3: // PaintSolid, PaintVarSolid
paint the specified color onto the surface

if format 4, 5, 6, 7, 8 or 9:
// PaintLinearGradient, PaintVarlLinearGradient
// PaintRadialGradient, PaintVarRadialGradient
// PaintSweepGradient, PaintVarSweepGradient
paint the gradient onto the surface following the gradient algorithm

56 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

if format 10: // PaintGlyph
apply the outline of the referenced glyph to the clip region
// take the intersection of clip regions—see 5.7.11.1.3
call renderPaint () passing the child paint table
restore the previous clip region

if format 11: // PaintColrGlyph
call renderPaint () passing the paint table referenced by the base glvph ID

if format 12 to 31:
// PaintTransform, PaintVarTransform
// PaintTranslate, PaintVarTranslate
// PaintScale*, PaintVarScale*
// PaintRotate*, PaintVarRotate*
// PaintSkew*, PaintVarSkew¥*
apply the specified transform
// compose the transform with the current transform state—see 5.WNI11.1.5
call renderPaint () passing the child paint table
restore the previous transform state

if format 32: // PaintComposite

// render backdrop sub-graph
call renderPaint () passing the backdrop child paint tableVand save the result

// render source sub-graph
call renderPaint () passing the source child paint t&@ble and save the result

// compose source and backdrop
compose the source and backdrop using the specified composite mode

// compose final result

compose the result of the above composifion onto the surface using simple
alpha blending

5.7.11.4 COLR table and OFF Font Variations

The COLR table can be used in variable fonts. For color glyphs defined using version 0 formats, the glyph
outlines can be variable, but no othertaspect of the color glyph is variable. For color glyphs defined
using version 1 formats, items that\can be variable include the glyph outlines plus other aspects of the
color glyph definition:

— Alpha values

— Color stop offsets in gradient color lines

— Placement of gradients onto the design grid

— The argumments of transformations (matrix elements, angles, etc.)

Variationrdata is provided in an Item Variation Store table (7.2.3) contained within the COLR table.

In a variable font, each value within the COLR version 1 formats that is variable needs to be associated
with corresponding variation data (delta sets) in the Item Variation Store. This is done using a
DeltaSetIndexMap table (defined in 7.3.5.2). The delta-set index mapping table contains an array of
entries that provide indices mapping into sets of delta data in the Item Variation Store. Each variablg
item in the COLR table is given an index (base 0) into the mapping data. For example, if a variable item|

4 +1 COLR .11 H 4 I | 1 £ 21 | 4+ H 4] H doto pa s I | it
T GULINV TAUIT TS gIVUEILD dlIT THTUTA VAIUT UL J, UIIT STAUIT TIILL y T LT IIId PPl g Udtd 15 USTU LU TTHTUT A T

the Item Variation Store.

The indices for variable items in the COLR table are indicated using a base/sequence scheme. Each
table or record that contains variable items will use a contiguous sequence of entries in the mapping
array, and will include a varIndexBase field that indicates the first entry in the mapping array to be
used. The variable fields within that table or record use entries in the mapping array, starting with the
varindexBase entry, in the order the fields occur in the table or record.

© ISO/IEC 2023 - All rights reserved 57

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

For example, the VarAffine2x3 table (5.7.11.2.6.8) has eight variable fields followed by the varIndexBase
field. For the first variable field (xx), varindexBase + 0 is used as the index into the mapping array; for
the second variable field (yx), varIlndexBase + 1 is used as the index into the mapping array; and so on.

If the index for a variable item is greater than or equal to the number of entries in the mapping array,
the last mapping array entry shall be used.

The sequence of indices derived from a varindexBase value do not wrap on overflow and shall not
exceed OxFFFFFFFF. A varindexBase value of OxFFFFFFFF is assigned a special meaning indicating that
the variable fields in the given table or record do not have variation data.

Similarly, a delta-set index mapping entry with values OxFFFF/OXFFFF can be used to indicate that.an
item has no variation data (see 7.2.3.2).

[f the COLR table does not contain an Item Variation Store subtable, the varIindexBase field of’'variable
tables or records shall be ignored by applications, and should be set to zero.

[f the COLR table contains an Item Variation Store but does not contain ‘a,“mapping table
(varIndexMapOffset in the COLR header is NULL), then an implicit identity miapping is used: the
sequence of values beginning with varindexBase are treated directly as deltatset indices with 16-bit
sub-fields for outer (high word) and inner (low word) index values. See 7.2.3'3 for more information
regarding delta set indices.

For variable fonts that use COLR version 1 formats, special considerations apply to the effect of variation
on the bounding box. See 5.7.11.1.8.2 for details.

For general information on OFF font variations, see 7.1.

5.7.12
Replace the first sentence of the first paragraph.with the following:

The palette table is a set of one or more palettes, each containing a predefined number of color records.

Replace the second paragraph withthe following text:

Palettes are defined by a set of-color records. Each color record specifies a color in the sRGB color
space using 8-bit BGRA (blue, green, red, alpha) representation. The sRGB color space is specified in
[EC 61966-2-1. Details on(the specification for the sRGB color space, including the color primaries and
‘samma” transfer function, are also provided in CSS Color Module Level 4, section 10.2 [34].

All palettes have the’same number of color records, specified by numColorRecords. All color records for
pll palettes are arranged in a single array, and the color records for any given palette are a contiguous
sequence of color records within that array. The first color record of each palette is provided in the
colorRecordIndices array.

Add the following paragraphs at the end of the subclause with the heading “Interpolation of colors”:

Interpolation of Colors

The SVG table and version 1 of the COLR table both support color gradient fills. The gradients are
defined using color stops to specify color values at specific positions along a color line, with color values
for other positions on the color line derived by interpolation.

When interpolating color values, linear interpolation between color stop positions is used. For example,
suppose adjacent color stops are specified for positions 0.5 and 0.9 on a color line, and a color value is
being calculated for position 0.8. The color value of the first color stop will contribute 75 % of the value

58 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

((0.8-0.5) / (0.9 - 0.5)), and the color value of the second color stop will contribute 25 % of the value.
Interpolated values at each position of the color line are computed in this way for each of the R, G and B
color components.

When interpolating color values, specific aspects of the representation of colors as well as handling of
alpha need to be considered.

Representations of sSRGB color values are expressed as levels of red, green and blue color “primaries’
with specific, absolute chromaticity values, which are defined in the sRGB specification. Color-primary
levels can potentially be expressed using a linear-light scale that correlates directly to light energy. (On
a linear-light scale, for example, a doubling of a color value would correspond to a doubling-of.displayj
luminance.) For sRGB, however, standard practice is to represent levels using a scale defined/by a non-
linear transfer function, sometimes referred to as “gamma”. This transfer function is als@-defined in the
sRGB specification (see CSS Color Module Level 4, section 10.2 [34] for details). In the(CPAL table, sSRGB
color values are always specified in terms of the non-linear, sSRGB transfer function:

NOTE1 An advantage of representing colors using a non-linear scale is that it allow’s more effective use of
limited bit depth when color-primary levels are represented as integers: smaller differences in light energy can
be represented for lower levels than for higher levels. This is beneficial since the ' human visual system is mor¢
sensitive to differences at low luminance levels than to differences at high luminance levels.

When interpolating colors, different results will be obtained if theinterpolation is computed using the
non-linear scale for color levels than if using the linear-light scale: For interoperable results, whether
the non-linear or linear-light scale is to be used needs to be specified.

For gradient color values in the SVG table, the required intetrpolation behavior is defined in the SVG 1.1
specification: the ‘color-interpolation’ property can befused in an SVG document to declare whether
interpolation is done using the non-linear sRGB sedle (the default), or using a linear-light scale byj
applying the inverse sRGB transfer function.

For gradient color values in the COLR table,4nterpolation shall be computed using linear-light valueg
(i.e., after applying the inverse sRGB transfep function).

After an interpolated color value is cemputed, whether or not the non-linear sRGB transfer function
needs to be re-applied is determinedby the requirements of the implementation context.

For both the COLR and SVG tables, interpolation shall be done with alpha pre-multiplied into each
linearized R, G and B component. For alpha specified in a CPAL ColorRecord, the value is converted to g
floating value in the range {0, 1.0] by dividing by 255, then multiplied into each R, G and B component
In the COLR table, color references in formats used for version 1 include a separate alpha value; that
alpha value (with variation, in a variable font) is multiplied into the R, G and B components as well
Interpolated valués are then calculated by linear interpolation using these pre-multiplied, linear-light
R, G and B values.

NOTE 2 _Alpha components use a linear scale and can be directly interpolated apart from the R, G and B
component9without any linearization step.

Onceinterpolation of the pre-multiplied red, green and blue values and of the alpha value is complete
theyred, green and blue results are then un-premultiplied by dividing each interpolated value by the
corresponding interpolated alpha.

While color values are specified as 8-bit integers, the interpolation computations will require greater

precision imeach of the timearization, pre=muttipty, andinterpotationr steps-Also, whenrrendered resutts
are to be presented on an imaging device with known characteristics, visual banding artifacts in
a gradient can be minimized by taking full advantage of the color bit depth supported by the device.
For instance, if a display supports 10- or 12-bit quantization per color channel, then ideally the ramp
of color values in a gradient would use that level of quantization. Other factors from the presentation
context may, however, also affect the available capabilities. Therefore, no minimum level of precision is
specified as a requirement

© ISO/IEC 2023 - All rights reserved 59

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

6.4.1

Replace the Script tags table with the following:

Script Script Tag
Adlam ‘adlm’
Ahom '‘ahom’ (b
Anatolian Hieroglyphs 'hluw’ Qq/
Arabic ‘arab’ q/
Armenian ‘armn’ Qq/
Avestan ‘avst' @
Balinese 'bali’ '\(b\
Bamum '‘bamu’ (\(b
Bassa Vah 'bass' n‘T/”
Batak 'batk’ ('r\; v
Bengali 'beng' R @V
Bengali v.2 'bng2’ r\D‘
Bhaiksuki bhks' O
Bopomofo 'bopo',\\\v
Brahmi 'brza&)u
Braille ;&@}-
Buginese AQ ’Bﬁgi’
Buhid O |'buhd
Byzantine Music o \\\\ 'byzm'
Canadian Syllabics o.\v ‘cans’
Carian \\'Qv ‘cari’
Caucasian Albanian X o.® 'aghb’
Chakma K\ 'cakm’
Cham ., xO 'cham'
Cherokee \\Gt ‘cher’
Chorasmian X (@) ‘chrs'
CJK Ideographi@ : 'hani'
Coptic ,.Q‘ ‘copt’
Cypriotﬁjglb’f)ary ‘cprt’
Cyp‘r:@\lfloan ‘cpmn’
Qy{ﬂl‘c ‘cyrl'
Ibefault 'DFLT’
Q Deseret 'dsrt’
?§ Devanagari 'deva’
é Devanagari v.2 'dev2’
DivesAkura diak
Dogra 'dogr’
Duployan ‘dupl’
Egyptian hieroglyphs 'egyp'
Elbasan ‘elba’
Elymaic ‘elym’
Ethiopic ‘ethi’

60

© ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Linear B 'linb’
R

Script Script Tag
Georgian 'geor’
Glagolitic 'glag’
Gothic 'goth’
Grantha 'gran’
Greek 'grek’ (b
Gujarati 'gujr' q’

>
Gujarati v.2 'gjr2’ q/
Gunjala Gondi 'gong' Q

Gurmukhi 'guru’ \V.\
Gurmukhi v.2 'gur2’ y\(b\)
Hangul 'hang' qp
Hangul Jamo 'jamo’ nq/v
Hanifi Rohingya 'rohg' S 24
Hanunoo ‘hano’ Y
Hatran ‘hatr’ '\W
Hebrew 'hebr)
Hiragana (4}(‘ ma'
Imperial Aramaic \%\'/armi'
Inscriptional Pahlavi (s\\ R 'phli’
Inscriptional Parthian /\Q N 'prti’
Javanese QV java'
Kaithi N 'kthi’
Kannada Q)\' 'knda’
Kannada v.2 \Q\.\ 'knd2'
Katakana .‘Q)Q‘ 'kana’
Kayah Li ,-\A\ 'kali’
Kharosthi \L\U 'khar"
Khitan SmallﬁS‘Q@-St 'kits'
Khmer) O 'kKhmr'
Khojki«.\» 'khoj’
thd%-w&édi 'sind’
@tpy 'lao"’
6\(’.:Latin latn’
Lepcha 'lepc’

?99 Limbu 'limb’
éO Linear A 'lina’

Lisu (Fraser) 'lisu’

Lycian lycr’
Lydian 'lydi'
Mahajani 'mahj’
Makasar 'maka’
Malayalam 'mlym’
Malayalam v.2 'mlm?2’
Mandaic, Mandaean 'mand'

© ISO/IEC 2023 - All rights reserved 61

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

62

Script Script Tag
Manichaean 'mani’
Masaram Gondi 'gonm’
Marchen 'marc’
Mathematical Alphanumeric Symbols 'math’
Medefaidrin (Oberi Okaime, Oberi Okaime) 'medf’ (b
Meitei Mayek (Meithei, Meetei) 'mtei’ q/Qq/
Mende Kikakui 'mend' q/
Meroitic Cursive 'merc’ @0
Meroitic Hieroglyphs 'mero’ \?\
Miao 'plrd’ y\q
Modi 'modji’ q‘b
Mongolian ‘mong’ ﬂq/.
Mro 'mroo’ O v
Multani 'mult’ N Y
Musical Symbols 'musc’ _ '\W
Myanmar 'mymr’ (/S)
Myanmar v.2 'mym}'\\\v
Nabataean 'nb&v
Nandinagari ’p%na'
Newa /\Q newa'
New Tai Lue QV "talu’
Nyiakeng Puachue Hmong c\\}\) 'hmnp'
N'Ko Q)\ 'nko"’
Niishu \Q\.\ 'nshu’
Odia (formerly Oriya) .‘Q)Q‘ 'orya’
Odia (formerly Oriya) v.2 ,-\A\ ‘ory?2'
Ogham \L\U 'ogam’
0l Chiki R ‘olck’
0ld Italic) "ital'
0ld Hungariag\@) 'hung'
0ld North er%b)a;n ‘narb’
old Per(ﬂyy 'perm'’
OldfP{‘@i'an Cuneiform 'xpeo’
@\?ogdian 'sogo’
@‘('1 South Arabian 'sarb’
Q? 0ld Turkic, Orkhon Runic 'orkh’
&?§ 0ld Uyghur ‘ougr’
O_) Osage 'osge’
Osmanya ‘osma’
Pahawh Hmong 'hmng'
Palmyrene ‘palm’
Pau Cin Hau 'pauc’
Phags-pa 'phag’
Phoenician 'phnx’
Psalter Pahlavi '‘phlp’

© ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Script Script Tag
Rejang 'rjng'
Runic runr
Samaritan samr
Saurashtra saur’
Sharada 'shrd' (b
Shavian 'shaw' Qq/
Siddham 'sidd" q/q/
Sign Writing sgnw Q
Sinhala 'sinh’ \V‘.\
Sogdian 'sogd’ y\(b\)
Sora Sompeng sora' q\)

Dorbéljin Bicig, Horizontal Square Script)

Soyombo soyo' nq/v
Sumero-Akkadian Cuneiform xsux' P 24
Sundanese 'sund’ Y
Syloti Nagri 'sylo’ '\W
Syriac 'syLct
Tagalog T \g/'
Tagbanwa \%\ '/tagb'
Tai Le (s\\ " |'tale’
Tai Tham (Lanna) /\Q N 'lana’
Tai Viet QV "tavt'
Takri c\\}\) 'takr’
Tamil Q)\' 'taml'
Tamil v.2 \Q\.\ 'tml2’
Tangsa .‘Q)Q‘ ‘tnsa’
Tangut ,-\A\ 'tang'
Telugu \L\U "telu’
Telugu v.2 \\CJ\ 'tel2'
Thaana . 'thaa’
Thai <\ 'thai
Tihetan 'tibt’
'(nfizagh 'tfng'
6\(’.ﬁ‘irhuta "tirh'
Q Toto ‘toto’
Q‘ Ugaritic Cuneiform ugar
Ov Vai 'vai'
&?§ Vithkugqi ‘vith’
O_) Wancho 'wcho'
Warang Citi ‘'wara'
Yezidi 'yezi'
Yi 'yi'
Zanabazar Square (Zanabazarin Dorboljin Useg, Xewtee | 'zanb'

© ISO/IEC 2023 - All rights reserved

63

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

6.4.2

Replace the Language systems and tags table with the following:

Language System Language System Corresponding ISO 639 ID (if applicable)
Tag
Abaza ABA abq
Abkhazian 'ABK' abk Qq‘;b
Acholi 'ACH' ach R
Achi 'ACR" acr ‘d s
Adyghe 'ADY ady R\
Afrikaans 'AFK' afr . \\/‘
Afar 'AFR’ aar Q -
Agaw 'AGW' ahg n“.l/
Aiton 'AIO aio A%
Akan 'AKA'" aka, fat, twi '\Q\U
Batak Angkola 'AKB" akb '\b‘\ﬁ
Alsatian '‘ALS' gsw .C)
Altai 'ALT’ atv, alt %
Ambharic 'AMH' amh c\o\
Anglo-Saxon 'ANG' ang k\vJ
Phone_tic t'ranscriptiqn— APPH Q (O
Americanist conventions Q)
Arabic 'ARA’ ara ‘\Q -
Aragonese 'ARG' arg)"
Aari 'ARI’ Jaiw
Rakhine 'ARK" A\’mhv, rmz, rki
Assamese 'ASM ' ‘\Q)\‘ asm
Asturian 'AST' . 0\\ ast
Athapaskan languages 'ATH' \{‘\ aht, apa, apk, apj, apl, apm, apw, ath, bea, sek, bcr, caf, chp,
‘\\Q clc, coq, crx, ctc, den, dgr, gce, gwi, haa, hoi, hup, ing, kkz,
C) koy, ktw, kuu, mvb, nav, qwt, scs, srs, taa, tau, tcb, tce, tfn,
N tgx, tht, tol, ttm, tuu, txc, wik, xup, xsl
Avatime (‘\ﬁ\‘/N ' avn
Avar - C) 'AVR' ava
Awadhi O\U) 'AWA' awa
Aymara ¢ N 'AYM' aym
Torki oV 'AZB’ azb
Azerbaijgxk&*\ '‘AZE"’ aze
Badag@v 'BAD bfq
Barids BADO bad, bbp, bfl, bjo, bpd, bgk, gox, kuw, liy, Ina, Inl, mnh,
2 nue, nuu, tor, yaj, zmz
Baghelkhandi 'BAG' bfy
Balkar 'BAL' krc
Balinese '‘BAN"' ban
Bavarian '‘BAR' bar
Baulé 'BAU' bci
Batak Toba 'BBC' bbc
64 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System Corresponding ISO 639 ID (if applicable)
Tag
Berber 'BBR' auj, ber, cnuy, gha, gho, grr, jbe, jbn, kab, mzb, oua, rif, sds,
shi, shy, siz, sjs, swn, taq, tez, thy, thz, tia, tjo, tmh, ttq,
tzm, zen, zgh
Bench 'BCH' bcg
Bible Cree 'BCR' Page)
Bandjalang 'BDY bdy QQV
Belarussian '‘BEL"’ bel Aq;.V
Bemba 'BEM ' bem \\\)
Bengali 'BEN' ben) ?*\
Haryanvi 'BGC' bgc r\?\\o‘
Bagri 'BGQ' bgq ‘ﬂy
Bulgarian 'BGR' bul q‘,l/
Bhili 'BHI' bhi, bhb 0
Bhojpuri 'BHO ' bho NN
Bikol 'BIK ' bik, bhk, bel, bto, cts, bin, fbl, Ibl, rbl, ubl
Bilen 'BIL byn R
Bislama 'BIS" bis (\\\v
Kanauji 'BJJ ' bj D
Blackfoot 'BKF' bla
Baluchi 'BLI' hali
Pa’o Karen 'BLK' \‘31}/
Balante 'BLN' k\}\\ bjt, ble
Balti 'BLT' %) bft
Bambara (Bamanankan) BMB' k\\}‘ bam
Bamileke 'BML' :\Q)\\‘ bai, bbj, bko, byv, fmp, jgo, nla, nnh, nnz, nwe, xmg, ybb
Bosnian 'BQS(J\\\‘ bos
Bishnupriya Manipuri '§fj“v bpy
Breton ,.\“\\B’f{E ' bre
Brahui _ - ~|'BRH" brh
Braj Bhasha ,.\%\ ‘BRI’ bra
Burmese C)\J '‘BRM' mya
Bodo ,-O : 'BRX"' brx
Bashkir -\~ 'BSH ' bak
Burushaski 'BSK ' bsk
Bimairi (Pakpak) 'BTD' btd
i '‘BTI' btb, beb, bum, bxp, eto, ewo, mct
& 'Batak languages '‘BTK' akb, bbc, btd, btk, btm, bts, btx, btz

% Batak Mandailing 'BTM' btm
Batak Simalungun 'BTS"' bts
Batak Karo 'BTX' btx
Batak Alas-Kluet 'BTZ' btz
Bugis 'BUG' bug
Medumba 'BYV' byv
Kaqchikel 'CAK' cak
Catalan 'CAT' cat

© ISO/IEC 2023 - All rights reserved

65

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System

Language System
Tag

Corresponding ISO 639 ID (if applicable)

Zamboanga Chavacano 'CBK" cbk
Chinantec CCHN cco, chj, chq, chz, cle, cnl, cnt, cpa, csa, cso, cte, ctl, cuc,
cvn
CC‘UL{GIIU 'CEB . LC‘U
Chiga 'CGG' cgg q‘;b
Chamorro 'CHA' cha q/Q
Chechen 'CHE' che (\‘lx
Chaha Gurage 'CHG' sgw NQV
Chattisgarhi 'CHH' hne Q)\\)\
Chichewa (Chewa, Nyanja) |'CHI' nya R N
Chukchi 'CHK ' ckt AV
Chuukese CHKO chk (]/V
T T Pbl
Choctaw CHO cho O)
Chipewyan 'CHP' chp N b‘\)‘
Cherokee 'CHR' chr C, N
Chuvash 'CHU' chv \\{(/
Cheyenne 'CHY' chy c)
Western Cham 'CJA" cja &\J
Eastern Cham ‘M cjm I o
Comorian '‘CMR' swb, wl i, zdj
Coptic 'COP’ cop \\\(
Cornish 'COR’ cok)
Corsican 'COS" \@s
Creoles 'CPP' $ abs, acf, afs, aig, aoa, bah, bew, bis, bjs, bpl, bpq, brc, bxo,
‘\Q) bzj, bzk, cbk, ccl, ccm, chn, cks, cpe, cpf, cpi, cpp, cri, crp,
N\ crs, dcr, dep, djk, fab, fng, fpe, gac, gcf, gcl, ger, gib, goq,
\O gpe, gul, gyn, hat, hca, hmo, hwe, icr, idb, ihb, jam, jvd,
\j? kcn, kea, kmv, kri, kww, lir, lou, Irt, max, mbf, mcm, mfe,
'\\O mfp, mkn, mod, msi, mud, mzs, nag, nef, ngm, njt, onx,
. C) oor, pap, pcm, pea, pey, pga, pih, pis, pln, pml, pmy, pov,
& . pre, rcf, rop, scf, sci, skw, srm, srn, sta, svg, tas, tch, tcs,
a0 tgh, tmg, tpi, trf, tvy, uln, vic, vkp, wes, xmm
Cree C)\“ 'CRE' cre
Carrier ,..O : 'CRR' crx, caf
Crimean Tatar O\\VJ 'CRT"' crh
: ~ " v
Kashubian AQ CSB csb
Church Slagpitic 'CSL chu
Czech‘A\)‘ 'CSY! ces
Wayariad Chetti 'CTT" ctt
(,cliﬁ;agonian 'CTG' ctg
San Blas Kuna 'CUK" cuk
Dagbani 'DAG' dag
Danish 'DAN' dan
Dargwa 'DAR" dar
Dayi 'DAX" dax
Woods Cree 'DCR"' cwd
German 'DEU’ deu
66 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System Corresponding ISO 639 ID (if applicable)
Tag

Dogri (individual language) ['DGO’ dgo

Dogri (macrolanguage) ‘DGR doi

Dhangu 'DHG' dhg

Divehi (Dhivehi, Maldivian) |['DHV ' (deprecated) div O
Dimli DIQ’ dig &V
Divehi (Dhivehi, Maldivian) |'DIV"’ div ~
Zarma 'DJR’ dje RO) v
Djambarrpuyngu DJRO djr TN)
Dangme 'DNG' ada k(b\‘

Dan 'DNJ’ dnj A

Dinka 'DNK ' din s

Dari ‘DRI’ prs G\; vV

Dhuwal 'DUJ’ duj, dwu, dwy ‘\O.)V

Dungan 'DUN' dng y\b‘v

Dzongkha 'DZN' dzo , Q

Ebira 'EBI’ igb N\

Eastern Cree 'ECR' crj,crl O\U‘

Edo 'EDO’ bin &

Efik 'EFI’ efi¢,

Greek 'ELL"’ »9@‘

Eastern Maninkakan 'EMK"' \\\ emk

English 'ENG"' n\\)‘ eng

Erzya 'ERZ’ \‘QU myv

Spanish 'ESP"’ n$ spa

Central Yupik 'ESU" Q\U esu

Estonian 'E:I\O est

Basque R @b’Q ' eus

Evenki C)\?EVK ' evn

. —

Vi

French Antille,a.qv 'FAN"' acf

Fang \%V FANO fan

Persiar},\g\ 'FAR' fas

Fanti)~ 'FAT' fat

Einpiish 'FIN ' fin

YFijian 'FJI fij

Dutch (Flemish) 'FLE' vls

Fe’fe’ FMP- fmp

Forest Enets 'FNE' enf

Fon 'FON' fon

Faroese 'FOS’ fao

French 'FRA' fra

Cajun French 'FRC" frc

Frisian 'FRI' fry

© ISO/IEC 2023 - All rights reserved 67

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System Corresponding ISO 639 ID (if applicable)
Tag

Friulian 'FRL' fur

Arpitan 'FRP' frp

Futa 'FTA' fuf

Fulah 'FUL' ful 0y
Nigerian Fulfulde 'FUV' fuv Q‘L
Ga 'GAD' gaa A1
Scottish Gaelic (Gaelic) 'GAE' gla RO) 1
Gagauz 'GAG"' gag TN)
Galician 'GAL' glg k(b\‘
Garshuni 'GAR' nQ\

Garhwali 'GAW ' gbm Aq‘l.v

Geez 'GEZ' gez G-\; vV

Githabul 'GIH' gih D

Gilyak 'GIL' niv y\b‘v

Kiribati (Gilbertese) GILO gil ,O

Kpelle (Guinea) 'GKP' gkp AW

Gilaki 'GLK' glk oY

Gumuz 'GMZ' guk A ~

Gumatj 'GNN' gnn <& ~

Gogo 'GOG' gog OQ‘

Gondi 'GON' gon \\\\

Greenlandic 'GRN' l;gsf\v

Garo 'GRO' };(r}t

Guarani 'GUA' n$ grn

Wayuu 'GUC’ Q\U guc

Gupapuyngu 'GUF' \O guf

Gujarati GUJ' O guj

Gusii 'GUE)\‘ guz

Haitian (Haitian Creole) 'HAT' hat

Haida ,.C AIQ' hai, hax, hdn

Halam (Falam Chin) ,-\U 'HAL' cfm

Harauti &~ |'HAR hoj

Hausa {\6\ '"HAU' hau

Hawaiian ~Q‘V 'HAW' haw

Haya Y 'HAY ' hay

Hazacagh 'HAZ' haz

Ij{ﬁu%er-Banna 'HBN' amf

Heste HE- ket

Herero 'HER' her

Hiligaynon 'HIL"' hil

Hindi 'HIN' hin

High Mari 'HMA' mrj

A-Hmao 'HMD ' hmd

Hmong 'HMN' hmn
68 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System

Language System
Tag

Corresponding ISO 639 ID (if applicable)

Hiri Motu '"HMO ' hmo
Hmong Shuat 'HMZ' hmz
Hindko '"HND' hno, hnd
Ho 'HO' hoc O
Harari 'HRI' har (\(]/J
Croatian 'HRV' hrv n‘(l/v
Hungarian 'HUN ' hun RO) v
Armenian 'HYE ' hye, hyw TN)
Armenian East HYEO hye k(b\‘
Iban 'IBA’ iba A
Ibibio 'IBB ibb s
Igbo '1BO ibo 4
Ido DO’ ido D
ljo languages 'TJO' iby, ijc, ije, ijn, ijo, ijs, &l&rokd, okr, orr
Interlingue 'ILE"’ ile , Q
Ilokano 'ILO"' ilo AW
Interlingua 'INA" ina X O\U‘
Indonesian 'IND" ind }\\\J
Ingush 'ING' inh, ~
Inuktitut 'INU” ik
Nunavik Inuktitut ‘INUK’ N ike, iku
Inupiat "IPK' N ipk
Phonetic transcription—IPA |IPPH \"QU
conventions N
Irish R O gle
Irish Traditional 'IRTO gle
Irula . }I*U"' iru
Icelandic ('\)SIJSL ' isl
Inari Sami N 'ISM' smn
Italian S [ita
Hebrew - C)v 'TWR' heb
Jamaican Craile)) 'TAM' jam
]apanesEO)\J 'JAN"' jpn
Java 'JAV' jav
Lojham 'JBO " jbo
ﬁmmchak 'ICT"' jet
A Y|yiddish T yid

O_) Ladino 'Tup’ lad
Jula 'TUL' dyu
Kabardian 'KAB' kbd
Kabyle KABO kab
Kachchi 'KAC' kfr
Kalenjin 'KAL' kln
Kannada 'KAN' kan
© ISO/IEC 2023 - All rights reserved 69

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System Language System Corresponding ISO 639 ID (if applicable)
Tag

Karachay 'KAR' krc

Georgian 'KAT' kat

Kawi (Old Javanese) ‘KAW’ kaw

Kazakh 'KAZ' kaz 0y
Makonde 'KDE" kde Q‘L
Kabuverdianu (Crioulo) 'KEA' kea A
Kebena 'KEB' ktb RO) 1
Kekchi 'KEK ' kek K3
Khutsuri Georgian 'KGE" kat k(b\‘
Khakass 'KHA' kjh A
Khanty-Kazim 'KHK' kca Aq‘l.v

Khmer 'KHM' khm G\; vV
Khanty-Shurishkar 'KHS' kca ‘\O.)V

Khamti Shan 'KHT' kht A

Khanty-Vakhi 'KHV' kca , Q

Khowar 'KHW ' khw N\

Kikuyu (Gikuyu) KIK ' kik o

Kirghiz (Kyrgyz) 'KIR' kir A ~

Kisii KIS’ kgs kss <&

Kirmanjki 'KIU ' kin A\

Southern Kiwai 'KID' kjd \\\\

Eastern Pwo Karen 'KJP' lgp\v

Bumthangkha 'KJZ"' j(‘]}z

Kokni 'KKN ’ 3 |kex

Kalmyk 'KLM' Q\U xal

Kamba 'KMB' \O kam

Kumaoni 'KMN\i\(}b kfy

Komo 'KMQ) kmw

Komso 'KMS' kxc

Khorasani Turkic ,.C KMZ' kmz

Kanuri ,-\U 'KNR' kau

Kodagu \%V 'KOD' kfa

Korean Old Ha N 'KOH' kor, okm

Konkani ~Q‘V 'KOK' kok

Komi ‘0‘(“ 'KOM' kom

Kikonga™ 'KON* ktu

ﬁ KONO kon

kémi-Permyak KOP- lcot

Korean 'KOR' kor

Kosraean 'KOS' kos

Komi-Zyrian 'KOZ' kpv

Kpelle 'KPL' kpe

Krio 'KRI' kri

Karakalpak 'KRK' kaa
70 © ISO/IEC 2023 - All rights reserved

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

ISO/IEC 14496-22:2019/Amd. 2:2023(E)

Language System

Language System
Tag

Corresponding ISO 639 ID (if applicable)

Karelian 'KRL' krl
Karaim 'KRM' kdr
Karen 'KRN' blk, bwe, eky, ghk, jkm, jkp, kar, kjp, kjt, ksw, kvl, kvq,
kvt kvakvy ks kynpdopworpwwwea —

Koorete 'KRT' kqy Aq‘ /D
Kashmiri 'KSH' kas ‘q>)'
Ripuarian KSHO ksh (\‘l/
Khasi 'KSI” kha R\
Kildin Sami 'KSM' sjd A8
S’gaw Karen 'KSW' ksw N7
Kuanyama 'KUA' kua n‘(. ;-
Kui 'KUI” kxu i
Kulvi 'KUL kfx OP
Kumyk 'KUM ' kum Y
Kurdish 'KUR' kur C, N
Kurukh 'KUU' kru A
Kuy KUY kdt O
Kwak'wala 'KWK' kwk N7
Koryak 'KYK' kpy, o
Western Kayah 'KYU' J@‘
Ladin 'LAD’ ~Jld
Lahuli 'LAH " «0" |bfu
Lak 'LAK' o9 |ibe
Lambani 'LAM' \Q\" Imn
Lao 'LAO" lao
Latin 'LATC) lat
Laz | Az 1zz
L-Cree ('\)SfCR ' crm
Ladakhi « - |'LDK’ Ibj
Lelemi S |'LEF’ lef
Lezgi - C)v 'LEZ' lez
Ligurian ~\J LI’ lij
Limburg_@g\d 'LIM' lim
Lingata\) 'LIN’ lin
Listy™ ‘LIS lis
&’{npung 'LJP"’ lip

A Y|Laki 'LKI' Iki

O.) Low Mari 'LMA' mhr

Limbu 'LMB' lif
Lombard 'LMO"' Imo
Lomwe LMW' ngl
Loma 'LOM" lom
Lipo 'LPO’ Ipo
Luri 'LRC' Irc, luz, bqi, zum
© ISO/IEC 2023 - All rights reserved 71

https://standardsiso.com/api/?name=f76d0eb20cee9d88d9fc9c033dc20b2c

