INTERNATIONAL ISO/IEC
STANDARD 20919

First edition
2016-04-01

Information technology —=Linear
Tape File System (LTFS) Format
Specification

Technologies de l'information — Spécification du format de kystéme
de fichier a bande magnétique

Reference number

@ m ISO/IEC 20919:2016(E)
Y=
©ISO/IEC 2016

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

Wwww.iso.org

ii © ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical

activity. ISO and IEC technical committees collaborate In fields of mutual interest.
international organizations, governmental and non-governmental, in liaison with ISO and, 1§
take part in the work. In the field of information technology, ISO and IEC have established
technical committee, ISO/IEC JTC 1.

Tihe procedures used to develop this document and those intended for its further maintena
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria nee
ne different types of document should be noted. This document was drafted in accordance w
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

—

Attention is drawn to the possibility that some of the elements ofithis document may be the
patent rights. ISO and IEC shall not be held responsible €or identifying any or all such
rights. Details of any patent rights identified during the development of the document will b¢

Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents].

ny trade name used in this document is information given for the convenience of users an
ot constitute an endorsement.

r an explanation on the meaning of ISO\'specific terms and expressions related to conf
agsessment, as well as information aboutISO's adherence to the World Trade Organization

inciples in the Technical ~/Barriers to Trade (TBT) see the fol
URL: www.iso.org/iso/foreword.html

o —

echnical committee ISO/IEQ]JTC 1, Information technology, in parallel with its approval by n
odies of ISO and IEC.

o

Other
C, also
a joint

1Ce are

Hed for
rith the

subject
patent
e in the

d does

ormity
(WTO)
lowing

bO/IEC 20919:2016 was prepared by SNIA and adopted, under the PAS procedure, bly joint

ational

© ISO/IEC 2016 - All rights reserved

1ii

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

=

SNIA

Advancing storage &
information technology

—
~r

Linear Tape File System (LTFS) Forma
Specification

Version 2.2.0

This document has been released-and approved by the SNIA. The SNIA believes that
the ideas, methodologies and technologies described in this document accurately
represent the SNIA goals and are appropriate for widespread distribution. Suggestion
for revision should be directed to http://www.snia.org/feedback/

[72)

SNIA Technical Position

December 21, 2013

© ISO/IEC 2016 - All rights reserved

http://www.snia.org/feedback/
https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Revision History

Revision Date Sections Originator: Comments
2.1.0 May 18, 2012 Entire Document | David Pease LaTeX version contributed by IBM

2.2.0reva January 15, 2013 Entire document | Arnold Jones Converted to Microsoft Word
2.20revb March 15, 2013 Entire document | Carl Madison Edits/Additions per TWG
2.2.0revc April 4, 2013 Entire document | Carl Madison Edits/Additions per TWG F2F
2.2[0Tevad [Vay 7, 2013 ERTIFe document | Cart viadison Diagram Reptacement/edits
2.2l0reve May 28, 2013 Entire document | Carl Madison F2F edits, misc edits
2.20revf | July16,2013 Entire document | Carl Madison Edits per TWG
2.2l0revg | July 23,2013 Entire document | Carl Madison Edits per TWG F2F
2.2l0revh | July 29,2013 Entire document | Carl Madison Edits per TWG

2.10revi July 30, 2013 Entire document | Carl Madison Edits per TWG.7/30/13 mtg
2.1.0revj August 13, 2013 Entire document | Carl Madison Edits per TWG 8/13/13 mtg
2.2l0revk August 27, 2013 Entire Document | Carl Madison Edits pef TWG 8/27/13 mtg.
2.2.0 SNIA December 21, 2013* Entire Document | Carl Madison *2.2.0'rev k formatted as a SNIA
Tefhnical Technical Position after SNIA

Pgsition membership approval.

March 14, 2013** **Additional editorial revisions

Sugpestion for changes or maodifications to this document shouldwe sent to the SNIA Linear Tape Filg
Sysfem Technical Work Group at http://www.snia.org/feedback’.

Chapges between v1.0 and v2.0.0

e |Incremented version number to 2.0.0 and updated'date to March 11, 2011.

¢ [mprovements in specification text to remoye ambiguity and clarify intention of the specification.
These changes were made at several locations throughout the document.

e [mprovements to clarify description 6fMAM parameters in Section 9 Medium Auxiliary Memory.

¢ [Removed reference to a specific-version of the Unicode standard in Section 6.5 Name pattern format.
This removes any requirement.fo use specific versions of Unicode support code in an
mplementation.

¢ [mproved description ef‘Name pattern format to remove ambiguity in Section 6.5 Name pattern
format.

¢ |Added description-of LTFS Format specification version numbering in Section 2.1 Versions.

e |Updated XML Schema for Label and Index to match version number format in Annex A and
Annex B

¢ |Addedsspecification of minimum and recommended blocksize value for LTFS Volumes to Section
7 A.2.LTFS Label.

Added definition of allowed version numbers to Section /.1.2 LT1FS Label and Section 6.2 Index.

Added definition of fileoffset tag in Section 8.2 Index.

Extended description in Section 5 Data Extents to support addition of fileoffset tag and associated
functionality.

Added definition of highestfileuid tag in Section 8.2 Index.

Added definition of fileuid tag in Section 8.2 Index.

2 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

http://www.snia.org/feedback/
https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Added definition of backuptime tag in Section 8.2 Index.

Incremented version number in Application Client Specific Information (ACSI) structure shown in 9.3
Use of Volume Coherency Information for LTFS. This increment allows identification of LTFS
Volumes written with a LTFS v1.0 compliant implementation. A widely used v1.0 implementation
wrote ambiguous ACSI values due to an implementation bug.

Added definition of extended attributes in the Itfs.* namespace in Annex C.

Added description for handling unknown XML tags in Index to Section 8.2.10 Managing LTFS

ToreoXeoT

Chahges between v2.0.0 and v2.0.1

¢ [ncremented specification version number to 2.0.1.

o |Updated specification date to August 17, 2011.

e [Expanded historical record of changes between revisions of LTFS Format Specification.

¢ [mproved description of constraints for two Indexes having the same generation number in Sectiof
4.4.1 Generation Number to make it clear that differences in access timelvalues is permitted betwgen
Indexes that are otherwise except for self pointer and index pointer values.

¢ |Added note in Section 4.4.1 Generation Number to explicitly state that Index generation numbers may
ncrease by integer values other than 1.

e [Expanded description of the Iltfs.sync extended attribute in-Arinex C . The expanded description
explicitly states that this extended attribute triggers a syncof the in-memory data to the storage
media. That is, the operation is analogous to a POSIX-sync operation.

Chahges between v2.0.1 and v2.1.0

¢ [ncremented specification version number to-2.1.0.

e |Updated specification date to October 18,°2012.

e |Added definition of symlink tag in Séction 8.2 Index.

o [Added example of symlink tag use in Annex E (informative) Complete Example LTFS Index.

¢ |Added symlink tag to Annex B:

e |Added description of “|tfs.veéndor.X.Y” extended attribute namespace in Annex C .

¢ JAdded description ef sSoftware metadata section in Annex C.

e |Added descriptionof drive metadata section in Annex C.

¢ [Added "ltfs.labelVersion” extended attribute in Annex C.

o [AddeditfsiindexVersion” extended attribute in Annex C

o |Added "ltfs.mediaEncrypted” extended attribute in Annex C .

. mprovead description or Itrs.mediastorageAlert exiended attripute in Annex C.

Changes between v2.1.0 and v2.2.0

e Incremented specification version number to 2.2.0.
o Updated specification date to July 16, 2013.

e Changed “2010” to “2013” in XML examples.

o Editorial Cleanup.

LTFS Format Specification V2.2.0 SNIA Technical Position 3

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Changed “extentinfo” definition in Section 8.2 Index.

Changed “symlink” definition in Section 8.2 Index.

Added additional paragraph to “symlink” definition in Section 8.2 Index.

Added general comments at start of Section 9 Medium Auxiliary Memory.
Added Section 9.4 Use of Host-type Attributes for LTFS.

Removed Section 9 Certification from document.

o [(Added “Itfs.mamBarcode” extended attribute in Annex C.4 Volume Metadata.

¢ [Added “Itfs.mamApplicationVendor” extended attribute in Annex C.4 Volume Metadata.

¢ [Added “Itfs.mamApplicationVersion” extended attribute in Annex C.4 Volume Metadata,

¢ |Added “ltfs.mamApplicationFormatVersion” extended attribute in Annex C.4 VolumeMetadata.

¢ [Added new Annex F Interoperability Recommendation and added File Spanning and File Permiss|ons
Subsections

Usage

The|SNIA hereby grants permission for individuals to use this document-for personal use only, and for
corgorations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced must be reproduced in its
entirety with no alteration, and,

2. Any document, printed or electronic,_in which material from this document (or any
portion hereof) is reproduced mustiacknowledge the SNIA copyright on that matefial,
and must credit the SNIA for granting permission for its reuse.

Othér than as explicitly provided above, youlmay not make any commercial use of this document, selllany
or this entire document, or distribute thissdocument to third parties. All rights not explicitly granted are
expressly reserved to SNIA.

Permission to use this documentfor‘purposes other than those enumerated above may be requested py
emdiling tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose; nature, and scope of the requested use.

Contacting SNIA

SNIA Web Site

Curfent SNIA-practice is to make updates and other information available through their web site at
http|//www.Snia.org.

SNIA Address

Requests for interpretation, suggestions for improvement and addenda, or defect reports are welcome.
They should be sent via the SNIA Feedback Portal at http://www.snia.org/feedback/ or by mail to the
Storage Networking Industry Association, 4360 ArrowsWest Drive, Colorado Springs, Colorado 80907,
U.S.A.

4 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

mailto:tcmd@snia.org
https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Disclaimer

The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use
of this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copjyright © Z0T3-20T4 Storage Networking Indusiry Association.
Acknowledgements
The|SNIA LTFS Technical Working Group, which developed and reviewed this specification;. would likg to
recqgnize the significant contributions made by the following members:
EMC Corporation........cccccceveeeiiis eeeie Don Deel
Hewlett-Packardccccccoviiiiiis e Chris Martin
IBM.. et e David Pease
.. Ed Childers
N2 7AYo o F RS David Slik
Oracle Corporation.........cccceeeees covviieeeenne Matthew Gaffney
.. Carlt Madison
Quantum Corporation........... ccccccceeeeeeain Paul Stone
SNIA e e S Arnold Jones
LTFS Format Specification V2.2.0 SNIA Technical Position 5

© ISO/IEC 2016 - All rights reserved

http://www.snia.org/feedback/
https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Contents
O [N Ao Yo T3 1o Y o T 10
A S 1ol 01 o1 TP PRPPTRPTPRTRPRPRTN 11
D B V=Y =1 (o] o 11
2 070141 (o] 1 4 1= (o7 =YY =N 12
I B Lt T T A ol g FR=Ta Yo AN o Yo] 1 £ SRR .13
G T N I 1Y 11 011170 1= F TR,) ST .13
0 o o] 1 Y/ o 1SRN R .15
4 IVOIUME LAYOUL ..eviiiieiieeiiiciiiieee e e s st e et e e e s s st ee e e e e e e s s snnteee e e e e e s s nnnnnneeee s #ETR N e e reeeeeeesssnnnnnnnnneeessnnnn .16
4.1 LTES PartitioNsS.....oooeeeeeeeeeeeee e N e .16
L I I S 0] 011 (U (1 £ ST S R .16
4.3 Partition LayOuULuu st Sk nnnnnnnnnnnnnnnnnnnnnnnnn A7
N | 0T 1= G = Yo | O S S .18
LI B L= L = G (=] 1 T .20
L T I 4 (= 0 A 1= .20
LIV = (=10 K [E] (= (=T e S .20
LT T o1 L= Y LU E] (=1 (=T [.22
(SR D= €= o] 1 = L .26
ST I = To o (=T o T8 o 1 = | S TR .26
ST 01 (=Y (o g (o] 1 1 1 = L A S RO .26
6.3 Extended attribute’value fOrmatcoooeeeiiii et e e .26
SR NPT 0 g TSN 0] 0 A L= o0 DN TP 27
6.5 Name PAEIrN fOrmMat ... e e e e e e e .27
6.6 SNG TOIMAL..... ettt e ettt e e s st e e e e sate e e e e enteeeeeanreeeeen .27
6.7, STIME STAMP FOMMAL ...eeeiiiie e e e e e e e s e e e e e e e e e e aannnees .28
LRI LU 1| 2% o T4 o F= 1 .28
A = o =1 B ol0] 1 1 = | AT 29
0 T =1 o 1= I 0 T3 =3 (T A 29
6 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

I Yo =3 Qo 11 = | TP 32
S 0 T [T [Q07 o 4 1] 1 (U [SRR 32
LS [T [TSRS 32

9 Medium AUXIHAIY MEMOTY ..iciii e e e e e s st e e e e e s e e e e e e s s sanb e e e aeeesasssnteeeeeeeeesnnsrnnneeeens 43
9.1 Volume Change REfErenCe..........cooiiiiiiiii e e 43
92 \olume (‘nhprpnr‘y Information 44
9.3 Use of Volume Coherency Information for LTFScoooiiiiiiie e DO .44
9.4 Use of Host-type Attributes for LTFS ... b .46

Annex A (normative) LTFS Label XML SChema........cvvieiiiiciiiiiiieee s e N e .48

Annex B (normative) LTFS Index XML SChema........ccccoiiiiiiiiiiiiinniiiieeee St .50

Annex C (normative) Reserved Extended Attribute definitions......... .5\ .53
C.1 Software Metadataccceeiiiiiiiiii e S .53
C.2 Drive Metadatal.....c.coouiiiiiiiie eyt e+t e et e et e e et e e e enre e e e e anreeeean .53
C.3 Object Metadata........ccoeiiiiiiiiiiiiiee e N e st e e e e e e e e e e e s e e e e e e e e e .53
C.4 Volume Metadatalooiiiiiiie e e ettt ettt e e e st e e e st e e e st e e e e enbeeeeeanreeaeen .54
C.5 Media Metadata.oooiiiiiie e et e e e e e e e .55

Annex D (informative) Example of Valid Simple Complete LTFS Volumeccccccvvveeiviiciiieeneeennn, .58

Annex E (informative) Complete Exanmiple LTFS INAEX ...ciccuviiiiieei et e e snee e e e .59

Annex F (normative) Interoperability RecommendationsScccceevviiiiiiiiee e .63
F.1 Spanning Files acress-Multiple Tape Volumes in LTFS63
F.2 File Permissions in LTFS ... et e e e e e e e s e e e e e e e e enneeeeeeas .66

LTFS Format Specification V2.2.0 SNIA Technical Position 7

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

List of Figures

Figure 1 — LTFS Partition..........uueeiiiieiee et 16
Figure 2 — Label CONSIIUCEoiii e e 16
Figure 3 — INdeX CONSIIUCEeeii e 17
Figure 4 — Partition LayOUL.............u s 17
Figure 5 — Complete partition containing data..................ccciiiiiiicce e (5 .18
Figure 6 — Back Pointer example.............oooiiiiiiiiiiiie e 19
Figure 7 — Extent starting and ending with full BIOCKcccooiiiiiiiiii e B, .21
Figure 8 — Extent starting with full block and ending with fractional block «.v............... 21
Figure 9 — Extent starting and ending in mid-blockccccoveeei e bdn . .21
Figure 11 — File contained in two Data Extents............ccooo e, 22
Figure 10 — File contained in a single Data Extent................ .. 5 oo, 22
Figure 12 — Shared Blocks exampleccoooviiiiiiiiiii e tee S e .23
Figure 13 — Sparse files exampleccooeiiiiiiiiic e dfB3Neeiceeeeeeeeeeee .24
Figure 14 — Shared data eXample.............uuuiiimmen e S .24
Figure 15 — Label CONSIrUCEuuuiiiiiii s .29
Figure 16 — INdeX CONSITUCE ..o e e e .32
Figure D. 1 — Content of a simple LTFSWOIUMEcooiiiiii e .58
8 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

List of Tables

Table 1 — Version elemMents 11
Table 2 — Version COMPAriSONSciiiiiiiiiiiiiiee e e e e e e e e e et e e e e aeeeeanaes 12
Table 3 — Extent list entry starting and ending with full block ..., 21
Table 4 — Extent list entry starting with full block and ending with fractional block 21
Tahle 5 — Extent list entry starting and ending in mid-block 22
Table 6 — Extent list entry for file contained in a single Data Extent.........................h.% .22
Table 7 — Extent list entry for a file contained in two Data Extentscenbeennns 22
Table 8 — Extent lists for Shared Blocks exampleccooviiiiiiiiiiiieec et .23
Table 9 — Extent list for sparse files example...........ccooovveeeeiiiiiieiiee S, .24
Table 10 — Extent lists for shared data exampleccccooveiiiiiicc e LT, .25
Table 11 — Creator format definitions............ccooooeiiii e .26
Table 12 — Prohibited characters for name format % s 27
Table 13 — Characters which should be avoided for naméformat..............ccccccvvvvevinnnins 27
Table 14 — Time stamp format...........oooooiiii e S e .28
Table 15 — VOL1 Label Construct..........oooueoie e 800 .29
Table 16 — Volume Coherency Information... ol e, 44
Table 17 — ACSIformat for LTFS ... e e e 45
Table 18 — Relevant Host-type Attributes for LTFS.........ccoooiiiiiiic i 46
Table 19 — Example of Host-type AtbULES ..o A7
Table C. 1 — Reserved extended attribute definitions: Software metadata...................... .53
Table C. 2 — Reserved extended attribute definitions: Drive metadata............................ .53
Table C. 3 — Reserved extended attribute definitions: Object metadata......................... .54
Table C. 4 — Reserved extended attribute definitions: Volume metadata........................ .54
Table C. 5 — Reserved extended attribute definitions: Media metadata55
LTFS Format Specification V2.2.0 SNIA Technical Position 9

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

1 Introduction

This document defines a Linear Tape File System (LTFS) Format separate from any
implementation on data storage media. Using this format, data is stored in LTFS Volumes. An
LTFS Volume holds data files and corresponding metadata to completely describe the directory
and file structures stored on the volume.

The LTFS Format has these features:

- nl TES VVolume can be mounted and volume content accessed with full tise of the data
without the need to access other information sources.

- [Data can be passed between sites and applications using only the information written to an
L TFS Volume.

= [Files can be written to, and read from, an LTFS Volume using standard POSIX file
pperations.

The|LTFS Format is particularly suited to these usages:

« [Data export and import.

- [Data interchange and exchange.

* [irect file and partial file recall from sequential access media.

< [Archival storage of files using a simplified, self-contained or “self-describing” format on
sequential access media.

10 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

2 Scope

This document defines the LTFS Format requirements for interchanged media that claims LTFS
compliance. Those requirements are specified as the size and sequence of data blocks and file marks on
the media, the content and form of special data constructs (the LTFS Label and LTFS Index), and the
content of the partition labels and use of MAM parameters.

The data content (not the physical media) of the LTFS format shall be interchangeable among all data
storage systems claiming conformance to this format. Physical media interchange is dependent on
compatibility of physical media and the media access devices in use.

NOTE: This document does not contain instructions or tape command sequences to build the LTFS structure.

2.1) Versions
Thig document describes version 2.2.0 of the Linear Tape File System (LTFS) Format Specification.

The|version number for the LTFS Format Specification consists of three integer elements separated by
peripd characters of the form M.N.R, where M, N , and R are positive integers.orzero. Differences in the
vergion number between different revisions of this specification indicate the-nature of the changes mage
between the two revisions. Each of the integers in the format specification ‘aré incremented according to
Table 1.

Table 1 — Version elements

Element | Description

M Incremented when a major update has been made to the LTFS Format
Specification. Major updates are defined asany change to the on-media format or
specification semantics that are expected\to-break compatibility with older
versions of the specification.

N Incremented when a minor update_has been made to the LTFS Format
Specification. Minor updates are‘defined as any change to the on-media format or
specification semantics that.is"not expected to break compatibility with older
versions of the specification that have the same value for M in the version
number.

R Incremented when(textual revisions are made to the LTFS Format Specification.
Textual revisions are defined as revisions that improve the clarity of the
specification document without changing the intent of the document. By definition,
minor changes do not alter the on-media format or specification semantics.

NOTE 1: When.any element of the specification version number is incremented, all sub-ordinate elements to the right are reset o
zero|For example, if the version is 1.0.12 and N is incremented to 1, then R is set to zero resulting in version 1.1.0.

NOTE @2:-The first public version of this document used version number 1.0. This value should be interpreted as equivalent to 1)0.0

in the-versicn-numbering-defined-in-this-document

LTFS Format Specification V2.2.0 SNIA Technical Position 11

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

The result of comparison between two LTFS version numbers M,.N,.R, and Mg .N .R; is defined in

Table 2.
Table 2 — Version comparisons
Conditional Description
Ma < Mg Ma.Na.Rais an earlier version than Mg .Ng.Rs.
Ma = Mgand Ma.Na.Rais an earlier version than Ms.Ng.Rs.
Ma < N
Mj = Mg and Ma.Na.Ra is an earlier version than Ms.Ng.Rs . However, as defined
Njg = NB and above, changes that result only in a different R value are descriptive
RA<Rs changes in the specification rather than on media changes.
2.2l Conformance

Recprded media claiming conformance to this format shall be in a consistent state when interchanged|or

stored. See Section 3.1.4.

Anylimplementation conforming to this specification should be able to correctlyread Label and Index
strugtures from all prior versions of this specification and write Label and, Index structures conforming {o
the gescriptions in this document. The current Label and Index structures are defined in Section 7 Label
Format and in Section 8 Index Format.

NOTE: Where practical, any implementation supporting a given version value for'M should endeavor to support LTFS volumes With

versipn numbers containing higher values for N and R than those defined at the'time of implementation.

12

SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

3

ISO/IEC 20919:2016(E)

LTFS Format Specification

Definitions and Acronyms

For the purposes of this document the following definitions and acronyms shall apply.

3.1

Definitions

3.1.1
Block Position

The
with

The

3.1.p
Complete Partition

An |
in th
3.1.

Con
A c(

3.1.

Con
Av

Partition has a back pointer to the last Index Construct in"the Data Partition.

3.1.

Dat@ Extent

A cq

3.1.

Dat
An |

3.1.
File

A group of logically-rélated extents together with associated file metadata.

3.1.
files

n that partition.

block position of an Index is the position of the first logical block for the Index.

L TFS partition that consists of an LTFS Label Construct and a Content Area,where the last cons
e Content Area is an Index Construct.

B

tent Area
ntiguous area in a partition, used to record Index Constructs and‘Data Extents.

1

sistent State
blume is consistent when both partitions are complete and the last Index Construct in the In

D

ntiguous sequence of recorded blocks.

s

D

h Partition
L TFS partition primarily used for data files.

y

B
ystem'sync

position or location of a recorded block as specified by its LTFS Partition ID and logical block number

ruct

dex

An

peration during which all cached file data and metadata is flushed to the media.

3.1.9

gen

eration number

A positive decimal integer which shall indicate the specific generation of an Index within an LTFS volume.

LTFS Format Specification V2.2.0 SNIA Technical Position

© ISO/IEC 2016 - All rights reserved

13

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

3.1.10
Index

A data structure that describes all valid data files in an LTFS volume. The Index is an XML document
conforming to the XML schema shown in Annex B (normative) LTFS Index XML Schema.

3.1.11

Index Construct
A data construct comprised of an Index and file marks.

3.1.12

Index Partition
An ILTFS partition primarily used to store Index Constructs and optionally data files.

Any| of three defined constructs that are used in an LTFS partition. The LTFS constructs are: Lpbel

LTHS Label

A data structure that contains information(about the LTFS partition on which the structure is stored. [The
LTHS Label is an XML document conforming to the XML schema shown in Annex A (normative) LITFS
Labgl XML Schema.

3.1.17
LTHS Partition

A tgpe partition that is_payt of an LTFS volume. The partition contains an LTFS Label Construct apd a
Content Area.

LTHS Volume

A pair of LIFS partitions, one Data Partition and one Index Partition, that contain a logical set of files|and
diregtofies. The pair of partitions in an LTFS Volume shall have the same UUID. All LTFS partitions ip an
LTFS volume are related partitions.

3.1.19
Medium Auxiliary Memory

An area of non-volatile storage that is part of an individual storage medium. The method of access to this
non-volatile storage is standardized as described in the T10/SPC-4 standard.

14 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

3.1.20

Partition Identifier (Partition ID)
The logical partition letter to which LTFS data files and Indexes are assigned.

The linkage between LTFS partition letter and physical SCSI partition number is determined by the SCSI
partition in which the LTFS Label is recorded. The LTFS partition letter is recorded in the LTFS Label
construct, and the SCSI partition number is known by the SCSI positional context where they were
read/written.

3.1.pT
spafse file

A file that has some number of empty (unwritten) data regions. These regions are not stéred on| the
storage media and are implicitly filled with bytes containing the value zero (0x00).

3.1.p2
uuip
Uniyersally unique identifier; an identifier use to bind a set of LTFS partitions inte;an LTFS volume.

3.1.P3

Volime Change Reference (VCR)
A value that represents the state of all partitions on a medium.

3.2| Acronyms

ASCII American Standard Code for Information Interchange
CM Cartridge Memory
DCE Distributed Computing Environment
ISO International Organization for-Standardization
LTFS Linear Tape File System
MAM Media Auxiliary Memory
NFC Normalization Form~€anonical Composition
OSF Open Software-Foundation
POSIX Portable @Qperating System Interface for Unix
T10/SSC-4 ISO/IEC14776-334, SCSI Stream Commands - 4 (SSC-4) [T10/2123-D]
uTC Coordinated Universal Time
UTF-8 8-bit UCS/Unicode Transformation Format
uuiD Universally Unique ldentifier
W3C World Wide Web Consortium
XML Extensible Markup Language
LTFS Format Specification V2.2.0 SNIA Technical Position 15

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

4 Volume Layout

An LTFS volume is comprised of a pair of LTFS partitions. LTFS defines two partition types: data partition
and index partition. An LTFS volume shall contain exactly one Data Partition and exactly one Index
Partition.

4.1 LTES Partitions

E sakids H LTES 1 loall P 4 1 [ey & bfall ol lo o 4 PR Tlo
acn PaAltitiivuim i ditT L TT O VUTUTTIT STIAlT LUTTISIST UT a LdUTT UUTTOUULL TUTTUWTU Uy d OUTTITTIU ATTa. TTIS

logi¢al structure is shown in Figure 1.

Label Construct Content Area

Figure 1 — LTFS Partition

The|Label Construct is described in Section 4.2 LTFS Constructs and in"Section 7 Label Format. The
Content Area contains some number of interleaved Index Constructs.and Data Extents. These constrycts
are fescribed in Section 4.2 LTFS Constructs and in Section 8 Index Format. The precise layout of thg
partftions is defined in Section 4.3 Partition Layout.

4.2/ LTFS Constructs

LTHS constructs are comprised of file marks and records. These are also known as ‘logical objects’ as
fourld in T10 SSC specifications and are not described here. An LTFS volume contains three kinds of
constructs.

= A Label Construct contains identifying information for the LTFS volume.

- A Data Extent contains file data written as sequential logical blocks. A file consists of zero
or more Data Extents plus associated metadata stored in the Index Construct.

< An Index Construct contaifns\an Index, which is an XML data structure which describes the
mapping between files-and Data Extents.
4.2.1 Label Construct

Each partition in an LTES volume shall contain a Label Construct with the following structure. As shown in
Figyre 2, the construct shall consist of an ANSI VOL1 label, followed by a single file mark, followed by
one|record in LTFS Label format, followed by a single file mark. Each Label construct for an LTFS voldme
shall contain identical information except for the “location” field of the LTFS Label.

The|content\of the ANSI VOL1 label and the LTFS Label is specified in Section 7 Label Format.

<
VOL1 \| LTFS /
Label Label

Figure 2 — Label Construct

16 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

4.2.2 Data Extent

A Data Extent is a set of one or more sequential logical blocks used to store file data. The “blocksize” field
of the LTFS Label defines the block size used in Data Extents. All blocks within a Data Extent shall have
this fixed block size except the last block, which may be smaller.

The

use of Data Extents to store file data is specified in Section 5 Data Extents.

4.2.3 Index Construct

Figure 3 shows the structure of an Index Construct. An Index Construct consists of a file mark, followed

by gn Index, followed by a file mark. An Index consists of a record that follows the same rules as a Dafa

Extgnt, but it does not contain file data. That is, the Index is written as a sequence of one or more logi
blogks of size “blocksize” using the value stored in the LTFS Label. Each block in this sequence shall

have this fixed block size except the last block, which may be smaller. This sequence of blocks.record
the |ndex XML data that holds the file metadata and the mapping from files to Data Extents."\The Index
XML data recorded in an Index Construct shall be written from the start of each logical bleck used. Th

cal

S

t

is, Index XML data may not be recorded offset from the start of the logical block.
File\Mark File Mark

\

\ Index /

Figure 3 — Index Construgct
Indgxes also include references to other Indexes in the volume. References to other Indexes are used to
maiptain consistency between partitions in a volume. These references (back pointers and self pointets)
are fescribed in Section 4.4 Index Layout.
The|content of the Index is described in Sectiop. 8 Index Format.
4.3| Partition Layout
Thig section describes the layout of an*TFS Partition in detail. An LTFS Partition contains a Label
Construct followed by a Content Area." The Content Area contains zero or more Data Extents and Indgx
Constructs in any order. The last'construct in the Content Area of a complete partition shall be an Indgx
Construct.
Figdre 4 illustrates an empty complete partition. It contains a Label Construct followed by an Index
Consstruct. This is the simplest possible complete partition.

File Mark File Mark
\ i
VOL1 || LTFS ||/ -
Label Label | X
A" JE—|
/ \
File Mark File Mark

Figure 4 — Partition Layout

LTFS Format Specification V2.2.0 SNIA Technical Position 17

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)
LTFS Format Specification
Figure 5 illustrates a complete partition containing data. The Content Area on the illustrated partition

contains two Data Extents (the first extent comprising the block ‘A’, the second extent comprising blocks
‘B’ and ‘C’) and three Index Constructs.

File Mark File Mark File Mark File Mark
X \ \ \
VoL \ LTFS Index A\ Index B C \ Index
Label Label | \ y f|
/ \ / /

| | nnarl: F|Ie anFli F”E panIi F”e anF'li
LUBLLA— LA

Figure 5 — Complete partition containing data

NOTE: There must not be any additional data trailing the end of the VOL1 Label, the LTFS Label, nor any Index'en‘an LTFS
Volufne. The Label Construct must be recorded starting at the first logical block in each partition.

4.4 Index Layout

o

Each Index data structure contains three pieces of information used to verify the'\consistency of an LTF
volume.

= A generation number, which records the age of this Index relative'to other Indexes in the
volume.

= A self pointer, which records the volume to which the Indéx belongs and the block position
of the Index within that volume.

= A back pointer, which records the block position of the last Index present on the Data
Partition immediately before this Index was written.

4.4.1 Generation Number

Each Index in a volume has a generation numier, a non-negative integer that increases as changes are
made to the volume. In any consistent LTFS volume, the Index with the highest generation number on|the
volume represents the current state of the'entire volume. Generation numbers are assigned in the
following way:

e [Given two Indexes on a partition, the one with a higher block position shall have a generation nuniber
greater than or equal to that of the one with a lower block position.

e [Two Indexes in an LTFS volume may have the same generation number if and only if their contenfs
are identical except forthese elements:

E access time values for files and directories (described in Section 8.2),

the self pointer (described in 4.4.2), and
the back-pointer (described in 4.4.3).

NOTE: Thevalue of the generation number between any two successive Indexes may increase by any positive integer value. That
is, the magnitude of increase between any two successive Indexes is not assumed to be equal to 1.

Thelfirsf Index on an I TES Volume shall be generation number ‘1’

4.42 Self Pointer

The self pointer for an Index is comprised of the following information:
e The UUID of the volume to which the Index belongs

e The block position of the Index

The self pointer is used to distinguish between Indexes and Data Extents. An otherwise valid Index with
an invalid self pointer shall be considered a Data Extent for the purpose of verifying that a volume is valid

18 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

and consistent. This minimizes the likelihood of accidental confusion between a valid Index and a Data
Extent containing Index-like data.

4.4.3 Back Pointer
Each Index contains at most one back pointer, defined as follows.

- If the Index resides in the Data Partition, the back pointer shall contain the block position of
the preceding Index in the Data Partition. If no preceding Index exists, no back pointer shall
be stored in this Index. Back pointers are stored in the Index as described in Section 8.2.

e [f the Index resides in the Index Partition and has generation number N then the back pointer
or the Index shall contain either the block position of an Index having generation number N
n the Data Partition, or the block position of the last Index having at most generation number
-1 in the Data Partition. If no Index of generation number N-1 or less exists in the Data
artition, then the Index in the Index Partition is not required to store a back pointer.

. n a consistent volume, the final Index in the Index Partition shall contain a back ‘pointer to
he final index in the Data Partition.

. s a consequence of the rules above, no Index may contain a back pointerto itself or to an
Index with a higher generation number.

On & consistent volume, the rules above require that the Indexes on the-Data Partition and the final Ingdex
on the Index Partition shall form an unbroken chain of back pointers<Figure 6 illustrates this state.

File Mark File Mark Fite Mark File Mark

f [
Index VOL1 \ LTFS |/ \ /

Paftition | Label || Label Index

File Mark File Mark File Mark
\ VoAYT N N /

Da}ta VOLA1 \ LTFS Index Index Index |f
Paftition | [abel Label / ' - \\
7 7 1 \ N

File-Mark File Mark File Mark File Mark File Mark

Figure 6 — Back Pointer example

LTFS Format Specification V2.2.0 SNIA Technical Position 19

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

5 Data Extents

A Data Extent is a set of one or more sequential records subject to the conditions listed in Section 4.2.2
Data Extent. This section describes how files are arranged into Data Extents for storage on an LTFS
volume. Logically, a file contains a sequence of bytes; the mapping from file byte offsets to block
positions is maintained in an Index. This mapping is called the extent list.

5.1 Extent Lists

A filE"WIith zero size has no extent list.

Each entry in the extent list for a file encodes a range of bytes in the file as a range of contiguous.bytes in
a Data Extent. An entry in the extent list is known as an extent. Each entry shall contain the following
information:

. artition 1D — partition that contains the Data Extent comprising this extent.

. tart block (start block number) — block number within the Data Extent where the content for this
xtent begins.

. yte offset (offset to first valid byte) — number of bytes from the beginning of the start block to the
eginning of file data for this extent. This value shall be strictly less than-the size of the start block
he use of byte offset is described in Section 5.2.3 Starting and ending Data Extent in mid-block.

. yte count — number of bytes of file content in this Data Extent:

o f[ile offset — number of bytes from the beginning of the file to'the beginning of the file data recorded in
his extent.

NOTE: Version 1.0 of this specification did not explicitly include file offsets in the extent list. When interpreting LTFS Volumes written
base[l on the Version 1.0 specification, the file offsets shall be determined as follows.
The first extent list entry begins at file offset 0.
If an extent list entry begins at file offset N and contains K bytes, the following extent list entry begins at file offset N H{K.

Thesk file extent rules for version 1.0 of the specification,necessarily imply that the order of extents recorded in the Index shall be
presg¢rved during any subsequent update of the Index to another version 1.0 Index.

The ipclusion of the File Offset value for each extent.starting from version 2.0.0 of this specification removes the significance of|the
ordet in which extents are recorded in the Index:

Implementers are encouraged to.record extents in the same logical order as they exist in the represented
file.

In the extent list for any file;no“extent may contain bytes that extend beyond the logical end of file. Th
logi¢al end of file is defined-by the file length recorded in the Index. Also, in any extent list for any file,
therg shall not exist any'pair of extents that contain overlapping logical file offsets. That is, no extent is
alloyved to logically©verwrite any data stored in another extent.

14

An gxtent list entry shall be a byte range within a single Data Extent; that is, it shall not cross a boundary
between twoData Extents. This requirement allows a deterministic mapping from any file offset to the
blodk position*where the data can be found. On the other hand, two extent list entries (in the same file|or
in different files) may refer to the same Data Extent.

5.2 Extents lllustrated

This section illustrates various forms of extent list entries and the mapping from files to these extents. The
illustrations are not exhaustive. Other combinations of starting and ending blocks are possible.

The LTFS Partition ID is an essential element of an extent definition. For simplicity, the LTFS Partition ID
and File Offset are not shown explicitly in the extents lists illustrated in Table 3, Table 4, and Table 5.
Note that not all extents in an extent list shall be on the same partition.

20 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)
LTFS Format Specification
5.2.1 Starting and ending Data Extent with full block

Figure 7 illustrates an extent of 3 full size blocks contained within a Data Extent of 3 blocks, N through
N+ 2.

N N+1 N+2

Figure 7 — Extent starting and ending with full block

Thelextent list entry for this extent is shown in Table 3.

Table 3 — Extent list entry starting and ending with full block

Start Block |Offset |Length
N 0 3 x Blk

NOTE: Blk is the length of a full-sized block.

5.2.p Starting Data Extent with full block and ending with fractional block

Figdre 8 illustrates an extent of 2 full-size blocks and one fractionalblock of K bytes, contained within &
Data Extent of 2 full size blocks N and N + 1 and one fractional block N + 2.

K bytes
I_I-—'_l

N N+1 N+2

Figure 8 — Extent starting with fulhblock and ending with fractional block

Thelextent list entry for this extent is shown;in Table 4.

Table 4 — Extent list entry starting with full block and ending with fractional block

Start Block |Offset Length
N 0 (2 x Blk) + K

NOTE: K is the length of the*fractional block, where K < Blk

5.2.8 Starting'and ending Data Extent in mid-block

Figyre 9 illustrates an extent smaller than 3 blocks, contained within a Data Extent of 3 full size blocks]
Valig data-begins in block N at byte number J and continues to byte number K of block N + 2. The last
blogk of\the extent, block N + 2, may be a fractional block.

J bytes K bytes
l"'l I_‘_I

§ N N+1 N+2T¢

Figure 9 — Extent starting and ending in mid-block

LTFS Format Specification V2.2.0 SNIA Technical Position 21

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

The extent list entry for this extent is shown in Table 5.

Table 5 — Extent list entry starting and ending in mid-block

Start Block |Byte Offset Byte Count
N J (Blk-J)+Blk+K

5.3(HesHustrated

Thig section illustrates various possible extent lists for files. These illustrations are not exhaustive; oth
compbinations of extent geometry and ordering are possible. The extents shown in this section are‘always
displayed in file offset order, but they may appear in any order on a partition, or even in different

partjtions. As in the previous section, Partition IDs are omitted for simplicity. Unless otherwise noted these
examples illustrate non-sparse files that have all file data written to the media.

N
=

5.3.1 Simple Files

Figyre 10 illustrates a file contained in a single Data Extent of three blocks. The'data fills the first two
blodks and K bytes in the last block. The last block of the extent, block N + 2, may be a fractional block.
Thidg file is recorded as a regular (non-sparse) file. See Table 6.

K bytes
l__l

N N+1 N+2%

Figure 10 — File contained in a single DataExtent

Table 6 — Extent list entry for_file contained in a single Data Extent

Start Block |Byte Offset”| Byte Count |File Offset
N 0 (2 x Blk) + K 0

Figyre 11 illustrates a file contained in two Data Extents of three blocks each. The data fills the first twp
blodks of extent N and K bytes of block N + 2, and the first two blocks of extent M and L bytes of bloc M
+ 2.|The last block of each extent, block N + 2 and M + 2, may be fractional blocks. This file is recorded
as g regular (non-sparsg)file. Table 7 shows file details.

K bytes L bytes
I_I_l I_I_l

N N+1 N+2 % M M+1 M+2%

Figure 11 — File contained in two Data Extents

Table 7 — Extent list entry for a file contained in two Data Extents

Start Block |Byte Offset | Byte Count File Offset

N 0 (2 x Blk) + K 0
M 0 (2 xBlk) + L (2 xBlk) + K
22 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

5.3.2 Shared Blocks

Figure 12 illustrates two full-sized blocks which are referenced by three files. Blocks may be shared
among multiple files to improve storage efficiency. File 1 uses the first K bytes of block N . File 2 uses Q
bytes in the mid part of block N, and (Blk — R) bytes at the end of block N + 1. File 3 uses the last (Blk -
P - Q) bytes at the end of block N and the first T bytes of block N + 1.

T
—

L
NARRLRNAY

"=

File3
File2
File1

Figure 12 — Shared Blocks example

The extent lists for files 1, 2, and 3 are shown in Table 8.

Table 8 — Extent lists for Shared Blocks example

Start Block |Byte Offset Byte Count File Offset
File 1 N 0 K 0
File 2 N P Q 0
N+1 R Blk - R Q
File 3 N P+Q Blk-P-Q+T 0

NOTE: If N were a fractional block, File 3 would map:to two entries in the extent list. As illustrated,
blocH N is a full block, and File 3 may be mapped tothe single extent list entry shown above.
Alterpatively, because blocks may always be treated as independent Data Extents, File 3 could be
mapped to two entries in the extent list, ope\entry per block (N and N + 1).

5.3.8

Thellength of a file, as recorded in the Index, may be greater than the total size of data encoded in thgt
file's extent list. A file may/also have non-zero size but no extent list. In both of these cases, all bytes fot
encpded in the extentlist shall be treated as zero (0x00) bytes.

Sparse Files

Figyre 13 illustrateés a sparse file that is contained in two Data Extents. In this figure, all white areas of|the
file are filled with bytes that are set to zero (0x00). The file starts with T bytes with value zero(0x00). The

firstlextentstores K bytes of data which fills the file from byte T to T + K. The file contains R bytes with
value zero/(0x00) from file offset T+ Kto T + K+ R. The second extent contains Q file bytes representing
the file.content from file offset T+ K+ Rto T+ K+ R + Q. The end of the file from file offset T+ K+ R|+ Q

LTFS Format Specification V2.2.0 SNIA Technical Position 23

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

File

Extents

LTFS Format Specification

B\

T
5

T
K

NS

Figure 13 — Sparse files example

Thelextent list for this file is shown in Table 9.

NOTE 1: Version 1.0 of this specification, implied zeros could only appear at the end of a file; other types of sparse files were npt

Table 9 — Extent list for sparse files example

Start Block |Byte Offset |Byte Count |File Offset
N S K T
N+1 0 Q T+ KHR

suppprted. When appending to the end of a file that is to be stored on a volume iricompliance with version 1.0 of this specificatfon,

any ifnplied trailing zero bytes in the file must be explicitly written to the media to-avoid leaving holes in the extent list for the file|

NOTE 2: Version 1.0 of this specification did not support sparse files.

5.3.4

Figyre 14 illustrates four Data Extents which are-partly shared by two files. Overlapping extent lists may

Shared Data

be ysed to improve storage efficiency.

NOTE: Methods to implement data deduplication are‘beyond the scope of this document. Implementations must read files with

overlppping extent lists correctly, but they are nét required to generate such extent lists.

In Flgure 14, File 1 uses all blocks in Data Extents N, M, and R. File 2 uses some of the blocks in Data

Extents N, R and V. The extentlists for the two files are shown in Table 10. The two files share somqg of

the

fata in blocks N, N+ 1, N+2, R+1and R + 2.

File 2
File 1<) l l i
B B2 AR
N | N+t [N+2 M | M+1 R | R+1 | R#2 V| v+
— e e —
K P Q S

Figure 14 — Shared data example

The extent lists for files 1 and 2 are shown in Table 10.

24

SNIA Technical Position

LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Table 10 — Extent lists for shared data example

Start Block |Byte Offset Byte Count File Offset

File N 0 3 x Blk 0
1 M 0 2 x Blk 3 x Blk

R 0 3 x Blk (3 x Blk) + (2 x Blk)
File N K (Blk — K) + Blk + P 0
2 R+1 Q (Blk - Q) + Blk Blk + (Blk - K) + Blk + P

% 0 S (Blk - K) + Blk + P + (Blk — Q) + Blk
LTFS Format Specification V2.2.0 SNIA Technical Position 25

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

6 Data Formats

The LTFS Format uses the data formats defined in this section to store XML field values in the Index
Construct and Label Construct.

6.1 Boolean format

Boolean values in LTFS structures shall be recorded using the values: “true”, “1”, “false”, and “0”. When

t 4o 1 g 2 A Ll lo 1 1 : +al ol ba Lo + ol | ol ! ta it
sel o me-varoes—trae—of T, TS DoUICalt vaiutT 1S5 LCUTTSITUTTTU TU DT ST Al'fU CUTISITUTTTU U TVAlualt tu

truel When set to the values “false” or “0”, the boolean value is considered to be unset, and consideref to
evaluate to false.

6.2| Creator format

LTFS creator values shall be recorded in conformance with the string format defined inySection 6.6 Stfing
format with the additional constraints defined in this section.

LTHS creator values shall be recorded as a Unicode string containing a maximuriof 1024 Unicode code
poirnts. The creator value shall include product identification information, the gpérating platform, and the
namje of the executable that wrote the LTFS volume.

An ¢xample of the recommended content for creator values is:
IBM LTFS 1.2.0 - Linux - mkltfs

The|recommended format for a creator value is a sequence of.\values separated by a three character
separator. The separator consists of a space character, followed by a hyphen character, followed by
anofher space character. The recommended content for the creator value is Company Product Versioh -
Platform - binary name where definitions are as definediin"Table 11.

Table 11 — Creator format definitions

Symbol Description
Company Product Identifies'the product that created the volume.
Version
Platform Identifies the operating system platform for the product.
binary name [dentifies the executable that created the volume.

Any|subsequent data in the-Creator format should be separated from this content by a hyphen charactgr.

6.3| Extended attribute value format
An e¢xtended attribute value shall be recorded as one of two possible types:

1. Thetext” type shall be used when the value of the extended attribute conforms to the format
described in Section 6.6 String format. The encoded string shall be stored as the value of
the extended attribute and the type of the extended attribute shall be recorded as “text”.

2. The “base64” type shall be used for all values that cannot be represented using the “text”
type. Extended attribute values stored using the “base64” type shall be encoded as base64
according to RFC 4648, and the resulting string shall be recorded as the extended attribute
value with the type recorded as “base64”. The encoded string may contain whitespace
characters as defined by the W3C Extensible Markup Language (XML) 1.0 standard (space,
tab, carriage return, and line feed). These characters shall be ignored when decoding the
string.

26 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

6.4 Name format

File and directory names, and extended attribute keys in an LTFS Volume shall conform to the naming
rules in this section.

Names shall be valid Unicode and shall be 255 code points or less after conversion to Normalization
Form C (NFC). Names shall be stored in a case-preserving manner. Since names are stored in an Index,
they shall be encoded as UTF-8 in NFC. Names may include any characters allowed by the W3C
Extensible Markup Language (XML) 1.0 standard except for the those listed in Table 12.

Table 12 — Prohibited characters for name format

Character |Description
U+002F |slash
U+003A | colon

Note that the null character U+0000 is disallowed by W3C XML 1.0. See W3C XML.1.0 for a full list of]
disallowed characters. The characters listed in Table 13 are allowed, but they-should be avoided for
reagons of cross-platform compatibility.

Table 13 — Characters which should be avoided for.name format

Character Description
U+0009, U+000A and U+000D | control codes
u+0022 double quotation
U+002A Asterisk
U+003F guestion mark
U+003C less than sign
U+003E greater than sign
U+005C Backslash
U+007G vertical line

6.5 Name pattern format
File|[name patterns in data\placement policies shall be valid names as defined in Section 6.4 Name
format. A file name pattern shall be compared to a file name using these rules:

1. Comparison shallbe performed using canonical caseless matching as defined by the Unicode
Standard, ex€ept for the code points U+002A and U+003F.

2. Matching/of name patterns to a filenames shall be case insensitive.
3. U+002A (asterisk ') shall match zero or more Unicode grapheme clusters.
4. U+003F (question mark * ?’) shall match exactly one grapheme cluster.

FOI’ oI il IfUl Ll Idt;UI Uyl dIJ: ICITIT b:thUI 9, oCC UI II.bUU’U Stallddl U’ AIIIIU}(29, UI II'L;UU’U TU}(t
Segmentation.
6.6 String format

A character string encoded using UTF-8 in NFC. The string shall only contain characters allowed in
element values by the W3C Extensible Markup Language (XML) 1.0 specification.

LTFS Format Specification V2.2.0 SNIA Technical Position 27

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

6.7 Time stamp format

Time stamps in LTFS data structures shall be specified as a string conforming to the ISO 8601 date and
time representation standard. The time stamp shall be specified in UTC (Zulu) time as indicated by the ‘Z’
character in this example:

2013-02-01T18:35:47.8668462227

The time shall be specified with a fractional second value that defines 9 decimal places after the period in
the format.

The|general time format is YYYY -MM -DD Thh :mm :ss.nnnnnnnnn Z where values are as describetjn
Table 14.

Table 14 — Time stamp format

Symbol |Description
YYYY the four-digit year as measured in the Common Era.

MM an integer between 01 and 12 corresponding to the month.
DD an integer between 01 and 31 corresponding to the daytin-the month.
hh an integer between 00 and 23 corresponding to the hour in the day.

mm an integer between 00 and 59 corresponding to4he*minute in the hour.

Ss an integer between 00 and 59 corresponding, to.the second in the minute.

nnnnnnnnn | an integer between 000000000 and 999999999 measuring the decimal
fractional second value.

NOTE: The characters *-’, ‘T, *’, *.’, and Z’ in the time stamp format are field separators. The ‘Z’ character indicates that the time
stamp is recorded in UTC (Zulu) time.

All date and time fields in the time stamp farmat shall be padded to the full width of the symbol using (
characters. For example, an integer month_ value of ‘2’ shall be recorded as ‘02’ to fill the width of the MM
sympol in the general time format.

6.8[UUID format

LTHS UUID values shall be recorded in a format compatible with OSF DCE 1.1, using 32 hexadecima
casg¢-insensitive digits (0-9, a-f or A-F) formatted as shown. UUID values are expected to uniquely ideptify
the LTFS Volume, as in.this example:

30a91a08-daae-48d1-ae75-69804e61d2ea

28 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

7 Label Format

This section describes the content of the Label Construct. The content of the Content Area is described in
Section 4.2 LTFS Constructs and in Section 8 Index Format.

7.1 Label Construct

Each partition in an LTFS Volume shall contain a Label Construct that conforms to the structure shown in
F|g re 15 The caonstruct shall consist of an ANSIV/OL 1 1 ahnl, followed h‘\,/ 2 cingln file marl(, followed by
one|record in LTFS Label format, followed by a single file mark. There shall not be any additional data
trailing the end of the ANSI VOL1 Label, nor any additional data trailing the end of the LTFS Label. The
Labgl Construct shall be recorded starting at the first logical block in the partition. Both Label constructs in
an UTFS Volume shall contain identical information with the exception of the “location” field.in’the XML
datg for the LTFS Label.

File {Vlark File Mark

voL1 \| LTFs ||

Label Label

Figure 15 — Label construct

7.1.1 VOL1 Label

A VOL1 label recorded on an LTFS Volume shall always be‘recorded in a Label Construct as defined |n
Section 7.1 Label Construct.

Thelfirst record in a Label Construct is an ANSI VOL1record. This record conforms to the ANSI Standard
X 3.R7. All bytes in the VOL1 record are stored as ASCII encoded characters. The record is exactly 8(
bytgs in length and has the structure and content.shown in Table 15.

Table 15,—~VOL1 Label Construct

Offfset | Length | Name Value Notes

0 3 label identifier ‘oL’

3 1 label number 1’

4 6 volume identifier <volume serial Typically matches the physical

number> cartridge label.

10 1 volume accessibility L Accessibility limited to
conformance to LTFS standard.

11 13 Reserved all spaces

D4 13)" |implementation ‘LTFS’ Value is left-aligned and paddgd

identifier with spaces to length.

B7 14 owner identifier right pad with spaces |Any printable characters. Typidally
content oriented identification.

51 28 Reserved all spaces

79 1 label standard version ‘4

NOTE 1: Single quotation marks in the Value column above should not be recorded in the VOL1 label.

NOTE 2: All fields in the VOL1 label must contain the constant values shown in the table above. The only exceptions are the
‘volume identifier’ and ‘owner identifier’ fields. These two fields should contain user-provided values in conformance to the Notes
provided.

LTFS Format Specification V2.2.0 SNIA Technical Position 29

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

7.1.2 LTFS Label

The LTFS Label is an XML data structure that describes information about the LTFS Volume and the
LTFS Partition on which the LTFS Label is recorded. The LTFS Label shall conform to the LTFS Label
XML schema provided in Annex A. The LTFS Label shall be encoded using UTF-8 NFC.

An LTFS Label recorded on an LTFS Volume shall always be recorded in an Label Construct as defined
in Section 7.1 Label Construct.

A complete schema for the LTFS Label XML data structure is provided in Annex A. An example LTFS

Labpls-shown-here:

<?xhl version="1.0" encoding="UTF-8"?>
<ltfslabel version="2.2.0">
<creator>IBM LTFS 1.2.0 - Linux - mkltfs</creator>
<formattime>2013-02-01T18:35:47.866846222Z</formattime>
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid>
<location>

<partition>b</partition>
</location>
<partitions>

<index>a</index>

<data>b</data>
</partitions>
<blocksize>524288</blocksize>
<compression>true</compression>
</Itfslabel>

Evely LTFS Label shall be an XML data structure that conforms to the W3C Extensible Markup Language
(XML) 1.0 standard. Every LTFS Label shall have a firstline that contains an XML Declaration as defiled
in the XML standard. The XML Declaration shall defifie the XML version and the encoding used for th

Label.

The|LTFS Label XML shall be recorded in a single logical data block and shall contain the following
information:

e |tfslabel: this element defines the contained structure as an LTFS Label structure. The element shall
have a version attribute that defines the format version of the LTFS Label in use. This document
describes LTFS Label version:2.2.0.

NOTE: The LTFS Label version\defines the minimum version of the LTFS Format specification with which the LTFS Volun
conforms. Implicitly, the LTES Label version defines the lowest permitted version number for all LTFS Indexes written to the
olume.

[

e [creator: this element shall contain the necessary information to uniquely identify the writer of the
| TFS volume_THe value shall conform to the creator format definition shown in Section 6.2 Creatgr
format.

e formattime: this element shall contain the time when the LTFS Volume was formatted. The value
shall conform to the format definition shown in Section 6.7 Time stamp format.

° olimennid- this element shall contain a universally unique identifier (LUUID) value that uniquely
identifies the LTFS Volume to which the LTFS Label is written. The volumeuuid element shall
conform to the format definition shown in Section 6.8 UUID format.

location: shall contain a single partition element. The partition element shall specify the Partition ID
for the LTFS Partition on which the Label is recorded. The Partition ID shall be a lower case ASCII
character between ‘a’ and ‘z'.

30 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

partitions: this element specifies the Partition IDs of the data and index partitions belonging to this
LTFS volume. It shall contain exactly one index element for the Index Partition and exactly one data

element for the Data Partition, formatted as shown. A partition shall exist in the LTFS Volume with

a

partition identifier that matches the identifier recorded in the index element. Similarly, a partition shall

exist in the LTFS Volume with a partition identifier that matches the identifier recorded in the data
element.

blocksize: this element specifies the block size to be used when writing Data Extents to the LTFS

Volume. The blocksize value is an integer specifying the number of 8-bit bytes that shall be written

s a record when writing any full block to a Data Extent Partial blocks may nnly be writtento a D

ta

7.1.

The
As s

Imp
elen
ofu
are

defi

Extent in conformance with the definitions provided in Section 4.2.2 Data Extent and in Section®
Data Extents. The minimum blocksize that may be used in an LTFS Volume is 4096 8-bit bytes:

INOTE: For general-purpose storage on data tape media the recommended blocksize is 524288 8-bit bytes.

compression: this element shall contain a value conforming to the boolean format definition provi
n Section 6.1 Boolean format. When the compression element is set, compression shall be enabl
when writing to the LTFS Volume. When the compression element is unset, compression shall b
disabled when writing to the LTFS Volume. The compression element indicates use of media-leVi
‘on-the-fly” data compression. Use of data compression on a volume is transparent to readers of t
volume.

B Managing LTFS Labels
uch, the values recorded in an LTFS Label can only be set oxupdated at volume format time.

hent. In general, such unknown tags may be ignored when mounting the LTFS Volume. This hand
nknown XML tags reduces the risk of compatibility changes when future versions of this specificat
hdopted. It is a strict violation of this specificationto add any XML tags to the Label beyond those
ned in this document.

ded
bd

)

-

el
he

LTFS Label captures volume-specific values that are constant.oyer the lifetime of the LTFS Volunpe.

ementations should handle additional unknown XML tags.when they occur as children of the Itfslabel

ing
on

LTFS Format Specification V2.2.0 SNIA Technical Position

© ISO/IEC 2016 - All rights reserved

31

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

8 Index Format

The Content Area contains zero or more Data Extents and some number of Index Constructs in any
order. This section describes the content of the Index Construct. The Label Construct is described in
Section 7 Label Format. Data Extents are described in Section 5 Data Extents.

8.1 Index Construct

EaC 1 CUI |tc| It I"\\I <a ;II all LT:_S \VIU:UIIIC aha“ CUI Ita;ll QUITICT IIUIIIbUI Uf :I |dc/\ CUI IDtI Uth that CUI IfUI LRI t)
the gtructure shown in Figure 16. The Index Construct shall contain a single file mark, followed by,ong|or
morg records in Index format, followed by a single file mark. There shall not be any additional data trafling
the gnd of the Index.

The|contents of the Index are defined in Section 8.2 Index.

FiIe\Mark File Mark
\

\ Index L

Figure 16 — Index Construct

The|lndex Constructs in a Content Area may be interleaved with. any number of Data Extents. A complete
partjtion shall have an Index Construct as the last construct‘in-the Content Area, therefore there shall be
at Idast one Index Construct per complete partition.

8.2 Index

An Index is an XML data structure that describes all data files, directory information and associated
metadata for files recorded on the LTFS Volume. An Index recorded on an LTFS Volume shall always|be
recqrded in an Index Construct as definedh-Section 8.1 Index Construct.

The|LTFS Index shall conform to the Index XML schema provided in Annex B (normative) LTFS Index
XML Schema. The Index shall be encoded using UTF-8 NFC.

A camplete schema for the Indéx XML data structure is provided in Annex B (normative) LTFS Index XML
Schema. The remainder of this section describes the content of the Index using an example XML Indgx.

x

An Index consists of Preface section containing multiple XML elements followed by a single directory
element. This directaryélement is referred to as the “root” directory element. The root directory
element corresponds'\to the root of the file system recorded on the LTFS Volume.

Each directoryselement shall contain a contents element, which may contain zero or more directory
elements and.zero or more file elements.

32 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

8.2.1 Exampleindex omitting the body

An example Index that omits the body of the directory element is shown in this section. The omitted
section in this example is represented by the characters ‘...

<?xml version="1.0" encoding="UTF-8"?>
<Itfsindex version="2_.2_.0">
<creator>IBM LTFS 1.2.0 - Linux - ltfs</creator>
<volumeuuid>30a91a08-daae-48d1-ae75-69804e61d2ea</volumeuuid>
<generationnumber>3</generationnumber>
<comment>A sample LTFS Index</comment>
<updatetime>2013-01-28T19:39:57.245954278Z</updatetime>
<location>
<partition>a</partition>
<startblock>6</startblock>
</location>
<previousgenerationlocation>
<partition>b</partition>
<startblock>20</startblock>
</previousgenerationlocation>
<allowpolicyupdate>true</allowpolicyupdate>
<dataplacementpolicy>
<indexpartitioncriteria>
<size>1048576</size>
<name>*_txt</name>
</indexpartitioncriteria>
</dataplacementpolicy>
<highestfileuid>4</highestfileuid>
<directory>

</directory>
</jtfsindex>
Evefly Index shall be an XML data structure that conforms to the W3C Extensible Markup Language

(XML) 1.0 standard. Every Index shall have a first line that contains an XML Declaration as defined in the
XML standard. The XML Declaration.shall define the XML version and the encoding used for the Index.

8.2.2 Required elements forevery index
Evely Index shall contain the fellowing elements:

e |tfsindex: This element defines the contained structure as an Index structure. The element shall Have
A version attribute-that defines the format version of the LTFS Index in use. This document describes
| TFS Index version 2.2.0.

NOTE: The/LTFS Label version defines the minimum version of the LTFS Format specification with which the LTFS Volum
conforms..Implicitly, the LTFS Label version defines the lowest permitted version number for all LTFS Indexes written to the
olumé:

[

Ab-index update occurs when an LTFS Volume containing a current Index of version M.N.R is wriften
written to an LTFS Volume shall have an M value that is greater than or equal to the M value in the
current Index. When the M value for the new LTFS Index equals the M value in the current Index, the
new Index may be written in conformance to any value of N and R so long as N and R match the
version of a published LTFS Format Specification.

An Index downgrade occurs when an LTFS Volume containing a current Index of version
M.N.R is written with a new Index using a version number with a lower value for M. Index
downgrades are explicitly disallowed in an LTFS Volume. Further details on Index version
numbering is shown in Section 2.1 Versions.

LTFS Format Specification V2.2.0 SNIA Technical Position 33

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

creator: This element shall contain the necessary information to uniquely identify the writer of the
Index. The value shall conform to the creator format definition shown in Section 6.2 Creator format.

volumeuuid: This element shall contain a universally unique identifier (UUID) value that uniquely
identifies the LTFS Volume to which the Index is written. The value of the volumeuuid element shall
conform to the format definition shown in Section 6.8 UUID format. The volumeuuid value shall
match the value of the volumeuuid element in the LTFS Labels written to the LTFS Volume.

generationnumber: This element shall contain a non-negative integer corresponding to the
generation number for the Index. The first Index on an LTFS Volume shall be generation number “1”.
The generationnumber shall conform to the definitions provided in Section 4.4.1 Generation
Number.

e lupdatetime: This element shall contain the date and time when the Index was modified,-Fhe valu
shall conform to the format definition shown in Section 6.7 Time stamp format.

1%

e Jocation: This element shall contain a single partition element and a single startblock element. The
partition element shall specify the Partition ID for the LTFS Partition on which the Index is recordgd.
The startblock element shall specify the first logical block number, within the’partition, in which the
Index is recorded. The location element is a self-pointer to the location of-the'Index in the LTFS
\Volume.

e fpllowpolicyupdate: This element shall contain a value conforming 16.the boolean format definition
provided in Section 6.1 Boolean format. When the allowpolicyupdate value is set, the writer may
change the content of the dataplacementpolicy element. Whenythe allowpolicyupdate value is
unset, the writer shall not change the content of the dataplacementpolicy element. Additional rulgs
for the allowpolicyupdate element are provided in Section.8.2.11 Data Placement Policy.

174

e highestfileuid: This element contains an integer valuerthat is equal to the value of the largest
assigned fileuid element in the Index. An implementation shall be able to rely on the highestfileujd
element to determine the highest assigned fileuidivalue in the Index without traversing all file and
directory elements. The valid range of values-for the highestfileuid value is 1 through 254 — 1 with
the additional special value of zero (0x0).

The highestfileuid can be used to determine the highest integer value assigned to the fileuid
element for all directories and files in.the Index. While the highestfileuid value not equal to zero
0x0), an implementation may increment the highestfileuid value to create unique fileuid values for
new directory and file entries.

A highestfileuid element value of zero (0x0) indicates that the LTFS Volume has exhausted the

contiguous range of validwalues for fileuid elements in the Index. In this case, an implementation
should use a mechanism such as traversing all file and directory elements to identify an unused gnd
therefore unique filetud value for any new file and directory elements.

e [directory: This‘element corresponds to the “root” directory element in the Index. The content of th
element is described later in this section.

S

8.2.8 Optignal elements for every index

Evely Indéx may contain the following elements:

. ormenrt—This-element—Hi-exists-shal-contain-a—valid-UT8-enceded-string-value—Fhe-value-o
this element shall be used to store a user-provided description of this generation of the Index for the
volume. The value of this element shall conform to the format definition provided in Section 6.6 String
format. An Index may have at most one comment element. The writer of an Index may remove or
replace the comment element when recording a new Index. The value of this element shall not
exceed 64KiB in size.

e previousgenerationlocation: This element, if it exists, defines the back pointer for the Index. The
previousgenerationlocation element shall contain a single partition element and a single
startblock element. The value of the partition element shall specify the Partition ID for the LTFS

34 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Partition on which the back pointed Index is recorded. The startblock element shall specify the first

logical block number, within the partition, in which the back pointed Index is recorded. If the Index

does not have a back pointer there shall be no previousgenerationlocation element in the Index.
Every Index that does have a back pointer shall have a previousgenerationlocation. All data values

recorded in the previousgenerationlocation element shall conform to the definitions provided in
Section 4.4 Index Layout.

e dataplacementpolicy: This element, if it exists, shall contain a single indexpartitioncriteria

element. The |ndexpart|t|oncr|ter|a element shall contam a single S|ze element and Zero or more

tored on the Index Partltlon Each name element shall specify a file name pattern The file name
pattern value shall conform to the name pattern format provided in Section 6.5 Name pattern-form
A description of the rules associated with the dataplacementpolicy element is provided in Section
8.2.11 Data Placement Policy.

8.2.4 Example Index that omits the Preface section

An ¢xample Index that omits the Preface section of the Index is shown in this section; The omitted seq
in this example is represented by the characters “...". This example shows the root/directory element f
the [ndex.

<?xpl version="1.0" encoding="UTF-8"?>
<Igtfsindex version="2.2.0">

<directory>
<fileuid>1</fileuid>
<name>LTFS Volume Name</name>
<creationtime>2013-01-28T19:39:50.7156567%517</creationtime>
<changetime>2013-01-28T19:39:55.23154Q0960Z</changetime>
<modifytime>2013-01-28T19:39:55.231540960Z</modifytime>
<accesstime>2013-01-28T19:39:50.715656751Z</accesstime>
<backuptime>2013-01-28T19:39:50.7%15656751Z</backuptime>
<contents>
<directory>
<fileuid>2</fileuid>
<name>directoryl</name>
<creationtime>2013-01-28T19:39:50.740812831Z</creationtime>
<changetime>2013-01-28T19:39:56.238128620Z</changetime>
<modifytime>2013-01-28T19:39:54.228983707Z</modifytime>
<accesstime>2013-01-28T19:39:50.740812831Z</accesstime>
<backuptime>2013-01-28T19:39:50.740812831Z</backuptime>
<readonty>false</readonly>
<contents>
<directory>
<fileuid>3</fileuid>
<name>subdirl</name>
<readonly>false</readonly>
<creationtime>2013-01-28T19:39:54.228983707Z</creationtime>
<changetime>2013-01-28T19:39:54.228983707Z</changetime>

tion

<modiITytime>2015-01-26T19:59:54.2268963/07Z</modiTytime>
<accesstime>2013-01-28T19:39:54.228983707Z</accesstime>
<backuptime>2013-01-28T19:39:54.228983707Z</backuptime>
</directory>
</contents>
</directory>
<file>
<fileuid>4</fileuid>
<name>testfile.txt</name>

LTFS Format Specification V2.2.0 SNIA Technical Position

© ISO/IEC 2016 - All rights reserved

35

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

<length>5</length>

<creationtime>2013-01-28T19:39:51.744583047Z</creationtime>

<changetime>2013-01-28T19:39:57.245291730Z</changetime>

<modifytime>2013-01-28T19:39:57.245291730Z</modifytime>

<accesstime>2013-01-28T19:39:57.240774456Z</accesstime>

<backuptime>2013-01-29T20:21:45.424385077Z</backuptime>

<readonly>true</readonly>

<extendedattributes>

</extendedattributes>

<extentinfo>

<extent>
<partition>a</partition>
<startblock>4</startblock>
<byteoffset>0</byteoffset>
<bytecount>5</bytecount>
<fileoffset>0</fileoffset>
</extent>
</extentinfo>
</file>
</contents>
</directory>
</jtfsindex>

8.2.6 Required directory elements

An Index shall have exactly one directory element recorded as achild of the Itfsindex element in the
Indgx. The directory element recorded as a child of the Itfsindex element in the Index shall represen
the oot of the filesystem on the LTFS Volume.

Evely directory element (at any level) shall contain the following information:

e fileuid: This element shall contain an integer value that is a unique identifier with respect to
directories and files in the Index. The valid range of values for the fileuid value is 1 through 24 -

An example of how to calculate this unique value is provided in the description of highestfileuid
above. The directory element correspending to the root of the filesystem shall have a fileuid valye of
one (0x1).

e ame: This element shall contain the name of the directory. A directory name shall conform to the
format specified in Section 6.4 Name format.

e [reationtime: This element shall contain the date and time when the directory was created in the LTFS
\Volume. The value shall"conform to the format definition shown in Section 6.7 Time stamp format.

e changetime: This-element shall contain the date and time when the extended attributes or readonly
element for the-directory was last altered. The value shall conform to the format definition shown in
Section 6,7 \Fime stamp format.

e modifytime: This element shall contain the date and time when the content of the directory was most
recently altered. The value shall conform to the format definition shown in Section 6.7 Time stamp|
farmat.

accesstime: This element may contain the date and time when the content of the directory was last
read. Implementators of the LTFS Format may choose to avoid or otherwise minimize recording Index
updates that only change the accesstime element. The value shall conform to the format definition
shown in Section 6.7 Time stamp format.

backuptime: This element may contain the date and time when the content of the directory was last
archived or backed up. If the directory has never been archived or backed up this element shall
contain a value equal to the value of the createtime element. The value shall conform to the format
definition shown in Section 6.7 Time stamp format.

36 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

e readonly: This element shall contain a value conforming to the boolean format definition provided in
Section 6.1 Boolean format. When the readonly element is set, the directory shall not be modified by
any writer. When the readonly element is unset, the directory may be modified by any writer. The
following operations are considered to be modifications to a directory:

e adding a child file or directory
e removing a child file or directory, and

e any change to the extendedattributes element.

e contents: This element shall contain zero or more directory elements and zero or more file
elements. The elements contained in the contents element are children of the directory.

8.2.6 Optional directory elements
Evely directory element may contain the following elements:

e lextendedattributes: This element, if it exists, may contain zero or more xattr elements. The xatti
elements are described in Section 8.2.9 extendedattributes elements. A directory element may have
zero or one extendedattributes elements.

The value of the name element for the root directory element in an Index shall be used to store the
name of the LTFS Volume.

8.2.Y Required file elements
Every file element shall contain the following information:

o fileuid: This element shall contain an integer value that is.a_unique identifier with respect to
directories and files in the Index. The valid range of valugs$)for the fileuid value is 2 through
P64 — 1. An example of how to calculate this unique value'is provided in the description of
highestfileuid above.

INOTE: The value of the fileuid’ element for the root directory is one (0x01) as defined in Section 9.2.5

All fileuid’ elements shall be unique in the index therefore no file may have a ‘fileuid’ less than 2.

e name: This element shall contain the name of the file. A file name shall conform to the format
specified in Section 6.4 Name format;

¢ [ength: for file elements containing an extentinfo element or file elements describing a regular file
with no extentinfo element (zero length or sparse files), the length element shall contain the integer
ength of the file. The length.is measured in bytes. For file elements containing a symlink element,
the length element shall centain the integer length of the symlink target path.

e [creationtime: This.element shall contain the date and time when the file was created in the LTFS
\Volume. The valde shall conform to the format definition shown in Section 6.7 Time stamp format.

e changetime<Fhis element shall contain the date and time when the extended attributes or readonly
element for the file was last altered. The value shall conform to the format definition shown in Section
6.7 Time.stamp format.

e modifytime: This element shall contain the date and time when the content of the file was most
récently altered. The value shall conform to the format definition shown in Section 6.7 Time stamp|
ormat.

accesstime: This element may contain the date and time when the content of the file was last read.
Implementers of the LTFS Format may choose to avoid or otherwise minimize recording Index
updates that only change the accesstime element. The value shall conform to the format definition
shown in Section 6.7 Time stamp format.

LTFS Format Specification V2.2.0 SNIA Technical Position 37

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

e backuptime: This element may contain the date and time when the content of the file was last
archived or backed up. If the file has never been archived or backed up, this element shall contain a
value equal to the value of the createtime element. The value shall conform to the format definition
shown in Section 6.7 Time stamp format.

e readonly: This element shall contain a value conforming to the boolean format definition provided in
Section 6.1 Boolean format. When the readonly element is set, the file shall not be modified by any
writer. When the readonly element is unset, the file may be modified by any writer. The readonly
element is ignored for file elements containing a symlink element.

8.2.8 Optional file elements
Evely file element may contain the following elements:

e extendedattributes: This element, if it exists, may contain zero or more xattr elements.:-The xattr|
elements are described in Section 8.2.9 extendedattributes elements. A file element@may have zefo
or one extendedattributes elements.

e extentinfo: This element, if it exists, may contain zero or more extent elements. /A file element mpy
have zero or one extentinfo elements, however a file element shall not havie both an extentinfo
element and a symlink element .

Every extent element shall describe the location where a file extent is recorded in the LTFS Volume.
Every extent element shall contain one partition element, one startblock element, one byteoffset
element, one bytecount element, and one fileoffset element. The values recorded in elements
contained by the extentinfo element shall conform to the definitions provided in Section 4.2.2 Datp
Extent and in Section 5 Data Extents. The partition element shall contain the Partition ID

corresponding to the LTFS partition in which the Data Extent is recorded. The startblock element
shall specify the first logical block number, within the partition, in which the Data Extent is recorded.
The byteoffset element shall specify the offset into<the start block within the Data Extent at which|the
valid data for the extent is recorded. The bytecount element shall specify the number of bytes thdt
comprise the extent. The fileoffset element shall specify the offset into the file where the data stofed
n this Data Extent starts.

The order of extent elements within an.extentinfo element is not significant. Implementors are
encouraged to record extentinfo in.the’same order that the extents occur in the file. The definitior] of
how extent values are determined‘and used is provided in Section 5 Data Extents and in Section [5.1
Extent Lists.

e pkymlink: This element, if it'exists, shall contain either the fully qualified path from the root of the fi
system tree to the target file, or shall contain a relative path to the target file. Path strings shall be
stored using the Unix-style forward slash as the path delimiter. A file element may have zero or ofe
symlink elements,"however a file element shall not have both an extentinfo element and a syml{nk
element.

[]

NOTE: It is possiblé that an older implementation of LTFS could create a tape that violates the mutual exclusivity requirement fi
extentinfo and symlink elements. In this case, the LTFS volume will not conform to this specification; it is recommended that ar]
LTF§ implementation encountering such a volume perform a recovery action before mounting or using the volume.

=

8.2.9p ~ extendedattributes elements

All diTectory and Tile elements in_an INdEX may Specily Zero or more exiended atiribuies. These
extended attributes are recorded as xattr elements in the extendedattributes element for the directory
or file.

38 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

An example directory element is shown in the following paragraph, with three extended attributes
recorded. The empty_xattr and document_name extended attributes in this example both record string
values. The binary_xattr attribute is an example of storing a binary extended attribute value. This example
omits parts of the Index outside of the directory. The omitted sections in this example are represented by
the characters “...".

<directory>
<fileuid>2</fileuid>
<name>directoryl</name>

- g 2049 N4 SO TA0..20.0C0 2400490742 [/ - -
CITcaciIvulicrNT~~ZU1oTULT 0T LI . OJ .. JU . IFUVO0 L L0001 ~7 LT TALTVUITLCrITT

<changetime>2013-01-28T19:39:56.238128620Z</changetime>
<modifytime>2013-01-28T19:39:54.228983707Z</modifytime>
<accesstime>2013-01-28T19:39:50.740812831Z</accesstime>
<backuptime>2013-01-28T19:39:50.740812831Z</backuptime>
<extendedattributes>
<xattr>
<key>binary_xattr</key>
<value type="base64'>/42n2QaEWDSX+g==</valuex
</xattr>
<xattr>
<key>empty_xattr</key>
<value/>
</xattr>
<xattr>
<key>document_name</key>
<value type=""text">LTFS Format-Specification</value>
</xattr>
</extendedattributes>
<contents>
</contents>
</directory>

Each extendedattributes element may contain zero or more xattr elements.

Each xattr element shall contain one Key'element and one value element. The key element shall contain
the phame of the extended attribute, The name of the extended attribute shall conform to the format
spegified in Section 6.4 Name forfmat. Extended attribute names shall be unique within any single
extgndedattributes elementThe value element shall contain the value of the extended attribute. Th
vallye element may have a.type attribute that defines the type of the extended attribute value. If the tyjpe
attripute is omitted then the-type for the extended attribute value shall be “text”. The value of the extenlded
attripute shall conform-te:the format specified in Section 6.3 Extended attribute value format.

All gxtended attribute/names that match the prefix “Itfs” with any capitalization are reserved for use by|the
LTFS Format. (That is, any name starting with a case-insensitive match for the letters “lifs” are reserved.)
Any|writer of @nLTFS Volume shall only use reserved extended attribute names to store extended
attripute values in conformance with the reserved extended attribute definitions shown in Annex C.

8.2.10--Managing LTFS Indexes

An Index is a snapshot representation of the entire content of the LTFS Volume at a given point in time.
Any alteration of an LTFS Volume shall record a complete snapshot of the entire content of the LTFS
Volume.

NOTE: In practice, to maintain this snapshot semantic, an implementer generally should read the current Index from an LTFS
Volume, make necessary changes to the Index and write the modified Index back to the LTFS Volume.

Implementations should handle additional unknown XML tags when they occur as children of the
Itfsindex, directory, and file elements. These additional tags shall be preserved when a new generation
of the Index is written to the LTFS Volume. This handling of unknown XML tags reduces the risk of

LTFS Format Specification V2.2.0 SNIA Technical Position 39

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

compatibility changes when future versions of this specification are adopted. It is a strict violation of this
specification to add any XML tags to the Index beyond those defined in this document.

8.2.11 Data Placement Policy

An Index may specify a Data Placement Policy. This policy defines when the Data Extents for a file may
be placed on the Index Partition. A Data Placement Policy specifies the conditions under which it is
allowed to place Data Extents on the Index Partition.

An example Index that shows the elements that define the Data Placement Policy for an LTFS Volume is
shoyvrrimthi i i i i i —Tihe

ifted sections in this example are represented by the characters ‘...
<?xihl version="1.0" encoding="UTF-8"?>

<lgfsindex version="2.2.0">

<allowpolicyupdate>true</allowpolicyupdate>
<dataplacementpolicy>
<indexpartitioncriteria>
<size>1048576</size>
<name>*_txt</name>
<name>*_bin</name>
</indexpartitioncriteria>
</dataplacementpolicy>
<directory>

</directory>
</ftfsindex>

-

The|Data Placement Policy for an LTFS Volume shall be defined in a dataplacementpolicy element i
an Ipdex. An Index may contain zero or one dataplacenrentpolicy elements.

Evely dataplacementpolicy element shall contain.€xactly one indexpartitioncriteria element. This
megns that the dataplacementpolicy constructs <dataplacementpolicy/> and
<dataplacementpolicy></dataplacementpolicy>are explicitly disallowed.

Evely indexpartitioncriteria element shall-contain exactly one size element. The size element shall
define the maximum file size for the Data Placement Policy.

Evely indexpartitioncriteria element may contain zero or more name elements. The value of each
nanje element shall define a Eilename Pattern for the Data Placement Policy. The Filename Pattern
value shall conform to the format defined in Section 6.5 Name pattern format.

8.2.]12 Data Placement/Policy Alteration

An LTFS Volume shall-have an associated Allow Policy Update value. The current Allow Policy Updat
value for an LTFSA/0lume shall be defined in the current Index as described in Section 8.2.11 Data
Plagement Policy.

w

Thig section.describes the conditions under which the Data Placement Policy and Allow Policy Update
values may be altered.

8.2.13—Afttow Puticy Updatetsset
If the current Allow Policy Update value is set, as defined in Section 8.2.11 Data Placement Policy, a
writer may record an Index that indicates the Allow Policy Update value is set or unset.

If the current Allow Policy Update value is set, as defined in Section 8.2.11 Data Placement Policy, a
writer may record an Index with the same dataplacementpolicy values recorded in the previous
generation of the Index.

40 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

If the current Allow Policy Update value is set, as defined in Section 8.2.11 Data Placement Policy, a
writer may record an Index with dataplacementpolicy values that differ from the dataplacementpolicy
values recorded in the previous generation of the Index.

If the current Allow Policy Update value is set, as defined in Section 8.2.11 Data Placement Policy, a
writer may record an Index without any dataplacementpolicy element.

8.2.14 Allow Policy Update is unset

If the current Allow Policy Update value is unset, as defined in Section 8.2.11 Data Placement Policy, a

Writr\r chall o racard on Indasy that indinatac tha Allona, DAalioy, |lnAdota 1o inont
oo Oy T CoOTrCam Mottt o oot ot/ oW T onCy opoTtCrourtott

If the current Allow Policy Update value is unset, as defined in Section 8.2.11 Data Placement Poliey;
writér shall only record an Index without a dataplacementpolicy element when the previous generatipn
of the Index does not contain a dataplacementpolicy element.

jV)

If the current Allow Policy Update value is unset, as defined in Section 8.2.11 Data Placement Policy,
writér shall only record an Index with dataplacementpolicy values when those values)exactly match
dataplacementpolicy values recorded in the previous generation of the Index.

> O
(]

8.2.15 Data Placement Policy Application

An LTFS Volume may have an associated Data Placement Policy. The current Data Placement Policy| for
an UTFS Volume shall be defined in the current Index as described in Seggetion 8.2.11 Data Placement
Policy. This section describes how the current Data Placement Policy and current Allow Policy Updatg
value shall affect the valid placement options for Data Extents when“adding files to an LTFS Volume.

The|Data Placement Policy defines criteria controlling the conditions under which Data Extents may b
recqrded to the Index Partition. The current Data PlacementRolicy only affects the placement of Data
Extgnts for new files written to the LTFS Volume. The Data>Placement Policy has no impact on Data
Extgnts already written to the LTFS Volume. Similarly, the*Data Placement Policy does not imply any
constraint on Data Extents previously written to the LTFS Volume.

A1

The|Data Placement Policy in use for an LTFS Volume does not require that Data Extents conforming|to
the policy be written to the Index Partition. A Data Placement Policy only defines the conditions under
whigh it is valid to write Data Extents to the.lndex Partition. When the Data Placement Policy in use ddes
not allow a Data Extent to be written to the.Index Partition the Data Extent shall be written to the Data
Partition. Any Data Extent may be written to the Data Partition regardless of the Data Placement Policy in
use

Any|LTFS Volume without a defined Data Placement Policy, as described in Section 8.2.11 Data
Plagement Policy, shall have'a NULL Data Placement Policy.

A NULL Data Placement Policy shall mean that no criteria exist to control the conditions under which

Data Extents may be recorded to the Index Partition. When a NULL Data Placement Policy is in effect
any|Data Extent maype written to the Index Partition. In general, it is recommended that implementatipns
should avoid use‘ef-NULL Data Placement Policies.

A Data Placement Policy other than the NULL policy shall define the criteria under which the Data Extgnts
for 3 new.file ' may be written to the Index Partition.

A non=NULL Data Placement Policy shall define a maximum file size for the policy. The maximum file pize

WvwWhaeZ“0” oranvnositive-inteaer.
ma
J F J N

A non-NULL Data Placement Policy may define zero or more Filename Pattern values for the policy. The
Filename Pattern values shall be defined and interpreted as file name patterns conforming to the format
defined in Section 6.5 Name pattern format.

LTFS Format Specification V2.2.0 SNIA Technical Position 41

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

A non-NULL Data Placement Policy shall “match” the Data Extents being recorded to an LTFS Volume if
and only if all of the following conditions are met:

o the size of the file being recorded is smaller than the maximum file size for the Data Placement Policy
in effect, and

o the file name of the file being recorded matches any of the file name patterns defined in the Data
Placement Policy. The rules for matching file name patterns to file names are provided in Section 6.5
Name pattern format.

NOTE: Files with a size of 0 bytes have no Data Extents recorded anywhere in the volume. Therefore, a Data Placement Palicyf with
size yalue of “0” indicates that no file shall have Data Extents stored on the Index Partition.

As described in Section 8.2 Index, every Index shall contain a boolean allowpolicyupdate element
corresponding to the Allow Policy Update value for the Index. When Allow Policy Update is Unset, a wyiter
shall not modify an LTFS Volume unless the modification conforms with the Data Placement-Policy
defined for the Index. Any writer unable to comply with the current Data Placement Policy shall leave the
LTHS Volume unchanged.

Writers are encouraged to comply with the current Data Placement Policy at all.times. However, when
Allow Policy Update is set, a writer is permitted to violate the Data PlacementPolicy. Violating the policy
in this case is equivalent to changing the Policy, modifying the Volume, theh-changing the Policy back|to
the priginal Policy.

NOTE: It is always valid to write a non-empty Data Extent to the Data Partition. Thisresults from the Data Placement Policy ang
Allow Policy Update values defining when it is permitted to write Data Extents tothe\lndex Partition rather than these values defining
wher] it is required that Data Extents be written to the Index Partition.

42 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

9 Medium Auxiliary Memory

An LTFS Volume may use standard Medium Auxiliary Memory (MAM) to store auxiliary information with
the volume to improve the efficiency of LTFS Index retrieval and to aid the identification and management
of an LTFS Volume. Values stored in the MAM are stored on the volume in non-volatile storage as MAM
attributes. Use of these attributes can enhance performance of an implementation but are not required for
compliance to the LTFS Format Specification. That is, an LTFS Volume may still be correctly read and
written if the MAM attributes become inaccessible or are not updated.

For ach partition, LTFS stores a standardized Volume Coherency Information (VCI) value in a MAM
attripute. This attribute contains a standardized value known as the Volume Change Reference (\VCR),
toggther with the Index generation number for the current Index and the on-media location of the eurrgnt
Indgx. These values can be used to determine whether a partition is complete and to verify volume
congistency without requiring that the Index be read from both partitions. This allows an implementatign to
avoid the cost of seeking to the end of both partitions when verifying the consistency of\an”'LTFS Volumne.

For performance reasons, it is strongly recommended that LTFS implementers use{the MAM attributeg as
desg¢ribed in Section 9.3 Use of Volume Coherency Information for LTFS if such.uSage is supported b
the pinderlying storage technology.

Standard MAM attributes can be used to identify the volume as containing*"LFFS format, and it is strongly
recqmmended that LTFS implementers populate the attributes describedyin Section 9.4 Use of Host-type
Attriputes for LTFS. Note that some of the attributes are mandatory for implementations which claim
compliance to revision 2.2.0 or later of the LTFS format specification/and where MAM attributes are
supported by the underlying storage technology.

NOTE: For consistency with the referenced specifications, throughout Section 9 Medium Auxiliary Memory, the word Volume is|used
to refer to a data storage medium (e.g., a tape cartridge). The words LFES Volume is used when referencing an 'LTFS Volume'|as
definpd in Section 3.1.18

LTFS Volume and throughout this document.

9.1] Volume Change Reference

Volyme Change Reference (VCR) is anen-repeating, unique value associated with a volume coherengy
poirt. This section contains a partial description of the VCR (for informational purposes). See the
T10[{SSC4 Standard for a completerdescription of the VCR.

The|VCR attribute indicates changes in the state of the medium related to logical objects or format
spegific symbols of the currently mounted volume. There is one value for the volume change referencg.
The|VCR attribute for each-partition shall use the same single VCR value. The VCR attribute value sha

e pe written to non-volatile medium auxiliary memory before the change on medium is valid for readjng,
and

e [change in-a‘hon-repeating fashion (i.e., never repeat for the life of the volume).
The|VCR attribute value shall change when:
e [hefirst logical object for each mount is written on the medium in any partition;

o the first logical object is written after GOOD status has been returned for a READ ATTRIBUTE
command with the SERVICE ACTION field set to ATTRIBUTE VALUES (i.e., 0x00) and the FIRST
ATTRIBUTE IDENTIFIER field set to VOLUME CHANGE REFERENCE (i.e., 0x0009);

e any logical object on the medium (i.e., in any partition) is overwritten; or
e the medium is formatted.

The VCR attribute may change at other times when the contents on the medium change. The VCR
attribute should not change if the logical objects on the medium do not change.

LTFS Format Specification V2.2.0 SNIA Technical Position 43

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

A binary value of all zeros (e.g., 0x0000) in the VCR attribute indicates that the medium has not had any
logical objects written to it (i.e., the volume is blank and has never been written to) or the value is
unknown. A binary value of all ones (e.g., OXFFFF) in the VCR attribute indicates that the VCR attribute
has overflowed and is therefore unreliable. In this situation, the VCR value shall not be used.

9.2 Volume Coherency Information

The Volume Coherency Information (VCI) attribute contains information used to maintain coherency of
information for a volume. The VCI has six fields as listed in Table 16. There shall be one VCI attribute for
eaclr LTFS Pdlt;t;ull t; Idt ;b pdlt Uf dll LTFS \V’UiuIIIU. Ti 1S CUIl UDPUI IdUI 10C L)CtVVGUII LTFS TOTTIet Ibidtul
and|T10/SSC-4 nomenclature is shown in Table 16.

Table 16 shows a partial listing of the Volume Coherency Information attribute (for informational
purgoses). See the T10/SSC-4 Standard for a complete description of the Volume Coherencyylnformation
attripute.

Table 16 — Volume Coherency Information

LTFS Name T10 SSC-4 Name

VCR Length VOLUME CHANGE REFERENCE YALUE LENGTH
VCR VOLUME CHANGE REFERENECE VALUE
generation number VOLUME COHERENCY COUNT

block number VOLUME COHERENCY-SET IDENTIFIER
Application Client Specific Information APPLICATION CLIENT SPECIFIC INFORMATION
Length LENGTH

Application Client Specific Information APPLICATION CLIENT SPECIFIC INFORMATION

Notes for Table 16:

1. CR Length: this field contains the length of the VCRAield. The VCR Length field is a one-byte field.

2. |VCR: this field contains the value returned in the VCR attribute after all information for which coherency is desired was wriften
fo the volume. The length of this field is specified by the value of the VCR Length field.

3. [generation number: this field contains the géneration number of the LTFS Index that is pointed to by the block number field.
[The generation number field is an 8-byte field. The value stored in this field shall be a big-endian binary integer value.

4. plock number: this field contains the ogical block number of the LTFS Index on this partition for which coherency is desiregl.
Typically coherency is desired for the most recently written LTFS Index. This field and the partition ID of this partition comgrise
the position of the LTFS Index o the media. A value of zero is invalid. The block number field is an 8-byte field.

5. Application Client Specific Infermation Length: this field contains the length of the Application Client Specific Information figld.
The Application Client Specifie Information Length field is a two-byte field.

6. Application Client Specifie Tnformation: this field contains information the application client associates with this coherency get.
The length of this field is’specified by the value of the Application Client Specific Information Length field.

9.3 Use of /atume Coherency Information for LTFS

Usel of the Volume Coherency Information (VCI) attribute with the LTFS format is optional, but it is
recmmended to improve performance. If the VCI attribute is stored for an LTFS Partition, it shall be used
as described in this section.

The VCI attribute for each volume partition contains the Application Client Specific Information (ACSI) for
the LTFS Partition stored on the volume partition. The ACSI for LTFS shall be formatted as shown in
Table 17. All offsets and lengths are measured in bytes.

44 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Table 17 — ACSI format for LTFS

Offset Length | Value Notes

0 4 ‘LTFS’

4 1 0x00 string terminator (binary)

5 36 <volume UUID> as defined in Section 6.8 UUID format
41 1 0x00 string terminator (binary)

42 1 0x01 version number (binary)

NOTE: Single quotation marks in the ‘Value’ column shall not be recorded in the Application Client Specific
Information.

The|first 43 bytes of the Application Client Specific Information will retain their current meaning in all
futufe versions of the LTFS Format. A future version of the LTFS Format may define additional conten to
be gppended to the Application Client Specific Information, in which case the version namber field will|be
incremented.
NOTE: The version number stored at offset 42 has been incremented from 0x0 in IBM LTFS FormatSpecification version 1.0 tg Ox1

for LTFS Format Specification version 2.0.0. This increment allows identification of LTFS Volumes ‘created with incorrect MAM
valugs by an implementation of the IBM LTFS Format Specification version 1.0.

An gpplication may write the VCI attribute for an LTFS Partition at any time‘when the partition is
complete. The attribute shall contain the VCR of the cartridge and the generation number of the last LTFS
Indgx on the partition, with both values determined at the time the attribute is written. When writing the
VCl|attribute for any LTFS Partition, an application should write the'VClI attribute for all complete

partjtions. Implementations of the LTFS Format Specification should update the VCI attribute for all
complete partitions immediately after fully writing an Index Construct to any partition. The recommendged
ordgr of operations is:

1. |Write an Index Construct to a partition.

2. [Ensure that all pending write requests are flushed'to the medium. The procedure for doing this mdy
depend on the underlying storage technology.

3. Read the VCR attribute immediately (before’issuing any additional write requests to the medium).

4. |f the VCR attribute value is valid (i.e.,cdoes not contain a binary value of all ones or all zeros),
compute and write the VCI attributés, containing the read VCR value for all complete partitions.

A VCR instance in a VCI attribute is . up-to-date if it equals the VCR value of the cartridge. Any LTFS
Parfition with a corresponding VERattribute that contains an up-to-date VCR instance is complete. If all
part|tions in an LTFS Volume have VCI attributes containing up-to-date VCR instances, the attribute wi
the highest generation number determines the block position of the current Index for the LTFS Volumsg.
Thig allows an implementation to determine the state of an LTFS Volume quickly by reading that sing|
LTHS Index.

If anly partition inan-TFS Volume has a VCI attribute containing a VCR instance which is not up-to-date,
that|partition is_net'guaranteed to be complete. In this case, the consistency of the LTFS Volume cannot
be determined from the values in the VCI attributes for each partition. For example, the following
seqlience-of.operations results in exactly one partition having a VCI attribute containing an up-to-date
VCR instance but the LTFS Volume is not consistent:

1 |aGdmnl . : Index C ition ‘a’ i . he \/CI i ; itibn

a’.
2. The implementation appends a Data Extent to partition ‘a’. The VCI attribute for partition ‘a’ now
contains an out-of-date VCR instance.
3. The implementation Writes an Index Construct to partition ‘b’, then writes the VCI attribute for partition
‘b’
In this case, the current Index for the LTFS Volume cannot be identified without reading Indexes from
both partitions and comparing their generation numbers.

—

h

A1

LTFS Format Specification V2.2.0 SNIA Technical Position 45

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

9.4 Use of Host-type Attributes for LTFS

The T10 technical committee of INCITS owns the specification for MAM attributes (published in the SCSI
Primary Commands standard SPC-4), and these attributes include a category known as Host-type
Attributes intended to provide host-settable information describing the volume. For full details of these
attributes refer to the T10/SPC-4 Standard.

The relevant attributes are shown in Table 18. The “Support” column indicates whether implementations
which claim compliance to revision 2.2.0 or later of the LTFS format specification should support (O —
optional) or shall support (M- mandatory) the corresponding attribute.

Table 18 — Relevant Host-type Attributes for LTFS

Attribute Name Identifier Size Format Support

APPLICATION VENDOR 0800h 8 bytes ASCII M

APPLICATION NAME 0801h 32 ASCII M
bytes

APPLICATION VERSION 0802h 8 bytes ASCII M

USER MEDIUM TEXT LABEL 0803h 160 TEXT o
bytes

TEXT LOCALIZATION IDENTIFIER 0805h 1 byte BINARY 0]

BARCODE 0806h 32 ASCII 0
bytes

APPLICATION FORMAT VERSION 080Bh ;)Stes ASCII M

When accessing these attributes, the PARTITION NUMBER field in the READ ATTRIBUTE and WRITE
ATTIRIBUTE SCSI commands shall be set to 0.

IMPORTANT NOTE: The Mandatory attributes are required.to be set by the application which formats the volume. Some storage
techrjology may have insufficient available capacity to store-all the attributes in MAM, in which case writing the Mandatory attributes
should take precedence over the Optional attributes. -However an implementation which attempts to mount the volume should ot

fail jyst because these attributes are not set or are.unreadable.

9.4.1 Application Vendor

Thig attribute shall be set to indiCate the manufacturer of the LTFS software which formatted the volume.
It shall be consistent with the(Company name (if any) used in the Creator format in LTFS label and index
consgtructs (see Section 6.2 Creator format). The attribute shall be left-aligned, and shall be padded wjith
ASCII space (20h) charaeters if the company name is less than 8 characters in length. If the company
nanje exceeds 8 ASClcharacters then the 8 left-most characters of the name shall be used.

9.4.p Application Name

Thig attribute‘shall be set to the ASCII string “LTFS”, left-aligned and followed by at least one ASCII
spage (20h).character. This may be followed by a vendor-specific ASCII string further identifying the
application, also left-aligned and padded with ASCII space characters. If no further identification is
desiredthen ASCII space characters shall be added to pad to the width of the field. Both of the follow|ng
are valid uses of this attribute:

“LTFS 8
“LTFS Standalone XYZ ?

9.4.3 Application Version

This attribute shall be set to indicate the application version used to format the volume and shall be
consistent with the Version identifier (if any) used in the Creator format in LTFS label and index
constructs (see Section 6.2 Creator format). The attribute shall be left-aligned and padded with ASCII

46 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

space (20h) characters. The LTFS format specification does not define any particular style or content for
the value of this attribute.

9.4.4 Text Localization Identifier

This defines the character set used for the User Medium Text Label attribute (see Section 9.4.5 User
Medium Text Label), in accordance with the table in the T10/SPC-4 draft standard (SPC-4 r36e Table
448). If this attribute is not set then the default assumed value shall be ASCII (value 00h).

NOTE: It is strongly recommended that the attribute should be set to indicate UTF-8 encoding (value 81h) for compatibility with the

€NcCo|

9.4.

This
and
indg

excg¢eds the available attribute storage size of 160 bytes, then the name stored in the attribute shall bg

trun
writi

9.4,
Itis

sha

NOT
charg

9.4.

Thig
was
LTF
spa

NOT
to pr
Itfsla

9.4.

Ani
for |

g used imthe restof the CTFS format:
b User Medium Text Label

attribute may be used to record the volume name. If set, it shall be left-aligned and nullsterminate
its value should be consistent with the value of the name element for the root directoryelement in
X construct (see Section 8.2 Index). If the number of bytes required to store the rogtdirectory nan

Cated at the most appropriate character boundary. If this attribute is set, and the hame is updated
hg to the VEA Itfs.volumeName, then this attribute shall be updated to maintain’consistency.

b Barcode

recommended that this attribute should be set to match the physicat-cartridge label (if any). If set,
| be left-aligned and padded with ASCII space (20h) characters.

E: This attribute is related to the volume identifier in the VOL1 label (see Section 7.1.1) but without the restriction of six
cters; the attribute can hold up to 32 characters.

/ Application Format Version

attribute shall be set to indicate the version of the\LTFS format specification with which this volun
formatted. It shall be consistent with the versioft,attribute of the Itfslabel element as found in the
S label construct (see Section 7.1.2 LTFS Label). It shall be left-aligned and padded with ASCII
Ce (20h) characters.

vide an accurate view of the volume. In this ¢ase, the attribute may no longer be consistent with the version attribute of th
bel element.

B Example attributes

mplementation that populates all of the attributes described in Section 9.4 Use of Host-type Attriby
TFS would follow the-pattern shown in Table 19:

Table 19 — Example of Host-type Attributes

d,
an
e

by

t

E: In the special case where a volume is migfated to a newer version of the format, this attribute should be updated to confinue

e

tes

Name 1 2 3 4 5 6 7 8
Application)Vendor “H” “P” | 20h | 20h 20h | 20h | 20h | 20h
Application Name “L ‘" | “F” “S” 20h | 20h | 20h | 20h 20h
Application Version “1” “2” “3” | 20h | 20h 20h
User-viedium Text tabet ™ y T a 9 (S \% 0 1 oon
Text Localization Identifier 81h
Barcode “A “‘B” | “1” “2” “37 |4 | L “5” . 20h
Application Format Version “2” “2” “0” | 20h | 20h | 20h 20h
LTFS Format Specification V2.2.0 SNIA Technical Position 47

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Annex A (normative) LTFS Label XML Schema

This annex shows the LTFS Label XML Schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema’">

<xs:element name=""Itfslabel'>
<xs:complexType>
<xs:all>

<xs:element name='creator' type=''xs:string'/>
<xs:element name="formattime" type="'datetime’'/>
<xs:element name="volumeuuid" type="uuid'/>
<xs:element name="location">
<xs:complexType>
<xs:sequence>
<xs:element name="partition” type="partitionid'/>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="partitions">
<xs:complexType>
<xs:all>
<xs:element name="index" type="‘partitionid"/>
<xs:element name="data" type="‘partitionid"/>
</xs:all>
</xs:complexType>
</xs:element>
<xs:element name="blocksize" type="blocksize'"/>
<xs:element name="compression' gype="xs:boolean'/>
</xs:all>
<xs:attribute name="version" wse="required” type="version'/>
</xs:complexType>
4/xs:element>

q4xs:simpleType name="blocksize">

<xs:restriction base="Xs:integer">
<xs:minlnclusivervalue="4096"/>

</xs:restriction>

4/xs:simpleType>

4xs:simpleType~name="version'>
<xs:restriction base="'xs:string">
<xs:pattern value="[0-9]+\.[0-9]+\.[0-9]+"/>
<xs:enhumeration value="2.2.0"/>
</xsirestriction>
4/xsssimpleType>

<xs:simpleType name="'datetime">
<xs:restriction base="'xs:string">
<xs:pattern

value="[0-91{4}-[0-91{2}- [0-9]1{2} T[0-9]1{2}: [0-91{2}: [0-91{2}\. [0-91{9}Z" />

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="partitionid'>
<xs:restriction base="'xs:string">

48

SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

http://www.w3.org/2001/XMLSchema
https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

<xs:pattern value="[a-z]"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="uuid">
<xs:restriction base='"'xs:string">
<xs:pattern
value="[a-fA-F0-9]{8}-[a-fA-F0-9]1{4}-[a-fA-F0-9]{4}-[a-TA-F0-9]{4}-[a-TA-
FO-91{12}"/>
</xs-restriction>
4/xs:simpleType>
</x$:schema>

LTFS Format Specification V2.2.0 SNIA Technical Position 49

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Annex B (normative) LTFS Index XML Schema

This annex shows the LTFS Index XML schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlIns:xs="http://www.w3.0rg/2001/XMLSchema’">
<xs:element name="Itfsindex">
<xs:complexType>
<xs:all>
<xs:element name="creator™ type="'xs:string'/>
<xs:element name="comment" type="'xs:string" minOccurs="0"/>
<xs:element name="volumeuuid" type="uuid'/>
<xs:element name="generationnumber™ type="xs:nonNegativelnteger' />
<xs:element name="updatetime'" type="'datetime’'/>
<xs:element name="location" type="tapeposition'/>
<xs:element name="previousgenerationlocation” type=""tapeposition”
minPccurs="0"/>
<xs:element name="allowpolicyupdate'" type="'xs:boolean®/>
<xs:element name="dataplacementpolicy" type="policy"(minOccurs="0"/>
<xs:element name="highestfileuid"” type='xs:nonNegativelnteger'/>
<xs:element ref="directory"/>
</xs:all>
<xs:attribute name="version" use=""required" type="'version'/>
</xs:complexType>
4/xs:element>

q4xs:element name="directory'>
<xs:complexType>
<xs:all>
<xs:element name="Ffileuid" typée="xs:nonNegativelnteger"/>
<xs:element name="name" types''xs:string'/>
<xs:element name=''creationtime’" type="'datetime'/>
<xs:element name="'changetime" type="'datetime’/>
<xs:element name="modifytime" type="datetime'/>
<xs:element name="accesstime™ type="'datetime"/>
<xs:element name=“backuptime" type="'datetime"'/>
<xs:element name='‘readonly"” type="'xs:boolean/>
<xs:element_ref="extendedattributes" minOccurs="0"/>
<xs:element. name="contents'>
<xs:compdexType>
<xXSzchoice minOccurs="0" maxOccurs=""unbounded">
<xs:element ref="directory'/>
<xs:element ref="file"/>
</xs:choice>
</xs:complexType>
</xs:element>
</xs:all>
</xs:complexType>
</xs:element>

<xs:element name="file">
<xs:complexType>
<xs:all>
<xs:element name="fileuid" type="xs:nonNegativelnteger'/>
<xs:element name="name" type=''Xs:string'/>
<xs:element name="length" type='"'"xs:nonNegativelnteger'/>

50 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

http://www.w3.org/2001/XMLSchema
https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

<xs:element name="creationtime' type="datetime'/>
<xs:element name='"changetime" type="'datetime"/>
<xs:element name="modifytime" type="datetime"/>
<xs:element name="accesstime" type="'datetime"/>
<xs:element name="backuptime" type="'datetime"/>
<xs:element name="readonly" type="xs:boolean"/>
<xs:element ref="extendedattributes' minOccurs="0"/>
<xs:element name="extentinfo" minOccurs="0">
<xs:complexType>

<XSIsoguence minOccurs=""0" maxOccurs=""unbounded''>
<xs:element name="‘extent">
<xs:complexType>
<xs:all>
<xs:element name="partition” type="partitionid"/>

© ISO/IEC 2016 - All rights reserved

<xs:element name="startblock™ type="xs:nonNegativelntegen'/>
<xs:element name="byteoffset" type="xs:nonNegativelntegen />
<xs:element name="bytecount" type=''xs:positivelnteger'/>
<xs:element name="fileoffset" type="xs:nonNegativelntegern/>
</xs:all>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="symlink" type="xs:string™ minOccurs="0"/>
</xs:all>
</xs:complexType>
4/xs:element>
d4xs:element name="'extendedattributes'>
<xs:complexType>
<xs:sequence minOccurs="0" max0ccurs=""unbounded">
<xs:element name="xattr'>
<xs:complexType>
<xs:all>
<xs:element _name="key" type=''xs:string'/>
<xs:elepent name="value'>
<xs:complexType mixed=""true'>
<xs:attribute name="type'>
<xs:simpleType>
<xs:restriction base="xs:token">
<xs:enumeration value="base64"/>
<xs:enumeration value=""text'/>
</Xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
Lo lomaont
</xs:all>
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="policy">
LTFS Format Specification V2.2.0 SNIA Technical Position 51

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

<xs:seguence>
<xs:element name="indexpartitioncriteria>
<xs:complexType>
<xs:sequence>
<xs:element name="name" type='Xxs:string" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="size" type=''Xxs:nonNegativelnteger'/>
<xs:element name="name" type='Xs:string" minOccurs="0"
maxOccurs="unbounded" />

VAVISEW VW TRV-NZV-9-N
T HXS—Seguernce

</xs:complexType>
</xs:element>
</Xs:sequence>
q4/xs:complexType>

q4xs:complexType name='"tapeposition'>
<xs:all>
<xs:element name="partition" type="partitionid'/>
<xs:element name="'startblock™ type="xs:nonNegativelnteger''/>
</xs:all>
4/xs:complexType>

q4xs:simpleType name="version>
<xs:restriction base='"'xs:string'">
<xs:pattern value="[0-9]+\.[0-9]+_[0-9]+"/>
<xs:enumeration value="2.2.0"/>
</xs:restriction>
4/xs:simpleType>

dxs:simpleType name="datetime'>
<xs:restriction base="xs:string">
<xs:pattern
value="[0-91{4}-[0-91{2}~-[0-91{2}T[0-91{2}: [0-91{2} : [0-91{2}\.[0-91{9}Z2"" 1>
</xs:restriction>
4/xs:simpleType>

d4xs:simpleType name="partitionid >
<xs:restriction basez"xs:string">

<xs:pattern value="[a-z]"/>
</xs:restriction>
4/xs:simpleType>

dxs:simplelype name="uuid">
<xs:restriction base='"'xs:string'>
<xs:pattern
value=""[a-fA-F0-9]{8}-[a-TfA-F0-9]{4}-[a-fA-F0-9]1{4}-[a-TA-FO-9]1{4}-[a-fA-
FO-91§12}"/>
</xs:simpleType>
</xs:schema>

52 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Annex C (normative) Reserved Extended Attribute definitions

In an LTFS Index, all extended attribute names that start with the prefix “Itfs” with any capitalization are
reserved for use by the LTFS Format; i.e., any names starting with a case-insensitive match for the letters
“ltfs” are reserved.

Any writer of an LTFS Volume shall only use reserved extended attribute names to store extended
attribute values in conformance with the lists in Table C. 1 through Table C. 5. However, two extended
attribute namespaces are reserved for implementation-specific information.

The[extended atiribute namespace s.permissions.<type> shall be used only 10f Stofing permissions as
des¢ribed in F.2 File Permissions in LTFS.

The|extended attribute namespace “Itfs.vendor.X.Y” shall be used for implementation-specific attributgs,
whefre X identifies a company, organization or technology standard and Y is an attribute name,.

NOTE: The Storage Networking Industry Association (SNIA) maintains a list of registered vendor names at httpy//www.snia.org/|tfs.
Thig section describes the meaning of defined, reserved extended attributes.

Support for each of these defined, reserved extended attributes is optional for.implementations in
compliance with this specification.

C.1l Software Metadata

Tahyle C. 1 describes the extended attribute values for software metadata.

Table C. 1 — Reserved extended attribute definitions: Software metadata

Extended Attribute Value description

Itfs.softwareProduct Product name of this software

Itfs.softwareVendor Software vendor of this software

Itfs.softwareVersion LTFS version number

Itfs.softwareFormatSpec LTFS Format spec version supported by this software

C.2l Drive Metadata

Table C. 2 describes the extenhded attribute values for drive metadata.

TableC»2 — Reserved extended attribute definitions: Drive metadata

Extended Attribdte Value description

Itf.driveEncryptionState Current encryption status of the drive ("true", "false", or
"unknown").

Itfs.driveEncryptionMethod Current encryption method of the drive.

Itfs.driveCaptureDump Writing any value to this extended attribute shall trigger a
drivedump o any fmptememntation that supports this
extended attribute.

C.3 Object Metadata

Table C. 3 describes the extended attribute values for object metadata.

LTFS Format Specification V2.2.0 SNIA Technical Position 53

© ISO/IEC 2016 - All rights reserved

http://www.snia.org/ltfs
https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Table C. 3 — Reserved extended attribute definitions: Object metadata

Extended Attribute Value description

Itfs.accessTime Date and time of last access to object.

Itfs.backupTime Date and time of last archive or backup of object.

Itfs.changeTime Date and time of last status change to object.

Itfs.createTime Date and time of object creation.

Itfs.fileUID Integer identifier for objects in the filesystem. Guaranteed to be
unique within the LTFS Volume.

Itfs.modifyTime Date and time of last object modification.

Itfs.partition Partition on which the first extent of the file is stored.

Itfs.startblock Block address where the first extent of the file is stored.

Itfs.spannedFileOffset The logical file offset of the first byte of the segment relative to.the

full file. See Annex F.1 for full description.

C.4 Volume Metadata

Table C. 4 describes the extended attribute values for volume metadata.

Table C. 4 — Reserved extended attribute definitions: Volume metadata

Bxtended Attribute Value description
Itfs.commitMessage Commit message for the lastindex on the LTFS Volume.
Itfs.indexVersion LTFS format version string for the Index. This string provides a

human-readable identifier for the LTFS format version that
generated the Index}

Itfs.indexCreator Creator string fordhe Index. This string provides a human-
readable identifier for the product that generated the Index. As
defined in Section 6.2 Creator format.

Itfs.indexGeneration Last LTFS Index generation number written to media.

tfs.indexLocation Location of the last Index on the media in the form ‘p:I', where p is
an,alphabetic character value indicating the internal LTFS
partition identifier, and | is the logical block number within the
partition. For example, the value ‘a:1000’ indicates that the last
Index starts at logical block 1000 on partition a.

tfs.indexPrevious Location of the previous Index on the media in the form ‘p:I’,
where p is an alphabetic character value indicating the internal
LTFS partition identifier, and | is the logical block number within
the partition. For example, the value ‘b:55’ indicates that the
previous Index starts at logical block 55 on partition b.

fs.indexTime Date and time of when last LTFS Index was written to media.

tfs.labél\ersion LTFS format version string for the LTFS label. This string provides
a human-readable identifier for the LTFS format version that
generated the LTFS label.

Itfs.labelCreator Creator string for the LTFS Label. This string provides a human-
readable identifier for the product that generated the LTFS Label.
As defined in Section 6.2 Creator format.

Itfs.partitionMap The on media partition layout for the LTFS Volume. Value is of
the form “W:x,Y:z” where W and Y have the value ‘I’ indicating an
index partition, or ‘D’ indicating a data partition. x and y are an
alphabetic character value indicating the internal LTFS partition
identifier. For example, the value “I:a,D:b” indicates that LTFS
Partition ‘a’ is used as the index partition, and LTFS Partition ‘b’ is

54 SNIA Technical Position LTFS Format Specification V2.2.0

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

ISO/IEC 20919:2016(E)

LTFS Format Specification

Extended Attribute Value description
used as the data partition.

Itfs.policyAllowUpdate Indicates whether the data placement policy for the volume may
be updated.

Itfs.policyExists Indicates whether a data placement policy has been set for the
volume.

Itfs.policyMaxFileSize Maximum file size for files that match the data placement policy

for the volume.

S.SYNC Witingany vatue o this extended attribute shatt trigger a
filesystem sync on any implementation that supports this
extended attribute. A filesystem sync is an operation that causes
all in-memory filesystem changes to be flushed to the storage
medium. The sync operation is not required to produce a
consistent LTFS Volume. The sync operation shall ensure that
sufficient data is written to the medium so as to allow the'LTFS
Volume to be recovered to a consistent state withoutloss/of data.

Itfs.volumeBlocksize Blocksize for the LTFS Volume specified at formattime.
Itfs.volumeCompression Compression setting for the LTFS Volume.
Iffs.volumeFormatTime Date and time when the LTFS Volume was formatted.
Iffs.volumeName Name of the LTFS Volume.
Itfs.volumeSerial Serial number for the LTFS Volume specified at format time.
Itfs.volumeUUID UUID for the LTFS Volume.
Itfs.mamBarcode The MAM attribute value stored*as BARCODE
Itfs.mamApplicationVendor The MAM attribute value stored as APPLICATION VENDOR
Itfs.mamApplicationVersion The MAM attribute value stored as APPLICATION VERSION
Itfs.mamApplicationFormatVersion | The MAM attributevalue stored as APPLICATION FORMAT
VERSION

NOTE 1: The USER MEDIUM TEXT LABEL MAM attribute is available as Itfs.volumeName.

NOTE 2: The VEAs Itfs.softwareVendor, lifs.softwareProduct, Itfs.softwareVersion, and ltfs.softwareFormatSpec refer to the
currgntly executing software, whereas the above hames Itfs.mamApplicationVendor etc refers to the values stored in the MAM &t
format time.

=3

NOTE 3: Setting or updating the VEAltfs.mamBarcode after the volume has been formatted should update the MAM attribute bu
shall|not modify the VOL1 label nor thevalue reported for the VEA Itfs.volumeSerial.

C.5 Media Metadata

Table C. 5 describés the extended attribute values for media metadata.

Table C. 5 — Reserved extended attribute definitions: Media metadata

EXtendedAttribute Value description

Itfg.médiaBeginningMediumPasses Total number of times the beginning of medium position
has been passed. If the storage hardware cannot report
this data the value will be —-1.

Itfs.mediaDataPartitionAvailableSpace Total available space in the Data Partition on the medium.
Value is an integer count measured in units of 1048576
bytes.

Itfs.mediaDataPartitionTotalCapacity Total capacity of the Data Partition on the medium. Value is
an integer count measured in units of 1048576 bytes.

Itfs.mediaDatasetsRead Total number of datasets read from the medium over the
lifetime of the media. If the storage hardware cannot report
this data the value will be —1.

LTFS Format Specification V2.2.0 SNIA Technical Position 55

© ISO/IEC 2016 - All rights reserved

https://standardsiso.com/api/?name=2f2b6072118e767a997490c75da4e6c6

	1 Introduction
	2 Scope
	2.1 Versions
	2.2 Conformance

	3 Definitions and Acronyms
	3.1 Definitions
	3.1.1
	3.1.2
	3.1.3
	3.1.4
	3.1.5
	3.1.6
	3.1.7
	3.1.8
	3.1.9
	3.1.10
	3.1.11
	3.1.12
	3.1.13
	3.1.14
	3.1.15
	3.1.16
	3.1.17
	3.1.18
	3.1.19
	3.1.20
	3.1.21
	3.1.22
	3.1.23

	3.2 Acronyms

	4 Volume Layout
	4.1 LTFS Partitions
	4.2 LTFS Constructs
	4.2.1 Label Construct
	4.2.2 Data Extent
	4.2.3 Index Construct

	4.3 Partition Layout
	4.4 Index Layout
	4.4.1 Generation Number
	4.4.2 Self Pointer
	4.4.3 Back Pointer

	5 Data Extents
	5.1 Extent Lists
	5.2 Extents Illustrated
	5.2.1 Starting and ending Data Extent with full block
	5.2.2 Starting Data Extent with full block and ending with fractional block
	5.2.3 Starting and ending Data Extent in mid-block

	5.3 Files Illustrated
	5.3.1 Simple Files
	5.3.2 Shared Blocks
	5.3.3 Sparse Files
	5.3.4 Shared Data

	6 Data Formats
	6.1 Boolean format
	6.2 Creator format
	6.3 Extended attribute value format
	6.4 Name format
	6.5 Name pattern format
	6.6 String format
	6.7 Time stamp format
	6.8 UUID format

	7 Label Format
	7.1 Label Construct
	7.1.1 VOL1 Label
	7.1.2 LTFS Label
	7.1.3 Managing LTFS Labels

	8 Index Format
	8.1 Index Construct
	8.2 Index
	8.2.1 Example index omitting the body
	8.2.2 Required elements for every index
	8.2.3 Optional elements for every index
	8.2.4 Example Index that omits the Preface section
	8.2.5 Required directory elements
	8.2.6 Optional directory elements
	8.2.7 Required file elements
	8.2.8 Optional file elements
	8.2.9 extendedattributes elements
	8.2.10 Managing LTFS Indexes
	8.2.11 Data Placement Policy
	8.2.12 Data Placement Policy Alteration
	8.2.13 Allow Policy Update is set
	8.2.14 Allow Policy Update is unset
	8.2.15 Data Placement Policy Application

	9 Medium Auxiliary Memory
	9.1 Volume Change Reference
	9.2 Volume Coherency Information
	9.3 Use of Volume Coherency Information for LTFS
	9.4 Use of Host-type Attributes for LTFS
	9.4.1 Application Vendor
	9.4.2 Application Name
	9.4.3 Application Version
	9.4.4 Text Localization Identifier
	9.4.5 User Medium Text Label
	9.4.6 Barcode
	9.4.7 Application Format Version
	9.4.8 Example attributes

	Annex A (normative) LTFS Label XML Schema
	Annex B (normative) LTFS Index XML Schema
	Annex C (normative) Reserved Extended Attribute definitions
	C.1 Software Metadata
	C.2 Drive Metadata
	C.3 Object Metadata
	C.4 Volume Metadata
	C.5 Media Metadata

	Annex D (informative) Example of Valid Simple Complete LTFS Volume
	Annex E (informative) Complete Example LTFS Index
	Annex F (normative) Interoperability Recommendations
	F.1 Spanning Files across Multiple Tape Volumes in LTFS
	F.1.1 File Naming
	F.1.2 File Location
	F.1.3 Segment References
	F.1.4 Extended Attributes
	F.1.5 File Operations
	F.1.6 Examples
	F.1.6.1 Example 1
	F.1.6.2 Example 2

	F.2 File Permissions in LTFS
	F.2.1 Unix Permissions:
	F.2.2 POSIX ACLs:
	F.2.3 NFSv4 ACLs:
	F.2.4 NTFS ACLs:

	Blank Page

