

Reference number
ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011

INTERNATIONAL
STANDARD

ISO/IEC
23001-4

Second edition
2011-12-15

Information technology — MPEG systems
technologies —

Part 4:
Codec configuration representation

Technologies de l'information — Technologies des systèmes MPEG —

Partie 4: Représentation de configuration codec

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2011 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved iii

Contents Page

Foreword .. iv

Introduction ... v

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions ... 1

4 Functional unit network description ... 3

5 Bitstream syntax description ... 5

6 Model instantiation .. 6

Annex A (normative) Functional unit network description .. 7

Annex B (informative) Examples of FU network description ... 13

Annex C (normative) Specification of RVC-BSDL ... 15

Annex D (normative) Specification of RVC-CAL language ... 29

Annex E (informative) Instantiation of bitstream syntax parser from bitstream syntax descriptions 51

Annex F (informative) Relation between codec configuration representation and multimedia
middleware (M3W) ... 56

Bibliography .. 57

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

iv © ISO/IEC 2011 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 23001-4 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This second edition cancels and replaces the first edition (ISO/IEC 23001-4:2009) which has been technically
revised.

ISO/IEC 23001 consists of the following parts, under the general title Information technology — MPEG
systems technologies:

 Part 1: Binary MPEG format for XML

 Part 2: Fragment request units

 Part 3: XML IPMP messages

 Part 4: Codec configuration representation

 Part 5: Bitstream Syntax Description Language (BSDL)

 Part 7: Common encryption in ISO base media file format files

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved v

Introduction

This part of ISO/IEC 23001 defines the methods capable of describing codec configurations in the so-called
reconfigurable video coding (RVC) framework. The objective of RVC is to offer a framework that is capable of
configuring and specifying video codecs as a collection of “higher level” modules by using video coding tools.
The video coding tools are defined in video tool library. Part 4 of ISO/IEC 23002 defines the MPEG video tool
library. The RVC framework principle could also support non-MPEG tool libraries, provided that their
developers have taken care to obey the appropriate rules of operation.

For the purpose of framework deployment, an appropriate description is needed to describe configurations of
decoders composed of or instantiated from a subset of video tools from either one or more libraries. As
illustrated in Figure 1, the configuration information consists of:

 bitstream syntax description, and

 network of functional units (FUs) description (also referred to as the decoder configuration)

that together constitute the entire decoder description (DD).

Bitstreams of existing MPEG standards are specified by specific syntax structures and decoders are
composed of various coding tools. Therefore, RVC includes support for bitstream syntax descriptions as well
as video coding tools. As depicted in Figure 1, a typical RVC decoder requires two types of information,
namely the decoder description and the encoded media (e.g. video bitstreams) data.

1. Bitstream syntax
2. Decoder configuration

Encoder Decoder
Decoder Description

Encoded Video Data

Figure 1 — Conceptual diagram of RVC

Figure 2 illustrates a more detailed description of the RVC decoder.

A more detailed description of the RVC decoder is shown in Figure 2. As shown in Figure 2, the decoder
description is required for the configuration of a RVC decoder. The Bitstream Syntax Description (BSD) and
FU Network Description (FND) (which compose the Decoder Description) are used to configure or compose
an abstract decoder model (ADM) which is instantiated through the selection of FUs from tool libraries
optionally with proper parameter assignment. Such an ADM constitutes the behavioral reference model used
in setting up a decoding solution under the RVC framework. The process of yielding a decoding solution may
vary depending on the technologies used for the desired implementations. Examples of the instantiation of an
abstract decoder model and generation of proprietary decoding solutions are given in Annex E.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

vi © ISO/IEC 2011 – All rights reserved

Figure 2 — Graphical representation of the instantiation process or decoder composition mechanism
for the RVC normative ADM and for the non-normative proprietary compliant decoder implementation

Within the RVC framework, the decoder description describes a particular decoder configuration and consists
of the FND and the BSD. The FND describes the connectivity of the network of FUs used to form a decoder
whereas the parsing process for the bitstream syntax is implicitly described by the BSD. These two
descriptions are specified using two standard XML-based languages or dialects:

 Functional Unit Network Language (FNL) is a language that describes the FND, known also as “network
of FUs”. The FNL specified normatively within the scope of the RVC framework is provided in this part of
ISO/IEC 23001;

 Bitstream Syntax Description Language (BSDL), standardized in ISO/IEC 23001-5 (MPEG-B Part 5),
describes the bitstream syntax and the parsing rules. A pertinent subset of this BSDL named RVC-BSDL
is defined within the scope of the current RVC framework. This RVC-BSDL also includes possibilities for
further extensions, which are necessary to provide complete description of video bitstreams. RVC-BSDL
specified normatively within the scope of the RVC framework is provided in this part of ISO/IEC 23001.

The decoder configuration specified using FNL, together with the specification of the bitstream syntax using
RVC-BSDL fully specifies the ADM and provides an “executable” model of the RVC decoder description.

The instantiated ADM includes the information about the selected FUs and how they should be connected. As
already mentioned, the FND with the network connection information is expressed by using FNL. Furthermore,
the RVC framework specifies and uses a dataflow-oriented language called RVC-CAL for describing FUs'
behavior. The normative specification of RVC-CAL is provided in this part of ISO/IEC 23001. The ADM is the
behavioral model that should be referred to in order to implement any RVC conformant decoder. Any RVC
compliant decoding solution/implementation can be achieved by using proprietary non-normative tools and
mechanisms that yield decoders that behave equivalent to the RVC ADM.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved vii

The decoder description, the MPEG video tool library, and the associated instantiation of an ADM are
normative. More precisely, the ADM is intended to be normative in terms of a behavioral model. In other words
what is normative is the input/output behavior of the complete ADM as well as the input/output behavior of all
the FUs that are included in the ADM.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

INTERNATIONAL STANDARD ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 1

Information technology — MPEG systems technologies —

Part 4:
Codec configuration representation

1 Scope

This part of ISO/IEC 23001 defines the methods and general principles capable of describing codec
configurations in the so-called reconfigurable video coding (RVC) framework. It primarily addresses
reconfigurable video aspects and will only focus on the description of representation for video codec
configurations within the RVC framework.

Within the scope of the RVC framework, two languages, namely FNL and RVC-BSDL, are specified
normatively. FNL is a language that describes the FND, also known as “network of FUs”. RVC-BSDL is a
pertinent subset of BSDL defined in ISO/IEC 23001-5. This RVC-BSDL also includes possibilities for further
extensions, which are necessary to provide complete description of video bitstreams.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document, including any amendments, applies.

ISO/IEC 14496-2:2004, Information technology — Coding of audio-visual objects — Part 2: Visual

ISO/IEC 23001-5:2008, Information technology — MPEG systems technologies — Part 5: Bitstream Syntax
Description Language (BSDL)

ISO/IEC 23002-4, Information technology — MPEG video technologies — Part 4: Video tool library

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
ADM
abstract decoder model
conceptual model of the instantiation of the functional units (3.8) from the video tool library (3.16) and their
connection according to the FU network description (3.9)

3.2
BSD
bitstream syntax description
description containing the bitstream syntax, its implicit parsing rules, and possibly tables [e.g. VLD tables if not
already existing in the reconfigurable video coding (3.13) video tool library] to define the parser
functional unit (3.8)

NOTE The BSD is expressed using reconfigurable video coding-bitstream syntax description language (3.14).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

2 © ISO/IEC 2011 – All rights reserved

3.3
BSDL
bitstream syntax description language
description of the bitstream syntax and the parsing rules

NOTE Bitstream syntax description language (BSDL) is standardized by ISO/IEC 23001-5.

3.4
connection
link from an output port to an input port of a functional unit (3.8) that enables token exchange between FUs

3.5
decoder configuration
conceptual configuration of a decoding solution

NOTE 1 Using the MPEG video tool library (3.12), decoder configuration can be designed as one of the following
cases.

 A decoding solution of an existing MPEG standard at a specific profile and level.

 A new decoding solution built from tools of an existing MPEG standard.

 A new decoding solution built from tools of an existing MPEG standard and some new MPEG tools included in the
MPEG video tool library.

 A new decoding solution that is composed of new MPEG tools included in the MPEG video tool library.

NOTE 2 In summary, an RVC decoder description essentially consists of a list of functional units (3.8) and of the
specification of the FU connections [FU network description (3.9) expressed in FU network language (3.10)] plus the
implicit specification of the parser in terms of bitstream syntax description (3.2) [BSD expressed in reconfigurable
video coding-bitstream syntax description language (3.14)]. In order to be a complete behavioral model [i.e. abstract
decoder model (3.1)] an RVC decoder description (3.6) needs to make reference to the behavior of each FU that is
provided in terms of I/O behavior by the MPEG video tool library (3.12) specified in ISO/IEC 23002-4.

3.6
DD
decoder description
description of a particular decoder configuration, which consists of two parts: FU network description (3.9)
and bitstream syntax description (3.2)

3.7
decoding solution
implementation of the abstract decoder model (3.1)

3.8
FU
functional unit
modular tool which consists of a processing unit characterized by the input/output behavior

3.9
FND
FU network description
FU (3.8) connections used in forming a decoder which are modeled using FU network language (3.10)

3.10
FNL
FU network language
language that describes the FU network description (3.9), known also as a “network of FUs”

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 3

3.11
model instantiation
building of the abstract decoder model (3.1) from the decoder description (3.6) [consisting of the
bitstream syntax description (3.2) and the FU network description (3.9)] and from functional units (3.8)
from the video tool library (3.16)

NOTE During the model instantiation, the parser FU is reconfigured according to the BSD or loaded from VTL.

3.12
MPEG video tool library
MPEG VTL
video tool library (3.16) that contains functional units (3.8) defined by MPEG, that is, drawn from existing
MPEG International Standards

3.13
RVC
reconfigurable video coding
framework defined by MPEG to promote coding standards at tool-level while maintaining interoperability
between solutions from different implementers

3.14
RVC-BSDL
reconfigurable video coding-bitstream syntax description language
pertinent subset of bitstream syntax description language (3.3), which is defined within the scope of the
current reconfigurable video coding (3.13) framework

3.15
token
data entity exchanged between input and output among functional units (3.8)

3.16
VTL
video tool library
collection of functional units (3.8)

4 Functional unit network description

4.1 Introduction

The FUs in MPEG RVC are specified by:

 The textual description in ISO/IEC 23002-4.

 The RVC-CAL reference software. The RVC-CAL language is formally specified in Annex D.

The Functional Unit Network Language (FNL) is formally specified in this Clause and is used to describe
networks of FUs. FNL is derived from Extensible Markup Language (XML) which was in turn derived from
SGML (ISO 8879). The ADM consists of a number of FUs with input and output ports, and the connections
between those ports. In addition, the ADM may have input and output ports, which may be connected to the
ports of FUs or to each other.

A decoder can be described as a network of a number of FUs or even only one FU (e.g. Figure 3).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

4 © ISO/IEC 2011 – All rights reserved

FU A BA
Bits YUV

Decoder

Figure 3 — FU network of one FU

A network of FUs is described in FND. An FND includes the list of the selected FUs to form the decoder and
the three types of connections that are connections between FUs (type A), connections between decoder
inputs and FU inputs (type B), and connections between FU outputs and decoder outputs (type C), which are
illustrated in Figure 4.

The list of the selected FUs (Figure 4) is described in FND according to the following table. When selecting
FUs from VTL, the IDs and names of FUs defined in ISO/IEC 23002-4 shall be used in the FND. The
parameter assignments in the listed FUs are supported in the FND, but optional.

<Instance id = "FU A">
 <Class name = "Algo_Example1" />
</Instance>
<Instance id = "FU B">
 <Class name = "Algo_Example2" />
</Instance>

The connections (type A, type B, and type C shown in Figure 4) are described in FND as shown in the
following table.

Type A
<Connection src = "FU A" src-port = "B" dst = "FU B" dst-port = "D" />
<Connection src = "FU A" src-port = "C" dst = "FU B" dst-port = "E" />

Type B <input src = "FU A" src-port = "A" />

Type C <output src = "FU B" src-port = "F" />

FU A FA
Bits YUV

FU B
B

C

D

E

Decoder

Type A
Type B
Type C

Figure 4 — Three types of connections in an FU network

Another example of FU networks with four FUs is illustrated in Figure 5. The textual description of Figure 5 in
FND is described as follows.

<XDF name="Decoder">
<Instance id = "Syntax parser">
 <Class name = "syntax parser">
</Instance>
<Instance id = "FU A">
 <Class name = "Algo_ExamFU_A">
</Instance>
<Instance id = "FU B">
 <Class name = "Algo_ExamFU_B">
</Instance>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 5

<Instance id = "FU C">
 <Class name = "Algo_ExamFU_C">
</Instance>
<Input src = "Syntax Parser" src-port = "A" />
<Output src = "FU C" src-port = "R" />
<Connection src = "Syntax Parser" src-port = "B" dst = "FU A" dst-port = "E" />
<Connection src = "Syntax Parser" src-port = "C" dst = "FU A" dst-port = "F" />
<Connection src = "Syntax Parser" src-port = "D" dst = "FU B" dst-port = "K" />
<Connection src = "FU A" src-port = "H" dst = "FU C" dst-port = "O” />
<Connection src = "FU B" src-port = "L" dst = "FU C" dst-port = "P" />
<Connection src = "FU B" src-port = "M" dst = "FU C" dst-port = "Q" />
</XDF>

Syntax
Parser

A

Bits
YUV

B

C

D

FU A
E

H
F

FU B
L

M
K

FU C

O

P

Q

R

Decoder

Figure 5 — Another example of FU networks

4.2 The specification of an FU network

The XML structures with names of elements, such as Decl, Network, Package, Expr, etc. are described in the
specification of FNL in Annex A. In addition, attributes that direct an individual element’s features are also
introduced there. Attribute names will be prefixed with “@”. For instance common attribute names are @id,
@name, or @kind. In cases where an element name may be qualified by the value of an attribute, square
brackets are used. For instance, in order to express the notion of an Expr element whose @kind attribute is
the string “literal”, Expr[@kind="literal"] is written.

By using the RVC-CAL model, FNL also allows FU networks and individual FUs to be parameterized. In
particular, it is possible to pass bounded values for specific parameters into FU and FU networks. These
values are represented by Expr and Decl syntax. Expr and Decl are the syntactical constructs describing a
computation, which may, itself, be dependent upon the values of parameters which are either global or local
variables.

5 Bitstream syntax description

The MPEG video tool library contains FUs that specify MPEG decoding tools. A new decoder configuration
implies new bitstream syntax. The description of the bitstream syntax in RVC is provided using BSDL as
specified in ISO/IEC 23001-5 and BSDL schema. However, to facilitate the developments of synthesis tools
that are able to generate parsers directly from a BSD (i.e. a BSDL schema), the RVC framework standardizes
a version of BSDL called RVC-BSDL specified by including new RVC specific extensions and usage
restrictions of standard BSDL in ISO/IEC 23001-5. Such extensions and restrictions versus the MPEG
standard BSDL are defined in Annex C of this document. RVC-BSDL contains all information necessary to
parse any bitstream compliant with such syntax. The procedure to instantiate the parser capable of parsing
and decoding any bitstream compliant with the syntax specified by the RVC-BSDL schema is not normative.
Examples of such non-normative procedures are provided in Annex E.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

6 © ISO/IEC 2011 – All rights reserved

6 Model instantiation

This Clause describes the model instantiation process which consists of the selection of Functional Units
(FUs) from the video tool library and instantiation of the FUs with the proper parameter assignments. The
instantiation process requires the following information:

 The video tool library
 The FU network description
 The bitstream syntax description

The instantiation process consists of attaching the source code corresponding to the FUs identified in the FND
in order to build a complete model that can be simulated. The video tool library is a library of source code of all
FUs standardized in ISO/IEC 23002-4. The FND contains only the references (names of the FUs) to the
pieces of code in the VTL. The process outputs the ADM. Figure 6 illustrates the model instantiation process.

Figure 6 — Description of the model instantiation process

The FU Network Description (FND) provides the structure of the decoder by giving the names of the FUs
composing the decoder and their respective connections among them. The name of the instance of the FU in
the ADM is contained in the tag <instance id="…">. The tag <class name="…"> indicates the name of
the FU (in the video tool library) from which the FU of the ADM must be instantiated. The tag <parameter>
provides the values of the parameters, which must be used for the instantiation of the FU in the ADM.

The Bitstream Syntax Description (BSD) provides the structure of the bitstream. The parser is generated
automatically from the BSD. Informative examples are provided in Annex E for building the parser. The syntax
parser FU of the ADM might use other FUs to parse the bitstream. Thus, a clear link between identifiers inside
the BSD and the FND must be established. The tag <rvc port="…"> indicates the name of the instance of
the FU into the ADM to which this element of syntax is sent.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 7

Annex A
(normative)

Functional unit network description

A.1 Elements of a functional unit network

XDF — An FU network is identified by the root element called XDF that marks the beginning and end of the
XML description of the network.

 optional attribute: @name, the name of the network. @version, the version number of the current
network. Assumed to be “1.0” if absent.

 optional children: Package, Decl, Port, Instance, Connection.

<XDF name="mpeg4SP">
 ...
</XDF>

Package — This element contains a structured representation of a qualified identifier (QID) (i.e. a list of
identifiers that are used to specify a locus in a hierarchical namespace). That QID provides the context for the
@name attributed of the enclosing Network element: that name is intended to be valid within the specified
namespace, or package.

 required child: QID, the qualified identifier.

<Package>
 <QID>
 <ID id="mpeg4"/>
 </QID>
</Package>

Decl[@kind="Param"] — Represents the declaration of a parameter of the network.

 required attribute: @name, the name of the parameter.

 optional child: Type, the declared type of the parameter.

<Decl kind="Param" name="FOURMV"/>

Decl[@kind="Var"] — This element represents a variable declaration. Variables are used within expressions
to compute parameter values for actors instantiated within the network and within expressions used to
compute the values of other variables.

 required attribute: @name, containing the name of the declared variable.

 required child: Expr, representing the expression defining the value of this variable, possibly referring
the values of other variables and parameters.

 optional child: Type, the declared type of the variable.

<Decl kind="Variable" name="MOTION">
 <Expr kind="Literal" literal-kind="Integer" value="8"/>
</Decl>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

8 © ISO/IEC 2011 – All rights reserved

Port — Represents the declaration of a port of the network. Ports are directed, i.e. they serve as either input
or output of tokens.

 required attributes: @name, the name of the port. @kind, either “Input” or “Output”.

 optional children: Type, the declared type of the port.

<Port kind="Input" name="signed"/>
<Port kind="Output" name="out"/>

Instance — This element represents instantiations of FUs (i.e. actors). Essentially, an instantiation consists of
two parts: (1) a specification of the class of the FU, and (2) a list of parameter values, specifying expressions
for computing the actual parameter for each formal parameter of the FU class.

 required attribute: @id, the unique identifier of this FU instance in the network. No two Instance
elements may have the same value for this attribute.

 required child: Class, identifying the FU class to be instantiated.

 optional children: Parameter, each of these is assigning a formal parameter of the FU class to an
expression defining the actual parameter value for this instance. Attribute, additional named attributes
for this instance.

<Instance id="MPEG4_algo_PR">
 <Class name="MPEG4_algo_Add"/>
 <Parameter name="LAYOUT">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Parameter>
</Instance>

<Instance id="Algo_IDCT2D_MPEGCPart1Compliant">
 <Class name="Algo_IDCT2D_MPEGCPart1Compliant"/>
</Instance>

Connection — Represents a directed connection between two ports within the network. The source of that
connection can be either an input port of the network or an output port of an FU instance. Conversely, the
destination of that connection is either an output port of the network or the input port of an FU instance.

 required attributes: @src, the id of the source FU of this connection. If “”, the connection originates at
a network input port. @src-port, the name of the source port. @dst, the id of the destination FU of this
connection. If “”, the connection ends at a network output port. @dst-port, the destination port of the
connection.

 optional children: Attribute, additionally named attributes of this connection.

<Connection dst="MPEG4_algo_Add_V" dst-port="TEX" src="Algo_IDCT2D_MPEGCPart1Compliant_V" src-
port="out"/>

A.2 Expressions

All Expr elements represent expressions. Expressions are used to compute values that are in turn passed as
parameters when instantiating FUs. Expressions can refer to variables by name. Those variables may be
declared local variables of a network, declared network parameters, or global variables. There are a number
of different kinds of expressions, all represented as Expr elements. They are distinguished by the @kind
attribute.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 9

Expr[@kind="Literal"] — These expressions represent literals, which are essentially atomic expressions that
denote constants, and which do not refer to any variables. There are a number of different kinds of literals,
distinguished by the @literal-kind attribute.

Expr[@kind="Literal"][@literal-kind="Boolean"] — These literals are Boolean values.

 required attribute: @value, either “1” for true or “0” for false.

<Expr kind="Literal" literal-kind="Boolean" value="1"/>

Expr[@kind="Literal"][@literal-kind="Integer"] — These literals represent arbitrary-sized integral numbers.

 required attribute: @value, the decimal representation of the number.

<Expr kind="Literal" literal-kind="Integer" value="64"/>

Expr[@kind="Literal"][@literal-kind="Real"] — These are numbers with fractional parts.

 required attribute: value, the decimal representation of the number, optionally in scientific notation with
an exponent separated from the mantissa by the character ‘E’ or ‘e’.

<Expr kind="Literal" literal-kind="Real" value="32e-2"/>

Expr[@kind="Literal"][@literal-kind="String"] — String literals.

 required attribute: @value, the string value.

<Expr kind="Literal" literal-kind="String" value="ForemanQCIF"/>

Expr[@kind="Literal"][@literal-kind="Character"] — Character literals.

 required attribute: @value, the character value.

<Expr kind="Literal" literal-kind="Character" value="s"/>

Expr[@kind="List"] — This expression is a list.

<Expr kind="List"/>

Expr[@kind="Var"] — This expression is a variable reference.

 required attributes: @name, the name of the variable referred to.

<Expr kind="Var" name="INTER"/>

Expr[@kind="Application"] — This kind of expression represents the application of a function to a number
of arguments.

 required children: Expr, the expression representing the function. Args, an element containing the
arguments.

<Expr kind="Application">
 <Expr kind="Var" name="log"/>
 <Args>
 <Expr kind="Literal" literal-kind="Integer" value="2"/>
 </Args>
</Expr>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

10 © ISO/IEC 2011 – All rights reserved

Expr[@kind="UnaryOp"] — This expression represents the application of a unary operator to a single
operand.

 required children: Op, the operator. Expr, an expression representing the operand.

<Expr kind="UnaryOp">
 <Op name="!"/>
 <Expr kind="Literal" literal-kind="Boolean" value="1"/>
</Expr>

Expr[@kind="BinOpSeq"] — These expressions represent the use of binary operators on a number of
operands. The associativity remains unspecified, and will have to be decided based on the operators involved.
The children are operands and operators. There has to be at least one operator, and exactly one more
operands than operators. The operators are placed between the operands in document order — the first
operator between the first and second operand, the second operator between the second and third operand
and so forth. The relative position of operators and operands is of no importance.

 required children: Op, the operators. Expr, the operands.

<Expr kind="BinOpSeq">
 <Expr kind="Literal" literal-kind="Integer" value="3"/>
 <Op name="+"/>
 <Expr kind="Literal" literal-kind="Integer" value="2"/>
</Expr>

A.3 Auxiliary elements

Args — This element contains the arguments of a function application.

 required children: Expr, the argument expressions.

Op — This element represents a unary or binary operator, depending on context.

 required attribute: @name, the operator name.

<Expr kind="Application">
 <Expr kind="Var" name="myfunction"/>
 <Args>
 <Expr kind="BinOpSeq">
 <Expr kind="Literal" literal-kind="Integer" value="3"/>
 <Op name="+"/>
 <Expr kind="Literal" literal-kind="Integer" value="2"/>
 </Expr>
 </Args>
</Expr>

A.4 Types

Types, represented by Type elements, occur in the declarations of variables and ports. They are used to
specify the data types of objects bound to those variables or communicated via those ports. They are
identified by a name, and may also comprise parameters, which are bound to either other types, or
expressions (which are resulting in values).

Type — The description of a data type.

 required attribute: @name, the name of the type.

 optional children: Entry, entries binding a concrete object (either a value or another type) to a named
parameter.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 11

<Type name="mytype">
 ...
</Type>

Entry[@kind="Expr"] — A value parameter of a type.

 required attribute: @name, the name of the parameter.

 required child: Expr, the expression used to compute the attribute value.

<Type name="mytype">
 <Entry kind="Expr" name="size">
 <Expr kind="Literal" literal-kind="Integer" value="10"/>
 </Entry>
</Type>

Entry[@kind="Type"] — A type parameter of a type.

 required attribute: @name, the name of the parameter.

 required child: Type, the type bound to the parameter.

<Type name="list">
 <Entry kind="Type" name="type">
 <Type name="bool"/>
 </Entry>
 <Entry kind="Expr" name="size">
 <Expr kind="Literal" literal-kind="Integer" value="32"/>
 </Entry>
</Type>

A.5 Miscellaneous elements

Attribute — The instances and connections of a network can be tagged with attributes. An attribute is a
named element that contains additional information about the instance or connection. We distinguish four
kinds of attributes: flags, string attributes, value attributes, and custom attributes. A flag is an attribute that
does not contain ANY information except its name. A string attribute is one that contains a string, a value
attribute contains an expression (represented by an Expr element), and a custom attribute contains any kind
of information.

 optional attribute: @value, the string value of a string attribute.

 optional children: Expr, the value expression of a value attribute. An Attribute may instead also
contain any other element.

<Connection dst="sink" dst-port="bits" src="source" src-port="bits">
 <Attribute kind="Value" name="bufferSize">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Attribute>
</Connection>

QID — An element representing a qualified identifier, which is a list of simple identifiers. That list may be of
any length, including zero.

 optional children: ID, a simple identifier.

<QID>
 <ID id="mpeg4"/>
 <ID id="SP"/>
 <ID id="myversion"/>
</QID

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

12 © ISO/IEC 2011 – All rights reserved

FUID — A simple identifier.

 required attribute: @id, the identifier.

<FUID id="0001012"/>

Class — This element identifies an FU class by name. If the FU class name is to be interpreted within a
specific namespace, that QID of that namespace may be contained within the Class element.

 required attribute: @name, the name of the class.

 optional child: QID, the QID identifying the package/namespace for the class name.

<Class name="MPEG4_algo_VLDTableB8"/>

Parameter — This element specifies a value expression for a given, named parameter.

 required attribute: @name, the parameter name.

 required child: Expr, the expression whose evaluation will yield the value for the specified parameter.

<Parameter name="ROW">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
</Parameter>

NOTE This element is special in two respects: (1) It may occur anywhere in the network description. (2) Its format is
entirely unspecified. The Note element can be used to add annotations and additional information to any element in the
Network specification. It is common practice to use the @kind attribute to identify the type of the note.

Examples of description of networks of FUs using the FNL specified above are given in Annex B.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 13

Annex B
(informative)

Examples of FU network description

B.1 Introduction

This Annex provides some examples of how a RVC decoder configuration can be specified in terms of a
network of RVC FUs, including a 1-D IDCT, 2-D IDCT (Figure B.1), and the flatten MPEG-4 SP decoder FUs.
A flatten decoder configuration is described in terms of networks of FUs from the RVC toolbox
ISO/IEC 23002-4 composed of MPEG-4 SP FUs.

B.2 Example of specification of a network of FUs implementing a 1D-IDCT algorithm

Figure B.1 illustrates the network composed by 5 FUs taken from the MPEG RVC toolbox, the connections
between FU and between the network and the outside world.

Figure B.1 — Example of networks of FU expressed using RVC FNL

The textual specification of the network in Figure B.1 is specified below. The network implements a 1-D IDCT.

<?xml version="1.0" encoding="UTF-8"?><XDF name="idct2d">

 <Package>
 <QID>
 <ID id="mpeg4"/>
 </QID>
 </Package>

 <Port kind="Input" name="in"/>
 <Port kind="Input" name="signed"/>
 <Port kind="Output" name="out"/>
 <Decl kind="Variable" name="INP_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="12"/>
 </Decl>
 <Decl kind="Variable" name="PIX_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="9"/>
 </Decl>
 <Decl kind="Variable" name="OUT_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="10"/>
 </Decl>
 <Decl kind="Variable" name="MEM_SZ">
 <Expr kind="Literal" literal-kind="Integer" value="16"/>
 </Decl>
 <Instance id="GEN_124_algo_Idct1d_r">
 <Class name="GEN_124_algo_Idct1d"/>
 <Parameter name="ROW">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Parameter>
 </Instance>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

14 © ISO/IEC 2011 – All rights reserved

 <Instance id="GEN_algo_Transpose_0">
 <Class name="GEN_algo_Transpose"/>
 </Instance>
 <Instance id="GEN_124_algo_Idct1d_c">
 <Class name="GEN_124_algo_Idct1d"/>
 <Parameter name="ROW">
 <Expr kind="Literal" literal-kind="Integer" value="0"/>
 </Parameter>
 </Instance>
 <Instance id="GEN_algo_Transpose_1">
 <Class name="GEN_algo_Transpose"/>
 </Instance>
 <Instance id="GEN_algo_Clip">
 <Class name="GEN_algo_Clip"/>
 <Parameter name="isz">
 <Expr kind="Var" name="OUT_SZ"/>
 </Parameter>
 <Parameter name="osz">
 <Expr kind="Var" name="PIX_SZ"/>
 </Parameter>
 </Instance>
 <Connection dst="GEN_124_algo_Idct1d_r" dst-port="X" src="" src-port="in"/>
 <Connection dst="GEN_algo_Clip" dst-port="SIGNED" src="" src-port="signed"/>
 <Connection dst="" dst-port="out" src="GEN_algo_Clip" src-port="O"/>
 <Connection dst="GEN_algo_Transpose_0" dst-port="X" src="GEN_124_algo_Idct1d_r" src-port="Y"/>
 <Connection dst="GEN_124_algo_Idct1d_c" dst-port="X" src="GEN_algo_Transpose_0" src-port="Y"/>
 <Connection dst="GEN_algo_Transpose_1" dst-port="X" src="GEN_124_algo_Idct1d_c" src-port="Y"/>
 <Connection dst="GEN_algo_Clip" dst-port="I" src="GEN_algo_Transpose_1" src-port="Y"/>
</XDF>

B.3 FNL of the testbed

<?xml version="1.0" encoding="UTF-8"?><XDF name="testbed">
 <Instance id="FUN_MPEG4SP_DECODER">
 <Class name="decoder"/>
 </Instance>
 <Instance id="fread">
 <Class name="fread"/>
 <Parameter name="fname">
 <Expr kind="Literal" literal-kind="String" value="data/foreman_qcif_30.bit"/>
 </Parameter>
 </Instance>
 <Instance id="DispYUV">
 <Class name="DispYUV"/>
 <Parameter name="title">
 <Expr kind="Literal" literal-kind="String" value="Foreman QCIF"/>
 </Parameter>
 <Parameter name="height">
 <Expr kind="Literal" literal-kind="Integer" value="144"/>
 </Parameter>
 <Parameter name="file">
 <Expr kind="Literal" literal-kind="String" value="data/foreman_qcif_30.yuv"/>
 </Parameter>
 <Parameter name="width">
 <Expr kind="Literal" literal-kind="Integer" value="176"/>
 </Parameter>
 <Parameter name="doCompare">
 <Expr kind="Literal" literal-kind="Integer" value="1"/>
 </Parameter>
 </Instance>
 <Connection dst="FUN_MPEG4SP_DECODER" dst-port="bits" src="fread" src-port="O"/>
 <Connection dst="DispYUV" dst-port="B" src="FUN_MPEG4SP_DECODER" src-port="VID"/>
</XDF>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 15

Annex C
(normative)

Specification of RVC-BSDL

C.1 Introduction

This Annex describes the subset and the extensions of ISO/IEC 23001-5 BSDL that constitutes the
specification of RVC-BSDL. The objective of specifying a new standard from BSDL (ISO/IEC 23001-5:2008)
into a smaller subset (RVC-BSDL), is to be able to support a simple and efficient methodology for describing
video bitstreams syntaxes in the scope of RVC, as well as to facilitate the development of supporting tools (i.e.
direct synthesis of parsers from RVC-BSDL descriptions).

The following Clauses describe the specificity of the subset and the extensions of BSDL standard as specified
in ISO/IEC 23001-5:2008, which are needed to obtain the RVC-BSDL used in this Part of ISO/IEC 23001 (i.e.
the RVC framework).

C.2 Use of prefixes in RVC-BSDL schema

Prefixes and the corresponding namespaces are specified in RVC BSDL schema.

Table C.1 — Mapping of prefixes to corresponding namespaces in RVC-BSDL schemas

Prefix Corresponding Namespace

xsd http://www.w3.org/2001/XMLSchema

bs0 urn:mpeg:mpeg21:2003:01-DIA-BSDL0-NS

bs1 urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS

bs2 urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS

rvc urn:mpeg:2006:01-RVC-NS

C.3 Constructs of RVC-BSDL

C.3.1 Introduction

This Subclause describes which BSDL constructs are supported in RVC-BSDL in the RVC framework. It
includes data types, attributes and elements. The aim of the subset definition is to provide a restricted way of
representing well-defined bitstreams. Thus, the processes including the validations of the bitstreams and the
generation of efficient implementations capable of parsing the bitstreams — described using RVC-BSDL —
become simpler. The specification of the BSDL constructs listed below can be found in
ISO/IEC 23001-5:2008.

C.3.2 Supported data types

C.3.2.1 Built-in data types

This Subclause describes the data types which are supported by RVC-BSDL. The supported data types
already defined in common XML schema is shown in Table C.2. The BSDL built-in data types supported by
RVC-BSDL are reported in Table C.3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

16 © ISO/IEC 2011 – All rights reserved

Table C.2 — List of XML Schema data types supported or not supported by RVC-BSDL

Data Type Supported by RVC-BSDL?

xsd:hexBinary Yes

xsd:long Yes

xsd:int Yes

xsd:short Yes

xsd:byte Yes

xsd:unsignedLong Yes

xsd:unsignedInt Yes

xsd:unsignedShort Yes

xsd:unsignedByte Yes

xsd:string No

xsd:normalizedString No

xsd:float No

xsd:double No

xsd:base64Binary No

Table C.3 — List of BSDL built-in data types supported or not supported by RVC-BSDL

Data Type Supported by RVC-BSDL?

bs1:byteRange Yes

bs1:align32 Yes

bs1:align16 Yes

bs1:align8 Yes

bs1:b1 - bs1:b32 Yes

bs1:bitstreamSegment No

bs1:stringUTF16NT No

bs1:stringUTF8 No

bs1:stringUTF16BENT No

bs1:stringUTF16LENT No

bs1:stringUTF8NT No

bs1:stringUTF16 No

bs1:stringUTF16BE No

bs1:stringUTF16LE No

bs1:longLE No

bs1:intLE No

bs1:shortLE No

bs1:unsignedLongLE No

bs1:unsignedIntLE No

bs1:unsignedShortLE No

bs1:unsignedExpGolomb No

bs1:signedExpGolomb No

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 17

C.3.2.2 Additional data types

It may happen that processing tasks associated to the parsing of a segment of the bitstream are not described
in the RVC-BSDL schema. This is the case for bitstream segments for which VLD, CAVLD or CABAC
decoding algorithms need to be applied. Specific functional units available in the RVC toolbox can be used to
decode such portions of the bitstream before continuing the parsing. The data type rvc:ext indicates a
portion of bitstream that needs to be decoded by an external Functional Unit. A communication scheme
(described in E.1.2) is set up to make the link with this external Functional Unit. The rvc:port attribute helps
in making this link by specifying the name of the ports used to connect the parser and the Functional Unit. An
example of Variable Length Decoding is provided below:

<xsd:element name="DCTCoefficient" type="rvc:ext" rvc:port= "MPEG4_part2_B16"/>

Connections with an external FU are necessary to decode the DCT coefficients, which are Variable Length
Codes. These coefficients shall be decoded using ISO/IEC 14496-2:2004, Table B.16 (the VLC table). Thus a
connection is established between the parser and the corresponding Functional Unit to decode this element of
syntax. Example of such a communication protocol is shown in details in E.1.2 (Implementing Variable-Length
Decoding). The rvc:ext type can be only applied to an xsd:element element.

C.3.3 Supported elements

This Subclause describes which BSDL facets are supported in RVC-BSDL within the RVC framework. The
allowed BSDL-2 elements are described in Table C.4. The allowed BSDL-1 elements are described in
Table C.5. The allowed XML built-in elements are reported in Table C.6.

Table C.4 — The BSDL-2 elements supported or not supported by RVC-BSDL

Element name Supported by RVC-BSDL?

bs2:length Yes (see C.4.3.11)

bs2:bitLength Yes (see C.4.3.10)

bs2:startCode Yes (see C.4.3.12)

bs2:endCode No

bs2:escape No

bs2:cdata No

bs2:log2() No

bs2:ifUnion Yes (see C.4.3.14)

bs2:parameter No

bs2:xpathScript No

bs2:variable Yes (see C.4.3.5)

Table C.5 — The BSDL-1 elements supported or not supported by RVC-BSDL

Element name Supported by RVC-BSDL?

bs1:script Yes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

18 © ISO/IEC 2011 – All rights reserved

Table C.6 — The XML standard elements supported or not supported by RVC-BSDL

Element name Supported by RVC-BSDL?

xsd:sequence Yes (see C.4.3.3)

xsd:choice Yes (see C.4.3.4)

xsd:all No

xsd:group Yes (see C.4.3.2)

xsd:element Yes (see C.4.3.1)

xsd:simpleType Yes (see C.4.3.6)

xsd:complexType No

xsd:maxExclusive No

xsd:fixed No

xsd:annotation Yes (see C.4.3.7)

xsd:appinfo Yes (see C.4.3.8)

xsd:MinOccurs No

xsd:MaxOccurs No

xsd:default No

xsd:union Yes (see C.4.3.13)

xsd:length Yes (see C.4.3.11)

C.3.4 Supported attributes

C.3.4.1 Built-in attributes

This Subclause describes which attributes are supported by RVC-BSDL within the RVC framework. The
allowed BSDL-1 attributes are described in Table C.7. The allowed BSDL-2 attributes are described in
Table C.8. The allowed built-in XML attributes are described in Table C.9.

Table C.7 — The BSDL-1 attributes supported or not supported by RVC-BSDL

Attribute name Supported by RVC-BSDL?

bs1:bitstreamURI No

bs1:ignore No

bs1:addressUnit No

bs1:codec No

bs1:requiredExtensions No

bs1:insertEmPrevByte No

bs1:bsdlVersion No

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 19

Table C.8 — The BSDL-2 attributes supported or not supported by RVC-BSDL

Attribute name Supported by RVC-BSDL?

bs2:nOccurs Yes

bs2:if Yes

bs2:ifNext Yes

bs2:rootElement Yes

bs2:ifNextMask No

bs2:ifNextSkip No

bs2:removeEmPrevByte No

bs2:layerLength No

bs2:assignPre No

bs2:assignPost No

bs2:bsdlVersion No

bs2:requiredExtensions No

bs2:startContext No

bs2:stopContext No

bs2:redefineMarker No

bs2:position Yes

Table C.9 — The XML attributes supported or not supported by RVC-BSDL

Attribute name Supported by the RVC
framework?

minOccurs No

maxOccurs No

fixed Yes

C.3.4.2 Additional attribute

The parsers built from RVC decoder configurations generate data tokens on different output ports.
Consequently, a mechanism specifying the correspondence between the tokens, corresponding to the
different elements of syntax and the output ports on which they have to be sent as output tokens, is necessary
to fully specify a decoder configuration. A special attribute has been added in order to define the port on which
the data is sent. Such attribute is:

rvc:port.

The rvc:port attribute is used to indicate that the corresponding element of syntax must be available
outside the parser for further processing operated by the network of FUs. This attribute is applied to
xsd:element only. An example is given below:

<xsd:element name="video_object_layer_width" type="bs1:b13" rvc:port="width"/>

Thus, the element “video_object_layer_width” is available as a token on the port “width” of the parser.
Obviously, the connections of the parser to the network of FUs are reported in the description of the RVC
decoder configuration connected to the port “width.” It is available in the specification of the FU Network
Description (FND), which is given as an input of the whole framework (see Figure 2). In the above example,
the corresponding FND must contain the description of a link connecting the output port “width” of the parser
and an input port of an FU.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

20 © ISO/IEC 2011 – All rights reserved

C.4 Syntax of RVC-BSDL

C.4.1 Introduction

This Subclause fully specifies the syntax of RVC-BSDL used in the context of the RVC framework. The
allowed combinations of the elements, data types and attributes are reported in this Subclause. It defines the
subset RVC-BSDL.

C.4.2 Conventions

C.4.2.1 To define the syntax of the elements

 The attributes or children elements, which are shown in italic, are optional.

 The (a | b | c) construction means that one can choose only one element among a, b or c.

 The {a,b,c} construction means that one can build a list of several elements among a, b or c.

C.4.2.2 To define the syntax of the expressions

We use a form of BNF to describe the syntax rules. Literal elements are put in quotes (in the case of symbols
and delimiters), or set in boldface (in the case of keywords). An optional occurrence of a sequence of symbols
A is written as [, while any numbers of consecutive occurrences (including none) are written as { . The
alternative occurrence of either A or B is expressed as .

]A }A
|A B

We often use plural forms of non-terminal symbols without introducing them explicitly. These are supposed to
stand for a comma-separated sequence of at least an instance of the non-terminal. E.g. if A is the non-
terminal, we might use As in some production, and we implicitly assume the following definition:
As A { ',' A }

In the examples reported here, the usual interpretation of expression literals and mathematical operators is
assumed, even though strictly speaking these are not part of the language and depend on the environment. A
specific implementation of RVC-CAL may not have these operators, or interpret them on the other hand in a
different manner.

C.4.3 Syntax for elements and attributes

This Subclause describes the syntax of the element and its associated attributes.

C.4.3.1 xsd:element

This element is used to define an element of syntax.

<xsd:element
 name = "string"
 type = "(bs1:b1 - bs1:b32 | rvc:ext | bs1:align8 | bs1:align16 | bs1:align32
| user-defined type)"
 bs0:variable = "(true | false)"
 bs2:if = "Expression"
 bs2:ifNext = "Expression" bs2:nOccurs = "Expression"fixed =
"hexadecimalValue"
 rvc:port = "portName"
>
Children: xsd:annotation
</xsd:element>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 21

Remarks:

 The attribute rvc:port specifies the name of the output port to which the FU is connected. For
more information about the communication between the parser and the FU, see E.1.2.

 The rvc:port attribute is compulsory when dealing with an element of the type rvc:ext.

 The user-defined type must be defined using a xsd:simpleType element.

C.4.3.2 xsd:group

The xsd:group element is used to define a set of elements of syntax. This element allows having a hierarchical
bitstream description. There are two ways of using the xsd:group element: the definition of the group and its
call.

 Definition of the group:

<xsd:group
 name = "string"
>
Children: xsd:sequence
</xsd:group>

 Call of the group:

<xsd:group
 ref = "string"
 bs2:if = "Expression"
 bs2:ifNext = "Expression"
 bs2:nOccurs = "Expression"
>
Children: none
</xsd:group>

In a BSDL schema, there are several ways of accessing different levels of hierarchy in the bitstream. However
in RVC-BSDL, only the xsd:group element shall be used to express different levels of hierarchy into the
bitstream. The example below shows how to use the xsd:group element. In the bitstream, when the parser
meets this element:

<xsd:group ref="GroupOfVideoObjectPlane"/>

The parser refers to the definition of the group, which is:

<xsd:group name="GroupOfVideoObjectPlane">
 <xsd:sequence>
 <xsd:element name="group_of_vop_start_code" type="bs1:b32"/>
 <xsd:element name="time_code" type="bs1:b18"/>
 <xsd:element name="closed_gov" type="bs1:b1"/>
 <xsd:element name="broken_link" type="bs1:b1"/>
 <xsd:element name="next_start_code" type="bs1:align8"/>
 <xsd:group ref="user_data" bs2:ifNext="1B2"/>
 </xsd:sequence>
</xsd:group>

The above example shows a way to express a hierarchy in the bitstream. The xsd:group element can be
used hierarchically.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

22 © ISO/IEC 2011 – All rights reserved

C.4.3.3 xsd:sequence

According to the parent element in which this element is called, there are several possibilities:

 If the top parent element is a xsd:group element (in the case of the definition of the xsd:group
element):

<xsd:sequence>
 Children: {sequence, group, element}
</xsd:sequence>

 If the top parent element is an xsd:sequence element, the xsd:sequence element is used to
gather a list of consecutive elements of syntax which have conditions in common.

<xsd:sequence
 bs2:if = "Expression"
 bs2:ifNext = "Expression"
 bs2:nOccurs = "Expression"
>
Children: {sequence, group, element}
</xsd:sequence>

Remark: one can use a single or several attributes on the same xsd:sequence element but defining no
attribute is meaningless.

Example: the elements requested_upstream_message_type and newpred_segment_type exists only
if the variable newpred_enable equals to “1”.

<xsd:sequence bs2:if="$myns:newpred_enable = 1">
 <xsd:element name="requested_upstream_message_type" type="bs1:b2"/>
 <xsd:element name="newpred_segment_type" type="bs1:b1"/>
</xsd:sequence>

C.4.3.4 xsd:choice

This element is used to make a choice between two or several elements of syntax.

<xsd:choice>
Children: {xsd:group, xsd:element}
</xsd:choice>

Remark: the xsd:group and xsd:element elements must have a bs2:if or bs2:ifNext attribute in
order to be able to decide which element must be chosen. The condition on each element must be defined
such as only one choice must be possible, like in the example below:

Example:

<xsd:choice>
 <xsd:element name="next_sc" type="bs1:align8" bs2:if="$myns:vop_coded = 0"/>
 <xsd:group ref="VOPData" bs2:if="$myns:vop_coded != 0"/>
</xsd:choice>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 23

C.4.3.5 bs2:variable

It is common to keep in a temporary memory some elements of the bitstream syntax, according to which other
elements of syntax are decoded. It is also possible to define “local” variables to keep track of some
information while parsing the bitstream, This can be done using the bs2:variable element and the
bs0:variable attribute.

<bs2:variable
 name = "string"
 value = "Expression"
>
Children: none
</bs2:variable>

Examples: The bs2:variable element defines a new variable, independent from the element of syntax
being decoded. The bs2:variable element applies only on an xsd:element element. When a variable is
set using this attribute, one must follow the following syntax for reading the variable: $myvariable.

<xsd:element name="mcbpc" type ="rvc:ext"
rvc:port="Algo_VLDtableB7_MPEG4part2">
 <xsd:annotation> <xsd:appinfo>
 <bs2x:variable name = "mb_type" value = "bitand(./text(),7)"/>
 </xsd:appinfo> </xsd:annotation>
</xsd:element>
...
<xsd:group ref="motion_vector" bs2:nOccurs="4" bs2:if="$mb_type=2"/>

C.4.3.6 xsd:simpleType

This element is used to define a new type of xsd:element element. The cases in which a new type must be
defined are when:

 The type of the current element is conditioned by a variable assigned during the parsing process. In
this case, the xsd:union children element is used.

 The length in bits of the current element is defined by a variable assigned during the parsing process.
In this case, the children elements xsd:restriction and (xsd:length or xsd:bitlength) are
used.

 To test the value … with an xsd:startcode element, see C.4.3.12.

<xsd:simpleType
name= "string"
>
Children: (xsd:union | xsd:restriction)
</xsd:simpleType>

Remark: to see different examples of definition of a new type, refer to C.4.3.10, C.4.3.11, C.4.3.12 and
C.4.3.14.

C.4.3.7 xsd:annotation

BSDL-2 introduces a set of new facets to specify constraints on BSDL and XML Schema data types. Since
XML Schema does not allow a user to add his own facets, they are declared as BSDL-2 components added to
the xsd:restriction component via the annotation mechanism, i.e. the
xsd:annotation/xsd:appinfo combination. Thus, the BSDL-2 elements (Table C.4) must be placed as
the child of an xsd:annotation/xsd:appinfo combination.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

24 © ISO/IEC 2011 – All rights reserved

<xsd:annotation>
Children: xsd:appinfo
</xsd:annotation>

C.4.3.8 xsd:appinfo

According to the parent element in which this element is called, there are several possibilities:

 If the top parent element is an xsd:simpleType element, one can choose to define this new type by
using one of the following elements: bs2:bitLength, bs2:ifUnion, bs2:startcode, or
bs2:length.

<xsd:appinfo>
 Children: (bs2:bitLength | bs2:ifUnion | bs2:startcode | bs2:length)
</xsd:appinfo>

 If the top parent element is an xsd:element element of any type except rvc:ext, the unique
element which can be used is the bs2:variable element, used to save variables.

<xsd:appinfo>
 Children: bs2:variable
</xsd:appinfo>

 If the top parent element is an xsd:element element of type rvc:ext, the bs1:script element
must appear to define which algorithm is used to decode the segment of bitstream. It can be possible
also to save a variable using the bs2: variable element.

<xsd:appinfo>
 Children: {bs1:script, bs2:variable}
</xsd:appinfo>

C.4.3.9 xsd:restriction

This element is used to specify data accuracy.

<xsd:restriction
 base = "(xsd:unsignedshort | bs1:b1 – bs1:b32 | bs1:byteRange)"
>
Children: xsd:annotation
</xsd:restriction>

Remark: the bs1:byteRange data type is only allowed when it is used with the bs2:startcode element.

C.4.3.10 bs2:bitLength

This element specifies the size in bits of the current element, which has been defined as a new type using the
xsd:simpleType construct. The size in bits of the current element can be stored in a variable, which has
been assigned during the parsing process.

<bs2:bitLength
 value = "Expression"
>
Children: none
</bs2:bitLength>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 25

Example: the VOPTimeIncrementType type instantiates elements of size defined in the variable
vopTimeIncrementBits.

<xsd:simpleType name="VOPTimeIncrementType">
 <xsd:restriction base="xsd:unsignedShort">
 <xsd:annotation><xsd:appinfo>
 <bs2:bitLength value="$vopTimeIncrementBits"/>
 </xsd:appinfo></xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

C.4.3.11 bs2:length

This element specifies the size in byte of the current element which has been defined as a new type using the
xsd:simpleType construct.

<bs2:length
 value = "Integer"
>
Children: none
</bs2:length>

Example: the StartCodeType type instantiates elements of size equals to 4 bytes.

<xsd:simpleType name="StartCodeType">
 <xsd:restriction base="xsd:hexBinary">
 <xsd:length value="4"/>
 </xsd:restriction>
 </xsd:simpleType>

C.4.3.12 bs2:startCode

This element is used to mark the beginning of the bitstream.

<bs2:startCode
 Value = "HexadecimalValue">
Children: none
</bs2:startCode>

Remark: the bs1:byteRange data type is only allowed when it is used with the bs2:startCode element.

Example: the type rbspType instantiates ….

<xsd:simpleType name="rbspType">
 <xsd:restriction base="bs1:byteRange">
 <xsd:annotation> <xsd:appinfo>
 <bs2:startCode value="00000001"/>
 </xsd:appinfo> </xsd:annotation>
 </xsd:restriction>
</xsd:simpleType>

C.4.3.13 xsd:union

This element allows users to choose the type of an element among a list of member types according to some
conditions defined in the bs2:ifUnion element.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

26 © ISO/IEC 2011 – All rights reserved

<xsd:union
 memberTypes = {bs1:b1 - bs1:b32}
>
Children: xsd:annotation
</xsd:union>

Remark: see C.4.3.14 for an example of application.

C.4.3.14 bs2:ifUnion

This element specifies the conditions under which the corresponding type is chosen. The number of
bs2:ifUnion elements that must appear is equal to the number of member types defined in the above
xsd:union element.

<bs2:ifUnion
value= "Expression"
>
Children: none
</bs2:ifUnion>

Example: the type SpriteType instantiates elements of type bs1:b1 or bs1:b2. The type bs1:b1 is
chosen if the condition “$volVersion = 1” is true. The type bs1:b2 is chosen if the condition
“$volVersion = 1” is false.

<xsd:simpleType name="SpriteType">
 <xsd:union memberTypes="bs1:b1 bs1:b2">
 <xsd:annotation><xsd:appinfo>
 <bs2:ifUnion value="$volVersion = 1"/>
 <bs2:ifUnion value="$volVersion != 1"/>
 </xsd:appinfo></xsd:annotation>
 </xsd:union>
</xsd:simpleType>

C.4.4 Syntax of the expressions

This Subclause describes the syntax of the expressions used in the attributes.
Expression PrimaryExpression {Operator PrimaryExpression}

PrimaryExpression 'max('Expression',' Expression')'

| 'min('Expression',' Expression')'

| 'numbits('Expression')'

| 'bitand('Expression','Expression')'

| 'bitor('Expression','Expression')'

| 'bitnot



('Expression')'

| 'rshift('Expression')'

| 'lshift('Expression')'

| '.text()'

| ExpressionLiteral

| ifExpression

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 27




      

ExpressionLiteral '| IntegerLiteral | true | false

ifExpression if Expression then Expression else Expression end

Operator (' ' |' ' | ' ' | ' ' | ' ' | '! ' | 'and' | 'or' |'not' | '* '| '/' | '  ' | '- ' | ' '̂ | 'div' | 'mod')

C.4.5 Syntax of the data types

This Subclause describes the syntax of the data types.

IntegerLiteral 'IntegerDigit IntegerDigit

IntegerDigit '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

HexadecimalValue HexadecimalDigit {HexadecimalDigit}

HexadecimalDigit '0' | '1' |

  



 '2' | '3' | '4' | '5'| '6' | '7' | '8' | '9' | 'A' | 'B' | 'C' | 'D' | 'E' | 'F')

Portname NormativeFUName

The NormativeFUName is the name of the Functional Unit. The naming convention rule is described in
ISO/IEC 23002-4.

C.5 Connections between the syntax parser and the FU network

The Syntax Parser and the network of FU must be connected together. Thus, a communication scheme
between the syntax parser and Functional Unit is necessary. The following code shows an example of BSD,
illustrating the connection of the Syntax parser to an FU.

<xsd:element name="horizontal_mv_data" bs0:variable=“true“ type="rvc:ext"
rvc:port="Algo_mv_reconstruction--mvin"/>

The element name “horizontal_mv_data” is decoded by an FU: it is indicated by the data type rvc:ext.
The FU which will decode this element of syntax is specified in the rvc:port attribute. The port of the
destination FU to which this element of syntax will be sent is specified also in the rvc:port attribute. The
name in the rvc:port attribute must correspond to the normative name of the FU to which it is connected in
order to know how to make the connections between the syntax parser and the FU network.

Whenever a connection to a Functional Unit is establish, the induced ports of the parser are:

 Status feedback port: an input port which name is value of the rvc:port attribute followed by the
suffix “_f” (e.g. algo_mv_f). This port is always created. It is used to acknowledge the status of the
FU each time the parser sends data.

 Value feedback port: an input port which name is value of the rvc:port attribute followed by the
suffix “_data” (e.g. algo_mv_data). This port is created only when the attribute bs0: variable is set
to “true” in the current element. It is used to return the decoded value to the parser, which can use
this value to continue its parsing process.

 General output port: an output port which name is value of the rvc:port attribute (e.g. algo_mv).
This port is always created. It is used to send the data to the FU.

In order to know if the parser can go to the next element of syntax or not, a communication protocol between
the syntax parser and the FU has been defined:

1) The parser sends data on the port algo_mv

2) The FU receives the data and warns the parser (though the algo_mv_f port)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

28 © ISO/IEC 2011 – All rights reserved

i) if it needs an other data (value of the data to return to the parser = false), goto 1

ii) or if it has finished (value of the data to return to the parser = true), goto 3

3) The parser can continue parsing the other elements of syntax.

The example of VLD decoding process using such communication scheme is shown in Annex E.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 29

Annex D
(normative)

Specification of RVC-CAL language

D.1 Generalities

The CAL language is a dataflow-oriented language that has been developed as a subproject of the Ptolemy
project at the University of California at Berkeley. The final CAL language specification has been released in
December 2003. The specification provided in this annex is the sub-set of CAL language called RVC-CAL
used in the MPEG RVC framework. The sub-set has been defined so as to keep all data types and operators
that are necessary in the RVC framework scope, excluding data types and operators that cannot be easily
converted to software or hardware implementations.

RVC-CAL is a textual language that is used to define the functionality of dataflow components originally called
“actors” that in the MPEG RVC framework are the FUs composing the RVC video tool library. FUs can then be
configured into decoders using an XML based specification language (the RVC FU language called FNL).
Therefore, to build the RVC framework two normative elements are necessary:

 The RVC-CAL used to specify the behavior of the FUs that constitute the RVC video tool library

 The FNL used to specify RVC decoder configurations using FUs from the RVC video tool library

The XML based specification of “network of Actors” or better in RVC “Configuration of FUs” can be edited and
simulated by tools available in the RVC reference software.

It is worth remarking that what in RVC-CAL is called an “actor” exactly corresponds to what in MPEG RVC is
called an FU. In fact, an actor is a modular component that encapsulates its own state, no other actor has
access to it, and nothing other actors can do to modify the state of an actor. The only interaction between
actors is through FIFO channels connecting “output ports” to “input ports,” which are used to send and receive
“tokens.” This strong encapsulation leads to loosely coupled systems with very manageable and controllable
actor interfaces. The modularity of an actor assembly fosters concurrent development, it facilitates
maintainability and understandability and makes systems constructed this way more robust and easier to
modify. All these features correspond to what is required by the MPEG RVC framework.

A “token” is a unit of data (of potentially arbitrary size and complexity) that is sent and received atomically.
Each actor input is associated with a queue of tokens waiting in front of it. When a token is sent it is
conceptually placed in the queue of each input connected to the output the token originates from. Eventually,
the receiving FUs will read it, and thereby consume it, i.e. remove it from the input queue.

Every FU executes in a (possibly unbounded, i.e. non-terminating) sequence of steps, also called “transitions.”
During each such step, an FU may do any of the following three things:

 Read and consume input tokens.

 Modify its internal state.

 Produce output tokens.

At any point in time, an FU is either disabled, i.e. it is not able to make a step, or it can perform a number of
different steps.

The specification of an FU in RVC-CAL is structured into “actions.” Each action defines a kind of transition the
FU can perform under some conditions. These conditions may include:

 the availability of input tokens,

 the value of input tokens,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

30 © ISO/IEC 2011 – All rights reserved

 the (internal) state of the FU,

 the priority of that action (see below).

An FU may contain any number of actions. Its execution follows a simple cycle:

1) Determine, for each action, whether it is enabled, by testing all the conditions specified in that action.

2) If one or more actions are enabled, pick one of them to be fired next.

3) Execute that action, i.e. make the transition defined by it.

4) Go to Step 1.

Steps 1 and 2 are called “action selection.” For many complex FUs, such as the parser of an MPEG-4 SP
decoder, defining the logic of how an action is chosen is the core of the implementation of the processing in
FU form. RVC-CAL provides a number of language constructs for structuring the description of how actions
are to be selected for firing. These include:

 action guards: conditions on the values of input tokens and/or the values of FU state variables that
need to be true for an action to be enabled;

 finite state machine: the action selection process can be governed by a finite state machine, with the
execution of an action causing a transition from one state to the next;

 action priorities: actions may be related to each other by a partial priority order, such that an action will
only execute if no higher-priority action can execute.

In this way, the process of action selection is specified in a declarative manner in each RVC FU. As a result,
the FU specification becomes more compact and easier to understand.

Once selected, an action is executed. The code describing an action itself is for the most part ordinary
imperative code, as can be found in languages such as Pascal, Ada, or C — there are loops, branches,
assignments etc. Only the token input/output of an action is specified separately and in a declarative manner.

In other words, the RVC-CAL language provides naturally the appropriate constructs that have been identified
by RVC requirement work as essential elements for building the MPEG RVC framework with the capacity of
“encapsulating” coding tools functionalities in a very natural manner without needing any particular restriction
or specific coding style on the usage of the language construct.

D.2 Introduction

This Annex describes RVC-CAL, a profile of the CAL actor language to be used by the MPEG Reconfigurable
Video Coding Framework.

Actors. The concept of actor as an entity that is composed with other actors to form a concurrent system has
a rich and varied history — some important mile-stones [6], [9], [3], [4], [5]. A formal description of the notion
of actor underlying this specification can be found in D.1, which is based on the work in [10] and [7]. Intuitively,
an actor is a description of a computation on sequences of tokens (atomic pieces of data) that produces other
sequences of tokens as a result. It has input port(s) for receiving its input tokens, and it produces its output
tokens on its output port(s)1.

The computation performed by an actor proceeds as a sequence of atomic steps called rings. Each ring
happens in some actor state, consumes a (possibly empty) prefix of each input token sequence, yields a new
actor state, and produces a finite token sequence on each output port.

1 The notion of actor and firing is based on the one presented in [10], extended by a notion of state in [7].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 31

Several actors are usually composed into a network, a graph-like structure (often referred to as a model) in
which output ports of actors are connected to input ports of the same or other actors, indicating that tokens
produced at those output ports are to be sent to the corresponding input ports. Such actor networks are of
course essential to the construction of complex systems, but we will not discuss this subject here, except for
the following observations:

 A connection between an output port and an input port can mean different things. It usually indicates
that tokens produced by the former are sent to the latter, but there are a variety of ways in which this
can happen: token sent to an input port may be queued in FIFO fashion, or new tokens may
‘overwrite’ older ones, or any other conceivable policy. It is important to stress that actors themselves
are oblivious to these policies: from an actor point of view, its input ports serve as abstractions of
(prefixes of) input sequences of tokens, while its output ports are the destinations of output
sequences.

 Furthermore, the connection structure between the ports of actors does not explicitly specify the order
in which actors are read. This order (which may be partial, i.e. actors may fire simultaneously),
whether it is constructed at runtime or whether it can be computed from the actor network, and if and
how it relates to the exchange of tokens among the actors — all these issues are part of the
interpretation of the actor network.

The interpretation of a network of actors determines its semantics and it determines the result of the
execution, as well as how this result is computed, by regulating the flow of data as well as the flow of control
among the actors in the network. There are many possible ways of interpreting a network of actors, and any
specific interpretation is called a model of computation, cf. [11], [12]. Actor composition inside the actor model,
that CAL is based on, has been studied in [8].

As far as the design of a language for writing actors is concerned, the above definition of an actor and its use
in the context of a network of actors suggests that the language should allow making some key aspects of an
actor definition explicit. These are, among others:

 The port signature of an actor (its input ports and output port(s), as well as the kind of tokens the actor
expects to receive from or be able to send to).

 The code executed during a ring, including possibly alternatives whose choice depends on the
presence of tokens (and possibly their values) and/or the current state of the actor.

 The production and consumption of tokens during a ring, which again may be different for the
alternative kinds of rings.

 The modification of state depending on the previous state and any input tokens during a ring.

D.3 Introductory remarks

D.3.1 Introduction

Throughout this part, we will present fragments of RVC-CAL syntax along with (informal) descriptions of what
these are supposed to mean. In order to avoid ambiguity, we will now introduce a few conventions as well as
the fundamental syntactic elements (lexical tokens) of the RVC-CAL language.

D.3.2 Lexical tokens

RVC-CAL has the following kinds of lexical tokens:

Keywords. Keywords are special strings that are part of the language syntax and are consequently not
available as identifiers. See D.11.3 for a list of keywords in RVC-CAL.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

32 © ISO/IEC 2011 – All rights reserved

Identifiers. Identifiers are any sequence of alphabetic characters of either one of the digits, the underscore
character and the dollar sign that is not a keyword. Sequences of characters that are not legal identifiers may
be turned into identifiers by delimiting them with backslash characters.

Identifiers containing the $-sign are reserved identifiers. They are intended to be used by tools that generate
RVC-CAL program code and need to produce unique names which do not conflict with names chosen by
users of the language Consequently, users are discouraged from introducing identifiers that contain the $-
sign.

Operators. See D.11.2 for a complete list of RVC-CAL operators.

Delimiters. These are used to indicate the beginning or end of syntactical elements in RVC-CAL. The
following characters are used as delimiters: (,), {,}, [,], : .

Comments. Comments are Java-style, i.e. single-line comments starting with “//” and multi-line comments
delimited by “/*” and “*/”.

Numeric literals. RVC-CAL provides two kinds of numeric literals: those representing an integral number and
those representing a decimal fraction. Their syntax is as follows2:

Integer DecimalLiteral | HexadecimalLiteral | OctalLiteral

Real DecimalDigit { DecimalDigit } '.' {DecimalDigit} [Exponent]

| '.' DecimalDigit { DecimalDigit } [Exponent]

| DecimalDigit { DecimalDi




git } Exponent

DecimalLiteral NonZeroDecimalDigit { DecimalDigit }

HexadecimalLiteral '0' ('x' | 'X') HexadecimalDigit { HexadecimalDigit }

OctalLiteral '0' { OctalDigit }

Exponent ('e' | 'E') [




 '+' | '-'] DecimalDigit { DecimalDigit }

NonZeroDecimalDigit '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

DecimalDigit '0' | NonZeroDecimalDigit

OctalDigit '0' | '1' | '2' | '3' | '4' | '5'



 | '6' | '7' | '8'

HexadecimalDigit DecimalDigit

| 'a' | 'b' | 'c' | 'd' | 'e' | 'f'

| 'A' | 'B' | 'C' | 'D' | 'E' | 'F'



D.3.3 Typographic conventions

In syntax rules, keywords are shown in boldface, while all other literal symbols are enclosed in single quotes.

In examples, RVC-CAL code is represented monospaced. Semantic entities, such as types, are set italic.

D.3.4 Conventions

We use a form of Backus-Naur form (BNF) to describe the syntax rules. Literal elements are put in quotes (in
the case of symbols and delimiters), or set in boldface (in the case of keywords). An optional occurrence of a
sequence of symbols A is written as [, while any numbers of consecutive occurrences (including none) are
written as . The alternative occurrence of either A or B is expressed as .

]A
{ }A |A B

We often use plural forms of non-terminal symbols without introducing them explicitly. These are supposed to
stand for a comma-separated sequence of at least on instance of the non-terminal. E.g. if A is the non-

2 In contrast to all other grammar rules in this report, the following rules do not allow whitespaces between tokens.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 33

terminal, we might use As in some production, and we implicitly assume the following definition:
As A { ',' A } .

In the examples reported here, the usual interpretation of expression literals and mathematical operators is
assumed, even though strictly speaking these are not part of the language and depend on the environment. A
specific implementation of RVC-CAL may not have these operators, or interpret them or the literals in a
different manner.

D.3.5 Notational idioms

Like most programming languages, RVC-CAL involves a fair number of syntactical constructs that need to be
learned and understood by its users in order to use the language productively. The effort involved in gaining
familiarity with the language can be a considerable impediment to its adoption, so it makes sense to employ
general guidelines for designing the syntax of constructs, which allow users to make guesses about the syntax
if they are unsure about the details of a specific language construction. These guidelines, which define the
style of a language, are called notational idioms.

The following is a list of notational idioms guiding the design of RVC-CAL’s language syntax.

Keyword constructs. Many constructs in RVC-CAL are delimited by keywords rather than by more symbolic
delimiters — such constructs are called keyword constructs. Other constructs are delimited by symbols, or are
at least partially lacking delimiters (such as assignments, which begin with a variable name, see D.8.2).

Statement head/body separator. Many statements have a similar structure as the one for expressions. For
statements, the keywords do or begin are used as a separator:

while n > 0 do k := f(k); n := n - 1; end
procedure p (int x) begin
 x := x + 1;
end

D.4 Structure of actor descriptions

Each actor description defines a named kind of actor.

Actors are the largest lexical units of specification and translation. The basic structure of an actor is this:

 
 

Actor ID '(' ActorPars ')' IOSig ':'

VarDecl

 Action | InitializationAction

[ActionSchedule]

{ PriorityBlock }

ActorPar Type ID ['=' Expression]

IOSig [PortDecls] '==>' [PortDecls]

PortDec






actor

end

l Type ID

The header of an actor expressed in RVC-CAL contains actor parameters, and its port signature. This is
followed by the body of the actor, containing a sequence of state variable declarations (D.6.2), actions (D.9),
initialization actions (D.9.6), priority blocks (D.10.4), and at most one action schedule (D.10.3).

By contrast, actor parameters are values, i.e. concrete objects of a certain type (although, of course, this type
may be determined by a type parameter). They are bound to identifiers, which are visible throughout the actor
definition. Conceptually, these are non-assignable and immutable, i.e. they may not be assigned to by an
actor.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

34 © ISO/IEC 2011 – All rights reserved

D.5 Data types

D.5.1 Introduction

RVC-CAL is fully typed, i.e. it allows and forces programmers to give each newly introduced identifier a type
(see D.6.2 for more details on declaring variables).

D.5.2 Variables and types

Each variable or parameter in RVC-CAL may be declared with a variable type. If it is, then this type remains
the same for the variable or parameter in the entire scope of the corresponding declaration. Variable types
may be related to each other by a subtype relation, , which is a partial order on the set of all variable types.
When for two variable types , we have , then we say that t is a subtype of , and is a supertype
of . Furthermore, t may be used anywhere can be used, i.e. variables of subtypes are substitutable for
those of supertypes.


t 't 't t

't
't 't

t

It is important that each object has precisely one object type. As a consequence, object types induce an
exhaustive partition on the objects, i.e. for any object type t we can uniquely determine the “objects of type

”. t

IMPLEMENTATION NOTE.

Stating that each object has an object type does not imply that this type can be determined at run time, i.e.
that there is something like run-time type information associated with each object. In many cases, particularly
when efficiency is critical, the type of an object is a compile-time construct whose main use is for establishing
the notion of assignability, i.e. for checking whether the result of an expression may legally be stored in a
variable. In these scenarios, type information is removed from the runtime representation of data objects.

For each implementation context we assume that there is a set of variable types and of object types.

They are related to each other by an assignability relation,
VT

VT
OT

OT  , which has the following interpretation:

for any variable type and object type , Vt Ot Vt tO iff an object of type is a legal value for a variable of

type .
Ot

Vt

The assignability relation may or may not be related to subtyping, but at a minimum it must be compatible with
subtyping in the following sense. For any two variable types and , and any object type : Vt 'Vt Ot

' ' V V V O V Ot t t t t     t

In other words, if an object type is assignable to a variable type, it is also assignable to any of its supertypes.

D.5.3 Type formats

Types are specified as follows:

Type ID

| ID '(' [TypeAttr { ',' TypeAttr }] ')'

TypeAttr ID ':' Type

| ID '=' Expression





A type that is just an identifier is the name of some non-parametric type or of a parametric type whose
parameters take on default values. Examples may be String, int.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 35

In the next form the ID refers to a type constructor that has named type attributes which may be bound to
either types or values. Type attributes that are bound to types are assigned using the “:” syntax, values are
bound using the “=” syntax.

D.5.4 Predefined types

Required types are the types of objects created as the result of special language constructions, usually
expressions. The following are built-in types in RVC-CAL:

 bool — the truth values true and false.

 List(type:T, size=N) — finite lists of length of N elements with type T.

 int(size=N) — signed integers with bit width N.

 uint(size=N) — unsigned integers with bit width N.

 String — strings of characters.

 float — floating point numbers.

D.6 Variables

D.6.1 Introduction

Variables are placeholders for values during the execution of an actor. At any given time, they may stand for a
specific value, and they are said to be bound to the value that they stand for. The association between a
variable and its value is called a binding.

This Subclause first explains how variables are declared inside RVC-CAL source code. It then proceeds to
discuss the scoping rules of the language, which govern the visibility of variables and also constrain the kinds
of declarations that are legal in RVC-CAL.

D.6.2 Variable declarations

Each variable (with the exception of predefined variables) needs to be explicitly introduced before it can be
used — it needs to be declared. A declaration determines the kind of binding associated with the variable it
declares, and potentially also it’s (variable) type. Following are the following kinds of variable declarations:

 explicit variable declarations (D.6.2),

 actor parameters (D.4),

 input patterns (D.9.2).

The properties of a variable introduced by an explicit variable declaration depend on the form of that
declaration.

D.6.2.1 Explicit variable declarations

Syntactically, an explicit variable declaration3 looks as follows:

3 These declarations are called “explicit” to distinguish them from more “implicit” variable declarations that occur, e.g. in
generators or input patterns.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

36 © ISO/IEC 2011 – All rights reserved

VarDecl [Type] ID [('=' | ':=') Expression]';'

| FunDecl | ProcDecl



An explicit variable declaration can take one of the following two forms, where T is a type, v an identifier that
is the variable name, and E an expression of type T:

 T v := E — declares an assignable variable of type T with the value of E as its initial value.

 T v = E — declares a non-assignable variable of type T with the value of E as its value.

Variables declared in the first way are called stateful variables because they may be changed by the
execution of a statement. Variables declared in the last way are referred to as stateless variables, or
constants.

Explicit variable declarations may occur in the following places:

 actor state variables (with ending punctuation “;”)

 the var block of a surrounding lexical context (with ending punctuation “,” or no ending punctuation,
see LocalVarDecl in D.6.3)

D.6.3 Function and procedure declaration

The general format for declaring functions and procedures is as follows:

 FormalPars Type ID ',' Type ID

FuncDecl ID '(' [FormalPars] ')' '-- ' Type [VarDecls] ':' Expression

ProcDecl ID '(' [FormalPars] ')' [VarDecls] { Statement }



 


function var end

procedure var begin end

LocalVarDecls should follow a special rule: 1) if a LocalVarDecl is the last one or the only one, there shall be
no any ending punctuation; 2) if a LocalVarDecl is not the last one, there shall be a comma “,” as the ending
punctuation (or separator between it and the next LocalVarDecl). For instance, a function declaration would
look like this:

function timestwo (int x)--> int : 2 * x end

D.6.4 Name scoping

The scope of a name, whether that of a variable or that of a function or procedure, is the lexical construct that
introduces it — all expressions and assignments using the name inside this construct will refer to that variable
binding or the associated function or procedure, unless they occur inside some other construct that introduces
the same name again, in which case the inner name shadows the outer one.

In particular, this includes the initialization expressions that are used to compute the initial values of the
variables in variable declarations. Consider e.g. the following group of variable declarations inside the same
construct, i.e. with the same scope:

n = 1 + k,
k = 6,
m = k * n

This set of declarations (of, in this case, non-assignable variables, although this does not have a bearing on
the rules for initialization expression dependency) would lead to k being set to 6, n to 7, and m to 42.
Initialization expressions may not depend on each other in a circular manner — e.g. the following list of
variable declarations would not be well formed:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 37

n = 1 + k,
k = m – 36,
m = k * n

More precisely, a variable may not be in its own dependency set. Intuitively, this set contains all variables that
need to be known in order to compute the initialization expression. These are usually the free variables of the
expression itself, plus any free variables used to compute them and so on — e.g. in the last example, k
depended on m, because m is free in m - 36, and since m in turn depends on k and n, and n on k, the
dependency set of k is {m,k,n} which does contain k itself and is therefore an error.

D.7 Expressions

D.7.1 Introduction

Expressions evaluate to a value and are side-effect-free, i.e. they do not change the state of the actor or
assign or modify any other variable. Thus, the meaning of an expression can be described by the value it is
evaluating to.

The following is an overview of the kinds of expressions and expression syntaxes provided in RVC-CAL.

Expression Expression { ',' Expression }

Expression BinaryExpression

 | impleExpressionS




SingleExpression Operator Expression

| ListComprehension

| ifExpression

| LetExpression

| '(' Expression ')'

| IndexerExpr

| ID '(' Expressions ')'

| ID

| ExpressionLiteral



The following Subclause discusses the individual kinds of expressions in more detail.

D.7.2 Literals

Expression literals are constants of various types in the language. They look as follows:

ExpressionLiteral IntegerLiteral | DecimalFractionLiteral

| StringLiteral

| |



true false

The type of true and false is bool.

D.7.3 Variable references

The expression used to refer to the value bound to a variable at any given point during the execution is simply
the name of the variable itself, i.e. an identifier.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

38 © ISO/IEC 2011 – All rights reserved

D.7.4 Function application

An expression of the form

 1, ...,EnF E

is the application of a function to n parameters, possibly none. F is the name of a function which must be
visible at the point of this expression, and Ei are expressions of types matching the types of the parameters
declared in the declaration of F.

D.7.5 Indexing

An indexing expression selects an object from a list. The general format is

 IndexerExpr ID '[' Expression']' '[' Expressions ']' 

The expressions within the brackets are called “indices”. There must be at least one such index. If there are
more than one, the list expression must be a list of appropriate dimensionality, i.e. it must contain other lists as
elements and so forth.

D.7.6 Operators

There are two kinds of operators in RVC-CAL: unary prefix operators and binary infix operators. A binary
operator is characterized by its associativity and its precedence. In RVC-CAL, all binary operators associate to
the left, while their precedence is defined by the platform, and have fixed predefined values for built-in
operators (which are used to work on instances of built-in types). Unary operators always take precedence
over binary operators.

a+b+c is always (a+b)+c.

#a + b is always (#a) + b.

a + b * c is a + (b * c) if * has a higher precedence than +, which is usually the case.

Operators are just syntactical elements — they represent ordinary unary or binary functions, so the only
special rules for operators are syntactical.

D.7.7 Conditional expressions

The simple conditional expression has the following form:

IfExpression Expression Expression Expression  if then else end

The first sub expression must be of type bool and the value of the entire expression is the value of the
second sub term if the first evaluated to true, and the value of the third sub term otherwise.

The type of the conditional expression is the most specific supertype (least upper bound) of both, the second
and the third sub expression. It is undefined (i.e. an error) if this does not exist.

D.7.8 List comprehensions

List comprehensions are expressions, which construct lists. There are two variants of list comprehensions,
those with and those without generators. We will first focus on comprehensions without generators, also called
enumerations, and then turn to the more general comprehensions with generators. The reason for this order
of presentation is that the meaning of comprehensions with generators will be defined by reducing them to
enumerations.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 39

D.7.8.1 Enumerations: list comprehensions without generators

The most basic form of list comprehension just enumerates the elements. Its syntax is as follows:

SimpleListComprehension '[' [Expressions] ']'

Example. If n is the number 10, then the simple set expression

 [n, n*n, n-5, n/2]

evaluates to the list [10, 100, 5, 5].

D.7.8.2 List comprehensions with generators

Simple comprehension expressions only allow the construction of a list whose size is correlated with the size
of the expression. In order to facilitate the construction of large or variable-sized lists, RVC-CAL provides
generators to be used inside an expression constructing them. The syntax looks as follows:

ListComprehension '[' [Expressions [':' Generators] ['|' Expression]] ']'

Generators Generator { ',' Generator }

Generator Type ID Expression




 for in

The generators, which begin with the keyword, for, introduce new variables, and successively instantiate them
with the elements of the proper list after the keyword, in. The expression computing that list may refer to the
generator variables defined to the left of the generator it belongs to.

The optional expressions following the collection expression in a generator are called filters — they must be of
type bool, and only variable bindings for which these expressions evaluate to true are used to construct the
collection.

Example:

[1, 2, 3]

is the list of the first three natural numbers. The list

[2 * a : for int a in [1, 2 ,3]]

contains the values 2, 4, and 6, while the list

[a : for int a in [1, 2, 3], a > 1]

describes (somewhat redundantly) the set containing 2 and 3. Finally, the list

[a * b : for int a in [1, 2, 3], for int b in [4, 5, 6], b > 2 * a]

contains the elements 4, 5, 6, 10, and 12.

Writing the above as

[a * b : for int a in [1, 2 ,3], b > 2 * a, for int b in [4, 5, 6]]

is illegal (unless b is a defined variable in the context of this expression, in which case it is merely very
confusing!), because the filter expression b > 2 * a occurs before the generator that introduces b.

If the generator collection is a set rather than a list, the order in which elements are extracted from it will be
unspecified. This may affect the result in the case of a list comprehension.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

40 © ISO/IEC 2011 – All rights reserved

D.8 Statements

D.8.1 Introduction

The execution of an action (as well as actor initialization) happens as the execution of a (possibly empty)
sequence of statements. The only observable effect of a statement is a change of the variable assignments in
its environment. Consequently, the meaning of a statement is defined by how the variables in its scope
change due to its execution. RVC-CAL provides the following kinds of statements:

Statement AssignmentStmt

| CallStmt

| BlockStmt

| IfStmt

| WhileStmt

| ForeachStmt



D.8.2 Assignment

Assigning a new value to a variable is the fundamental form of changing the state of an actor. The syntax is as
follows:

 
AssignmentStmt ID [Index] ':=' Expression ';'

Index '[' [Expression] ']' '[' Expression ']'





An assignment without an index or a field reference is a simple assignment while one with a field reference is
a field assignment, and one with an index is called an indexed assignment.

D.8.2.1 Simple assignment

In a simple assignment, the left-hand side is a variable name. A variable by that name must be visible in this
scope, and it must be assignable.

The expression on the right-hand side must evaluate to an object of a value compatible with the variable (i.e.
its type must be assignable to the declared type of the variable, if any — see D.5.2). The effect of the
assignment is of course that the variable value is changed to the value of the expression. The original value is
thereby overwritten.

D.8.2.2 Assignment with indices

If a variable is of a type that is indexed, and if it is mutable, assignments may also selectively assign to one of
its indexed locations, rather than only to the variable itself.

In RVC-CAL, an indexed location inside an object is specified by a sequence of objects called indices, which
are written after the identifier representing the variable, and which is enclosed in square brackets.

D.8.3 Procedure call

Calling a procedure is written as follows:

CallStmt ProcedureSymbol '(' [Expressions] ')' ';'

ProcedureSymbol ID




The procedure symbol must be defined in the current context, and the number and types of the argument
expressions must match the procedure definition. The result of this statement is the execution of the
procedure, with its formal parameters bound position-wise to the corresponding arguments.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 41

D.8.4 Statement blocks (begin ... end)

Statement blocks are grouping a sequence of statements within their own nested scope, permitting the
declaration of local variables valid in that scope only.

BlockStmt [LocalVarDecls] { Statement }  begin var do end

The form

begin var <decls> do <stmts> end

defines the variables in <decls> and executes the statements in <stmts> with the resulting variable bindings.
The variable bindings are only visible to these statements.

D.8.5 If-statement

The if-statement is the simplest control-flow construct

IfStmt Expression { Statement } [{ Statement }]  if then else end

As is to be expected, the statements following the then are executed only if the expression evaluates to true,
otherwise the statements following the else are executed, if present. The expression must be of type bool.

D.8.6 While-statement

Iteration constructs are used to repeatedly execute a sequence of statements. A while-construct repeats
execution of the statements as long as a condition specified by a bool expression is true.

WhileStmt Expression [VarDecls] [Statements]  while var do end

It is an error for the while-statement to not terminate.

D.8.7 Foreach-statement

The foreach-construct allows iterating over collections and successively binds variables to the elements of the
expression with the execution of a sequence of statements for each such binding.

ForeachStmt ForeachGenerator { ',' ForeachGenerator }

 [VarDecls] [Statements]

ForeachGenerator Type ID Expression




var do end

foreach in

The basic structure and execution mechanics of the foreach-statement is not unlike that of the
comprehensions with generators discussed in D.7.8.2. However, where in the case of comprehensions a
collection was constructed piecewise through a number of steps specified by the generators, a foreach
statement executes a sequence of statements for each complete binding of its generator variables.

Example. The following code fragment

s := 0;
foreach int a in [1, 2], foreach int b in [1, 2] do
 s := s + a*b;
end

results in s containing the number 9.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

42 © ISO/IEC 2011 – All rights reserved

D.9 Actions

D.9.1 Introduction

An action in RVC-CAL represents a (often large or even infinite) number of transition of the actor transition
system described in D.10. A RVC-CAL actor description can contain any number of actions, including none.
The definition of an action includes the following information:

 its input tokens,

 its output tokens,

 the state change of the actor,

 additional firing conditions.

In any given state, an actor may take one of a number of transitions (or none at all), and these transitions are
represented by actions in the actor description.

The syntax of an action definition is as follows:

Action [ActionTag ':'] ActionHead [Statements]

ActionTag ID { '.' ID }

ActionHead InputPatterns '==>' OutputExpressions

 [Expressions] [VarDecls]





action do end

guard var

Actions are optionally preceded by action tags which come in the form of qualified identifiers (i.e. sequences
of identifiers separated by dots), see D.10.2. These tags need not be unique, i.e. the same tag may be used
for more than one action. Action tags are used to refer to actions or sets of actions, in action schedules and
action priority orders — see D.10 for details.

The head of an action contains a description of the kind of inputs this action applies to, as well as the output it
produces. The body of the action is a sequence of statements that can change the state, or compute values
for local variables that can be used inside the output expressions.

Input patterns and output expressions are associated with ports either by position or by name. These two
kinds of associations cannot be mixed. So if the actor’s port signature is

Input1, Input2 ==> ...

an input pattern may look like this:

[a], [b, c]

(binding a to the first token coming in on Input1, and binding b and c to the first two tokens from Input2).
It may also look like this:

Input2: [c]

but never like this:

[d] Input2:[e]

This mechanism is the same for input patterns and output expressions.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011 – All rights reserved 43

The following Subclauses elaborate on the structure of the input patterns and output expressions describing
the input and output behavior of an action, as well as the way the action is selected from the set of all actions
of an actor.

In discussing the meaning of actions and their parts it is important to keep in mind that the interpretation of
actions is left to the model of computation, and is not a property of the actor itself. It is therefore best to think
of an action as a declarative description of how input tokens, output tokens, and state transitions are related to
each other. See also D.9.5.

D.9.2 Input patterns, and variable declarations

Input patterns, together with variable declarations and guards, perform two main functions: (1) They define the
input tokens required by an action to fire, i.e. they give the basic conditions for the action to be fired which
may depend on the value and number of input tokens and on the actor state, and (2) they declare a number of
variables which can be used in the remainder of the action to refer to the input tokens themselves. The syntax
is as follows:

InputPattern [ID ':'] '[' IDs ']' [RepeatClause]

RepeatClause Expression


 repeat

The static type of the variables declared in an input pattern depends on the token type declared on the input
port, but also on whether the input pattern contains a repeat-clause.

A pattern without a repeat-expression is just a number of variable names inside square brackets. The pattern
binds each of the variable names to one token, reading as many tokens as there are variable names. The
number of variable names is also referred to as the pattern length. The static type of the variables is the same
as the token type of the corresponding port.

Example. (Input pattern without repeat-clause). Assume the sequence of tokens on the input channel is the
natural numbers starting at 1, i.e.

1, 2, 3, 4, 5, ...

The input pattern [a, b, c] results in the following bindings:

a = 1, b = 2, c = 3

If a pattern contains a repeat-clause, that expression must evaluate to a non-negative integer, say N. If the
pattern length is L the number of tokens read by this input pattern and bound to the L pattern variables is NL.
Since in general there are more tokens to be bound than variables to bind them to (N times more, exactly),
variables are bound to lists of tokens, each list being of length N. In the pattern, the list bound to the k-th
variable contains the tokens numbered , , 2 , ..., (1)k L k L k N L k    . The static type of these variables is

List[T], where T is the token type of the port.

Example. (Input pattern with repeat-clause). Assume again the natural numbers as input sequence. If the
input pattern is

[a, b, c] repeat 2

it will produce the following bindings:

a = [1, 4], b = [2, 5], c = [3, 6]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

44 © ISO/IEC 2011 – All rights reserved

D.9.3 Scoping of action variables

The scope of the variables inside the input patterns, as well as the explicitly declared variables in the var-
clause of an action is the entire action — as a consequence, these variables can depend on each other. The
general scoping rules from D.6 need to be adapted in order to properly handle this situation.

In particular, input pattern variables do not have any initialization expression that would make them depend
explicitly on any other variable. However, their values clearly depend on the expressions in the repeat-clause
(if present). For this reason, for any input pattern variable we define the set of free variables of its
initialization expression to be the union of the free variables of the corresponding expressions in the
repeat-clause.

v

vF

The permissible dependencies then follow from the rules in D.6.

Example. (Action variable scope). The following action skeleton contains dependencies between input pattern
variables and explicitly declared variables

[n], [k], [a] repeat m * n ==> ...
var
 m = k * k
do ... end

These declarations are well formed, because the variables can be evaluated in the order k, m, n, a.

By contrast, the following action heads create circular dependencies:

[a] repeat a[0] + 1 ==> ... do ... end
[a] repeat n ==> ... var
 n = f(b), b = sum(a)
do ... end

D.9.4 Output expressions

Output expressions are conceptually the dual notion to input pattern — they are syntactically similar, but
rather than containing a list of variable names which get bound to input tokens they contain a list of
expressions that computes the output tokens, the so-called token expressions.

OutputExpression [ID ':'] '[' Expressions ']' [RepeatClause]

RepeatClause Expression


 repeat

The repeat-clause works not unlike in the case of input patterns, but with one crucial difference. For input
patterns, it controls the construction of a data structure that was assembled from input tokens and then bound
the pattern variables. In the case of output expressions, the values computed by the token expressions are
themselves these data structures, and they are disassembled according to the repeat-clause, if it is present.

In output expressions without repeat-clause, the token expressions represent the output tokens directly, and
the number of output tokens produced is equal to the number of token expressions. If an output expression
does have a repeat-clause, the token expressions must evaluate to lists of tokens, and the number of tokens
produced is the product of the number of token expressions and the value of the repeat-expression. In
addition, the value of the repeat-expression is the minimum number of tokens each of the lists must contain.

Example. (Output expressions). The output expression

... ==> [1, 2, 3]

produces the output tokens 1, 2, 3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 23
00

1-4
:20

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Functional unit network description
	4.1 Introduction
	4.2 The specification of an FU network

	5 Bitstream syntax description
	6 Model instantiation

