INTERNATIONAL ISO/IEC
STANDARD 23001-4

Second edition
2011-12-15

Information technology — MPEG systems
technologies —

Part 4:
Codec configuration‘representation

Technologies de l'information — Technologies des systemes MPEG —

Partie 4: Représentation.de configuration codec

Reference number
ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

© ISO/IEC 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

COPYRIGHT PROTECTED DOCUMENT

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Contents Page
L oL =7 o o iv
Lo T 11T o) '
1 £ o o - PSSR s SUSRR 1
Normative referenCes........cccciviiiiiicciirrrr e snr s sssnn e s s ss s smnnn e e e e s (o3 badke e e s e s s s s nnnnne 1
Terms and definitioNsooo iV ann e e s b e 1
Functional unit network description ... 3
Bitstream syntax descriptioncccccciinniiiinnni e e b, 5
Model instantiation.............i i e e 6
nnex A (normative) Functional unit network descriptionccccoee e 3 e e 7
nnex B (informative) Examples of FU network description5 e iiriiicccssseeeesnnsnnsssssssesessesssshosssnnens 13
nnex C (normative) Specification of RVC-BSDLc.coooiccciiienidiniccineceinns s ssssssscesessssssssssssssssssssspossssnens 15
nnex D (normative) Specification of RVC-CAL language. .. eeeercccissncermrriissssssseeessessssssssssssssessssspssssens 29
nnex E (informative) Instantiation of bitstream syntax parser from bitstream syntax descriptigns.....51
nnex F (informative) Relation between codec configuration representation and multimedia
middleware (M3W)........ooo i it e N rassssmsere e se s sss s s ssssn e s s e s ssssssssssnesensssssssssnnnnsnnsssssssnnshessensas 56
= 11 o oY =T] 137/ I SN 57
© ISO/IEC 2011 — All rights reserved iii

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC

23001-4:2011(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of

ISO or

IEC participate in the development of International Standards through technical committees

establisHed by the respeciive organization 1o deal with pariicular fields of technical activity. ISO and [ELC

technica
and non

technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The maip task of the joint technical committee is to prepare International Standards. |Praft International

Standardg

an International Standard requires approval by at least 75 % of the national bodies castihg a vote.

Attention
rights. IS

ISO/IEC

Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This sec
revised.

ISO/IEC
systems

— Part
— Part
— Part
— Part
— Part

— Part

committees collaborate in fields of mutual interest. Other international organizations, governmental
governmental, in liaison with ISO and IEC, also take part in the work. In the field of infermation

s adopted by the joint technical committee are circulated to national bodies for.voting. Publication as
is drawn to the possibility that some of the elements of this documentimay be the subject of patent
O and IEC shall not be held responsible for identifying any or all suchpatent rights.

23001-4 was prepared by Joint Technical Committee ISO/NEC JTC 1, Information technology,

bnd edition cancels and replaces the first edition (ISO/AEC 23001-4:2009) which has been technically

G)

23001 consists of the following parts, undep;the general title Information technology — MPE
technologies:

1: Binary MPEG format for XML

2: Fragment request units

3: XML IPMP messages

4: Codec configuration_representation

5: Bitstream Syntax Description Language (BSDL)

7: Commoncencryption in ISO base media file format files

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

Introduction

2011(E)

This part of ISO/IEC 23001 defines the methods capable of describing codec configurations in the so-called
reconfigurable video coding (RVC) framework. The objective of RVC is to offer a framework that is capable of
configuring and specifying video codecs as a collection of “higher level” modules by using video coding tools.

The video coding tools are defined In video ool Tibrary. Part 4 of I[SO/TEC 23002 defines the MPEG
liprary. The RVC framework principle could also support non-MPEG tool libraries, provided 't
developers have taken care to obey the appropriate rules of operation.

n

or the purpose of framework deployment, an appropriate description is needed to describe configu
ecoders composed of or instantiated from a subset of video tools from either oné or more libr
lJustrated in Figure 1, the configuration information consists of:

=

— bitstream syntax description, and

- network of functional units (FUs) description (also referred to as the decoder configuration)

—

hat together constitute the entire decoder description (DD).

itstreams of existing MPEG standards are specified by-Specific syntax structures and deco
omposed of various coding tools. Therefore, RVC includes Support for bitstream syntax description
s video coding tools. As depicted in Figure 1, a typical\RVC decoder requires two types of inf
lamely the decoder description and the encoded media,(€.g. video bitstreams) data.

= Q O m

1. Bitstream,syntax
2. Decoder configuration

Decoder Description o
Encoder Decoder

Encoded Video Data

Figure 1 — Conceptual diagram of RVC

Higure 2 illustfates a more detailed description of the RVC decoder.

A more~detailed description of the RVC decoder is shown in Figure 2. As shown in Figure 2, the
description is required for the configuration of a RVC decoder. The Bitstream Syntax Description (B

ideo tool
hat their

ations of
aries. As

ders are
s as well
brmation,

decoder
SD) and

T T D T CoOOCT D TCoCTP T C oo T TOto— oot

an abstract decoder model (ADM) which is instantiated through the selection of FUs from tool

LI ‘Nlatwork DNacerintion (ENPDY (which camnanca tha Nacadar PDacerintion) ara 1icad to confiaure or
NEWOH— e SEHPHOR TN TWHHEH-60H Ot HGuHe-of

compose
libraries

optionally with proper parameter assignment. Such an ADM constitutes the behavioral reference model used
in setting up a decoding solution under the RVC framework. The process of yielding a decoding solution may
vary depending on the technologies used for the desired implementations. Examples of the instantiation of an

abstract decoder model and generation of proprietary decoding solutions are given in Annex E.

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

ISO/IEC 23001-4 MPEG-B ISO/IEC 23002-4 MPEG-C

FU Network E

Decoder > Des{g;f]ﬂon ;u'lodel_lnstantiation: |:
T - election of FUs and

Description Bitstream Syntax B L

Description MPEG E

(RVC-BSDL) Tool Library 1

(RVC-CAL FUs) o

Abstract Decoder Model =

(FNL + RVC-CAL)

Decoder
Implementation

MPEG
ToohLibrary
Implementation

INFORMATIVE

Encoded Video Data >—b Decoding Solution —p Decoded Video Data >

RVC Decoder implementation

Figure 2 — Graphical representation of the instantiation process or decoder composition mechanisn
for the RVC normative ADM and for the non-normative proprietary compliant decoder implementatior

Within thHe RVC framework, the decoder description describes a particular decoder configuration and consist
of the FNID and the BSD. The FND describes the connectivity of the network of FUs used to form a decods
whereas| the parsing process for the, bitstream syntax is implicitly described by the BSD. These tw
descriptipns are specified using two standard XML-based languages or dialects:

O s w

— Fun¢tional Unit Network Language (FNL) is a language that describes the FND, known also as “network
of FUs”. The FNL specified hormatively within the scope of the RVC framework is provided in this part of
ISOfIEC 23001;

— Bitsfream Syntax<Description Language (BSDL), standardized in ISO/IEC 23001-5 (MPEG-B Part 5
desgribes thelbitstream syntax and the parsing rules. A pertinent subset of this BSDL named RVC-BSD
is difined within the scope of the current RVC framework. This RVC-BSDL also includes possibilities fq

m=1T-=:

furter extensions, which are necessary to provide complete description of video bitstreams. RVC-BSD|
spegified normatively within the scope of the RVC framework is provided in this part of ISO/IEC 23001.

The decoder configuration specified using FNL, together with the specification of the bitstream syntax using
RVC-BSDL fully specifies the ADM and provides an “executable” model of the RVC decoder description.

The instantiated ADM includes the information about the selected FUs and how they should be connected. As
already mentioned, the FND with the network connection information is expressed by using FNL. Furthermore,
the RVC framework specifies and uses a dataflow-oriented language called RVC-CAL for describing FUs'
behavior. The normative specification of RVC-CAL is provided in this part of ISO/IEC 23001. The ADM is the
behavioral model that should be referred to in order to implement any RVC conformant decoder. Any RVC
compliant decoding solution/implementation can be achieved by using proprietary non-normative tools and
mechanisms that yield decoders that behave equivalent to the RVC ADM.

vi © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

The decoder description, the MPEG video tool library, and the associated instantiation of an ADM are
normative. More precisely, the ADM is intended to be normative in terms of a behavioral model. In other words
what is normative is the input/output behavior of the complete ADM as well as the input/output behavior of all
the FUs that are included in the ADM.

© ISO/IEC 2011 — All rights reserved vii

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

INTERNATIONAL STANDARD ISO/IEC 23001-4:

2011(E)

Information technology — MPEG systems technologies —

Part 4:
Codec configuration representation

1 Scope

his part of ISO/IEC 23001 defines the methods and general principles capable of describin
nfigurations in the so-called reconfigurable video coding (RVC) framewaork. It primarily a

reconfigurable video aspects and will only focus on the description of\répresentation for vide
nfigurations within the RVC framework.

ithin the scope of the RVC framework, two languages, namely FNL and RVC-BSDL, are
ormatively. FNL is a language that describes the FND, also known as “network of FUs”. RVC-B
ertinent subset of BSDL defined in ISO/IEC 23001-5. This RV€-BSDL also includes possibilities f
tensions, which are necessary to provide complete description“of video bitstreams.

Normative references

he following referenced documents are indispensable for the application of this document. F
bferences, only the edition cited applies. For undated references, the latest edition of the re
document, including any amendments, applies.

-

BO/IEC 14496-2:2004, Information techhology — Coding of audio-visual objects — Part 2: Visual

BO/IEC 23001-5:2008, Information technology — MPEG systems technologies — Part 5: Bitstrear
Description Language (BSDL)

BO/IEC 23002-4, Informatien technology — MPEG video technologies — Part 4: Video tool library

3 Terms and)definitions

Hor the purposes of this document, the following terms and definitions apply.

3.1

g codec
Hdresses
o0 codec

specified
SDL is a
br further

or dated
ferenced

n Syntax

jt?xravt'dwodwmvdei

conceptual model of the instantiation of the functional units (3.8) from the video tool library (3.16)
connection according to the FU network description (3.9)

3.2
BSD
bitstream syntax description

and their

description containing the bitstream syntax, its implicit parsing rules, and possibly tables [e.g. VLD tables if not
already existing in the reconfigurable video coding (3.13) video tool library] to define the parser

functional unit (3.8)

NOTE The BSD is expressed using reconfigurable video coding-bitstream syntax description language (3.14).

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

3.3
BSDL

bitstream syntax description language
description of the bitstream syntax and the parsing rules

NOTE Bitstream syntax description language (BSDL) is standardized by ISO/IEC 23001-5.

34

connection

link from an output port to an input port of a functional unit (3.8) that enables token exchange between FUs

3.5

decoder| configuration

conceptyal configuration of a decoding solution

NOTE 1 Using the MPEG video tool library (3.12), decoder configuration can be designed as ope.of the following

cases.

— A defoding solution of an existing MPEG standard at a specific profile and level.

— A ne decoding solution built from tools of an existing MPEG standard.

— A ngw decoding solution built from tools of an existing MPEG standard and some’hew MPEG tools included in the
MPHG video tool library.

— A ne decoding solution that is composed of new MPEG tools included in the-MPEG video tool library.

NOTE 2 | In summary, an RVC decoder description essentially consists of a list of functional units (3.8) and of the

specificatfon of the FU connections [FU network description (3.9) expressed in FU network language (3.10)] plus the

implicit specification of the parser in terms of bitstream syntax description (3.2) [BSD expressed in reconfigurable

video codling-bitstream syntax description language (3.14)]. In_order to be a complete behavioral model [i.e. abstra¢

decoder
provided

3.6
DD
decoder
descripti
and bitsf

3.7

decoding solution

impleme

3.8
FU

functional unit

modular

3.9

-~

model (3.1)] an RVC decoder description (3.6) needs\to make reference to the behavior of each FU that (s
h terms of 1/0 behavior by the MPEG video tool library:(3.12) specified in ISO/IEC 23002-4.

description
bn of a particular decoder configuration, which consists of two parts: FU network description (3.9
fream syntax description (3.2)

~

htation of the abstract.decoder model (3.1)

tool which.consists of a processing unit characterized by the input/output behavior

FND

FU netw
FU (3.8)

3.10
FNL

ork description
connections used in forming a decoder which are modeled using FU network language (3.10)

FU network language
language that describes the FU network description (3.9), known also as a “network of FUs”

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

3.11

model instantiation

building of the abstract decoder model (3.1) from the decoder description (3.6) [consisting of the
bitstream syntax description (3.2) and the FU network description (3.9)] and from functional units (3.8)
from the video tool library (3.16)

NOTE During the model instantiation, the parser FU is reconfigured according to the BSD or loaded from VTL.

3.12

MPEG video tool library
PEG VTL

ideo tool library (3.16) that contains functional units (3.8) defined by MPEG, that is, drawn from existing
PEG International Standards

framework defined by MPEG to promote coding standards at tool-level while maintaining interoperability

ertinent subset of bitstream syntax description language (3¢3), which is defined within the scope of the
rrent reconfigurable video coding (3.13) framework

.15

collection of functional units (3.8)

4 Functional unit network description

4.1 Introduction
Tlhe FUs in MPEGRVC are specified by:
e The texiual description in ISO/IEC 23002-4.

o The RVC-CAL reference software. The RVC-CAL language is formally specified in Annex D.

he~Functional Unit Network Language (FNL) is formally specified in this Clause and is used to|describe
g i i i i i ived from
SGML (ISO 8879). The ADM consists of a number of FUs with input and output ports, and the connections
between those ports. In addition, the ADM may have input and output ports, which may be connected to the
ports of FUs or to each other.

A decoder can be described as a network of a number of FUs or even only one FU (e.g. Figure 3).

© ISO/IEC 2011 — All rights reserved 3

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Decoder

Bits YUV
FU A B

Figure 3 — FU network of one FU

A netwoik of FUs is described in FND. An FND includes the list of the selected FUs to form the decoder and

the threeg
inputs ar
illustrate

The list
FUs fror

parameter assignments in the listed FUs are supported in the FND, but optional.

types of connections that are connections between FUs (type A), connections between decCodg
d FU inputs (type B), and connections between FU outputs and decoder outputs (type C), which ar
i in Figure 4.

D =

bf the selected FUs (Figure 4) is described in FND according to the following tableC\When selectin
n VTL, the IDs and names of FUs defined in ISO/IEC 23002-4 shall be used in the FND. Th

[OJ(®]

<Instan¢e id = "FU A">
<Class name = "Algo Examplel" />
</Instapce>
<Instan¢e id = "FU B">
<Class name = "Algo Example2" />
</Instance>
The conpections (type A, type B, and type C shown in Figure 4) are described in FND as shown in the

following| table.
Tvpe A <Connection src = "FU A" src-port ='B" dst = "FU B" dst-port = "D" />
yp <Connection src = "FU A" src-porti= "C" dst = "FU B" dst-port = "E" />
Type B <input src = "FU A" src-port ="A" />
Type ¢ | <output src = "FU B" src-pért = "F" />
Decodet:

= => TypeA
—> TypeB
....... > Type C

Figure 4 — Three types of connections in an FU network

Another example of FU networks with four FUs is illustrated in Figure 5. The textual description of Figure 5 in

FND is d

escribed as follows.

<XDF na
<Instan

<Cl
</Insta
<Instan

<Cl
</Insta
<Instan

<Cl
</Insta

me="Decoder">

ce id = "Syntax parser">
ass name = "syntax parser">
nce>

ce id = "FU A">

ass name = "Algo ExamFU A">
nce>

ce id = "FU B">

ass name = "Algo ExamFU B">
nce>

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

2011(E)

<Instance id = "FU C">

<Class name = "Algo ExamFU C">
</Instance>
<Input src = "Syntax Parser" src-port = "A" />
<Output src = "FU C" src-port = "R" />
<Connection src = "Syntax Parser" src-port = "B" dst = "FU A" dst-port = "E" />
<Connection src = "Syntax Parser" src-port = "C" dst = "FU A" dst-port = "F" />
<Connection src = "Syntax Parser" src-port = "D" dst = "FU B" dst-port = "K" />
<Connection src = "FU A" src-port = "H" dst = "FU C" dst-port = "0” />
<Connection src = "FU B" src-port = "L" dst = "FU C" dst-port = "P" />
<Connection src = "FU B" src-port = "M" dst = "FU C" dst-port = "Q" />
</XDF>

Figure 5 — Another example of FU networks

4.2 The specification of an FU network

he XML structures with names of elements, such as Decly Network, Package, Expr, etc. are describ
specification of FNL in Annex A. In addition, attributes’that direct an individual element’s features
imtroduced there. Attribute names will be prefixed with “@”. For instance common attribute names

brackets are used. For instance, in order to express the notion of an Expr element whose @kind a
the string “literal”, Expr[@kind="literal"] is written.

By using the RVC-CAL model, FNL:.also allows FU networks and individual FUs to be paramete
particular, it is possible to pass bounded values for specific parameters into FU and FU network|
alues are represented by Expr_and Decl syntax. Expr and Decl are the syntactical constructs des
gomputation, which may, itselfi;be dependent upon the values of parameters which are either globg
ariables.

Bitstream syntax description

he MPEG video tool library contains FUs that specify MPEG decoding tools. A new decoder con
plies new)bitstream syntax. The description of the bitstream syntax in RVC is provided using

specified-in" ISO/IEC 23001-5 and BSDL schema. However, to facilitate the developments of synthg
that,are able to generate parsers directly from a BSD (i.e. a BSDL schema), the RVC framework star
3 verS|on of BSDL called RVC BSDL speC|f|ed by |nclud|ng new RvVC speC|f|c extenS|ons an

@name, or @kind. In cases where an element.name may be qualified by the value of an attributg,

ed in the
are also
are @id,
square
tribute is

rized. In
5. These
cribing a
| or local

iguration
BSDL as
bsis tools
dardizes
d usage

e MPEG

standard BSDL are defined in Annex C of this document RVC- BSDL contalns all |nformat|on necessary to

parse any bitstream compliant with such syntax. The procedure to instantiate the parser capable o

f parsing

and decoding any bitstream compliant with the syntax specified by the RVC-BSDL schema is not normative.

Examples of such non-normative procedures are provided in Annex E.

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

6 Model instantiation

This Clause describes the model instantiation process which consists of the selection of Functional Units
(FUs) from the video tool library and instantiation of the FUs with the proper parameter assignments. The
instantiation process requires the following information:

e The video tool library
e The FU network description
e The bitstream syntax description

= U

in order fo build a complete model that can be simulated. The video tool library is a library of source code,of gl
FUs stapdardized in ISO/IEC 23002-4. The FND contains only the references (names of the FUs), to th
pieces of code in the VTL. The process outputs the ADM. Figure 6 illustrates the model instantiation.process.

The insti(?tiation process consists of attaching the source code corresponding to the FUs identified in the FN

[¢]

FND
Input:
FND+BSD Connections Name + parameters
BSD [name |

AVideo Tool Library
flodel
Instantiation BSDL2CAL Attach)e—| Code.FU1| |Code FU2| Code FUN
Pfocess
/ Name FU2

Qutput: w
ADM

i
i iE i

Name‘EUN

Figure 6 — Description of the model instantiation process

[

The FU [Network Description(FND) provides the structure of the decoder by giving the names of the FU
composihg the decoder and)their respective connections among them. The name of the instance of the FU i
the ADM is contained/in‘the tag <instance id="..">. The tag <class name=".."> indicates the name ¢
the FU (in the videotteol library) from which the FU of the ADM must be instantiated. The tag <parameter
provides|the valués of the parameters, which must be used for the instantiation of the FU in the ADM.

i

The Bitsfream ‘Syntax Description (BSD) provides the structure of the bitstream. The parser is generated
automatigally from the BSD. Informative examples are provided in Annex E for building the parser. The syntax
parser FU of the ADM might use other FUs to parse the bitstream. Thus, a clear link between identifiers inside
the BSD and the FND must be established. The tag <rvc port=".."> indicates the name of the instance of
the FU into the ADM to which this element of syntax is sent.

6 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Annex A
(normative)

Functional unit network description

A.1 Elements of a functional unit network

XADF — An FU network is identified by the root element called XDF that marks the beginningyand e
AML description of the network.

e optional attribute: @name, the name of the network. @version, the versiom~pumber of th
network. Assumed to be “1.0” if absent.

e optional children: Package, Decl, Port, Instance, Connection.

nd of the

b current

<XDF name="mpeg4SP">

</XDEF>

Rackage — This element contains a structured representation) of a qualified identifier (QID) (i.e.
entifiers that are used to specify a locus in a hierarchical namespace). That QID provides the conte
Dname attributed of the enclosing Network element: that'name is intended to be valid within the
rnamespace, or package.

o=

e required child: QID, the qualified identifier.

a list of
xt for the
specified

<Package>
<QID>
<ID id="mpeg4d"/>
</QID>
</Package>

[|

ecl[@kind="Param"] — Represents the declaration of a parameter of the network.
e required attribute:'\@name, the name of the parameter.

e optional child;Type, the declared type of the parameter.

<Decl kind="Pardm" name="FOURMV"/>

Decl[@kind="Var"] — This element represents a variable declaration. Variables are used within exgressions
tp compute parameter values for actors instantiated within the network and within expressions|used to
compute the values of other variables.
e required attribute: @name, containing the name of the declared variable.
e required child: Expr, representing the expression defining the value of this variable, possibly referring
the values of other variables and parameters.
e optional child: Type, the declared type of the variable.
<Decl kind="Variable" name="MOTION">
<Expr kind="Literal" literal-kind="Integer" value="8"/>
</Decl>
© ISO/IEC 2011 — All rights reserved 7

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Port — Represents the declaration of a port of the network. Ports are directed, i.e. they serve as either input
or output of tokens.

e required attributes: @name, the name of the port. @kind, either “Input” or “Output”.

e optional children: Type, the declared type of the port.

<Port kind="Input" name="signed"/>
<Port kind="Output" name="out"/>

=3

Instancg — This element represents instantiations of FUs (i.e. actors). Essentially, an instantiation consists ¢
two partg: (1) a specification of the class of the FU, and (2) a list of parameter values, specifying expression
for comppting the actual parameter for each formal parameter of the FU class.

[

D

. quired attribute: @id, the unique identifier of this FU instance in the network. No 'two Instanc
lements may have the same value for this attribute.

e fequired child: Class, identifying the FU class to be instantiated.
e optional children: Parameter, each of these is assigning a formal parameter of the FU class to an

g¢xpression defining the actual parameter value for this instance. Attribute,-additional named attribute]
for this instance.

[2]

<Instanjce id="MPEG4 algo PR">
<Clalss name="MPEG4 algo Add"/>
<Parjameter name="LAYOUT">

Expr kind="Literal" literal-kind="Integer" value="1"/>
</Pajrameter>

</Instance>

<Instanjce id="Algo IDCT2D MPEGCPartlCompliant">
<Clalss name="Algo IDCT2D MPEGCPartlCompliaht"/>
</Instance>

Conneclion — Represents a directed connection between two ports within the network. The source of that
connectipn can be either an input portiof ‘the network or an output port of an FU instance. Conversely, the
destinatipn of that connection is eitheran output port of the network or the input port of an FU instance.

. quired attributes: @sfrc) the id of the source FU of this connection. If “, the connection originates at
network input port,“@src-port, the name of the source port. @dst, the id of the destination FU of th
¢onnection. If “’,_the connection ends at a network output port. @dst-port, the destination port of the
¢onnection.

[

e optional children: Attribute, additionally named attributes of this connection.

<Connedtiofy dst="MPEG4 algo Add V" dst-port="TEX" src="Algo IDCT2D MPEGCPartlCompliant V" src-
port="outl>

A.2 Expressions

All Expr elements represent expressions. Expressions are used to compute values that are in turn passed as
parameters when instantiating FUs. Expressions can refer to variables by name. Those variables may be
declared local variables of a network, declared network parameters, or global variables. There are a number
of different kinds of expressions, all represented as Expr elements. They are distinguished by the @kind
attribute.

8 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Expr[@kind="Literal"] — These expressions represent literals, which are essentially atomic expressions that
denote constants, and which do not refer to any variables. There are a number of different kinds of literals,

distinguished by the @literal-kind attribute.

Expr[@kind="Literal"][@literal-kind="Boolean"] — These literals are Boolean values.

e required attribute: @value, either “1” for true or “0” for false.

| <Expr kind="Literal" literal-kind="Boolean" value="1"/>

e required attribute: @value, the decimal representation of the number.

Bxpr[@kind="Literal"][@literal-kind="Integer"] — These literals represent arbitrary-sized integral numbers.

<Expr kind="Literal" literal-kind="Integer" value="64"/>

xpr[@kind="Literal"][@literal-kind="Real"] — These are numbers with fractional parts.

e required attribute: value, the decimal representation of the number, optionally in scientific notation with
an exponent separated from the mantissa by the character ‘E’ or ‘g™

<Expr kind="Literal" literal-kind="Real" value="32e-2"/>

xpr[@kind="Literal"][@literal-kind="String"] — String literals,

e required attribute: @value, the string value.

<Expr kind="Literal" literal-kind="String" valuem~'"ForemanQCIF"/>

e required attribute: @value, the character value.

xpr[@kind="Literal"][@literal-kind="Character"] — Character literals.

<Expr kind="Literal" literal-kind<“Character" value="s"/>

m

xpr[@kind="List"] — This expression is a list.

| Expr kind="List"/>

xpr[@kind="Var"]=> This expression is a variable reference.

e required attributes: @name, the name of the variable referred to.

<Expr kindz"Var" name="INTER"/>

O

f arguments.

xpfi@kind="Application™] — This kind of expression represents the application of a function to 3 number

e required children: Expr, the expression representing the function. Args, an element containing the

arguments.

<Expr kind="Application">
<Expr kind="Var" name="log"/>
<Args>
<Expr kind="Literal" literal-kind="Integer" value="2"/>
</Args>
</Expr>

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Expr[@kind="UnaryOp"] — This expression represents the application of a unary operator to a single
operand.

e required children: Op, the operator. Expr, an expression representing the operand.

<Expr kind="UnaryOp">
<Op name="!"/>
<Expr kind="Literal" literal-kind="Boolean" value="1"/>
</Expr>
Expr{@kind="BinOpSeq —These—expressions—represent—the—tise—of-binary—operators—on—a—ntmber—of

operands. The associativity remains unspecified, and will have to be decided based on the operators invalvedl.
The chilfiren are operands and operators. There has to be at least one operator, and exactly oné“nore
operands than operators. The operators are placed between the operands in document order — the firgt
operator|between the first and second operand, the second operator between the second and third' operand
and so fgrth. The relative position of operators and operands is of no importance.

e 1equired children: Op, the operators. Expr, the operands.

<Expr Kind="BinOpSeqg">
<Expr kind="Literal" literal-kind="Integer" value="3"/>
<Op lhame="+"/>
<Expr kind="Literal” literal-kind="Integer" value="2"/>
</Expr

A.3 Auyxiliary elements
Args — [This element contains the arguments of a function application.
e fequired children: Expr, the argument expressions:
Op — This element represents a unary or binary operator, depending on context.

e fequired attribute: @name, the operatar name.

<Expr Kind="Application">
<Expr kind="Var" name="myfunctien'/>
<Argls>
Expr kind="BinOpSeqg">
<Expr kind="Literal Ifteral-kind="Integer" value="3"/>
<Op name="+"/>
<Expr kind="Literd@l" literal-kind="Integer" value="2"/>
/Expr>
</Args>
</Expr

A.4 Types

Types, r ; i i i 5 0
specify the data types of objects bound to those variables or communicated via those ports. They are
identified by a name, and may also comprise parameters, which are bound to either other types, or
expressions (which are resulting in values).
Type — The description of a data type.

e required attribute: @name, the name of the type.

e optional children: Entry, entries binding a concrete object (either a value or another type) to a named
parameter.

10 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

2011(E)

<Type name="mytype">

</Type>

Entry[@kind="Expr"] — A value parameter of a type.
e required attribute: @name, the name of the parameter.

e required child: Expr, the expression used to compute the attribute value.

<Type name="mytype">
<Entry kind="Expr" name="size">
<Expr kind="Literal" literal-kind="Integer" value="10"/>
</Entry>
</Type>

Bntry[@kind="Type"] — A type parameter of a type.
e required attribute: @name, the name of the parameter.

e required child: Type, the type bound to the parameter.

<Type name="list">
<Entry kind="Type" name="type">
<Type name="bool"/>
</Entry>
<Entry kind="Expr" name="size">
<Expr kind="Literal" literal-kind="Integer" value="32"/>
</Entry>
</Type>

A.5 Miscellaneous elements

ttribute — The instances and connections of a network can be tagged with attributes. An attri
amed element that contains additional~information about the instance or connection. We disting
nds of attributes: flags, string attributes, value attributes, and custom attributes. A flag is an attri
oes not contain ANY information except its name. A string attribute is one that contains a string
tribute contains an expressien\(represented by an Expr element), and a custom attribute contains
gf information.

e optional attribute:) @value, the string value of a string attribute.

e optional ehildren: Expr, the value expression of a value attribute. An Attribute may inst
containany other element.

bute is a
uish four
bute that
a value
any kind

ead also

<Connectlon dst="sink" dst-port="bits" src="source" src-port="bits">
<Attribute kind="Value" name="bufferSize">
<Expr kind="Literal" literal-kind="Integer" value="1"/>
<JAttribute>

</€bnnection>

QID — An element representing a qualified identifier, which is a list of simple identifiers. That list may be of

any length, including zero.

e optional children: ID, a simple identifier.

<QID>

<ID id="mpeg4"/>

<ID id="SP"/>

<ID id="myversion"/>
</QID

© ISO/IEC 2011 — All rights reserved

11

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC

23001-4:2011(E)

FUID — A simple identifier.

e required attribute: @id, the identifier.

[<FUID id="0001012"/> |

Class — This element identifies an FU class by name. If the FU class name is to be interpreted within a
specific namespace, that QID of that namespace may be contained within the Class element.

[] I

qnirpd attribute: @name the name of the class

. q

ptional child: QID, the QID identifying the package/namespace for the class name.

| <Class jname="MPEG4_algo_VLDTableB8"/>

Paramefer — This element specifies a value expression for a given, named parameter.
e fequired attribute: @name, the parameter name.

e required child: Expr, the expression whose evaluation will yield the value forthe specified parameter.

<Param¢g
<Exp
</Paran

[ter name="ROW">
r kind="Literal" literal-kind="Integer" value="1"/>
eter>

NOTE
entirely u
Network §

Examplel

[

This element is special in two respects: (1) It may occur anywhere in the network description. (2) Its format
hspecified. The Note element can be used to add annotationssand additional information to any element in th
pecification. It is common practice to use the @kind attribute;to identify the type of the note.

[

s of description of networks of FUs using the FNL:specified above are given in Annex B.

12

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

Annex B
(informative)

Examples of FU network description

2011(E)

3.1 Introduction
h

is Annex provides some examples of how a RVC decoder configuration can be specified\in te
etwork of RVC FUs, including a 1-D IDCT, 2-D IDCT (Figure B.1), and the flatten MPEG-4\SP decqg

flatten decoder configuration is described in terms of networks of FUs from. ‘the RVC
5O/IEC 23002-4 composed of MPEG-4 SP FUs.

>

B.2 Example of specification of a network of FUs implementing a 1D-IDCT algq

|

igure B.1 illustrates the network composed by 5 FUs taken from the MPEG RVC toolbox, the cor
between FU and between the network and the outside world.

GEN algo Clip

GEN 124 algo Idctid r
X ¥

GEN _algo. Transpose 0
e i

Figure B.1 — Example of-networks of FU expressed using RVC FNL

Tlhe textual specification of the network.in Figure B.1 is specified below. The network implements a 1+

rms of a
der FUs.
toolbox

rithm

nections

D IDCT.

<?xml version="1.0" encodingsl'UTF-8"?><XDF name="idct2d">

<Package>
<QID>
<ID id="mpeg4!/>
</QID>
</Package>

<Port kind="Input" name="in"/>
<Port &kivid="Input" name="signed"/>
<PortNkind="Output" name="out"/>
<Declkind="Variable" name="INP Sz">
<Expr kind="Literal" literal-kind="Integer" value="12"/>
</Decl>

LDecl kind="Variable" name="PIX Sz">

<Expr kind="Literal" literal-kind="Integer" value="9"/>
</Decl>
<Decl kind="Variable" name="OUT SZzZ">

<Expr kind="Literal" literal-kind="Integer" value="10"/>
</Decl>
<Decl kind="Variable" name="MEM SZ">

<Expr kind="Literal" literal-kind="Integer" value="16"/>
</Decl>
<Instance i1d="GEN_124 algo Idctld r">

<Class name="GEN 124 algo Idctld"/>

<Parameter name="ROW">

<Expr kind="Literal" literal-kind="Integer" value="1"/>

</Parameter>

</Instance>

© ISO/IEC 2011 — All rights reserved

13

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

<Instance id="GEN_algo Transpose 0">
<Class name="GEN algo Transpose"/>

</Instance>

<Instance id="GEN_124 algo_Idctld c">
<Class name="GEN_124 algo_Idctld"/>
<Parameter name="ROW">

<Expr kind="Literal” literal-kind="Integer" value="0"/>

</Parameter>

</Instance>

<Instance id="GEN algo Transpose 1">
<Class name="GEN algo Transpose"/>

</Instance>

<Ino+ . EW2 AL alni N 'Ig f"lir\"
Class name="GEN algo Clip"/>
Parameter name="isz">

<Expr kind="Var" name="OUT Sz"/>
/Parameter>
Parameter name="osz">

<Expr kind="Var" name="PIX Sz"/>

/Parameter>
</Inlstance>
<Connection dst="GEN_124 algo_ Idctld r" dst-port="X" src="" src-port="in"/>
<Conpnection dst="GEN algo Clip" dst-port="SIGNED" src="" src-port="signed"/>
<Conpnection dst="" dst-port="out" src="GEN algo Clip" src-port="0"/>

<Conpnection dst="GEN algo Transpose 0" dst-port="X" src="GEN_ 124 algo IdcfN@/r" src-port="Y"/>
<Connection dst="GEN_124 algo_Idctld c" dst-port="X" src="GEN_algo_Tran§pgse 0" src-port="Y"/>
<Conjnection dst="GEN algo Transpose 1" dst-port="X" src="GEN 124 algo(kdctld c" src-port="Y"/>

<Conmnection dst="GEN algo Clip" dst-port="I" src="GEN algo Transpose N* src-port="Y"/>
</XDF>

B.3 FNL of the testbed

fread FUN_MPEG4SP_DECODER
9 bits N3 VIC

<?xml vlersion="1.0" encoding="UTF-8"?><XDEF/name="testbed">
<Insftance id="FUN MPEG4SP DECODER">

Class name="decoder"/>
</Injstance>
<Insltance id="fread">
Class name="fread"/>
Parameter name="fname">

<Expr kind="Literal\ literal-kind="String" value="data/foreman gcif 30.bit"/>
/Parameter>
</Injstance>
<Insltance i1d="DispYUV"»
Class name="DispyYUv"/>
Parameter namée="title">

<Expr kind="Literal" literal-kind="String" value="Foreman QCIF"/>
/Paramet&r>
Parame®er™ name="height">

<BExpt~kind="Literal" literal-kind="Integer" value="144"/>
/RParameter>
Paradmeter name="file">

<Expr kind="Literal" literal-kind="String" value="data/foreman gcif 30.yuv"/>
</Parameter>
<Parameter name="width">
<Expr kind="Literal" literal-kind="Integer" value="176"/>
</Parameter>
<Parameter name="doCompare">
<Expr kind="Literal" literal-kind="Integer" value="1"/>
</Parameter>
</Instance>
<Connection dst="FUN MPEG4SP DECODER" dst-port="bits" src="fread" src-port="0"/>
<Connection dst="DispYUV" dst-port="B" src="FUN MPEG4SP DECODER" src-port="VID"/>
</XDF>

14 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Annex C
(normative)

Specification of RVC-BSDL

.1 Introduction

his Annex describes the subset and the extensions of ISO/IEC 23001-5 BSDL thatccenstitutes the
ecification of RVC-BSDL. The objective of specifying a new standard from BSDL (ISO/IEC"™23001-5:2008)
imto a smaller subset (RVC-BSDL), is to be able to support a simple and efficient methodcology for describing
deo bitstreams syntaxes in the scope of RVC, as well as to facilitate the development.ef supporting fools (i.e.
irect synthesis of parsers from RVC-BSDL descriptions).

Q<

'1he following Clauses describe the specificity of the subset and the extensions,0f BSDL standard as jspecified
ISO/IEC 23001-5:2008, which are needed to obtain the RVC-BSDL used'in.this Part of ISO/IEC 23001 (i.e.
the RVC framework).

o

}.2 Use of prefixes in RVC-BSDL schema
Rrefixes and the corresponding namespaces are specified in\RVC BSDL schema.

Table C.1 — Mapping of prefixes to corresponding namespaces in RVC-BSDL schemag

Prefix Corresponding Namespace

xsd http://www.w3.0rg/2001/XMLSchema

bs0 urn:mpeg:mpeg21:2003:01-DIA-BSDLO-NS
bs1 urA:mpeg:mpeg21:2003:01-DIA-BSDL1-NS
bs2 urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS
e urn:mpeg:2006:01-RVC-NS

¢.3 Constructs-of RVC-BSDL

¢.3.1 Introduction

imcludes data types, attributes and elements. The aim of the subset definition is to provide a restrictgd way of
representing well-defined bitstreams. Thus, the processes including the validations of the bitstreamg and the
generation of efficient implementations capable of parsing the bitstreams — described using RVC-BSDL —
become simpler. The specification of the BSDL constructs listed below can be found in
ISO/IEC 23001-5:2008.

W’Lhis Subclause describes which BSDL constructs are supported in RVC-BSDL in the RVC frampwork. It

C.3.2 Supported data types

C.3.2.1 Built-in data types

This Subclause describes the data types which are supported by RVC-BSDL. The supported data types
already defined in common XML schema is shown in Table C.2. The BSDL built-in data types supported by
RVC-BSDL are reported in Table C.3.

© ISO/IEC 2011 — All rights reserved 15

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

16

Table C.2 — List of XML Schema data types supported or not supported by RVC-BSDL

Data Type Supported by RVC-BSDL?
xsd:hexBinary Yes
xsd:long Yes
xsd:int Yes
xsd:short Yes
xsd:byte Yes
ycd'lmeignndl Qong Yes
xsd:unsignedIint Yes
xsd:unsignedShort Yes
xsd:unsignedByte Yes
xsd:string No
xsd:normalizedString No
xsd:float No
xsd:double No
xsd:base64Binary No

Table C.3 — List of BSDL built-in data types supported or nét supported by RVC-BSDL

Data Type Supported.by. RVC-BSDL?
bs1:byteRange Yes
bs1:align32 Yes
bs1:align16 Yes
bs1:align8 Yes
bs1:b1 - bs1:b32 Yes
bs1:bitstreamSegment No
bs1:stringUTF16NT, No
bs1:stringUTF8 No
bs1:stringUTE46BENT No
bs1:stringd TF16LENT No
bs1:stringUTF8NT No
bs1.:stringUTF16 No
bsq:stringUTF16BE No
bs1:stringUTF16LE No
bs1:longLE No
bs1:intLE No
bs1:shortLE No
bstunsignedtongtE No
bs1:unsignedIntLE No
bs1:unsignedShortLE No
bs1:unsignedExpGolomb No
bs1:signedExpGolomb No

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

C.3.2.2 Additional data types

ISO/IEC 23001-4:2011(E)

It may happen that processing tasks associated to the parsing of a segment of the bitstream are not described
in the RVC-BSDL schema. This is the case for bitstream segments for which VLD, CAVLD or CABAC
decoding algorithms need to be applied. Specific functional units available in the RVC toolbox can be used to
decode such portions of the bitstream before continuing the parsing. The data type rvc:ext indicates a
portion of bitstream that needs to be decoded by an external Functional Unit. A communication scheme
(described in E.1.2) is set up to make the link with this external Functional Unit. The rvc:port attribute helps
in making this link by specifying the name of the ports used to connect the parser and the Functional Unit. An

vamnle-of \/ariahla-l enath Daecodina-is-nhrovided-belaws
a1 —-aHapte-=ehRgH-1 Hg-HSPHoHEe a0 810W-

|<xsd:element name="DCTCoefficient" type="rvc:ext" rvc:port= "MPEG4 pakt2 H1l6"/>
Connections with an external FU are necessary to decode the DCT coefficients, which*are Variable Length
Codes. These coefficients shall be decoded using ISO/IEC 14496-2:2004, Table B.16-(the VLC table)). Thus a
gonnection is established between the parser and the corresponding Functional Unit to decode this element of
syntax. Example of such a communication protocol is shown in details in E.1.2 (Implementing Variable-Length
Decoding). The rvc:ext type can be only applied to an xsd:element element:
¢.3.3 Supported elements
Tlhis Subclause describes which BSDL facets are supported in RVE-BSDL within the RVC framework. The
dllowed BSDL-2 elements are described in Table C.4. Thecallowed BSDL-1 elements are desgribed in
Tlable C.5. The allowed XML built-in elements are reported in{Jable C.6.
Table C.4 — The BSDL-2 elements supported or not supported by RVC-BSDL
Element name Supported by RVC-BSDL?

bs2:length Yes (see C.4.3.11)

bs2:bitLength Yes (see C.4.3.10)

bs2:startCodé Yes (see C.4.3.12)

bs2:endCode No

bs2:escape No

bs2:cdata No

bs2:log2() No

bs2:ifUnion Yes (see C.4.3.14)

bs2:parameter No

bs2:xpathScript No

bs2:variable Yes (see C.4.3.5)

Table C.5 — The BSDL-1 elements supported or not supported by RVC-BSDL
Element name Supported by RVC-BSDL?

bs1:script Yes

© ISO/IEC 2011 — All rights reserved 17

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Table C.6 — The XML standard elements supported or not supported by RVC-BSDL

Element name

Supported by RVC-BSDL?

xsd:sequence

Yes (see C.4.3.3)

xsd:choice Yes (see C.4.3.4)
xsd:all No

xsd:group Yes (see C.4.3.2)
xsd:element Yes (see C.4.3.1)

xsd:simpleType

Yes (see C.4.3.6)

xsd:complexType

No

xsd:maxExclusive

No

xsd:fixed

No

xsd:annotation

Yes (see C.4.3.7)

xsd:appinfo Yes (see C.4.3.8)
xsd:MinOccurs No
xsd:MaxOccurs No

xsd:default No

xsd:union Yes (see C.4.3.13)
xsd:length Yes (see C.4.3.11

C.3.4 Supported attributes

C.3.4.1

This Sulpclause describes which attributes-‘are supported by RVC-BSDL within the RVC framework. Th
BSDL-1 attributes are described“in Table C.7. The allowed BSDL-2 attributes are described i
B. The allowed built-in XML attfibutes are described in Table C.9.

allowed
Table C.

18

Built-in attributes

Table C.7 — The BSDL-1 attributes supported or not supported by RVC-BSDL

> O

Attribute name Supported by RVC-BSDL?
bs1:bitstreamURI No
bs1:ignore No
bs1:addressUnit No
bs1:codec No
bstrequiredExtensions No
bs1:insertEmPrevByte No
bs1:bsdlVersion No

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

Table C.8 — The BSDL-2 attributes supported or not supported by RVC-BSDL

ISO/IEC 23001-4:2011(E)

Attribute name Supported by RVC-BSDL?
bs2:nOccurs Yes
bs2:if Yes
bs2:ifNext Yes
bs2:rootElement Yes
bs2:ifNextMask No
bs2:ifNextSkip No
bs2:removeEmPrevByte No
bs2:layerLength No
bs2:assignPre No
bs2:assignPost No
bs2:bsdIVersion No
bs2:requiredExtensions No
bs2:startContext No
bs2:stopContext No
bs2:redefineMarker No
bs2:position Yes

Table C.9 — The XML attributes supported or not supported by RVC-BSDL
Supported by the RVC

Attribute name

framework?
minOccurs No
maxQOccurs No
fixed Yes

G¢.3.4.2 Additional attribute

The parsers built from RVE€ decoder configurations generate data tokens on different output ports.
onsequently, a mechanism specifying the correspondence between the tokens, corresponding to the
ifferent elements of syntax and the output ports on which they have to be sent as output tokens, is necessary
b fully specify a decoder configuration. A special attribute has been added in order to define the port jon which
ne data is sent.<Suych attribute is:

—~ =+ O

Hvc:port

he avt:port attribute is used to indicate that the corresponding element of syntax must be @vailable
utSide the parser for further processing operated by the network of FUs. This attribute is applied to

3 3 ! A [P H (|
SU LS LCSIIT UMMy, AT TAAITIVIT 15 IVETT UTITUW.

I|<xsd:element name="video object layer width" type="bsl:bl3" rvc:port="width"/>

Thus, the element “video object layer width” is available as a token on the port “width” of the parser.
Obviously, the connections of the parser to the network of FUs are reported in the description of the RVC
decoder configuration connected to the port “width.” It is available in the specification of the FU Network
Description (FND), which is given as an input of the whole framework (see Figure 2). In the above example,
the corresponding FND must contain the description of a link connecting the output port “width” of the parser
and an input port of an FU.

© ISO/IEC 2011 — All rights reserved 19

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

C.4 Syntax of RVC-BSDL

C.4.1 Introduction

This Subclause fully specifies the syntax of RVC-BSDL used in the context of the RVC framework. The
allowed combinations of the elements, data types and attributes are reported in this Subclause. It defines the
subset RVC-BSDL.

C.4.2 Conventions

C.4.2.1 | To define the syntax of the elements

e The attributes or children elements, which are shown in italic, are optional.

e The (a| b | c)construction means that one can choose only one element among a, b.onc.

. he {a,b,c} construction means that one can build a list of several elements amoéng a, b or c.

C.4.2.2 | To define the syntax of the expressions

We use @ form of BNF to describe the syntax rules. Literal elements are putdin quotes (in the case of symbo
and delimiters), or set in boldface (in the case of keywords). An optional 6ccurrence of a sequence of symbo
A is writlen as [A], while any numbers of consecutive occurrences f(including none) are written as {A}. Th
alternatiye occurrence of either A or Bis expressed as A|B.

O v v

We often] use plural forms of non-terminal symbols without introducing them explicitly. These are supposed t
stand fof a comma-separated sequence of at least an instance of the non-terminal. E.g. if A is the norn
terminal,] we might use As in some production, and* we implicitly assume the following definition:
As > A['A}

O

In the examples reported here, the usual interpretation of expression literals and mathematical operators
assumed, even though strictly speaking thesé.are not part of the language and depend on the environment.
specific implementation of RVC-CAL may hot 'have these operators, or interpret them on the other hand in g
different manner.

2z n

C.4.3 Syntax for elements andattributes

This Subclause describes thé-syntax of the element and its associated attributes.

C.4.3.1 | xsd:element

This element is used to define an element of syntax.

<xsd:¢lement

name—'gtringt

type = "(bsl:bl - bsl:b32 | rvc:ext | bsl:align8 | bsl:alignl6 | bsl:align32
| user-defined type)"

bsO:variable = " (true | false)"

bs2:if = "Expression"

bs2:ifNext = "Expression" bs2:nOccurs = "Expression"fixed =
"hexadecimalValue"

rvc:port = "portName"

>
Children: xsd:annotation
</xsd:element>

20 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

Remarks:

2011(E)

e The attribute rvc:port specifies the name of the output port to which the FU is connected. For

more information about the communication between the parser and the FU, see E.1.2.
e The rvc:port attribute is compulsory when dealing with an element of the type rvc:ext.

e The user-defined type must be defined using a xsd:simpleType element.

G43.Z xsd:group

he xsd:group element is used to define a set of elements of syntax. This element allows having.a hig
itstream description. There are two ways of using the xsd:group element: the definition of.the grou
all.

o -

Q

o Definition of the group:

rarchical
p and its

<xsd:group
name = "string"
>
Children: xsd:sequence
</xsd:group>

e Call of the group:

<xsd:group
ref = "string"
bs2:if = "Expression"
bs2:ifNext = "Expression"
bs2:nOccurs = "Expression"
>
Children: none
</xsd:group>

a BSDL schema, there are several ways of accessing different levels of hierarchy in the bitstream.

RVC-BSDL, only the xsd: group element shall be used to express different levels of hierarchy
itstream. The example below shows how to use the xsd: group element. In the bitstream, when th
neets this element:

o> 0O = —=

However
into the
e parser

<xsd:group €&f="GroupOfVideoObjectPlane"/>

Tlhe parsef. refers to the definition of the group, which is:

<xSd:group name="GroupOfVideoObjectPlane">

<xsd:sequence>

<xsd:element name="group of vop start code" type="bsl:b32"/>
<xsd:element name="time code" type="bsl:bl8"/>
<xsd:element name="closed gov" type="bsl:bl"/>
<xsd:element name="broken link" type="bsl:bl"/>
<xsd:element name="next start code" type="bsl:align8"/>
<xsd:group ref="user data" bs2:ifNext="1B2"/>
</xsd:sequence>
</xsd:group>

The above example shows a way to express a hierarchy in the bitstream. The xsd:group element can be

used hierarchically.

© ISO/IEC 2011 — All rights reserved

21

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

C.4.3.3 xsd:sequence

According to the parent element in which this element is called, there are several possibilities:

e If the top parent element is a xsd:group element (in the case of the definition of the xsd:group
element):

<xsd:sequence>
Children: {sequence, group, element}
</XSd Ssecence

e If the top parent element is an xsd:sequence element, the xsd:sequence element iscused o
gather a list of consecutive elements of syntax which have conditions in common.

<xsd:g$equence

bs2lif = "Expression"
bs2|:ifNext = "Expression"
bs2[inOccurs = "Expression"

>
Childfen: {sequence, group, element}
</xsd]sequence>

O

Remarkj one can use a single or several attributes on the same xs@3ysequence element but defining n
attribute s meaningless.

Example: the elements requested upstream message type and newpred segment type exists only
if the varjable newpred enable equals to “1”.

<xsd:gequence bs2:if="S$myns:newpred enab¥e = 1">
<#sd:element name="requested upstream message type" type="bsl:b2"/>
<tsd:element name="newpred segmeht type" type="bsl:bl"/>
</xsd{sequence>

C.4.3.4 | xsd:choice

This element is used to make a choice between two or several elements of syntax.

<xsd:¢hoice>
Childfen: {xsd:group, xsd:element}
</xsd{choice>

>

Remark] the xsd»group and xsd:element elements must have a bs2:if or bs2:ifNext attribute i
order to pbe able-to decide which element must be chosen. The condition on each element must be defing]
such as pnly one choice must be possible, like in the example below:

[N

Example:

<xsd:choice>
<xsd:element name="next sc" type="bsl:align8" bs2:if="$myns:vop coded = 0"/>
<xsd:group ref="VOPData" bs2:if="Smyns:vop coded != 0"/>

</xsd:choice>

22 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

C.4.3.5 bs2:variable

It is common to keep in a temporary memory some elements of the bitstream syntax, according to which other
elements of syntax are decoded. It is also possible to define “local” variables to keep track of some
information while parsing the bitstream, This can be done using the bs2:variable element and the
bs0:variable attribute.

<bs2:variable
name = "string"

1 T 1]

(e AP T COOTOIT

>
Children: none
</bs2:variable>

m

xamples: The bs2:variable element defines a new variable, independent from\the element of syntax
being decoded. The bs2:variable element applies only on an xsd:element element. When a variable is
et using this attribute, one must follow the following syntax for reading the variable:smyvariable.

(7))

<xsd:element name="mcbpc" type ="rvc:ext"
rvc:port="Algo VLDtableB7 MPEG4part2">
<xsd:annotation> <xsd:appinfo>
<bs2x:variable name = "mb type" value = "Bitand(./text(),7)"/>
</xsd:appinfo> </xsd:annotation>
</xsd:element>

<xsd:group ref="motion vector" bs2:nOccunrssf4" bs2:if="Smb type=2"/>

G.4.3.6 xsd:simpleType
Tlhis element is used to define a new type of xsd:element element. The cases in which a new type must be
defined are when:

e The type of the current elementis conditioned by a variable assigned during the parsing prpcess. In
this case, the xsd:union €hildren element is used.

e The length in bits of the\eurrent element is defined by a variable assigned during the parsing|process.
In this case, the children elements xsd:restriction and (xsd:length or xsd:bitlenjgth) are
used.

e Totest the value™... with an xsd: startcode element, see C.4.3.12.

<xsd:simpleType

name= "string"

>

Childrén: (xsd:union | xsd:restriction)
</%sd:simpleType>

Remark: to see different examples of definition of a new type, refer to C.4.3.10, C.4.3.11, C.4.3.12 and
C.4.3.14.

C.4.3.7 xsd:annotation

BSDL-2 introduces a set of new facets to specify constraints on BSDL and XML Schema data types. Since
XML Schema does not allow a user to add his own facets, they are declared as BSDL-2 components added to
the xsd:restriction component via the annotation mechanism, i.e. the
xsd:annotation/xsd:appinfo combination. Thus, the BSDL-2 elements (Table C.4) must be placed as
the child of an xsd:annotation/xsd:appinfo combination.

© ISO/IEC 2011 — All rights reserved 23

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

<xsd:annotation>
Children: xsd:appinfo

</xsd

rannotation>

C.4.3.8

xsd:appinfo

According to the parent element in which this element is called, there are several possibilities:

Llusing one of the following elements: bs2:bitLength, bs2:ifUnion, bs2:startcode,NQr
bs2:1length.

If the top parent element is an xsd:simpleType element, one can choose to define this new type by

</xsd

<xsd:3ppinfo>
Chilldren: (bs2:bitLength | bs2:ifUnion | bs2:startcode | bs2:length)

appinfo>

[©]

If the top parent element is an xsd:element element of any type except'zirc:ext, the uniqu
lement which can be used is the bs2:variable element, used to save variables.

</xsd

<xsd:gppinfo>
Chilldren: bs2:variable

appinfo>

3 %the top parent element is an xsd:element element,of\type rvc:ext, the bsl:script element
I

ust appear to define which algorithm is used to decode‘the segment of bitstream. It can be possible
so to save a variable using the bs2 : variable element:

</xsd

<xsd:gppinfo>
Chilldren: {bsl:script, bs2:variable}

appinfo>

C.4.3.9

This elerment is used to specify datacaceuracy.

xsd:restriction

<xsd:

>
Child
</xsd

basp = " (xsd:unsighedshort | bsl:bl - bsl:b32 | bsl:byteRange)"

festriction

fen: xsd:ammotation
restrictien>

Remark] the. bs?:byteRange data type is only allowed when it is used with the bs2:startcode element.

C.4.3.10bs2 bittength

This element specifies the size in bits of the current element, which has been defined as a new type using the

xsd:si

mpleType construct. The size in bits of the current element can be stored in a variable, which has

been assigned during the parsing process.

<bs2:bitLength

value = "Expression"
>
Children: none
</bs2:bitLength>
24 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Example: the VOPTimeIncrementType type instantiates elements of size defined in the variable
vopTimeIncrementBits.

<xsd:simpleType name="VOPTimeIncrementType">
<xsd:restriction base="xsd:unsignedShort">
<xsd:annotation><xsd:appinfo>
<bs2:bitLength value="S$vopTimeIncrementBits"/>
</xsd:appinfo></xsd:annotation>
</xsd:restriction>

sd-cimolaoTiog
2y Z I

G.4.3.11 bs2:length

Tlhis element specifies the size in byte of the current element which has been defined as'a hew type using the
¥sd:simpleType construct.

<bs2:length

value = "Integer"
>

Children: none
</bs2:length>

Bxample: the StartCodeType type instantiates elements of size equals to 4 bytes.

<xsd:simpleType name="StartCodeType">
<xsd:restriction base="xsd:hexBinary}>
<xsd:length value="4"/>
</xsd:restriction>
</xsd:simpleType>

(¢.4.3.12 bs2:startCode

This element is used to mark the begihning of the bitstream.

<bs2:startCode

Value = "HexadeciimalValue">
Children: none
</bs2:startCode

Remark: the kg1 byteRange data type is only allowed when it is used with the bs2: startCode element.

Bxample:the type rbspType instantiates

<&ksd:simpleType name="rbspType">
XSATTesStriction base="bsl:byteRange
<xsd:annotation> <xsd:appinfo>
<bs2:startCode value="00000001"/>
</xsd:appinfo> </xsd:annotation>
</xsd:restriction>
</xsd:simpleType>

C.4.3.13 xsd:union

This element allows users to choose the type of an element among a list of member types according to some
conditions defined in the bs2:ifUnion element.

© ISO/IEC 2011 — All rights reserved 25

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

<xsd:union

memberTypes = {bsl:bl - bsl:b32}
>
Children: xsd:annotation
</xsd:union>

Remark: see C.4.3.14 for an example of application.

C.4.3.14 bs2:ifUnion

This elemment specifies the conditions under which the corresponding type is chosen. The number {
bs2:ifUnion elements that must appear is equal to the number of member types defined in the“above

xsd:uniop element.

=

<bs2:1fUnion

value+ "Expression"
>
Childfen: none
</bs2{ifUnion>

Examplg: the type SpriteType instantiates elements of type bsl:bl or bsl:b2. The type bsl:bl
chosen |f the condition “Svolversion = 1" is true. The type bslvb2 is chosen if the conditig

“SvolvVelrsion = 1”is false.

- O

<xsd:$impleType name="SpriteType">
<xsd:union memberTypes="bsl:bl bsl:b2">
<gsd:annotation><xsd:appinfo>
<bs2:1fUnion value="$volVersion = 1"JX>
<bs2:ifUnion value="$volVersion !=C1"/>
<[xsd:appinfo></xsd:annotation>
</xg$d:union>
</xsd{simpleType>

C.4.4 Syntax of the expressions

This Subclause describes the syntax of the expressions used in the attributes.

Expressjon — PrimaryExpression {Operator PrimaryExpression}

Primaryxpression — max('Expression’,' Expression')'
{'min('Expression’,' Expression')'

| 'numbits('Expression')’

| 'bitand('Expression','Expression')’
| 'bitor('Expression’,'Expression')’

i it |ut('EApl essiot |')'
| 'rshift('"Expression')’

| 'Ishift('Expression'")’

| ".text()’

| ExpressionLiteral

| ifExpression

26

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

ExpressionLiteral — '| IntegerLiteral |true | false

ifExpression — if Expression then Expression else Expression end
Operator_)(l:l|I<l|I>I|I>:l|l<:l|l!:lllandl|l0rl||n0t||l*l||/l|l+l|l_lllAllldivlllmodl)
C.4.5 Syntax of the data types

This Subclause describes the syntax of the data types.

2011(E)

|’1fngnrl iteral 'Infngnrnigif {Infngnrnigif}

IntegerDigit — '0'|'1"|'2"|'3"|'4"|'5'|'6"|'7"|'8"| '’

hlexadecimalValue — HexadecimalDigit {HexadecimalDigit}

HexadecimalDigit — '0"|'1"|'2"|'3"|'4"|'5'|'6"|'7"|'8"|'9"|'A"|'B'|'C'|'D'|'E'| 'F")

FPortname — NormativeFUName

Tlhe NormativeFUName is the name of the Functional Unit. The naming convention rule is des
5O/IEC 23002-4.

C.5 Connections between the syntax parser and the FU network

Tlhe Syntax Parser and the network of FU must be connected together. Thus, a communication
between the syntax parser and Functional Unit is necessary.<The following code shows an example
illustrating the connection of the Syntax parser to an FU.

cribed in

scheme
of BSD,

<xsd:element name="horizontal mv_data"“bsO:variable=“true"“ type="rvc:ext"
rvc:port="Algo mv_reconstruction-rmyvin"/>

Hhe element name “horizontal mv data’ is decoded by an FU: it is indicated by the data type 4
he FU which will decode this element of syntax is specified in the rvc:port attribute. The pg
destination FU to which this element)of syntax will be sent is specified also in the rvc:port attrilj
name in the rvc:port attribute must correspond to the normative name of the FU to which it is con
grder to know how to make the'connections between the syntax parser and the FU network.

Whenever a connection-to.a Functional Unit is establish, the induced ports of the parser are:
e Status feedback port: an input port which name is value of the rvc:port attribute follows
FU each time the parser sends data.

o _Value feedback port: an input port which name is value of the rvc:port attribute follows
suffix “ data” (e.g. algo mv_data). This port is created only when the attribute bs0: varia

vc:ext.
rt of the
ute. The
hected in

d by the

suffix “~€")(e.g. algo_mv_f£). This port is always created. It is used to acknowledge the status of the

d by the
ble is set

to “true” in the current element. It is used to return the decoded value to the parser, which

can use

this value to continue its parsing process.

e General output port: an output port which name is value of the rvc:port attribute (e.g. algo_mv).

This port is always created. It is used to send the data to the FU.

In order to know if the parser can go to the next element of syntax or not, a communication protocol
the syntax parser and the FU has been defined:

1) The parser sends data on the port algo mv

2) The FU receives the data and warns the parser (though the algo mv_f port)

© ISO/IEC 2011 — All rights reserved

between

27

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

i) if it needs an other data (value of the data to return to the parser = false), goto 1

i) orifit has finished (value of the data to return to the parser = true), goto 3
3) The parser can continue parsing the other elements of syntax.

The example of VLD decoding process using such communication scheme is shown in Annex E.

28 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Annex D
(normative)

Specification of RVC-CAL language

.1 Generalities

he CAL language is a dataflow-oriented language that has been developed as a subproject)of the| Ptolemy
roject at the University of California at Berkeley. The final CAL language specification has,been released in
ecember 2003. The specification provided in this annex is the sub-set of CAL language called RVC-CAL
sed in the MPEG RVC framework. The sub-set has been defined so as to keep all data types and ¢perators
that are necessary in the RVC framework scope, excluding data types and operators that cannot pe easily
nverted to software or hardware implementations.

VC-CAL is a textual language that is used to define the functionality of dataflow components origindlly called
ctors” that in the MPEG RVC framework are the FUs composing the RVC_video tool library. FUs can then be
nfigured into decoders using an XML based specification language {the RVC FU language called FNL).
herefore, to build the RVC framework two normative elements are necessary:

e The RVC-CAL used to specify the behavior of the FUs that constitute the RVC video tool librgry
e The FNL used to specify RVC decoder configurations using FUs from the RVC video tool library

he XML based specification of “network of Actors” or better in RVC “Configuration of FUs” can be egited and
mulated by tools available in the RVC reference software.

I{ is worth remarking that what in RVC-CAL is;called an “actor” exactly corresponds to what in MPEG RVC is
lled an FU. In fact, an actor is a modular component that encapsulates its own state, no other actor has
ccess to it, and nothing other actors can.do to modify the state of an actor. The only interaction |between
ctors is through FIFO channels connegting “output ports” to “input ports,” which are used to send angd receive
okens.” This strong encapsulation-leads to loosely coupled systems with very manageable and coptrollable
ctor interfaces. The modularity "of an actor assembly fosters concurrent development, it facilitates
aintainability and understandability and makes systems constructed this way more robust and pasier to
odify. All these features corréspond to what is required by the MPEG RVC framework.

“token” is a unit of data’ (of potentially arbitrary size and complexity) that is sent and received afomically.
ach actor input is\dassociated with a queue of tokens waiting in front of it. When a token is $ent it is
nceptually placed’in the queue of each input connected to the output the token originates from. Eyentually,
the receiving EYs.wwill read it, and thereby consume it, i.e. remove it from the input queue.

very FU.executes in a (possibly unbounded, i.e. non-terminating) sequence of steps, also called “trapsitions.”
uring.each such step, an FU may do any of the following three things:

e * Read and consume input tokens.

o Modify its internal state.

e Produce output tokens.

At any point in time, an FU is either disabled, i.e. it is not able to make a step, or it can perform a number of
different steps.

The specification of an FU in RVC-CAL is structured into “actions.” Each action defines a kind of transition the
FU can perform under some conditions. These conditions may include:

e the availability of input tokens,

e the value of input tokens,

© ISO/IEC 2011 — All rights reserved 29

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

e the (internal) state of the FU,

e the priority of that action (see below).
An FU may contain any number of actions. Its execution follows a simple cycle:
1) Determine, for each action, whether it is enabled, by testing all the conditions specified in that action.

2) If one or more actions are enabled, pick one of them to be fired next.

3) [EXecute that action, I.e. make the transition defined by It.
4) |Go to Step 1.

Steps 1 jand 2 are called “action selection.” For many complex FUs, such as the parser of anN\MPEG-4 SP
decoder | defining the logic of how an action is chosen is the core of the implementation of the ‘processing i
FU form] RVC-CAL provides a number of language constructs for structuring the description-of how action
are to bd selected for firing. These include:

n 35

o ction guards: conditions on the values of input tokens and/or the values of/EU state variables that
eed to be true for an action to be enabled;

[¢]

o nite state machine: the action selection process can be governed by\a-finite state machine, with th
xecution of an action causing a transition from one state to the next;

. ction priorities: actions may be related to each other by a partiakpriority order, such that an action wjl
only execute if no higher-priority action can execute.

In this why, the process of action selection is specified in a declarative manner in each RVC FU. As a resulf,
the FU specification becomes more compact and easier to understand.

Once sedlected, an action is executed. The code describing an action itself is for the most part ordinaf
imperative code, as can be found in languages such~as Pascal, Ada, or C — there are loops, branches,
assignments etc. Only the token input/output of an action is specified separately and in a declarative manner.

<

In other yords, the RVC-CAL language providés naturally the appropriate constructs that have been identifie
by RVC frequirement work as essential elements for building the MPEG RVC framework with the capacity ¢
“encapsylating” coding tools functionalities. in a very natural manner without needing any particular restrictio
or specif|c coding style on the usage.of.the language construct.

on

>

D.2 Infroduction

This Annex describes RVC-CAL, a profile of the CAL actor language to be used by the MPEG Reconfigurabl
Video Cqding Frameweork.

[©]

Actors. [The concept of actor as an entity that is composed with other actors to form a concurrent system has
a rich and varied history — some important mile-stones [6], [9], [3], [4], [5]. A formal description of the notion
of actor yinderlying this specification can be found in D.1, which is based on the work in [10] and [7]. Intuitively
an actor T ipti i iCpi
sequences of tokens as a result. It has input port(s) for receiving its input tokens, and it produces its output
tokens on its output port(s)?.

The computation performed by an actor proceeds as a sequence of atomic steps called rings. Each ring
happens in some actor state, consumes a (possibly empty) prefix of each input token sequence, yields a new
actor state, and produces a finite token sequence on each output port.

1 The notion of actor and firing is based on the one presented in [10], extended by a notion of state in [7].

30 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Several actors are usually composed into a network, a graph-like structure (often referred to as a model) in
which output ports of actors are connected to input ports of the same or other actors, indicating that tokens
produced at those output ports are to be sent to the corresponding input ports. Such actor networks are of
course essential to the construction of complex systems, but we will not discuss this subject here, except for
the following observations:

e A connection between an output port and an input port can mean different things. It usually indicates
that tokens produced by the former are sent to the latter, but there are a variety of ways in which this
can happen: token sent to an input port may be queued in FIFO fashion, or new tokens may
‘overwrite’ older ones, or any other conceivable policy. It is important to stress that actors themselves
are oblivious to these policies: from an actor point of view, its input ports serve as abstrdctions of
(prefixes of) input sequences of tokens, while its output ports are the destinations of output
sequences.

e Furthermore, the connection structure between the ports of actors does not explicitly specify the order
in which actors are read. This order (which may be partial, i.e. actors may-fire simultaheously),
whether it is constructed at runtime or whether it can be computed from the ‘actor network, and if and
how it relates to the exchange of tokens among the actors — all thesé issues are part of the
interpretation of the actor network.

he interpretation of a network of actors determines its semantics and it determines the resyit of the
ecution, as well as how this result is computed, by regulating the flow-of data as well as the flow ¢f control
mong the actors in the network. There are many possible ways of¢interpreting a network of actors,[and any
ecific interpretation is called a model of computation, cf. [11], [12]. Actor composition inside the acter model,
that CAL is based on, has been studied in [8].

s far as the design of a language for writing actors is concerned, the above definition of an actor arjd its use
im the context of a network of actors suggests that the language should allow making some key asp€cts of an
gctor definition explicit. These are, among others:

e The port signature of an actor (its input\ports and output port(s), as well as the kind of tokens [the actor
expects to receive from or be able to send to).

e The code executed during acring, including possibly alternatives whose choice depend$ on the
presence of tokens (and possibly their values) and/or the current state of the actor.

e The production and_consumption of tokens during a ring, which again may be differenft for the
alternative kinds of-rings.

o The modification.of state depending on the previous state and any input tokens during a ring.

D.3 Introductory remarks

D.3.1 Antroduction

Tlhroughout this part, we will present fragments of RVC-CAL syntax along with (informal) descriptions of what
these are supposed to mean. In order to avoid ambiguity, we will now introduce a few conventions as well as
the fundamental syntactic elements (lexical tokens) of the RVC-CAL language.

D.3.2 Lexical tokens
RVC-CAL has the following kinds of lexical tokens:

Keywords. Keywords are special strings that are part of the language syntax and are consequently not
available as identifiers. See D.11.3 for a list of keywords in RVC-CAL.

© ISO/IEC 2011 — All rights reserved 31

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

Identifiers. Identifiers are any sequence of alphabetic characters of either one of the digits, the underscore
character and the dollar sign that is not a keyword. Sequences of characters that are not legal identifiers may
be turned into identifiers by delimiting them with backslash characters.

Identifiers containing the $-sign are reserved identifiers. They are intended to be used by tools that generate
RVC-CAL program code and need to produce unique names which do not conflict with names chosen by
users of the language Consequently, users are discouraged from introducing identifiers that contain the $-
sign.

Operators. See D.11.2 for a complete list of RVC-CAL operators.

DeIimiteLs. These are used to indicate the beginning or end of syntactical elements in RVC-CAL/\The
following| characters are used as delimiters: (,), {,}, [.], : -

Comments. Comments are Java-style, i.e. single-line comments starting with “//” and multi-line” comments
delimited by “/*” and “*/".

Numerid literals. RVC-CAL provides two kinds of numeric literals: those representing an integral number and
those representing a decimal fraction. Their syntax is as followsZ2:

Integer — DecimalLiteral | HexadecimallLiteral | OctalLiteral
Real — DecimalDigit { DecimalDigit } "' {DecimalDigit} [Exponent]
| '." DecimalDigit { DecimalDigit } [Exponent]
| DecimalDigit { DecimalDigit } Exponent
[DecimalLiteral - NonZeroDecimalDigit { DecimalDigit }
HexadecimalLiteral — '0' ('X' | 'X') HexadecimalDigit { HexadecimalDigit }
OctalLiteral — '0' { OctalDigit }
Exponent — ('e'|'E")['+'|'-'] DecimalDigit{:DecimalDigit }
NonZerdDecimalDigit — "1"'|'2"'|'3'|'4"|'5"'|'6"| 7' |\8"] '’
DecimalDigit — '0' | NonZeroDecimalDigit
OctalDigit — '0"["1"['2"|'3"|'4"[BF['6"|'7"| '8
HexadecimalDigit — DecimalDigit
['a"|'b'|'c"|'d'|'e' | 'f
['A"|'B"|'C{|'D"|'E"| 'F'

D.3.3 Typographic conventions

In syntay rules, keywords are shown in boldface, while all other literal symbols are enclosed in single quotes

In examples, RVC-EAL code is represented monospaced. Semantic entities, such as types, are set italic.

D.3.4 Conventions

We use a form of Backus-Naur form (BNF) to describe the syntax rules. Literal elements are put in quotes (in
the case of symbols and delimiters), or set in boldface (in the case of keywords). An optional occurrence of a
sequence of symbols A is written as [A], while any numbers of consecutive occurrences (including none) are
written as {A}. The alternative occurrence of either A or Bis expressed as A|B.

We often use plural forms of non-terminal symbols without introducing them explicitly. These are supposed to
stand for a comma-separated sequence of at least on instance of the non-terminal. E.g. if A is the non-

2 |n contrast to all other grammar rules in this report, the following rules do not allow whitespaces between tokens.

32 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

terminal, we might use As in some production, and we implicity assume the following definition:
As >A{'A}.

In the examples reported here, the usual interpretation of expression literals and mathematical operators is
assumed, even though strictly speaking these are not part of the language and depend on the environment. A
specific implementation of RVC-CAL may not have these operators, or interpret them or the literals in a
different manner.

D.3.5 Notational idioms

ike most programming languages, RVC-CAL involves a fair number of syntactical constructs that neLed to be
I¢arned and understood by its users in order to use the language productively. The effort involved in gaining
familiarity with the language can be a considerable impediment to its adoption, so it makes ‘sehse tp employ
eneral guidelines for designing the syntax of constructs, which allow users to make guesses about the syntax
iff they are unsure about the details of a specific language construction. These guidelines, which define the
yle of a language, are called notational idioms.

he following is a list of notational idioms guiding the design of RVC-CAL'’s language syntax.
eyword constructs. Many constructs in RVC-CAL are delimited by keywords rather than by more |[symbolic

elimiters — such constructs are called keyword constructs. Other constructs are delimited by symbals, or are
least partially lacking delimiters (such as assignments, which begin:with a variable name, see D.8.3).

(7))

tatement head/body separator. Many statements have a sifilar structure as the one for expressjons. For
statements, the keywords do or begin are used as a separator:

while n > 0 do k := f(k); n := n - 1; end
procedure p (int x) begin

X :=x + 1;
end

.4 Structure of actor descriptions

M

ach actor description defines a named kind of actor.
Actors are the largest lexical units of specification and translation. The basic structure of an actor is this:

Actor — actor ID '(' ActerPars ') IOSig "'
{VarDecl}

{ Action " nitializationAction }

[ActionSchedule]
{RriorityBlock }

end

ActorPar — Type ID ['=' Expression]
IO0Sig — [PortDecls] '==>'[PortDecls]
PortDecl —» Type ID

The header of an actor expressed in RVC-CAL contains actor parameters, and its port signature. This is
followed by the body of the actor, containing a sequence of state variable declarations (D.6.2), actions (D.9),
initialization actions (D.9.6), priority blocks (D.10.4), and at most one action schedule (D.10.3).

By contrast, actor parameters are values, i.e. concrete objects of a certain type (although, of course, this type
may be determined by a type parameter). They are bound to identifiers, which are visible throughout the actor
definition. Conceptually, these are non-assignable and immutable, i.e. they may not be assigned to by an
actor.

© ISO/IEC 2011 — All rights reserved 33

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC

23001-4:2011(E)

D.5 Data types

D.5.1 Introduction

RVC-CAL is fully typed, i.e. it allows and forces programmers to give each newly introduced identifier a type

(see D.6.

2 for more details on declaring variables).

D.5.2 Variables and types

the sam

for the variable or parameter in the entire scope of the corresponding declaration. Variable_types

Each va}iable or parameter in RVC-CAL may be declared with a variable type. If it is, then this type remains

may be
When fo

elated to each other by a subtype relation, <, which is a partial order on the set of all variabte-types.
two variable types t, t' we have t <t', then we say that t is a subtype of t', and t' is d'superty

of t. Furthermore, t{ may be used anywhere t' can be used, i.e. variables of subtypes are substitutable fqr
those of pupertypes.

It is impprtant that each object has precisely one object type. As a consequence, abject types induce 4

exhausti
t”.

[0

e partition on the objects, i.e. for any object type t we can uniquely deterfaine the “objects of typ,

variablg

IMPLEMENTATION NOTE.

Stating [that each object has an object type does not imply that this type can be determined at run time, i.e.
that thefe is something like run-time type information associated withieach object. In many cases, particularly
when efficiency is critical, the type of an object is a compile-time construct whose main use is for establishing
the notibn of assignability, i.e. for checking whether the result of“an expression may legally be stored in a

. In these scenarios, type information is removed from-thé runtime representation of data objects.

For eacH
They ar¢g
for any

type ¢, .

The assi
subtypin

t, >t',

In other

D.5.3 Type formats

Types arn

implementation context we assume that thereZis' a set T, of variable types and T, of object types.
related to each other by an assignability relation, <—c T, xT, , which has the following interpretation:
ariable type f, and object type t,, t,.«f, iff an object of type t, is a legal value for a variable ¢f

=

pnability relation may or may .not be related to subtyping, but at a minimum it must be compatible wit
 in the following sense. Fof any two variable types t, and t',, and any object type {,:

', «t,=> b, <t

vords, if an object type is assignable to a variable type, it is also assignable to any of its supertypes.

e specified as follows:

Type —»ID

| ID'(' [TypeAttr {',' TypeAttr}]")

TypeAttr - ID "' Type

| ID '=" Expression

A type that is just an identifier is the name of some non-parametric type or of a parametric type whose
parameters take on default values. Examples may be [String], [int]

34

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

In the next form the ID refers to a type constructor that has named type attributes which may be bound to
either types or values. Type attributes that are bound to types are assigned using the “:” syntax, values are
bound using the “=" syntax.

D.5.4 Predefined types

Required types are the types of objects created as the result of special language constructions, usually
expressions. The following are built-in types in RVC-CAL.:

—e—joooH—the-truth-vatues-true-and-faise-

e |[List(type:T, size=N)|— finite lists of length of N elements with type T.

e |int (size=N)|— signed integers with bit width N.

e [uint (size=N)|— unsigned integers with bit width N.

. — strings of characters.

. — floating point numbers.

.6 Variables

D.6.1 Introduction

<

ariables are placeholders for values during the exeeution of an actor. At any given time, they may stand for a
pecific value, and they are said to be bound teithe value that they stand for. The association between a
viariable and its value is called a binding.

(7))

his Subclause first explains how variables are declared inside RVC-CAL source code. It then proceeds to
iscuss the scoping rules of the language, which govern the visibility of variables and also constrain the kinds
f declarations that are legal in RVC-CAL.

o —

(@]

D.6.2 Variable declarations

m

ach variable (with the~exception of predefined variables) needs to be explicitly introduced before |t can be
sed — it needs to beydeclared. A declaration determines the kind of binding associated with the variable it
declares, and potentially also it's (variable) type. Following are the following kinds of variable declaratjons:

C

e explicittvariable declarations (D.6.2),
o acter parameters (D.4),

o\ 'input patterns (D.9.2).

The properties of a variable introduced by an explicit variable declaration depend on the form of that
declaration.

D.6.2.1 Explicit variable declarations

Syntactically, an explicit variable declaration3 looks as follows:

3 These declarations are called “explicit” to distinguish them from more “implicit” variable declarations that occur, e.g. in
generators or input patterns.

© ISO/IEC 2011 — All rights reserved 35

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

VarDecl — [Type] ID [('='| ":=") Expression]'’;'
| FunDecl | ProcDecl

An explicit variable declaration can take one of the following two forms, where [T| is a type, [v| an identifier that
is the variable name, and [E| an expression of type :

e [T v := E— declares an assignable variable of type [T] with the value of [as its initial value.

J E| — declares a non-assignable variable of type [T with the value of [F| as its value.
Variable$ declared in the first way are called stateful variables because they may be changed by \the
execution of a statement. Variables declared in the last way are referred to as stateless variables, qr
constants.

Explicit viariable declarations may occur in the following places:

o lctor state variables (with ending punctuation ;")

e var block of a surrounding lexical context (with ending punctuation %*er no ending punctuation,
gee LocalVarDecl in D.6.3)

D.6.3 Function and procedure declaration

The gengral format for declaring functions and procedures is as follows:

FormalPars — Type ID {',' Type ID}
FuncDe¢l — function ID '(' [FormalPars] ')' '-- > ' Type [var.VarDecls] ":' Expression end
ProcDedl — procedure ID '(' [FormalPars] ')’ [var VarDgecls] begin { Statement } end

LocalVarDecls should follow a special rule: 1) if a<LecalVarDecl is the last one or the only one, there shall b
no any gnding punctuation; 2) if a LocalVarDeclis not the last one, there shall be a comma “,” as the endin
punctuatjon (or separator between it and the.next LocalVarDecl). For instance, a function declaration woul

look like this:

[oN(olN¢)]

| functiogn timestwo (int x)--> intf :\2 * x end |

D.6.4 Name scoping

The scope of a name, whether that of a variable or that of a function or procedure, is the lexical construct that
introduces it — all expressions and assignments using the name inside this construct will refer to that variabl
binding qr the associated function or procedure, unless they occur inside some other construct that introduce
the samg name_again, in which case the inner name shadows the outer one.

» O

In particplaf,“\this includes the initialization expressions that are used to compute the initial values of the
variabled in-variable declarations. Consider e.g. the following group of variable declarations inside the sam
construct, i.e. with the same scope:

n
k
m

g,

’

~ o

!

This set of declarations (of, in this case, non-assignable variables, although this does not have a bearing on
the rules for initialization expression dependency) would lead to] being set to [6], o] to [7], and [to [42].
Initialization expressions may not depend on each other in a circular manner — e.g. the following list of
variable declarations would not be well formed:

36 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

n
k
m

1+ k,
m - 36,
k * n

More precisely, a variable may not be in its own dependency set. Intuitively, this set contains all variables that
need to be known in order to compute the initialization expression. These are usually the free variables of the
expression itself, plus any free variables used to compute them and so on — e.g. in the last example,

depended on [, because [is free in m - 36|, and since [in turn depends on [k] and [n}, and [n] on [, the

dependency set of [is which does contain [itself and is therefore an error.

.7 Expressions

.7.1 Introduction

xpressions evaluate to a value and are side-effect-free, i.e. they do not changenthe state of the
ssign or modify any other variable. Thus, the meaning of an expression can be‘described by the
aluating to.

he following is an overview of the kinds of expressions and expression syntaxes provided in RVC-CA

Expression — Expression {',' Expression }
Expression — BinaryExpression
| SimpleExpression

$ingleExpression — Operator Expression
| ListComprehension

| ifExpression

| LetExpression

| '(" Expression ")’

| IndexerExpr

| ID (" Expressions.!)'

| ID

| Expressiontiteral

—

he following Subclause-discusses the individual kinds of expressions in more detail.

D.7.2 Literals

Bxpression literals are constants of various types in the language. They look as follows:

ExpressionLiteral — IntegerLiteral | DecimalFractionLiteral
| StringLiteral

actor or
alue it is

AL.

I true I false.

The type of true and false is bool.

D.7.3 Variable references

The expression used to refer to the value bound to a variable at any given point during the execution
the name of the variable itself, i.e. an identifier.

© ISO/IEC 2011 — All rights reserved

is simply

37

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

D.7.4 Function application

An expression of the form
F(E1, ...,En)

is the application of a function to n parameters, possibly none. F is the name of a function which must be
visible at the point of this expression, and E; are expressions of types matching the types of the parameters
declared in the declaration of F.

D.7.5 Indexing

An indexing expression selects an object from a list. The general format is
IndexerExpr — ID '[' Expression]' { '[' Expressions "' }

The exptessions within the brackets are called “indices”. There must be at least one,such index. If there ar
more thgn one, the list expression must be a list of appropriate dimensionality, i.e. it mdst contain other lists a
elementg and so forth.

»n O®

D.7.6 Qperators

There afe two kinds of operators in RVC-CAL: unary prefix operatofs Jand binary infix operators. A binar
operator|is characterized by its associativity and its precedence. In RVC-CAL, all binary operators associate t
the left, [while their precedence is defined by the platform, andyhave fixed predefined values for built-i
operator$ (which are used to work on instances of built-in types). Unary operators always take precedenc
over bingry operators.

i always [(a+b) +d.

#a + bllis always|(#a) + D

[CE= R

e + b f disla + (b * c)]if * has a higherprecedence than +, which is usually the case.

Operatorls are just syntactical elements*— they represent ordinary unary or binary functions, so the only
special rliles for operators are syntactical.

D.7.7 Conditional expressions

The simple conditional.expression has the following form:

IfExpresgion — if Expression then Expression else Expression end

The first| sub. expression must be of type and the value of the entire expression is the value of the
second dqub_term if the first evaluated to true, and the value of the third sub term otherwise.

The type of the conditional expression is the most specific supertype (least upper bound) of both, the second
and the third sub expression. It is undefined (i.e. an error) if this does not exist.

D.7.8 List comprehensions

List comprehensions are expressions, which construct lists. There are two variants of list comprehensions,
those with and those without generators. We will first focus on comprehensions without generators, also called
enumerations, and then turn to the more general comprehensions with generators. The reason for this order
of presentation is that the meaning of comprehensions with generators will be defined by reducing them to
enumerations.

38 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

D.7.8.1 Enumerations: list comprehensions without generators
The most basic form of list comprehension just enumerates the elements. Its syntax is as follows:

SimpleListComprehension — ' [Expressions] T

Example. If is the number 10, then the simple set expression

2011(E)

| [n, n*n, n-5, n/2]

gvaluates to the list[[10, 100, 5, 5]|

D.7.8.2 List comprehensions with generators

Simple comprehension expressions only allow the construction of a list whose size is~Correlated with the size
gf the expression. In order to facilitate the construction of large or variable-sized ‘lists, RVC-CAL [provides
generators to be used inside an expression constructing them. The syntax looks.-as follows:
UistComprehension — ' [Expressions ["' Generators | ['|' Expression] '

Generators — Generator {',' Generator }

(Generator — for Type ID in Expression

Tlhe generators, which begin with the keyword, for, introduce new variables, and successively instantiate them
with the elements of the proper list after the keyword, in. Thelexpression computing that list may refer to the
generator variables defined to the left of the generator it belongs to.

Tlhe optional expressions following the collection expression in a generator are called filters — they must be of
type fpool], and only variable bindings for which these expressions evaluate to true are used to congtruct the
collection.

Bxample:

[[i1, 2, 3

i$ the list of the first three natural'numbers. The list

[ll2 * a : for int a in [&J2 ,3]]

contains the values.2,-4, and 6, while the list

| [a : for inw a din [1, 2, 3], a > 1]

describes\(somewhat redundantly) the set containing 2 and 3. Finally, the list

| [a=*N\b : for int a in [1, 2, 3], for int b in [4, 5, 6], b > 2 * a]

contains the elements 4, 5, 6, 10, and 12.

Writing the above as

[[a * b : for int a in [1, 2 ,3], b > 2 * a, for int b in [4, 5, 6]] |
is illegal (unless @ is a defined variable in the context of this expression, in which case it is merely very
confusing!), because the filter expression occurs before the generator that introduces [o|.

If the generator collection is a set rather than a list, the order in which elements are extracted from it will be
unspecified. This may affect the result in the case of a list comprehension.

© ISO/IEC 2011 — All rights reserved 39

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

D.8 Statements

D.8.1 Introduction

The execution of an action (as well as actor initialization) happens as the execution of a (possibly empty)
sequence of statements. The only observable effect of a statement is a change of the variable assignments in
its environment. Consequently, the meaning of a statement is defined by how the variables in its scope
change due to its execution. RVC-CAL provides the following kinds of statements:

Statement— Aceignmnan{'mf

| CallStmt

| BlockStmt

| IfStmt

| WhileStmt

| ForeachStmt

D.8.2 Assignment

Assigning a new value to a variable is the fundamental form of changing the state'ofl/an actor. The syntax is as
follows:

AssignmentStmt — ID [Index] ":=' Expression ";'
Index —| T' [Expression] {'[' Expression ']'}

[

An assighment without an index or a field reference is a simple assignment while one with a field reference
a field agsignment, and one with an index is called an indexed assignment.

D.8.2.1 | Simple assignment

[

In a simple assignment, the left-hand side is a variable name. A variable by that name must be visible in th
scope, apd it must be assignable.

The expfession on the right-hand side must evaluate to an object of a value compatible with the variable (i.¢.
its type must be assignable to the declared type of the variable, if any — see D.5.2). The effect of the
assignment is of course that the varjable value is changed to the value of the expression. The original value is
thereby @verwritten.

D.8.2.2 | Assignment with indices

If a variable is of a type that is indexed, and if it is mutable, assignments may also selectively assign to one ¢f
its indexgd locations;.rather than only to the variable itself.

=

In RVC-CAL, an:ihdexed location inside an object is specified by a sequence of objects called indices, whid
are writtgn after the identifier representing the variable, and which is enclosed in square brackets.

D.8.3 Procedure call
Calling a procedure is written as follows:

CallStmt —» ProcedureSymbol (' [Expressions]')" "'
ProcedureSymbol — ID

The procedure symbol must be defined in the current context, and the number and types of the argument
expressions must match the procedure definition. The result of this statement is the execution of the
procedure, with its formal parameters bound position-wise to the corresponding arguments.

40 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

D.8.4 Statement blocks (begin ... end)

Statement blocks are grouping a sequence of statements within their own nested scope, permi
declaration of local variables valid in that scope only.

BlockStmt — begin [var LocalVarDecls do] { Statement } end

The form

tting the

b . 2 2 2 PR 2
| [oSTTIT o s as T Tt TTer

— Q.

he variable bindings are only visible to these statements.

D.8.5 If-statement

—

he if-statement is the simplest control-flow construct

[fStmt — if Expression then { Statement } [else { Statement }] end

D.8.6 While-statement

l{eration constructs are used to repeatedly execute a, sequence of statements. A while-construc
ecution of the statements as long as a condition specified by a expression is true.

hileStmt — while Expression [var VarDecls J’do [Statements] end
I{ is an error for the while-statement to not terminate.

[).8.7 Foreach-statement

efines the variables in <decls> and executes the statements in <stmts> with the resulting variable pindings.

As is to be expected, the statements following the then are executed.only if the expression evaluate$ to true,
dtherwise the statements following the else are executed, if present.(The expression must be of type [oool.

repeats

he foreach-construct allows-iterating over collections and successively binds variables to the elements of the

pression with the execution-of a sequence of statements for each such binding.

oreachStmt —» ForéachGenerator {',' ForeachGenerator }
[var VarDecls.}do [Statements] end
oreachGenerator — foreach Type ID in Expression

he basicVstructure and execution mechanics of the foreach-statement is not unlike thaf of the

gomprehensions with generators discussed in D.7.8.2. However, where in the case of comprehgnsions a
foreach

Example. The following code fragment

s := 0;

foreach int a in [1, 2], foreach int b in [1, 2] do

8§ 8= & arlop

end
results in [s| containing the number 9.
© ISO/IEC 2011 — All rights reserved 41

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

D.9 Actions

D.9.1 Introduction

An action in RVC-CAL represents a (often large or even infinite) number of transition of the actor transition
system described in D.10. A RVC-CAL actor description can contain any number of actions, including none.
The definition of an action includes the following information:

¢ the state change of the actor,

In any g

represen
The synt

Action -
ActionTag— ID{"."ID}

ActionH
[gua

Actions @re optionally preceded by action tags which come<in*the form of qualified identifiers (i.e. sequence
of identif
for more
action pr|

The hea

its input tokens,

additional firing conditions.

s output tokens,

ven state, an actor may take one of a number of transitions (or none at all), and these transitions ar
ted by actions in the actor description.

bx of an action definition is as follows:

> [ActionTag "'] action ActionHead [do Statements] end

bad — InputPatterns '==>' OutputExpressions
d Expressions] [var VarDecls]

ers separated by dots), see D.10.2. These tags need not be unique, i.e. the same tag may be use
than one action. Action tags are used to referdo actions or sets of actions, in action schedules an
ority orders — see D.10 for details.

i of an action contains a description of-thie kind of inputs this action applies to, as well as the output

[N e NN)]

—

produceg. The body of the action is a sequence of statements that can change the state, or compute values
for local yariables that can be used inside.the output expressions.

Input patterns and output expressions®are associated with ports either by position or by name. These twp
kinds of associations cannot be mixed. So if the actor’s port signature is

[1nputl,| nput2 == ... |
an input pattern may lookike this:

[a1, 1 < |
(binding [a] to the first token coming in on [Input1], and binding g and [d to the first two tokens from .

It may a

50400k like this:

| Input2: [c]

but never like this:

[[d] Input2:[e]

This mechanism is the same for input patterns and output expressions.

42

© ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:

The following Subclauses elaborate on the structure of the input patterns and output expressions d
the input and output behavior of an action, as well as the way the action is selected from the set of a
of an actor.

2011(E)

escribing
Il actions

In discussing the meaning of actions and their parts it is important to keep in mind that the interpretation of
actions is left to the model of computation, and is not a property of the actor itself. It is therefore best to think
of an action as a declarative description of how input tokens, output tokens, and state transitions are related to

each other. See also D.9.5.

D.9.2 | | variable declarati

Input patterns, together with variable declarations and guards, perform two main functions: (1) They d
imput tokens required by an action to fire, i.e. they give the basic conditions for the action fo| be fir
may depend on the value and number of input tokens and on the actor state, and (2) they de¢lare a n
viariables which can be used in the remainder of the action to refer to the input tokens themselves. TH
$ as follows:

InputPattern — [ID '] T IDs '] [RepeatClause]
RepeatClause — repeat Expression

Tlhe static type of the variables declared in an input pattern depends, on-the token type declared on
port, but also on whether the input pattern contains a repeat-clause.

A pattern without a repeat-expression is just a number of varigble names inside square brackets. Th
hinds each of the variable names to one token, reading as fany tokens as there are variable nar
number of variable names is also referred to as the patternlength. The static type of the variables is
as the token type of the corresponding port.

m

xample. (Input pattern without repeat-clause). Assume the sequence of tokens on the input chan
atural numbers starting at 1, i.e.

=

efine the
ed which
umber of
e syntax

the input

e pattern
nes. The
he same

nel is the

—
0
(0]
5
e]
[
~
e}
Q
=
()
=
=
)
o
Q
=
(0]
0
c
—
o,
£
—
>
(0]
g
o)
z
>
«Q@
o
>
Q
>
«Q
@

{ a pattern contains a repeat-clause, that expression must evaluate to a non-negative integer, say

N. If the

pattern length is L the.number of tokens read by this input pattern and bound to the L pattern variables is NL.
Since in general theré-are more tokens to be bound than variables to bind them to (N times more,|exactly),
viariables are bound’to lists of tokens, each list being of length N. In the pattern, the list bound td the k-th
viariable contains*the tokens numbered k, L+k, 2L +k, ..., (N-1)L+ k . The static type of these variables is
M{ist [T]],where [T]is the token type of the port.

Bxample. (Input pattern with repeat-clause). Assume again the natural numbers as input sequenge. If the
irrput pattern is

| [a, b, c] repeat 2 |
it will produce the following bindings:

[a =11, 41, b =12, 5], c = [3, 6]

© ISO/IEC 2011 — All rights reserved 43

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

ISO/IEC 23001-4:2011(E)

D.9.3 Scoping of action variables

The scope of the variables inside the input patterns, as well as the explicitly declared variables in the var-
clause of an action is the entire action — as a consequence, these variables can depend on each other. The
general scoping rules from D.6 need to be adapted in order to properly handle this situation.

In particular, input pattern variables do not have any initialization expression that would make them depend
explicitly on any other variable. However, their values clearly depend on the expressions in the repeat-clause
(if present). For this reason, for any input pattern variable v we define the set of free variables of its
initializatjon expression £_to be the union of the free variables of the corresponding expressions in the

repeat-clause.
The pernissible dependencies then follow from the rules in D.6.

Example. (Action variable scope). The following action skeleton contains dependencies between input patter
variableq and explicitly declared variables

>

[n], [X¥], [a] repeat m * n ==> ...

var
m=lk * k

do ... fend

These dgclarations are well formed, because the variables can be evaluated-in the order [, [, [, [

By contrast, the following action heads create circular dependencies:

[a] regeat a[0] + 1 ==> ... do ... end
[a] regeat n ==> ... var
n =|f(b), b = sum(a)

do ... fend

D.9.4 Qutput expressions

Output gxpressions are conceptually the dual\hotion to input pattern — they are syntactically similar, byt
rather tHan containing a list of variable names which get bound to input tokens they contain a list ¢f
expressipns that computes the output tokens/ the so-called token expressions.

OutputEkpression — [ID "'] '[' Expressions ']' [RepeatClause]
RepgatClause — repeat Expression

The repgat-clause works not-unlike in the case of input patterns, but with one crucial difference. For inpyt
patterns it controls the gonstruction of a data structure that was assembled from input tokens and then boun
the pattgrn variables.dn_the case of output expressions, the values computed by the token expressions a
themsel\es these data-structures, and they are disassembled according to the repeat-clause, if it is present.

In outpul expressions without repeat-clause, the token expressions represent the output tokens directly, an
the number’of output tokens produced is equal to the number of token expressions. If an output expressi
does haye @ repeat-clause, the token expressions must evaluate to lists of tokens, and the number of tokens
produced is the product of the number of token expressions and the value of the repeat-expression. In
addition, the value of the repeat-expression is the minimum number of tokens each of the lists must contain.

Example. (Output expressions). The output expression

| ... ==> [1, 2, 3]

produces the output tokens 1, 2, 3.

44 © ISO/IEC 2011 — All rights reserved

https://standardsiso.com/api/?name=c3506756b127225eec1a6b2035efee9d

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Functional unit network description
	4.1 Introduction
	4.2 The specification of an FU network

	5 Bitstream syntax description
	6 Model instantiation

