INTERNATIONAL ISO/IEC
STANDARD 3824-4

First edition
1995-10-15

Information technology — Abstract $yntax
Notation One (ASN:1): Parameterization of
ASN.1 specifications

Technologies de.[Jinformation — Notation de syntaxe abstraite| numéro 1
(ASN.1): Spécifications pour paramétrisation ASN.1

Reference number
ISO/IEC 8824-4:1995(E)

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4:1995(E)

CONTENTS
Page

2 INOTTNALIVE TEFETEICESeeeeeeeeeeeeeeeeeectte ettt eeeet et e ettt essaeesessresessseessssaessesssssesanssessessssesssssseessnnsesesnseessans
2.1 Identical Recommendations | International Standardseoeeeevvvemereeieeeceeineeireeeeeeeeeeeeeeeeeeenens

3 DEFINIIONS ...ttt ettt st bbb
3.1 Specification Of basiC NOtAIONceceeuerirerteieierte ettt ettt e se e e ee

32 I oAt oI O b eCt S P I atOI T s e s e s
3|13 Constraint SPECIfICAtION.....cc.ccveveeeetriertetiertren ettt
314 Additional definitionscocoviiuiiiiiiicc s B

4 AlDDIEVIALIONSccocviriiieiiiieiitieeccite ettt eeeseeeessteeesssssaasesssessssssasssssaseassssssssssssssssssnsasssssssessasssssesssnsagesstlosansnne
ONIVEIILIONuvvvvieeieieiieieereeeeieessrereseeeeeesssssenseseeesssssenseeeseessssssssseesesesssssssssssesssssssssssseessensssssnsssesfehoetslonnenneenann

d

I (017215 1) « DU TSR S = SRS
61 ASSIZNIMENLS....c.eiuiiiieieerieetentereereereetestestesseesteestessresseesseessesssesssassenssasnsessilaflonseesnuesseesessseessaene
6|2 Parameterized defiNItIONS........ceevvvuveiiriieeeiiineieeeseeeeceereeesiveeeeesneeeesssreessssnsesloshbesessnnresesssnsseessseeesensans
O[3 SYMDOIS ..ottt sttt sttt s st e b T Bttt e e sttt e b e nesae et enean
A

SINLT HEEINIS «.coceeeeeeeeeeie et eceee e e cenreeeeeteeeeeeanreeessnseeesseseessssesesesssesessnsesesssnnskoth eeeeesssseeeesssseenensssessennsnnenennnnne

10 ADbSIract Syntax PAramELerSc.eeeeeererterinrenseniesensenissessssissesses e s enssissesresesessessssessesssssssssssssessssssnessssnsssans

Annex A — EXAMPIES....cccccovuerireuiieiiiieiiiciiccrcnienrineneesnesseoy e haecetc sttt et ae e
Example of the use of a parameterized type defIItioN..........cccocviueiriiicciniiiiniicincccce
Example of use of parameterized definitionstogether with an information object class....................
Example of parameterized type definitionthat is finiteccoevuivieiiiniiniiiiicc,
Example of a parameterized value definition.............ccceveiiiiriiniciinicirctccer
Example of a parameterized value'Set definitionccccoveiiiiiniiiiininiiicinciecseeeeece
Example of a parameterized class definition...........cccoueeiriviiiviiiiiniiiiniceiccee e
Example of a parameterized-object set definition...........cccovveiniiieiiiiniiinini e,
Example of a parameterized object set definitioncoovvvviviiiiniviiniiiniicc e

O O OV 3 L W W W N NN NN == e e =2 e =

RS- NV R N VU SR
— b e e
N = == = O

—
w N

Annex B — Summary of the NOtAtIONcecevurririerieiirrenieieeiereeeie ettt et b e s

© ISO/IEC 1995 ‘

All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office Case postale 56 * CH-1211 Geneve 20 ¢ Switzerland
Printed in Switzerland

ii

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

© ISO/IEC

Foreword

ISO/TEC 8824-4:1995(E)

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other

international organizations, governmental and non-governmental, i

liaison with

ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC haye establﬁshed a joint

technical committee, ISO/IEC JTC 1. Draft International Standards a
joint technical committee are circulated to national bodi€s for voting
as an International Standard requires approval by‘at'least 75 % of
bodies casting a vote.

International Standard ISO/IEC 8824-4\'‘was prepared by Joi
Committee ISO/IEC JTC 1, Information-technology, Subcommittee
systems interconnection, data management and open distributed p
collaboration with ITU-T. The) identical text is published
Recommendation X.683.

This is a revision of ISOAEC 8824:1990.

ISO/IEC 8824:1995,consists of the following parts, under the
Information technology — Abstract Syntax Notation One (ASN.1):

Part 1> Specification of basic notation

Part 2: Information object specification

Part 3: Constraint specification

Part 4: Parameterization of ASN.1 specifications
Annexes A and B of this part of ISO/IEC 8824:1995 are for informat

opted by the
y. Publication
the national

ht Technical
SC 21, Open
rocessing, in

as ITU-T

general title

on only.

i

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4:1995(E)

Introduction

© ISO/IEC

Application designers need to write specifications in which certain aspects are left undefined. Those aspects will later be
defined by one or more other groups (each in its own way), to produce a fully defined specification for use in the
definition of an abstract syntax (one for each group).

In some cases, aspects of the specification (for example, bounds) may be left undefined even at the time of abstract
syntax definition, being completed by the specification of International Standardized Profiles or functional profiles from
some other body.

concerned

In the ext:me case, some aspects of the specification may be left for the implementor to complete, and would then

specified
While th

framework for the later completion of parts of a specification, they do not of themselves solve the above requirements

Additiond
informati
differ in

used at a1 inner level. Instead of writing out the outer level structure for every suchhoccurrence, it is useful to be abl

write it o

All these
this Reco|

The synt3
but the f

NOTE 1 - It is a requirement imposed by this Recommendation | International Standard that any aspect that is not{so
with the application of constraints has to be completed prior to the definition of an abstract syntax.
part of the Protocol Implementation Conformance Statement.

e provisions of ITU-T Rec. X.681 | ISO/TEC 8824-2 and ITU-T Rec. X.682 | ISO/IEC8824-3 provid

Ily, a single designer is sometimes required to define many types, or many information object classes, or m
bn object sets, or many information objects, or many values, which have the'\same outer level structure,
he types, or information object classes, or information object sets, or information objects, or values, that

ce, with parts left to be defined later, then reference it and provide theadditional information.

requirements are met by the provision for parameterized reference names and parameterized assignments
mmendation | International Standard.

}

ely

be

w
Y

any
but
are
e to

by

ctic form of a parameterized reference name is the same-as’that of the corresponding normal reference name,

lowing additional considerations apply:

— When it is assigned in a parameterized assignment statement, it is followed by a list of dummy refere

nCe

names in braces, each possibly accompanied by a governor; these reference names have a scope which is

the right-hand side of the assignment statement, and the parameter list itself.

NOTE 2 - This is what causes itto be recognized as a parameterized reference name.

— When it is exported or imported, it is followed by a pair of empty braces to distinguish it ap a

parameterized reference name:

— When it is used in any construct, it is followed by a list of syntactic constructions, one for each dummy

reference name, that\provide an assignment to the dummy reference name for the purposes of that
only.

se

Dummy geference names ‘have the same syntactic form as the corresponding normal reference name, and can be used

anywhere

used. All such usages-are required to be consistent.

on the right-hand side of the assignment statement that the corresponding normal reference name could

be

iv

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/TEC 8824-4 : 1995 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY -
ABSTRACT SYNTAX NOTATION ONE (ASN.1):
PARAMETERIZATION OF ASN.1 SPECIFICATIONS

This Recommendation | International Standard is part of Abstract Syntax Notation One (ASN.1) and defines'notation for

1 Seope
paranhterization of ASN.1 specifications.

2

The flollowing Recommendations and International Standards contain provisions which, through reference in tlj

const
were
Recol
editid
valid
valid

2.1

3

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1
This

3.2
This

Normative references

tute provisions of this Recommendation | International Standard. At the time of publication, the editions in
valid. All Recommendations and Standards are subject to revision, and pafties to agreements based

is text,
dicated
on this

mmendation | International Standard are encouraged to investigate the pessibility of applying the most
ns of the Recommendations and Standards listed below. Members of IEC*and ISO maintain registers of ¢
International Standards. The Telecommunications Standardization Bureau’of the ITU maintains a list of ¢
ITU-T Recommendations.

Identical Recommendations | International Standards

— ITU-T Recommendation X.680 (1994) | ISO/IEC'8824-1:1995, Information technology — Abstract]
Notation One (ASN. 1): Specification of basic notation.

— ITU-T Recommendation X.681 (1994) |- ISO/IEC 8824-2:1995, Information technology — Abstract]
Notation One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1995, Information technology — Abstract
Notation One (ASN.1): Constraint specification.

Definitions

Specificatiornof basic notation
Recommendation-l International Standard uses the terms defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.

Information object specification

Recommendation | International Standard uses the terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-2.

recent
rrently
rrently

Syntax

Syntax

Syntax

33

Constraint specification

This Recommendation | International Standard uses the terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-3.

34
34.1

34.2

Additional definitions

normal reference name: A reference name defined, without parameters, by means of an "Assignment" other
than a "ParameterizedAssignment”. Such a name references a complete definition and is not supplied with actual
parameters when used.

parameterized reference name: A reference name defined using a parameterized assignment,

references an incomplete definition and which, therefore, must be supplied with actual parameters when used.

ITU-T Rec. X.683 (1994 E)

which

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

343 parameterized type: A type defined using a parameterized type assignment and thus whose components are
incomplete definitions which must be supplied with actual parameters when the type is used.

344 parameterized value: A value defined using a parameterized value assignment and thus whose value is
incompletely specified and must be supplied with actual parameters when used.

345 parameterized value set: A value set defined using a parameterized value set assignment and thus whose
values are incompletely specified and must be supplied with actual parameters when used.

3.4.6 parameterized object class: An information object class defined using a parameterized object class
assignment and thus whose field specifications are incompletely specified and must be supplied with actual parameters
when used.

3.4.7 arameterized object: An information object defined using a parameterized object assignment and thus
se components are incompletely specified and must be supplied with actual parameters when used.

3.48 parameterized object set: An information object set defined using a parameterized object set ‘assignment and
thus whose objects are incompletely specified and must be supplied with actual parameters when used,

3.49 variable constraint: A constraint employed in specifying a parameterized abstract syntax, and which depends
on some parameter of the abstract syntax.

4 Abbreviations
ASN.1 Abstract Syntax Notation One

5 Convention

This Recommendation | International Standard employs the notational convention defined in ITU-T Rec| X.680 |
ISQ/IEC 8824-1, clause 5.

6 Notation

This clause summarizes the notation defined in(this Recommendation | International Standard.

6.1 Assignments

Tht following notation which cafi beé used as an alternative for "Assignment" (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
clapse 10) is defined in this Recommendation | International Standard:

— ParameterizedAssignment (see 8.1).

6.2 Parameterized definitions

6.2{1 The_ following notation which can be used as an alternative for "DefinedType" (see ITU-T Rec] X.680 |
ISO/IEC 8824-1, subclause 11.1) is defined in this Recommendation | International Standard:

— ParameterizedType (see 9.2).

6.2.2 The following notation which can be used as an alternative for "DefinedValue" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, subclause 11.1) is defined in this Recommendation | International Standard:

— ParameterizedValue (see 9.2).

6.2.3 The following notation which can be used as an alternative for "DefinedType" (see ITU-T Rec. X.680 |
ISO/IEC 8824-1, subclause 11.1) is defined in this Recommendation | International Standard:

— ParameterizedValueSetType (see 9.2).

6.24 The following notation which can be used as an alternative for "ObjectClass" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, subclause 9.2) is defined in this Recommendation | International Standard:

— ParameterizedObjectClass (see 9.2).

2 ITU-T Rec. X.683 (1994 E)

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

6.2.5 The following notation which can be used as an alternative for "Object" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, subclause 11.2) is defined in this Recommendation | International Standard:

— ParameterizedObject (see 9.2).

6.2.6 The following notation which can be used as an alternative for "ObjectSet” (see ITU-T Rec. X.681 |
ISO/EC 8824-2, subclause 12.2) is defined in this Recommendation | International Standard:

— ParameterizedObjectSet (see 9.2).

6.3 Symbols

The following notation which can be used as an alternative for "Symbol" (see ITU-T Rec. X.680 | ISO/IEC 8824-1,
subclause 10.1) is defined in this Recommendation | International Standard:

— ParameterizedReference (see 9.1).

7 ASN.1 items

This [Recommendation | International Standard makes use of the ASN.1 items specified in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 9.

8 Parameterized assignments

8.1 There are parameterized assignment statements corresponding to each:.of the assignment statements sgecified
in ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.681 | ISO/IEC 8824-2. The "ParameterizedAssignment"
constfuct is:

Parameterized Assignment ::=
Parameterized TypeAssignment
ParameterizedValueAssignment
Parameterized ValueSetTypeAssignment
ParameterizedObjectClassAssignment
ParameterizedObjectAssignment
ParameterizedObjectSetAssignment

8.2 Each "Parameterized<X>Assignment® (has the same syntax as "<X>Assignment" except that followjng the
initial item there is a "ParameterList". The initiaVitem thereby becomes a parameterized reference name (see 3.4.2):

NOTE - ITU-T Rec. X.680 | ISO/IEC-8824-1 imposes the requirement that all reference names assigned within a module,
whether parameterized or not, must be distinct.

ParameterizedTypeAssignment ::=
typereference
ParameterList

comtt

Type

Parameterized ValueAssignment ::=
valuereference
ParameterList
Type

Value

ParameterizedValueSetTypeAssignment ::=
typereference
ParameterList
Type

ValueSet

ParameterizedObjectClassAssignment ::=
objectclassreference
ParameterList

"o tt
=

ObjectClass

ITU-T Rec. X.683 (1994 E) 3

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/TEC 8824-4 : 1995 (E)

ParameterizedObjectAssignment ::=
objectreference
ParameterList
DefinedObjectClass

” ”
com
o=

Object

ParameterizedObjectSetAssignment ::=
objectsetreference
ParameterList
DefinedObjectClass

e tt
=

ObjectSet

8.3

Each "Parameter” consists of a "DummyReference" and possibly a "ParamGovernor".

A "DummyReference"” in "Parameter” may stand for:

A "DummyGovernor" shall be a "DummyReference" that has no "Governor".

8.4
that

85

"obj

the fight-hand side of the assignment statement. Thereafter, the nature of the dummy reference name is known. The naty

dum
an a
the d

A "ParameterList" is a list of "Parameter"s between braces.

ParameterList ::= "'{"' Parameter "," + ''}"

Parameter ::= ParamGovernor '":" DummyReference | DummyReference
ParamGovernor ::= Governor | DummyGovernor

Governor ::= Type | DefinedObjectClass

DummyGovernor ::= DummyReference

DummyReference ::= Reference

a) a"Type" or "DefinedObjectClass", in which case there shall be no "ParamGovernor";

b) a "Value" or "ValueSet", in which case th¢ "ParamGovernor" shall be present, and
"ParamGovernor" is a "Governor" it shal be a "Type", and in case "ParamGovernq
"DummyGovernor" the actual parameter for the "ParamGovernor" shall be a "Type";

c) an "Object" or "ObjectSet", in which case the "ParamGovernor" shall be present, and

The scope of a "DummyReference” appearing in a "ParameterList" is the "ParameterList" itself, toge

NOTE —_Where the syntactic form of a dummy reference name is ambiguous (for example, between whethe
bctclassreference” or "typereference”), the ambiguity can normally be resolved on the first use of the dummy reference

ny reférence is, however, not determined solely by the right hand side of the assignment statement when it is in turn usd
ftual parameter in a parameterized reference; in this case, the nature of the dummy reference must be determined by e
efinition of this parameterized reference. Users of the notation are warned that such a practice can make ASN.1 sped

less clear, and it is suggested that adequate comments are provided to explain this for human readers.

Example

Consider the following parameterized object class assignment:

in case
' is a

in case

"ParamGovernor" is a "Governor" it shall be a "DefinedObjectClass", and in case "ParamGovernor" is a
"DummyGovernor" the actual parameter for the "ParamGovernor" shall be a "DefinedObjectClass".

her with

part of the "Parameteriz€dAssignment” which follows the "::=". The "DummyReference" hides apy other
"Reference” with the same name in that scope.

The usage of-a"'DummyReference" within its scope shall be consistent with its syntactic form, anfl, where
applicable, governor{and all usages of the same "DummyReference" shall be consistent with one another.

r it is an
name on
Ire of the
d only as
xamining
ifications

PARAMETERIZED-OBJECT-CLASS { TypeParam, INTEGER:valueParam, INTEGER:ValueSetParam } ::=

CLASS {
&valueField1l TypeParam,
&valueField2 INTEGER DEFAULT valueParam,
&valueField3 INTEGER (ValueSetParam),
&ValueSetField INTEGER DEFAULT { ValueSetParam }

ITU-T Rec. X.683 (1994 E)

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

For the purpose of determining proper usage of the "DummyReference’s in the scope of the
“ParameterizedAssignment”, and for that purpose only, the "DummyReference"s can be regarded to be defined as

follows:

where:

TypeParam ::= UnspecifiedType

valueParam INTEGER ::= unspecifiedIntegerValue
ValueSetParam INTEGER ::= { UnspecifiedInteger ValueSet }

a)

b)

TypeParam is a "DummyReference” which stands for a "Type". Therefore TypeParam can be used
wherever a "typereference" can be used, e.g. as a "Type" for the fixed-type value field valueField1.

valueParam is a "DummyReference” which stands for a value of an integer type. Therefore valueParam

8.6

the definition, and would simply be "discarded”, while to the user it might seem that some specificatiof was taking place.

oy

8.7

"ParameterizedType", "ParameterizedValueSet", or "ParameterizedObjectClass” (see A.3).

8.8

one of whose alternatives is non-circular in definition.

8.9

other ['DummyReference"” also has a governor.

8.10
8.11

the parameterized reference name being'defined.

)

Each "DummyReference” shall be employed at least once within its scope.

can be used wherever a "valuereference” of an integer value can be used, e.g. as a default value| for the
fixed-type value field valueField2.

ValueSetParam is a "DummyReference” which stands for a value set of an integer .type. Therefore

ValueSetParam can be used wherever a "typereference” of an integer value can be used,"e.g. as a "Type"

in the "ContainedSubtype" notation for valueField3 and ValueSetField.

NOTE - If the "DummyReference" did not so appear, then the corresponding "ActualParaméter" would have no éffect on

eterizedValueAssignment"s, "ParameterizedValueSetTypeAssignment's, "ParameterizedObjectAssignment"s and
eterizedObjectSetAssignment"s that contain either a direct or indirect reference to themselves are illegal.

In the definition of a "ParameterizedType", "ParameterizedVialueSet", or "ParameterizedObject(lass, a
"DummyReference” shall not be passed as a tagged type (as an actual parameter) to a recursive reference |to that

In the definition of a "ParameterizedType", "ParameterizedValueSet", or "ParameterizedObjectClass, a ¢ircular
referdnce to the item being defined shall not be made unless suchreference is directly or indirectly marked OPTIONAL
or, infthe case of "ParameterizedType" and "ParameterizedValueSet", made through a reference to a choice type, [at least

The governor of a "DummyReference” shall' not include a reference to another "DummyReference'| if that

In a parameterized assignment the right side of the "::=" shall not consist solely of a "DummyReference|.

The governor of a "DummyReference” shall not require knowledge of either the "DummyReference"| nor of

9 Referencing parameterized definitions
9.1 Within a "SymbolList" (in "Exports" or "Imports") a parameterized definition shall be referenced by a
"ParaneterizedReference":

where "Reference” is the first item in the "Parameterized Assignment”, as specified in 8.2 above.

9.2

ParameterizedReference ::= Reference | Reference "{" "}"

NOTE - The first alternative of "ParameterizedReference" is provided solely as an aid to human understandinF. Both
alterndtives have the same meaning

Other than in "Exports” or "Imports"”, a parameterized definition shall be referenced by a "Parameterized<X>"
construct, which can be used as an alternative for the corresponding "<X>".

ParameterizedType ::=

SimpleDefinedType
ActualParameterList

SimpleDefinedType ::=

Externaltypereference |
typereference

ParameterizedValue ::=

SimpleDefined Value
ActualParameterList

ITU-T Rec. X.683 (1994 E) 5

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

SimpleDefinedValue ::=
Externalvaluereference |
valuereference

ParameterizedValueSetType ::=
SimpleDefinedType
ActualParameterList

ParameterizedObjectClass ::=
DefinedObjectClass
ActualParameterList

ParameterizedObjectSet ::=

9.3

9.4
ISO
corr

name
local

9.5

9.6
I'Pal.,
gove
whic

replace the;"DummyReference" everywhere in its scope (see 8.4).

DefinedObjectSet
ActualParameterList

ParameterizedObject ::=
DefinedObject
ActualParameterList

The restrictions on the "Defined<X>" alternative to be used, which @re specified in ITU-T Rec.
EC 8824-1 and ITU-T Rec. X.681 | ISO/IEC 8824-2 as normal reference names, apply equally]
sponding parameterized reference names.

definition (also deprecated) or between imports.
The "ActualParameterList" is:

ActualParameterList ::=
"{" ActualParameter ", +"'}"

ActualParameter ::=
Type
Value
ValueSet
DefinedObjectClass
Object
ObjectSet

There shall."be exactly one "ActualParameter" for each "Parameter" in the corres
meterized Assignment” and they shall appear in the same order. The particular choice of "ActualParameter”,
rnor (if any)\shall be determined by examination of the syntactic form of the "Parameter” and the enviro
h it occurs, in the "ParameterizedAssignment”. The form of the "ActualParameter” shall be the form req

Example

The reference name in the "Defined<X>" shall be a reference name to which an assignment is mfde in a
"Parpmeterized Assignment".

X.680 |
to the

NOTE - In essence, the restrictions are as follows. Each "Defiled<X>" has two alternatives, "<x>reference” and
"Extgrnal<x>Reference". The former is used within the module of definitiorf\or if the definition has been imported and th
conflict; the latter is used where there is no imports listed (deprecated), or if there is a conflict between the imported name and a

lere is no

ponding
and the
ment in

ired to

The parameterized object class definition of the previous example (see 8.5) can be referenced, for instance, as follows:

MY-OBJECT-CLASS ::= PARAMETERIZED-OBJECT-CLASS { BIT STRING, 123,{41516} }

9.7

9.8

the ¢

6

The actual parameter takes the place of the dummy reference name in determining the actual type, value, value
set, object class, object, or object set that is being referenced by this instance of use of the parameterized reference name.

The meaning of any references which appear in the "ActualParameter”, and the tag default applicable to any
tags which so appear, are determined according to the tagging environment of the "ActualParameter” rather than that of

orresponding "DummyReference".

NOTE - Thus, parameterization, like referencing, selection types, and "COMPONENTS OF", among others, is not exactly
textual substitution.

ITU-T Rec. X.683 (1994 E)

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

Example
Consider the following modules:

M1 DEFINITIONS AUTOMATIC TAGS ::= BEGIN
EXPORTS T1;

T1 ::=SET {
fl INTEGER,
2 BOOLEAN

}
END

M2 DEFINITIONS EXPLICIT TAGS ::= BEGIN
—IMPORTS T FROM-M;

T3 ::= T2{T1}

T2{X} ::= SEQUENCE {
a INTEGER,
b X

}
END

Application of 9.8 implies that the tag for the component f1 of T3 (i.e. @T3.b.f1) will be implicitly tagged becaufe the
tagging environment of the dummy parameter X, namely explicit tagging, does not affect the tagging of the compgnents
of the 4ctual parameter T1.

Consider the module M3.

M3 DEFINITIONS AUTOMATIC TAGS ::= BEGIN
IMPORTS T1 FROM M1;

TS ::= T4{T1}

T4{Y} ::= SEQUENCE {
a INTEGER,
b Y

}

END

Application of ITU-T Rec. X.680 | ISO/IEC-8824-1, subclause 28.6, implies that the tag for the component b of T5
(i.e. @F5.b) will be explicitly tagged because the dummy parameter (Y) is always explicitly tagged, hence @[T5 is
equivalent to

TS ::= SEQUENCE {
a [0] IMPLICIT\INTEGER,
b [1] EXPLICIT SET {
fl [0IINTEGER,
f2 _<[11 BOOLEAN

}

while @T3 isiequivalent to

T3 ::= SEQUENCE {
a INTEGER,
b SET{
f1 [0] IMPLICIT INTEGER,
f2 [1] IMPLICIT BOOLEAN

10 Abstract syntax parameters

10.1 Annex of ITU-T Rec. X.681 | ISO/IEC 8824-2 provides the ABSTRACT-SYNTAX information object class
and recommends its use to define abstract syntaxes, using as an example an abstract syntax defined as the set of values
of a single ASN.1 type which was not parameterized at the outer level.

ITU-T Rec. X.683 (1994 E) 7

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

10.2 Where the ASN.1 type used to define the abstract syntax is parameterized, some parameters may be supplied
as actual parameters when the abstract syntax is defined, while others may be left as parameters of the abstract syntax
itself.

Example

If a parameterized type has been defined called YYY-PDU with two dummy references (the first an object set of some
defined object class, and the second an integer value for a bound, say), then:

yyy-Abstract-Syntax { INTEGER:bound } ABSTRACT-SYNTAX ::=
{ YYY-PDU { {ValidObjects} , bound } IDENTIFIED BY {yyy 5} }

defines a parameterized abstract syntax in which the object set has been resolved, but "bound" remains as a parameter of
the abstract syntax.

An abstract syntax parameter shall be used:
a) directly or indirectly in the context of a constraint;

b). directly or indirectly as actual parameters that eventually are used in the context of a cohstraint.
NOTE - See the example in A.2, and the example in ITU-T Rec. X.680 | ISO/IEC 8824-1, subclause G.5).

1043 A constraint whose value set depends on one or more parameters of the abstract syhtax is a variable ¢onstraint.
Sufh constraints are determined after the definition of the abstract syntax (perhaps by International Standardizdd Profiles
or |n Protocol Implementation Conformance Statements).

NOTE - If somewhere in the chain of definitions involved in the specification-of-the constraint values a paranjeter of the
abdract syntax appears, the constraint is a variable constraint. It is a variable constraint &ven if the value set of the resulting constraint
is independent of the actual value of the parameter of the abstract syntax.

Example — The value of (((1..3) EXCEPT a) UNION (1 .. 3)) is always 1..3 no matter what the value jof "a" is,
nofetheless it is still a variable constraint if "a" is a parameter of the dbstract syntax.

1044 Formally, a variable constraint does not constrain the set of values in the abstract syntax.

NOTE - It is strongly recommended that constraints_that)are expected to remain as variable constraints in hn abstract
syntax have an exception specification using the notation provided by ITU-T Rec. X.680 | ISO/IEC 8824-1, subclause 43.4.

8 ITU-T Rec. X.683 (1994 E)

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

Annex A

Examples
(This annex does not form an integral part of this Recommendation | International Standard)

Al Example of the use of a parameterized type definition

Suppose that a protocol designer frequently needs to carry an authenticator with one or more of the fields of the protocol.
This will be carried as a BIT STRING, alongside the field. Without parameterization, Authenticator would need to be
defined as a BIT STRING, then "authenticator" would need to be added wherever it was to appear, with text to identify
what it applied to. Alternatively, the designer could adopt the discipline of turning any field that has an authenticator into
a SEQUENCE of that field and "authenticator". The parameterization mechanism provides a convenient short-hand for
doing this task.

First wg define the parameterized type SIGNED{ }:

SIGNED { ToBeSigned } ::= SEQUENCE

{)
authenticated-data ToBeSigned,

authenticator BIT STRING
}

then, irf the body of the protocol, the notation (for example)
SIGNED { OrderInformation }
is a typ notation standing for

SEQUENCE

{
authenticated-data OrderInformation,

authenticator BIT STRING
}

Supposg further that for some fields, the sender is to have the*option of adding the authenticator or not. This could be
achievgd by making the BIT STRING optional, but a more'elegant solution (less bits on the line) would be to define
another parameterized type:

OPTIONALLY-SIGNED {ToBeSigned} ::= CGHOICE
{
unsigned-data [0] ToBeSigned,
signed-data [1] SIGNED { ToBeSigned }
}

NOTE - The tagging in the CHOICE is not necessary if the writer ensures that none of the uses of the parameterizedl type
produce|an actual argument which is & BIT STRING (the type of SIGNED), but is useful in preventing errors in other parts pf the
specification.

A2 Example of use’of parameterized definitions together with an information object class

Use infprmation object Classes to collect all the parameters for an abstract syntax. In that way the number of paramjeters
for an gbstract symntax can be reduced to one which is an instance of the collection class. The "InformationFromObject”
production cansbe:tised to extract information from the parameter object.

Example

-- An instance of this class contains all the parameters for the abstract
-- syntax, Message-PDU.

MESSAGE-PARAMETERS ::= CLASS {
&maximum-priority-level INTEGER,
&maximum-message-buffer-sizec INTEGER,
&maximum-reference-buffer-size INTEGER

}
WITH SYNTAX {
THE MAXIMUM PRIORITY LEVEL IS &maximum-priority-level
THE MAXIMUM MESSAGE BUFFER SIZE IS &maximum-message-buffer-size
THE MAXIMUM REFERENCE BUFFER SIZEIS &maximum-reference-buffer-size
}

ITU-T Rec. X.683 (1994 E) 9

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

-- The "ValueFromObject” production is used to extract values

-- from the abstract syntax parameter, "param”. The values can be
-- used only in constraints. In addition the parameter is passed

-- through to another parameterized type.

Message-PDU { MESSAGE-PARAMETERS : param } ::= SEQUENCE {
priority-level INTEGER (0..param.&maximum-priority-level),

message BMPString (SIZE (0..param.&maximum-message-buffer-size)),
reference Reference { param }

}

Reference { MESSAGE-PARAMETERS : param } ::=
SEQUENCE OF

JASString (SIZE (0..param.&maximum-reference-huffer-size))

-- Definition of a parameterized abstract syntax information object.
-- The abstract syntax parameter is used only in constraints.

message-Abstract-Syntax { MESSAGE-PARAMETERS : param }
ABSTRACT-SYNTAX ::=
{

Message-PDU { param }

IDENTIFIED BY { joint-iso-ccitt asn1(1) examples(123) 0 }
}

The class MESSAGE-PARAMETERS and the parameterized abstract syntax objéct, message-Abstract-Syntay

as[follows:

-- This instance of MESSAGE-PARAMETERS defines parameteF.values
-- for the abstract syntax.

my-message-parameters MESSAGE-PARAMETERS ::= {
THE MAXIMUM PRIORITY LEVEL IS 10
THE MAXIMUM MESSAGE BUFFER SIZE IS 2000
THE MAXIMUM REFERENCE BUFFER'SIZE IS 100
}

-- The abstract syntax can now be defined with all variable constraints specified.

my-message-Abstract-Syntax ABSTRACT-SYNTAX ::=
message-Abstract-Syntax{ my-message-parameters }

AB Example of parameterized type definition that is finite

, are used

When specifying a parameterized type which represents a generic list, specify the type so that the resultihg ASN.1

nofation is finite. For example, we may specify:

List1 { ElementTypeParam } ::= SEQUENCE {

elem ElementTypeParam,

next List1 { ElementTypeParam } OPTIONAL
}

which is finite, for when it is used,

IntegerListl ::= Listl { INTEGER }

the resulting ASN.1 notation is as you would normally define it:

IntegerListl ::= SEQUENCE {

elem INTEGER,

next IntegerList1 OPTIONAL
}

Contrast this to the following:

List2 { ElementTypeParam } ::= SEQUENCE {
elem ElementTypeParam,
next List2 { [0] ElementTypeParam } OPTIONAL

10 ITU-T Rec. X.683 (1994 E)

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

where t

ISO/IEC 8824-4 : 1995 (E)

IntegerList2 ::= List2 { INTEGER }
he resulting ASN.1 notation is infinite:

IntegerList2 ::= SEQUENCE {
elem INTEGER,
next SEQUENCE {
elem [0] INTEGER,
next SEQUENCE {

A4

elem [01[0] INTEGER,

next SEQUENCE {
elem [0][0][0] INTEGER,
next SEQUENCE {

«s == and so on
} OPTIONAL
} OPTIONAL
} OPTIONAL

} OPTIONAL

Example of a parameterized value definition

If a parpmeterized string value is defined as follows:

then thq

AS

If two

then the

and the

Notice

genericBirthdayGreeting { IA5String : name } IA5String ::= { ""Happy birthday, "', name, "!!" }
 following two string values are the same:

greetingl IASString ::= genericBirthdayGreeting { "John' }
greeting2 IASString ::= '""Happy birthday, John!!"

Example of a parameterized value set definition

arameterized value sets are defined as follows:

QuestListl {IASString : extraQuest} IA5String ::= { ""Jack" | "John' | extraQuest }
QuestList2 {IA5String : ExtraQuests} IASString ::= { ""Jack" | "John'' | ExtraQuests }

following value sets denote the same value set:

SetOfQuests1 IASString ::= {*QuestListl { "Jill" } }
SetOfQuests2 IA5String ::= { QuestList2 { {""Jill"'} } }
SetOfQuests3 IA5String 3= { "Jack" | "John" | "Jill" }

following value sets.denote the same value set:

SetOfQuests4 IASString ::= { QuestList2 { {""Jill" | "Mary"} } }
SetOfQuestsS TASString ::= { "Jack" | "John" | "Jill"" | "Mary''}

the braEes from a reference to an "identifier" that was created in a value set assignment or from a reference]

"Param

A.6

tefizedValueSetType" the notation is that of a "Type", not a value set.

Example of a parameterized class definition

hat a value set is always specified within braces, even when it is a parameterized value set reference. By omijtting

to a

The following parameterized class can be used to define error classes which contain error codes of different types. Note

that the "ErrorCodeType" parameter is used only as a "DummyGovernor" for the "ValidErrorCodes" parameter.

GENERIC-ERROR { ErrorCodeType, ErrorCodeType : ValidErrorCodes } ::= CLASS {
&errorCode ValidErrorCodes

}
WITH SYNTAX {

CODE &errorCode
}

ITU-T Rec. X.683 (1994 E)

11

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

ISO/IEC 8824-4 : 1995 (E)

The parameterized class definition can be used as follows to define different classes which share some characteristics
like the same defined syntax.

ERROR-1 ::= GENERIC-ERROR { INTEGER, {11213 }}

ERROR-2 ::= GENERIC-ERROR { ErrorCodeString, { StringErrorCodes } }
ERROR-3 ::= GENERIC-ERROR { EnumeratedErrorCode, { fatal | error } }
ErrorCodeString ::= IASString (SIZE (4))

StringErrorCodes ErrorCodeString ::= { "E001" | "E002" | "E003" }
EnumeratedErrorCode ::= ENUMERATED ({ fatal, error, warning }

The defined classes can then be used as follows:

ar

My-Errors ERROR-2 ::= { { CODE "E001" } | { CODE "E002" } }
fatalError ERROR-3 ::= { CODE fatal }

L7 Example of a parameterized object set definition

d a set of additional objects which are supplied as a parameter, AdditionlTypes.

BaseTypes TYPE-IDENTIFIER ::= {
{ BasicType-1 IDENTIFIED BY basic-type-obj-id-value-1 } |
{ BasicType-2 IDENTIFIED BY basic-type-obj-id-value-2 } |
{ BasicType-3 IDENTIFIED BY basic-type-obj-id-value-3 }
}

he parameterized object set definition, AllTypes, can be used as:follows:

My-All-Types TYPE-IDENTIFIER ::= { AllTypes {
{ My-Type-1 IDENTIFIED BY my-obj-id-value-1 } |
{ My-Type-2 IDENTIFIED BY my-obj-id-value-2 } |
{ My-Type-3 IDENTIFIED BY my-objsid-value-3 }
1}

.8 Example of a parameterized object set definition

he type defined in A.4 of ITU-T Rec. X.682 | ISO/IEC 8824-3 can be used in a parameterized abstract syntay
follows:

-- PossibleBodyTypes\is)a parameter for an abstract syntax.

message-abstract-syntax { MHS-BODY-CLASS : PossibleBodyTypes } ABSTRACT-SYNTAX ::={
INSTANCE OF MHS-BODY-CLASS ({PossibleBodyTypes})
IDENTIFIED BY { joint-iso-itu asn1(1) examples(1) 123 }

}

-- This-object set lists all the possible pairs of values and type-ids
-or the instance-of type. The object set is used as an actual parameter
s for the parameterized abstract syntax definition.

My-Body-Types MHS-BODY-CLASS ::= {

ne parameterized object set definition AllTypes forms an object set which contains a basiciset of objects, BaseTypes,

AllTypes { TYPE-IDENTIFIER : AdditionalTypes } TYPE-IDENTIFIER ::= {'\BaseTypes | AdditionalTypes }

t definition

{My-First-Type IDENTIFIED BY my-first-obj-id -
{ My-Second-Type IDENTIFIED BY my-second-obj-id }
}

my-message-abstract-syntax ABSTRACT-SYNTAX ::=
message-abstract-syntax { { My-Body-Types } }

12 ITU-T Rec. X.683 (1994 E)

https://standardsiso.com/api/?name=781d5314484e792b6d0ebd8c30834be5

