INTERNATIONAL ISO/IEC
STANDARD 9496

Fourth edition
2003-12-15

CHILL — The ITU-T programming
language

CHILL — Le langage de programmation de I'UIT-T

Reference number

ISO/IEC 9496:2003(E)
S . © ISO/IEC 2003

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either 1SO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +41227490111

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

CONTENTS
1 INEEOAUCLION ..ottt ettt et et et et e s ee s st e sse e st eneeeneeeseesseenseenseenseensessnesneesseenseensesnsanns
1.1 GENCTAL ...ttt sttt et et et b e b e bt e bt et eet et bt e ae et et eaeeeae
1.2 LANQUAZE SUTVEY ..eevveiiiieieieeiiieeeite ettt esite ettt eseteeteeeseessteeesaeesteeesseeesseeanseesnseeaseesnsessnseesnsessnseenne
1.3 MOAES ANA CLASSES ...vveeuvvieiieeiieeiie ettt este et e ete et e eteeeteeeteeesteeeteeesseesnseesnseesseesnseesnseesnseeanseennes
1.4 Locations and their ACCESSES wovuuovrrrririniiiiiiiieeiieiiiii i ittt
1.5 Values and their OPErationsc.cecuervirerininenieieeetetenese ettt sade 053
1.6 ALCHIONS ..ttt e ettt e et e e st e e st e e eabeesabeeetseessbe e sseessseensseesseaaseeensaeeseeenseeesssabgspieees
1.7 INPUL ANA OULPUL ..ottt et e e e s beeeaeesebeesnseessseennseessseesfaneasbonsseenes
1.8 Exception handling...........ccceevieriiiiiieiieeiccsie ettt svee e sveesveesveesne e s B Tasbeeseneesnvee e
1.9 TIME SUPETVISION ..euvvieiiieiieeiiiereieeieeerieeeteeesteeeteeesseesseessseessseesnsessssessnsessssensesiiadeeesssesssseensseenes
1.10 Program StIUCKUTEcc.eoviriiiieiieiieieeierienieeie et eene s oot e ST et
1.11 CONCUITENE EXECULION ..vvieeiieirieeeieeitieeteeesteeesteeeteeesteeesteeesseeereeenses s TP Tereessneessseessseessseesseenes
1.12 General Semantic PrOPETLIESceeeueeurerrerrenerienereeiereensensensenren el cerenenteneneee et
1.13 Implementation OPTIONS.iecueeriieeieeetieeieeeteeeteeeteesteeesseesnssatbgeessseesssesssseessseesssessseesssesnueenns
2 PIElIMINATICS ..euvvieiieeiie ettt ettt e st eeteesteeenseesese st Banseeenseesnsaeasseesnseensseesnseensseessseensseenns
2.1 The metalanguagec..cccevevevienererceerienenenienenrne e e e Mot
2.2 VOCADUIATY ..ottt bttt st ettt bbbt ebe et e e
23 TheE USE OF SPACES ..c..eveeiiiiiiiiriieiericeieetet ettt s e ettt ettt et ettt sa et beeb et enaenaenes
2.4 COIMIMENLS ..o.vvveeneiieiieeieeerteerieeesreeteeesseeens b e eeeenseessseeasseessseesnsessnsesanseessseesssesssseensseessesnsseenns
2.5 FOIrmat €ffECtOTS ...eoovieiiieeieeiiee e e ettt st e st e et e e s aaeessbeesaaeennbeeennee e
2.6 COMPILET QITECHIVES ..eevvieeiiieeiieeiee e s A ettt eite e tte et e e teeetee e beeenbeeseteessseessseessseensseensaessneansseenns
2.7 Names and their defining OCCUITENEESc.vevvervirreriiriirieietentinere ettt ettt ne e e
3 IMOAES ANA ClASSES...ecvvieirieeirieirieerise ot reesereesereesseesseesseaasseessseessseessseessssessseassseessseassseesseasssesssseessensns
3.1 (€531 TS) 1 O GO SRR
3.2 MOAE AETINTEIONS ifeveinrreerieeriieetteeieeeetteestteeeteeesteesbeesaeessbeessseesnseessseessseessseessseessseessseenseesns
33 MOAE ClaSSTIICATIOISN . cuveeevieeieeiiectiete ettt et et et e eetaesteesbeebeesbeesaesssesseesseesseessesssessaeseans
3.4 DISCIELE MOAES (...) e eveeiiieeiiieiiieeie ettt eete ettt e ettt e et e esteeeetee e bbeeteeebaeanseeessseensesesseeesseesseassseesns
3.5 REal MOAES ke ettt e et e e et e e e be e st e e eabeessbeeeaseesabeaenseesabeaenseeans
3.6 POWETSEE TIOAES........veeeitiieiieeiee ettt et e et et e et e et e e et e e e beeeabeesabeesabeessseesaseesssaassseesaseassseesns
3.7 RETELEIICE INOMESvviiviiciiiciiectieeieeie ettt et ettt te et e e b e esbeesbessaesaeesseesseessesssesseesaeseens
3.8 RLOCEAUIE TNOMES ...ttt ettt ettt e et e e b e esbessaesse e beesseessessaesaeeseessaeseens
3.9 TNSTANCE MOAES ...eoniiiiiiiieiieece ettt sttt ettt st e b e b enaeens
3.10. Synchronization MOAESeiieriieriieiieeieeiertee ettt ettt et et e et e st e e eneeeneesseesneenaeeneeenes
JAT INPUt-OULPUL MOAES ...ttt sttt ettt sttt naenes
FHR—Fimingmodes e
3,13 COMPOSIEE MNOAES ...veeuviiirieeiieiieeieitesieesteeteeteeetesteesteesseeseessesseesseesseesseesseesseessesssasssesseesseessesseenses
3,14 DYNAMIC MOUECS. ...cuieiierieeiieieiiesieesteeteeteestesseesseesseesseessesssesseeseesseessesssesssesssessesssesssesssesssesseesses
T B T % () (1 LY (6 TSSO URUPR
4 L0Cations and theil ACCESSESevvieiiiiiiiieitieeitieeieeeetteeiteeerteeesteeebeesaeesbeessseessseessseessseessseessseessseessseessseennns
4.1 DECIATALIONSeeiuviieiieiiieeiee et e ettt e et e st e e beestveessbe e tbeessseesseessseessssassseenseeasesenseeenseesnsseansneanes
4.2 LLOCALIONS ...eevtieeieeete ettt ettt et e et e bt e s beesbeesbesaeesaeesseesseesseesseessessaessaenseanseessesssesseesaeenseenseenseans
5 Values and theil OPEIAtIONS.ccvieieriertietieteeteseesieeteeaestesteesseeseesseessesseessaesseessesssesseesseesseesseessensenns
5.1 SYNONYM AETINITIONS ...eeveeieiieitieiti ettt ettt ee st e et et e et et eene et e e beeteeneeeneeeneenne
5.2 PIIMILIVE VAIUEviieiieiiiecieeceeee ettt et ettt e e te e e b e e st e e s ebeessbeesaseesaseessseessseensseaenseennns
53 Values and EXPIESSIONSeeuvereeruieieiertierteerte et eeeeteesttesteenteeateeseesseesseesseenseesseeneeeneesseesseenseenseeneens

© ISO/IEC 2003 — All rights reserved

Page

O O O 0 I 1 O O Lt Li i D B B W W N — =

—_
oS O

W W N DD DN NN DN = /= = ==
0 1 O 00 &N U A W N NO IO WD

>~ B~ b
~N D

~ L W W
S »n A B

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

10

Page
AACTIOMIS ..ttt ettt h e bt ettt et s h bt e bt e a e e a et b e h e e bt et e et e ehe e e ht e bt et e e bt e beenteeetenaeeneee 79
6.1 L€ 1 13 | DO OO RRPPRPRR 79
6.2 ASSIZNIMEINE ACTIOMveuvitietieteeieeteeetesttesteeteetesetesseeseenseasseesaesseesseensesnsesneesseenseanseensesnsesssesseesseenses 79
6.3 6 T o ' PR RSP 81
6.4 L R 115103 BSOSO P PRSP 81
6.5 LD oI To1 5 o) 1 OO OO O OO PR PR 83
6.6 L2 L T o) PP 86
6.7 L1 | 17 110)3 USSP 87
6.8 ReSUlt and TETUIMN ACTIOM. .. .evieiieitieie ettt ettt e st e e b e e ae e e snee st enseenseensessaessnesneenns 90
6.9 LN L0 L0 L0]1 (0) | P PP PPI 90
6.10] ASSEIT ACHIOMN . .e..eeiietieteete ettt ettt ettt b et et e et s bt sbe e s bt e bt et satesbe e bt et ea bt eat e eaneeatenbeenbeenens 91
.11 EMPLY QCHOM c..eeiiiiiiiiiiriieiesiceteeeet ettt ettt sttt ettt et sae b s eseeseenenaesnesnee oo on 91
6.12 | CAUSE QCTION ..eeeuvieeiiieiieeiie et et e etee et e et e et eesbeeeabeesebeeeaseesebaessseesssaesaseessseesssesssseenssessssees s ibndaenes 91
6.13 STATT ACTIOM ..ottt ettt et st sieesbeenbeenesseesmnesmeese oD on b e e 91
6.14 | StOP ACHIOM.cuuiietieeiieeiieeiteetteeteeeieeeteesteeeteesbeeenseessbaeenseesnseessseessseessseessseessseessseeshteshersueensueennnes 91
6.15 CONLNUE ACTION ..veiuvieeiiieeiieeieecieeeteeeveeereesveesbeeseveessseeseveessseesssesssseessseessseesssesdeNe¥aeesreessresssseeann 92
6.16 Delay ACHION ..ueeuviiiiiiiriiiieeiteteteterce ettt e ettt 92
6.17 | Delay CaSE ACtIOM....uuieiurieeeiieiieeiieeiieerieeeteeeieesteesaeesreesseessseessseessseenses beneSaressseeenseessseeenseeenssesnsnes 92
6.18 | Send ACIONeouiiiiiiiiiiieiccee ettt e e s g ettt 93
6.19] RECEIVE CASE ACLION ..eeuviiniieniieiieiiieiieriteieeieeteete sttt st pathe et et et et e bt ebeeatesbaesbeesbeenae 94
6.20| CHILL built-in roUting CallS......c..coiiiiiiiiiieeiieeiieerie e e seteeereestaeeveeeteeenseeesbeesaseeeseneennnas 97
INPUY AN OULEPUL ...ttt ettt et eat et et e be bttt eat e bt et et ebenaeebesaeennennens 02
7.1 T/0 reference MOdel..........ooviiiiiiiiiiiieieee e e e e 02
7.2 ASSOCIAtION VAIUCS.....eeuiiiiiiiiiiiiiiriiiicricrcecece e ettt s 04
73 ACCESS VALUES ..ttt AN ettt st b e b et st bt s bt et e bt ebt e st et sbae b nae 04
7.4 Built-in routines for input OULPUL...........ooselid et 05
7.5 TEXE INPUL OUEPUL ..ottt e T et ettt ettt ettt ettt et et e b e st e b sbe et ebteseeseentenbeebeeaneneen 12
EXception handlingccvevvieiiriinienien ettt 20
8.1 GENETAL ... B ettt sttt et a ettt e bt s bt e b e bt ea e ent et e et et ebeeae et enean 20
8.2 HANAIETS . ettt b et ettt st eb e 21
8.3 Handler 1dentifiCation.ccuiieiieciie ettt ettt et ste et sbe e be e s tbeesaaeestbeesaeesaeesseesssaensseens 21
TIME SUPETVISION .. e ittt ettt ettt et et s bt sae et et e bbbt et ennenee 22
9.1 GENETAL.....vee e Te ettt et et e et e et e e et e e et e e aabeesabeeeaseeeabeeesseeesseaanseesaseaaaseesaseeenseessseesnseesnseeaseeanes 22
9.2 TIMEOULADIEIPIOCESSES ..veevvievrieeiieiieiiete et ete et e st e bt eteesteeteeere e beesseesbeesaesssesseesseessesssesssesseenseesseensens 22
9.3 TIMIN@AACTIONS ...ttt ettt ettt ettt b e bt e bt e bt e st e st et et e sb e et e ebeeseest et ensenaeebeabeeneeneenean 22
9.4 BUiltsit TOULINES FOT tIME.....viiiiiieiiiiciiecieeeie ettt et et e et e et e eteeebeeebeeesbeeesbaeenseeesssaennseens 24
PrORam SEUCTUIEeeitieeieieee ettt ettt et et e et e bt et e e e e eeesaeesaeeseeneeeneeese e seenteenseenseeneesneenns 25
10.1 Genertb——r e e e 25
10.2 REACHES ANA NESLINEveeivieiieiieiicie ettt ettt ste et e et e eebessaestaesseebeesseesseeseesssesseesseessesssesssesseenses 127
10.3 BegiN-end DIOCKS......ocouiiiieiieiiciectecitete ettt et e e s teesbe e be e b e esbeesbeesaessaesbaesbeesaesneenees 129
10.4 Procedure specifications and definitionsoceeoiirierieiieiiee e 129
10.5 Process specifications and definitionsccueeeirieiieiieiesiee e 134
LO.6 MOAUIES. ...ttt ettt e et b e bt e bt et e et et e bt e bt eb e e st et sae bt bt eneentens 134
TO.7 REEIONS...cuiiiieiiciieieetteete ettt e et e st esteesteebeesaeeseeeseesseesseesseessesssesseesaesseessessseessesssenseensenssenssesssesssenses 135
LO.8 PIOZIAIM....couiiiiiiiiit ettt ettt e s bt e bt e s bt e bt e sab e e bt e e sbbe e bt e e sabeesbteebae e bt e e nbaeenees 135
10.9 Storage allocation and LIfEtIME..........c.eeiiiiiiiiiiee e 136
10.10 Constructs for pieCEWISE PrOZIAMIMING.cevveruierreerreereeeesreesseesseesesssesseesssesseesseessesssesssesseessessses 136
TO. 1T GeNEIICTEY cuvevietientieitieiieetteetee it ete et e site st e saeesbeesseestesseesseenseessesssessaessaesseessesssesssenssenseessenssenssesssessnensns 141

© ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

11 CONCUITENE EXECULIONeeutieueieiteettenteett et eate et e st este e bt eateestesbtesbee s bt e bt emtesseeeaeesbee bt enteemteeaaeestesbeesbeesbeenbeenseenee
11.1 Processes, tasks, threads and their defINItIONSvvviiiiiiiiiiiiiiic e
11.2 Mutual eXclusion and TEZIONSecviiriierieeiiienieerteerte ettt ereeesteeeseaeetaeesaeeebeeesseesssaeeseesnsaeeseesnses
11.3 Delaying of @ threadcouiiiiiriiiieee ettt st
11.4 Re-activation 0f @ threadc.ccoiiiririiiiiiier ettt e
11.5 Signal definition StAtEMENLSc.ceeriiiiriitirtirtente ettt ettt ettt st sttt nee b e
11.6 Completion of Region and Task I0CALIONScccueeriiieiiieiiiiieiieeiie et eiee e e e e sbeesaeeebeesveenene
12 GENETAl SEMANTIC PTOPETTIES. . eeeuvreerreetreetieeiteerttesiteesteesseessseessseessseessseesseessseessesasseessesanseesssesessessnsseesseesnses
12.1 IMOAE TULES. ...ttt ettt b e bttt et et s bt e s bt e s bt et et s st e sbeesbeenbee b e enbeenaes
12.2 Visibility and name DINAINGccoveiiiiieriieiiieeiieciteee ettt ste e e eaeeebreebeeenbaesbeesnbeeeseeenees
12.3 CaSE SCIECTIONeuiieieiieiieie ettt ettt te st e st et et e et e s st e teenseenseensesseesseenseensesnnesneenseanseensens e doanes
12.4 Definition and summary of SEmMantic CatEZOTICScverueerrrererreerieriereeeieeeeseeeneeeeeeeeseee e e drenes
13 IMPIementation OPLIONSce.eeueeteriiriiriinieniereeit ettt ettt et sttt s vt eaeeneeneneensese e fe e s e
13.1 Implementation defined built-in TOULINEScoevereerereeierienienenineneneeeeeeeene L T
13.2 Implementation defined inte@er MOAEScccvverveerreenieeniieieeieeseeeee e N e o
13.3 Implementation defined floating point MOdes.........ccceeveeevieeereeecieeneenceesn e b o
13.4 Implementation defined Process NAMEScc.eevcveerireerveenieereeenreenee e AN et eiee e eeeeevee e o
13.5 Implementation defined handlers............ccccooinininininiiiinininn i
13.6 Implementation defined eXCEPtion NAMEScc.everuerieeeienieninre ettt eeeee e
13.7 Other implementation defined featuresc..coccoccverveeveecensne L
Appendix I — Character set for CHILLccccociviiiininienenininenennes o e Joa
Appendix IT — SPecial SYMDOIScoviiiriiiiieiierieerie e aiae e ereesreeenteesnseessseesssaessseesssessssessnsesssessnsesdoaees
Appendix III — Special SImple NAME SEINES ..eevvveerveeriieriienieee ettt ettt eteesreesteesbeeseaeesreesnreesnnee doaeas
1.1 Reserved SImMple NAME STIINESoveeveereeeee s et eereereetteeteesteesreeseesaeseeesseesseesseessesssesssesseesseessdiones
II1.2 Predefined Simple NAME STINES......c.cccverieaenrerrieieiie e seesteereereeeeseeesreereeseessesssesseesseesseessees foonns
II1.3 EXCePtion NAMESeevvveeereerireereesee e frieeiiesieeeiee st et e st e et e st e saeeseveeseneessveesnseeseneensneessdoanne
Appendix IV — Program eXamples.........cocveiiiire e fiieeeeeeietentenienieeieeieeitetentesie sttt eseeneesenaesseseesuessesseensensensensens fouees
IV.I Operations 0N INEEZETS.......c.ecefigbererrerrerreeeetertentenienteeueeseestensensentestessesseeseensensensensessessessesneeneensensedoenne
IV.2 Same operations 0N fraCtiOmS .. coueeueeuieeeieientenenieeie ettt sttt ettt st eseesne e e
IV.3 Same operations on cOMPIeX NUMDETScceererrieriierierieriieie e eeeseee e ee e reesreeseeeseenee e e
IV.4 General order arithmietiC.eoueeueeiiieieieere ettt st e
IV.5 Adding bit by bit. and checking the 1eSult.........ccceeviveiiiiiiiericicceeeeeeeee e e
IV.6 Playing With dates’.........cccooouieiieiiiieiiciece ettt s sre et esreenneennesnaesneens oo
IV.7 ROMAN NUMECFALS.......oiiiiiieiiiieii ettt et e e te et enteennesnaesneesneenseenseesfranee
IV.8 Counting-letters in a character string of arbitrary length............coccooovniiniiniininireen o
IV.9 Primi@ IiUMDETS ..cc.eeiuiiiiiiieieiieit ettt ettt ette st e bt esaeeteeneesneesneesaeenseeneeeneesneenseenseenseesseenseesfoenes
IV.10 Implementing stacks in two different ways, transparent to the user..........ccccceveeeveeveveeveeneene foe
IV.1 18 Pragment fOor playing ChESScc.vcciieiiiiiiieiieie ettt ettt te e aeebeessessaessnesnaesseese e frenns
IVel2y Building and manipulating a circularly linked Listcccoeevirierienieiieieeieceeseeeeee e o
IV.13 A region for managing competing acCesSes t0 @ IESOUICEccvverveerreereereraerreesreesseesesseseesseesfoone
NH4—OQueningeallsteaswitehbostd e
IV.15 Allocating and deallocating a S€t Of FESOUICESc.eerureruieiieiieiiertieie ettt
IV.16 Allocating and deallocating a set of resources using buffersccecceeverieriiiiieniiic e
IV.17 SHINE SCANNET L ..eouviiiiiiiiiieiiciiectieie ettt ettt e ste et e esteeseeseteste e seesseenseesseessessaessaesseesseessessaesseesseenseenes
TV.18 SHINE SCANNEIZuicuiieiiieeiieiiectieie it eeteeete et e steesteesseesseeseesetesseesseesseesseesseessasssesaesseenseessesseesseeseenseenns
IV.19 Removing an item from a double HNKed LIStcceecviveiiiiiiiiriieiicieee e
IV.20 Update a 1ecord 0 @ fIl€.....ueeiuieiieiieiiece ettt et
IV.21 Merge tWo SOITEA fI1ES.....uuiuieeieiieiiee ettt ettt ettt e et e e e eeeneeseeeneeeeeenee
IV.22 Read a file with variable length records...........cccooriiiiiiiie e
IV.23 The use 0f SPEC MOAUIESoeiuieiieiiietieiiee ettt ettt ettt e esseesbeenseeeeeneeenee
IV.24 EXAMPIE O @ CONTEXL...ueiiuiiriieitieiieiieiiectteie et eieeteste st et e ste et e esaeeaeesteessaesseessaessesssesseessaeseenseensennes
IV.25 The use of prefixing and remote MOAUIESceccviiiiiierieriei et

© ISO/IEC 2003 — All rights reserved

Page

144
144
145
148
148
148
149

149
149
160
167
169

173
173
173
173
173
173
173
173

175
176

177
177
178
178

179
179
179
180
180
180
181
182
183
184
184
185
188
189
190
190
192
194
195
196
196
197
198
199
199
199

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

Page

IV.26 The USE OF tEXE 1/0.uueuuitiiirtietiiieeitetet ettt ettt ettt ettt sttt et et e b e nae st s bt ebeennens 200
IV.27 A GENETIC STACK ...ttt ettt ettt s et e s e e nseenaesneesaeeseenseenseenseensesnsesnnenes 201
IV.28 AN aDSIACt dAta LD .ccevieiiieriiieiiiieeie ettt ettt erte ettt e et e e teeeteeeaaeetaeesseesnsaeesseeensaeenseeenseeenseesnns 202
IV.29 Example of @ SPEC MOAUIEeeeviiiiiieiiieie ettt et e e tee et e e et e e st e e ssbeesnbeesnbeessseesnseennns 202
IV.30 Object-Orientation: Modes for Simple, Sequential Stacks...........cccovievieiieiiiiiieniecee e 202
IV.31 Object-Orientation: Mode Extension: Simple, Sequential Stack with Operation "Top".................. 204
IV.32 Object-Orientation: Modes for Stacks with Access Synchronizationc.cceeeveeeveeveeeniieeneennns 204
Appendix V — DecoOmMMItted fRATUIES.cevuiiiiieriieiie ettt ettt e et e e e e eaeeeeaeesteessaeenseeessseesseensseensss 206
V.1 FTE@ QITECIIVE. ... cuintitiiietee ettt bttt et et ettt b e bbbt et sbe bt et enne e 206
V.2 INtEEET MOAES SYNEAK ... eeuvieuiieeiieieeiertiesie ettt et et et et et e ettesteesseesseensesasesneesseenseenseenseensensaesneesneennes 206
V3 Set MOdes WIth NOLES........co.uiriiiiiiie ettt sttt e s 206
V.4 Procedure MOAES SYNMEAXcccuiiiiiieetieiiieeteesteeeieeeteeeteesbeeeteesabeeenseessbeeasseesnseeenseesnseeanseesnssesnsseopn 206
V.5 SEENG MOAES SYNEAK 1..vveeerieririeitiieiteesteeste ettt este ettt eseteestreessaeessseessseesseeessseensseesssessssessssesssessnseesoshos 207
V.6 ATTAY MOAES SYNEAX.....eeuveutiiirtinierieeitetetertenteste et et eatetestesbesaesbesbeestessensensensessessesseeseensense f Thbadeenne 207
V.7 Level Structure NOtAtION.ecverieeieee et eeiesteete et ete ettt eteeae e sseesseeeeeneesneesneenseense e I e e eeeeee 207
V.8 MaD TETETENCE NAIMNESeieeeeeiiieiieciie e eiteesteeieeesveesteeeseaeesteeessseesneessseensseessseenses forsdraneeesseenseens 207
V.9 Based declarations............cooeeieriieiiiiiiniinieeeeeneeeesee e e e e 207
V.10[Character string lteralscccvverireririrrienienenineneneneeeeeeneesreneneseneeee e M 207
V.11 RECEIVE EXPIESSIONS ...uveuviiiririieiieiieieientintenieeteeieeseetentenresteesesmeeneessensensss Mg tsfeeneensensensensensessesseenens 207
V12] Addr NOLAION c.oeeeniiiiiiiiiieieeieieeeste ettt e et ettt 207
VI3[ASSIZNMENE SYNEAX ..vvieireeiieeireeiiieerieeerieeesieeeteeesseeeseessseesseesssesesspmagfacesseesnseessseesssessseesssessssesssseesnns 207
V.14 Case action SYNLAXcc.eoerirrererireenienienienienenreneeeenensensessese epe Vortetentententensesueeseensesessessesneennens 207
V.15 DO fOr aCtiON SYNEAX ..cuveviriinririiriieieienientenienteeieeieeeere et eaiahe et ettt st sbesbeebeessensenbenaestesbeeneennens 207
V.16 EXPIiCit I0OP COUNETSeouviuiiiiiiriiriieiieieiee sttt ettt sttt ettt sae st sae et sbeeaeennens 208
V17| Call ACtION SYNEAX ..eeuvierieerieeieriierreerieerieeereseesseeseessesiatatbiseesseessesseesseesseessesseesseesseessesssesssssssesseseesses 208
V.18 RECURSEFAIL EXCEPLIOMN teouvieruiieriieeriieenreerireeseaSheeenereetreenseeeteeessnesssseesssessssessseesssesesseessseessseesnns 208
V.19 Start aCtion SYNEAX c..c.eeverueeueeieieieniinieneerenie e e ettt ettt ettt ettt st st s bt bt ettt eaestesbeeaeennens 208
V.20[EXplicit VAlUe TECEIVE NAIMEScvertirririieieef T eeerenretenientententeetteueeutestentetestestesueeseeeeensensensensensesueennens 208
V21| BIOCKS w8 ettt ettt b e et eb et e et st b e a e bt et et bt neeneeneen 208
V.22 ENMry StAtEIMENL. .. .coiuiieiieiiiieiiee e T ettt et e ette et e et e eateesbeeesteessseeenseesnseessseessseessseesnseesnseesnseennes 208
V.23 REGISIET NAMES ...ttt Tttt ettt ettt ettt s ae ettt enae st s bt b eanens 208
V.24] RECUISIVE AHITDULEeoutieeie e e d ettt ettt ettt et et et e esteseeesaeesseeneesneesaeesseenseenseeneesnsesneesneenns 208
V.25] Quasi cause statements and quasi handlersc.occeeierierieiiiiieiee e 209
V.26] Syntax of qUAST STALETICGIESccveeieiieieieiieerteeteettesteeste et e ebeeaesteesteesseessesseesseesseesseessesssasssessesseeees 209
V.27 Weakly visible names-dnd visibility StatemMents..........c.ccvevveecieiiereeiicie ettt 209
V.28] Weakly visible fiames and visibility Statementscceoveierierierieieeie e 209
VA] B oo o T NS 1T USRS 209
V.30] Seizing DYyMIOAULION NAIMNEciieiiiiiieiieieetieete et ete e seesteeteeaeseesaeesseesseesseessessaesseesseessesssesseesees 209
V.31| Predefingd Simple NAME STINES......c.cccveiierieeriieiieieeiesteesteereeresaeseesaeeseesseeseesseesseesseessesssesssesseesnes 209
Appendix V[— IndeX of production TUIESc.cceeeiiriiriininenieieeterteste sttt st sttt ettt sbesae st eanennens 210

Vi © ISO/IEC 2003 — All rights reserved

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 949

Foreword

ISO (the International Organization for Standardization) and IEC (the International Elect
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC

6:2003(E)

rotechnical

tec
ang
tec

Intgrnational Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Pa

The
Stg
an

Att

rights. 1SO shall not be held responsible for identifying any or all such patent rights.

1S
Su
col

Thi
rev

hnical committees collaborate in fields of mutual interest. Other international organizations, go
non-governmental, in liaison with 1ISO and IEC, also take part in the work. In the field, of
hnology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

b main task of the joint technical committee is to prepare International Standards. Draft |
ndards adopted by the technical committee are circulated to the member bodies for voting. Pu
nternational Standard requires approval by at least 75 % of the member podies casting a vote.

bntion is drawn to the possibility that some of the elements of this decument may be the subje

pcommittee SC 22, Programming languages, their envitenments and system software int
aboration with ITU-T. The identical text is published as ITU-T Rec. Z.200.

s fourth edition cancels and replaces the third edition (ISO/IEC 9496:1998), which has been
sed.

vernmental
nformation

It 2.
ternational

blication as

Ct of patent

/IEC 9496 was prepared by Joint Technical Committee” ISO/IEC JTC 1, Information technology,

© ISO/IEC 2003 — All rights reserved

erfaces, in
technically
Vii

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

CHILL — THE ITU-T PROGRAMMING LANGUAGE

This Recommendation | International Standard defines the ITU-T programming language CHILL. When CHILL was
first defined in 1980 "CHILL" stood for CCITT High Level Language.

The fo] nun'ng subclauses of this clause introduce-some-of the motiszations behind the]qngnqu r‘pcign and prnvide an

overvie

For inf
Manual

An altg
Manual

1.1

CHILL
embedd

CHILL
* e

. be
ha

. pr
e ca
¢ pe
* be

The exj
set of f3

Becaus
achieve
excepti

optiona], unlessa user defined handler is explicitly specified).

w of the language features.

rmation concerning the variety of introductory and training material on this subject, the reader is/referrs
5, "Introduction to CHILL" and "CHILL user's manual".

rmative definition of CHILL, in a strict mathematical form (based on the VDM notation), is availabl
entitled "Formal definition of CHILL".

General

is a strongly typed, block structured language designed primarily for/the-implementation of large and d
ed systems.

was designed to:
hance reliability and run time efficiency by means of extensive compile-time checking;

sufficiently flexible and powerful to encompass theirequired range of applications and to exploit a va
rdware;

vide facilities that encourage piecewise and modular development of large systems;
er for real-time applications by providimg built-in concurrency and time supervision primitives;
‘mit the generation of highly efficient object code;

easy to learn and use.

cilities such that thesesulting implementation can match the original specification more precisely.

e CHILL is careful to distinguish between static and dynamic objects, nearly all the semantic checking
d at compiletime. This has obvious run time benefits. Violation of CHILL dynamic rules results in 1
ns whieh:can be intercepted by an appropriate exception handler (however, generation of such implicit ¢

d to the

E in the

omplex

riety of

pressive power inhereat-in the language design allows engineers to select the appropriate constructs from a rich

can be
un-time
hecks is

CHILL

k. 4 1 st . 1o P | | 4 Tl 1 at 1C - 1o b |
}Jbllllllb PlUslalllD W UL WIILIUIT 11T a4 TTIAaVIInIe lllUbellUbllL ITIAanmer. 1 1IIC 1a115ua5\, IISVUIT 1S TIIAVIIIIC IITUv

endent;

however, particular compilation systems may require the provision of specific implementation defined objects. It should
be noted that programs containing such objects will not, in general, be portable.

1.2

Language survey

A CHILL program consists essentially of three parts:

e adescription of objects;

e adescription of actions which are to be performed upon the objects;

e adescription of the program structure.

ITU-T Rec. Z.200 (1999E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

Objects are described by data statements (declaration and definition statements), actions are described by action
statements and the program structure is described by program structuring statements.

The manipulatable objects of CHILL are values and locations where values can be stored. The actions define the
operations to be performed upon the objects and the order in which values are stored into and retrieved from locations.
The program structure determines the lifetime and visibility of objects.

CHILL provides for extensive static checking of the use of objects in a given context.

In the following subclauses, a summary of the various CHILL concepts is given. Each subclause is an introduction to a
clause with the same title, describing the concept in detail.

1.3 [~Modesand classes
A locatjon has a mode attached to it. The mode of a location defines the set of values which may reside-in_that Jocation
and other properties associated with it (note that not all properties of a location are determinable by its“mode| alone).
Propertjes of locations are: size, internal structure, read-onliness, referability, etc. Properties of(values are: [internal
represefitation, ordering, applicable operations, etc.

A valug has a class attached to it. The class of a value determines the modes of the locations‘that may contain the value.

CHILL |provides the following categories of modes:

— digcrete modes: integer, character, boolean, set (enumerations) modes and ranges thereof;
— redl modes: floating point modes and ranges thereof;

— poperset modes: sets of elements of some discrete mode;

— reference modes: bound references, free referencesard rows used as references to locations;
— composite modes: string, array and structure modes;

— précedure modes: procedures considered as manipulatable data objects;

— indtance modes: identifications forprocesses;

— syhchronization modes: event and buffer modes for process synchronization and communication;

— input-output modes: association, access and text modes for input-output operations;
— tinhing modes: duration and absolute time modes for time supervision;
— mgreta modes: module, region and task modes for object orientation with single inheritance.

CHILL|provides denctations for a set of standard modes. Program defined modes can be introduced by means ¢f mode
definitipns. Some-anguage constructs have a so-called dynamic mode attached. A dynamic mode is a mode of which
some pfoperties_ean be determined only dynamically. Dynamic modes are always parameterized modes with fun-time
paramefers. Aimode that is not dynamic is called a static mode.

With moreta-meodes
modes for objects:

— module modes: the values of these modes behave very much like modules and resemble therefore mostly the
objects in classical object oriented programming (e.g. Smalltalk, C++, Eiffel, Java);

— region modes: the values of these modes behave very much like regions. Such objects are usually not found in
classical object oriented programming;

— task modes: the values of these modes have essentially the same structure as regions but have their own
thread of control, and communication between them and other objects is done asynchronously.

Classes have no denotation in CHILL. They are introduced in the metalanguage only to describe static and dynamic
context conditions.

2 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

14

ISO/IEC 9496:2003(E)

Locations and their accesses

Locations are places where values can be stored or from which values can be obtained. In order to store or obtain a value,
a location has to be accessed.

Declaration statements define names to be used for accessing a location. There are:

1) location declarations;

2) loc-identity declarations.

The first one creates locations and establishes access names to the newly created locations. The latter one establishes new
access names for locations created elsewhere.

Apart fi
call yie

ding reference values (see below) to the newly created location.

om location declarations, new locations can be created by means of a GETSTACK or ALLOCATE built-in routine

A location may be referable. This means that a corresponding reference value exists for the location. This r¢ference

value i
referen

A locat]
new va

A locat|
not ned
proper
arrays,
A locat
The fol
referah

storagd

regiong

1.5

Values

ue into it (except when initializing).

ty. The accessing methods delivering sub-locations (or sub-yalyes) are indexing and slicing for strings
hnd selection for structures.

on has a mode attached. If this mode is dynamic, the lecation is called a dynamic mode location.
owing properties of a location, although statically-determinable, are not part of the mode:

ility: whether or not a reference value exists-for the location;

class: whether or not it is statically allocated;

lity: whether or not the location)is declared within a region.

Values and their'operations

5 obtained as the result of the referencing operation, applied to the referable location, By dereferepncing a
e value, the referred location is obtained. CHILL requires certain locations to be referable and others t¢ be not
referaljle, but for other locations it is left to the implementation to decide whether or not they ‘are referable. Ref
must bd a statically determinable property of locations.

brability

on may have a read-only mode, which means that it can only be accessed ‘to“obtain a value and not tq store a

on may be composite, which means that it has sub-locations whichyecan be accessed separately. A sub-logation is
essarily referable. A location containing at least one read-only- sub-location is said to have the repd-only

and for

are basic objects\on which specific operations are defined. A value is either a (CHILL) defined valye or an

undefied value (intthe CHILL sense). The usage of an undefined value in specified contexts results in an urldefined

situatio

CHILL

h (in the CHILL sense) and the program is considered to be incorrect.

allews' locations to be used in contexts where values are required. In this case, the location is accessed t

the valy

e‘eOntained in it.

b obtain

A value has a class attached. Strong values are values that besides their class also have a mode attached. In that case the
value is always one of the values defined by the mode. The class is used for compatibility checking and the mode for
describing properties of the value. Some contexts require those properties to be known and a strong value will then be
required.

A value may be literal, in which case it denotes an implementation independent discrete value, known at compile time.
A value may be constant, in which case it always delivers the same value, i.e. it need only be evaluated once. When the
context requires a literal or constant value, the value is assumed to be evaluated before run-time and therefore cannot
generate a run-time exception. A value may be intra-regional, in which case it can refer somehow to locations declared
within a region. A value may be composite, i.e. contain sub-values.

Synonym definition statements establish new names to denote constant values.

ITU-T Rec. Z.200 (1999E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

1.6 Actions
Actions constitute the algorithmic part of a CHILL program.

The assignment action stores a (computed) value into one or more locations. The procedure call invokes a procedure, a
built-in routine call invokes a built-in routine (a built-in routine is a procedure whose definition need not be written in
CHILL and whose parameter and result mechanism may be more general). To return from and/or establish the result of a
procedure call, the return and result actions are used.

To control the sequential action flow, CHILL provides the following flow of control actions:
— ifaction: for a two-way branch;

— case action: for a multiple branch. The selection of the branch may be based upon several values, similarly to

| i . i |
d UCLISIVIL LdUIC,

— dolaction: for iteration or bracketing;

— ex|taction: for leaving a bracketed action or a module in a structured manner;
— cafise action: to cause a specific exception;

— golo action: for unconditional transfer to a labelled program point.

Action jand data statements can be grouped together to form a module or begin-end blogk, which form a (compound)
action.

To confrol the concurrent action flow, CHILL provides the start, stop, delay, continue, send, delay case, and recejve case
actions] and receive and start expressions.

1.7 Input and output

The ingjut and output facilities of CHILL provide the means toCeommunicate with a variety of devices in the|outside
world.

The input-output reference model knows three states. In the free state there is no interaction with the outside worlgl.

Through an ASSOCIATE operation, the file handling’ state is entered. In the file handling state there are locafions of
associafion mode, which denote outside world gbjects. It is possible via built-in routines to read and modify the language
defined|attributes of associations, i.c. existing, readable, writeable, indexable, sequencible and variable. File freation
and delgtion are also done in the file handling state.

Through the CONNECT operation, a'lo¢ation of access mode is connected to a location of an association mode,|and the
data trapnsfer state is entered. The CONNECT operation allows positioning of a base index in a file. In the data |transfer
state vafious attributes of locations of access mode can be inspected and the data transfer operations READRECORD and
WRITERECORD can be applied.

Through the text tramsfer operations, CHILL values can be represented in a human-readable form which|can be
transferred to or fronpa‘file or a CHILL location.

1.8 Exceéption handling

The d 213 emanti onditieons r\‘P CHH L -are thoce (mhon-context P«-aa\ ondittons-that—in-seneral nnotbec atically

BaHe-Seantc—coRrattHoRsS Tt THOST O SOt OxT1T COTOTtIoS a1 5vuuu,u, SO t+be-5

determined. (It is left to the implementation to decide whether or not to generate code to test the dynamic conditions at
run time, unless an appropriate handler is explicitly specified.) The violation of a dynamic semantic rule causes a run-
time exception; however, if an implementation can determine statically that a dynamic condition will be violated, it may
reject the program.

Exceptions can also be caused by the execution of a cause action or, conditionally, by the execution of an assert action.
When, at a given program point, an exception occurs, control is transferred to the associated handler for that exception, if
one is specified. Whether or not a handler is specified for an exception at a given point can be statically determined. If no
explicit handler is specified, control may be transferred to an implementation defined exception handler.

Exceptions have a name, which is either a CHILL defined exception name, an implementation defined exception name,
or a program defined exception name. Note that when a handler is specified for an exception name, the associated
dynamic condition must be checked.

4 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

1.9 Time supervision

Time supervision facilities of CHILL provide the means to react to the elapsing of time in the external world. A process
becomes timeoutable when it reaches a well-defined point in the execution of certain actions. At this point it may be
interrupted. When this happens, control is transferred to an appropriate handler.

Programs may detect the elapsing of a period of time or may synchronize to an absolute point of time or at precise
intervals without cumulated drifts. Built-in routines for time are provided to convert absolute time values and duration
values into integer values, to suspend a process until a time supervision expires.

1.10 Program structure

The prqgram structuring statements are the begin-end block, module, procedure, process, region and moretasmgde. The
prograr structuring statements provide the means of controlling the lifetime of locations and the visibility.ef\names.

The lif¢time of a location is the time during which a location exists within the program. Locations can be explicitly
declarefl (in a location declaration) or generated (GETSTACK or ALLOCATE built-in routing»¢all), or they|can be
implicifly declared or generated as the result of the use of language constructs.

A namg¢ is said to be visible at a certain point in the program if it may be used at that point. The scope of|a name
encompjasses all the points where it is visible, i.e. where the denoted object is identificd by that name.

Begin-dnd blocks determine both visibility of names and lifetime of locations.

Modulds are provided to restrict the visibility of names to protect against unauthorized usage. By means of Visibility
statemejnts, it is possible to exercise control over the visibility of nanigs.in various program parts.

A procddure is a (possibly parameterized) sub-program that may"be invoked (called) at different places within a program.
It may [return a value (value procedure) or a location (location procedure), or deliver no result. In the latter ¢ase the
procedyre can only be called in a procedure call action.

Processes, task locations, regions and region locatibns provide the means by which a structure of concurrent ex¢cutions
can be gchieved.

Generid templates provide the means by ‘which generic modules, regions, procedures, processes and moreta mddes can
be condtructed. These templates can (b€ parameterized by SYN constants, modes and procedures. Generic instantiation
statements are used to obtain (nongeneric) modules, regions, procedures, processes and moreta modes which arg called
generic| instances. A generic ifistance is obtained from a generic template T by replacing in T the formal |generic
parameters with the corresponding actual generic parameters.

A complete CHILL pfogram is a list of program units that is considered to be surrounded by an (imaginary) [process
definitipn. This outetmost process is started by the system under whose control the program is executed. A progfam unit
can be p moduley a region, a moreta synmode definition statement, a moreta newmode definition statement or afgeneric
templatg.

Constructs“are Prnvide to facilitate various wavs of PiP(‘PWiQP dPVP](\I‘\mPT‘If of pragrams A spec module ahd spec
region are used to define the static properties of a program piece, a context is used to define the static properties of seized
names. In addition it is possible to specify that the text of a program piece is to be found somewhere else through the
remote facility.

1.11 Concurrent execution

CHILL allows for the concurrent execution of program units. A thread (process or task) is the unit of concurrent
execution. The evaluation of a start expression causes the creation of a new process of the indicated process definition.
The process is then considered to be executed concurrently with the starting thread. CHILL allows for one or more
processes with the same or different definition to be active at one time. The stop action, executed by a process or a task,
causes its termination.

ITU-T Rec. Z.200 (1999E) 5

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

A thread is always in one of two states; it can be active or delayed. The transition from active to delayed is called the
delaying of the thread; the transition from delayed to active is called the re-activation of the thread. The execution of
delaying actions on events, or receiving actions on buffers or signals, or sending actions on buffers, or call action to a
component procedure of a region location, or call action to a component procedure of a task location in case there is not
enough storage to perform can cause the executing thread to become delayed. The execution of a continue action on
events, or sending actions on buffers or signals, or receiving actions on buffers, or release of a region location, or at the
beginning of the execution of an externally called component procedure of a task location can cause a delayed thread to
become active again.

Buffers and events are locations with restricted use. The operations send, receive and receive case are defined on buffers;
the operations delay, delay case and continue are defined on events. Buffers are a means of synchronizing and
transmitting information between processes. Events are used only for synchronization. Signals are defined in signal
definition statements. They denote functions for composing and decomposing lists of values transmitted between
processgs. Send actions and receive case actions provide for communication of a list of values and for synchronizjtion.

A regidqn or region location is a special kind of module. Its use is to provide for mutually exclusive jaccess|to data
structures that are shared by several threads.

1.12 General semantic properties

The serpantic (non context-free) conditions of CHILL are the mode and class compatibility conditions (mode checking)
and thq visibility conditions (scope checking). The mode rules determine how_fhames may be used; the scope rules
determine where names may be used.

The mdde rules are formulated in terms of compatibility requirements_between modes, between classes and between
modes pnd classes. The compatibility requirements between modes.and classes and between classes themselves are
defined| in terms of equivalence relations between modes. If dynaniic modes are involved, mode checking if partly
dynamip.

The scqpe rules determine the visibility of names through-the program structure and explicit visibility statements. The
explicit] visibility statements influence the scope of theymentioned names. Names introduced in a program have|a place
where they are defined or declared. This place is called the defining occurrence of the name. The places where the name
is used [are called applied occurrences of the nanie; The name binding rules associate a unique defining occurrence with
each applied occurrence of the name.

1.13 Implementation options

CHILL] allows for implementation defined integer modes, implementation defined built-in routines, implemgntation
defined|process names, imiplémentation defined exception handlers and implementation defined exception names

An impjlementation, defined integer mode must be denoted by an implementation defined mode name. This hame is
considered to bé\defined in a newmode definition statement that is not specified in CHILL. Extending the pxisting
CHILL}defingd-arithmetic operations to the implementation defined integer modes is allowed within the frameork of
the CH|LE syntactic and semantic rules. Examples of implementation defined integer modes are long integers, and short
integers

A built-in routine is a procedure whose definition need not be written in CHILL and that may have a more general
parameter passing and result transmission scheme than CHILL procedures.

A built-in process name is a process name whose definition need not be written in CHILL and that may have a more
general parameter passing scheme than CHILL processes. A CHILL process may cooperate with built-in processes or
start such processes.

An implementation defined exception handler is a handler appended to a process definition. If this handler receives
control after the occurrence of an exception, the implementation decides which actions are to be taken. An
implementation defined exception is caused if an implementation defined dynamic condition is violated.

6 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

2

2.1

ISO/TEC 9496:2003(E)

Preliminaries

The metalanguage

The CHILL description consists of two parts:

» the description of the context-free syntax;

e the description of the semantic conditions.

2.1.1

The context-free syntax description

The comtext-free syntax is described using an extension of the Backus-Naur Form. Syntactic categories are indid

one or
called 4

A prodiiction rule for a non-terminal symbol consists of the non-terminal symbol at the left-hand side ©f the sym|

and ong
are sepg

Sometif
free des

Syntact
indicatg
numbe
exampl
syntact]
group n

A distir]
derived
explain

It is t
Recomi

context
of the s

2.1.2

Each sj
proper

The seq

The se
propert

more English words, written in slanted characters, enclosed between angular brackets (< and >). Thi§ ind
non-terminal symbol. For each non-terminal symbol, a production rule is given in an appropriate-syntax

or more constructs, consisting of non-terminal and/or terminal symbols at the right-hand side. These co
rated by a vertical bar (|) to denote alternative productions for the non-terminal symbol.

mes the non-terminal symbol includes an underlined part. This underlined part does riot form part of the
cription but defines a semantic category (see 2.1.2).

c elements may be grouped together by using curly brackets ({ and }). Repétition of curly bracketed g
d by an asterisk (*) or plus (7). An asterisk indicates that the group is optional and can be further repes
of times; a plus indicates that the group must be present and can be“further repeated any number of tin
e, { A }* stands for any sequence of 4's, including zero, while { A1 Stands for any sequence of at least g

hay contain one or more vertical bars, indicating alternative syntactic elements.

ction is made between strict syntax, for which the semantic conditions are given directly, and derived syn
syntax is considered to be an extension of the strict;syntax and the semantics for the derived syntax is in
pd in terms of the associated strict syntax.

be noted that the context-free syntax(description is chosen to suit the semantic description
mendation | International Standard and.is'not made to suit any particular parsing algorithm (e.g. there a

free ambiguities introduced in the interest of clarity). The ambiguities are resolved using the semantic d
yntactic elements.

The semantic description

bntactic category (nofi-terminal symbol) is described in sub-sections semantics, static properties, d
ies, static conditions and dynamic conditions.

tion semanties ‘describes the concepts denoted by the syntactic categories (i.e. their meaning and behaviou

Ction static properties defines statically determinable semantic properties of the syntactic category
es ate\ised in the formulation of static and/or dynamic conditions in the sections where the syntactic cat

ated by
cator is
section.
bol .=,
nstructs

context-

roups is
ted any
hes. For
ne 4. If

c elements are grouped using square brackets ([and]), then thé\group is optional. A curly or square bijacketed

ax. The
directly

in this
e some
ategory

ynamic

r).

These
Pgory is

used.

The section dynamic properties defines the properties of the syntactic category, which are known only dynamically.

The section static conditions describes the context-dependent, statically checkable conditions which must be fulfilled
when the syntactic category is used. Some static conditions are expressed in the syntax by means of an underlined part in
the non-terminal symbol (see 2.1.1). This use requires the non-terminal to be of a specific semantic category. For
example, boolean expression is identical to <expression> in the context-free sense, but semantically it requires the

express

ion to be of a boolean class.

The section dynamic conditions describes the context-dependent conditions that must be fulfilled during execution. In
some cases, conditions are static if no dynamic modes are involved. In those cases, the condition is mentioned under
static conditions and referred to under dynamic conditions. In other cases, dynamic conditions can be checked
statically; an implementation may treat this as a violation of a static condition.

ITU-T Rec. Z.200 (1999E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

In the semantic description, different fonts are used in the following ways: slanted font (without < and >) is used to
indicate syntactic objects; corresponding terms in roman font indicate corresponding semantic objects (e.g. a location
denotes a location). Bolding is used to name semantic properties; sometimes a property can be expressed syntactically as
well as semantically (e.g. the sentence "the expression is constant" means the same as "the expression is a constant
expression").

Unless otherwise specified, the semantics, properties and conditions described in the sub-section of a syntactic category
hold regardless of the context in which in other sections that syntactic category may appear.

The properties of a syntactic category A that has a production rule of the form A4 ::= B, where B is a syntactic category,
are the same as B unless otherwise specified.

In this Recommendation | International Standard, virtual names are introduced to describe modes, locations and values
which do_not occur PY}’\]iPifl\/ in the program text In such cases the name ig prPrPde by an ﬂmpprqnnd (&) ;ymbol_

These rlames are introduced for descriptive purposes only.

2.1.3 The examples

For mofpt syntax sections, there is a section examples giving one or more examples of the defined\syntactic categories.
These dxamples are extracted from a set of program examples contained in Appendix IV. References indicate vip which
syntax fule each example is produced and from which example it is taken.

For exdmple, 6.20 (d+5)/5 (1.2) indicates an example of the terminal string (d+5)/3, produced via rule (1.2) of the
appropifiate syntax section, taken from program example no. 6 line 20.

2.14 The binding rules in the metalanguage

Sometifnes the semantic description mentions CHILL special simple name” strings (see Appendix III). These|special
simple hame strings are always used with their CHILL meaning and are therefore not influenced by the binding frules of
an actugl CHILL program.

2.2 Vocabulary

Programps are represented using the CHILL character, set (see Appendix I) except for wide character literals, wide
charactgr string literals and comments. The representation of a CHILL program is not specified, which means that it is
also popsible to use a multi-byte character represenfation. The CHILL alphabet is represented by the syntactic dategory
<charagter>, from which any character that iS in'the CHILL character set can be derived as a terminal production. The
charactgrs of UCS-2 level 1 are represented by the syntactic category <wide character>, from which any charagter that
is in thg UCS-2 level 1 set can be derived as a terminal production.

The lexlical elements of CHILL are
e spgcial symbols;

* sifiple name strings;

e litgrals.

The spdcial symbols are listed in Appendix II. They can be formed by a single character or by character combinat{ons.

Simple jname strings are formed according to the following syntax:

syntax:

<simple name string> ::= (1)

<letter> { <letter> | <digit>| _}* (1.1)

<letter> ::= (2)
A|B|C|DIE|F|G|H|I|J|IK|L|M (2.1)
INJO[P|QIR[S|T|U|V[W[X]|Y|Z (2.2)
la|blc|dle|f|glhfi|j[k|l[m 2.3)
Infofplqlr|s|tiulv[w[x]|y]|z 2.4)

<digit> ::= 3)
0]11213]|4]5]16|7|8]9 (3.1)

8 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

semantics: The underline character (_) forms part of the simple name string; e.g. the simple name string /life time is
different from the simple name string lifetime. Lower case and upper case letters are different, e.g. Status and status are
two different simple name strings.

The language has a number of special simple name strings with predetermined meanings (see Appendix III). Some of
them are reserved, i.c. they cannot be used for other purposes.

The special simple name strings in a piece must either all be in upper case representation or all be in lower case
representation. The reserved simple name strings are only reserved in the chosen representation (e.g. if the lower case
fashion is chosen, row is reserved, ROW is not).

static conditions: A simple name string may not be one of the reserved simple name strings (see Appendix III.1).

2.3 The use of spaces

A sequg¢nce of one or more spaces is allowed before and after each lexical element. Such a sequence is\Called a d¢limiter.
Lexical| elements are also terminated by the first character that cannot be part of the lexical element. For ipstance,
IFBTHEN will be considered a simple name string and not as the beginning of an action IF-B THEN, //*|will be
considered as the concatenation symbol (//) followed by an asterisk (*) and not as a divide.symbol (/) followgd by a
commeht opening bracket (/*).

24 Comments
syntax:
<comment> ::= (1)
<bracketed comment> (1.1)
| <line-end comment> (1.2)
<bracketed comment> ::= 2)
/* <character string> */ (2.1)
<line-end comment> ::= 3)
— — <character string> <end-of-line> (3.1)
<character string> ::= 4)
{ <character> _} % (4.1)
| { <wide charactér> }* 4.2)

NOTE - End-of-line.denotes the end of the line in which the comment occurs.
semantiics: A commeniconveys information to the reader of a program. It has no influence on the program semantics.
A comment may benserted at all places where spaces are allowed as delimiters.

A bracketed comment is terminated by the first occurrence of the special sequence: */. A line-end comment is terpinated
by the firstoceurrence-ofthe-end-ofthe line

SeHTCH tHCTHHC-

examples:
4.1 /* from collected algorithms from CACM no. 93 */ (2.1)
2.5 Format effectors

The format effectors BS (Backspace), CR (Carriage return), FF (Form feed), HT (Horizontal tabulation), LF (Line feed),
VT (Vertical tabulation) of the CHILL character set (see Appendix I, positions FE(to FEs) and the end-of-line are not
mentioned in the CHILL context-free syntax description. When used, they have the same delimiting effect as a space.
Spaces and format effectors may not occur within lexical elements (except character string literals).

ITU-T Rec. Z.200 (1999E) 9

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

2.6

syntax:

Compiler directives

<directive clause> ::=
<> <directive> { , <directive> }* <>

<directive> ::=
<implementation directive>

(1)
(1.1)

2)
2.1)

semantics: A directive clause conveys information to the compiler. This information is specified in an implementation
defined format.

An imp

ementation directive must not influence the program semantics. i.e. a program with implementation directives is

correct,

A dired
charact

static properties: A directive clause may be inserted at any place where spaces are allowed as délimiters. It has t
ng effect as a space. The names used in a directive clause follow an implementation defined name
which does not influence the CHILL name binding rules (see 12.2).

delimitj
scheme

2.7

syntax:

in the CHILL sense, if and only if it is correct without these directives.

r of the character set (see Appendix I).

Names and their defining occurrences

five clause is terminated by the first occurrence of the directive ending symbol (<>). A directive may’ con|

ain any

he same
binding

10

<name> ::= (1)
<name string> (1.1)

| <qualified name> (1.2)

| <moreta component name> (1.3)

<name string> ::= (2)
<simple name string> (2.1)

| <prefixed name string> (2.2)
<prefixed name string> ::= (3)
<prefix> | <simple namé. string> (3.1)

<prefix> ::= (4)
<simple prefix>\{JV <simple prefix> }* (4.1)

<simple prefix> ::= (5)
<simplésname string> (5.1)

<defining oceurrence> ::= (6)
ssimple name string> (6.1)

<defiiting occurrence list> ::= (7)
<defining occurrence> { , <defining occurrence> }* (7.1)

STt etement mame>T= ()
<simple name string> (8.1)

<set element name defining occurrence> ::= “)
<simple name string> (9.1)

<field name> ::= (10)
<simple name string> (10.1)

<field name defining occurrence> ::= (11)
<simple name string> (11.1)

<field name defining occurrence list> ::= (12)
<field name defining occurrence> { , <field name defining occurrence> }* (12.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

produc
termin
object (
the casq

Defininj
defining

Similar
by thos
denote

Excepti

Text re
to the ry

When 4
bound

Qualifi

<exception name> ::= (13)
<simple name string> (13.1)

| <prefixed name string> (13.2)

<text reference name> ::= (14)
<simple name string> (14.1)

| <prefixed name string> (14.2)
<component name> ::= (15)
<simple name string> (15.1)
<component name defining occurrence> ::= (16)
<simple name string> (16.1)
<qualified name> ::= (K7
<simple name string> | <component name> r7.1)

<moreta component name> ::= (18)
<moreta location> . { <simple name string> | <qualified name> } (18.1)

ion of name) in a program, the binding rules of 12.2 provide defining occuriences (formally: occurrgnces of
productions of defining occurrence) to which that (occurrence of) name is.bound. The name then denptes the
efined or declared by the defining occurrences. (There can be more than one defining occurrence for a pame in
of names with quasi defining occurrences and in the case of names of‘components of moreta modes.)

semanjes: Names in a program denote objects. Given an occurrence of a name (formally‘ah occurrence of a ferminal

o occurrences are said to define the name. A name is said to be an'applied occurrence of the name createfl by the
b occurrence to which it is bound. The name has its rightmost simple name string equal to that of the name.

y, field names are bound to field name defining occurrehces and denote the fields (of a structure mode)|defined
e field name defining occurrences. Moreta component\names are bound to component defining occurrerlces and
he components (of a moreta mode) defined by thosé’component name defining occurrences.

on names are used to identify exception handlers according to the rules stated in clause 8.

ference names are used to identify desCriptions of pieces of source text in an implementation defined way/ subject
iles in 10.10.1.

name is bound to more than.one defining occurrence, each of the defining occurrences to which the hame is
Hefines or declares the same‘ebject (see 10.10 and 12.2.2 for precise rules).

d names are used to-idéntify components of moreta modes.

characters in NS.

ion of notation{ Given a name string NS, and a string of characters P, which is either a prefix or is empty, the

erwise P NSHs-thenamestrine-obtain —eoneatenatine—al-the-characters+n a5 Hre A and all the

For example, if Pis "g / 7" and NSis "s / n" then P | NSis"g /r /s ! n".

static properties: Each simple name string has a canonical name string attached which is the simple name string itself.
A name string has a canonical name string attached which is:

» if the name string is a simple name string, then the canonical name string of that simple name string;

e if the name string is a prefixed name string, then the concatenation in left to right order of all simple name strings in
the name string, separated by prefixing operators, i.e. interspersed spaces, comments and format effectors (if any)
are left out.

ITU-T Rec. Z.200 (1999 E) 11

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

In the rest of this Recommendation | International Standard:

e the name string of a name, exception name or text reference name is used to denote the canonical name string of the

na

me string in that name, exception name or text reference name, respectively;

e the name string of a defining occurrence, field name, field name defining occurrence, moreta component name or
moreta component defining occurrence is used to denote the canonical name string of the simple name string in that
defining occurrence, field name, field name defining occurrence, moreta component name or moreta component
defining occurrence, respectively.

The binding rules are such that:

* names with a simple name string are bound to defining occurrences with the same name string;

* na
sir]

. fig

® md

thg

A namd
field na
it is bo
the moH

static ¢

If a qus
compoy

3.1

A locat

values that may be contained in'the location, the access methods of the location and the allowed operations on thg

The cl4
values
where 1

3.1.1

CHILL

mes with a prefixed name string are bound to defining occurrences with the same name string as_the, 1
hple name string in the prefixed name string of the name;

[d names are bound to field name defining occurrences with the same name string as the field-names.

reta component names are bound to moreta component name defining occurrences withjithe same name 9
moreta component names.

inherits all the static properties attached to the name defined by the defining.octurrence to which it is bg
jne inherits all static properties attached to the field name defined by the field name defining occurrence t
ind. A moreta component name inherits all static properties attached 4o the moreta component name def
eta component name defining occurrence to which it is bound.

pnditions: The simple name string denoted in a qualified name and followed by ! must be a moreta mode

lified name of the form "M ! component name" occurs_ outside the definition of the moreta mode M,
ent name must be the name of a SYN, a SYNMODE, er a NEWMODE component of M.

Modes and classes

General

on has a mode attached to 1t;-a value has a class attached to it. The mode attached to a location defines th

ss attached to a valueis a means of determining the modes of the locations that may contain the valug
ire strong. A streng/value has a class and a mode attached. Strong values are required in those value
hode information is needed.

Modes

has-static modes (i.e. modes for which all properties are statically determinable) and dynamic modes (i.e

chtmost

tring as

und. A
b which
ined by

frame.

hen the

e set of
values.
b. Some
ontexts

modes

for whi

1 — 1l 4 — n . 1 1 + . 1 1 -l
CII SUINTC PIOPTIUCS alT Ul KIIUWID dU TUlLl UIIT). IJ yIalllIU TIIOUTS daIT dIwdys pPal dllIICICIIZCU TTIOUTS WIUT T

parameters.

Static modes are terminal productions of the syntactic category mode.

Modes are also parameterized by values not explicitly denoted in the program text.

3.1.2

Classes

Classes

have no denotation in CHILL.

The following kinds of classes exist and any value in a CHILL program has a class of one of these kinds:

12

ITU-T Rec. Z.200 (1999 E)

n-time

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

For a mode M there exists the M-value class. All values with such a class and only those values are strong and the mode
attached to the value is M.

For a mode M there exists the M-derived class.
For any mode M there exists the M-reference class.
The null class.

The all class.

The last two classes are constant classes, i.e. they do not depend on a mode M. A class is said to be dynamic if and only

ifiti

3.1.3

s an M-value class, an M-derived class, or an M-reference class, where M is a dynamic mode.

Properties of, and relations between, modes and classes

Modes [in CHILL have properties. These may be hereditary or non-hereditary properties. A hereditary property is
inherited from a defining mode to a mode name defined by it. Below a summary is given of the properties_that'apply to

all modes (except for the first, they are all defined in 12.1):

Classes|in CHILL may have the following properties (defined in 12.1):

A mode has a novelty (defined in 3.2.2, 3.2.3 and 3.3).
A mode can have the read-only property.

A mmode can be parameterizable.

A mode can have the referencing property.

A mode can have the tagged parameterized property.

A mode can have the non-value property.

A tlass can have a root mode.

Ortje or more classes may have a resulting class.

Operatipns in CHILL are determined by the modes and classés of locations and values. This is expressed by tHe mode
checking rules which are defined in 12.1 as a number of reldtions between modes and classes. There exists the fgllowing

relationis:

Two modes can be similar.

Two modes can be v-equivalent.

Two modes can be equivalent.

Two modes can be l-equivalent.

Two modes can be alike.

Two modes can be novelty’bound.

Two modes can bedead-compatible.
Two modes can be dynamic read-compatible.
Two modes-can be dynamic equivalent.
A mode, can be restrictable to a mode.
A mode-canbe-eompatible-with-a—etass:

A class can be compatible with a class.

3.2 Mode definitions
3.2.1 General
syntax:
<mode definition> ::= (1)
<defining occurrence list> = <defining mode> (1.1)
<defining mode> ::= (2)
<mode> (2.1)

ITU-T Rec. Z.200 (1999 E) 13

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

derived syntax: A mode definition where the defining occurrence list consists of more than one defining occurrence is
derived from several mode definitions, one for each defining occurrence, separated by commas, with the same defining
mode. For example:

NEWMODE dollar, pound = INT,;

is derived from:

NEWMODE dollar = INT, pound = INT;

semantics: A mode definition defines a name that denotes the specified mode. Mode definitions occur in synmode and
newmode definition statements. A synmode is synonymous with its defining mode. A newmode is not synonymous
with its defining mode. The difference is defined in terms of the property novelty, that is used in the mode checking

(see 12

static properties: A defining occurrence in a mode definition defines a mode name.

Predefi
names

A mod
and imj
name aj

Aseto
each m

synony

Aseto

1)
TJ°

if any, see 3.4.2 and 3.5.1) are also mode names.

e name has a defining mode which is the defining mode in the mode definition which‘defines it. (For prg
plementation defined mode names this defining mode is a virtual mode.) The hereditary properties of
e those of its defining mode.

F recursive definitions is a set of mode definitions or synonym definitions (s¢e 5.1) such that the defining
de definition or constant value or mode in each synonym definition is; or directly contains, a mode na

m name defined by a definition in the set.

recursive mode definitions is a set of recursive definitions having only mode definitions.

ied mode names, implementation defined integer mode names and implementation defined floating poijt mode

defined
A mode

imode in

Inec or a

tcursive
h that:

he first

essor of

e mode

xample

Any m¢de being or containing a mode name defined in a set oftecursive mode definitions is said to denote a r
mode. A path in a set of recursive mode definitions is a list of.imode names, each name indexed with a marker sud
e alllnames in the path have a different definition;
* foff each name, its successor is or directly occurs in its defining mode (the successor of the last name is
name);
» th¢ marker indicates uniquely the pgsition of the name in the defining mode of its predecessor (the predec
thq first name is the last name).
[Examplle: NEWMODE M = STRUECT (i M, n REF M); contains two paths: {M;} and {M,,}.]
A path |s safe if and only if atdeast one of its names is contained in a reference mode, a row mode, or a procedu
at the njarked place.
static gonditions: Fotr-any set of recursive mode definitions, all its paths must be safe. (The first path of the g
above i} not safe.)
examp1es:
1.15 operand_mode = INT (1.1)
3.3 complex = STRUCT (re,im FLOAT) (1.1)
3.2.2 Synmode definitions
syntax:
<synmode definition statement> ::= (1)
SYNMODE <mode definition> { , <mode definition> }* ; (1.1)
| <remote program unit> (1.2)

semantics: A synmode definition statement defines mode names which are synonymous with their defining mode.

14

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: A defining occurrence in a mode definition in a synmode definition statement defines a synmode name
(which is also a mode name). A synmode name is said to be synonymous with a mode M (conversely, M is said to be
synonymous with the synmode name) if and only if:

» either M is the defining mode of the synmode name;

e or the defining mode of the synmode name is itself a synmode name synonymous with M.
Two mode names A and B are synonymous if and only if:
. either A and B are the same name;

* or A is the defining mode of B and B is a synmode name;

* or[B is the defining mode of A and A is a synmode name;

e orfthe defining mode name of A is synonymous to B and A is a synmode name;
e orfthe defining mode name of B is synonymous to A and B is a synmode name.
The noyelty of a synmode name is that of its defining mode.

If the defining mode is a discrete range mode or a floating point range mode, then the)parent mode of the synmode
name i§ that of its defining mode. If the defining mode is a varying string mode,then the component mod¢ of the
synmode name is that of its defining mode.

examples:
6.3 SYNMODE month = SET (jan, feb, mar, apr, may, jun,
Jjul, aug, sep, oct, nov, dec); (1.1)
3.23 Newmode definitions
syntax
<newmode definition statement> ::= (1)
NEWMODE <mode definition> { , <mode definition>}*; (1.1)
| <remote program unit> (1.2)

semantjics: A newmode definition statenient defines mode names which are not synonymous with their defining mode.

static properties: A defining accurrence in a mode definition in a newmode definition statement defines a ngwmode
name (Which is also a mode dame).

The noyelty of the newmeode name is the defining occurrence which defines it. If the defining mode of the ngwmode
name i a discrete range mode or a floating point range mode, then the virtual mode &name is introduced as the| parent
mode of the newrmode name. The defining mode of &name is the parent mode of the discrete range mode or th¢ one of
the floafing poifit tange mode, and the novelty of &name is that of the newmode name.

If the defining mode is a varying string mode, then the virtual mode &name is introduced as the component fnode of
the newmode name. The defining mode of &name 1s the component mode of the varying string mode, and the novelty
of &name is that of the newmode name.

If the defining occurrence of the mode definition is a quasi defining occurrence, then the novelty is a quasi novelty,
otherwise it is a real novelty.

static conditions: If the novelty is a quasi novelty, then at most one real novelty must be novelty bound to it.

examples:
11.6 NEWMODE /ine = INT (1:8); (1.1)
11.12 NEWMODE board = ARRAY (line) ARRAY (column) square; (1.1)

ITU-T Rec. Z.200 (1999E) 15

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

33 Mode classification
syntax:
<mode> ::= (1)
[READ | <non-composite mode> (1.1)
| [READ] <composite mode> (1.2)
| <formal generic mode indication> (1.3)
<non-composite mode> ::= (2)
<discrete mode> 2.1)
| <real mode> 2.2)
i IJUVVCIJC: llludb (’143/\
| <reference mode> (2.4)
| <procedure mode> 25)
| <instance mode> (2.6)
| <synchronization mode> (2.7)
| <input-output mode> (2.8)
| <timing mode> (2.9)

semantiics: A mode defines a set of values and the operations which are allowed on the~valtes. A mode may be
only m¢de, indicating that a location of that mode may not be accessed to store a valu€~A"mode has a novelty, in
whethef it was introduced via a newmode definition statement or not.

static properties: A mode has the following hereditary properties:

A modg has the same propetties’as the non-composite mode or composite mode in it. In the following secti
propertles are defined for ptedefined mode names and for modes that are not mode names; the properties of mod,
are defined in 3.2. Read-only modes have the same properties as their corresponding non-read-only modes ex]
the reagl-only property (see 12.1.1.1).

A modg has thé"following non-hereditary properties:

16

It s a read-only mode if it is an explicit or an implicit read-only mode.

mqde or a parameterized structure mode, where the okigin array mode name, origin string mode name o
vafiant structure mode name, respectively, in it is a réad-only mode.

— | itis the element mode of a read-only,string mode or a read-only array mode (see 3.13.2 and 3.13.3);

— | itis a field mode of a read-only" structure mode or it is the mode of a tag field of a parameterized

A povelty that is either nil or the defining occurrence in a mode definition in a newmode definition statemg
novelty of a mode which is not a mode name (nor READ mode name) is defined as follows:

=

s an explicit read-only mode if READ is specified or it.is'a parameterized array mode, a parameterize

-

s an implicit read-only mode if it is not an explicit read-only mode and if:

mode (see 3.13.4).

a read-
Hicating

d string
origin

tructure

bns, the
P names
cept for

bnt. The

if it is a parameterized string mode, a parameterized array mode or a parameterized structure mode, its

novelty is that of its origin string mode, origin array mode or origin variant structure mode, respectively;

— ifitis a discrete range mode or a floating point range mode, its novelty is that of its parent mode;
— otherwise its novelty is nil.

The novelty of a mode that is a mode name (READ mode name) is defined in 3.2.2 and 3.2.3.

ITU-T Rec. Z.200 (1999 E)

A size that is the value delivered by SIZE (&M), where &M is a virtual synmode name synonymous with the mode.

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

34

34.1

syntax:

ISO/IEC 9496:2003(E)

Discrete modes

General
<discrete mode> ::= (1)
<integer mode> (1.1)
| <boolean mode> (1.2)
| <character mode> (1.3)
| <set mode> (1.4)
| <discrete range mode> (1.5)

semantics: A discrete mode defines sets and subsets of totally-ordered values.

34.2

syntax

Integer modes

<integer mode> ::= (1)
<integer mode name> (1.1)

seman
the usu
with di
ranges
modes
&INT i

predei:[wd names: The name /NT is predefined as an integer mode name.

cs: An integer mode defines a set of signed integer values between implementation defined bounds ov¢
h] ordering and arithmetic operations are defined (see 5.3). An implenientation may define other intege
fferent bounds (e.g. LONG INT, SHORT INT, UNSIGNED INT)that may also be used as parent m
see 13.2). The &INT mode is introduced as the virtual mode that.contains all the values of all predefined
lefined by the implementation. The internal representation ofian)integer value is the integer value itself. N
not a predefined mode (although it may have the same botnds as those of a predefined integer mode).

static properties: An integer mode has the following hereditary properties:

. A1
de

upper bound and a lower bound which are the literals denoting respectively the highest and lowe
fined by the integer mode. They are implementation defined.

* A humber of values which is upper bound-=lower bound + 1.
examples:
L5 INT (1.1)
343 Boolean modes
syntaxj

<boolean mode> ::= (1)

<boolean mode name> (1.1)

predefined. names: The name BOOL is predefined as a boolean mode name.

r which

modes
des for
integer
ote that

5t value

semantics: A boolean mode defines the logical truth values (TRUE and FALSE), with the usual boolean operations
(see 5.3). The internal representations of FALSE and TRUE are the integer values 0 and 1, respectively. This
representation defines the ordering of the values.

static p

roperties: A boolean mode has the following hereditary properties:

* An upper bound which is TRUE, and a lower bound which is FALSE.

¢ A number of values which is 2.

examples:

54

BOOL (1.1)

ITU-T Rec. Z.200 (1999E)

17

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

344 Character modes
syntax:

<character mode> ::= (1)
<character mode name> (1.1)

predefined names: The names CHAR and WCHAR are predefined as character mode names.

semantics: A character mode defines the character values as described by the CHILL character set (see Appendix I) in
case of CHAR or by ISO/IEC 10646-1 in case of WCHAR. These alphabets define the ordering of the characters and the
integer values which are their internal representations.

static properties: A character mode has the following hereditary properties:

* A1 upper bound and a lower bound which are the character literals denoting respectively the highest.and lowest
vajue defined by CHAR or WCHAR respectively.

* A humber of values which is 256 in case of CHAR, and which is given in ISO/IEC 10646-1 in cdsejof WCHAR.
examples:

8.4 CHAR (1.1)

345 Set modes

syntax

<set mode> ::= (1)
SET (<set list>) (1.1)

| <set mode name> (1.2)

<set list> ::=)
<numbered set list> 2.1)

| <unnumbered set list> (2.2)
<numbered set list> ::= (3)
<numbered set element> { , <numbered set element>}* (3.1)
<numbered set element> ::= (4)
<set element name defining occurrence> = <integer literal expression> (4.1)
<unnumbered set list> ::= ()
<set element>\{) <set element>}* (5.1)

<set element> ::= (6)
<set élement name defining occurrence> (6.1)

semantjics: A set mode/defines a set of named and unnamed values. The named values are denoted by the names|defined
by defiing occurrentes in the set list; the unnamed values are the other values. The internal representation of thg named
values is the integer value associated with them. This representation defines the ordering of the values.

The majkimum number of values of a set mode is implementation defined.

static properties: A defining occurrence in a set list defines a set element name. A set element name has a set mode
attached, which is the set mode.

A set mode has the following hereditary properties:
* A setof set element names which is the set of names defined by defining occurrences in its set list.

e Each set element name of a set mode has an internal representation value attached which is, in the case of a
numbered set element, the value delivered by the integer literal expression in it; otherwise one of the values 0, 1, 2,
etc., according to its position in the unnumbered set list. For example in: SET (a, b), a has representation value 0,
and b has representation value 1 attached.

* An upper bound and a lower bound which are its set element names with the highest and lowest representation
values, respectively.

18 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

* A number of values which is the highest of the values attached to the set element names plus 1.

. It is a numbered set mode if the set list in it is a numbered set list; otherwise it is an unnumbered set mode.

static conditions: For each pair of integer literal expressions ey, ey in the set list NUM (e;) and NUM (e;) must deliver
different non-negative results.

examples:
11.7 SET (occupied, free) (1.1)
6.3 month (1.2)
3.4.6 Discrete range modes
syntax
<discrete range mode> ::= (1)
<discrete mode name> (<literal range>) (1.1)
| RANGE (<literal range>) (1.2)
| BIN (<integer literal expression>) (1.3)
| <discrete range mode name> (1.4)
<literal range> ::= (2)
<lower bound> : <upper bound> (2.1)
<lower bound> ::= (3)
<discrete literal expression> (3.1)
<upper bound> ::= (4)
<discrete literal expression™> (4.1)
derived syntax: The notation BIN (n) is derived from RANGE (0 : 22~]), e.g. BIN (2+1) stands for RANGE (4

semantiics: A discrete range mode defines the set of values ranging between the bounds specified (bounds incly

the lite
range v

static
follows

o If

thg
it 1

e If

thg
lite

al range. The range is taken from a specific parent.mode that determines the operations on and orderin|
hlues.

roperties: A discrete range mode has the following non-hereditary property: it has a parent mode, de

he discrete range mode is of the form{

<discrete mode name> (<literal range>)

s the parent mode of the-discrete mode name.
he discrete range modge.is of the form:

RANGE (<literal range>)

n the parent’mode depends on the resulting class of the classes of the upper bound and lower boun
ral range:

ifdt\isan M-derived class, where M is an integer mode, then the parent mode is a predefined integ
chosen by the implementation such that it contains the range of values delivered by literal range;

) : 7).

ded) by
o of the

fined as

n if the discrete mode nameisot a discrete range mode, the parent mode is the discrete mode name; otherwise

i/ in the

br mode

otherwise it is the root mode of the resulting class.

e Ifthe discrete range mode is a discrete range mode name which is a synmode name, then its parent mode is that of
the defining mode of the synmode name; otherwise it is a newmode name and then its parent mode is the virtually
introduced parent mode (see 3.2.3).

A discrete range mode has the following hereditary properties:

* An upper bound and a lower bound which are the literals denoting the values delivered by lower bound and upper
bound, respectively, in the literal range.

* A number of values which is the value delivered by NUM (U) — NUM (L) + 1, where U and L denote respectively
the upper bound and lower bound of the discrete range mode.

o Iti

s a numbered range mode if its parent mode is a numbered set mode.

ITU-T Rec. Z.200 (1999E)

19

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

static conditions: The classes of upper bound and lower bound must be compatible and both must be compatible with
the discrete mode name, if specified.

Lower bound must deliver a value that is less than or equal to the value delivered by upper bound, and both values must
belong to the set of values defined by discrete mode name, if specified.

The integer literal expression in case of BIN must deliver a non-negative value.

If the parent mode is an integer mode, there must exist a predefined integer mode that contains the set of values
included between the lower bound and the upper bound.

If the discrete range mode is of the form:

AT 1] 1.] 1: 7
NAINGL (U SUIErdlr range=") UL SUISCreie mode ridme=(SUICTUl TANEC—")

then th¢ evaluation of the 1.Jlower bound, 2.upper bound, must not depend directly or indirectly on thé “yalu¢ of the
1.lower bound, 2.upper bound of the discrete range mode. If the discrete range mode is of the form:

BIN (<integer literal expression>)

then th¢ evaluation of the infeger literal expression must not depend directly or indirectly,on the value of th¢ upper
bound pf the discrete range mode.

examples:
9.5 INT (2:max) (1.1)
11.12 line (1.4)

3.5 Real modes

syntax:
<real mode> ::= (1)
<floating point mode> (1.1)
| <floating point range mode> (1.2)

semantjics: A real mode specifies a set of.nimerical values which approximate a continuous range of real numberg.

3.5.1 Floating point modes

syntaxj
<floating point mode> ::= (1)
<floating point mode name> (1.1)
predefined namesThe name FLOAT is predefined as a floating point mode name.

semantics: A ﬂoatlng pomt mode deﬁnes a set of numerlc approx1matrons to a range of real Values together with their
minimum -rela e thmetic
operations are deﬁned (see 5. 3) Thls set contains only the values which can be represented by the 1mp1ementat10n An
implementation may define other floating point modes with different bounds and/or precision (e.g. LONG FLOAT,
SHORT FLOAT) that may also be used as parent modes for ranges (see 13.3). The &FLOAT mode is introduced as the
virtual mode that contains all the values of all predefined floating point modes defined by the implementation. The
internal representation of a floating point value is the floating point value itself. Note that &FLOAT is not a predefined
mode (although it may have the same bounds as those of a predefined floating point mode).

static properties: A floating point mode has the following hereditary properties:

* An upper bound and a lower bound which are the literals denoting respectively the highest and lowest value
defined by the floating point mode. They are implementation defined.

e A precision which is the maximum number of significant decimal digits defined by the mode.

20 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

* A positive lower limit and a negative upper limit which are the literals denoting respectively the smallest positive
value and the largest negative value exactly representable in the floating point mode, zero excluded.

examples:
FLOAT (1.1)
3.5.2 Floating point range modes
syntax:
<floating point range mode> ::= (1)
<floating point mode name> (<float value range>) (1.1)
| RANGE (<float value range> [, <significant digits>]) (1.2)
|__<floating point range mode name> .3)
<float value range> ::= 2)
<lower float bound> : <upper float bound> ©.1)
<lower float bound> :: = 3)
<floating point literal expression> 3.1)
<upper float bound> :: = (4)
<floating point literal expression> (4.1)
<significant digits> ::= (5)
<integer literal expression> 5.1)
semantjics: A floating point range mode defines the set of values rangings between the bounds specified {bounds
includefl) by float value range with the number of significant digits specified by significant digits. The range |s taken
from a ppecific parent mode that determines the operations on and ordering of the range values. For example, RANGE
(-10.0A41 : 10.0F1, 2) denotes the values: —10.0,-9.9, ..., -0.11,-0.1,.0y0.1, ..., 10.0.
static properties: A floating point range mode has the following-nioh-hereditary property: it has a parent mode,|defined
as follofws:
e If the floating point range mode is of the form:
<floating point mode name> (<float value range>)
thdn if the floating point mode name is not & floating point range mode, the parent mode is the floating point mode
napne; otherwise it is the parent mode of the floating point mode name.
» Ifthe floating point range mode is ofithe form:
RANGE (<flpatvalue range> [, <significant digits>])

th¢n the parent mode depénds on the resulting class of the classes of the upper float bound and lower flodt bound

in the literal range:

— | ifit is an M-d¢tived class, where M is a floating point mode, then the parent mode is a predefined [floating
point mode<chesen by the implementation such that it contains the range of values delivered by flogt value
range, with'the precision defined below;

— | otherwise it is the root mode of the resulting class.

e Ifthe ﬂoatmg point range mode is a floating pomt range mode name which is a synmode name, then its| parent

is the Vlrtually introduced parent mode (see 3.2. 3)

A floating point range mode has the following hereditary properties:

* An upper bound and a lower bound which are the literals denoting the values delivered by lower float bound and
upper float bound, respectively, in the float value range.

* A precision which is, if the floating point range mode is of the form:

RANGE (<float value range> [, <significant digits> |)
the value delivered by significant digits if specified;

otherwise the greatest precision of the precisions of lower float bound and upper float bound.

Otherwise it is that of the floating point mode name or the floating point range mode name.

ITU-T Rec. Z.200 (1999E)

21

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

static conditions: Lower float bound must deliver a value that is less than or equal to the value delivered by upper float

bound, and both values must belong to the set of values defined by floating point mode name, if specified.

There must exist a predefined floating point mode that contains both upper bound and lower bound with the specified
precision.

The val

ue delivered by significant digit must be greater than zero.

The evaluation of the 1.Jower float bound, 2.upper float bound, must not depend directly or indirectly on the value of the
1.lower bound, 2.upper bound of the floating point range mode.

3.6

syntax:

Powerset modes

<powerset mode> ::=
POWERSET <member mode>

| <powerset mode name>

<member mode> ::=
<discrete mode>

(D
(1)
(1.2)

2)
2.1)

semantjics: A powerset mode defines values that are sets of values of its member mode. Powyerset values range

subsets

The maj

of the member mode. The usual set-theoretic operators are defined on powerset yalues (see 5.3).

kimum number of values of the member mode is implementation defined.

static properties: A powerset mode has the following hereditary property:

* A member mode which is the member mode.
examples:

8.4 POWERSET CHAR

9.5 POWERSET INT (2:max)

9.6 number_list

3.7 Reference modes

3.71 General

syntaxj

semantjics: A reference mode defines references (addresses or descriptors) to referable locations. By definition
es refer«to_locations of a given static mode or a set of related moreta modes; free references may

referen
location

The de

<reference mode> ::=
<bound reference mode>
| <freegeference mode>
| <raéwynode>

s of any static mode; rows refer to locations of a dynamic mode.

(1.1)
(1.1)
(1.2)

(1)
(1.1)
(1.2)
(1.3)

over all

, bound
refer to

eferencing operation is defined on reference values (see 4.2.3, 4.2.4 and 4.2.5), delivering the locatiorr that is

referenced.

Two reference values are equal if and only if they both refer to the same location, or both do not refer to a location (i.e.

they are the value NULL).
3.7.2 Bound reference modes
syntax:
<bound reference mode> ::=
REF <referenced mode>
| <bound reference mode name>
<referenced mode> ::=
<mode>
22 ITU-T Rec. Z.200 (1999 E)

(1)
(1.1)
(1.2)

2)
2.1)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

semantics: A bound reference mode defines reference values to locations of the specified referenced mode.

If the referenced mode is a non-moreta mode M then the bound reference mode defines reference values to locations
of M.

If the referenced mode is a moreta mode MM then the bound reference mode defines reference values to locations of
MM or any successor of MM.

static properties: A bound reference mode has the following hereditary property:

e Avreferenced mode which is the referenced mode.

examples:
10.42 REF cell (1.1)
3.7.3 Free reference modes
syntax:
<free reference mode> ::= (1)
<free reference mode name> (1.1)

predefined names: The name P7R is predefined as a free reference mode name.
semantjics: A free reference mode defines reference values to locations of any static mede.
examples:

19.8 PTR (1.1)

3.74 Row modes

syntaxj
<row mode> ::= (1)
ROW <string mode> (1.1)
| ROW <array mode> (1.2)
| ROW <variant structure mode> (1.3)
| <row mode name> (1.4)

semantiics: A row mode defines reference~values to locations of dynamic mode (which are locations df some
parameterized mode with non constant.parameters).

A row yalue may refer to:

* strjng locations with non.eonstant string length;

e arfay locations with nofvconstant upper bound;

* pafameterized structure locations with non constant parameters.
static properties: A row mode has the following hereditary property:

* Aeferenced origin mode which is the string mode, the array mode, or the variant structure mode, respectiyely.

static comdition The variamrstructure mode Must be parameterizabie.

examples:
8.6 ROW CHARS (max) (1.1)
3.8 Procedure modes
syntax:
<procedure mode> ::= (1)
PROC ([<parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>) | (1.1)
| <procedure mode name> (1.2)

ITU-T Rec. Z.200 (1999 E) 23

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)
<parameter list> ::= (2)
<parameter spec> { , <parameter spec>}* 2.1)
<parameter spec> ::= (3)
<mode> [<parameter attribute> | (3.1)
<parameter attribute> ::= (4)
IN |OUT | INOUT | LOC [DYNAMIC] (4.1)
<result spec> ::= (5)
RETURNS (<mode> [<result attribute> |) (5.1)
<result attribute>::= (6)
NONREFHEOC T DYNAMICH 617
<exception list> ::= (7)
<exception name> { , <exception name>}* (7.1)

semantjiics: A procedure mode defines (general) procedure values, i.e. the objects denoted by general procedur

that are
Procedy
sending

Procedy

Two pr|
both de

names defined in procedure definition statements. Procedure values indicate pieces of cod¢’in a dynamic
jre modes allow for manipulating a procedure dynamically, e.g. passing it as a pafameter to other pro
it as message value to a buffer, storing it into a location, etc.

ire values can be called (see 6.7).

beedure values are equal if and only if they denote the same procedur¢ in the same dynamic context, ot
hote no procedure (i.e. they are the value NULL).

static properties: A procedure mode has the following hereditary properties:

b names
context.
edures,

if they

by the

e Alist of parameter specs, each consisting of a mode and*possibly a parameter attribute. The parameter specs are
defined by the parameter list.
e A1 optional result spec, consisting of a mode and™an optional result attribute. The result spec is defineg
regult spec.
* A possibly empty list of exception names-which are those mentioned in the exception list.
static cpnditions: All names mentioned.iftexception list must be different.
If LOQis specified in the parameteér §pec or in the result spec, the mode in it may have the non-value property.
If DYNAAMIC is specified intheé parameter spec or in the result spec, the mode in it must be parameterizable.
39 Instancemodes
syntax
<iinstance mode> ::= (1)
1nistarce mode name 17
predefined names: The name INSTANCE is predefined as an instance mode name.

semantics: An instance mode defines values which identify processes. The creation of a new process (see 5.2.15, 6.13

and 11.

1) yields a unique instance value as identification for the created process.

Two instance values are equal if and only if they identify the same process, or they both identify no process (i.c. they are
the value NULL).

examples:

15.39

24

INSTANCE (1.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

3.10 Synchronization modes

3.10.1 General

syntax:
<synchronization mode> ::= (1)
<event mode> (1.1)
| <buffer mode> (1.2)

semantics: A synchronization mode provides a means for synchronization and communication between processes (see
clause 11). There exists no expression in CHILL denoting a value defined by a synchronization mode. As a consequence,
there are no operations defined on the values.

3.10.2 —Eventmodes

syntax
<event mode> ::= (1)
EVENT [(<event length>) | (1.1)
| <event mode name> (1.2)
<event length> ::= (2)
<integer literal expression> (2.1)

seman‘Ics: An event mode location provides a means for synchronization between processes. The operations defined on
event npjode locations are the continue action, the delay action and the delay casetaction, which are described in 6.15,
6.16 anfl 6.17, respectively.

The evgnt length specifies the maximum number of processes that may) bécome delayed on an event locatipn; that
number|is unlimited if no event length is specified.

An event mode location which contains the undefined value is anfempty" event, i.e. no delayed processes are attached
to it.

static piroperties: An event mode has the following hereditary property:
* Ar optional event length which is the value delivered by event length.
static cpnditions: The event length must deliver a-positive value.

The evaluation of the event length must not 'depend directly or indirectly on the value of the event length of the event
mode.

examples:

14.10 EVENT (1.1)

3.10.3 | Buffer modes

syntax
<buffefsmode> ::= (1)
BUFFER [(<buffer length>) | <buffer element mode> (1.1)
| <buffer mode name> (1.2)
Lo s £] £1; — 2
DfferTerngin =7
<integer literal expression> (2.1)
<buffer element mode> ::= (3)
<mode> (3.1)

semantics: A buffer mode location provides a means for synchronization and communication between processes. The
operations defined on buffer locations are the send action and the receive case action, described in 6.18 and 6.19,
respectively.

The buffer length specifies the maximum number of values that can be stored in a buffer location; that number is
unlimited if no buffer length is specified.

A buffer mode location which contains the undefined value is an "empty" buffer, i.e. no delayed processes are attached
to it nor are there messages in the buffer.

ITU-T Rec. Z.200 (1999E) 25

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: A buffer mode has the following hereditary properties:
* An optional buffer length which is the value delivered by buffer length.

* A buffer element mode which is the buffer element mode.
static conditions: The buffer length must deliver a non-negative value.
The buffer element mode must not have the non-value property.

The evaluation of the buffer length must not depend directly or indirectly on the value of the buffer length of the buffer
mode.

examples:
16.30 BUFFER (1) user _messages (1.1)
16.34 user_buffers (L2

3.11 Input-Output Modes

3.11.1 | General

syntax
<input-output mode> ::= (1)
<association mode> (1.1)
| <access mode> (1.2)
| <text mode> (1.3)

semantjics: An input-output mode provides a means for input-output operatiens as defined in clause 7. There eKists no
expressfon in CHILL denoting a value defined by an input-output mode: As a consequence, there are no opgrations
defined|on the values.

examples:

20.17 ASSOCIATION (1.1)
3.11.2 | Association modes

syntaxj

<association mode> ::= (1)
<association mode name> (1.1)

predef:[-ed names: The name ASSOCIATION is predefined as an association mode name.

semantiics: An association mode-tocation provides a means for representing a relation to an outside world object| Such a
relation| is called an association~in’ CHILL; associations can be created by the built-in routine ASSOCIATE and be ended
by DISYOCIATE.

An assqciation mode location which contains the undefined value is "empty", i.e. it does not contain an associatign.

3.11.3 | Access.modes

syntaxj

<access mode> ::= (1)

ACCESS [(<index mode>) | [<record mode> | DYNAMIC |] (1.1)

| <access mode name> (1.2)

<record mode> ::= 2)

<mode> (2.1)

<index mode> ::= (3)

<discrete mode> (3.1)

| <literal range> (3.2)

derived syntax: The index mode notation /iteral range is derived from the discrete mode RANGE (literal range).

semantics: An access mode location provides a means for positioning a file and for transferring values from a CHILL
program to a file in the outside world, and vice versa.

26 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

An access mode may define a record mode; this record mode defines the root mode of the class of the values that can be
transferred via a location of that access mode to or from a file. The mode of the transferred value may be dynamic, i.e.
the size of the record may vary, when the attribute DYNAMIC is specified in the access mode denotation or when
record mode is a varying string mode. In the latter case DYNAMIC need not be specified.

An access mode may also define an index mode; such an index mode defines the size of a "window" to (a part of) the
file, from which it is possible to read (or write) records randomly. Such a window can be positioned in an (indexable)
file by the connect operation. If no index mode is specified, then it is possible to transfer records only sequentially.

An access mode location which contains the undefined value is "empty", i.e. it is not connected to an association.

static properties: An access mode has the following hereditary properties:

* An optional record mode which is the record mode if present. It is a dynamic record mode if DYNAMIC is
spg¢citied or 1f record mode 1s a varying string mode, otherwise 1t 1s a static record mode.

* A1 optional index mode which is the index mode.

e Onptional upper bound and lower bound which are the upper bound and lower bound of-the ‘index mode, if
pr¢sent.

static cpnditions: The optional record mode must not have the non-value property.

If DYNAMIC is specified, the record mode must be parameterizable and must not be(@tagless structure mode.
The index mode must neither be a numbered set mode nor a numbered range mode.

If the iHdex mode is a literal range of the form:

<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must not*depend directly or indirectly on the valu¢ of the
1.10we] bound, 2.upper bound of the access mode.

examples:

20.18 ACCESS (index_set) record_type (1.1)
22.20 ACCESS string DYNAMIC (1.1)
20.18 record_type 2.1)
20.18 index_set 3.1)

3.11.4 | Text modes

syntax

<text mode?).:= (1)

Znarrow text mode> (1.1)

|/ <wide text mode> (1.2)

<udrrow text mode> ::= (2)

TEXT (<text length>) [<index mode>] [DYNAMIC] (2.1)

<wide text mode> ::= (3)

WTEXT (<text length>) [<index mode>] [DYNAMIC] (3.1)

<text length> ::= (4)

<integer literal expression> (4.1)

semantics: A text mode location provides a means for transferring values represented in human-readable form from a
CHILL program to a file in the outside world, and vice versa. A text mode location has a text record sub-location and an
access sub-location. The text record sub-location is initialized with an empty string.

A text mode has a text length, which defines the maximum length of the records that can be transferred, and possibly an
index mode that has the same meaning as for access modes. The actual length attribute of a text mode location is the
actual length of its text record.

ITU-T Rec. Z.200 (1999E) 27

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

A text mode location which contains the undefined value has a text record sub-location that contains the empty string

and an access sub-location that contains the undefined value.
static properties: A text mode has the following hereditary properties:
* A text length which is the value delivered by text length.

* A text record mode which is CHARS (<fext length>) VARYING in case of TEXT and which is WCHAR
length>) VARYING in case of WTEXT.

e It has an access mode which is ACCESS [(<index mode>)] CHARS (<text length>) [DYNAMIC] in

S (<text

case of

TEXT and which is WCHARS (<text length>) [DYNAMIC] in case of WTEXT (<index mode> and DYNAMIC

are part of the mode only if they are specified).

L] Or T
pr¢sent.

static cpnditions: If the index mode is a literal range of the form:
<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must not depend directly or indirectly on the valu
1.lower| bound, 2.upper bound of the text mode.

examples:

26.8 TEXT (80) DYNAMIC (2.1)

3.12 Timing modes

3.12.1 | General

syntaxj
<timing mode> ::= (1)
<duration mode> (1.1)
| <absolute time mode> (1.2)

semantiics: A timing mode provides a means*for time supervision of processes as described in clause 9. Timing
are credted by a set of built-in routines. The relational operators are defined on timing values.

3.12.2 | Duration modes

syntaxj
<duration mdde> ::= (1)
<duration mode name> (1.1)
predefined names? The name DURATION is predefined as a duration mode name.

node, if

e of the

r values

luration

semantjics; A duration mode defines values which represent periods of time. The set of values defined by the

on-definedAn implementation mav choose to renresent duration values as na of b

value. Duration values are ordered in the intuitive way.
3.12.3 Absolute time modes

syntax:

<absolute time mode> ::= (1)
<absolute time mode name> (1.1)

predefined names: The name 7/ME is predefined as an absolute time mode name.

cidion and

semantics: An absolute time mode defines values which represent points in time. The set of values defined by the

absolute time mode is implementation defined. Absolute time values are ordered in the intuitive way.

28 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)
3.13 Composite modes

3.13.1 General

syntax:
<composite mode> ::= (1)
<string mode> (1.1)
| <array mode> (1.2)
| <structure mode> (1.3)
| <moreta mode> (1.4)

semantics: A composite mode defines composite values, i.e. values consisting of sub-components which can be accessed
or obtained (see 4.2.6-42 10 and 5.2.6-52.10)

3.13.2 | String modes

syntax

<string mode> ::= (1)
<string type> (<string length>) [VARYING] (1.1)

| <parameterized string mode> (1.2)

| <string mode name> (1.3)
<parameterized string mode> ::= (2)
<origin string mode name> (<string length>) (2.1)

| <parameterized string mode name> (2.2)
<origin string mode name> ::= (3)
<string mode name> (3.1)

<string type> ::= (4)
BOOLS (4.1)

| CHARS (4.2)

| WCHARS (4.3)
<string length> ::= ()
<integer literal expression=, 5.1)

semantjics: A fixed string mode defines bit or character string values of a length indicated or implied by the string mode.
A varylng string mode defines bit or charaeter string values whose actual length ranges from O to the string length. The
length is known only at runtime from\the value of the attribute actual length. For a fixed string mode the actual length
is always equal to the string length! Character strings are sequences of character values; bit strings are sequgnces of
boolear] values.

String Values are either empty or have string elements which are numbered from 0 upward.

The string values ofia,given string mode are totally-ordered in accordance with the ordering of the component vajues and
the follpwing definition.

Two stfings(s\and ¢ are equal if and only if they are empty or have the same length / and s(i) = #(i) forall 0 <[i < /. A
string s|ptecedes ¢ when either:

» there exists an index j such that s(j) <#(j) and s(0 : j— 1) =40 :j— 1), or

« LENGTH (s) < LENGTH (f) and s = #(0 UP LENGTH (s)).

The concatenation operator is defined on string values. The usual logical operators are defined on bit string values and
operate between their corresponding elements (see 5.3).

The maximum length of string modes is implementation defined.

static properties: A string mode has the following hereditary properties:
e A string length which is the value delivered by string length.

e An upper bound and a lower bound which are the values delivered by string length — 1 and 0, respectively.

ITU-T Rec. Z.200 (1999 E) 29

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

* An element mode which is either M or READ M, where M is BOOL, CHAR or WCHAR depending on whether
string type specifies BOOLS, CHARS or WCHARS, or the element mode of the origin string mode name,
respectively. The element mode will be READ M if and only if the string mode is a read-only mode; in such case it
is an implicit read-only mode.

e It is a varying string mode if VARYING is specified or if the origin string mode name denotes a varying string
mode; otherwise it is a fixed string mode.

A string mode is parameterized if and only if it is a parameterized string mode.

A parameterized string mode has an origin string mode which is the mode denoted by origin string mode name.

A varying string mode has the following non-hereditary property: it has a component mode, defined as follows:

» If'the varying string mode is of the form:

thg
o If

thg

<string type> (<string length>) VARYING
n it is <string type> (<string length>).
he varying string mode is of the form:

<origin string mode name> (<string length>)

n the component mode is &name (string length), where &name is a virtually introduced synmod

syphonymous with the component mode of the origin string mode name.

e If
de|

he varying string mode is a string mode name which is a synmode name, thenits component mode is th
fining mode of the synmode name; otherwise it is a newmode name and then its component mod

virftually introduced component mode (see 3.2.3).

static cpnditions: The string length must deliver a non-negative value.

The value delivered by the string length directly contained in a parameferized string mode must be less than or
the stripg length of the origin string mode name. This condition applies only to the parameterized string modes
not intrpduced virtually.

The evgluation of the string length must not depend directly,or indirectly on the value of the string length of th
mode.

examples:

7.51 CHARS (20) (1.1)
22.22 CHARS (20) VARYING (1.1)
3.13.3 | Array modes

syntax:

e name
it of the
e is the
equal to

that are

e string

<array mode> :(= (1)
ARRAY (<index mode> { , <index mode> }*)

<élement mode> { <element layout> }* (1.1)

I~ Kparameterized array mode> (1.2)

|V <array mode name> (1.3)

<parameterized array mode> ::= (2)

<origin array mode name> (<upper index>) (2.1)

| <parameterized array mode name> (2.2)

<origin array mode name> ::= (3)

<array mode name> (3.1)

<upper index> ::=)

<discrete literal expression> (4.1)

<element mode> ::= (5)

<mode> (5.1)

derived syntax: An array mode with more than one index mode (denoting a multi-dimensional array), is derived syntax
for an array mode with an element mode that is an array mode. For example:

30

ARRAY (7:20,1:10) INT

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

is derived from:
ARRAY (RANGE (7:20)) ARRAY (RANGE (1:10)) INT

Only if this derived syntax is used, is more than one element layout occurrence allowed. The number of element layout
occurrences must be less than or equal to the number of index mode occurrences. In that case, the leftmost element layout
is associated with the innermost element mode, etc.
semantics: An array mode defines composite values, which are lists of values defined by its element mode. The physical
layout of an array location or value can be controlled by element layout specification (see 3.13.5). Two array values are

equal if and only if they have the same number of elements and the corresponding element values are equal.

The maximum number of elements of array modes is implementation defined.

static ;Jroperties: An array mode has the following hereditary properties:

* A1 index mode which is the index mode if it is not a parameterized array mode, otherwise the index’mode is the
digcrete range mode constructed as:

&name (lower bound : upper bound)

where &name is a virtual synmode name synonymous with the index mode of origin array mode name, lower
bound is the lower bound of the index mode of the origin array mode name and uppep.bound is the upper inglex.

* A1 upper bound and a lower bound which are the upper bound and the\lJower bound of its indey mode,
regpectively.

. A1] element mode which is either M or READ M, where M is the elemrent mode, or the element mode of thg origin
artay mode name, respectively. The element mode will be READ . M-if and only if M is not a read-only mpde and
thq array mode is a read-only mode. The element mode is an implicit read-only mode if it is READ M.

e Ar element layout which, if it is a parameterized array mode;-is the element layout of its origin array mode name;
otherwise it is either the specified element layout, or\the implementation default, which is either PACK or
NOQPACK.

* A humber of elements which is the value delivered by:

NUM (upper bound) — NUM ({fower bound) + 1
where upper bound and lower bound are t€spectively the upper bound and the lower bound of its index mqade.

e It {s a mapped mode if element layout is specified and is a step.

An arraly mode is parameterized ifand only if it is a parameterized array mode.

A parameterized array méde has an origin array mode which is the mode denoted by origin array mode name.

static cpnditions: TheClass of upper index must be compatible with the index mode of the origin array mode ngme and
the valye delivered by it must lie in the range defined by that index mode.

If the afray,maode is a parameterized array mode, the evaluation of the upper index must not depend directly or indirectly
on the palue ‘of the upper bound of the array mode. If the array mode is neither a parameterized array modd nor an

L L4l . L e L L £41 £
Cll’l’ay moauc rnarrc, alld 11 UIC I7IUEA TInouc 15 a LIICrul IMILSC Ul UuIiv 101111,

<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must not depend directly or indirectly on the value of the
1.lower bound, 2.upper bound of the array mode.

examples:

5.27 ARRAY (1:16) STRUCT (c4, c¢2, ¢l BOOL) (1.1)
11.12 ARRAY (line) ARRAY (column) square (1.1)
11.17 board (1.3)

ITU-T Rec. Z.200 (1999 E) 31

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

3.13.4 Structure modes

syntax:

<structure mode> ::= (1)
STRUCT (<field> { , <field>}*) (1.1)

| <parameterized structure mode> (1.2)

| <structure mode name> (1.3)
<field> ::= 2)
<fixed field> (2.1)

| <alternative field> (2.2)

<fixed field> .= 3)
<field name defining occurrence list> <mode> [<field layout>] (3cL)
<alternative field> ::= “4)

CASE [<tag list>] OF
<variant alternative> { , <variant alternative> }*

[ELSE [<variant field> { , <variant field> }* |] ESAC (4.1)

<variant alternative> ::= (5)
[<case label specification>] : [<variant field> { , <variant field>}*] (5.1)

<tag list> ::= (6)
<tag field name> { , <tag field name> }* (6.1)

<variant field> ::= (7)
<field name defining occurrence list> <mode> [<field layout>] (7.1)
<parameterized structure mode> ::= (8)
<origin variant structure mode name> (<literal expression list>") (8.1)

| <parameterized structure mode name> (8.2)
<origin variant structure mode name> ::= 9)
<variant structure mode name> 9.1)

<literal expression list> ::= (10)
<discrete literal expression™> { , <discrete literal expression> }* (10.1)

derived syntax: A fixed field occurrence or variant field occurrence, where field name defining occurrence list ponsists
of mor¢ than one field name defining-occurrence, is derived syntax for several fixed field occurrences or varignt field
occurrepces with one field name, defining occurrence respectively, each with the specified mode and optional field
layout. [In the case of field layout;this field layout must not be pos. For example:

STRUCT{ZJ'BOOL PACK)
is derivgd from:

STRUCT (/ BOOL PACK, J BOOL PACK)

semantfics:Structure modes define composite values consisting of a list of values, selectable by a component nanje. Each
value is defined by a mode that is attached to the component name. Structure values may reside in (composite) structure
locations, where the component name serves as an access to the sub-location. The components of a structure value or
location are called fields and their names field names.

There are fixed structures, variant structures and parameterized structures.

Fixed structures consist only of fixed fields, i.e. ficlds that are always present and that can be accessed without any
dynamic check.

Variant structures have variant fields, i.e. fields that are not always present. For tagged variant structures, the presence
of these fields is known only at run time from the value(s) of certain associated fixed field(s) called tag ficlds. Tag-less
variant structures do not have tag fields. Because the composition of a variant structure may change during run time,
the size of a variant structure location is based upon the largest choice (worst case) of variant alternatives.

32 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

In an alternative field the variant alternative chosen is that for which values give in the case label specification match; if
no value match, the variant alternative following ELSE (which will be present) is chosen.

A parameterized structure is determined from a variant structure mode for which the choice of variant alternatives is
statically specified by means of literal expressions. The composition is fixed from the point of the creation of the
parameterized structure and may not change during run time. The tag fields, if present, are read-only and automatically
initialized with the specified values. For a parameterized structure location, a precise amount of storage can be allocated
at the point of declaration or generation. Note that dynamic parameterized structure modes also exist; their semantics
are defined in 3.14.4.

The layout of a structure location or value can be controlled by means of a field layout specification (see 3.13.5).

Two structure values are equal if and only if the corresponding component values are equal. However, if the structure

values §

For a m
are equ

static properties:

genera

. It

.
o
=

on

Eq
eit]
ay
stry

—

A
is
PA

fixed stiructures: A fixed structure mode has the following hereditary property:

e A
Th

variant

re tag-less variant structure values, the result of comparison is implementation defined.

ode with the tagged parameterized property the undefined value denotes a value in which tagield sul
] to the corresponding parameter values and all the other ones are equal to the undefined valug;

: A structure mode has the following hereditary properties:
s a fixed structure mode if it is a structure mode that does not directly contain'ai) alfernative field occurret
s a variant structure mode if it is a structure mode and contains at least’one’alternative field occurrence.
s a parameterized structure mode if it is a parameterized structure/mode.

nas a set of field names. This set is defined below for the diffétent cases. A name is said to be a field nam
ch fixed field, variant field and therefore each field name of a structure mode has a field mode attache
her M or READ M, where M is the mode in the fixed-field or variant field. The field mode is READ M if |
ead-only mode and either the structure mode is\a read-only mode, or the field is a tag field of a paramg
icture mode. The field mode is an implicit read-only mode if it is READ M.
fixed field, variant field and therefore(@ field name of a given structure mode has a field layout attached t
he field layout in the fixed field or variant field, if present; otherwise it is the default field layout, which
LCK or NOPACK.

s a mapped mode if its field names have a field layout that is pos.

set of field names/which is the set of names defined by any field name defining occurrence list in fixe
ese field namgs are fixed field names.

structures: A variant structure mode has the following hereditary properties:

y if it is defined in a field name defining occurrence list in.fixed fields or variant fields in a structure modg.

-values

ICC.

e if and

| that is
V/ is not
terized

o it that
s either

] fields.

e A

set_of field names which is the union of the set of names defined by any field name defining occurreng

e list in

fixed fields and the set of names defined by any field name defining occurrence list in alternative fields. Field
names defined by a field name defining occurrence list in fixed fields are the fixed field names of the variant
structure mode; its other field names are the variant field names.

¢ A field name of a variant structure mode is a tag field name if and only if it occurs in any tag list of an alternative

fie

1d. Alternative fields in which no tag lists are specified are tag-less alternative fields.

e A variant structure mode is a tag-less variant structure mode if all its alternative field occurrences are tag-less.
Otherwise it is a tagged variant structure mode.

e A variant structure mode is a parameterizable variant structure mode if it is either a tagged variant structure
mode or a tag-less variant structure mode where for each of the alternative field occurrences a case label
specification is given for all the variant alternative occurrences in it.

ITU-T Rec. Z.200 (1999E)

33

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

* A parameterizable variant structure mode has a list of classes attached, determined as follows:

if it is a tagged variant structure mode, the list of M; — value classes, where M; are the modes of the t
names in the order that they are defined in fixed fields;

ag field

if it is a tag-less variant structure mode, the list is built up from the individual resulting lists of classes of
each alternative field by concatenating them in the order as the alternative fields occur. The resulting list of
classes of an alternative field occurrence is the resulting list of classes of the list of case label specification

occurrences in it (see 12.3).

parameterized structures: A parameterized structure mode has the following hereditary properties:

* An origin variant structure mode which is the mode denoted by origin variant structure mode name.

e A
set
oc

« Th
str|

=

. A

e It
m

For dyn
static ¢
genera
If any f]

variant
field og
depend

The mo

In a vqriant structure mode the.alfernative field occurrences must be either all tagged or all tag-less. For

alterna
case la
variant

If, for 4
fields

For altg

set of field names which is the union of the set of fixed field names of its origin variant structure mode
of those variant field names of its origin variant structure mode that are defined in varidpt-alt
currences that are selected by the list of values defined by literal expression list.

e set of tag field names of a parameterized structure mode is the set of tag field names\of its origin
icture mode.

ist of values attached, defined by literal expression list.

s a tagged parameterized structure mode if its origin variant structure mode is a tagged variant s
de; otherwise the parameterized structure mode is tag-less.

amic parameterized structure modes see 3.14.4.

pnditions:

: All field names of a structure mode must be different.

eld has a field layout which is pos, all the fields must'have a field layout which must be pos.

structures: A tag field name must be a fixed'field name and must be textually defined before all the alt
currences in whose tag list it is mentioned: (As a consequence, a tag field precedes all the variant fie
upon it.) The mode of a tag field name mwst be a discrete mode.

e of variant field may have neither the non-value property nor the tagged parameterized property.

ive fields, case label speeification must be specified in each variant alternative. For tag-less alternativ
bel specification may be omitted in all variant alternative occurrences together, or must be specified {
alternative occurTeéyice.

tag-less yariant structure mode, any of its alternative fields has case label specification given, all its alt
ust have-case label specification.

and cor

rnatzve f elds the case selectlon condmons must be fulﬁlled (see 12 3), and the same completeness con|

and the
rnative

variant

fructure

brnative

1ds that

tagged
e fields,
or each

brnative

>1stency

g list (if

present) serves as a case selector w1th the M- Value class where M is the mode of the tag ﬁeld name. In the case of tag-
less alternative fields, the checks involving the case selector are ignored.

For a parameterizable variant structure mode none of the classes of its attached list of classes may be the all class.
(This condition is automatically fulfilled by a tagged variant structure mode.)

parameterized structures: The origin variant structure mode name must be parameterizable.

There must be as many literal expressions in the literal expression list as there are classes in the list of classes of the
origin variant structure mode name. The class of each literal expression must be compatible with the corresponding (by
position) class of the list of classes. If the latter class is an M-value class, the value delivered by the literal expression
must be one of the values defined by M.

34

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

examples:
3.3 STRUCT (re, im INT) (1.1)
11.7 STRUCT (status SET (occupied, free),
CASE status OF
(occupied): p piece,
(free):
ESAC) (1.1)
2.6 fraction (1.3)
11.7 status SET (occupied, free) (3.1)
11.8 status 6.1)
11.9 p piece (7.1)
3.13.5 | Layout description for array modes and structure modes
syntax
<element layout> ::= (1)
PACK | NOPACK | <step> (1.1)
<field layout> ::= (2)
PACK | NOPACK | <pos> (2.1)
<step> ::= (3)
STEP (<pos> [, <step size>]) 3.1)
<pos> ::= (4)
POS (<word> , <start bit> , <length>,) (4.1)
| POS (<word> [, <start bit> [: <end"bir>]]) (4.2)
<word> ::= (5)
<integer literal expression> (5.1)
<step size> ::= (6)
<integer literal expression> (6.1)
<start bit> ::= (7)
<integer literal expression> (7.1)
<end bit> ::= (8)
<intteger literal expression> (8.1)
<length>= 9)
<integer literal expression> 9.1)

semantjics: It is p0551b1e to control the layout of an array or a structure by glVlng packmg or mappmg 1nformat1

n in its
modes,

or pos in the case of structure modes. The absence of element layout or f eld layout in an array or structure mode will

always be interpreted as packing information, i.e. either as PACK or as NOPACK.

If PACK is specified for elements of an array or fields of a structure, it means that the use of memory space is optimized
for the array elements or structure fields, whereas NOPACK implies that the access time for the array elements or the
structure fields is optimized. NOPACK also implies referable.

The PACK, NOPACK information is applied only for one level, i.e. it is applied to the elements of the array or fields of
the structure, not for possible components of the array element or structure field. The layout information is always
attached to the nearest mode to which it may apply and which does not already have layout attached. For example, if the
default packing is NOPACK:

STRUCT (fARRAY (0:1) m PACK)

ITU-T Rec. Z.200 (1999E)

35

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

is equivalent to:
STRUCT (fARRAY (0:1) m PACK NOPACK)

It is also possible to control the precise layout of an array or a structure by specifying positioning information for its
components in the mode. This positioning information is given in the following ways:

* For array modes, the positioning information is given for all elements together, in the form of a step following the
array mode.

e For structure modes, the positioning information is given for each field individually, in the form of a pos, following
the mode of the field.

Mapping information with pos is given in terms of word and bit-offsets. A pos of the form:

POS (<word>, <start bit>, <length>)

defines|a bit-offset of
NUM (word) * WIDTH + NUM (start bit)

and a lgngth of NUM (length) bits, where WIDTH is the (implementation defined) number of bits in a‘word, and|word is
an integder literal expression.

When fos is specified in field layout it defines that the corresponding field starts at the given bit-offset from the| start of
each logation of the structure mode, and occupies the given length.

A step ¢f the form:

STEP (<pos> , <step size>)

defines|a series of bit-offsets b; for 7 taking values 0 to n—1 where 7 is the mumber of elements in the array, and
b;=1* NUM (step size)

The j-thh element of the array starts at a bit-offset of p + b; from the’start of each location of the array mode, where p is
the bit-pffset specified in pos. Each element occupies the length“given in pos.

Defaults
The nofation:

POS (<word> , <start bit> : <end bit>)

is semahtically equivalent to:

POS (<word> , <start bit=3>NUM (<end bit>) — NUM (<start bit>) + 1)
The nofation:

POS (<word> <start bit>)

is semahtically equivalent to:

POS (sword> , <start bit> , BSIZE)

where BSIZE is-th¢ minimum number of bits which is needed to be occupied by the component for which thg pos is
specifigd.

The nofatien:

POS (<word>)
is semantically equivalent to:

POS (<word> , 0 , BSIZE)
The notation:

STEP (<pos>)
is semantically equivalent to

STEP (<pos> , SSIZE)

where SSIZE is the <length> specified in pos or derivable from pos by the above rules.

36 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

static properties: For any location of an array mode the element layout of the mode determines the referability of its
sub-locations (including sub-arrays, array slices) as follows:

e either all sub-locations are referable, or none of them are;

e if the element layout is NOPACK all sub-locations are referable.

For any location of a structure mode, the referability of the structure field selected by a field name is determined by the
field layout of the field name as follows:

e the field name is referable if the field layout is NOPACK.

static conditions: If the element mode of a given array mode or the field mode of a field name of a given structure
mode, is itself an array or structure mode, then it must be a mapped mode if the given array or structure mode is
mappe(t:

NUM (word), NUM (start bit), NUM (end bit), NUM (length) and NUM (step size) = 0;
NUM (start bit) and NUM (end bit) < WIDTH; NUM (start bit) < NUM (end bif).

Each implementation defines for each mode a minimum number of bits its values need to occupy;-call this the minimum
bit occypancy. For discrete modes it is any number of bits not less than log to the base two’of-the number of values of
the mode. For array modes it is the offset of the element of the highest index plus its occupiedbits. For structure nodes it
is the offset of the highest bit occupied.

For each pos the length specified must not be less than the minimum bit occupancy,of the mode of the associated|field or
array cgmponents.

For each mapped array mode the step size must not be less than the lengthgiven or implied in the pos.
Consistency and feasibility

Consisfency: No component of a structure may be specified*such that it occupies any bits occupied by |another
comporjent of the same object except in the case of two_variant field names defined in the same alternative field
occurrepce; however, in the latter case the variant field iames may not both be defined in the same variant altgrnative
nor both following ELSE.

Feasibillity: There are no language defined feasibility requirements, except for the one that can be deduced from [the rule
that the|referability of a sub-location of any (referable or non-referable) location is determined only by the (element or
field) lhyout, which is a property of the: mode of the location. This places some restrictions on the mapping of
comporjents that themselves have referable components.

examples:
17.5 PACK (1.1)
19.14 POS (1,0:15) (4.2)

3.14 Dynami¢ modes

3.14.1 | /General

A dynamic mode is a mode of which some properties are known only at run time. Dynamic modes are always
parameterized modes with one or more run-time parameters. For description purposes, virtual denotations are introduced
in this Recommendation | International Standard. These virtual denotations are preceded by the ampersand symbol (&) to
distinguish them from actual notations which appear in a CHILL program text.

3.14.2 Dynamic string modes

virtual denotation: &<origin string mode name> (<integer expression>)

semantics: A dynamic string mode is a parameterized string mode with non constant length.

static properties: Dynamic string modes have the same properties as string modes, except for the properties described

below.

ITU-T Rec. Z.200 (1999 E) 37

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

dynamic properties:
* A dynamic string mode has a dynamic string length which is the value delivered by integer expression.

* A dynamic string mode has an upper bound and a lower bound which are the values delivered by string length —1
and 0, respectively.

3.14.3 Dynamic array modes
virtual denotation: &<origin array mode name> (<discrete expression>)
semantics: A dynamic array mode is a parameterized array mode with non constant upper bound.

static properties: Dynamic array modes have the same properties as array modes, except for the properties described
below.

dynamjc properties:

e A ldynamic array mode has a dynamic upper bound which is the value delivered by discrete expression, and a
dypamic number of elements which is the value delivered by:

NUM (discrete expression) — NUM (lower bound) + 1
where lower bound is the lower bound of the origin array mode name.
3.14.4 | Dynamic parameterized structure modes

virtual|denotation: &<origin variant structure mode name> (<expression list>)

semanjcs: A dynamic parameterized structure mode is a parameterized structure mode with non constant pargmeters.

static properties: The static properties of a dynamic parameterized sttucture mode are those of a static paramé¢terized
structure mode except for the following:

* The set of field names of a dynamic parameterized structur¢’mode is the set of field names of its origin [variant
strpcture mode.

dynamjc properties:

* A dynamic parameterized structure mode has*a-ist of values attached that is the list of values delivered by the
expressions in the expression list.

3.15 Moreta Modes

3.15.1 | General

syntax

<moreta mode>="+ (1)
<module mode> (1.1)
| «<region mode> (1.2)
|) <task mode> (1.3)
| <generic moreta mode instantiation> (1.4)
| <interface mode> (1.5)
| <moreta mode name> [(<actual parameter list>) | (1.6)

semantics:

module mode — A location of module mode has the same properties as a module without an action statement list.
region mode — A location of region mode has the same properties as a region.

task mode — A location of task mode has essentially the same structure as a module mode location without process
definitions. The direct access to the components of a location, whose mode is a task mode, is mutually exclusive. A
location, whose mode is a task mode, may be executed concurrently with other threads (see 11.1).

generic moreta mode instantiation — A generic moreta mode instantiation is obtained statically by an instantiation of a
generic moreta mode template (see 10.11).

interface mode — An interface mode consists of specifications and signatures only.

38 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

static conditions:

Moreta modes are not parameterizable.

Moreta modes and generic moreta mode templates cannot be nested.

ISO/TEC 9496:2003(E)

(1.1) — (1.5) are only allowed in synmode and newmode definitions, i.e. anonymous moreta modes are not allowed.

3.15.2

syntax:

Module Modes

<module mode> ::= (1)
<module mode specification> (1.1)
T—<module mode body 12
<module mode specification> ::= (2)
MODULE SPEC [[ASSIGNABLE [FINAL] | ABSTRACT | |
[NOT_ASSIGNABLE [ABSTRACT | FINAL]]]
<module inheritance clause>
{<module specification component>}* [<invariant part>]
END [<simple name string>] (2.1)
<module mode body> ::= (3)
MODULE BODY [[ASSIGNABLE [FINAL]| ABSTRACTF))|
[NOT_ASSIGNABLE [ABSTRACT | FINAL 1]
<module inheritance clause>
{<module body component>}* [<invariant part>]
END [<handler>] [<simple name string>] (3.1)
<module inheritance clause> ::= 4)
[<module inheritance>] [<implementation clduse>] (4.1)
<module inheritance> ::= (5)
BASED_ON <module mode name> 5.1)
<implementation clause> ::= (6)
IMPLEMENTS <interface imode name> { , <interface mode name> }* (6.1)
<module specification component..J)= (7)
<common module camponent> (7.1)
| <declaration statement> (7.2)
| <simple guarded-procedure signature statement> (7.3)
| <inline guarded procedure definition statement> (7.4)
| <process specification statement> (7.5)
| <signaldefinition statement> (7.6)
| <gfantstatement> (7.7)
<module body component> ::= (8)
<common module component> 8.1)
| <simple guarded procedure definition statement> 8.2)
| <process definition statement> (8.3)
<common module component> ::= 9)
<synonym definition statement> 9.1)
| <synmode definition statement> (9.2)
| <newmode definition statement> (9.3)
| <seize statement> (9.4)
<invariant part> ::= (10)
INVARIANT <boolean expression> (10.1)

semantics: A module mode defines composite values consisting of a list of components selectable by component names.

Module values may reside in (composite) module locations.

A module mode is defined by giving two separate parts: a module mode specification and a module mode body.

ITU-T Rec. Z.200 (1999 E) 39

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The specification part defines the interface of the values of a module mode.
The body part defines the behaviour of the values of a module mode.

The boolean expression of the invariant part must be true before and after any call of a public component procedure or a
public component process.

static properties: If the attribute ASSIGNABLE is specified, the mode is an assignable module mode. An assignable
module mode can be used in the same way as a mode for which READ is not specified (see 3.3).

If the attribute NOT _ASSIGNABLE is specified, the mode has the not_assignable property, indicating that the location
of that mode may not be accessed to store the value and may not be accessed to copy its value.

If neither ASSIGNABLE nor NOT_ASSIGNABLE is specified the mode is not_assignable by default.

If the a1|tribute ABSTRACT is specified, the mode is an abstract mode.

If a mofule inheritance is given, the mode MD being defined is immediately derived from the mode MB-giveh in the
modulelinheritance, and MB is an immediate base mode of MD.

If an infplementation clause 1C is given, the mode MD being defined is immediately derived from.the modes givegn in IC,
and theye modes are immediate base modes of MD.

The effect of the module inheritance clause is that the derived mode behaves as if itreontained all components of its
immediate base modes except for the constructor and destructor component procedures-of these base modes. If any of
these bgse modes is itself a derived mode, this inheritance of components is to be understood in a transitive manper. For
visibility see 12.2.

A modyle specification component contained in a module mode specification\Mg or SEIZEd into Mg, which is grgnted by
Mg, is dalled a public component of the mode of Mg.

A modlile specification component contained in a module mode specification Mg or SEIZEd into Mg, which is not
granted|by Mg, is called an internal component of the mode of Mg

A modyle body component C contained in a module mode, hbody Mp or SEIZEd into Mg, is called a private comppnent of
the mode of My if C is neither a public nor an internal cdmponent of the mode of Mp.

An absfract module mode has the property not_assignable.
static cpnditions: A module mode cannot be @ised as the mode in a synonym definition.

For eadh module mode specification, thete must be one module mode body with the same name string in the defining
occurrdnce.

If specilfied, the simple name stying-after END must be equal to the name string of the defining occurrence of this mode
definitipn. This holds for module mode specification and for module mode body.

If one qf the attributes ASSIGNABLE, NOT_ASSIGNABLE, ABSTRACT or FINAL is specified in a modufe mode
specifidation, it must also be specified in the corresponding module mode body.

If a moflule mode.specification contains a module inheritance clause, the corresponding module mode body must|contain
the samle module-inheritance clause.

If the aftribuite INCOMPLETE (see 10.4) is specified in a simple guarded procedure signature then this procedure has
the property incomplete.

If the attribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signature statement this procedure
must be public.

For each simple, complete guarded procedure signature statement S of a module mode specification, the corresponding
module mode body must contain a corresponding simple guarded procedure definition statement D, where the guarded
procedure signature of S matches the guarded procedure definition of D (see 12.1.3).

If P is a simple, incomplete guarded procedure signature of a module mode specification, the corresponding module
mode body must not contain a simple guarded procedure definition matching P.

For each process specification of a module mode specification, the corresponding module mode body must contain a
corresponding process definition (see 12.1.3).

40 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature statement this
procedure must be public.

If the attribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature PD contained in a
module mode specification M then the immediate base mode MB of M must contain or have inherited a public simple
guarded procedure signature PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is not
SEIZEd.

A module mode is an abstract module mode if it contains at least one incomplete component procedure (see 10.4). In
this case the attribute ABSTRACT must be specified.

An abstract module mode name can only be used as the module mode name in a module inheritance or as a referenced
mode.

If a m¢dule mode M has at Ieast one (sub-)component with non-value properfy, then M also has the nop-value
property and the attribute ASSIGNABLE must not be specified (see 12.1.1.5).

If a mofdule mode M contains the attribute FINAL M is called a final module mode. A final module-mode cqnnot be
used as|a base mode in a moreta inheritance.

A finaljmodule mode must not contain an incomplete component procedure.

3.15.3 | Region Modes

syntax
<region mode> ::= (1)
<region mode specification> (1.1)
| <region mode body> (1.2)
<region mode specification> ::= (2)

REGION SPEC [ABSTRACT | FINAL] [<region inheritance>]
{<region specification component>}* [<invariant part>)
END [<simple name string>] (2.1)

<region mode body> ::= (3)
REGION BODY [ABSTRACT(FINAL] [<region inheritance clause>]
{<region body component>}*|[<invariant part>]

END [<handler>] [<simple-name string>| (3.1)

<region inheritance clause> ::= (4)

[<region inheritarice>] [<implementation clause>] (4.1)

<region inheritance> ::= (5)

BASED _ON) {<module mode name> | <region mode name>} 5.1)

<region specification component> ::= (6)

<eommon module component> (6.1)

| «<declaration statement> (6.2)

[\ <simple guarded procedure signature statement> (6.3)

|" <signal definition statement> (6.4)

| <grant statement> (6.5)

region body-components= (7)
S 4 T o A\l

<common module component> (7.1)

| <simple guarded procedure definition statement> (7.2)

semantics: A region mode defines composite values consisting of a list of components selectable by component names.
Region values may reside in (composite) region locations.

A region mode is defined by giving two separate parts: a region mode specification and a region mode body.

The specification part defines the interface of the values of the region mode.

The body part defines the behaviour of the values of the region mode.

The boolean expression of the invariant part must be true before and after any call of a public component procedure.

ITU-T Rec. Z.200 (1999 E) 41

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: A region mode has always the not_assignable property.
If the attribute ABSTRACT is specified, the mode is an abstract mode.

If a region inheritance is given, the mode MD being defined is immediately derived from the mode MB given in the
region inheritance, and MB is an immediate base mode of MD.

If an implementation clause I1C is given, the mode MD being defined is immediately derived from the modes given in IC,
and these modes are immediate base modes of MD.

The effect of the region inheritance clause is that the derived mode behaves as if it contained all components of its
immediate base modes except for the constructor and destructor component procedures of these base modes. If any of
these base modes is itself a derived mode, this inheritance of components is to be understood in a transitive manner. For
visibility see 12.2.

A regidn specification component contained in a region mode specification Mg or SEIZEd into Mg, which is‘grgnted by
Mg, is dalled a public component of the mode of Mg.

A regidn specification component contained in a region mode specification Mg or SEIZEd into Mg, whi¢h is not|granted
by Mg, [is called an internal component of the mode of Mg.

A regidn body component C contained in a region mode body Mg or SEIZEd into Mg, is calléd,a private comp¢nent of
the mode of My if C is neither a public nor an internal component of the mode of Mp.

static cpnditions: A region mode cannot be used as the mode in a synonym definition,

For eadh region mode specification, there must be one region mode body with-the same name string in the {efining
occurrdnce.

If speciffied, the simple name string after END must be equal to the namé.string of the defining occurrence of this mode
definitipn. This holds for region mode specification and for region mode-body.

If the gttribute ABSTRACT or FINAL is specified in a regionGnode specification, it must also be specified in the
corresppnding region mode body.

If a region mode specification contains a region inheritance clause, the corresponding region mode body must|contain
the samle region inheritance clause.

If the aftribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signature then this procedure has
the property incomplete.

If the aftribute INCOMPLETE (see 10.4) is.specified in a simple guarded procedure signature statement this prpcedure
must bg public.

For each simple, complete guarded_procedure signature statement S of a region mode specification, the corresponding
region fnode body must contain'a dorresponding simple guarded procedure definition statement D (see 12.1.3), where the
guarded procedure signature.0f’S matches the guarded procedure definition of D.

If P is 4 simple, incomplete guarded procedure signature of a region mode specification, the corresponding regi¢n mode
body mpist not contain.a simple guarded procedure definition matching P.

If the jttributecREIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature statempnt this
procedyre mustbe public.

e ecifie i ed ina
region mode specification M then the immediate base mode MB of M must contaln or have 1nher1ted a public simple
guarded procedure signature PB, where PB matches PD and PB is neither a constructor nor a destructor and PB is not
SEIZEd.

A region mode is an abstract region mode if it contains at least one incomplete component procedure (see 10.4). In this
case the attribute ABSTRACT must be specified.

An abstract region mode name can only be used as the region mode name in a region inheritance or as a referenced
mode.

A region mode specification must not grant any location.

If the base mode of a region mode is a module mode M then M must have the not_assignable property, must not grant
any location and must not contain any inline guarded component procedure or any component process.

42 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

If a region mode M contains the attribute FINAL M is called a final region mode. A final region mode cannot be used as
a base mode in a region inheritance.

A final region mode must not contain an incomplete component procedure.

3.15.4 Task Modes

syntax:
<task mode> ::= (1)
<task mode specification> (1.1)
| <task mode body> (1.2))
<task mode specification> ::= (2)

TASK SPEC [ABSTRACT | FINAL] [<task inheritance clause>|
[<invariant part>] {<task specification component>}*
END [<simple name string>] @.1)

<task mode body> ::= (3)
TASK BODY [ABSTRACT | FINAL] [<fask inheritance clause>)
{<task body component>}* [<invariant part>|

END [<handler>] [<simple name string>] (3.1)
<task inheritance clause> ::= (4)
[<task inheritance>] [<implementation clause>] (4.1)
<task inheritance> ::= (5)
BASED_ON {<module mode name> | <task mode name>} (5.1)
<task specification component> ::= (6)
<region specification component> (6.1)
<task body component> ::= (7)
<region body component> (7.1)

semantjics: A task mode defines composite values consisting of a list of components selectable by component names.
Task vqlues may reside in (composite) task locations:

A task mode is defined by giving two separate-parts: a task mode specification and a task mode body.
The sp¢cification part defines the interface of the values of the task mode.

The bodly part defines the behavieut-of the values of the task mode.

The boglean expression of the invariant part must be true before and after any call of a public component procedpre.

static Toperties: A task'mode has the not_assignable property.
If the aftribute ABSTRACT is specified, the mode is an abstract mode.

If a task inkieritance is given, the mode MD being defined is immediately derived from the mode MB given in the task
inheritdqncey and MB is an immediate base mode of MD.

If an implementation clause 1C is given, the mode MD being defined is immediately derived from the modes given in IC,
and these modes are immediate base modes of MD.

The effect of the task inheritance clause is that the derived mode behaves as if it contained all components of its
immediate base modes except for the constructor and destructor component procedures of these base modes. If any of
these base modes is itself a derived mode, this inheritance of components is to be understood in a transitive manner. For
visibility see 12.2.

A task specification component contained in a fask mode specification Mg or SEIZEd into Mg, which is granted by Mg, is
called a public component of the mode of Mg.

A task specification component contained in a task mode specification Mg or SEIZEd into Mg, which is not granted by
Mg, is called an internal component of the mode of Mg.

ITU-T Rec. Z.200 (1999E) 43

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

A task body component C contained in a task mode body Mg or SEIZEd into Mg, is called a private component of the
mode of Mp if C is neither a public nor an internal component of the mode of Mp.

static conditions: A task mode cannot be used as the mode in a synonym definition.

For each task mode specification, there must be one fask mode body with the same name string in the defining
occurrence.

If specified, the simple name string after END must be equal to the name string of the defining occurrence of this mode
definition. This holds for task mode specification and for task mode body.

If the attribute ABSTRACT or FINAL is specified in a task mode specification, it must also be specified in the
corresponding task mode body.

If a tas
task inh

All pub

If the a
the proj

If the aftribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signature statement this pr

must bg

For ead
task mg
guarde

IfPis
body m|

If the

E mode specification contains a fask inheritance clause, the corresponding task mode body must contaifi-t
eritance clause.

lic component procedures of a task mode must only have IN parameters and must not have a resuit spec.
tribute INCOMPLETE (see 10.4) is specified in a simple guarded procedure signaturé-then this proceq
erty incomplete.

public.

h simple, complete guarded procedure signature statement S of a task\mode specification, the corres
de body must contain a corresponding simple guarded procedure defihition statement D (see 12.1.3), w

| procedure signature of S matches the guarded procedure definition of D.

h simple, incomplete guarded procedure signature of a task~mode specification, the corresponding ta
1st not contain a simple guarded procedure definition matching P.

ttribute REIMPLEMENT (see 10.4) is specifiedin a simple guarded procedure signature statem

If the a
mode s
procedi

A task
the attri

An abs
A task

If an inj
grant a

contain

If a tas

proced\]re must be public.

tribute REIMPLEMENT (see 10.4) is specified in a simple guarded procedure signature PD contained i
becification M then the immediate base mode of M must contain or have inherited a public simple ¢
re signature PB, where PB matches PDand PB is neither a constructor nor a destructor and PB is not SE]l

ode is an abstract task mode if it\contains at least one incomplete component procedure (see 10.4). In t
bute ABSTRACT must be spécified.

ract task mode name cah only be used as the task mode name in a task inheritance or as a referenced mod
piode specification faust not grant any location.

mediate base.mode of a task mode is a module mode M then M must have the not_assignable property, 1
only publi¢'procedures which fulfill the restrictions of public component procedures of task modes.

E miode M contains the attribute FINAL M is called a final task mode. A final task mode cannot be used 4

nc same

lure has

pcedure

bonding
here the

k mode

ent this

n a task
ruarded
7Ed.

his case

le.

hust not

y location;\must not contain any inline guarded component procedure or any component process, apd must

s a base

mode ir

A final

3.15.5

syntax:

44

TSI HT TG REE

task mode must not contain an incomplete component procedure.

Interface Modes

<interface mode> ::= (1)
INTERFACE [<interface inheritance>] {<interface component>}*
END [<simple name string>| (1.1)
<interface inheritance> ::= (2)
BASED_ON <interface mode name> { , <interface mode name> }* 2.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<interface component> ::= 3)
<common module component> 3.1)

| <declaration statement> (3.2)

| <simple guarded procedure signature statement> (3.3)

| <process specification statement> (3.4)

| <signal definition statement> (3.5)

semantics: An interface mode defines a moreta mode which can only be used as a base mode in the definition of other

moreta

modes and as the referenced mode of a bound reference mode.

static properties: If interface inheritance 11 is given, the mode MD being defined is immediately derived from the
modes given in II, and these modes are immediate base modes of MD.

The effect of the interface inheritance is that the derived mode behaves as if it contained all components of its immediate

base m¢des Iz [TeST base mode cif a derived mmodc, CTTTarnce Of COMPONT 0 be understpod in a
transitiye manner. For visibility see 12.2.
All int¢rface components (including the SEIZEd ones) are implicitty GRANTed and therefore all are called public
comporjents.
An intefface mode is an abstract mode.
static cpnditions: An interface mode cannot be used as the mode in a synonym definition.
If speciffied, the simple name string after END must be equal to the name string of the 'defining occurrence of thfis mode
definitipn.
The attfibute INCOMPLETE (see 10.4) must be specified in all simple guarded procedure signatures; therefore, all
procedyres have the property incomplete.
The attfibute REIMPLEMENT (see 10.4) must not be specified in a Simple guarded procedure signature statdment of
an interfface component.
4 Locations and their accesses
4.1 Declarations
4.1.1 General
syntax:
<declaration statement> ::= (1)
DCL <declaration> { , <declaration> }* ; (1.1)
<declaration> ::= (2)
<location declaration> 2.1)
| <loc-identity declaration> (2.2)
semantIcs: A declaration statement declares one or more names to be an access to a location.
examples:
6.9 DCLj INT := julian_day number,
d, m, y INT; (1.1)
11.36 starting_square LOC := b(m.lin_1)(m.col 1) 2.2)
4.1.2 Location declarations
syntax:
<location declaration> ::= (1)
<defining occurrence list> <mode> [STATIC]| [<initialization>] (1.1)
<initialization> ::= (2)
<reach-bound initialization> 2.1)
| <lifetime-bound initialization> (2.2)
| <moreta-bound initialization> (2.3)
ITU-T Rec. Z.200 (1999 E) 45

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<reach-bound initialization> ::= (3)
<assignment symbol> <value> [<handler>] (3.1)
<lifetime-bound initialization> ::= (4)
INIT <assignment symbol> <constant value> (4.1)
<moreta-bound initialization> ::= (5)
([<constructor actual parameter list>]) [<handler>] (5.1)

semantics: A location declaration creates as many locations as there are defining occurrences specified in the defining
occurrence list.

With reach-bound initialization, the value is evaluated each time the reach in which the declaration is placed is entered
(see 10 i ¢ ¢ h ft f : he-toeattonts)-eaqntain(s)

With lifetime-bound initialization, the value yielded by the constant value is assigned to the location(s).only onde at the
ihg of the lifetime of the location(s) (see 10.2 and 10.9).

If the rpode is a moreta mode, first all initializations in the components are performed in textual order. If a (possibly
empty) Jparameter list is specified, the corresponding constructor of the mode is applied to the-newly created locption. If
the mode is a task mode, the task belonging to the newly created location is started.

Specifyling no initialization is semantically equivalent to the specification of a lifetime-bound initialization With the
undefined value (see 5.3.1).

The mg¢aning of the undefined value as initialization for a location which has attached a mode with the|tagged
paramé¢terized property or the non-value property is as follows:

e tagged parameterized property: the created tag field sub-location(s) are initialized with their corresponding
pafameter value.

e nop-value property:

— | the created event and/or buffer (sub-)location(s) are initialized to "empty", i.e. no delayed procegses are
attached to the event or buffer nor are there messages in the buffer;

— | the created region and/or task (sub-)logation(s) are initialized to "empty", i.e. no delayed threads are attgched to
them,;

— | the created association (sub¢)loeation(s) are initialized to "empty", i.e. they do not contain an associatiof;
— | the created access (sub=)location(s) are initialized to "empty", i.e. they are not connected to an associatign;

— | the created text (sub=)location(s) have a text record sub-location which is initialized with an empty stfing and
an access sub-loeation which is initialized with "empty", i.e. it is not connected to an association.

e THe semantics OFSTATIC and handler can be found in 10.9 and clause 8, respectively.

If the lifetime-of a moreta location L ends and the mode of the location contains a destructor, then this destquctor is
applied|to I\(see 10.2).

static properties: A defining occurrence in a location declaration defines a location name. The mode attached to the
location name is the mode specified in the location declaration. A location name is referable.

static conditions: The class of the value or constant value must be compatible with the mode and the delivered value
should be one of the values defined by the mode, or the undefined value.

If the mode has the read-only property, initialization must be specified. If the mode has the non-value property, reach-
bound initialization must not be specified.

If initialization is specified, the value must be regionally safe for the location (see 11.2.2).
dynamic conditions: In the case of reach-bound initialization, the assignment conditions of value with respect to the

mode apply (see 6.2).

46 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

examples:

5.7 k2, x, w, t, s, r BOOL

6.9 ;= julian_day number
8.4 INIT :=['A":'Z"]

4.1.3 Loc-identity declarations
syntax:

<loc-identity declaration> ::=
<defining occurrence list> <mode> LOC [DYNAMIC]

(1.1)
(3.1)
“.1)

(1)

H Lol L £ L L il 1
USSTSHTNCHT S yntooOtT TOCation=—1 ~nanarcr 1|

1)
117

semantjics: A loc-identity declaration creates as many access names to the specified location as there~are
nces specified in the defining occurrence list. The mode of the location may be dynamic only if DYNA

occurre
specifig

If the /d
is placg
lifetimg

d.

cation is evaluated dynamically, this evaluation is done each time the reach in which the-loc-identity ded
d is entered. In this case, a declared name denotes an undefined location prior to the\fitst evaluation du

of the access denoted by the declared name (see 10.2 and 10.9).

static

roperties: A defining occurrence in a loc-identity declaration defines a loc-identity name. The mode att
a loc-identity name is, if DYNAMIC is not specified, the mode specified in the lac-identity declaration; otherw
the dynpmically parameterized version of it that has the same parameters as the:-mede of the /ocation.

It is nof allowed to create a location of a moreta mode with the DYNAMIC)property.

lefining
MIC is

laration
ring the

iched to
ise it is

A loc-idlentity name is referable if and only if the specified locationtis referable.
static donditions: If DYNAMIC is specified in the loc-identity declaration, the mode must be parameterizalle. The
specifigd mode must be dynamic read-compatible with the ¢hode of the location if DYNAMIC is specified and read-
compatible with the mode of the location otherwise.
The lodation must not be a string element or string«$lice in which the mode of the string location is a varying string
mode.
dynamjc conditions: The RANGEFAIL or\TAGFAIL exception occurs if DYNAMIC is specified, and the| above-
mentiofjed dynamic read-compatible check-fails.
examples:
11.36 starting square LOC(:= b(m.lin_1)(m.col_1) (1.1)
4.2 Locations
4.2.1 General
syntax:
<location> ::= ()
<access name> (1.1)
| <dereferenced bound reference> (1.2)
| <dereferenced free reference> (1.3)
| <dereferenced row> (1.4)
| <string element> (1.5)
| <string slice> (1.6)
| <array element> (1.7)
| <array slice> (1.8)
| <structure field> (1.9)
| <location procedure call> (1.10)
| <location built-in routine call> (1.11)
| <location conversion> (1.12)
| <predefined moreta location> (1.13)
ITU-T Rec. Z.200 (1999 E) 47

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

semantics: A location is an object that can contain values. Locations have to be accessed to store or obtain a value.

static properties: A location has the following properties:
* A mode, as defined in the appropriate sections. This mode is either static or dynamic.
e It is static or not (see 10.9).

* Itisintra-regional or extra-regional (see 11.2.2).

» It is referable or not. The language definition requires certain locations to be referable and others to be not
referable as defined in the appropriate sections. An implementation may extend referability to other locations

except when explicitly disallowed.

4.2.2 —Accessnames

syntax
<access name> ::= (1)
<location name> (1.1)
| <loc-identity name> (1.2)
| <location enumeration name> (1.3)
| <location do-with name> (1.4)

semantiics: An access name delivers a location. An access name is one of the following:

* a |ocation name, i.e. a name explicitly declared in a location declaration or implicitly declared in a
pafameter without the LOC attribute;

* a loc-identity name, i.e. a name explicitly declared in a loc-identity.de¢laration or implicitly declared in 4
pafameter with the LOC attribute;

. a Ipcation enumeration name, i.e. a loop counter in a locatiowenumeration;

e alpcation do-with name, i.c. a field name used as direct.access in the do action with a with part.

If the 1gcation denoted by a location do-with name is a variant field of a tag-less variant structure location, the s¢
are implementation defined.

static properties: The (possibly dynamic) mede-attached to an access name is the mode of the location na
identity|name, location enumeration name or\lo¢ation do-with name, respectively.

An accpss name is referable if and ofity'if it is a location name, a referable loc-identity name, a referable |
enumenation name, or a referable location do-with name.

dynamjc conditions: When accessing via a loc-identity name, it must not denote an undefined location.

When {ccessing via a loczidentity name a location which is a variant field, the variant field access conditions
location) must be satisfied’ (see 4.2.10). Accessing via a location do-with name causes a TAGFAIL exceptio
denoted location is arvariant field and the variant field access conditions for the location are not satisfied.

formal

formal

mantics

ne, loc-

ocation

for the
h if the

examples:
4.12 a (1.1)
11.39 starting (1.2)
15.35 each (1.3)
5.10 cl (1.4)
4.2.3 Dereferenced bound references
syntax:

<dereferenced bound reference> ::= (1)

<bound reference primitive value> —> [<mode name> | (1.1)

semantics: A dereferenced bound reference delivers the location that is referenced by the bound reference value.

48 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

static properties: The mode attached to a dereferenced bound reference is the mode name if specified, otherwise the
referenced mode of the mode of the bound reference primitive value. A dereferenced bound reference is referable.

static conditions: The bound reference primitive value must be strong. If the optional mode name is specified, it must be
read-compatible with the referenced mode of the mode of the bound reference primitive value.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if the bound reference primitive value delivers the value NULL.

If the referenced location is a variant field, the variant field access conditions for the location must be satisfied
(see 4.2.10).

examples:

1054 | p—> (I°h)

4.2.4 Dereferenced free references

syntaxj
<dereferenced free reference> ::= (1)
<free reference primitive value> —> <mode name> (1.1)

semantfics: A dereferenced free reference delivers the location that is referenced by the free reference value.

static properties: The mode attached to a dereferenced free reference is the modemame. A dereferenced free réference
is referpble.

static cpnditions: The free reference primitive value must be strong.

dynamjc conditions: The lifetime of the referenced location must nothave ended.

The EMPTY exception occurs if the free reference primitive value.delivers the value NULL.
The mogde name must be read-compatible with the mode-ofthe referenced location.

If the feferenced location is a variant field, the yariant field access conditions for the location must be $atisfied
(see 4.2.10).

4.2.5 Dereferenced rows
syntaxj

<dereferenced row> ::= (1)
<row primitive value> —> (1.1)

semantjics: A dereferenced-row delivers the location that is referenced by the row value.
static properties: The‘dynamic mode attached to a dereferenced row is constructed as follows:
&<origin mode name> (<parameter> { , <parameter> }*)

where &origin mode name is a virtual synmode name synonymous with the referenced origin mode of the mode of the
row primifive value and where the parameters are, depending on the referenced origin mode:

* the dynamic string length, in the case of a string mode;
* the dynamic upper bound, in the case of an array mode;

e the list of values associated with the mode of the parameterized structure location, in the case of a variant structure
mode.

A dereferenced row is referable.
static conditions: The row primitive value must be strong.
dynamic conditions: The lifetime of the referenced location must not have ended.

The EMPTY exception occurs if the row primitive value delivers NULL.

ITU-T Rec. Z.200 (1999E) 49

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

If the referenced location is a variant field, the variant field access conditions for the location must be satisfied
(see 4.2.10).

examples:

8.11 input —> (1.1)

4.2.6 String elements

syntax:
<string element> ::= (1)
<string location> (<start element>) (1.1)
<start element> ::= (2)
<integer expression> (21)

semantfics: A string element delivers a (sub-)location which is the element of the specified string location indigated by
start elgment.

static piroperties: The mode attached to the string element is the element mode of the mode of the string location.
If the nfode of the string location is a varying string mode, then the string element is not referable.
dynamjc conditions: The RANGEFAIL exception occurs if the following relation does 1ot hold:

0 < NUM (start element) < L — 1

Where [is the actual length of the string location.

examples:

18.16 string —> (i) (1.1)

4.2.7 String slices

syntaxj

<string slice> ::= (1)

<string location> (<left elemént> : <right element>') (1.1)

| <string location> (<start-élement> UP <slice size>") (1.2)

<left element> ::= (2)

<integer expression=, (2.1)

<right element> ::= (3)

<integer exXpression> 3.1)

<slice size> ::= (4)

<integer expression> (4.1)

semantiics: A string\shice delivers a (possibly dynamic) string location that is the part of the specified string Jocation
indicatqd by lefi~element and right element or start element and slice size. The (possibly dynamic) length of the string
slice is determined from the specified expressions.

A string slice in which the right element delivers a value which is less than that delivered by the left element or ip which
slice size delivers a non positive value denotes an empty string.

static properties: The (possibly dynamic) mode attached to a string slice is a parameterized string mode constructed
as:

&name (string size)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the string location if it is a
fixed string mode, otherwise with the component mode, and where string size is either:

NUM (right element) — NUM (left element) + 1
or

NUM (slice size).

50 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

However, if an empty string is denoted, string size is 0. The mode attached to a string slice is static if string size is
literal, i.e. left element and right element are literal or slice size is literal; otherwise the mode is dynamic.

If the mode of the string location is a varying string mode, then the string slice is not referable.
static conditions: The following relations must hold:

0 < NUM (left element) < L — 1

0 < NUM (right element) < L — 1

0 < NUM (start element) < L — 1

NUM (start element) + NUM (slice size) L L

where 1 is the actual length of the string location. If L and the value all integer expressions are known'\staticglly, the
relations can be checked statically.

dynamjc conditions: The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

examples:
18.26 blanks (count : 9) (1.1)
18.23 string —>(scanstart UP 10) (1.2)

4.2.8 Array elements

syntaxj
<array element> ::= (1)
<array location> (<expression list>") (1.1)
<expression list> ::= (2)
<expression> { , <expression> & 2.1)

derived syntax: The notation: (<expression [ist>") is derived syntax for:
(<expression>) { (<expression>) }*

where there are as many parenthesized expressions as there are expressions in the expression list. Thus an array plement
in the sfrict syntax has only one((index) expression.

semantiics: An array element delivers a (sub-)location which is the element of the specified array location indidated by
expressfon.

static properties:The mode attached to the array element is the element mode of the mode of the array location

An arrqy element is referable if the element layout of the mode of the array location is NOPACK.

static conditions: The class of the expression must be compatible with the index mode of the mode of the array
location.

dynamic conditions: The RANGEFAIL exception occurs if the following relation does not hold:
L < expression < U

where L and U are the lower bound and the (possibly dynamic) upper bound of the mode of the array location,
respectively.

examples:

11.36 b(m.lin_1)(m.col 1) (1.1)

ITU-T Rec. Z.200 (1999E) 51

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

4.2.9 Array slices
syntax:

<array slice> ::= (1)
<array location> (<lower element> : <upper element>) (1.1)
| <array location> (<first element> UP <slice size>) (1.2)
<lower element> ::= (2)
<expression> 2.1)
<upper element> ::= (3)
<expression> (3.1)
<first element> ::= (4
<expression> 1)

semantjics: An array slice delivers a (possibly dynamic) array location which is the part of the specified array

indicatg
to the
express

static g
as:

where

upper i
delivery

or is an|

where /]

The mq
literal

An arrd

static ¢
the ind

The fol

d by lower element and upper element or first element and slice size. The lower bound of.thearray slice
ower bound of the specified array; the (possibly dynamic) upper bound is determined from the s
ons.

roperties: The (possibly dynamic) mode attached to an array slice is a parameterized array mode con|

&name (upper index)

hdex is either an expression whose class is compatible with the,classes of lower element and upper elen;
a value such that:

NUM (upper index) = NUM (L) + NUM (upper élement) — NUM (lower element)

expression whose class is compatible with the class of first element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (slice size) — 1

is the lower bound of the mode of the-array location.

de attached to an array slice 18 'static if upper index is literal, i.e. lower element and upper element §
1 slice size is literal; otherwise the mode is dynamic.

y slice is referable if the element layout of the mode of the array location is NOPACK.

bx mode of the.array location.
owing relations must hold:

L < NUM (lower element) < NUM (upper element) < U

ocation
is equal
becified

structed

Kkname is a virtual synmode name synonymous with the (pogssibly dynamic) mode of the array location and

ent and

re both

pnditions: The-¢lasses of lower element and upper element or the class of first element must be compatible with

1 < NUM (slice size) < NUM (U) - NUM (L) + 1

NUM (L) < NUM (first element) < NUM (first element) + NUM (slice size) — 1 < NUM (U)

where L and U are respectively the lower bound and upper bound of the mode of the array location. If U and the value
of all expressions are known statically, the relations can be checked statically.

dynamic conditions: The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

examples:
17.27 res (0 : count— 1) (1.1)
52 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

4.2.10 Structure fields
syntax:

<structure field> ::= (1)
<structure location> . <field name> (1.1)

semantics: A structure field delivers a (sub-)location which is the field of the specified structure location indicated by
field name. If the structure location has a tag-less variant structure mode and the field name is a variant field name, the
semantics are implementation defined.

static properties: The mode of the structure field is the mode of the field name.

A structurefictdisreferableifthe-fieldlayout-ofthefreldnameis NOPACK——

static cpnditions: The field name must be a name from the set of field names of the mode of the structure locatiop.

dynamjc conditions: A /ocation must not denote:

e atpgged variant structure mode location in which the associated tag field value(s) indicate(s)that the field dloes not
ex|st;

e adynamic parameterized structure mode location in which the associated list of values indicates that the fi¢ld does
nof exist.

The abgve mentioned conditions are called the variant field access conditions/for-the location. The TAGFAIL exyception
occurs 1f they are not satisfied for the structure location.

examples:

10.57 last —>.info (1.1)

4.2.11 | Location procedure calls
syntax:

<location procedure call> ::= (1)
<l[ocation procedure call> (1.1)

semantjics: A location procedure call delivers the location returned from the procedure.
static properties: The mode attached to a location procedure call is the mode of the result spec of the [ocation
procedyre call if DYNAMIC.is_not specified in it; otherwise it is the dynamically parameterized version of it that has
the samle parameters as the mode of the delivered location.

The lodation procedure)call is referable if NONREF is not specified in the result spec of the location procedurd call.

dynamjc conditions: The location procedure call must not deliver an undefined location and the lifetimq of the
deliverd¢d location must not have ended.

4.2.12 | _Location built-in routine calls

syntax:

<location built-in routine call> ::= (1)
<location built-in routine call> (1.1)

semantics: A location built-in routine call delivers the location returned from the built-in routine call.

static properties: The mode attached to the location built-in routine call is the mode of the result spec of the [ocation
built-in routine call.

dynamic conditions: The location built-in routine call must not deliver an undefined location and the lifetime of the
delivered location must not have ended.

ITU-T Rec. Z.200 (1999 E) 53

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

4.2.13 Location conversions
syntax:

<location conversion> ::= (1)
<mode name> # (<static mode location>) (1.1)

semantics: A location conversion delivers the location denoted by static mode location. However, it overrides the
CHILL mode checking and compatibility rules and explicitly attaches a mode to the location without any change in the
internal representation.

The precise dynamic semantics of a location conversion are implementation defined.

static properties: The mode of a location conversion is the mode name.

A locatjon conversion is referable.
static cpnditions: The static mode location must be referable.

The following relation must hold:

SIZE (mode name) = SIZE (static mode location)

4.2.14 | Predefined moreta location
syntax:

<predefined moreta location> ::= (1)
SELF (1.1)

semantjics: In a component procedure and/or process P of a moretd.mode, SELF denotes that moreta locatior] ML to
which R is currently being applied. The mode of SELF is the modéwof ML.

static cpnditions: The use of SELF is allowed only inside th&definition of a moreta mode.

5 Values and their operations
5.1 Synonym definitions
syntax:
<synonym definition.Statement> ::= (1)
SYN <symonym definition> { , <synonym definition>}* ; (1.1)
<synonym definition> ::= (2)
<defining occurrence list> [<mode> | = <constant value> 2.1)

derived syntaxt A synonym definition, where defining occurrence list consists of more than one defining occurience, is
derived| fror several synonym definition occurrences, one for each defining occurrence with the same constant vqlue and
mode, if present. E.g. SYN i, j = 3, is derived from SYN i = 3, j = 3,.

semantics: A synonym definition defines a name that denotes the specified constant value.
static properties: A defining occurrence in a synonym definition defines a synonym name.

The class of the synonym name is, if a mode is specified, the M-value class, where M is the mode, otherwise the class of
the constant value.

A synonym name is undefined if and only if the constant value is an undefined value (see 5.3.1).
A synonym name is literal if and only if the constant value is literal.

static conditions: If a mode is specified, it must be compatible with the class of the constant value and the value
delivered by the constant value must be one of the values defined by the mode.

54 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)
The evaluation of the constant value must not depend directly or indirectly on the constant value of the synonym name.

examples:

1.17 SYN neutral for _add =0,

neutral_for_mult = 1; (1.1)
2.18 neutral for_add fraction = [0,1] (2.1)
5.2 Primitive value

5.2.1 General

syntax

<primitive value> ::= (1)
<location contents> (1.1)

| <value name> (1.2)

| <literal> (1.3)

| <tuple> (1.4)

| <value string element> (1.5)

| <value string slice> (1.6)

| <value array element> (1.7)

| <value array slice> (1.8)

| <value structure field> (1.9)

| <expression conversion> (1.10)

| <representation conversion> (1.11)

| <value procedure call> (1.12)

| <value built-in routine call> (1.13)

| <start expression> (1.14)

| <zero-adic operator> (1.15)

| <parenthesized expression> (1.16)

semantiics: A primitive value is the basic constituent of an expression. Some primitive values have a dynamic claps, i.e. a
class bdsed on a dynamic mode. For these primitive values the compatibility checks can only be completed at ryin time.
Check failure will then result in the TAGEAIL or RANGEFAIL exception.

static properties: The class of the primitive value is the class of the location contents, value name, etc., respectively.
A primitive value is constant fand only if it is a constant value name, a literal, a constant tuple, a constant expression
converdion, a constant representation conversion, a constant value built-in routine call or a constant parenthesized

expressgon.

A primitive value s litéral if and only if it is a value name that is literal, a discrete /iteral, or a value built-in routine call
that is Ijteral.

5.2.2 Location contents
syntax:
<location contents> ::= (1)
location> (1.1)

semantics: A location contents delivers the value contained in the specified location. The location is accessed to obtain
the stored value.

static properties: The class of the location contents is the M-value class, where M is the (possibly dynamic) mode of the
location.

static conditions: The mode of the /ocation must not have the non-value property.

ITU-T Rec. Z.200 (1999E) 55

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

dynamic conditions: The delivered value must not be undefined.

exampl

3.7

5.2.3

syntax:

* a
® ay
® ay

o aV

e adgeneral procedure name (see 10.4).

If the
implem

static p
name,

A valud

A valud
attache

semanjycs: A value name delivers a value. A value name is one of the following:

es:

c2.im (1.1)
Value names

<value name> ::= (1)
synonym name> (1.1)
| <value enumeration name> (1.2)
| <value do-with name> (1.3)
———— | <valucreceiveHaHe 44
| <general procedure name> (5

nonym name, i.c. a name defined in a synonym definition statement,
alue enumeration name, i.e. a name defined by a loop counter in a value enumeration;
alue do-with name, i.c. a field name introduced as value name in the do action with.awith part,

alue receive name, i.e. a name introduced in a receive case action;

alue denoted by a value do-with name is a variant field of a tag-less)variant structure value, the semar
entation defined.

roperties: The class of a value name is the class of the synonyin name, value enumeration name, value

name is literal if and only if it is a synonym name thatis literal.

name is constant if it is a synonym name or a general procedure name denoting a procedure name wi
| a procedure definition which is not surrounded’by a block.

alue receive name or the M-derived class, where M is the mode of the general procedure name, respective

tics are

do-with
ly.

nich has

static cpnditions: The synonym name must not\be-indefined.
dynamjc conditions: Evaluating a value, do-with name causes a TAGFAIL exception if the denoted value is a [variant
field and the variant field access conditions' for the value are not satisfied.
examples:
10.12 max (1.1)
8.8 i (1.2)
15.54 this_counter (1.4)
5.2.4 Literals
5.2.4.1| “General
syntax:
literal> ::= (1)
integer literal> (1.1)
| <floating point literal> (1.2)
| <boolean literal> (1.3)
| <character literal> (1.4)
| <set literal> (1.5)
| <emptiness literal> (1.6)
| <character string literal> (1.7)
| <bit string literal> (1.8)

semantics: A literal delivers a constant value.

56

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

static properties: The class of the /literal is the class of the integer literal, boolean literal, etc., respectively. A literal is

discrete if it is either an integer literal, a boolean literal, a character literal or a set literal.

The letter together with the following apostrophe which starts an integer literal, boolean literal, bit string literal, wide

character literal or wide character string literal (i.e. B', D', H', O', W', b', d', h', o', w') is a literal qualification.

5.2.4.2 Integer literals

5 binary
bnly for

teral in

syntax:
<integer literal> ::= (1)
unsigned integer literal> (1.1)
| <signed integer literal> (1.2)
<unmsigned integer literal> ::= (2)
<decimal integer literal> @)
| <binary integer literal> (2.2)
| <octal integer literal> (2.3)
| <hexadecimal integer literal> (2.4)
<signed integer literal> ::= (3)
— <unsigned integer literal> (3.1)
<decimal integer literal> ::= (4)
[{D|d} '] <digit sequence> (4.1)
<binary integer literal> ::= (5)
{Blb}'{0|1]|_}* (5.1)
<octal integer literal> ::= (6)
{O]o0}' {<octal digit>| }T (6.1)
<hexadecimal integer literal> ::= (7)
{H|h>}"{ <hexadecimal digit>| \}& (7.1)
<hexadecimal digit> ::= 8)
<digit>|A|B|C|D|E|Ffatb|c|d|e]|f (8.1)
<octal digit> ::= 9)
0]11213]41]5]|6% (9.1)
<digit sequence> ::= (10)
{ <digit> |} T (10.1)
semantjics: An integer literal,delivers an integer value. The usual decimal (base 10) notation is provided as well a|
(base 2), octal (base 8).and hexadecimal (base 16). The underline character () is not significant, i.e. it serves
readability and it does'aot influence the denoted value.
A signdd integer-literal delivers a value which is the additive inverse of that delivered by the unsigned integer [
it.
static prope

static conditions: The string following the apostrophe (') and the digit sequence must not consist solely of underline

characters.

The value delivered by integer literal must be one of the values defined by the &/NT mode.

examples:

6.11 1721 119 (2.1)
D'l 721 119 2.1)
B'101011 110100 (2.2)
0'53 64 (2.3)
H'AF4 (2.4)

ITU-T Rec. Z.200 (1999E)

57

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)
5.2.4.3 Floating point literals
syntax:
<floating point literal> ::= (1)
unsigned floating point literal> (1.1)
| <signed floating point literal> (1.2)
<unsigned floating point literal> ::= (2)
<digit sequence> . [<digit sequence> | [<exponent> | 2.1)
[<digit sequence>] . <digit sequence> [<exponent> | (2.2)
<signed floating point literal> ::= (3)
—<UN3IgNed floaring PointT iirerar 3
<exponent> ::= 4)
E <digit sequence> (4.1)
E — <digit sequence> (4.2)
derived syntax: A floating point literal in which 1. a digit sequence, 2. an exponent is missing is derived synt

literal 1

h which 1. the digit sequence is 0, 2. the exponent is E1.

semantjics: A floating point literal delivers a floating point value, expressed as a decimalnumber in scientific notd

A signg
point i

If the f]
modes

deliverg
for repr

d floating point literal delivers a value which is the additive inverse of that delivered by the unsigned
eral in it.

oating point literal lies between the upper bound and lower-bound of one of the predefined floatir
f the implementation but is not exactly representable, the floating point literal value is approximated to t}
d by an implicit representation conversion to the predefined floating point mode chosen by the implem
psenting the floating point literal.

static groperties: The class of a floating point literal is_the” & FLOAT-derived class. A floating point literal is ¢

and lite]

The pr

ral.

cision of a floating point literal is the sufwof the number of significant decimal digits delivered by the t

hx for a

tion.

floating

g point
ie value
Entation

pnstant

o digit

mode.

sequenges that form its mantissa.
static cpnditions: The value delivered-by:floating point literal must be one of the values defined by the &FLOAT]
examples:
10.0E1 (1.1)
—365.0k-5 (1.1)
5.2.4.4| Boolean literals
syntaxj

<boolean literal> ::= (1)

boolean literal name> (1.1)

predefined names: The names FALSE and TRUE are predefined as boolean literal names.

semantics: A boolean literal delivers a boolean value.

static properties: The class of a boolean literal is the BOOL-derived class. A boolean literal is constant and literal.

examples:
5.42 FALSE (1.1)
58 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

5.2.4.5 Character literals
syntax:
<character literal> ::= (1)
narrow character literal> (1.1)
| <wide character literal> (1.2)
<narrow character literal> ::= (2)
" { <character> | <control sequence>}"' 2.1)
<wide character literal> ::= (3)
{ W |w }'{ <character> | <control sequence>}"' (3.1)
<control sequence> ;.= (4)
" (<integer literal expression> { , <integer literal expression> }*) (41
| " <nom-special character> “42)
| (4.3)

semantiics: A character literal delivers a character value.

Apart f]
the cir
represe
denoteg
internall

static
literal i

static ¢

The val

fom the printable representation, the control sequence representation may be used. A Confrol sequence i
cumflex character () is followed by an open parenthesis denotes the sequénce of characters
ntations are the integer literal expression in it; otherwise if it is followed by~another circumflex cha
itself, otherwise it denotes the character whose representation is obtained by-logically negating the b
representation of the non-special character in it (see 12.4.4 and Appendix 1).

roperties: The class of a narrow character literal is the CHAR-derived class. The class of a wide ¢
5 the WCHAR-derived class. A character literal is constant and literal:

pnditions: A control sequence in a character literal must denoteonly one character.

ue delivered by an integer literal expression in a control seguence must belong to the range of values de

the repriesentations of the characters in the CHILL character set (se¢e Appendix I) in case of narrow character lite
the set

charact

f values defined by the representations of charactersin the set of characters of ISO/IEC 10646-1 in case
er literal.

examples:

7.9

5.2.4.6

syntaxj

semanjcs: A set literal)delivers a set value. A set literal is a name defined in a set mode.

static
depend

if

M 2.1)

Set literals

<set literal> ::= (1)
[<modewname> . | <set element name> (1.1)

roperties: The class of a set literal is the M-value class, where M is the mode name, if specified. Other
upon the“eontext where the set literal occurs, according to the following list:

he-set literal is used in a place where a tuple without the mode name can be used, then M is derived folloy

h which

whose
racter it
/' of the

aracter

fined by
tal or to
of wide

vise, M

ing the

same-Tules defined for the fuplo (QPP 52 4)’

if the set literal is used as a value in a tuple, then M is the mode of that value;

if the set literal is used in a literal range to define a discrete range mode of the form:

<discrete mode name> (<literal range>)

then M is the discrete mode name;

if the set literal is the usage expression, the where expression, the index expression or the write expression in a
built-in routine for input output (see 7.4), then M is respectively USAGE, WHERE, the index mode of the access
location or of the text location, the record mode of the access location;

if the set literal is used in a conditional expression, then M is derived in the same way as for the expression in which
it is contained;

ITU-T Rec. Z.200 (1999E)

59

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

if the set literal is the upper index in a parameterized array mode, then M is the corresponding index mode of the
origin array mode;

if the set literal is an expression in a parameterized structure mode, then M is the root mode of the corresponding
tag field name in the origin variant structure mode;

if the set literal is used in an array element or array slice, then M is the corresponding index mode in the array
mode;

if the set literal is used in a case label, then M is derived from the mode of the corresponding tag field name (for
structure mode), from the mode of the corresponding selector in the case selector list (for case action or conditional
expression), or from the index mode (for tuple).

if the set literal is used as the lower bound or the upper bound and a discrete mode name is specified in the literal

range in which it is contained, then M is the discrete mode name.
A set liferal is constant and literal.
static cpnditions: The optional mode name may be omitted only in the contexts specified above.
The set|element name must belong to the set of set element names of M.
examples:
6.51 dec (1.1)
11.78 king (1.1)
5.2.4.7| Emptiness literal
syntaxj
<emptiness literal> ::= (1)
<emptiness literal name> (1.1)

seman

predef:[led names: The name NULL is predefined as an emptiness literal name.

cs: The emptiness literal delivers either the empty'reference value, i.e. a value which does not refer to a 1

bcation,

the empty procedure value, i.e. a value which does not indicate a procedure, or the empty instance value, i.e.|a value
which does not identify a process.
static ;]mperties: The class of the emptiness literal is the null class. An emptiness literal is constant.
examples:
10.43 NULL (1.1)
5.2.4.8| Character string.literals
syntax:
<character: string literal> ::= (1)
<narrow character string literal> (1.1)
| <wide character string literal> (1.2)
<narrow character string literal> ::=)
" { <non-reserved character> | <quote> | <control sequence>}* " 2.1)
<wide character string literal> ::= (3)
{ W'| W'} " { <non-reserved wide character> | <quote> | <control sequence>}*" (3.1)
<quote> ::= (4)
nn (4. I)

semantics: A character string literal delivers a character string value that may be of length 0. It is a list of values for the
elements of the string; the values are given for the elements in increasing order of their index from left to right. To
represent the character quote (") within a character string literal, it has to be written twice ("").

static properties: The string length of a character string literal is the number of non-reserved character, quote and
characters denoted by control sequence occurrences.

60

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The class of a character string literal is the CHARS (n)-derived class, where n is the string length of the

narrow

character string literal. The class of a character string literal is the WCHARS (n)-derived class, where n is the string

length of the wide character string literal. A character string literal is constant.
examples:

8.20 "4-B<ZAA9IK'" (2.1)

5.2.4.9 Bit string literals

syntax:

<bit string literal> ::= (1)
<binary bit string literal> (1.1)

[~ <octal bit string literal 1.2

| <hexadecimal bit string literal> .3)
<binary bit string literal> ::= (2)
{BIb} " {O[1]_}*' 2.1)

<octal bit string literal> ::= (3)
{O]o}'{<octal digit>| }*"' (3.1)
<hexadecimal bit string literal> ::= (4)
{H|h}"'{<hexadecimal digit>| }*' (4.1)

semantics: A bit string literal delivers a bit string value that may be of length,0.(Binary, octal or hexadecimal n

ptations

may be|used. The underline character () is insignificant, i.e. it serves only. for readability and does not influ¢nce the
indicatdd value.
A bit sfring literal is a list of values for the elements of the string;¢the values are given for the elements in in¢reasing
order of their index from left to right.
static groperties: The string length of a bit string literal is'either the number of 0 and / occurrences in a biary bit
string ljteral, three times the number of octal digit occurteiees in an octal bit string literal or four times the number of
hexadegimal digit occurrences in a hexadecimal bit string-literal.
The claps of a bit string literal is the BOOLS (n)-dérived class, where 7 is the string length of the bit string litergl. A bit
string Il{teral is constant.
examples:
B'1010J1 110100’ (1.1)
0'53_6¢' (1.2)
H'AF4' (1.3)
5.2.5 Tuples
syntax
Ltuple> ::= (1)
[<mode name> 1 (: { <powerset tuple> |
<array tuple> | <structure tuple> } :) (1.1)
<powerset tuple> ::= (2)
[{ <expression> | <range>} {, { <expression>|<range>} }* | (2.1)
<range> ::= (3)
<expression> : <expression> (3.1)
<array tuple> ::= 4)
<unlabelled array tuple> (4.1)
| <labelled array tuple> (4.2)
<unlabelled array tuple> ::= (5)
<value> { , <value>}* (5.1)
ITU-T Rec. Z.200 (1999 E) 61

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<labelled array tuple> ::= (6)
<case label list> : <value> { , <case label list> : <value>}* (6.1)
<structure tuple> ::= (7)
<unlabelled structure tuple> (7.1)

| <labelled structure tuple> (7.2)
<unlabelled structure tuple> ::= (8)
<value> { , <value> }* 8.1

<labelled structure tuple> ::= 9)
<field name list> : <value> { , <field name list> : <value> }* 9.1)

Jield mame 15> = 107
. <field name> { , . <field name> }* (10.1)

derived syntax: The tuple opening and closing brackets, [and], are derived syntax for (: and :), respeetively. This is not
indicatdd in the syntax to avoid confusion with the use of square brackets as meta symbols.

semantfics: A tuple delivers either a powerset value, an array value or a structure value.

If it is 4 powerset value, it consists of a list of expressions and/or ranges denoting thosemember values which ate in the
powers¢t value. A range denotes those values which lie between or are one of the values delivered by the expressions in
the range. If the second expression delivers a value which is less than the valuetdelivered by the first expresgion, the
range if empty, i.e. it denotes no values. The powerset tuple may denote the empty-powerset value.

If it is qn array value, it is a (possibly labelled) list of values for the elendents of the array; in the unlabelled arrdy tuple,
the valges are given for the elements in increasing order of their indexsin the labelled array tuple, the values afe given
for the elements whose indices are specified in the case label list labelling the value. It can be used as a shorthand for
large afray tuples where many values are the same. The label ELSE denotes all the index values not mgntioned
explicitly. The label * denotes all index values (for further details,"see 12.3).

If it is g structure value, it is a (possibly labelled) set of walues for the fields of the structure. In the unlabelled structure
tuple, the values are given for the fields in the samerder as they are specified in the attached structure modg. In the
labelled structure tuple, the values are given for the fields whose fiecld names are specified in the field name lis{ for the
value.

The ordler of evaluation of the expressigns-and values in a tuple is undefined and they may be considered gs being
evaluated in any order.

static properties: The class of-a, ziple is the M-value class, where M is the mode name, if specified. Otherwise M
depend$ upon the context whete the fuple occurs, according to the following list:

» if the tuple is the value or constant value in an initialization in a location declaration, then M is the mode in the
logation declaratiom;,

» if the tupleis'the right-hand side value in a single assignment action, then M is the (possibly dynamic) mode of the
left-hand side location;

e ifthe tuple is used in an operand-2 and one of the operands is strong, then M is the mode of the strong operand;

o ifthe tuple is an actual parameter in a procedure call or in a start expression where DYNAMIC is not specified in
the corresponding parameter spec, then M is the mode in the corresponding parameter spec;

o if the tuple is the value in a return action or a result action, then M is the mode of the result spec of the procedure
name of the result action or return action (see 6.8);

e if the tuple is a value in a send action, then it is the associated mode specified in the signal definition of the signal
name or the buffer element mode of the mode of the buffer location;

e if'the tuple is an expression in an array tuple, then M is the element mode of the mode of the array tuple;

62 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

e if the tuple is an expression in an unlabelled structure tuple or a labelled structure tuple where the associated field
name list consists of only one field name, then M is the mode of the field in the structure tuple for which the tuple is
specified;

e if the tuple is the value in a GETSTACK or ALLOCATE built-in routine call, then M is the mode denoted by mode
argument.

A tuple is constant if and only if each value or expression occurring in it is constant.

static conditions: The optional mode name may be omitted only in the contexts specified above. Depending on whether
a powerset tuple, array tuple or structure tuple is specified, the following compatibility requirements must be fulfilled:

a) Powerset tuple

1)[The mode of the fup/e must be a powerset mode.
2)| The class of each expression must be compatible with the member mode of the mode of the rup/le:
3)| For a constant powerset tuple the value delivered by each expression must be one of the valu€s‘defined by that
member mode.
b) Artay tuple
1)| The mode of the tuple must be an array mode.
2)| The class of each value must be compatible with the element mode of the'mede of the tuple.
3)| In the case of an unlabelled array tuple, there must be as many/occurrences of value as the number of
elements of the array mode of the tuple.
4)| In the case of a labelled array tuple, the case selection conditions must hold for the list of case lqbel list
occurrences (see 12.3). The resulting class of the list mustbe’compatible with the index mode of the node of
the fuple. The list of case label specifications must be complete.
5)| In the case of a labelled array tuple, the values explicitly indicated by each case label in a case label fjst must
be values defined by the index mode of the ruple.
6)| Inan unlabelled array tuple, at least one valie occurrence must be an expression.
7)| For a constant array tuple, where the element mode of the mode of the fuple is a discrete mode, each specified
value must deliver a value defined by that element mode, unless it is an undefined value.
c) Stiucture tuple
1)| The mode of the tuple mustjbe a structure mode.
2)| This mode must not’bea structure mode which has field names which are invisible (see 12.2.5).
In the chse of an unlabeled structure tuple:
— If the mode of.th€tuple is neither a variant structure mode nor a parameterized structure mode, then:
3)| Theresmust be as many occurrences of value as there are field names in the list of field names of the mode of
the fuple.
4) —Theclassof each vatme Tust be compatiblewittrthe modeof thecorrespomding by position)field hame of

the mode of the tuple.

— If the mode of the tuple is a tagged variant structure mode or a tagged parameterized structure mode, then:

5)
6)

7)

Each value specified for a tag field must be a discrete literal expression.

There must be as many occurrences of value as there are field names indicated as existing by the value(s)

delivered by the discrete literal expression occurrences specified for the tag fields.

The class of each value must be compatible with the mode of the corresponding field name.

— Ifthe mode of the fuple is a tag-less variant structure mode or a tag-less parameterized structure mode,

8)

No unlabelled structure tuple is allowed.

ITU-T Rec. Z.200 (1999E)

63

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

In the case of a labelled structure tuple:
— Ifthe mode of the fuple is neither a variant structure mode nor a parameterized structure mode, then:

9) Each field name of the list of field names of the mode of the tuple must be mentioned once and only once in
the tuple.

10) The class of each value must be compatible with the mode of every field name specified in the field name list
labelling that value. The modes of all field names in the field name list must be equivalent.

— If the mode of the tuple is a tagged variant structure mode or a tagged parameterized structure mode, then:
11) Each value that is specified for a tag field must be a discrete literal expression.

12) Each field name that denotes a fixed field or a field indicated as existing by the value(s) delivered by the
discrete literal expression occurrences specified for the tag fields must be mentioned once and only enge in the
tuple.

13) The class of each value must be compatible with the mode of any field name specified inthe \field nime list
labelling that value.

— If the mode of the tuple is a tag-less variant structure mode or a tag-less parameterized structure mode, thdn:

14) Each field name must be mentioned at most once in the tuple. All the fixed field.iames must be meptioned.
Field names mentioned in the tuple, which are defined in the same alternativé field, must all be defineld in the
same variant alternative or all be defined after ELSE. All field names of'am alternative field in each| variant
alternative or all field names defined after ELSE must be mentioned.

15) The class of each value must be compatible with the mode of any-field name specified in the field nime list
labelling that value.

16) If the mode of the fuple is a tagged parameterized structureimode, the list of values delivered by the iscrete
literal expression occurrences specified for the tag fields-must be the same as the list of values of the node of
the tuple.

17) For a constant structure tuple, each value specified for a field with a discrete mode must deliver |a value
defined by the field mode, unless it is an undefined value.

18) At least one value occurrence must be an expression.

No tupfe may have two value occurrences in"it, such that one is extra-regional and the other is intra-negional
(see 11)2.2).

dynamjc conditions: The assignment _conditions of any value with respect to the member mode, element rpode or
associafed field mode, in the case ofpowerset tuple, array tuple or structure tuple, respectively (see 6.2) apply (refer to

conditigns a2, b2, c4, ¢7, ¢10,.c13/and c15).

If the typle has a dynamic.array mode, the RANGEFAIL exception occurs if any of the conditions b3 or b5|are not
satisfiedl.

If the #yple has adynamic parameterized structure mode, the 7AGFAIL exception occurs if any of the conditionf c14 or
c16 are[not satisfied.

The valpedelivered by a fuple must not be undefined.

examples:

9.6 number_list []" (1.1)
9.7 [2:max] (2.1)
8.26 [(4):3,('B"'K",'Z"):1,(ELSE). 0] (6.1)
17.5 [(%):"] (6.1)
12.35 (:NULL,NULL,536:) (7.1)
11.18 [.status:occupied,.p: [white,rook]] 9.1)

64 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

5.2.6 Value string elements

syntax:
<value string element> ::= (1)
<string primitive value> (<start element>) (1.1)

NOTE - If the string primitive value is a string location, the syntactic construct is ambiguous and will be interpreted as a string
element (see 4.2.6).

semantics: A value string element delivers a value which is the element of the specified string value indicated by start
element.

e mode

of the gingprim%tive value.

A valud string element is constant if and only if string primitive value and start element are constant.
dynamjc conditions: The value delivered by a value string element must not be undefined.

The RAWNGEFAIL exception occurs if the following relation does not hold:

0 < NUM (start element) < L — 1

Where [is the actual length of the string primitive value.

5.2.7 Value string slices

syntax:
<value string slice> ::= (1)
<string primitive value> (<left element> : <right element>) (1.1)
| <string primitive value> (<start element> UP <slice size>) (1.2)

NOTE - If the string primitive value is a string locationf.the syntactic construct is ambiguous and will be interpreted as a s#fing slice
(see 4.2]7).

semantiics: A value string slice delivers a, (possibly dynamic) string value which is the part of the specified strijg value
indicatdd by left element and right element or start element and slice size. The (possibly dynamic) length of the string

slice is determined from the specified expressions.

A string slice in which the right element delivers a value which is less than that delivered by the left element or inh which
slice sije delivers a non pogitive value denotes an empty string.

static properties: The(possibly dynamic) class of a value string slice is the M-value class if the string primitive palue is
strong hnd otherwise' the M-derived class, where M is a parameterized string mode constructed as:

&name (string size)

where &name 15 a virtual synmode name synonymous with the (possibly dynaimic) root mode ol the siring primitive
value if it is a fixed string mode, otherwise with the component mode, and where string size is either

NUM (right element) — NUM (left element) + 1

or

NUM (slice size).

However, if an empty string is denoted, string size is 0. The class of a value string slice is static if string size is literal,
i.e. left element and right element are literal or slice size is literal; otherwise the class is dynamic.

A value string slice is constant if and only if string primitive value and string size are constant.

ITU-T Rec. Z.200 (1999 E) 65

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static conditions: The following relations must hold:

0 < NUM (left element) < L — 1
0 < NUM (right element) < L — 1
0 < NUM (start element) < L — 1

NUM (start element) + NUM (slice size) < L

where L is the actual length of the string primitive value. If L and the value all integer expressions are known statically,
the relations can be checked statically.

dynamic conditions: The value delivered by a value string slice must not be undefined.

The RAINGEFAIL exception occurs if a dynamic part of the check of the relations above fails.

5.2.8

syntax

NOTE
element

derived

semantjics: A value array element delivers a value which is the eleméntvof the specified array value indig

express|

static pgroperties: The class of the value array element is the M-value class, where M is the element mode of th

of the ¢
A valud

static
primitiy

dynam

The RANGEFAIL exception occurs if the:following relation does not hold:

Value array elements

<value array element> ::= (1)
<array primitive value> (<expression list>) (1.1)

If the array primitive value is an array location the syntactic construct is ambiguousiand will be interpreted as
see 4.2.8).

syntax: See 4.2.8.

jon.

yray primitive value.
array element is constant if and only if array prinditive value and expression are constant.

onditions: The class of the expression must'be compatible with the index mode of the mode of th
e value.

¢ conditions: The value delivered by'‘avalue array element must not be undefined.

L < expression < UL

an array

ated by

e mode

< array

e value,

where L and U are the lower-bound and (possibly dynamic) upper bound of the mode of the array primitiv
respectively.
5.2.9 Value array-slices
syntaxj
<value array slice> ::= (1)
 a ity L L]] ogan pza > & o0 ianan] ogan ot) L1 1)
array-priitive-vatne—(—<lower-etement——<upper-etenrent—) 4+
| <array primitive value> (<first element> UP <slice size>) (1.2)

NOTE - If the array primitive value is an array location, the syntactic construct is ambiguous and will be interpreted as an array slice
(see 4.2.9).

semantics: A value array slice delivers an (possibly dynamic) array value which is the part of the specified array value
indicated by lower element and upper element, or first element and slice size. The lower bound of the value array slice is
equal to the lower bound of the specified array value; the (possibly dynamic) upper bound is determined from the
specified expressions.

static properties: The (possibly dynamic) class of a value array slice is the M-value class, where M is a parameterized
array mode constructed as:

66

&name (upper index)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the array primitive value
and upper index is either an expression whose class is compatible with the classes of lower element and upper element
and delivers a value such that:

NUM (upper index) = NUM (L) + NUM (upper element) — NUM (lower element)

or is an expression whose class is compatible with the class of first element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (slice size) — 1

where L is the lower bound of the mode of the array primitive value.

The class of a value array slice is static if upper index is literal, i.e. lower element and upper element both are literal or
slice size is literal; otherwise the class is dynamic.

static cpnditions: Ihe classes oI lower element and upper element ot Ihe class ol jirst element must be compatible with
the index mode of the array primitive value.

The following relations must hold:

L < NUM (lower element) < NUM (upper element) < U

1 < NUM (slice size) < NUM (U) - NUM (L) + 1

NUM (L) £ NUM (first element) < NUM (first element) + NUM (slice size)— 1 < NUM (U)

where 4 and U are, respectively, the lower bound and upper bound of the mode of the array primitive value. If U and
the valye of all expressions are known statically, the relations can be checked statically.

A valud array slice is constant if and only if array primitive value and upper-ifidex are constant.
dynamjc conditions: The value delivered by a value array slice must not be undefined.

The RANGEFAIL exception occurs if a dynamic part of the check of the relations above fails.
5.2.10 | Value structure fields

syntax

<value structure field> ::= (1)
<structure primitive value> ~<field name> (1.1)

NOTE -+ If the structure primitive value is a striicture location, the syntactic construct is ambiguous and will be interpr¢ted as a
structur¢ field (see 4.2.10).

semantjics: A value structure field delivers a value which is the field of the specified structure value indicated by field
name. Iif the structure primitive value has a tag-less variant structure mode and the field name is a variant fielfl name,
the semiantics are implementatiofi'defined.

static properties: The class 0f Value structure field is the M-value class, where M is the mode of the field name.
A valud structure field'is eonstant if and only if structure primitive value is constant.

static gonditions{ The field name must be a name from the set of field names of the mode of the structure pyimitive
value.

dynamjc/conditions: The value delivered by a value structure field must not be undefined.

A value must not denote:

e atagged variant structure mode value in which the associated tag field value(s) indicate(s) that the denoted field
does not exist;

* adynamic parameterized structure mode value in which the associated list of values indicates that the field does
not exist.

The above-mentioned conditions are called the variant field access conditions for the value (note that the conditions do
not include the occurrence of an exception). The TAGFAIL exception occurs if they are not satisfied for the structure
primitive value.

examples:

11.140 b (lin)(col).status (1.1)

ITU-T Rec. Z.200 (1999 E) 67

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

5.2.11 Expression conversion
syntax:

<expression conversion> ::=)
<mode name> # (<expression>) (L0

NOTE - If the expression is a static mode location, the syntactic construct is ambiguous and will be interpreted as a location
conversion (see 4.2.13).

semantics: An expression conversion overrides the CHILL mode checking and compatibility rules. It explicitly attaches
a mode to the expression without any change in the internal representation.

static properties: The class of the expression conversion is the M-value class, where M is the mode name. An
express jon conversion is constant if and only if the pY‘anvvinn is constant

static conditions: The mode name must not have the non-value property. The size of the root mode of the_expression
and thelsize of mode name must be equal.

5.2.12 | Representation conversion
syntax

<representation conversion> ::= (1)
<mode name> (<expression>) (1.1)

semantiics: A representation conversion overrides the CHILL mode checking and compatibility rules. It explicitly
attacheg a mode to the expression and may change the internal representation{of the value delivered by the expression
itself. If the mode of the mode name is a discrete mode and the class of the)value delivered by the expression is dliscrete,
then th¢ value delivered by the representation conversion is such that:

NUM (mode name (expression)) = NUM (exppession)
A reprepentation conversion in which mode name and the root\mode of the class of the expression are respectively:
e anlinteger mode and a floating point mode;
* afloating point mode and an integer mode;

* afloating point mode and another floating point mode with different root modes,

may inyolve an approximation. If the value delivered by expression is exactly representable in the set of values pf mode
name, the result of the representation”Conversion is the value of expression itself, otherwise it is one of the two values
belongfg to the set of values of méde name that delimit the smallest interval in which the value delivered by exjpression
is contdined. A representation conyersion in which mode name is an integer mode and the root mode of the clags of the
expressjon is a duration modey delivers an integer value which represents in milliseconds the value delivgred by
expressjon.

A representation convetsion in which mode name or the root mode of the class of the expression is a structure mgde, and
the oth¢r one is a“parameterized structure mode whose origin structure mode is similar with it, delivers a structure
value i) whichsthe*values of the fields are equal to the corresponding ones of the expression, if present. Otheryise the
result i implerientation defined. Note that for tag-less variant structure values and for tagged variant structur¢ values
in which the list of tag values is different from that of the parameterized structure mode the result of the represgntation

2 e 1 ot A6 4
conversrotsHmprementattonaCmea:

A representation conversion in which the mode M of the mode name is a reference mode and the class of the expression
is the null class, the result of the representation conversion is null, if M is compatible with the class
of —> ((expression) —>) then the result is equal to it, otherwise the result is implementation defined.

Otherwise, the value delivered by the representation conversion is implementation defined and may depend on the
internal representation of values.

static properties: The class of the representation conversion is the M-value class, where M is the mode name. A
representation conversion is constant if and only if the expression is constant.

static conditions: The mode name must not have the non-value property. An implementation may impose additional
static conditions.

68 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

dynamic conditions: In the case of an expression that is not constant:

* a RANGEFAIL exception occurs if mode name is a duration mode and the root mode of the class of the expression
is an integer mode (or vice versa), and the value delivered by representation conversion does not belong to the set
of values defined for mode name;

e an OVERFLOW exception occurs if:

— the class of the value delivered by expression is discrete and the mode of mode name is a discrete mode which
does not define a value with an internal representation equal to NUM (expression);

— the mode of mode name and the root mode of the class of the expression are, independently, an integer mode
or a floating point mode, and the expression delivers a value that does not lie between the bounds of the root
mode of mode name;

* anptHv Z . : c . expre
pojnt modes, and the value delivered by expression is greater than the negative lower limit and less than the
popitive lower limit of the mode name, and is different from zero.

An impllementation may impose additional dynamic conditions that, when violated, cause an exception'defined by the
implemientation.

5.2.13 | Value procedure calls
syntaxj

<value procedure call> ::= (1)
<value procedure call> (1.1)

semanjcs: A value procedure call delivers the value returned from a procedure.

static properties: The class of the value procedure call is the M-value class, where M is the mode of the result|spec of
the valye procedure call.

dynamjc conditions: The value procedure call must not deliver‘an undefined value (see sections 5.3.1 and 6.8).

examples:
6.50 julian_day number([10,dec,1979]) (1.1)
11.63 ok_bishop(b,m) (1.1)

5.2.14 | Value built-in routine calls
syntaxj

<value built-in routine-call> ::= (1)
<value built=in routine call> (1.1)

semantjics: A value built<in‘routine call delivers the value returned by the built-in routine.
static properties: The-class attached to the value built-in routine call is the class of the value built-in routine call

dynamjc conditions: The value built-in routine call must not deliver an undefined value (see sections 5.3.1 and ¢.8).

5.2.15 | (Start expressions

syntax:

<start expression> ::= (1)
START <process name> ([<actual parameter list>]) (1.1)

semantics: The evaluation of the start expression creates and activates a new process whose definition is indicated by the
process name (see clause 11). The start expression delivers the instance value identifying the created process. Parameter
passing is analogous to procedure parameter passing; however, additional actual parameters may be given with an
implementation defined meaning.

static properties: The class of the start expression is the INSTANCE-derived class.
static conditions: The number of actual parameter occurrences in the actual parameter list must not be less than the

number of formal parameter occurrences in the formal parameter list of the process definition of the process name. If

ITU-T Rec. Z.200 (1999 E) 69

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

the number of actual parameters is m and the number of formal parameters is #n (/m = n), the compatibility and regionality
requirements for the first n actual parameters are the same as for procedure parameter passing (see 6.7). The static
conditions for the rest of the actual parameters are implementation defined.

dynamic conditions: For parameter passing, the assignment conditions of any actual value with respect to the mode of
its associated formal parameter apply (see 6.7).

The start expression causes the SPACEFAIL exception if storage requirements cannot be satisfied.
examples:

15.35 START counter() (1.1)

5.2.16 Zero-adic operator

syntax

<zero-adic operator> ::= (1)

THIS (1.1)

semantfics: The zero-adic operator delivers the unique instance value identifying the process executing it. If it is executed
by a tagk location a THIS FAIL exception occurs.

static properties: The class of the zero-adic operator is the INSTANCE-derived class.

static cpnditions: The zero-adic operator THIS must not occur inside a task modeidefinition.

5.2.17 | Parenthesized expression
syntax

<parenthesized expression> ::= (1)
(<expression>) (1.1)

semantjics: A parenthesized expression delivers the value delivered by the evaluation of the expression.
static properties: The class of the parenthesized expression is the class of the expression.

A parenthesized expression is constant (literal) if and only if the expression is constant (literal).

examples:
5.10 (al OR b1) (1.1)
5.3 Values and expressions

5.3.1 General

syntax:
<vaglie> ::= (1)
<expression> (1.1)
| <undefined value> (1.2)
<undefined value> ::= (2)
* (2.1)
| <undefined synonym name> (2.2)

semantics: A value is either an undefined value or a (CHILL defined) value delivered as the result of the evaluation of
an expression.

Except where explicitly indicated to the contrary, the order of evaluation of the constituents of an expression and their
sub-constituents, etc., is undefined and they may be considered as being evaluated in any order. They need only be
evaluated to the point that the value to be delivered is determined uniquely. If the context requires a constant or literal
expression, the evaluation is assumed to be done prior to run time and cannot cause an exception. An implementation
will define ranges of allowed values for literal and constant expressions and may reject a program if such a prior-to-run-
time evaluation delivers a value outside the implementation defined bounds.

70 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: The class of a value is the class of the expression or undefined value, respectively.

The class of the undefined value is the all class if the undefined value is a *; otherwise the class is the class of the
undefined synonym name.

A value is constant if and only if it is an undefined value or an expression which is constant. A value is literal if and
only if it is an expression which is literal.

dynamic properties: A value is said to be undefined if it is denoted by the undefined value or when explicitly indicated
in this Recommendation | International Standard. A composite value is undefined if and only if all its sub-components
(i.e. substring values, element values, field values) are undefined.

examples:
6.40 (146_097*c)/4+(1_461%y)/4
(133 m+2)/5+day+1 721 119 (I
53.2 Expressions
syntax
<expression> ::= (1)
<operand—0> (1.1)
| <conditional expression> (1.2)
<conditional expression> ::= (2)
| IF <boolean expression> <then alternative>
<else alternative> FI (2.1)
| CASE <case selector list> OF { <value case alternativeX}™
[ELSE <sub expression>] ESAC 2.2)
<then alternative> ::= (3)
THEN <sub expression> (3.1)
<else alternative> ::= (4)
ELSE <sub expression> (4.1)
| ELSIF <boolean expression>
<then alternative> <else alternative> (4.2)
<sub expression> ::= (5)
<expression> (5.1)
<value case alternative> ::= (6)
<case label specification> : <sub expression> ; (6.1)

semantjics: If IF is specified, the boolean expression is evaluated and if it yields TRUE, the result is the value dglivered
by the Jub expression in the thefi alternative, otherwise it is the value delivered by the else alternative.

The value delivered by an @lse alternative is the value of the sub expression if ELSE is specified, otherwise the poolean
expressfon is evaluated<and’if it yields TRUE, it is the value delivered by the sub expression in the then altdrnative,
otherwise it is the valug delivered by the else alternative.

If CASE is specified, the sub expressions in the case selector list are evaluated and if a case label specification thatches,
the resylt is thevvalue delivered by the corresponding sub expression, otherwise it is the value delivered by [the sub
expressfon’following ELSE (which will be present).

Unused sub expressions 1 a conditional expression are not evaluated.

static properties: If an expression is an operand—0, the class of the expression is the class of the operand—0. If it is a
conditional expression, the class of the expression is the M-value class, where M is the mode which depends on the
context where the conditional expression occurs according to the same rules that define the mode of the class of a tuple
without a mode name (see 5.2.5).

An expression is constant (literal) if and only if it is either an operand—0 which is constant (literal), or a conditional
expression in which all boolean expression or case selector list in it are constant (literal) and in which all sub
expressions in it are constant (literal).

static conditions: If an expression is a conditional expression the following conditions apply:

e a conditional expression may occur only in the contexts in which a tuple without a mode name in front of it may
occur;

ITU-T Rec. Z.200 (1999E) 71

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

e each sub expression must be compatible with the mode that is derived from the context with the same rules as for
tuples. However, the dynamic part of the compatibility relation applies only to the selected sub expression;

 if CASE is specified, the case selection conditions must be fulfilled (see 12.3), and the same completeness,
consistency and compatibility requirements must hold as for the case action (see 6.4);

* no conditional expression may have two sub expression occurrences in it such that one is extra-regional and the
other is intra-regional (see 11.2.2).

dynamic conditions: In the case of a conditional expression, the assignment conditions of the value delivered by the
selected sub expression with respect to the mode M derived from the context apply.

533 Operand-0
syntax
<operand—0> ::= (1)
<operand—I> (1.1)
| <sub operand—0> { OR | ORIF | XOR >} <operand—1> (1.2)
<sub operand—0> ::= (2)

semantfics: If OR, ORIF or XOR is specified, sub operand—0 and operand—1 deliver;

e bo
dis
va

operand—0> (2.1)

blean values, in which case OR and XOR denote the logical operators*inclusive disjunction”" and "e;
junction", respectively, delivering a boolean value. If ORIF is specified and operand—0 delivers the
ue TRUE, then this is the result, otherwise the result is the value delivered by operand-1I;

kclusive
boolean

* bif string values, in which case OR and XOR denote the logical operations on corresponding element of the bit
strings, delivering a bit string value;
e pojwerset values, in which case OR denotes the union of both powerset values and XOR denotes the powersgt value
copsisting of those member values which are in only,one of the specified powerset values (e.g. 4 XOR B = 4-B
OR B-A).
static groperties: If an operand—0 is an operand-1, the class of operand—0 is the class of operand—I. If OR, QRIF or
XOR if specified, the class of operand—0 is the xésulting class of the classes of sub operand—0 and operand—1.
An opeland—0 is constant (literal) if and only 1f it is either an operand—1 which is constant (literal), or built up [from an
operandi—0 and an operand—1 which are:both constant (literal).
static conditions: If OR, ORIF orXIOR is specified, the class of sub operand—0 must be compatible with the [class of
operangi—1. If ORIF is specified) both classes must have a boolean root mode, otherwise both classes must| have a
boolear], powerset or bit stringroot mode, in which case the actual length of sub operand—0 and operand—I mugt be the
same. Tlhis check is dynamiCif one or both modes is (are) dynamic or varying string modes.
dynamjc conditions;In the case of OR or XOR, a RANGEFAIL exception occurs if one or both operands| have a
dynamif class and the dynamic part of the above-mentioned compatibility check fails.
examples:
10.31 T<min (11‘ ‘1)
10.31 i<min OR >max (1.2)
5.3.4 Operand-1
syntax:
<operand—I> ::= (1)
<operand—2> (1.1)
| <sub operand—1> { AND | ANDIF >} <operand-2> (1.2)
<sub operand—1> ::= (2)
<operand—1> (2.1)
72 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

semantics: If AND or ANDIF is specified, sub operand—1 and operand—2 deliver:

* boolean values, in which case AND denotes the logical "conjunction" operation, delivering a boolean value. If
ANDIF is specified and sub operand—1 delivers the boolean value FALSE, then this is the result, otherwise the
result is the value delivered by operand-2;

e Dbit string values, in which case AND denotes the logical operation on corresponding element of the bit strings,
delivering a bit string value;

* powerset values, in which case AND denotes the "intersection" operation of powerset values delivering a powerset
value as a result.

static propertiesb If an operand—1 is an operand-2, the class of operand—1 is the class of operand-2.

If AND or ANDIF is specified, the class of operand—1 is the resulting class of the classes of sub operand—I and
operangl-2.

An opefand-1 is constant (literal) if and only if it is either an operand—2 which is constant (literal), or bl up [from an
operangi—1 and an operand—2 which are both constant (literal).

static donditions: If AND or ANDIF is specified, the class of sub operand—I must be compatible with the gclass of
operangl-2. If ANDIF is specified, both classes must have a boolean root mode, otherwise.both classes must have a
boolear], powerset or bit string root mode, in which case the actual length of sub operand—1,and operand—2 mugt be the
same. Tthis check is dynamic if one or both modes is (are) dynamic or varying string modes:

dynamjc conditions: In the case of AND, a RANGEFAIL exception occurs if one orboth operands have a dynanjic class
and the|dynamic part of the above-mentioned compatibility check fails.

examples:
5.10 (al ORbI) (1.1)
5.10 NOT k2 AND (al OR bI) (1.2)

5.3.5 Operand-2

syntax

<operand-2> ::= (1)
<operand—3> (1.1)
| <sub operand—2> <operatoy=3> <operand—3> (1.2)
<sub operand-2> ::= (2)
<operand-2> (2.1)
<operator—3> ::= 3)
<relational operator> (3.1)
| <membership operator> (3.2)
| <powerset inclusion operator> (3.3)
<relational 6perator> ::= (4)
=|/=>]>=<|<= (4.1)
<miembership operator> ::=)

IN (5.1)
<powerset inclusion operator> ::= (6)
<=|>=|<|> (6.1)

semantics: The equality (=) and inequality (/=) operators are defined between all values of a given mode. The other
relational operators (less than: <, less than or equal to: <=, greater than: >, greater than or equal to: >=) are defined
between values of a given discrete, timing, string or floating point mode. All the relational operators deliver a boolean
value as result.

The membership operator is defined between a member value and a powerset value. The operator delivers TRUE if the
member value is in the specified powerset value, otherwise FALSE.

The powerset inclusion operators are defined between powerset values and they test whether or not a powerset value is
contained in: <=, is properly contained in: <, contains: >= or properly contains: > the other powerset value. A powerset
inclusion operator delivers a boolean value as result.

ITU-T Rec. Z.200 (1999 E) 73

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: If an operand-2 is an operand-3, the class of operand-2 is the class of operand—3. If an operator-3 is
specified, the class of operand-2 is the BOOL-derived class.

An operand-2 is constant (literal) if and only if it is either an operand—3 which is constant (literal) or built up from a
sub operand-2 and an operand—3 which are both constant (literal).

static conditions: If an operator-3 is specified, the following compatibility requirements between the class of sub
operand—2 and the class of operand—3 must be fulfilled:

e if operator-3 is = or /=, both classes must be compatible;

e if operator-3 is a relational operator other than = or /=, both classes must be compatible and must have a discrete,
timing, string or floating point root mode;

. if operator—3 is a membership operator, the class of operand—3 must have a powerset root mode and the class of
sup operand—2 must be compatible with the member mode of that root mode;

e if pperator-3 is a powerset inclusion operator, both classes must be compatible and must have a,powerget root
mqde.

dynamjc conditions: In the case of a relational operator, a RANGEFAIL or TAGFAIL exception \@occurs if one|or both
operands have a dynamic class and the dynamic part of the above-mentioned compatibility eheck fails. The T{ GFAIL
exceptipn occurs if and only if a dynamic class is based upon a dynamic parameterized structur¢ mode.

examples:
10.50 NULL (1.1)
10.50 last=NULL (1.2)

5.3.6 Operand-3

syntax

<operand—3> ::= (1)
<operand—4> (1.1)

| <sub operand—3> <operator—4> <operand—4> (1.2)

<sub operand-3> ::= (2)
<operand—3> (2.1)
<operator—4> ::= (3)
<arithmetic additive\operator> (3.1)

| <string concatenation operator> (3.2)

| <powerset difference operator> (3.3)
<arithmetic additive-gperator> ::= 4)
+ |- (4.1)

<string corfcatenation operator> ::= 5)
{7 (5.1)
<pewerset difference operator> ::= (6)
_ (6.1)

semantics: IT operafor—4 1s an arithmetic additive operator, both operands deliver either mnteger values or floating point
values and the resulting integer value or floating point value respectively is the sum (+) or difference (—) of the two
values.

If operator—4 is a string concatenation operator, both operands deliver either bit string values or character string values;
the resulting value consists of the concatenation of these values. Boolean (character) values are also allowed; they are
regarded as bit (character) string values of length 1.

If operator—4 is the powerset difference operator, both operands deliver powerset values and the resulting value is the
powerset value consisting of those member values which are in the value delivered by sub operand—3 and not in the
value delivered by operand—4.

If the class of operand-3 has a floating point root mode, the result is the floating point value that approximates, using the
same criterion used for representation conversion, the result of the exact mathematical operation.

74 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: If an operand-3 is an operand—4, the class of operand-3 is the class of operand—4. If an operator—4 is
specified, the class of operand-3 is determined by operator—4 as follows:

» if operator—4 is a string concatenation operator, the class of operand-3 is dependent on the classes of operand—4
and sub operand-3, in which an operand that is a boolean or a character value is regarded as a value whose class is a
BOOLS (1)-derived class or CHARS (1)-derived class, respectively:

o if
re
An ope

operan
or the p

If oper:
operan

static ¢
e if
bo|
of’

o if

o if

ha
dynam
an OVH

defined
root m

In the
floating
than th

if none of them is strong, the class is the BOOLS (n)-derived class or CHARS (n)-derived class, depending on
whether both operands are bit or character strings, where # is the sum of the string lengths of the root modes

of both classes;

otherwise the class is the &name(n)-value class, where &name is a virtual synmode name synonymous with
the root mode of the resulting class of the classes of the operands and # is the sum of the string lengths of the

root modes of both classes;

h 1 - 1 L T | 1l 1 - 1
CUILS TIasSS 15 U yTIAIIIIU 11T UTIC UT DUUT UPTTAIIUS TIdVT d U YIIAIIIIU TUIdssS),

pperator—4 s an arithmetic additive operator or powerset difference operator, the class of operand=|
ulting class of the classes of operand—4 and sub operand-3.

rand—3 is constant (literal) if and only if it is either an operand—4 which is constant (literal),Jor built up
/—3 and an operand—4 which are both constant (literal) and operator—4 is either the arithmetic additive ¢
owerset difference operator.

itor—4 1s the string concatenation operator, an operand-3 is constant if it is built\ap from an operan
/—4 which are both constant.

pnditions: If an operator—4 is specified, the following compatibility requirefnents must be fulfilled:

bperator—4 is the arithmetic additive operator, the classes of both opetands must be compatible and th
th have either an integer or a floating point root mode. Furthermore if'operand—3 is not constant, the ro
the class of operand—3 must be a predefined integer mode or a predefined floating point mode.

perator—4 is the string concatenation operator then:

the classes of both operands must be compatible and«they must both have a bit string root mode or bqg
a character string root mode; or

the classes of both operands must be compatible*with the BOOL mode or both be compatible with thg
mode; or

the BOOL (CHAR) mode.

bperator—4 is the powerset difference operator, the classes of both operands must be compatible and bag
¢ a powerset root mode.

¢ conditions: In the case of.an operand—3 that is not constant, if operator—4 is an arithmetic additive o
RFLOW exception oceurs if an addition (+) or a subtraction (—) gives rise to a value that is not one of th
by the root mode of\the class of operand—3, or one or both operands do not belong to the set of valug
de of operand-3:

ase of an operand-3 that is not constant, an UNDERFLOW exception occurs if the class of operand
point roet mode and the exact mathematical addition (+) or subtraction (—) give rise to a value that ig
b negative*upper limit and less than the positive lower limit of the root mode of operand-3, and is ¢

5 is the

from an
\perator

/-3 and

by must
bt mode

th have

e CHAR

the class of one operand must have a bit (character) string root mode and the other must be compatible with

th must

berator,
e values
s of the

3 has a
greater
ifferent

from zdro.
examples:
1.6 j (1.1)
1.6 i+j (1.2)
5.3.7 Operand—4
syntax:
<operand—4> ::= (1)
<operand-5> (1.1)
| <sub operand—4> <arithmetic multiplicative operator> <operand—5> (1.2)
<sub operand—4> ::= 2)
<operand—4> (2.1)

ITU-T Rec. Z.200 (1999E)

75

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<arithmetic multiplicative operator> ::= (3)
d|/| MOD | REM (3.1)

semantics: If the arithmetic multiplicative operator is either the product ([) or the quotient operator (/), then both sub

operand—4 and operand-5 deliver either integer values or floating point values and the resulting integer value or
point value respectively is the product or quotient of both values.

floating

If the arithmetic multiplicative operator is either the modulo (MOD) or division remainder (REM) operator, then both
sub operand—4 and operand-5 deliver integer values, and the resulting integer value is the modulo or division remainder

of both values.

The modulo operation is defined such that i MOD j delivers the unique integer value &, 0 < k& <j such that there is an

integer value n such that i = n [Jj + k; j must be greater than 0.

The qu¢tient operation is defined such that all relations:

ABS (x/y) = ABS (x) / ABS (y) and

sign (x/y) = sign (x) / sign () and

ABS (x) — (ABS (x) / ABS (y)) UABS (y) = ABS (x) MOD 4BS (y)

yield TRUE for all integer values x and y, where sign (x) =—1 if x < 0, otherwise sign (x) =[*

The remainder operation is defined such that x REM y = x — (x/y) Oy yields TRUE for’all"integer values x and y.

If the class of operand—4 has a floating point root mode, the result is the floating point value that approximates, |
iterion used for representation conversion, the result of the exact mathématical operation.

static properties: If operand—4 is an operand-35, the class of operand—4, is'the class of operand—5; otherwise the
operangi—4 is the resulting class of the classes of sub operand—4 and.opérand-5.

An opefand—4 is constant (literal) if and only if it is either an operand—5 which is constant (literal), or built up
operandi—4 and an operand—5 which are both constant (literal).

static gonditions: If an arithmetic multiplicative operatop~is specified between integer or floating point operan|
the clasgses of operand—5 and sub operand—4 must be eempatible and both must have an integer root mode or a
point r¢ot mode respectively. Furthermore, if operand—4 is not constant, the root mode of the class of operand|
be a pre¢defined integer mode or a predefined floating point mode.

dynamjc conditions: In the case of an operand—4 that is not constant, if an arithmetic multiplicative ope
d, an OVERFLOW exception ogecirs if a multiplication (0, a division (/), a modulo (MOD), or a rel
(REM)| operation gives rise to a value that is not one of the values defined by the root mode of the class of operd
is performed on operand values forwhich the operator is mathematically not defined, i.e. division or remainder
operang-5 delivering 0 or a modulo operation with an operand—5 delivering a non-positive integer value, or one
operands do not belong to the set of values of the root mode of operand—4.

In the gase of an opepand’4 that is not constant, an UNDERFLOW exception occurs if the class of operand-
floating point root mede and the exact mathematical multiplication () or division (/) give rise to a value that ig
than th¢ negativé.upper limit and less than the positive lower limit of the root mode of operand—4, and is ¢
from zdro.

sing the

class of

from an

ds, then
floating
-4 must

rator is
mainder
nd—4 or
with an
or both

4 has a
greater
ifferent

examples.:
6.15 1 461 (1.1)
6.15 (40d+3)/1 461 (1.2)

5.3.8 Operand-5

syntax:
<operand-5> ::= (1)
<operand—6> (1.1)
| <sub operand—5> <exponentiation operator> <operand—6> (1.2)
<sub operand—5> ::= (2)
<operand-5> (2.1)

76 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

<expomentiation operator> ::=)
) (3.1)

semantics: If the exponentiation operator is specified, sub operand—5 and operand—6 deliver a floating point value or an
integer value. The resulting value is that obtained by raising the value delivered by sub operand—5 to the power of that
delivered by operand—6.

If the class of operand—5 has a floating point reot mode, the result is the floating point value that approximates, using the
same criterion used for representation conversion, the result of the exact mathematical operation.

static properties: If the operand-5 is an operand—6, the class of the operand-5 is the class of operand—6.

If the exponentiation operator is specified, the class of the operand-35 is that of the sub operand-5.

An opeypand seonsta X and-onty e
operandl-5 and operand—6 which are both constant (literal).

static cpnditions: If an exponentiation operator is specified:

» if the class of sub operand-5 has a floating point reot mode, the class of operand—6 must have.aninteger ropt mode
or fa floating point reot mode;

e otherwise the class of sub operand—5 must have an integer root mode and the class/of-operand—6 must have an
integer root mode.

dynamjc conditions: In the case of an operand—5 which is not constant, an OQVERFLOW exception occufs if an
exponeftiation operation gives rise to a value outside the range of the root mode of'the class of the operand-5.

In the ¢ase of an operand—5 that is not constant, an UNDERFLOW exception occurs if the class of operand+5 has a
floating point reot mode and the exact mathematical exponentiation gives rise to a value that is less than the positive
lower ljmit of the root mode of operand—5.

If an exponentiation operator is specified and the class of operand=5 has an integer root mode, then if operand6 is not
consta]t its value must be greater than or equal to zero.

examples:

roxkd (1.2)

5.3.9 Operand—-6

syntax
<operand—6> ::= (1)
[<monadic operator>] <operand—7> (1.1)
| <signed integer literal> (1.2)
| <signedfloating point literal> (1.3)
<monadic opérafor> ::= (2)
“INOT (2.1)
I \&string repetition operator> 2.2)
<string repetition operator> ::= 3)
(<integer literal expression>) 3.1)
NOTE - he—monadicoperator—is—thechange signoperato andthe operand—Zis—an—rianedinteae eral-or—an-unsigned
floating point literal, the syntactic construct is ambiguous and will be interpreted as a signed integer literal or a signed floating point
literal respectively.

semantics: If the monadic operator is a change-sign operator (—), operand—7 delivers an integer value or a floating point
value and the resulting integer value or floating point value is the previous integer value or floating point value with its
sign changed.

If the monadic operator is NOT, operand—7 delivers a boolean value, a bit string value, or a powerset value. In the first
two cases the logical negation of the boolean value or of the elements of the bit string value is delivered. In the latter
case, the set complement value, i.e. the set of those member values which are not in the operand powerset value, is
delivered.

If the monadic operator is a string repetition operator, operand—7 is a character string literal or a bit string literal. If the
integer literal expression delivers 0, the result is the empty string value; otherwise the result is the string value formed by

ITU-T Rec. Z.200 (1999E) 71

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

concatenating the string with itself as many times as specified by the value delivered by the integer literal expression
minus 1.

static properties: If operand—6 is an operand-7, the class of operand—6 is the class of operand-7.

If a monadic operator is specified, the class of operand—6 is:
e if the monadic operator is — or NOT then the resulting class of operand-7,

» if the monadic operator is the string repetition operator, then it is the CHARS (1)- or BOOLS (n)-derived class
(depending on whether the literal was a character string literal or bit string literal) where n = r [11, where 7 is the
value delivered by the integer literal expression and [is the string length of the string literal.

An operand—6 is constant if and only if the operand—7 is constant. An operand—6 is literal if and only if the operand—7
is litergl and the monadic operator is — or NOT.

static qonditions: If monadic operator is —, the class of operand—7 must have an integer root mode or(a floating point
root mpde. Furthermore, if operand—6 is not constant, the root mode of the class of operand—6 must-be a predefined
integer lnode or a predefined floating point mode.

If monddic operator is NOT, the class of operand—7 must have a boolean, bit string or powerset root mode.

If monddic operator is the string repetition operator, operand—7 must be a character string literal or a bit string literal.
The intéger literal expression must deliver a non-negative integer-value.

dynamjc conditions: If operand—6 is not constant, an OVERFLOW exception-accurs if a change sign (—) operation
gives ripe to a value which is not one of the values defined by the root mode-of'the class of the operand—6.

In the ¢ase of an operand—6 that is not constant, an UNDERFLOW exception occurs if the class of operand+16 has a
floating point root mode and the exact mathematical change sign opetation (—) give rise to a value that is greater than the
negativie upper limit and less than the positive lower limit of the 0ot mode of operand—o6, and is different from|zero.

examples:

5.10 NOT &2 (1.1)
7.54 ©)"" (1.1)
7.54 (6) (2.2)

5.3.10 | Operand-7

syntax
<operand-7> ::& (1)
<péferenced location> (1.1)
| «<primitive value> (1.2)
<referenced location> ::= 2)
—> <location> (2.1)

semanties—A referenced location delivers a reference to the specified location

static properties: The class of an operand—7 is the class of the referenced location or primitive value, respectively. The
class of the referenced location is the M-reference class where M is the mode of the location.

An operand-7 is constant if and only if the primitive value is constant or the referenced location is constant. A
referenced location is constant if and only if the location is static. An operand-7 is literal if and only if the primitive
value is literal.

static conditions: The /ocation must be referable.

examples:

8.25 ¢ 2.1)

78 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

6 Actions

6.1 General

syntax:
<action statement> ::= (1)
[<defining occurrence> : | <action> [<handler>][<simple name string>] ; (1.1)
| <module> (1.2)
| <spec module> (1.3)
| <context module> (1.4)
<action> ::= (2)
<bracketed action> (2-1)
| <assignment action> 22
| <call action> 2.3)
| <exit action> (2.4)
| <return action> (2.5)
| <result action> (2.6)
| <goto action> (2.7)
| <assert action> 2.8)
| <empty action> (2.9)
| <start action> (2.10)
| <stop action> (2.11)
| <delay action> (2.12)
| <continue action> (2.13)
| <send action> (2.14)
| <cause action> (2.15)
<bracketed action> ::= (3)
<if action> (3.1)
| <case action> (3.2)
| <do action> (3.3)
| <begin-end block> (3.4)
| <delay case action> (3.5)
| <receive case action> (3.6)
| <timing action> (3.7)
semantics: Action statements constitute the algorithmic part of a CHILL program. Any action statement may be labelled.
Those qctions that have no exception défined may not have a handler appended.
static properties: A defining ocCuiyrence in an action statement defines a label name.
static cpnditions: The simplesname string may only be given after an action which is a bracketed action or if a fhandler
is speciffied, and only if@ defining occurrence is specified. The simple name string must be the same name strinjg as the
defining occurrence,
6.2 Assignment action
syntax:
<assignment action> ::= (1)
<single assignment action> (1.1)
| <multiple assignment action> (1.2)
<single assignment action> ::= (2)
<location> <assignment symbol> <value> (2.1)
| <location> <assigning operator> <expression> 2.2)
<multiple assignment action> ::= (3)
<location> { , <location> } T <assignment symbol> <value> (3.1)
<assigning operator> ::= (4)
<closed dyadic operator> <assignment symbol> (4.1)

ITU-T Rec. Z.200 (1999 E) 79

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

<closed dyadic operator> ::= (5)
OR | XOR | AND (5.1)

| <powerset difference operator> (5.2)

| <arithmetic additive operator> (5.3)

| <arithmetic multiplicative operator> (5.4)

| <string concatenation operator> (5.5)
<assignment symbol> ::= (6)

= (6.1)

semantics: An assignment action stores a value into one or more locations.

If an assignment symbol is used, the value yielded by the right hand side is stored into the location(s) specified at the left
hand side.

If an ag
order)

locatior}.

The ev.
perforn

If the 1
depend

static ¢
proper
dynami

The va

If any |
the sam
length
conditi

If one d
respect

If one ¢
of mr a

If one g
of ml aj

If the n
be pairy

dynam
value aj

signing operator is used, the value contained in the location is combined with the right hand side value
ccording to the semantics of the specified closed dyadic operator, and the result is stored back(into t}

hluation of the left hand side location(s), of the right hand side value, and of the assigfiment themse
ed in any order. Any assignment may be performed as soon as the value and a location have been evaluatg

cation (or any of the locations) is the tag field of a variant structure, the semanti¢s’ for the variant fie
on it are implementation defined.

ty nor the non-value property. Each mode must be compatible with the class of the value. The chg
C in the case where dynamic mode locations and/or a value with a dypamic class are involved.

e must be regionally safe for every location (see 11.2.2).

bcation has a fixed string mode, then the string length of the.mode and the actual length of the value

e; otherwise, if it has a varying string mode, then the string’length of the mode must not be less than thg
of the value. This check is dynamic if one or both\modes is (are) dynamic or varying string mod
n is called the string assignment condition.

f the assignments is of the form "pvl— := pvr=>;" where pvl and pvr have the mode "REF ML" and "R}
vely, and ML and MR are moreta mode names; then ML and MR must be on the same path.

f the assignments is of the form "pvl+ = mr;" where pvl has the mode "REF ML", and ML and the mog
e module mode names, then mr suce ML must hold.

f the assignments is of the form\'ml := pvr—;" where pvr has the mode "REF MR", and MR and the mo(
e module mode names, thed MR succ ml must hold.

ode of any of the locations of the left hand side is a module mode then the mode names of all those mod
ise synonymous.

c¢ conditions:{Phe’ RANGEFAIL or TAGFAIL exception occurs if the mode of the location and/or thaj
¢ dynamic_.modes and the dynamic part of the above-mentioned compatibility checks fails.

GEFEAIL exception occurs if the mode of the location and/or that of the value are varying string modes

(in that
le same

Ves arc

d.
1ds that

onditions: The modes of all /ocation occurrences must be equivalent and¢they must have neither the repd-only

cks are

must be
actual
bs. This

CF MR"

le name

le name

es must

t of the

and the

1e value

delivered by the evaluation of value is neither one of the values defined by the discrete range mode (floating point range
mode) nor the undefined value.

If the mode of any location L is of the kind REF MM, where MM is a moreta mode, the following must hold: the mode
of the current value of the rhs must be a successor of the mode of L; otherwise the exception RANGEFAIL occurs.

The above-mentioned dynamic conditions together with the string assignment condition are called the assignment
conditions of a value with respect to a mode.

In the case of an assigning operator, the same exceptions are caused as if the expression:

<location> <closed dyadic operator> (<expression>)

were evaluated and the delivered value stored into the specified location (note that the location is evaluated once only).

80

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

If the mode of any location L is of the kind "REF MM", where MM is a moreta mode, the mode of the current value of
the rhs must be a successor of the mode of L. Otherwise the exception RANGEFAIL occurs.

If any of the assignments is of the form "pvl— := pvr—;", "pvl— = mr;" or "ml := pvr—>;", where pvl and pvr have the
modes "REF ML" and "REF MR" respectively and ML, MR, ml, and mr are module modes, then the current modes of
the lhs and the rhs must fulfill the rules for the assignment of module modes.

examples:

4.12 a:=b+c (1.1)
10.25 stackindex- := 1 (2.1)
19.19 x—>.prev, x—>.next := NULL (3.1)
10.25 —:= #1)

6.3 If action

syntax

<if action> ::= (1)

IF <boolean expression> <then clause> [<else clause> | FI (1.1)

<then clause> ::= (2)

THEN <action statement list> (2.1)

<else clause> ::= (3)

ELSE <action statement list> (3.1)

| ELSIF <boolean expression> <then clause> [<élse clause> | (3.2)

derived syntax: The notation:

ELSIF <boolean expression> <then clausé> | <else clause> |

is derived syntax for:

ELSE IF <boolean expression><then clause> [<else clause> | FI;

semantjics: An if action is a conditional two-way branch. If the boolean expression yields TRUE, the action staterpent list
following THEN is entered; otherwise-theraction statement list following ELSE, if present, is entered.

dynamjc conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.
examples:

7.22 IF n >= 50 FHEN rn(r) := 'L"
n—:= 50
=1
FI (1.1)

10.50 I 'last = NULL

THENSfirstiast—;
ELSE last—.succ := p;
p—>.pred := last;

last :=p;
FI (1.1)
6.4 Case action
syntax:
<case action> ::= (1)
CASE <case selector list> OF [<range list> ; | { <case alternative> }T
[ELSE <action statement list>] ESAC (1.1)

ITU-T Rec. Z.200 (1999 E) 81

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<case selector list> ::= (2)
<discrete expression> { , <discrete expression> }* 2.1)
<range list> ::= (3)
<discrete mode name> { , <discrete mode name> }* (3.1)
<case alternative> ::= (4)
<case label specification> : <action statement list> (4.1)

semantics: A case action is a multiple branch. It consists of the specification of one or more discrete expressions (the
case selector list) and a number of labelled action statement lists (case alternatives). Each action statement list is labelled
with a case label specification which consists of a list of case label list specifications (one for each case selector). Each
case label list defines a set of values. The use of a list of discrete expressions in the case selector list allows selection of

an alter

The caq
the casg

The exf
case alt

static ¢|

The nu

. 1 1 RN | o
1dUIVC DasSTU OIT HTUIULPIC COIUIUOILS.

e action enters that action statement list for which values given in the case label specification match the
selector list; if no value match, the action statement list following ELSE is entered.

ressions in the case selector list are evaluated in any order. They need be evaluated onlyup’to the point
ernative is uniquely determined.

pnditions: For the list of case label specification occurrences, the case selection genditions apply (see 12.]

mber of discrete expression occurrences in the case selector list must be equal to the number of classe

resulting list of classes of the list of case label list occurrences and, if present{to the number of discrete mod

OoCcurre;

The cla

hces in the range list.

ss of any discrete expression in the case selector list must be ¢omipatible with the corresponding (by p

alues in

where a

~

s in the
le name

osition)

class off the resulting list of classes of the case label list occurrencesand, if present, compatible with the corresponding
(by podition) discrete mode name in the range list. The latter mode must also be compatible with the corresponding
class of|the resulting list of classes.
Any value delivered by a discrete literal expression or defirled by a literal range or by a discrete mode name i a case
label (sge 12.3) must lie in the range of the corresponding discrete mode name of the range list, if present, and aldo in the
range defined by the mode of the corresponding discrete expression in the case selector list, if it is a strong Hiscrete
expressfon. In the latter case, the values defined by the corresponding discrete mode name of the range list, if present,
must al$o lie in that range.
The opfional ELSE part according to the.Syntax may only be omitted if the list of case label list occurrences is complete
(see 1213).
dynamjc conditions: The RANGEFAIL exception occurs if a range list is specified and the value delivered by a Hiscrete
expressfon in the case selector-list does not lie within the bounds specified by the corresponding discrete mode hame in
the range list.
The SPHCEFAIL exception occurs if storage requirements cannot be satisfied.
examples:
4.11 CASE order OF
(1): a:=b+c;
RETURN;
(2): d:=0;
(ELSE): d :=1;
ESAC (1.1)
11.43 starting.p.kind, starting.p.color (2.1)
11.58 (rook),(*):
IF NOT ok_rook(b,m)
THEN
CAUSE illegal;
FI; (4.1)
82 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

6.5 Do action

6.5.1 General

syntax:
<do action> ::= (1)
DO [<control part> ; | <action statement list> OD (1.1)
<control part> ::= (2)
<for control> | <while control>] (2.1)
| <while control> (2.2)
| <with part> (2.3)

ing, and
the do-ith version as a convenient short hand notation for accessing structure fields in an efficient way. Ifrho| control
part is gpecified, the action statement list is entered once, each time the do action is entered.

When the do-for and the do-while versions are combined, the while control is evaluated after the for ¢pntrol, and only if
the do q4ction is not terminated by the for control.

If the specified control part is a for control and/or while control, then for as long as control stays ‘inside the reach of the
do actign, the action statement list is entered according to the control part, but the do reacCh’is not re-entered for each
executipn of the action statement list.

dynamjc conditions: The SPACEFAIL exception occurs if storage requirements cannotbe satisfied.

examples:

4.17 DOFOR:=]/TOc¢;
op(a,b,d,order—1);
d:=a;
oD (1.1)

15.58 DO WITH each;
IF this_counter = counter
THEN
status = idle;
EXIT find counter;
FI,
oD (1.1)

6.5.2 For control

syntaxj

<for control> ::= (1)
FORssuteration> { , <iteration> }* | EVER } (1.1)
<iteration>(i= 2)
Zvalue enumeration> (2.1)
\/ <location enumeration> (2.2)
<value enumeration> ::= 3)
<step enumeration> (3.1)
[~ <range enumeration 32)
| <powerset enumeration> (3.3)
<step enumeration> ::= 4)

<loop counter> <assignment symbol>
<start value> [<step value>][DOWN] <end value> (4.1)
<loop counter> ::= (5)
<defining occurrence> (5.1)
<start value> ::= (6)
<discrete expression> (6.1)
<step value> ::= (7)
BY <integer expression> (7.1)

ITU-T Rec. Z.200 (1999 E) 83

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

NOTE { If the composite object is a string location or an array location, the syntactic ambiguity is resolved by interpreting ¢

object a

semanm_cs: The for control may mention several loop counters. The loop counters are,évaluated each tim|

unspeci

decided to terminate the do action. The do action is terminated if at least one of the loop/Counters indicates termin|
1) do|for ever:

The action list is indefinitely repeated. The do action can only terminate by, a transfer of control out of it.
2) vaJue enumeration:

The action statement list is repeatedly entered for the set of specified values of the loop counters. The set o

is
by

The loop counter implicitly defines a name which denet¢s its value or location inside the action statement lis|

ra

In

sijallest (greatest) value in the set of values defined by the discrete mode name. For subsequent execution

ac

Termination occurs if the action statement list has been executed for the greatest (smallest) value defined
dijcrete mode name.

pojwerset enumeration:

In

snfallest (highest) member value in the denoted powerset value. If the powerset value is empty, the action st

lis

greatery (staller) member value in the powerset value. Termination occurs if the action statement list h

€X

<end value> ::= (8)
TO <discrete expression> 8.1)

<range enumeration> ::= 9)
<loop counter> [DOWN] IN <discrete mode name> (9.1)
<powerset enumeration> ::= (10)
<loop counter> [DOWN] IN <powerset expression> (10.1)

<location enumeration> ::= (11)
<loop counter> [DOWN] IN <composite object> (11.1)
<composite object> ::= (12)
<array location> (12.1)

| <array expression> (12.2)

| <string location> (12:3)

| <string expression> 02.4)

a location rather than an expression.

ied order, before entering the action statement list, and they need be evaluated onlyip to the point that i

pither specified by a discrete mode name (range enumeration), or by a powerset value (powerset enumera
a start value, step value and end value (step enumeration).

hge enumeration:

the case of range enumeration without (with) DOWN specification, the initial value of the loop countq

ion statement list, the next value will be’evaluated as:

SUCC(previous yalue) (PRED(previous value)).

the case of powerset enumeration without (with) DOWN specification, the initial value of the loop count

will net-b¢ executed. For subsequent executions of the action statement list, the next value will be {

bmposite

E in an
[can be
ation.

f values
ion), or

[

r is the
s of the

by the

b1 is the
atement
he next
hs been
raluated

pelited for the greatest (smallest) value. When the do action is executed, the powerset expression is e\

onry-onee:

step enumeration:

In the case of step enumeration without (with) DOWN specification, the set of values of the loop counter is
determined by a start value, an end value, and possibly a step value. When the do action is executed, these
expressions are evaluated only once in any order. The step value is always positive. The test for termination is made
before each execution of the action statement list. Initially, a test is made to determine whether the start value of the
loop counter is greater (smaller) than the end value. For subsequent executions, next value will be evaluated as:

in

84

previous value + step value (previous value — step value)

the case of step value specification; otherwise as:

SUCC(previous value) (PRED (previous value)).

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

Termination occurs if the evaluation yields a value which is greater (smaller) than the end value or would have
caused an OVERFLOW exception.

3) location enumeration:

In the case of a location enumeration without (with) DOWN specification, the action statement list is repeatedly
entered for a set of locations which are the elements of the array location denoted by array location or the
components of the string location denoted by string location. If an array expression or a string expression is
specified that is not a location, a location containing the specified value will be implicitly created. The lifetime of
the created location is the do action. The mode of the created location is dynamic if the value has a dynamic class.
The semantics are as if before each execution of the action statement list the loc-identity declaration:

DCL <loop counter> <mode> LOC := <composite object> (<index>);

sy
co
ind
ac
ter
thg

static properties: A loop counter has a name string attached which is the name string ofits defining occurrence.

value e

step enumeration: The class of the name defined by a loop counter isthe resulting class of the classes of {

value, t

range ¢
mode n

powerset enumeration: The class of the name defined bythe loop counter is the M-value class, where M is the 1

mode o

mode
synmo

A location enumeration name is referable if the element layout of the mode of the array location is NOPACK.

Wel:e encountered, where mode is the element mode of the array location or &name(1) such that &name 8+

locatio{f enumeration: The name defined by the@oop counter is a location enumeration name. Its mode is the ¢

mode name synonymous with the mode of the string location if it is a fixed string mode, otherwise Y
mponent mode, and where index is initially set to the lower bound (upper bound) of the mod¢ of locaf
Jex before each subsequent execution of the action statement list is set to SUCC (index) (PRED (inde.
ion statement list will not be executed if the actual length of the string location equal$,0: The do 3

mode of location. When the do action is executed, the composite object is evaluated.only once.

pumeration: The name defined by the loop counter is a value enumeratign name.

he step value, if present, and the end value.

numeration: The class of the name defined by the loop counter is the M-value class, where M is the

ime.

f the mode of the (strong) powerset expression;

the mode of the array location or array expression or the string mode &name(1), where &name is ¢
e name synonymous with the maode of string location or the root mode of the string expression.

virtual
with the
ion and
)). The
ction is

minated if index just after an execution of the action statement list is equal to the upper.bound (lower bound) of

he start

iscrete

hember

tlement
virtual

de that

0. This

static cpnditions: The classesofsstart value, end value and step value, if present, must be pairwise compatible.
The rogt mode of the class)of a loop counter in a value enumeration must not be a numbered set mode.

If the oot mode/of'the class of a loop counter is an integer mode, there must exist a predefined integer m
containg all thewaltes delivered by start value, end value and step value, if present.

dynamjcCeonditions: A RANGEFAIL exception occurs if the value delivered by step value is not greater than
exceptidmroccurs outside the block of thedoactiom:

examples:

4.17 FORi:=1TOc (1.1)
15.37 FOR EVER (1.1)
4.17 i:=1TOc (3.1)
9.12 Jj := MIN (sieve) BY MIN (sieve) TO max (3.1)
14.28 i IN INT (1:100) (3.2)

ITU-T Rec. Z.200 (1999E)

85

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

6.5.3

syntax:

C 9496:2003(E)

While control
<while control> ::= (1)
WHILE <boolean expression> (1.1)

semantics: The boolean expression is evaluated just before entering the action statement list (after the evaluation of the
for control, if present). If it yields TRUE, the action statement list is entered; otherwise the do action is terminated.

examples:
7.35 WHILE n >=] (1.1)
6.5.4 With part
syntaxj
<with part> ::= (1)
WITH <with control> { , <with control> }* (1.1)
<with control> ::= (2)
<structure location> (2.1)
| <structure primitive value> (2.2)
NOTE - If the with control is a structure location, the syntactic ambiguity is resolved by intetpreting with control as a locati

than a p

semantjics: The (visible) field names of the mode of the structure locatiens)or structure value specified in e

control

The vis
of the 1

If a stn
Structu

If a str
(strong]

When the do action is entered, the specified”structure locations and/or structure values are evaluated once

entering

static
name d

imitive value.

are made available as direct accesses to the fields.

bility rules are as if a field name defining occurrence were introduced for each field name attached to th
cation or primitive value and with the same name string.as!'the field name.

cture location is specified, access names with the§same name string as the field names of the mod
e location are implicitly declared, denoting the sub~locations of the structure location.

cture primitive value is specified, value names with the same name string as the field names of the mod
structure primitive value are implicitly.defined, denoting the sub-values of the structure value.

r the do action, in any order.

bfining occurrence of that field name.

n rather

ch with

e mode

b of the

e of the

bnly on

roperties: The (virtual) defining occurrence introduced for a field name has the same name string as the field

If a stricture primitive valte-is specified, a (virtual) defining occurrence in a with part defines a value do-with npme. Its
class is|the M-value class, where M is the mode of that field name of the structure mode of the structure primitive value
which if made availabl¢€ as value do-with name.
If a stryicture location is specified, a (virtual) defining occurrence in a with part defines a location do-with name. Its
mode i§ the,mode of that field name of the mode of the structure location which is made available as location (lo-with
name. A location do-with name is referable if the field layout of the associated field name is NOPACK.
examples:
15.58 WITH each (1.1)
6.6 Exit action
syntax:

<exit action> :.:= (1)

EXIT <label name> (1.1)

semantics: An exit action is used to leave a bracketed action statement or a module. Execution is resumed immediately
after the closest surrounding bracketed action statement or module labelled with the label name.

86

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

static conditions: The exit action must lie within the bracketed action statement or module of which the defining
occurrence in front has the same name string as label name.

If the exit action is placed within a procedure or process definition, the exited bracketed action statement or module must
also lie within the same procedure or process definition (i.e. the exit action cannot be used to leave procedures or
processes).

No handler may be appended to an exit action.

examples:
15.62 EXIT find counter (1.1)
6.7 Call'action
syntax
<call action> ::= (1)
<procedure call> (1.1)
| <built-in routine call> (1.2)
| <moreta component procedure call> (1.3)
<procedure call> ::= (2)
{ <procedure name> | <procedure primitive value> }
([<actual parameter list>]) 2.1)
<actual parameter list> ::= 3)
<actual parameter> { , <actual parameter> }* (3.1)
<actual parameter> ::= (4)
<value> (4.1)
| <location> 4.2)
<built-in routine call> ::= (5)
<built-in routine name> ([<built=in"routine parameter list> |) (5.1)
<built-in routine parameter list> ::= (6)
<built-in routine parameter=>"{ , <built-in routine parameter> }* (6.1)
<built-in routine parameter> :4= (7)
<value> (7.1)
| <location> (7.2)
| <non-resepved.name> [(<built-in routine parameter list>') | (7.3)
<moreta compowent procedure call> ::= (8)
<moreta location> . <moreta component procedure call> [<priority>] (8.1)
| <bound reference moreta location primitive value> —> .
<moreta component procedure call> [<priority> | (8.2)
N <moreta component procedure call> [<priority> | (8.3)
NOTE {If the dctual parameter or built-in routine parameter is a location, the syntactic ambiguity is resolved by interpretifg it as a
location|rdther than a value.

derived syntax: A procedure call P(...) of a moreta component procedure P is derived syntax for SELF.P(...).

semantics: A call action causes the call of either a procedure, a built-in routine, or a moreta component procedure. A
procedure call causes a call of the general procedure indicated by the value delivered by the procedure primitive value or
the procedure indicated by the procedure name. A moreta component procedure call L.name(...) causes the call of that
moreta component procedure which is identified by name in the mode of L. L is passed as an initial location parameter
to the procedure. The actual values and locations specified in the actual parameter list are passed to the procedure.

A built-in routine call is either a CHILL built-in routine call or an implementation built-in routine call (see 6.20
and 13.1, respectively).

A value, a location, or any program defined name that is not a reserved simple name string may be passed as built-in
routine parameter. The built-in routine call may return a value or a location.

ITU-T Rec. Z.200 (1999 E) 87

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

A built-in routine may be generic, i.e. its class (if it is a value built-in routine call) or its mode (if it is a location built-in
routine call) may depend not only on the built-in routine name but also on the static properties of the actual parameters
passed and the static context of the call.

A moreta component procedure call has always the structure "location . procedure call". This is characterized by the
expression "the procedure call is applied to the location".

For a moreta component procedure call the following steps are performed:
a) the called procedure is applied to a module mode location:

1) evaluation of the actual parameters

2) check of the precondition

3) _check of the complete invariant

4)| execution of the body of the procedure
5)| check of the complete invariant
6)| check of complete postcondition
7)| return to the calling point
b) thq called procedure is applied to a region mode location RL:
1)| evaluation of the actual parameters
2)| wait until RL is free and lock RL
3)| check of the precondition
4)| check of the complete invariant
5)| execution of the body of the procedure
6)| check of the complete invariant
7)| check of complete postcondition
8)| release RL
9)| return to the calling point
c) thq called procedure is applied to a task mode'tocation TL:
thq caller performs the following steps:
1)| evaluation of the actual parameters
2)| send procedure identification,/actual parameters and priority to TL
3)| continue with next action
Tl performs the following-steps:
1)| receive procedure identification and actual parameters according to priority
2)| check oftheprecondition
3)| checksofthe complete invariant

4)| execution of the body of the procedure

5) —<heckof the comptete mvartant

6) check of complete postcondition

static properties: A procedure call has the following properties attached: a list of parameter specs, possibly a result
spec, a possibly empty set of exception names, a generality, a recursivity, and possibly it is intra-regional (the latter is
only possible with a procedure name, see 11.2.2). These properties are inherited from the procedure name, moreta
component procedure name or any mode compatible with the class of the procedure primitive value (in the latter case,
the generality is always general).

A procedure call with a result spec is a location procedure call if and only if LOC is specified in the result spec;
otherwise it is a value procedure call.

A built-in routine name is a CHILL or an implementation defined name that is considered to be defined in the reach of
the imaginary outermost process definition or in any context (see 10.8).

88 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

A built-in routine call is a location built-in routine call if it delivers a location; it is a value built-in routine call if it
delivers a value.

static conditions: A priority can only be used in a call of a procedure applied to a task location.

The number of actual parameter occurrences in the procedure call must be the same as the number of its parameter
specs. The compatibility requirements for the actual parameter and corresponding (by position) parameter spec of the
procedure call are:

If the parameter spec has the IN attribute (default), the actual parameter must be a value whose class is compatible
with the mode in the corresponding parameter spec. The latter mode must not have the non-value property. The
actual parameter is a value which must be regionally safe for the procedure call.

If the parameter spec has the INOUT or OUT attribute, the actual parameter must be a location, whose mode must
becompatiblewitir thev=vatucclass; where M isthemode T the correspormding parameter specThe mmode of the
(agtual) location must be static and must not have the read-only property nor the non-value property-Th¢ actual
pafameter is a location. It can be viewed as a value which must be regionally safe for the procedure éall:

If [the parameter spec has the INOUT attribute, the mode in the parameter spec must be compatible With the
Mivalue class where M is the mode of the location.

If the parameter spec has the LOC attribute specified without DYNAMIC, the actual parameter must be a location
which is both referable and such that the mode in the parameter spec is read-compatible with the modg of the
(agtual) location, or the actual parameter must be a value which is not a locatiorbut whose class is compatible
with the mode in the parameter spec. If the mode of the formal parameter is a meréta mode, the mode name of the
foymal parameter and the mode name of the actual parameter must be synonymous. If the mode of thg formal
pafameter is of the form "REF MM", where MM is a moreta mode, the mode-of the formal parameter and the mode
of the actual parameter must be similar.

If fhe parameter spec has the LOC attribute with DYNAMIC specified, the actual parameter must be a [ocation
which is both referable and such that the mode in the parameter.spec is dynamic read-compatible with the mode
of|the (actual) location, or the actual parameter must be @,value which is not a location but whose [class is
compatible with a parameterized version of this mode.

If the parameter spec has the LOC attribute then:
— | ifthe actual parameter is a location it must have the same regionality as the procedure call,

— | ifthe actual parameter is a value then it-must be regionally safe for the procedure call.

dynamjc conditions: A call action can cause¢ any of the exceptions from the attached set of exception ngmes. A
procedyre call causes the EMPTY exception if the procedure primitive value delivers NULL. A call action cayises the
SPACEFAIL exception if storage requirements cannot be satisfied. If the recursivity of the procedure is non-regursive,

then thg procedure must not call its¢lf either directly or indirectly.

Paramefer passing can cause thefellowing exceptions:

If the parameter spee-lias the IN or INOUT attribute, the assignment conditions of the (actual) value with regpect to
th¢ mode of the parameter spec apply at the point of the call (see 6.2) and the possible exceptions are causegl before
th¢ procedure i ealled.

If the parameter spec has the INOUT or OUT attribute, the assignment conditions of the local value of th¢ formal
parameter’ with respect to the mode of the (actual) location apply at the point of return (see 6.2) and possible
exgeptions are caused after the procedure has returned.

If the parameter spec has the LOC attribute and the actual parameter is a value which is not a location, the
assignment conditions of the (actual) value with respect to the mode of the parameter spec apply at the point of the
call and the possible exceptions are caused before the procedure is called (see 6.2).

Assertion checking can cause the following exceptions:

If the precondition evaluates to FALSE the exception PREFAIL is caused. The search for an appropriate handler
begins at the end of the procedure body and continues according to 8.3.

If the postcondition evaluates to FALSE the exception POSTFAIL is caused. The search for an appropriate handler
begins at the end of the procedure body and continues according to 8.3.

If the invariant evaluates to FALSE the exception INVFAIL is caused. The search for an appropriate handler begins
at the end of the body of the corresponding moreta mode and continues according to 8.3.

ITU-T Rec. Z.200 (1999 E) 89

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The procedure primitive value must not deliver a procedure defined within a process definition whose activation is not
the same as the activation of the process executing the procedure call (other than the imaginary outermost process) and

the lifetime of the denoted procedure must not have ended.

If a call is applied to a task location TL then TL must not be ended.

examples:
4.18 op(a,b,d,order—1) (1.1)
6.8 Result and return action
syntax:
<return action> ::=)
RETURN [<result>] (05,
<result action> ::= (2)
RESULT <result> (2.1)
<result> ::= 3)
<value> (3.1)
| <location> (3.2)
derived syntax: The return action with result is derived from DO RESULT <resulf>yRETURN; OD.

semantjcs: A result action serves to establish the result to be delivered by a procédure call. This result may be a
or a value. A return action causes the return from the invocation of the proceddre within whose definition it is p
the pro¢edure returns a result, this result is determined by the latest exeetited result action. If no result action h
executed, the procedure call delivers an undefined location or undefined value, respectively.

static properties: A result action and a return action have a procedure name attached, which is the name of thg
surrounding procedure definition.

static conditions: A return action and a result action muspbe textually surrounded by a procedure definition. |
action ay only be specified if its procedure name has a-kesult spec.

A handfer must not be appended to a return action (without result).

If LOQ (LOC DYNAMIC) is specified in the result spec of the procedure name of the result action, the result
a locatipn, such that the mode in the result spec is read-compatible (dynamic read-compatible) with the mod
location. The location must be referable.if NONRETF is not specified in the result spec. The result is a locatio
must hgve the same regionality as the procedure name attached to the result action.

If LO(is not specified in the result spec of the procedure name of the result action, the result must be a value
class is| compatible with th¢-mode in the result spec. The result is a value which must be regionally safe
procedpre name attached tothe result action.

dynamjc conditions: If LOC is not specified in the result spec of the procedure name, the assignment conditioy
value i1 the result’action with respect to the mode in the result spec of its procedure name apply.

ocation
aced. If
as been

closest

A\ result

must be

e of the
i which

, whose
for the

s of the

examples:

4.21 RETURN (1.1)
1.6 RESULT i+j (2.1)
5.19 c (3.1)

6.9 Goto action
syntax:

<goto action> ::= (1)
GOTO <label name> (1.1)

semantics: A goto action causes a transfer of control. Execution is resumed with the action statement labelled with the

label name.

90 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

static conditions: If a goto action is placed within a procedure or process definition, the label indicated by the label
name must also be defined within the definition (i.e. it is not possible to jump outside a procedure or process invocation).

A handler must not be appended to a goto action.

6.10 Assert action
syntax:

<assert action> ::= (1)
ASSERT <boolean expression> (1.1)

semantics: An assert action provides a means of testing a condition.

4.7 ASSERT >0 AND c>0 AND order>0 (1.1)

6.11 Empty action

syntaxj
<empty action> ::= (1)
<empty> (1.1)
<empty> ::= 2)

semantfics: An empty action causes no action.

static cpnditions: A handler must not be appended to an empty action.

6.12 Cause action
syntaxj

<cause action> ::= (1)
CAUSE <exception name> (1.1)

semantjics: A cause action causes the exception whose name is indicated by exception name to occur.
static cpnditions: A handler must not bewappended to a cause action.

examples:

4.9 CAUSE wrong_input (1.1)

6.13 Start action
syntax:

<startaction> ::= (1)
<start expression> (1.1)

semantficS_/A start action evaluates the start expression (see 5.2.15) without using the resulting instance value.

examples:

14.45 START call_distributor () (1.1)

6.14 Stop action
syntax:

<stop action> ::= (1)
STOP (1.1)

semantics: A stop action terminates the process executing it (see 11.1).

static conditions: A /andler must not be appended to a stop action.

ITU-T Rec. Z.200 (1999 E) 91

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

6.15 Continue action
syntax:

<continue action> ::= (1)

CONTINUE <event location> (1.1)
semantics: A continue action evaluates the event location.

If the event location has a non-empty set of delayed processes attached, one of these, with the highest priority, will be re-
activated. If there are several such processes, one will be selected in an implementation defined way. If there are no such
processes, the continue action has no further effect.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

examples:

13.25 CONTINUE resource_freed 1)

6.16 Delay action

syntaxj
<delay action> ::= (1)
DELAY <event location> [<priority>] (1.1)
<priority> ::= (2)
PRIORITY <integer literal expression> (2.1)

semantfics: A delay action evaluates the event location.
Then a [DELAYFAIL exception occurs (see below) or the executing proeess becomes delayed.

If the ekecuting process becomes delayed, it becomes a member,with a priority of the set of delayed processes gttached
to the specified event location. The priority is the one specified, if'any, otherwise 0 (lowest).

dynamjc properties: A process executing a delay action\Beécomes timeoutable when it reaches the point of ejecution
where if may become delayed. It ceases to be timeoutable when it leaves that point.

static cpnditions: The integer literal expression must not deliver a negative value.

dynamjc conditions: The DELAYFAIL exception occurs if the event location has a mode with an event length jgttached
which ip equal to the number of processes.already delayed on the event location.

The lifgtime of the event location must ot end while the executing process is delayed on it.

examples:

13.18 DELAY resource.freed (1.1)

6.17 Delay caSe-action
syntax

<delay case action> ::= (1)
DELAY CASE [SET <instance location> [<priority>1; | <priority> ;]

{ <delay alternative> }+

ESAC (1.1)
<delay alternative> ::= (2)
(<event list>') : <action statement list> (2.1)
<event list> ::= (3)
<event location> { , <event location> }* 3.1)

semantics: A delay case action evaluates, in any order, the instance location, if present, and all event locations specified
in a delay alternative.

Then a DELAYFAIL exception occurs (see below) or the executing process becomes delayed.

92 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

If the executing process becomes delayed, it becomes a member with a priority of the set of delayed processes attached
to each of the specified event locations. The priority is the one specified, if any, otherwise 0 (lowest).

If the delayed process becomes re-activated by another process executing a continue action on an event location, the
corresponding action statement list is entered. If several delay alternatives specify the same event location, the choice
between them is not specified. Prior to entering, if an instance location is specified, the instance value identifying the
process that has executed the continue action is stored in it.

dynamic properties: A process executing a delay case action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property. The integer literal
expression in priority must not deliver a negative value.

dynamjc conditions: The DELAYFAIL exception occurs if any event location has a mode with an event length. gttached
which if equal to the number of processes already delayed on that event location.

The lifgtime of none of the event locations must end while the executing process is delayed on them.

The SPHUCEFAIL exception occurs if storage requirements cannot be satisfied.
examples:

14.26 DELAY CASE
(operator_is_ready): /* some actions */
(switch_is_closed): DO FOR i IN INT (1:100);
CONTINUE operator_is_ready,
/* empty the queue */
OD;
ESAC (1.1)

6.18 Send action

6.18.1 | General

syntax:
<send action> ::= (1)
<send signal action> (1.1)
| <send buffer action> (1.2)

semantiics: A send action initiates.the transfer of synchronization information from a sending thread. The {etailed
semantics depend on whether the synchronization object is a signal or a buffer.

6.18.2 | Send signal action

syntaxj
<serid-signal action> ::= (1)
SEND <signal name> [(<value> { , <value> }*)]
TO <instance primitive value> [<priority>] (1.1)

semantics: A send signal action evaluates, in any order, the list of values, if present, and the instance primitive value.

The signal specified by signal name is composed for transmission from the specified values and a priority. The priority is
the one specified, if any, otherwise 0 (lowest).

If the signal name has a process name attached, only processes with that name may receive the signal; if an instance
primitive value is specified, only the process identified by the instance primitive value may receive the signal.

If the signal has a non-empty set of delayed processes attached, in which one or more may receive the signal, one of
these will be re-activated. If there are several such processes, one will be selected in an implementation defined way. If
there are no such processes, the signal becomes pending.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

ITU-T Rec. Z.200 (1999 E) 93

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static conditions: The number of value occurrences must be equal to the number of modes of the signal name. The class
of each value must be compatible with the corresponding mode of the signal name. No value occurrence may be
intra-regional (see 11.2.2). The integer literal expression in priority must not deliver a negative value.

dynamic conditions: The assignment conditions of each value with respect to its corresponding mode of the signal name
apply.

The EMPTY exception occurs if the instance primitive value delivers NULL.

The lifetime of the process indicated by the value delivered by the instance primitive value must not have ended at the
point of the execution of the send signal action.

The SENDFAIL exception occurs if the signal name has a process name attached which is not the name of the process
indicated by the value delivered by the instance primitive value.

examples:
15.78 SEND ready TO received user (1)
15.86 SEND readout(count) TO user (1.1)

6.18.3 | Send buffer action

syntax
<send buffer action> ::= (1)
SEND <buffer location> (<value>) [<priority>] (1.1)

semantfics: A send buffer action evaluates the buffer location and the value in any order.

If the buffer location has a non-empty set of delayed processes attached{ on¢ of these will be re-activated. If there are
several [such processes, one will be selected in an implementation defined way. If there are no such processes |and the
capacity of the buffer location is exceeded, the executing process becomes delayed with a priority. Otherwise the [value is
stored ith a priority. The priority is the one specified, if any,(otherwise 0 (lowest). The capacity of the buffer is
exceedgd if the buffer location has a mode with a buffer length.attached which is equal to the number of values|already
stored ip the buffer location.

If the ekecuting process becomes delayed, it becomes a ‘member of the set of delayed sending processes attached to the
buffer Jocation. If a process becomes re-activated, itis removed from all sets of delayed processes of which it was a
membef.

dynamjc properties: A process executing a_send buffer action becomes timeoutable when it reaches the point of
executipn where it may become delayed. It ceases to be timeoutable when it leaves that point.

static gonditions: The class of the value must be compatible with the buffer element mode of the mode of the buffer
location. The value must not be intra-regional (see 11.2.2). The integer literal expression in priority must not deliver a
negativg value.

dynamjc conditions: The assignment conditions of the value with respect to the buffer element mode of the mode of
the buffler location apply;the possible exceptions occur before the process may become delayed.

The lifgtime of the buffer location must not end while the executing process is delayed on it.

examples:

16.123 SEND user—> ([ready, —>counter_buffer]) ; (1.1)

6.19 Receive case action

6.19.1 General

syntax:
<receive case action> ::= (1)
<receive signal case action> (1.1)
| <receive buffer case action> (1.2)

semantics: A receive case action receives synchronization information transmitted by a send action. The detailed
semantics depend on the synchronization object used, which is either a signal or a buffer. Entering a receive case action
does not necessarily result in a delaying of the executing thread (see clause 11 for further details).

94 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

6.19.2 Receive signal case action
syntax:
<receive signal case action> ::= (1)
RECEIVE CASE [SET <instance location> ; |
{ <signal receive alternative> }+
[ELSE <action statement list>] ESAC (1.1)
| RECEIVE [SET <instance location>]|
(<signal name> [IN <location list>]) (1.2)
<location list> ::= (2)
<location> { , <location> }* (2.1)
<signal receive alternative> ::= 3)
(<signal name> [IN <defining occurrence list> |) : <action statement list> 31
derived syntax: The notation (1.2) is derived syntax for

<locati

where

<locati

semantjics: A receive signal case action evaluates the instance locationyif present.

Then tH
Statemd
specifig
receive

If the ¢
specifid
receive

If the {
instanc

the signal name of the received sighal has a list of modes attached, a list of value receive names is specified; th

carries

static g
receive

signal ¥

dynam
executi

RECEIVE CASE [SET <instance location>; |
(<signal name> [IN <&name>y, ..., <&name>,]):

n>1 ;= <&name>; ... <location>, = <&name>,; ESAC,
&name>1, ..., <&name>, are virtually introduced value receive names, and

n>1, ..., <location>, are the locations in the location list.

e executing process: (immediately) receives a signal or, i ELSE is specified, enters the corresponding
it list, otherwise becomes delayed. The executing proc€ss immediately receives a signal if one of a sign
d in a signal receive alternative is pending and may-be received by the process. If more than one signal
1, one with the highest priority will be selected in an‘implementation defined way.

kecuting process becomes delayed, it becomes’a member of the set of delayed processes attached to eac
d signals. If the delayed process beconies re-activated by another process executing a send signal a
a signal.

xecuting process receives a signal, the corresponding action statement list is entered. Prior to enterin
b location is specified, the instance value identifying the process that has sent the received signal is stored

h list of values, and the-yalue receive names denote their corresponding value in the entered action statem
roperties: A defining occurrence in the defining occurrence list of a signal receive alternative defines
name. Its class™is the M-value class, where M is the corresponding mode in the list of modes attache

ame in front of'it.

¢ properties: A process executing a receive signal case action becomes timeoutable when it reaches the
' where it may become delayed. It ceases to be timeoutable when it leaves that point.

r action
1l name
may be

h of the
ction, it

o, if an
in it. If
e signal
et list.

a value
d to the

point of

static conditions: The mode of the instance location must not have the read-only property.

All signal name occurrences must be different.

The optional IN and the defining occurrence list in the signal receive alternative must be specified if and only if the
signal name has a non-empty set of modes. The number of names in the defining occurrence list must be equal to the
number of modes of the signal name.

The assignment conditions of the values delivered by &namey, ..

location,, apply.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

ITU-T Rec. Z.200 (1999E)

., &name, with respect to the modes of location, ...,

95

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

examples:
15.83 RECEIVE CASE
(advance): count + :=1;
(terminate):
SEND readout(count) TO user,
EXIT work loop;
ESAC (1.1)
6.19.3 Receive buffer case action
syntax:
<receive buffer case action> == (1)
RECEIVE CASE [SET <instance location> ; |
{ <buffer receive alternative> }+
[ELSE <action statement list>]
ESAC (1.1)
| RECEIVE [SET <instance location>]
(<buffer location >IN <location>) (1.2)
<buffer receive alternative> ::= (2)
(<buffer location> IN <defining occurrence>) : <action statement list> (2.1)
derived syntax: The notation (1.2) is derived syntax for

where

semantiics: A receive buffer case action evaluates, in any order, the fastance location, if present, and all buffer I

specifig

Then tl
Statemd
sending
highest

If the e
specifid
it receiy

If the {
alterna
locatior
specifid

Anothe
delayed
receive
value tq
if more|

RECEIVE CASE [SET <instance location>; |
(<buffer location> IN <&name>) : <location> = <&name=;
&name> is a virtually introduced value receive name.

d in a buffer receive alternative.

e executing process: (immediately) receives a valuevor, if ELSE is specified, enters the corresponding
pit list, otherwise becomes delayed. The executing.process immediately receives a value if one is stored
process delayed on, one of the specified buffer Tocations. If more than one value may be received, one
priority will be selected in an implementation‘defined way.

kecuting process becomes delayed, it/bécomes a member of the set of delayed processes attached to eac
d buffer locations. If the delayed process becomes re-activated by another process executing a send buffe
es a value.

xecuting process receives a4 value, the corresponding action statement list is entered. If several buffer
ives specify the same buffer location, the choice between them is not specified. Prior to entering, if an

is specified, the instance value identifying the process that has sent the received value is stored in
d value receive nafme denotes the received value in the entered action statement list.

" process beconies re-activated if the executing process receives a value from a buffer location, the attachg
sending processes of which is not empty. The re-activated process is one with the highest priority attache
| valuewvas stored in the buffer location, otherwise the one sending the received value. In the former o
be sent by the re-activated process is stored in the buffer location (the capacity of which remains exceed

cations

r action
in, or a
vith the

h of the
action,

receive
nstance
it. The

d set of
d, if the
ase, the
bd), and
ctivated

than one process may be re-activated, one will be selected in an implementation defined way. The re-a

process

. q 41 o 1.1 | = 44 1) 1 £ 1 4a
IS TUITIUVOU TTUILIT IV SUT UT uula.ypu Dhllulllé PlU\szDD\./D AlldaLIICU U UIv UUIIvh 1Uvdativll.

static properties: A defining occurrence in a buffer receive alternative defines a value receive name. Its class is the
M-value class, where M is the buffer element mode of the mode of the buffer location labelling the buffer receive
alternative.

dynamic properties: A process executing a receive buffer case action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property.

The ass

ignment conditions of the value denoted by &name with respect to the mode of the location apply.

dynamic conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

96

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

The lifetime of none of the buffer locations must end while the executing process is delayed on them.

6.20

syntax:

CHILL built-in routine calls

<CHILL built-in routine call> ::= (1)
<CHILL simple built-in routine call> (1.1)

| <CHILL location built-in routine call> (1.2)

| <CHILL value built-in routine call> (1.3)

predefined names: The CHILL built-in routine names are predefined as built-in routine names (see 6.7).

semanticsT A CHILL buili-in rouline call is cither a CHILL szmp?e buill-in_routine ca?i, which detivers no

(see 6.2
routine

static groperties: A CHILL built-in routine call is a location built-in routine call if it is a CHIBL-location

routine

6.20.1

syntax

semaancs: A CHILL simple built-in routine call is a built-in routiné.call which delivers neither a value nor a |

The si

clause 9.

6.20.2

syntax

semantlics: A CHILL location built-in routine call is a built-in routine call that delivers a location. The location

routine

6.20.3

syntaxj

0.1), a CHILL location built-in routine call, which delivers a location (see 6.20.2), or a CHILL value
call, which delivers a value (see 6.20.3).

call; it is a value built-in routine call if it is a CHILL value built-in routine call.

CHILL simple built-in routine calls

<CHILL simple built-in routine call> ::= (1)
<terminate built-in routine call> (1.1)

| <io simple built-in routine call> (1.2)

| <timing simple built-in routine call> (1.3)

ple built-in routines for input output are defined in clause7<The simple built-in routines for timing are dg

CHILL location built-in routine calls

<CHILL location built-in routine call>"::= (1)
<io location built-in routine call> (1.1)

for input output are defined in clause 7.

CHILL value built=in routine calls

results
built-in

built-in

bcation.
fined in

built-in

<CHILEvGlue built-in routine call> ::= (1)
NUM (<discrete expression>) (1.1)

| PRED (<discrete expression>) (1.2)
| SUCC (<discrete expression>) (1.3)
| ABS (<muneric expression= 4)
| CARD (<powerset expression>) (1.5)
| MAX (<powerset expression>) (1.6)
| MIN (<powerset expression>) (1.7)
| SIZE ({ <location> | <mode argument> }) (1.8)
| UPPER (<upper lower argument>) (1.9)
| LOWER (<upper lower argument>) (1.10)
| LENGTH (<length argument>) (1.11)
| <allocate built-in routine call> (1.12)
| <io value built-in routine call> (1.13)
| <time value built-in routine call> (1.14)
| SIN (<floating point expression>) (1.15)
| COS (<floating point expression>) (1.16)
| TAN (<floating point expression>) (1.17)

ITU-T Rec. Z.200 (1999E)

97

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

| ARCSIN (<floating point expression>) (1.18)

| ARCCOS (<floating point expression>) (1.19)

| ARCTAN (<floating point expression>) (1.20)

| EXP (<floating point expression>) (1.21)

| LN (<floating point expression>) (1.22)

| LOG (<floating point expression>) (1.23)

| SORT (<floating point expression>) (1.24)

<numeric expression> ::= (2)

<integer expression> (2.1)

| <floating point expression> (2.2)

<mode argument> ::= (3)

M TIane (3. 11/\

| <array mode name> (<expression>) 3.2)

| <string mode name> (<integer expression>) 33)

| <variant structure mode name> (<expression list>) (3.4)

<upper lower argument> ::= (4)

<array location> (4.1)

| <array expression> (4.2)

| <array mode name> (4.3)

| <string location> (4.4)

| <string expression> (4.5)

| <string mode name> (4.6)

| <discrete location> (4.7)

| <discrete expression> (4.8)

| <discrete mode name> (4.9)

| <floating point location> (4.10)

| <floating point expression> (4.11)

| <floating point mode name> (4.12)

| <access location> (4.13)

| <access mode name> (4.14)

| <text location> (4.15)

| <text mode name> (4.16)

<length argument> ::= (5)

<string location> 5.1)

| <string expression> (5.2)

| <string mode name> (5.3)

| <event location> (5.4)

| <event modename> (5.5)

| <buffer location> (5.6)

| <bufferinode name> (5.7)

| <téxt Jocation> (5.8)

| «<text mode name> (5.9)
NOTE If the upper/lower argument is an array location, a string location, a discrete location or a floating point locdtion, the
syntacti¢ ambiguity is resolved by interpreting upper lower argument as a location rather than an expression or primitive valfe. If the
length aygument is a string location, the syntactic ambiguity is resolved by interpreting length argument as a location rathef than an

expressipihs

semantics: A CHILL value built-in routine call is a built-in routine call that delivers a value.
NUM delivers an integer value with the same internal representation as the value delivered by its argument.
PRED and SUCC deliver respectively the next lower and higher discrete value of their argument.

ABS is defined on numeric values, i.e. integer values and floating point values, delivering the corresponding absolute
value.

CARD, MAX and MIN are defined on powerset values. CARD delivers the number of element values in its argument.

MAX and MIN deliver respectively the greatest and smallest element value in their argument.

98 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

SIZE is defined on referable locations and (possibly dynamic) modes. In the first case, it delivers the number of
addressable memory units occupied by that location; in the second case, the number of addressable memory units that a
referable location of that mode will occupy. The mode is static if the mode argument is a mode name, otherwise it is a
dynamically parameterized version of it, with parameters as specified in the mode argument. In the first case, the
location will not be evaluated at run time.

UPPER and LOWER are defined on (possibly dynamic):

e array, string, discrete, floating point, access and text locations, delivering the upper bound and lower bound of the
mode of the location;

e array and string expressions, delivering the upper bound and lower bound of the mode of the value’s class;

e strong discrete and floating point expressions, delivering the upper bound and lower bound of the mode of the
value’s class;

. arllay, string, discrete, floating point, access and text mode names, delivering the upper bound and lowef’bpund of
th¢ mode.

LENGTH is defined on (possibly dynamic):

* strjng and text locations and string expressions delivering the actual value of them;
* event locations delivering the event length of the mode of the locations;

* buffer locations delivering the buffer length of the mode of the locations;

* strjng mode names delivering the string length of the mode;

¢ teqt mode names delivering the text length of the mode;

¢ buffer mode names delivering the buffer length of the mode;

e event mode names delivering the event length of the mode.

SIN deljvers the sine of its argument (interpreted in radians).

COS ddllivers the cosine of its argument (interpreted in radians).

TAN delivers the tangent of its argument (interpreted in radians).

ARCSIY delivers the sin~! function of its argument in.the range —T72 : T72.
ARCCQS delivers the cos™! function of its argumeént in the range 0 : TU
ARCTAN delivers the tan~! function of its argument in the range — 102 : T02.
EXP ddlivers the e* function, where x(is\its argument.

LN delipyers the natural logarithm-of'its argument.

LOG ddlivers the base 10 logarithm of its argument.

SORT delivers the square.root of its argument.

The safe rules for the evaluation of the result of built-in routine call with constant arguments as that of cpnstant
expressfon apply(see 5.3.1).

static properties: The class of a NUM built-in routine call is the &I/NT-derived class. The built-in routing call is
constant(literal) if and only if the argument is constant (literal).

The class of a PRED or SUCC built-in routine call is the resulting class of the argument. The built-in routine call is
constant (literal) if and only if the argument is constant (literal).

The class of an ABS built-in routine call is the resulting class of the argument. The built-in routine call is constant
(literal) if and only if the argument is constant (literal).

The class of a CARD built-in routine call is the &INT-derived class. The built-in routine call is constant if and only if the
argument is constant.

The class of a MAX or MIN built-in routine call is the M-value class, where M is the member mode of the mode of the
powerset expression. The built-in routine call is constant if and only if the argument is constant.

The class of a SIZE built-in routine call is the &INT-derived class. The built-in routine call is constant if the mode of the
argument is static.

ITU-T Rec. Z.200 (1999 E) 99

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

The class of an UPPER and LOWER built-in routine call is:

* the M-value class if upper lower argument is an array location, array expression or array mode name, where M is
the index mode of array location, array expression or array mode name, respectively;

e the &INT-derived class if upper lower argument is a string location, string expression or string mode name,

» the M-value class if upper lower argument is a discrete location, discrete expression or discrete mode name, where

M

is the mode of discrete location, or discrete expression, or discrete mode name, respectively;

* the M-value class if upper lower argument is a floating point location, floating point expression, or floating point
mode name, where M is the mode of the floating point location, floating point expression, or floating point mode

name, respectively;

. thd
of

. thg
m

An UPjJ
name, 4

array |
lower q

access

The cla
argumé
locatio

The cla

The clg
argume
o fof
* foi
e fof
* foi
e fof
where §
A SIN,

only if

static ¢

M-value class 1t upper lower argument 1s an access location or access mode name, where M 1s the 1ndd
the mode of the access location or access mode name, respectively;

M-value class if upper lower argument is a text location or text mode name, where M is the index mod
de of the text location or text mode name, respectively.

PER or LOWER built-in routine call is literal if the upper lower argument is an arraygmode name, a striy

discrete mode name, a floating point mode name, an access mode name, or a text miode name, if the mod
cation or string location is static, if the array expression or string expression has a static class, or if th
rgument is a discrete location, a discrete expression, a floating point locationsy-a floating point expres.
ocation, or a text location.

ss of a LENGTH built-in routine call is the &/NT-derived class. Thelbuilt-in routine call is literal if th
nt is a string location with a static mode, a string expression with“a/static class, an event location, or
, or if it is a string mode name, an event mode name, a buffer mode name, or a text mode name.

5s of a TAN, EXP, LN, LOG or SORT built-in routine call is¢the resulting class of its argument.

ss of SIN, COS, ARCSIN, ARCCOS, ARCTAN is the, 1. N-derived class, 2. N-value class if the clas
ht is 1. an N-derived class, 2. an N-value class, whefé/'N is a mode constructed as follows:

SIN: &RANGE (-1.0 : 1.0, 5)
COS: &RANGE (-1.0 : 1.0, 5)
ARCSIN: &RANGE (112 : T02,,5)
ARCCOS: &RANGE (0 : T&. 5)

ARCTAN: &RANGE. (<172 : 102, S)

is the precision.of N, and the novelty is that of N.

he argument'1s constant (literal).

pnditions: If the argument of a PRED or SUCC built-in routine call is constant, it must not deliver, respg

the sm4

X mode

e of the

mode
e of the

c upper
ion, an

e length
p buffer

of the

(COS, TAN, ARESIN, ARCCOS, ARCTAN, EXP, LN, LOG or SQRT built-in routine call is constant (literaf) if and

ctively,

llest or greatest discrete value defined by the root mode of the class of the argument. The root mod

e of the

discrete expression argument of PRED and SUCC must not be a numbered set mode.

If the argument of a MAX or MIN built-in routine call is constant, it must not deliver the empty powerset value.

The loc

ation argument of SIZE must be referable.

The discrete expression and floating point expression as arguments of UPPER and LOWER must be strong.

If the upper lower argument is an access mode name or an access location, the corresponding access mode must have an
index mode.

If the upper lower argument is a text mode name or a text location, the corresponding text mode must have an index

mode.

100

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The following compatibility requirements hold for a mode argument which is not a single mode name:

« Th

e class of the expression must be compatible with the index mode of the array mode name.

e The variant structure mode name must be parameterizable and there must be as many expressions in the
expression list as there are classes in its list of classes and the class of each expression must be compatible with the
corresponding class in the list of classes.

dynamic conditions: PRED and SUCC that are not constant cause the OVERFLOW exception if they are applied to the
smallest or greatest discrete value defined by the root mode of the class of the argument.

NUM and CARD that are not constant cause the OVERFLOW exception if the resulting value is outside the set of values

defined

by &INT.

MAX and MIN cause the EMPTY exception if they are applied to empty powerset values

ABS th
root m

The RANGEFAIL exception occurs if in the mode argument:

. thg

md

. thg

na,

. an
md

ARCSI]
range -

LN and
SORTt

SIN, C(
value i
case of]
lower 1

ARCCd

upper
mathen]

argume

examples:

9.12
11.47
11.47

1t is not constant causes the OVERFLOW exception if the resulting value is outside the bounds definec
de of the class of the argument.

expression delivers a value which does not belong to the set of values defined by the.index mode of th
\de name;

integer expression delivers a negative value or a value which is greater than thestring length of the stri
ne;

y expression in the expression list for which the corresponding class in the)ist of classes of the variant s
de name is an M-value class (i.e. is strong) delivers a value which is outside the set of values defined by]

1.0 : 1.0.
LOG that are not constant cause the OVERFLOW exceptioff'if the argument is not greater than zero.
hat is not constant causes the OVERFLOW exception-if'the argument is not greater than or equal to zero.

DS, TAN, ARCSIN, ARCTAN, LN and LOG that-are not constant cause the OVERFLOW exception if the 1
greater than the upper bound or less than thedlower bound of the root mode of the class of the argumen
an exact mathematical resulting value that'is greater than the negative upper limit and less than the
mit of the root mode of the argument; and is different from zero, an UNDERFLOW exception occurs.

S, EXP and SORT that are not constant cause the OVERFLOW exception if the resulting value is greater
bound or less than the lower bound of the root mode of the class of the argument. In the case of 3
atical resulting value that is greater than zero and less than the positive lower limit of the root mod
ht, an UNDERFLOW ex¢eption occurs.

MIN (sieve) (1.7)
PRED<co! 1) (1.2)
SUCCE (col 1) (1.3)

6.20.4

syntax:

V and ARCCOS that are not constant cause the OVERFLOW, exception if the argument does not li¢

| by the

ructure

M.

in the

esulting
t. In the
bositive

than the
n exact
e of the

3 J13- il et 4
oS o Ut routines

<allocate built-in routine call> ::= (1)
GETSTACK (<mode argument> [, <value> |

([<constructor actual parameter list>]) |) (1.1)
| ALLOCATE (<mode argument> [, <value> |

([<constructor actual parameter list>1) 1) (1.2)

<terminate built-in routine call> ::= (2)
TERMINATE (<reference primitive value>) 2.1)

semantics: GETSTACK and ALLOCATE create a location of the specified mode and deliver a reference value for the
created location. GETSTACK creates this location on the stack (see 10.9). A location whose mode is that of the mode

ITU-T Rec. Z.200 (1999E)

101

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

argument is created and a value referring to it is delivered. The created location is initialized with the value of value, if
present; otherwise with the undefined value (see 4.1.2) if the mode argument is not a moreta mode.

If the mode argument is a moreta mode, first all initializations in the components are performed in textual order. If a
(possibly empty) parameter list is specified, the corresponding constructor of the mode argument is applied to the newly

created

location. If the mode argument is a task mode, the task belonging to the newly created location is started.

TERMINATE ends the lifetime of the location referred to by the value delivered by reference primitive value. An
implementation might as a consequence release the storage occupied by this location, and if the reference primitive value
is a location which is not read-only, assign the undefined value to the location.

If the reference primitive value refers to a region or a task location L, the following steps are performed sequentially:

a) Lisclosed. Ifalocation is closed, no more external calls of the public component procedures in I, are accepted.

b) Th
c) If

e thread executing the TERMINATE waits until L is empty.

he mode of L contains a destructor, that destructor is applied to L.

static properties: The class of a GETSTACK or ALLOCATE built-in routine call is the M-referenee\elass, where

mode o

respect

A GET|
region

static d
compat
mode.

If the nj

The va

location).

dynam
built-in

dynam
ALLOQ

For GE
mode a

f mode argument. M is either the mode name or a parameterized mode constructed as;
&<array mode name> (<expression>) or
&<string mode name> (<integer expression>) or

&<variant structure mode name> (<expression list>),

vely.

bTACK or ALLOCATE built-in routine call is intra-regional ifit is surrounded by a region, otherwise it i
1.

onditions: The class of the value, if present, in the~GETSTACK and ALLOCATE built-in routine call
ible with the mode of mode argument; this checks dynamic in case the mode of mode argument is a (
ode of mode argument has the read-only property, the second argument must be present.

ue, if present, in the GETSTACK and ALLOCATE built-in routine call, must be regionally safe for the
¢ properties: A reference value is an allocated reference value if and only if it is returned by an ALL|
routine call.

¢ conditions: GETSTACK causes the SPACEFAIL exception if storage requirements cannot be satisfied.

ATE causes thedLLOCATEFAIL exception if storage requirements cannot be satisfied.

gument apply.

M is the

b extra-

must be

Jynamic

created

OCATE

TSTACK and ALLOCATE the assignment conditions of the value delivered by value with respect to the mode of

TERMI

VAIE Ccauses the ENMF 1Y exceplion 1T the rejerence primiiive value delivers the valu€ NULL.

The reference primitive value must deliver an allocated reference value. The lifetime of the referenced location must not
have ended.

7.1

Input and Output

I/0O reference model

A model is used for the description of the input/output facilities in an implementation independent way; it distinguishes
three states for a given association location: a free state, a file handling state and a data transfer state.

102

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

The dia

ISO/IEC 9496:2003(E)

gram shows the three states and the possible transitions between the states.

free state The asspciation Iocati_on contain§ no value.
No relation to an outside worl object.
ASSOCIATE DISSOCIATE
fil The association location contains an association.
hanld?in Operations like create and delete a file, or change
9 its properties.
state
CONNECT DISCONNECT
¢ dat? An access location is conngtted to the association location.
r:tr:teer Transfer data to/from a/file:-a read and write operations.

The mq
world,

file can)
object t

Manipu
a file. /
associa

In the fj
operati
argume
associa
initial v
of oper:

In the
associa

del assumes that objects, in implementations often referred to as datasets, files or devices, exist in the
.e. the external environment of a CHILL progranxSuch an outside world object is called a file in the n
be a physical device, a communication line or_just a file in a file management system; in general, a fi
hat can produce and/or consume data.

lating a file in CHILL requires an assQcidtion; an association is created by the associate operation and it id
An association has attributes; these attributes describe the properties of a file that is or could be attache
ion.

Fee state, there is no interaction or relation between the CHILL program and outside world objects. The a
n changes the state gf-th¢ model from the free state into the file handling state. This operation takeg
ht an association location and an implementation defined denotation for an outside world object for w
ion must be credted; additional arguments may be used to indicate the kind of association for the object
alues for the attfibutes of the association. A particular association also implies an (implementation depend
itions that;may be applied on the file that is attached to that association.

File haudling state, it is possible to manipulate a file and its properties via an association, provided

outside
odel. A
le is an

entifies
d to the

ssociate
as one
hich an
and the
lent) set

that the
bciation

ion-enables the particular operation; for operations that change the properties of a file, an exclusive ass

for the

Tie-witt beTrecessary T gererat.

The model assumes associations in general are exclusive, i.e. only one association exists at the same time for a given
outside world object. However, implementations may allow the creation of more associations for the same object,
provided that the object can be shared among different users (programs) and/or among different associations within the
same program. All operations in the file handling state take an association as an argument.

The dissociate operation is used to end an association for an outside world object; this operation causes transition from

the file

handling state back to the free state.

Transferring data to or from a file is possible only in the data transfer state; transfer operations require an access location
to be connected to an association for that file. The connect operation connects an access location to an association and
changes the state of the model into the data transfer state. The operation takes an association location and an access

ITU-T Rec. Z.200 (1999E)

103

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

location as arguments; the association location contains an association for the file to, or from, which data can be
transferred via the access location. Additional arguments of the connect operation denote for which type of transfer
operations the access location must be connected, and to which record the file must be positioned. At most one access
location can be connected to an association location at any one time.

The disconnect operation takes an access location as argument and disconnects it from the association it is connected to;
it changes the state of the model back to the file handling state.

In the data transfer state, an access location must be used as an argument of a transfer operation; there are two transfer
operations provided, namely, a read operation to transfer data from a file to the program and a write operation to transfer
data from the program to a file. The transfer operations use the record mode of the access location to transform CHILL
values into records of the file, and vice versa.

as-a a 2 a arLa 2 a he element
[this array is determined by the connect operation to be the record mode of the access location being Copnected.
An indgx value is assigned to each record of the file; this value uniquely identifies each record of thenfile] In the
descripfion of the connect and transfer operations, three special index values will be used, namely, a)base {ndex, a
current index and a transfer index. The base index is set by the connect operation and remains,unc¢hanged until a
subseqyent connect operation; it is used to calculate the transfer index in transfer operations and the-current inflex in a
connec{ operation. The transfer index denotes the position in the file where a transfer will take place; the currenpt index
denoteg the record to which the file currently is positioned.

7.2 Association values

7.2.1 General

An assqciation value reflects the properties of a file that is or could be atfached to it. A particular association value also
implies|an (implementation dependent) set of operations on the file that\is.possibly attached to it.

Associdtion values have no denotation but are contained in locafions of association mode; there exists no expression
denotinig a value of association mode. Association values canonly be manipulated by built-in routines that take an
associafion location as parameter.

7.2.2 Attributes of association values

An assdciation value has attributes; the attributes(describe the properties of the association and the file that may ¢r could
be attadhed to it.

The following attributes are language defined:
e ex]sting: indicating that a (possibly empty) file is attached to the association;
* readable: indicating thatread operations are possible for the file when it is attached to the association;

* wiiteable: indicating'that write operations are possible for the file when it is attached to the association;

. indlexable: indiCating that the file, when it is attached to the association, allows for random access to its records;

e sequencible:>indicating that the file, when it is attached to the association, allows for sequential acceds to its
reqords;

thin the

file.

These attributes have a boolean value; the attributes are initialized when the association is created and may be updated as
a consequence of particular operations on the association. This list comprises the language defined attributes only;
implementations may add attributes according to their own needs.

7.3 Access values

7.3.1 General

Access values are contained in locations of access mode. An access location is necessary to transfer data from or to a file
in the outside world.

104 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

Access values have no denotation but are contained in locations of access mode; there exists no expression denoting a
value of access mode. Access values can only be manipulated by built-in routines that take an access location as
parameter.

7.3.2

Attributes of access values

Access values have attributes that describe their dynamic properties, the semantics of transfer operations, and the
conditions under which exceptions can occur.

CHILL

defines the following attributes:

e usage: indicating for which transfer operation(s) the access location is connected to an association; the attribute is

set

° ouffofTile: mdlcafmg whether or not the transier index calculated By the 1ast read operatlon was in the

att

by the connect operation.

[ibute is initialized to FALSE by the connect operation and is set by every read operation.

file; the

7.4 Built-in routines for input output
7.4.1 General
Language defined built-in routines are defined for operations on association locations\and” access locations, [and for
inspecting and changing the attributes of their values.
The built-in routines will be described in the following sections.
syntaxj
<io value built-in routine call> ::= (1)
<association attr built-in routine call> (1.1)
| <isassociated built-in routine call> (1.2)
| <access attr built-in routine call> (1.3)
| <readrecord built-in routine call> (1.4)
| <gettext built-in routine call> (1.5)
<io simple built-in routine call> ::= (2)
<dissociate built-in routine call> (2.1)
| <modification built-in routine call> (2.2)
| <connect built-in routine-call> (2.3)
| <disconnect built-in‘routine call> (2.4)
| <writerecord builtsin routine call> (2.5)
| <text built-in foutine call> (2.6)
| <settext builtsin routine call> (2.7)
<io location built-=in"routine call> ::= (3)
<associate built-in routine call> (3.1)
static cpnditions: A \built-in routine parameter in an io built-in routine that is an association location, an access |ocation
or a texf locatiormust be referable.
7.4.2 Associating an outside world object
syntax:
<associate built-in routine call> ::= (1)
ASSOCIATE (<association location> [, <associate parameter list>]) (1.1)
<isassociated built-in routine call> ::= (2)
ISASSOCIATED (<association location>) 2.1)
<associate parameter list> ::= 3)
<associate parameter> { , <associate parameter> }* 3.1)
<associate parameter> ::= (4)
<location> (4.1)
| <value> (4.2)
ITU-T Rec. Z.200 (1999 E) 105

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

semantics: ASSOCIATE creates an association to an outside world object. It initializes the association location with the
created association. It initializes the attributes of the created association. The association location is also returned as a
result of the call. The particular association that is created is determined by the locations and/or values occurring in the
associate parameter list; the modes (classes) and the semantics of these locations (values) are implementation defined.

ISASSOCIATED returns TRUE if association location contains an association and FALSE otherwise.

static properties: The class of an ISASSOCIATED built-in routine call is the BOOL-derived class. The mode of an
ASSOCIATE built-in routine call is the mode of the association location.

The regionality of an ASSOCIATE built-in routine call is that of the association location.

static conditions: The mode and the class of each associate parameter is implementation defined.

dynamjc conditions: ASSOCIATE causes the ASSOCIATEFAIL exception if the association location already contains an
association or if the association cannot be created due to implementation defined reasons.

examples:
20.21 ASSOCIATE (file_association,"DSK:RECORDS.DAT"); (1.1)
7.4.3 Dissociating an outside world object
syntaxj
<dissociate built-in routine call> ::= (1)

DISSOCIATE (<association location>) (1.1)

semantfics: DISSOCIATE terminates an association to an outside world objeet. An access location that is still connected
to the apsociation contained in an association location is disconnected before the association is terminated.

dynamjc conditions: DISSOCIATE causes the NOTASSOCIATEDexception if association location does not coptain an
associafion.

examples:

22.38 DISSOCIATE (association), (1.1)

7.4.4 Accessing association attributes

syntax:

<association attr built-in routine call> ::= (1)
EXISTING (_<association location>) (1.1)

| READABLE (<association location>)) (1.2)

| WRITEABLE (<association location>) (1.3)

| INDEXABLE (<association location>) (1.4)

| SEBQUENCIBLE (<association location>) (1.5)

| JARIABLE (<association location>) (1.6)

semantiics: EXISTING, READABLE, WRITEABLE, INDEXABLE, SEQUENCIBLE and VARIABLE return respgctively
the valyie of the existing-, readable-, writeable-, indexable-, sequencible- and variable-attribute of the asspciation
containgd-in association location.

static properties: The class of an association attr built-in routine call is the BOOL-derived class.

dynamic conditions: The association attr built-in routine call causes the NOTASSOCIATED exception if association
location does not contain an association.

7.4.5 Modifying association attributes

syntax:
<modification built-in routine call> ::= (1)
CREATE (<association location™>) (1.1)
| DELETE (<association location>) (1.2)
| MODIFY (<association location> [, <modify parameter list>]) (1.3)

106 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

<modify parameter list> ::= 2)
<modify parameter> { , <modify parameter> }* 2.1)

<modify parameter> ::= 3)
<value> (3.1)

| <location> (3.2)

semantics: CREATE creates an empty file and attaches it to the association denoted by the association location. The
existing-attribute of the indicated association is set to TRUE if the operation succeeds.

DELETE detaches a file from the association denoted by association location and deletes the file. The existing-attribute
of the indicated association is set to FALSE if the operation succeeds.

MODIFY provides the means of changing properties of an outside world object for which an association exists and that is
denoted— by assOCTIaTion focarion; e toCatioNs ald7or vaiues tat occur 1T 7modly paramerer 1157 describe fjow the
propertles must be modified. The modes (classes) and the semantics of these locations (values) are implemigntation
defined

dynamjc conditions: CREATE, DELETE and MODIFY cause the NOTASSOCIATED exceptionyiD the assgciation
locatio does not contain an association.

CREATIE causes the CREATEFAIL exception if one of the following conditions occurs:
» thgq existing-attribute of the association is TRUE;

e thg creation of the file fails (implementation defined).

DELETIE causes the DELETEFAIL exception if one of the following conditions occurs:
* thq existing-attribute of the association is FALSE;

e thq deletion of the file fails (implementation defined).

MODIRY causes the MODIFYFAIL exception if the properties,defined by modify parameter list cannot or may not be
modifigd; the conditions under which this exception can occur-are implementation defined.

examples:
21.39 CREATE (outassoc), (1.1)
21.69 DELETE (curassoc), (1.2)

7.4.6 Connecting an access location

syntax:

<connect built-in routine'call> ::= (1)

CONNECT (<transfer location> , <association location> ,
<usage expression> [, <where expression> [, <index expression>1]) (1.1)
<transfer lo¢ation> ::= 2)
Kaccess location> 2.1)
|" <text location> 2.2)
<usage expression> ::= 3)
<expression> A1)
<where expression> ::= 4)
<expression> (4.1)
<index expression> ::= (5)
<expression> (5.1

predefined names: To control the connect operation, performed by the built-in routine CONNECT, two synmode names
are predefined in the language, namely, USAGE and WHERE; their defining modes are SET (READONLY,
WRITEONLY, READWRITE) and SET (FIRST, SAME, LAST), respectively.

Values of the mode USAGE indicate for which type of transfer operations the access location must be connected to an
association, while values of the mode WHERE indicate how the file that is attached to an association must be positioned
by the connect operation.

ITU-T Rec. Z.200 (1999 E) 107

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

semantics: CONNECT connects the access location denoted by transfer location to the association that is contained in
association location; there must be a file attached to the denoted association; i.e. the association's existing-attribute must
be TRUE.

The access location denoted by transfer location is the location itself if it is an access location; otherwise the access sub-
location of the text location.

The value that is delivered by usage expression indicates for which type of transfer operations the access location must
be connected to the file. If the expression delivers READONLY, the connection is prepared for read operations only; if it
delivers WRITEONLY, the connection is set up for write operations only; if it delivers READWRITE, the connection is
prepared for both read and write operations.

The indexable-attribute of the denoted association must be TRUE if the access location has an index mode, while the

+l 4daan] 4 1 TRLLLC £ 41 1 fn 1 L | u |
Sequen LTOTC=attr TOOTCTITOST OU T VU T IT UIC TOUATTUIT 1TSS TTO ITUCATTITOUCTT

CONNECT (re)positions the file that is attached to the denoted association; i.e. it establishes a (new) base“inflex and
current index in the file. The (new) base index depends upon the value that is delivered by where expression:

» if where expression delivers FIRST or is not specified, the base index is set to 0; i.e. the file is\positioned bgfore the
firt record;

e if where expression delivers SAME, the base index is set to the current index in the fileyi.e. the file positign is not
chinged;

. if Where expression delivers LAST, the base index is set to N, where N denotes the number of records in the ffile; i.e.
thg file is positioned after the last record.

After a|base index is set, a current index will be established by CONNVECT. This current index depends upon the
optiona) specification of an index expression:

» if no index expression is specified, the current index is set to the (new) base index;
e if an index expression is specified, the current index is set to
base index + NUM (v) — NUM (I)

where [denotes the lower bound of the access [ocation's index mode and v denotes the value that is delivered by
index expression.

If the agcess location is being connected for.sequential write operations (i.e. the access location has no index mpde and
the usage expression delivers WRITEONLY), then those records in the file that have an index greater than the (new)
current index will be removed from-the file; i.e. the file may be truncated or emptied by CONNECT.

An access location that has no.index mode cannot be connected to an association for read and write operatiorfs at the
same tifne.

Any access location €o~which the denoted association may be connected will be disconnected implicitly before the
associatfion is connected to the location that is denoted by transfer location.

CONNIECT initializes the outoffile-attribute of the access location to FALSE and sets the usage-attribute according to the
value thatis'delivered by usage expression.

static properties: The mode attached to a fransfer location is the mode of the access location or the access mode of the
text location, respectively.

static conditions: The mode of transfer location must have an index mode if an index expression is specified; the class
of the value delivered by index expression must be compatible with that index mode. The transfer location must have
the same regionality as the association location.

The class of the value delivered by usage expression must be compatible with the USAGE-derived class.

The class of the value delivered by where expression must be compatible with the WHERE-derived class.

dynamic conditions: CONNECT causes the NOTASSOCIATED exception if association location does not contain an

association.

108 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

CONNECT causes the CONNECTFAIL exception if one of the following conditions occurs:

» the association's existing-attribute is F'ALSE;

» the association's readable-attribute is FALSE and usage expression delivers READONLY or READWRITE;

» the association's writeable-attribute is FALSE and usage expression delivers WRITEONLY or READWRITE;

e the association's indexable-attribute is FALSE and access location has an index mode;

e the association's sequencible-attribute is F4LSE and access location has no index mode;

e where expression delivers SAME, while the association contained in association location is not connected to an
access location;

+ the association's variable-attribute is FALSE and the access location has a dynami 1 le_whil

ex}

. thg

ex}

. thg

bression delivers WRITEONLY or READWRITE;

ression delivers READONLY or READWRITE;

access location has no index mode, while usage expression delivers READWRITE;

» thg association contained in association location cannot be connected to the access location, due to implem
defined conditions.

CONNECT causes the RANGEFAIL exception if the index mode of access locatioh~is a discrete range mode

index eypression delivers a value which lies outside the bounds of that discrete range mode.

The EMPTY exception occurs if the access reference of the text location delivers the value NULL.

examples:

20.22 CONNECT (record_file, file_association, READWRITE), (1.1)

20.22 | READWRITE (3.1)

7.4.7 Disconnecting an access location

syntax:

<disconnect built-in routine call> 7=)
DISCONNECT (<transfer location>) 1)

semantics: DISCONNECT disconnects™the access location denoted by transfer location from the associati

connect

dynam
locatior

7.4.8

syntax:

ed to.

¢ conditions: DISCONNECT causes the NOTCONNECTED exception if the access location denoted by
is not connected tg-ah association.

Accessing attributes of access locations

association's variable-attribute is TRUE and the access location has a static record mode, whil¢

e usage

usage

bntation

and the

bn it is

fransfer

<qceess attr built-in routine call> ::= (1)
GETASSOCIATION (<transfer location>) (1.1)

| GETUSAGE (<transfer location>) (1.2)

| OUTOFFILE (<transfer location>) (1.3)

semantics: GETASSOCIATION returns a reference value to the association location that the access location denoted by
transfer location is connected to; it returns NULL if the access location is not connected to an association.

GETUSAGE returns the value of the usage-attribute; i.e. READONLY (WRITEONLY) if the access location is connected
only for read (write) operations, or READWRITE if the access location is connected for both read and write operations.

OUTOFFILE returns the value of the outoffile-attribute of access location; i.e. TRUE if the last read operation calculated
a transfer index that was not in the file, FALSE otherwise.

static properties: The class of a GETASSOCIATION built-in routine call is the 4SSOCIATION-reference class. The
regionality of an GETASSOCIATION built-in routine call is that of the transfer location.

ITU-T Rec. Z.200 (1999E)

109

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

The class of an OUTOFFILE built-in routine call is the BOOL-derived class.

The class of a GETUSAGE built-in routine call is the USAGE-derived class.

dynamic conditions: GETUSAGE and OUTOFFILE cause the NOTCONNECTED exception if the access location is not

connected to an association.
examples:
21.47 OUTOFFILE (infiles (FALSE)) (1.3)
7.4.9 Data transfer operations
syntax:
<readrecord built-in routine call> ::= D
READRECORD (<access location> [, <index expression> |
[, <store location>]) (1.1)
<writerecord built-in routine call> ::= (2)
WRITERECORD (<access location> [, <index expression>] ,
<write expression>) (2.1)
<store location> ::= (3)
<static mode location> 3.1)
<write expression> ::= (4)
<expression> (4.1)
NOTE - If the access location has an index mode, the syntactic ambiguity is resolved by interpreting the second argument as

expressij

semantfics: For the transfer of data to or from a file, the builtsif’routines WRITERECORD and READREC(

defined
data to
value o

Before
If the 4
locatior

where /]
index €|
curren

The read operation:

READK

If the ¢
the recq

bn rather than a store location.

The access location must have a record mode, and_it must be connected to an association in order to
or from the file that is attached to that association The transfer direction must not be in contradiction
[the access location's usage-attribute.

p transfer takes place, the transfer index, i.e. the position in the file of the record to be transferred, is cal
ccess location has no index mode, the transfer index is the current index incremented by 1; if thg
has an index mode, the transfer index is calculated as follows:

transfer index := base index*+ NUM (v) - NUM (I) + 1

is the lower bound of the mode of the access location's index mode and v denotes the value that is deliy

index becomes the _transfer index.

|ECORD ttansfers data from a file in the outside world to the CHILL program.

hlculated transfer index is not in the file, the outoffile-attribute is set to TRUE; otherwise the file is pos
rd’is read, and the outoffile-attribute is set to FALSE.

an index

RD are
transfer
with the

culated.
access

ered by

kpression. If the transfet of the record with the calculated transfer index has been performed successfilly, the

itioned,

The record that is read must not deliver an undefined value; the effect of the read operation is implementation defined if
the record being read from the file is not a legal value according to the record mode of the access location.

If a store location is specified, then the value of the record that was read is assigned to this location. If no store location
is specified, the value will be assigned to an implicitly created location; the lifetime of this location ends when the access
location is disconnected or reconnected. Whether the referenced location is created only once by the connect operation,
or every time a read operation is performed, is not defined.

READRECORD returns in both cases a reference value that refers to the (possibly dynamic mode) location to which the
value was assigned.

If the outoffile-attribute is set to TRUE as a result of the built-in routine call, then the NULL value is returned as a result

of the ¢

110

all.

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

The write operation:

WRITERECORD transfers data from the CHILL program to a file in the outside world. The file is positioned to the
record with the calculated index and the record is written.

After the record has been written successfully, the number of records is set to the transfer index, if the latter is greater
than the actual number of records.

The record written by WRITERECORD is the value delivered by write expression.

static properties: The class of the value that was read by READRECORD 1is the M-value class, where M is the record
mode of the access location, if it has a static record mode, or a dynamically parameterized version of it, if the location
has a dynamic record mode; the parameters of such a dynamically parameterized record mode are:

* th¢ dynamic string length of the string value that was read in case of a string mode;
* th¢ dynamic upper bound of the array value that was read in case of an array mode;

» thg list of (tag) values associated with the mode of the structure value that was read in case of a yariant strudture.

The claps of the READRECORD built-in routine call is the M-reference class if store location is 1ot specified, otherwise
it is the|S-reference class, where S is the mode of the store location.

The regionality of a READRECORD built-in routine call is that of the store location iflit is specified, otherwise it is that
of the access location.

static cpnditions: The access location must have a record mode.

An indgx expression may not be specified if access location has no indeximode and must be specified if access {ocation
has an index mode; the class of the value delivered by index expressioninust be compatible with that index modg.

The stofe location must be referable.
The mode of store location must not have the read-only property.

If store| location is specified, then the mode of store location must be equivalent with the record mode of th¢ access
location, if it has a static record mode or a varying string record mode, otherwise a dynamically parameterized|version
of it; thp parameters of such a dynamically parameterized mode are those of the value that has been read.

The claks of the value delivered by write expression must be compatible with the record mode of the access locption, if
it has a|static record mode or a varying\string record mode; otherwise there should exist a dynamically paramgterized
version|of record mode that is compatible with the class of write expression. The assignment conditions of the yalue of
write expression with respect to the.above mentioned mode apply.

dynamjc conditions: The RANGEFAIL or TAGFAIL exceptions occur if the dynamic part of the above mgntioned
compat]bility check fails,

The RAADRECORD.and WRITERECORD built-in routine call cause the NOTCONNECTED exception if thq access
location is not corneeted to an association.

The RHADRECORD or WRITERECORD built-in routine call cause the RANGEFAIL exception if the index hode of
access focation is a discrete range mode and the index expression delivers a value that lies outside the boundg of that
discrete Tange mode-

The READRECORD built-in routine call causes the READFAIL exception if one of the following conditions occurs:
e the value of the usage-attribute is WRITEONLY;

e the value of the outoffile-attribute is TRUE and the access location is connected for sequential read operations;

* the reading of the record with the calculated index fails, due to outside world conditions.

The WRITERECORD built-in routine call causes the WRITEFAIL exception if one of the following conditions occurs:
e the value of the usage-attribute is READONLY,

* the writing of the record with the calculated index fails, due to outside world conditions.

ITU-T Rec. Z.200 (1999 E) 111

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

If the RANGEFAIL exception or the NOTCONNECTED exception occur then it occurs before the value of any attribute
is changed and before the file is positioned.

examples:

20.24 READRECORD (record _file, curindex, record buffer), (1.1)
22.25 READRECORD (fileaccess), (1.1)
20.32 WRITERECORD (record _file, curindex, record buffer); (2.1)
21.61 WRITERECORD (outfile, buffers(flag)), (2.1)
20.24 record_buffer (3.1)
21.61 buffers(flag) (4.1)
7.5 Text input output

7.5.1 General

Text ofyitput operations allow the representation of CHILL values in a human-readable form; text input op|

perforn

Text tr
accesse|

The md
referred

Manipu
to be c(

Text trg
location

The po
but rath

the opposite transformation.

nsfer operations are defined on top of the basic CHILL input/output model“and operate on files that
1 either sequentially or randomly and whose records may have a fixed or vatiable length.

del assumes that every record has a (possibly empty) positioning information attached, in implementatio
to as carriage control or control characters.

lating a text file in CHILL requires an association; transferring data to or from a text file requires a text
nnected to an association for that file.

nsfer operations can be applied to CHILL values thatshay become records of some text file, as well as to
s that are not necessarily related to any i/o activity.6fithe program.

sibility to recover from a piece of text the samie)CHILL values that originated it cannot be guaranteed in
er it depends on the specific representation that has been used.

Textv
text mo|

7.5.2

Text V:[ues are contained in locations of text mode. A text location is necessary to transfer data in human-readabl

ues have no denotation but are Sontained in locations of text mode; there exists no expression denoting a
de. Text values can only be manipulated by built-in routines that take a text location as parameter.

Attributes of text values

Text vallues have attributes that describe their dynamic properties. The following attributes are defined:

e ac
R

. tey
m

fual index: indicating the next character position of the text record to be read or written. It has a mode Y
NGE (0:L=1), where L is the text length of the value's mode. It is initialized to 0 when a text location is

t recard reference: indicating a reference value to the text record sub-location of the text location.
de-which is REF M, where M is the text record mode of the value's mode.

erations

may be

hs often

ocation

CHILL

peneral,

e form.

value of

wvhich is
reated.

[t has a

* access reference: indicating a reference value to the access sub-location of the text location. It has a mode which is
REF M, where M is the access mode of the value's mode.

7.5.3

syntax:

112

Text transfer operations

<text built-in routine call> ::= (1)

READTEXT (<text io argument list>) (1.1)

| WRITETEXT (<text io argument list>) (1.2)

<text io argument list> ::= (2)
<text argument> | , <index expression> |,

<format argument> [, <io list>] (2.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

NOTE

<text argument> ::= (3)
<text location> 3.1)
| <character string location> (3.2)
| <character string expression> (3.3)
<format argument> ::= (4)
<character string expression> (4.1)
<io list> ::= (5)
<io list element> { , <io list element> }* (5.1)
<io list element> ::= (6)
<value argument> (6.1)
| <location argument> (6.2)
<location argument> ::= (7)
<discrete location> 7°1)
| <floating point location> (7.2)
| <string location> (7.3)
<value argument> ::= (8)
<discrete expression> (8.1)
| <floating point expression> 8.2)
| <string expression> (8.3)

If the io list element is a location, the syntactic ambiguity is resolved by interpreting the io list element as a location qrgument

seman
text re
io list

operati

If the ¢
functios

implicifly created at the beginning of the built-in routine-gall and initialized to 0. The text record is the charactg

denoted

The ele

o va

Relati
The val|

During
argumé
interprd

a) fol

rather tlIn a value argument.

cs: READTEXT applies the conversion, editing and i/o control functions contained in the format argume

. VzI\iable clause widths as described below.

ord denoted by the fext argument; this (possibly) produces a list.of\values that are assigned to the elemen
n the sequence in which they are specified. WRITETEXT, performs the opposite operation. No imp
ns are performed.

bxt argument is a character string location or a chaxacter string expression, then the conversion and
is are applied without any relation with the externaloworld. In this case the actual index denotes a locatio

by character string location or character stririgexpression and the text length its string length.
nents of the io list may be either:

ue arguments and location arguments, or

ships between a formatargument and an io list
ue delivered by a format argument must have the form of a format control string (see 7.5.4).

the execution{of*a text i/o built-in routine call the format control string (see 7.5.4) denoted by the
it and the_jo st are scanned from left to right. Each occurrence of a format text and format specific
ted and the.appropriate action is taken as follows:

magitext

it to the
s of the
licit i/0

editing
h that is
b1 string

format
tion 1s

In

delivered by format text. In WRITETEXT, th

4D 2 2) nosition a-s gs h S 2 .
e string delivered by format text is transferred to the text reco

e string
rd. The

b)

semantics are the same as if a format specification which is %C and an io list element that delivers the same string
value as that delivered by format text were encountered.

format specification

If the format specification contains a repetition factor, then it is equivalent to a sequence of as many format element
occurrences as the number denoted by repetition factor.

If the format specification is a format clause, then it contains a control code. If the control code is a conversion
clause, then an io list element is taken from the io /ist and the conversion function selected by the conversion code,
conversion qualifiers and clause width is applied to it (see 7.5.5). If the control code is an editing clause or an io
clause, then the editing or io function selected by the editing code or io code and clause width is applied to the text
argument without reference to the io list (see 7.5.6 and 7.5.7).

ITU-T Rec. Z.200 (1999 E) 113

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

If the clause width is variable, then a value is taken from the list, which denotes the width parameter of the
conversion or editing control function.

If the format specification is a parenthesized clause, then the format control string that is contained in it is scanned.

The interpretation of the format control string terminates when the end of the string delivered by format control string
has been reached.

The io list elements of the io list are scanned in the order that they are specified.

static conditions: If the fext argument is a string location, its mode must be a varying string mode.

An index expression may not be specified if the text argument is not a text location or if it is and its access mode has no
index mode and must be specified if the access mode has an index mode; the class of the value delivered by index
express|

A text g

A strin

dynam

thd
St

an

du|
SCi
co

an

aj

stri

Any ex
functio

on must be compatible with that index mode.
rgument in a WRITETEXT built-in routine call must be a location.
b location in a text argument must be referable.

¢ conditions: The TEXTFAIL exception occurs if:

string value delivered by the format argument cannot be derived as a terminal preduction of the format
ing; or

attempt to assign to the actual index a value which is less than 0 or greaterithan text length is made; or

ring the interpretation, the end of the format control string has beerreached and the io list is not cor
nned, or no more elements can be taken from the io list and the format control string contains more coj
es or variable clause widths; or

io clause is encountered and the fext argument is not a text location; or

ormat text is encountered in READTEXT and the text record does not contain at the actual index po
ng which is equal to the string delivered by format text.

ception defined for the READRECORD and WRITERECORD built-in routine call can occur if an i/o

examp

26.18

7.5.4

syntax

114

control

hpletely
version

sition a

control

1 is executed and any one of the dynamic conditions defined is violated.
es:

WRITETEXT (output,"%B%/", Q) (1.2)

Format control string
<format control\string> ::= (1)
[sformat text> | { <format specification> [<format text> | }* (1.1)
<formattext> ::= 2)
{ <nom-percent character> | <percent> }* 2.1)
Spercent> ::= (3)
7797 (3.1)
<format specification> ::= (4)
% [<repetition factor>] <format element> (4.1)
<repetition factor> ::=)
{ <digit>)+ (5.1)
<format element> ::= (6)
<format clause> (6.1)
| <parenthesized clause> (6.2)
<format clause> ::= (7)
<control code> [% . | (7.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<control code> ::= (8)
<conversion clause> (8.1)

| <editing clause> (8.2)

| <io clause> (8.3)
<parenthesized clause> ::= 9)
(<format control string> %) 9.1)

NOTE — A format specification is terminated by the first character that cannot be part of the format element. Spaces and format
effectors may not be used within format elements. A period (.) may be used to terminate a format clause. It belongs to the format
clause and it has only a delimiting effect. To represent the character percent (%) within a format text, it has to be written twice (%%).

semantics: A format control string specifies the external form of the values being transferred and the layout of data
within the records. A format control string is composed of format text occurrences, which denote fixed parts of the
records|and of format specification occurrences, which denote the external representations of CHILL values, dllowing
the editjng of the text record or controlling the actual i/o operations.

If a format specification contains a repetition factor and a format clause, then it is equivalent to as many, identica| format
specifiqation occurrences of the format clause as the number delivered by repetition factor. A repetition factor chn be 0,
in which case the format specification is not considered. E.g. "%3C4" is equivalent to "%C4%C4%C4".

The de¢imal notation is assumed for the digits in a repetition factor.

A formlt control string in a parenthesized clause is repeatedly scanned according(e)the repetition factor. If|none is
specifidd, / is assumed by default.

examples:

2620 | size = %C%/ (1.1)

7.5.5 Conversion

syntaxj

<conversion clause> ::= (1)
<conversion code> { <conversion qualifier> }*
[<clause width>] (1.1)

<conversion code> ::=)
B|O|H|C|F 2.1)

<conversion qualifier> :*= 3)
L | E | P <character> (3.1)

<clause width>/= 4)
ixdigit> }* |V} [<fractional width> | [<exponent width> | (4.1)

<fractional width> ::= 5
A <digit> } T (.1

Sexponent width> ::= (6)
A <digit> }T (6.1)

derived syntax: A conversion clause in which a clause width is not present is derived syntax for a conversion clause in
which a clause width that is 0 is specified.

semantics: A conversion in a READTEXT built-in routine call transforms a string which is an external representation into
a CHILL value. A conversion in a WRITETEXT built-in routine call performs the opposite transformation. The
conversion code together with the conversion qualifier specify the type of the conversion and the details of the requested
operation such as justification, overflow handling and padding.

The external representation is a string whose length usually depends on the value being converted. That string may

contain the minimum number of characters that are necessary to represent the CHILL value (free format) or may have a
given length (fixed format).

ITU-T Rec. Z.200 (1999 E) 115

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

In the fixed format a slice of width size starting from the actual index position is read from or written into the text

record

according to the justification and padding selected by conversion qualifiers, as follows:

* in READTEXT: all padding characters (to the left or to the right according to the justification), if any, are removed.
However, when characters or fixed character strings are being read, the maximum number N of padding characters
that are removed is width —L , where L is 1 or string length, respectively. No characters are removed if N < 0. The
remaining characters are taken as the external representation;

e in WRITETEXT: if the length of the external representation is less than or equal to width, then the characters are
justified to the left or to the right in the slice (according to the justification). The unused string elements, if any, are
filled with the padding character. Otherwise the string is truncated (on the left if the justification to the right is
selected, otherwise on the right), or width "overflow" indicator characters (*) are transferred, if the qualifier £ is
present. The truncation is applied to the external representation, including the minus sign, the period (.) and the £

(sq
In the fi
. in

an
ch
as

. in

In WRI|
actual

the actyal length is set to the maximum value between the actual index and'the (old) actual length.

A claus

If the width is zero, then the free format is chosen, otherwise theswidth is the length of the fixed format.

If the wfidth is too small to contain the string, the appropriate action is taken depending on the conversion qualifie

In a R/
argumé

In a WH
M-deriy

Conversion codes

Conver|

B:

. I . .~
ICIILITIC TOPITSCHLAUIULL), 1T dlly.

ee format the following holds:
READTEXT: padding characters, if any, are skipped except when a character or a characterstring is beli
l the conversion qualifier P is not specified. Then, the external representation is taken-as*‘the longest
hracters that starts at the actual index and is made of all the subsequent characters thatmay lexically bel
defined below.

WRITETEXT: the string delivered by the conversion is inserted starting from the actual index position.
TETEXT the string which is the external representation is transferred to.the text record without regai

ength. After the transfer, the actual index is automatically advanced-t6, the next available character posi

e width is constant if it is made of digits. The decimal notations assumed. Otherwise it is variable.

LADTEXT the external representation thatls applied is the one defined below for the mode of the
t.

YITETEXT the external representation that is applied is the one defined below for the mode M of the M-
red class of the value delivered by the value argument.

ion codes are represented as single letters. The following conversion codes are defined:
binary reptesentation.

octal fepresentation.

ng read
slice of
ng to it

d to its
ion and

=

ocation

alue or

hexadecimal representation.

0]
H:
C

F:

The ext

conversion: indicates the default external representation of CHILL values, which depends on the mod
value being converted (see below).

scientific representation, i.e. the representation of floating point values with mantissa and exponent.

ernal representation depends on the conversion code and the mode of the value being converted.

Conversion qualifiers

Conversion qualifiers are represented as single letters. The following conversion qualifiers are defined:

L:

116

left justification. Right justification is assumed if it is not present. In the free format the qualifier has no

ITU-T Rec. Z.200 (1999 E)

e of the

effect.

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

overflow evidence. In WRITETEXT the overflow indication is selected; if the qualifier is not prese
truncation is performed. In READTEXT or in the free format this qualifier has no effect.

nt, then

padding. The character that follows the qualifier specifies the padding character. If P is not present, then the
padding character is assumed to be space by default. In READTEXT if the free format is selected, then spaces
and HT (Horizontal Tabulation) are considered as the same character for skipping purposes, either when

specified after the qualifier or when applied by default.

External representation

The external representation of CHILL values is defined as follows:

a)

b)

¢)

d)

e)

integers

Int
wi
RA
de
co

flol
Fl

In
(in
by

In
lex
ex

refpresentations a leading plus sign and zeros are«discarded in READTEXT.

If
ex
arg

If
us

Th

bol

Bqg
TR
sif]

eger values are lexically represented as one or more digits in a decimal default base without leading zg
h a leading sign if negative. Underline characters, a leading plus sign and leading zeros are~discd
'ADTEXT. The following conversion codes are available: B, O, C and H. The conversion code C sel
timal representation. The digits that may belong to the representation are only those that-ar€) selected
hversion code.

(iting point

ating point values can be represented in two ways:
fixed point representation (selected by C conversion code);
scientific representation (selected by F conversion code).

the fixed point representation, the floating point value is lexically. represented by a sequence of one or mo
teger part) followed by an optional sequence of one or more digits (fractional part) separated from the inte
a period (.). A leading minus sign is present if the value is negative.

the scientific representation, the floating point valueis represented by mantissa and exponent. The ma
ically represented as a fixed point value with the dnfeger part consisting of only one digit, greater than zg
ponent is lexically represented by an E followed by a possible sign and a sequence of one or more digits. |

ractional width is present, the value delivered by digits contained in it indicates the length of the fractig
ended with trailing zeros if necessary,.otherwise the fractional part contains the minimum number of di
necessary to represent it.

bxponent width is present, the value delivered by digits contained in it indicates the minimum number of
b to represent the exponent, including leading zeros if necessary, otherwise a default value of 3 is assumed|

e following conversion-codes are available: C, F.
bleans

olean valties ‘are lexically represented as simple name string, that are TRUE and FALSE [in upper c4
UE) orlower case (e.g. true) depending on the representation chosen by the implementation for the
hple‘name strings]. The following conversion code is available: C.

ros and
rded in
ects the
by the

e digits
ger part

htissa is
ro. The
for both

nal part
bits that

ligits to

se (e.g.
special

characters

Character values are lexically represented as strings of length /. The following conversion code is available: C.

sets

Set mode values are lexically represented as simple name strings, that are the set literals. The following conversion
code is available: C.

ranges

Range values have the same representation as the values of their root mode. However, only the representations of
those values defined by the discrete range mode or floating point range mode belong to the set of external
representations associated to the discrete range mode or floating point range mode.

ITU-T Rec. Z.200 (1999E)

117

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

2

h)

character strings

Character string values are lexically represented as strings of characters of length L. In WRITETEXT L is the actual
length. In READTEXT L is the string length if the string is a fixed string, otherwise it is a varying string and L is
the string length, unless there are less characters available in the (slice of) text record at the actual index position,

in

which case L is the number of available characters. The following conversion code is available: C.

bit strings

Bit string values are lexically represented as strings of binary digits. The same rules as for character strings apply to
determine the number of digits. The following conversion code is available: C.

dynamic properties: A clause width has a width, which is the value delivered by digits or by a value from the io list if
the clause width is variable, otherwise it is zero if none is specified.

dynam

nof have a floating point class, or it has an exponent width and the conversion code is not F.
examples:
26.21 CL6 (1.1)
7.5.6 Editing
syntax
<editing clause> = (1)
<editing code> [<clause width>] (1.1)
<editing éode> ::= (2)
X|<|>|T (2.1)
derived syntax: An editing clause in which a clause width is not present is derived syntax for an editing clause i

a clausq

in
sk
thd
tey
in
to
in
of’

thg

a \
Clg

—_—

a (

¢ conditions: The TEXTFAIL exception occurs if:

pping of padding characters, see above) can be interpreted as an external representation of one’ of the v
mode of the current location argument (including an attempt to read a non-empty external \representatior
t record when actual index = actual length); or

WRITETEXT, a string slice that is the external representation of the current value-argiiment can not be tra
the text record starting at the actual index; or

READTEXT a conversion code is encountered and the current element in the io /ist is not a location, or th
the location has the read-only property; or

same conversion qualifier is specified more than once; or

ariable clause width is encountered and the corresponding i0.7ist element in the io list does not have an
ss or it is less than 0;

lause width has a fractional width or an exponent width and the corresponding io list element in the io

READTEXT, the text record does not contain a string slice starting at the actual index that (after, the renjoval or

hlues of
from a

hsferred

e mode

integer

ist does

h which

width that is [is specified if the editing code is not T, otherwise 0, respectively.

semantics: The following editing functions are defined:

X:

>

<

T:

space: width space characters are inserted or skipped.
skip right: the actual index is moved rightward for width positions.
skip left: the actual index is moved leftward for width positions.

tabulation: the actual index is moved to the position width.

In WRITETEXT, if the actual index is moved to a position which is greater than the actual length, then a string of N
space characters, where N is the difference between the actual index and the (old) actual length is appended to the text
record. The actual length is set to the maximum value between the actual index and the (old) actual length.

118

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

dynamic conditions: The TEXTFAIL exception occurs if:

e the actual index is moved to a position which is less than 0 or greater than text length; or

* in READTEXT the actual index is moved to a position which is greater than the actual length; or

* in READTEXT the editing code X is specified and a string of width space or HT (Horizontal Tabulation) characters
is not present in the text record at the actual index position.

examples:
26.22 X (1.1)
7.5.7 1/O control

syntaxj

<io clause> ::= (1)
<io code> (1.1)
<io code> ::= 2)
=141 = (2.1)

semantjics: The i/o control functions (except %=) perform an i/o operation. They allowprecise control over the

of the

WRITE|
initial
record
text re

ext record. In READTEXT, all the functions have the same effect, to read>the next record from the
IEXT, the text record and the appropriate representation of the carriage control information are transfert
osition of the carriage at the time the fext location is connected is such(that the first character of the f]
is printed at the beginning of the first unoccupied line (regardless of-afiy positioning information attachg
ord).

The carfriage placement is described by means of the following absttact-operations on the current column, line aj

transfer
file. In
ed. The
rst text
d to the

nd page
g at the

c+ (y +

des the

(x, y, z)| considering columns as being numbered from zero startingrat the left margin, and lines from zero startin

top marjgin.

nl(w): | the carriage is moved w lines downward, at the beginning of the line (new position: (0, (y + w) mod p,

w)/p, where p is the number of lines per page));

np(w): | the carriage is moved w pages downward.at the beginning of the line (new position: (0, 0, z + w)).

The following control functions are provided;

/- nekt record: the record is printed on the next line (nl(1), print record, nl(0));

+: nekt page: the record is printed on-the top of the next page (np(1), print record, nl(0));

— cufrent line: the record is-printed on the current line (print record, nl(0));

?: pr¢mpt: the record is.printed on the next line. The carriage is left at the end of the line (nl(1), print record);

!/ enjit: no carriage‘¢ontrol is performed (print record);

=: enfl page: defines the positioning of the next record, if any, to be at the top of the next page (this overr
popitioning'performed before the printing of the record). It does not cause any i/o operation.

The I/Q transfer is performed as follows:

. in READTEXT, the semantics are as if a READRECORD (A4, I, R), where A is the access sub-location of the text
location, I is the index expression (if any) and R denotes the text record, were executed. After the I/O transfer
actual index is set to 0 and actual length to the string length of the string value that was read;

e in WRITETEXT, the semantics are as if a WRITERECORD (4, I, R), where 4 is the access sub-location of the fext
location, I is the index expression (if any) and R denotes the text record, were executed. The associated positioning
information is also transferred. If the record mode of the access is not dynamic, then the text record is filled at the
end with space characters and its actual length is set to text length before the transfer takes place. After the I/0O
transfer actual index and actual length are set to 0.

examples:

26.21

/ (1.1)

ITU-T Rec. Z.200 (1999E)

119

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

7.5.8

syntax:

C 9496:2003(E)

Accessing the attributes of a text location

<gettext built-in routine call> ::= (1)
GETTEXTRECORD (<text location>") (1.1)

| GETTEXTINDEX (<text location>) (1.2)

| GETTEXTACCESS (<text location>) (1.3)

| EOLN (<text location>) (1.4)
<settext built-in routine call> ::= (2)
SETTEXTRECORD (<text location> , <character string location>) (2.1)

| SETTEXTINDEX (<text location> , <integer expression>) (2.2)

| SETTEXTACCESS (<text location> , <access location>) (2.3)

semantkcs: GETTEXTRECORD returns the text record reference of text location.

GETTH
GETTH

EOLN
length)

SETTE]

referenlce of the text location.

SETTE]
width d

SETTE]

location.

static properties: The class of the GETTEXTRECORD built-in routine call is the M-reference class, where M is

record
The clal

The clal

location.

The cla
A GET

static ¢|
with thq

The mqg
text loc

The lo

location.

dynam

IXTINDEX returns the actual index of text location.
IXTACCESS returns the access reference of text location.

lelivers TRUE if no more characters are available in the text record (i.e. if the actual index equals thg
XTRECORD stores a reference to the location delivered by character string location into the text
KTINDEX has the same semantics as an editing clause in WRITETEXT ‘in which editing code is T ang

elivers the same value as integer expression, applied to the text record denoted by text location.

KTACCESS stores a reference to the location delivered by access Tocation into the access reference of

mode of the text location.
ks of the GETTEXTINDEX built-in routine call is_the"&/NT-derived class.

ks of the GETTEXTACCESS built-in routine call is the M-reference class, where M is the access mode of]

5s of the EOLN built-in routine call is the BOOL-derived class.
EXTRECORD or GETTEXTAEEESS built-in routine call has the same regionality as the text location.

pnditions: The mode of the‘character string location argument of SETTEXTRECORD must be read-comn
text record mode of the_ text location.

de of the access loeation argument of SETTEXTACCESS must be read-compatible with the access mod
tion.

ation argument in SETTEXTRECORD and SETTEXTACCESS must have the same regionality as

c,conditions: The TEXTFAIL exception occurs if the integer expression argument of SETTEXTINDEX d4

actual

record

clause

the text

the text

the text

patible

e of the

the text

livers a

value thi

at 1< less than 0 or greater than the text lenoth of the fext location

examples:

26.23

8.1

GETTEXTINDEX (output) (1.2)

Exception handling

General

An exception is either a language defined exception, in which case it has a language defined exception name, a user
defined exception, or an implementation defined exception. A language defined exception will be caused by the dynamic

violatio

120

n of a dynamic condition. Any exception can be caused by the execution of a cause action.

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

When an exception is caused, it may be handled, i.e. an action statement list of an appropriate handler will be executed.

Exception handling is defined such that at any statement it is statically known which exceptions might occur (i.e. it is
statically known which exceptions cannot occur) and for which exceptions an appropriate handler can be found or which
exceptions may be passed to the calling point of a procedure. If an exception occurs and no handler for it can be found,
the program is in error.

When an exception occurs at an action statement or a declaration statement, the execution of the statement is performed
up to an unspecified extent, unless stated otherwise in the appropriate section.

8.2 Handlers
syntax:
<handler> ::= (D
ON { <on-alternative> }* [ELSE <action statement list> | END 1)
<om-alternative> ::= (2)
(<exception list>) : <action statement list> 2.1)

semantjics: A handler is entered if it is appropriate for an exception E according to 8.3. If E isumentioned in an ejception

list in

on-alternative in the handler, the corresponding action statement list is entered;Otherwise ELSE is s

and the|corresponding action statement list is entered.

When
append

static ¢

dynam
cannot

e end of the chosen action statement list is reached, the handler and the “construct to which the ha
bd are terminated.

pnditions: All the exception names in all the exception list occurrefices' must be different.

¢ conditions: The SPACEFAIL exception occurs if an actionstatement list is entered and storage requi
pe satisfied.

examples:

10.47

8.3

When 4
an appr
calling

For any
EatA

An app

ON
(ALLOCATEFAIL): CAUSE overflow;
END (1.1)

Handler identification

n exception E occurs at anyaction or module A, or a data statement or region D, the exception may be har
ppriate handler; i.e. anCaction statement list in the handler will be executed or the exception may be passe
point of a procedur€;-9r, if neither is possible, the program is in error.

action or module A, or data statement or region D, it can be statically determined whether for a given e3
r D an appropriate handler can be found or whether the exception may be passed to the calling point.

ropriate-hiandler for A or D with respect to an exception with exception name E is determined as follows:

1) if

h handler which mentions E in an exception list or which specifies ELSE is appended to or included in

becified

ndler is

rements

dled by
d to the

ception

A or D,

and E occurs 1n the reach direcily enclosing the handler, then that handler 1s the appropriate one with respect to E;

2) otherwise, if A or D is directly enclosed by a bracketed action, a module or a region, the appropriate handler (if
present) is the appropriate handler for the bracketed action, module or region with respect to E;

3) otherwise, if A or D is placed in the reach of a procedure definition then:

if a handler which mentions E in an exception list or specifies ELSE is appended to the procedure definition,

then that handler is the appropriate handler;

otherwise, if E is mentioned in the exception list of the procedure definition, then E is caused at the calling

point;

otherwise there is no user-defined handler; however, in this situation an implementation defined handler may

be appropriate (see 13.5);

ITU-T Rec. Z.200 (1999E)

121

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

4) otherwise, if A or D is placed in the reach of a process definition, then:

if a handler which mentions E in an exception list or specifies ELSE is appended to the process definition, then

that handler is the appropriate handler;

otherwise there is no user-defined handler; however, in this situation an implementation defined hand
be appropriate (see 13.5);

ler may

5) otherwise, if A is an action of an action statement list in a handler, then the appropriate handler is the appropriate
handler for the action A' or data statement or region D' with respect to E which the handler is appended to or
included in but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate handler implies exiting from blocks, local storage
will be released when exiting from the block.

9.1

It is asg
propert

9.2

The copcept of a timeoutable process exists in order to identify the precise\points during program execution

time inf
A procg
a proce
becomg

9.3

syntax:

semantjics: A timing action speCifies time supervisions of the executing process. A time supervision may be inif

may ex

cyclic fiming action and-bEcause a timing action can itself contain other actions whose execution can initi

supervi

A time
The oc
the trar

Time supervision

General

umed that a concept of time exists externally to a CHILL program (system). CHILL dees not specify the

Timeoutable processes

lerrupt may occur, that is, when a time supervision may interfere with the normal execution of a process.

ss becomes timeoutable when it reaches a well-defined pointin the execution of certain actions. CHILL
5s to become timeoutable during the execution of specifi¢ractions; an implementation may define a pr
timeoutable during the execution of further actions.

Timing actions

<timing action> ::= (1)
<relative timing action> (1.1)

| <absolute timing gction> (1.2)

| <cyclic timing action> (1.3)

bire and it may cease.t0/exist. Several time supervisions may be associated with a single process becaus

k1ons.

interrupt_6ceurs when a process is timeoutable and at least one of its associated time supervisions has
urrencéof a time interrupt implies that the first expired time supervision ceases to exist; furthermore, it
sfer{of control associated with that time supervision in the supervised process. If the supervised proc|

es of time, but provides mechanisms to enable a program to interact with the exterhal'world's view of timg.

precise

where a

defines
bcess to

1ated, it
e of the
te time

pxpired.
leads to
eSS was

delayed

, ithecomes re-activated.

Time supervisions also cease to exist when control leaves the timing action that initiated them.

NOTE - If the transfer of control causes the process to leave a region, the region will be released (see 11.2.1).

9.3.1

syntax:

122

Relative timing action

<relative timing action> ::= (1)
AFTER <duration primitive value> [DELAY | IN
<action statement list> <timing handler> END (1.1)
<timing handler> ::= (2)
TIMEOUT <action statement list> 2.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

semantics: The duration primitive value is evaluated, a time supervision is initiated, and then the action statement list is
entered.

If DELAY is specified, the time supervision is initiated when the executing process becomes timeoutable at the point of
execution specified by the action statement in the action statement list, otherwise it is initiated before the action

statement list is entered.

If DELAY is specified, the time supervision ceases to exist if it has been initiated and the executing process ceases to be
timeoutable.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed since initiation.

The transfer of control associated with the time supervision is to the action statement list of the timing handler.

static donditions: If DELAY is specified the action statement list must consist of precisely one action staterrjent that
may itsglf cause the executing process to become timeoutable.

dynamjc conditions: The TIMERFAIL exception occurs if the initiation of the time supervision fails|for an
implementation defined reason.

9.3.2 Absolute timing action

syntax
<absolute timing action> ::= (1)
AT <absolute time primitive value> IN
<action statement list> <timing handler> END (1.1)

semantjics: The absolute time primitive value is evaluated, a time supervision is initiated, and then the action stptement
list is eftered.

The tinfe supervision expires if it has not ceased to exist at (arafter) the specified point in time.
The trapsfer of control associated with the time supervision is to the action statement list of the timing handler.

dynamjc condition: The TIMERFAIL exception occurs if the initiation of the time supervision fails|for an
implementation defined reason.

9.3.3 Cyclic timing action

syntax:
<cyclic timing action> ::= (1)
CYELE <duration primitive value> IN
<@action statement list> END (1.1)

semantjics: The Cyclic timing action is intended to ensure that the executing process enters the action statement list at
precise [intervals.without cumulated drifts (this implies that the execution time for the action statement list on javerage
should pe I€ss'than the specified duration value). The duration primitive value is evaluated, a relative time superyision is
initiated, ‘and then the action statement list is entered.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed since initiation.
Indivisibly with the expiration a new time supervision with the same duration value is initiated.

The transfer of control associated with the time supervision is to the beginning of the action statement list.
Note that the cyclic timing action can only terminate by a transfer of control out of it.

dynamic properties: The executing process becomes timeoutable if and when control reaches the end of the action
statement list.

dynamic conditions: The TIMERFAIL exception occurs if any initiation of a time supervision fails for an
implementation defined reason.

ITU-T Rec. Z.200 (1999 E) 123

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

9.4 Built-in routines for time
syntax:
<time value built-in routine call> ::= (1)
<duration built-in routine call> (1.1)
| <absolute time built-in routine call> (1.2)

semantics: Implementations are likely to have quite different requirements and capabilities in terms of precision and
range of time values. The built-in routines defined below are intended to accommodate these differences in a portable
manner.

94.1 Duration built-in routines
syntax

<duration built-in routine call> ::= (1)
MILLISECS (<integer expression>) (1.1)
| SECS (<integer expression>) (1.2)
| MINUTES (<integer expression>) (1.3)
| HOURS (<integer expression>) (1.4)
| DAYS (<integer expression>) (1.5)

semantjics: A duration built-in routine call delivers a duration value with implementation defined and possibly [varying
precisiqn (i.e. MILLISECS (1000) and SECS (I) may deliver different duration values); this value is the| closest
approximation in the chosen precision to the indicated period of time. The atgument of MILLISECS, SECS, MINUTES,
HOURSY and DAYS indicate a point in time expressed in milliseconds, seconds) minutes, hours and days respectiv¢ly.

static piroperties: The class of a duration built-in routine call is the DURATION-derived class.

dynamjc conditions: The RANGEFAIL exception occurs if the implementation cannot deliver a duration value denoting
the indifated period of time.

94.2 Absolute time built-in routine
syntax

<absolute time built-in routine call> ;+= (1)
ABSTIME ([[[[[[<vear expression> , | <month expression> , |
<day expression> sJ\&hour expression> , |

<minute expression> , | <second expression>]) (1.1)

<year expression> .:& (2)
<integer-éxpression> 2.1)

<month expression> ::= (3)
<integer expression> 3.1)
<day-expression> ::= (4)
<integer expression> (4.1)

b ot exnression> = /5]
howrexpression= .)
<integer expression> (5.1)

<minute expression> ::= (6)
<integer expression> (6.1)

<second expression> ::= (7)
<integer expression> (7.1)

semantics: The ABSTIMFE built-in routine call delivers an absolute time value denoting the point in time in the Gregorian
calendar indicated in the parameter list. The parameters indicate the components of time in the following order: the year,
the month, the day, the hour, the minute and the second. When higher order parameters are omitted, the point in time
indicated is the next one that matches the low order parameters present (e.g. ABSTIME (15,12,00,00) denotes noon on the
15th in this or the next month).

124 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)
When no parameters are specified, an absolute time value denoting the present point in time is delivered.
static properties: The class of the absolute time built-in routine call is the TIME-derived class.

dynamic conditions: The RANGEFAIL exception is caused if the implementation cannot deliver an absolute time value
denoting the indicated point in time.

9.4.3 Timing built-in routine call

syntax:
<timing simple built-in routine call> ::= 0
WAIT () A
T EXPIRED))

| INTTIME (<absolute time primitive value> , [[[[<vear location>
<month location> , | <day location> , |
<hour location> , | <minute location> , |

<second location>) (1.3)
<year location> ::= 2)
<integer location> (2.1)
<month location> ::= 3)
<integer location> (3.1)
<day location> ::= 4)
<integer location> (4.1)
<hour location> ::= (3)
<integer location> (5.1)
<minute location> ::= (6)
<integer location> (6.1)
<second location> ::= (7)
<integer location> (7.1)

semantjics: WAIT unconditionally makes the'executing process timeoutable: its execution can only terminate by a time
interrugt. (Note that the process remains active in the CHILL sense.)

EXPIRED makes the executing proCess’ timeoutable if one of its associated time supervisions has expired; othdrwise it
has no ¢ffect.

INTTIME assigns to the speeified integer locations an integer representation of the point in time in the Gfegorian
calendaf specified by the absolute time primitive value. The locations passed as arguments receive the components of
time in [the following order: the year, the month, the day, the hour, the minute and the second.

static ¢onditions:vAll specified integer locations must be referable and their modes may not have the repd-only
property.

dynam

EXPIRED makes the executing process timeoutable if there is an expired time supervision associated with it.

10 Program Structure

10.1 General

The if action, case action, do action, delay case action, begin-end block, module, region, spec module, spec region,
context, receive case action, procedure definition and process definition determine the program structure; i.e. they
determine the scope of names and the lifetime of locations created in them.

ITU-T Rec. Z.200 (1999 E) 125

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

The word block is used to denote:

Th

Th

Th

gr
thg

sp

A grouj

126

A
ap
de,
A

A

Ieg

the action statement list in a do action including any loop counter and while control;
the action statement list in a then clause in an if action;

the action statement list in a case alternative in a case action,;

the action statement list in a delay alternative in a delay case action;

a begin-end block;

a procedure definition excluding the result spec and parameter spec of all formal parameters of the formal

parameter list,
DFOCESS AefimiTion eXCiu Paramerer Spec OFmal paramerers ormal paramerer 113

the action statement list in a buffer receive alternative or in a signal receive alternative, including-any
occurrences in a defining occurrence list after IN;

the action statement list after ELSE in an if action or case action or a receive case action\or-handler;
the on-alternative in a handler;

the action statement list in a relative timing action, an absolute timing action,\a-cyclic timing action|
timing handler.

e word modulion is used to denote:
a module or region, excluding the context list and defining occurrence, if any;
a spec module or spec region, excluding the context list, if anyj
a context,
the specification together with the corresponding body ef a moreta mode;
a template together with the corresponding body:
e word group denotes either a block or a modtlion.

e word reach or reach of a group denotes that part of the group that is not surrounded (see 10.2) by :
up. If BM is a moreta mode and DM ‘is’a direct successor of BM then BMp -BMp O DMp form one re
visibility of the internal components of moreta modes the reach of a successor is nested immediatel
bcification part of its direct predecessor; this nesting occurs at the end of the specification part.

influences the scope of/€ach name created in its reach. Names are created by defining occurrences:
defining occurrencein the defining occurrence list of a declaration, mode definition or synonym defin
inition or sigrialdefinition, respectively, is placed.

Hefining occurrence in a set mode creates a name in the reach directly enclosing the set mode.

efining occurrence appearing in the defining occurrence list in a formal parameter list creates a nam
chiof the associated procedure definition or process definition.

lefining

orin a

n inner
ich. For
 in the

ition or

pearing in a sighal “definition creates a name in the reach where the declaration, mode definition, synonym

e in the

A defining occurrence in front of a colon followed by an action, region, procedure definition, or process definition
creates a name in the reach where the action, region, procedure definition, process definition, respectively, is
placed.

A (virtual) defining occurrence introduced by a with part or in a loop counter creates a name in the reach of the
block of the associated do action.

A defining occurrence in the defining occurrence list of a buffer receive alternative or a signal receive alternative
creates a name in the reach of the block of the associated buffer receive alternative or signal receive alternative,
respectively.

A (virtual) defining occurrence for a language predefined or an implementation defined name creates a name in the
reach of the imaginary outermost process (see 10.8).

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The places where a name is used are called applied occurrences of the name. The name binding rules associate a defining
occurrence with each applied occurrence of the name (see 12.2.2).

A name has a certain scope, i.e. that part of the program where its definition or declarations can be seen and, as a
consequence, where it may be freely used. The name is said to be visible in that part. Locations and procedures have a
certain lifetime, i.e. that part of the program where they exist. Blocks determine both visibility of names and the lifetime
of the locations created in them. Modulions determine only visibility; the lifetime of locations created in the reach of a
modulion will be the same as if they were created in the reach of the first surrounding block. Modulions allow for
restricting the visibility of names. For instance, a name created in the reach of a module will not automatically be visible
in inner or outer modules, although the lifetime might allow for it.

10.2 Reaches and nesting

syntax
<begin-end body> ::= (1)
<data statement list> <action statement list> (1.1)
<proc body> ::= (2)
<data statement list> <action statement list> (2.1)
<process body> ::= (3)
<data statement list> <action statement list> (3.1)
<module body> ::= (4)
{ <data statement> | <visibility statement> | <region> |
<spec region> }* <action statement list> (4.1)
<region body> ::= (5)
{ <data statement> | <visibility statement> }* (5.1)
<spec module body> ::= (6)
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> }* (6.1)
<spec region body> ::= (7)
{ <quasi data statement> | <visibility statement> }* (7.1)
<context body> ::= 8)
{ <quasi data statement> | <visibility statement> |
<spec module> | <§pec region> }* (8.1)
<action statement list> :'=)
{ <action.statement> }* 9.1)
<data statementist> ::= (10)
{sdata statement> }* (10.1)
<data statement> ::= (11)
<declaration statement> (11.1)
| <definition statement> (11.2)
//pJﬁnitinn statement> ::= (7 2)
<synmode definition statement> (12.1)
| <newmode definition statement> (12.2)
| <synomym definition statement> (12.3)
<procedure definition statement> 12.4
2
| <process definition statement> (12.5)
| <signal definition statement> (12.6)
| <template> (12.7)
| <empty>; (12.8)

semantics: When a reach of a block is entered, all the lifetime-bound initializations of the locations created when
entering the block are performed. Subsequently, the reach-bound initializations in the block reach, the possibly dynamic
evaluations in the loc-identity declarations, the reach-bound initializations in the regions and the actions are performed in
the order they are textually specified.

ITU-T Rec. Z.200 (1999 E) 127

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

When a reach of a modulion is entered, the reach-bound initializations, the possibly dynamic evaluations in the loc-
identity declarations, the reach-bound initializations in the regions and the actions (if the modulion is a module) that are
in the modulion reach are performed in the order they are textually specified.

A data statement, action, module or region, is terminated either by completing it, or by terminating a handler appended to
it.

When a group G is to be terminated first all TASK and REGION locations (RTL), which depend on G (see 12.2.6), are
closed. The termination of G is finished when all those RTL are completed (see 11.6).

When a reach-bound initialization, loc-identity declaration, action, module, region, procedure or process is terminated,
execution is resumed as follows, depending on the statement or the kind of termination:

e if fhe statement is terminated by completing the execution of a handler, then the execution is resumed~with the
subsequent statement;

. otllerwise, if it is an action that implies a transfer of control, the execution is resumed with the statement defined for
thgt action (see 6.5, 6.6, 6.8 and 6.9);

* otherwise, if it is a procedure, control is returned to the calling point (see 10.4);

* otherwise, if it is a process, the execution of that process (or the program, if-it.is the outermost procegs) ends
(sde 11.1) and execution is (possibly) resumed with another process;

* otherwise control will be given to the subsequent statement.

static properties: Any reach is directly enclosed in zero or more groups:as follows:

e If the reach is the reach of a do action, begin-end block, procédure definition, process definition, then it is [directly
enflosed in the group in whose reach the do action, begin=end block, procedure definition or process definition,
regpectively, is placed, and only in that group.

» If the reach is the action statement list of a timing-action or timing handler, or one of the action statement ligts of an
if qction, case action or delay case action, then 1t4s directly enclosed in the group in whose reach the timing action,
tinjing handler, if action, case action or delay case action is placed, and only in that group.

. If the reach is the action statement list, or a buffer receive alternative, or signal receive alternative, or th¢ action
stdtement list following ELSE insa\receive buffer case action or receive signal case action, then it is [directly
englosed in the group in whose-reach the receive buffer case action or receive signal case action is placed, qnd only
in that group.

=

o Ifthe reach is the actiomnstatement list in an on-alternative or the action statement list following ELSE in a fhandler
which is not appended 0 a group, then it is directly enclosed in the group in whose reach the statement to which the
hapdler is appended-is placed, and only in that group.

e If the reach‘is\an on-alternative or action statement list after ELSE of a handler which is appended to a grofip, then
it is direétly enclosed in the group to which the handler is appended, and only in that group.

. If thefeach is a module region spec module or Spec region then it is directlv enclosed in the group in whose reach
it is placed, and also directly enclosed in the context directly in front of the module, region, spec module or spec
region, if any. This is the only case where a reach has more than one directly enclosing group.

e Ifthe reach is a context, then it is directly enclosed in the context directly in front of it. If there is no such context, it
has no directly enclosing group.

A reach has directly enclosing reaches that are the reaches of the directly enclosing groups. A statement has a unique
directly enclosing group, namely, the group in which the statement is placed. A reach is said to directly enclose a group
(reach) if and only if the reach is a directly enclosing reach of the group (reach).

A statement (reach) is said to be surrounded by a group if and only if either the group is the directly enclosing group of
the statement (reach) or a directly enclosing reach is surrounded by the group.

128 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

A reach is said to be entered when:

e Module reach: the module is executed as an action (e.g. the module is not said to be entered when a goto action
transfers control to a label name defined inside the module).

. Be

gin-end reach: the begin-end block is executed as an action.

* Region reach: the region is encountered (e.g. the region is not said to be entered when one of its critical procedures
is called).

* Procedure reach: the procedure is entered via a procedure call.

* Process reach: the process is activated via the evaluation of a start expression.

* Do reach: the do action is executed as an action after the evaluation of the expressions or locations in the control

pa

. By
va

. Or
e Ot

An acti
the acti

A reach
A defin
o iti
o iti
o it
an

std

otherwi

10.3

syntax:

semantiics: A begin-end block is an action, possibly containing local declarations and definitions. It determir]

visibilif

dynam

.

ffer-receive alternative reach, signal receive alternative reach: the alternative is executed on reception-of
ue or signal.

-alternative reach: the on-alternative is executed on the cause of an exception.

her block reaches: the action statement list is entered.

bn statement list is said to be entered when and only when its first action, if present, réceives control from
bn statement list.

is a quasi reach if it is the one of a spec module, spec region or context, otherwise it is a real reach.
ing occurrence is a quasi defining occurrence if:

s surrounded by a context and not by a module or region; or

s surrounded by a simple spec module or a simple spec region; or

s not surrounded by one of the above-mentioned groups and it is surrounded by a module spec or a reg
it is contained in a quasi declaration, a quasi procedure definition statement or a quasi process d«
tement,

e it is a real defining occurrence.

Begin-end blocks

<begin-end block> ::& (1)
BEGIN &bhegin-end body> END (1.1)

y of locally crédted names and the lifetimes of locally created locations (see 10.9 and 12.2).

¢ conditions: The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examp1es: see'15.73-15.90

h buffer

outside

on spec
bfinition

es both

104

syntax:

Procedure specifications and definitions

<procedure definition statement> ::= (1)
<defining occurrence> : <procedure definition>

[<handler>] [<simple name string> 1] ; (1.1)

| <generic procedure instantiation™> (1.2)

<procedure definition> ::= (2)

PROC ([<formal parameter list>]) [<result spec> |
[EXCEPTIONS (<exception list>) | <procedure attribute list> ;
<proc body> END (2.1)

ITU-T Rec. Z.200 (1999E)

129

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

<formal parameter list> ::= (3)
<formal parameter> { , <formal parameter> }* (3.1)
<formal parameter> ::= (4)
<defining occurrence list> <parameter spec> (4.1)
<procedure attribute list> ::= (5)
[<generality>] (5.1)
<generality> ::= (6)
GENERAL (6.1)
| SIMPLE (6.2)
| INLINE (6.3)
<guarded procedure signature statement> ::= %)
<defining occurrence> :
<guarded procedure signature > [<simple name string> | ; (7.1)
<guarded procedure signature > ::= (8)
PROC ([< parameter list>]) [< result spec>]
[EXCEPTIONS (<exception list>)] <guarded procedure attribute list>/JEND (8.1)
<guarded procedure definition statement> ::= “)
<defining occurrence> : <guarded procedure definition>
[[<handler>] [<simple name string> | ; (9.1)
<guarded procedure definition> ::= (10)

PROC ([<formal parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)] <guarded procedure attribute list> ;

<proc body> END (10.1)

<guarded procedure attribute list> ::= (11)

[GENERAL] (11.1)

| [SIMPLE] [<simple component procedure attribute list>] <assertion part> (11.2)

| [INLINE][<inline componént procedure attribute list> | (11.3)

<simple component procedure attribiite list> ::= (12)

<inline component procedure attribute list> (12.1)

| DESTR (12.2)

| INCOMPLETE (12.3)

| [REIMPLEMENT][FINAL] (12.4)

<inline componént,procedure attribute list> ::= (13)

CONSTR (13.1)

| JFINAL (13.2)

<assertion part> ::= (14)
[PRE (<boolean expression>)]

[POST (<boolean expression>) | (14.1)

derived syntax: A formal parameter, where defining occurrence list consists of more than one defining occurrence, is
derived from several formal parameter occurrences, separated by commas, one for each defining occurrence and each
with the same parameter spec. For example, i, j INT LOC is derived from i INT LOC, j INT LOC.

semantics: A procedure definition statement defines a (possibly) parameterized sequence of actions that may be called
from different places in the program. The procedure is terminated and control is returned to the calling point either by
executing a return action or by reaching the end of the proc body or by terminating a handler appended to the procedure
definition (falling through). Different degrees of complexity of procedures may be specified as follows:

a) simple procedures (SIMPLE) are procedures that cannot be manipulated dynamically. They are not treated as

values, i.e. they cannot be stored in a procedure location nor can they be passed as parameters to or returned as
result from a procedure call;

130 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

b) general procedures (GENERAL) do not have the restrictions of simple procedures and may be treated as procedure
values;

c) inline procedures (INLINE) have the same restrictions as simple procedures and they are not recursive. They have
the same semantics as normal procedures, but the compiler may insert the generated object code at the point of
invocation rather than generating code for actually calling the procedure.

Only simple and general procedures are recursive.

A guarded procedure definition statement defines a (possibly) parameterized sequence of actions that may be called from
different places in the program. The procedure is terminated and control is returned to the calling point either by
executing a return action or by reaching the end of the proc body or by terminating a handler appended to the procedure
definition (falling through).

When the procedure is defined in a moreta mode, it is called a component procedure. Different kinds of sianle and
inline gomponent procedures defined in moreta modes may be specified as follows:

a) a fonstr component procedure (CONSTR) is a constructor which can be used to initializé moreta I¢pcations
aufomatically when they are created statically or dynamically;

b) a destr component procedure (DESTR) is a destructor which can be used to finalize moréta locations when they are
deptroyed statically or dynamically;

¢) an|incomplete component procedure (INCOMPLETE) has only a signature butmo-body;

d a 1eimplement component procedure (REIMPLEMENT) which is given a niew body and possibly new assgrtions;
e) a ffnal component procedure (FINAL) is a procedure which cannot befeimplented in a derived moreta modg.

Differeft kinds of assertion part may be specified for simple component-procedures:

a) a pre assertion part (PRE) which is checked automaticallybefore the body of the corresponding proc¢dure is
exgcuted;

b) a post assertion part (POST) which is checked automatically after the body of the corresponding procedure has
begn executed and before the return to the callingpoint.

Only simple (except for component procedures with the attributes constr or destr or with public visibility in 4 region
mode) gnd general procedures are recursive:

A procgdure may return a value or it may-xeturn a location (indicated by the LOC attribute in the result spec).
The defining occurrence in front of'the procedure definition defines the name of the procedure.
paramg¢ter passing

There qre basically two.parameter passing mechanisms: the "pass by value" (IN, OUT and INOUT) and the '[pass by
location)" (LOC).

pass by value

In pass py_value parameter passing, a value is passed as a parameter to the procedure and stored in a local locatign of the
specified parameter mode. The effect is as if, at the beginning of the procedure call, the location declaration:

DCL <defining occurrence> <mode> := <actual parameter>;

were encountered for the defining occurrences of the formal parameter. However, the procedure is entered after the
actual parameters have been evaluated. Optionally, the keyword IN may be specified to indicate pass by value explicitly.

If the attribute INOUT is specified, the actual parameter value is obtained from a location and just before returning the
current value of the formal parameter is restored in the actual location.

The effect of OUT is the same as for INOUT with the exception that the initial value of the actual location is not copied

into the formal parameter location upon procedure entry; therefore, the formal parameter has an undefined initial value.
The store-back operation need not be performed if the procedure causes an exception at the calling point.

ITU-T Rec. Z.200 (1999 E) 131

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)
pass by location
In pass by location parameter passing, a (possibly dynamic mode) location is passed as a parameter to the procedure
body. Only referable locations can be passed in this way. The effect is as if at the entry point of the procedure the loc-
identity declaration statement:

DCL <defining occurrence> <mode>

LOC [DYNAMIC | := <actual parameter>

were encountered for the defining occurrences of the formal parameter. However, the procedure is entered after the
actual parameters have been evaluated.

If a valgeTs bpt:uiﬁt:d that TsTotafocation,atocation Luutaiuiug the bpcuiﬁcd vatue-wittbe illlp‘libiliy Treatedamy passed
at the foint of the call. The lifetime of the created location is the procedure call. The mode of the created.lodation is
dynamif if the value has a dynamic class.

result transmission

Both a yalue and a location may be returned from the procedure. In the first case, a value is speeified in any resulf action,
in the lptter case, a location (see 6.8). If the attribute NONREF is not given in the result spec, the location fust be
referaljle. The returned value or location is determined by the most recently executed result action before returnjng. If a
procedyre with a result spec returns without having executed a result action, the procedure returns an undefined yalue or
an undefined location. In this case the procedure call may not be used as a locatipn‘procedure call (see 4.2.11) por as a
value pfocedure call (see 5.2.13), but only as a call action (see 6.7).

static piroperties: A defining occurrence in a procedure definition statementdefines a procedure name.

A procedure name has a procedure definition attached that is the procedure definition in the statement in which the
procedpre name is defined.

A procgdure name has the following properties attached, as defined by its procedure definition:

-

e It has a list of parameter specs that are defined by‘the parameter spec occurrences in the formal paramgter list,
ea¢h parameter consisting of a mode and possibly-@ parameter attribute.

LI |

—

has possibly a result spec, consisting of‘@xmode and an optional result attribute.

LI |

-

has a possibly empty list of exception names, which are the names mentioned in exception list.

e It has a generality that is, if-generality is specified, either general or simple or inline, depending on Wwhether
GENERAL, SIMPLE or INLINE is specified; otherwise an implementation default specifies general or simple. If
thg procedure name is defined inside a block or a region, its generality is simple. If a procedure is defiped in a
mqreta mode and has public visibility, its generality is simple or inline.

* It has a recursivity=which is recursive. However, if the generality is inline or if the procedure name is |critical
(sde 11.2.1) the'\recursivity is non-recursive.

* A|compenent procedure has the generality inline if the attribute INLINE is specified. Otherwise it [has the
geherdlity SIMPLE by default.

A procedure name that is general is a general procedure name. A general procedure name has a procedure mode
attached, formed as:

PROC ([<parameter list>]) [<result spec> |

[EXCEPTIONS (<exception list>)]

where <result spec>, if present, and <exception list> are the same as in its procedure definition and parameter list is the
sequence of <parameter spec> occurrences in the formal parameter list, separated by commas.

A name defined in a defining occurrence list in the formal parameter is a location name if and only if the parameter

spec in the formal parameter does not contain the LOC attribute. If it does contain the LOC attribute, it is a loc-identity
name. Any such a location name or loc-identity name is referable.

132 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

A moreta mode component procedure of a moreta mode M has a complete postcondition CPM which is defined as
follows:

a) if M has no immediate base mode then CPM = post part;
b) if M has the immediate base mode B then CPM = CPB [post part, where CPB is the complete postcondition of B.

static conditions: If a procedure name is intra-regional (see 11.2.2) or is a public procedure of a moreta mode, its
procedure definition must not specify GENERAL.

If a procedure name is critical (see 11.2.1), its definition may not specify GENERAL.
If a simple component procedure has any assertion part, the name of the procedure must have public visibility.

If a simple or inline guarded component procedure has the attribute FINAL, the name of the procedure must not have
private visibility.

The defining occurrence of a constr component procedure must be the same as that of its attached moreta mode. A
constr fomponent procedure must not specify a result spec and must be non-recursive.

The defining occurrence of a destr component procedure must be the same as that of its attached moreta mode. |A destr
comportjent procedure must neither specify a formal parameter list nor a result spec and must b€ non-recursive.

If specified, the simple name string must be equal to the name string of the defining occurrence in front of the prpcedure
definiti¢n.

Only if|LOC is specified in the parameter spec or result spec may the mode in it have the non-value property.
All excg¢ption names mentioned in exception list must be different.

IfP1 arld P2 are component procedures or component processes then P I\matches P2 if and only if:
a) Plland P2 are of the same kind; and

b) Plfand P2 have the same simple name string; and

c) thg formal parameter lists of P1 and P2 are syntactically’and semantically equivalent; and

d) thg result specs of P1 and P2 are syntactically and.semantically equivalent.

If P is 4 component procedure or a component proeess then Pg corresponds to Pg if and only if:
a) Pp matches Pg; and
b) thg exception lists of Pg and Py are,syntactically and semantically equivalent; and

c) thq attribute lists of Pg and Pg are¢ syntactically and semantically equivalent.

Two prpcedures P1 and P2 cenform to each other if and only if:

a) thgy both have the.same number of parameters and the names of the modes of corresponding parameters corjform to
ea¢h other; and

b) (they both have the a result mode and the names of those result modes conform to each other or they both have no
reqult made).

examples?
1.4 add:
PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i+yj;
END add, (1.1)

put :
PROC(p RANGE(1:10)) PRE((p > 0) AND (p < 11));

eeey

END put; (10.1)

ITU-T Rec. Z.200 (1999 E) 133

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

10.5 Process specifications and definitions

syntax:
<process definition statement> ::= (1)
<defining occurrence> : <process definition>
[<handler>][<simple name string>] ; (1.1)
| <generic process instantiation> ; (1.2)
<process definition> ::= (2)
PROCESS ([<formal parameter list>]) <process body> END (2.1)

semantics: A process definition statement defines a possibly parameterized sequence of actions that may be started for
concurrent execution from different places in the program (see clause 11).

static [Jroperties: A defining occurrence in a process definition statement defines a process name.

A process name has the following property attached, as defined by its process definition:

e It has a list of parameter specs that are defined by the parameter spec occurrences in the formal paramgter list,
ea¢h parameter consisting of a mode and possibly a parameter attribute.

-

static donditions: If specified, the simple name string must be equal to the name string‘ofithe defining occurfence in
front of|the process definition.

A procegss definition statement must not be surrounded by a region or by a block“other than the imaginary oftermost
process|definition (see 10.8).

The patameter attributes in the formal parameter list must not be INOUT noér OUT.

Only if|LOC is specified in the parameter spec in a formal parameter~in the formal parameter list may the mqde in it
have th¢ non-value property.

examples:

14.13 PROCESS ();

wait:

PROC (x INT);

/*some wait action™®/

END wait;

DO FOR EVER;

wait(10 /* seconds */);
CONTINUYE operator_is_ready;
OD:

END 2.1)

10.6 Modules
syntax:

<module> ::= (1)
[<context list> | [<defining occurrence> : |
MODULE [BODY | <module body> END

[<handler>] [<simple name string> 1] ; (1.1)
| <remote modulion> (1.2)
| <generic module instantiation> (1.3)

semantics: A module is an action statement possibly containing local declarations and definitions. A module is a means
of restricting the visibility of name strings; it does not influence the lifetime of the locally declared locations.

134 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The detailed visibility rules for modules are given in 12.2.

static properties: A defining occurrence in a module defines a module name as well as a label name. The name has the
module (seen as a modulion, i.e. excluding the context list and defining occurrence, if any) attached.

A module is developed piecewisely if and only if a context list is specified.

A module is a module body if and only if BODY is specified.

static conditions: If specified, the simple name string must be equal to the name string of the defining occurrence.
A remote modulion in a module must refer to a module.

examples:

7.48 MODULE

SEIZE convert;

DCL n INT INIT:= 1979,

DCL rn CHARS (20) INIT:= (20)" ",
GRANT n,rn;

convert();

ASSERT rn = "MDCCCCLXXVIII"//(6)" ",

END (1.1)

10.7 Regions
syntax:

<region> ::= (1)
[<conmtext list>] [<defining occurrence> : |
REGION [BODY] <region body> END

[<handler>] [<simple name string> 1] ; (1.1)
| <remote modulion> (1.2)
| <generic region instantiation> (1.3)

semantjics: A region is a means of providing mutually exclusive access to its locally declared data objects|for the
concurtent executions of processes (see clause 11). It determines visibility of locally created names in the same way as a
module

static groperties: A defining occurrencéyin ‘a region defines a region name. It has the region (seen as a modulion, i.e.
excludipg the context list and defining'occurrence, if any) attached.

A regian is developed piecewisely 1f-and only if a context list is specified.
A regiopn is a region body if\and only if BODY is specified.

static cpnditions: If specified, the simple name string must be equal to the name string of the defining occurrencg.
A regiop must nogbe(surrounded by a block other than the imaginary outermost process definition.

A remoffe modulion in a region must refer to a region.

examp‘es: see 13.1-13.28

10.8 Program
syntax:

<program> ::= (1)
{ <module> | <spec module> | <region> | <spec region>

| <moreta declaration statement>

| <moreta synmode definition statement>

| <moreta newmode definition statement>

| <template>}+ (1.1)
semantics: A program consists of a list of program units (as given in the syntax rule) surrounded by an imaginary
outermost process definition.

ITU-T Rec. Z.200 (1999 E) 135

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

The definitions of the CHILL pre-defined names (see 111.2) and the implementation defined built-in routines and integer
modes are considered, for lifetime purposes, to be defined in the reach of the imaginary outermost process definition. For
their visibility, see 12.2.

10.9

Storage allocation and lifetime

The time during which a location or procedure exists within its program is its lifetime.

A location is created by a declaration or by the execution of a GETSTACK or an ALLOCATE built-in routine call.

The lifetime of a location declared in the reach of a block is the time during which control lies in that block or in a
procedure whose call originated from that block, unless it is declared with the attribute STATIC. The lifetime of a
location declared in the reach of a modulion is the same as if it were declared in the reach of the closest surrounding

block o

the reag
STATI
declara
activati

The 1lifd
terminal

The 1ifg
until th
TERM]

The 1if]
declara

The lifg

t}l\z lllUduli\Jll. T}lb lif\ztilllb Ufa luuatiuu d\,ulalbd Wlt}l t}l\z attu‘uutv STATIC iD t}l\z Al as lf lt \AAZ 4% d\z\.
h of the imaginary outermost process definition. This implies that for a location declaration with the
C storage allocation is made only once, namely, when starting the imaginary outermost process:”If]
ion appears inside a procedure definition or process definition, only one location will exist for.alllinvoca
hns.

time of a location created by executing a GETSTACK built-in routine call ends when the directly enclosir]
tes.

time of a location created by an ALLOCATE built-in routine call is the time starting from the ALLOCA
e time that the location cannot be accessed anymore by any CHILL program«The latter is always the g
VATE built-in routine is applied to an allocated reference value that refererices'the location.

btime of an access created in a loc-identity declaration is the dirgCtly enclosing block of the loc-
ion.

time of a procedure is the directly enclosing block of the proeedure definition.

lared in
ittribute

such a
tions or

g block

TE call
ase if a

identity

static properties: A location is said to be static if and only if it is"a'static mode location of one of the following Kinds:

e A
thg

e A
std

=

. A1

. At
an

. A
. A

10.10

Moduld
piecewi
the syn

Jocation name that is declared with the attribute STATIC or whose definition is not surrounded by a blo
n the imaginary outermost process definition.

tring element or string slice where the stringJocation is static and either the left element and right ele
rt element and slice size are constant.

array element where the array locationis static and the expression is constant.

array slice where the array location is static and either the lower element and upper element or the first
 slice size are constant.

tructure field where thestructure location is static.

ocation conversionwherte the location occurring in it is static.

Construetsfor piecewise programming

s and tegions are the elementary units (pieces) in which a complete CHILL program that is de

k other

nent, or

element

veloped
defines

selyccamibe subdivided. The text of such pieces is indicated by remote constructs (see 10.10.1). CHILL

by the r

10.10.1

syntax:

136

ax.and semantics of complete programs, in which all occurrences of remote pieces have been virtually tleplaced
£ d+ 4
Remote pieces
<remote modulion> ::= (1)
[<simple name string>:] REMOTE <piece designator> (1.1)
<remote spec> ::= (2)
[<simple name string> :] SPEC REMOTE <piece designator> ; 2.1)
<remote context> ::= (3)
CONTEXT REMOTE <piece designator>
[<comtext body>] FOR 3.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<context module> ::= (4)
CONTEXT MODULE REMOTE <piece designator> ; (4.1)

<piece designator> ::=)
<character string literal> 5.1)

| <text reference name> (5.2)

| <empiy> (5.3)
<remote program unit> ::= (6)
[<simple name string>:]| REMOTE <piece designator> (6.1)

derived syntax: The notation:

CONTEXT MODULE REMOTE <piece designator>

is deriv|

NOTE

semantiics: Remote modulions, remote specs, remote contexts, context modules, and remote‘program units are nj

represe
A piecd
o If

o If
tex

e If
de

A prog
replacif
piece d

A prog
CHILL
last occ

If the (
equival

Althoug
substitu

static ¢
remote
region

not a r¢

ed syntax for:
CONTEXT REMOTE <piece designator> FOR

MODULE SEIZE ALL; END;

This construct is redundant but can be used for consistence checking.

1t the source text of a program as a set of (interconnected) files.

designator refers in an implementation defined way to a description of a piece of CHILL source text, as f}
he piece designator is empty, the source text is retrieved from a place-détermined by the structure of the p

he piece designator contains a character string literal, the character string literal is used to retrieve thq
t.

he piece designator contains a text reference name, the.text reference name is interpreted in an implem|
fined way to retrieve the source text.

am with 1. remote modulions, 2. remote specs, 3~remote program units is equivalent to the program
g each 1. remote modulion, 2. remote spec, 3. remote program unit by the piece of CHILL text referred
psignator.

fam with remote contexts is equivalefit,to the program built by replacing each remote context by the |
text referred to by its piece designatorin which the context body has been virtually inserted immediately
urrence of context body in the context list referred to by the piece designator.

esignated piece is not avdilable as CHILL text, then the piece designator in it is considered to refg
ent piece of CHILL text which is introduced virtually.

h the semantics of-a* remote piece is defined in terms of replacement, CHILL does not imply any
tion.

pnditions;~Fhe piece designator in a 1. remote modulion, 2. remote spec, 3. remote context, 4. context m
program-unit must refer to a description of a piece of source text which is a terminal production of a 1. m
hat is‘\iot a remote modulion, 2. spec module or spec region that is not a remote spec, 3., 4. context list \
fnote context, 5. a program unit which is not remote.

heans to

bllows:
rogram.

source

Entation

built by
o by its

piece of
vfter the

T to an

textual

dule, 5.
bdule or
vhich is

When the source text referred to by the piece designator in a remote modulion starts with a defining occurrence, then the
remote modulion must start with a simple name string which is the name string of that defining occurrence.

When the source text referred to by the piece designator in a remote spec starts with a simple name string, then the
remote spec must start with the same simple name string.

When the source text referred to by the piece designator in a remote program unit starts with a simple name string, then
the first defining occurrence in the remote program unit must be the same simple name string.

examples:
25.9 stack: REMOTE "example 27 or 28"; (1.1)
25.9 "example 27 or 28" (5.1)

ITU-T Rec. Z.200 (1999E)

137

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

10.10.2 Spec modules, spec regions and contexts
syntax:
<spec module> ::= (1)
<simple spec module> (1.1)
| <module spec> (1.2)
| <remote spec> (1.3)
<simple spec module> ::= (2)
[<context list> | [<simple name string>:] SPEC MODULE
<spec module body> END [<simple name string>] ; (2.1)
<module spec> ::= (3)
[<context list> | <simple name string>: MODULE SPEC
<spec module body> END [<simple name string>] ; \H
<spec region> ::= 4)
<simple spec region> (4.1)
| <region spec> (4.2)
| <remote spec> (4.3)
<simple spec region> ::= (5)
[<context list> | [<simple name string>:] SPEC REGION
<spec region body> END [<simple name string> | ; (5.1)
<region spec> ::= (6)
[<conmtext list>] <simple name string> : REGION SPEC
<spec region body> END [<simple name string> | ; (6.1)
<context list> ::= (7)
<context> { <context> }* (7.1)
| <remote context> (7.2)
<context> ::= S8)
CONTEXT <context body> FOR: (8.1)

semantjics: Simple spec modules, simple spec regions and contexts are used to specify static properties of namg

may be

Simple
rules.

1. spec
piecewi
indicatg

region that is developed, piecewisely always has a context list in front of it).

For eag
defining
string (
body, 2

redundant but they can be used for pi¢cewise programming.

iame strings in spec modules andspec regions are not names, they are not bound, and they have no

modules, 2. spec regions in a real reach indicate the properties of one or more 1. modules, 2. regions
sely compiled and that“are considered to be enclosed in that reach. The texts of such 1. modules, 2. reg
d by occurrences. 0f pemote modulions. A context list indicates the surrounding reaches (note that a mod

h name string OP ! NS visible in the reach of a 1. module spec, 2. region spec and linked there to a
b occurtenee and that is granted into a real reach as NP ! NS, a (virtual) grant statement with the same o
P LS and new name string NP ! NS is considered to be introduced in the reach of the corresponding 1.
. tegion body.

s. They

isibility

that are
fons are
ule or a

quasi s
d name
module

static conditions: In a spec module or a spec region, the optional simple name string following END may only be
present if the optional simple name string before SPEC is present. When both are present, they must have equal name

strings.

A context which has no directly enclosing group may not contain visibility statements.

A real reach that contains a 1. spec module, 2. spec region must also contain at least a remote modulion and vice versa.

If a real r reach contains a 1. module which is a module body, 2. region which is a region body, then it must contain
also a 1. module spec, 2. region spec such that the simple name strings in front of them have equal name strings. The
1. module spec, 2. region spec is said to have a corresponding 1. module body, 2. region body.

A remote spec in a 1. spec module, 2. spec region must refer to a 1. spec module, 2. spec region.

138

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

A spec module or a spec region may not be surrounded by a block other than the imaginary outermost process definition.

examples:

23.2

letter _count:
SPEC MODULE
SEIZE max;
count: PROC (input ROW CHARS (max) IN,
output ARRAY ('4':'Z") INT OUT) END;

GRANT count;
—END-fetter—connt; =
10.10.3] Quasi statements
syntax:
<quasi data statement> ::= (1)
<quasi declaration statement> (1.1)
| <quasi definition statement> (1.2)
<quasi declaration statement> ::= (2)
DCL <quasi declaration> { , <quasi declaration> }* ; 2.1)
<quasi declaration> ::= (3)
<quasi location declaration> (3.1)
| <quasi loc-identity declaration> (3.2)
<quasi location declaration> ::= (4)
<defining occurrence list> <mode> (4.1)
<quasi loc-identity declaration> ::= (5)
<defining occurrence list> <mode>
LOC [NONREF | [DYNAMIC] (5.1)
<quasi definition statement> .::= (6)
<synmode definition statement> (6.1)
| <newmode definition stqtenent> (6.2)
| <synomym definition statement> (6.3)
| <quasi synonym definition statement> (6.4)
| <quasi procedure definition statement> (6.5)
| <quasi process definition statement> (6.6)
| <quasi sighal definition statement> (6.7)
| <signal definition statement> (6.8)
| <empty> (6.9)
<quasi synéuym definition statement> ::= (7)
SYN <quasi synonym definition> { , <quasi synonym definition> }* ; (7.1)
<quasi Synonym definition> ::= (8)
<defining occurrence list> { <mode> = | <constant value> | |
[<mode> | = <literal expression> } 8.1)
<quasi procedure definition statement> ::= 9)
<defining occurrence> : PROC ([<quasi formal parameter list>])
[<result spec>][EXCEPTIONS (<exception list>) |
<procedure attribute list> [END [<simple name string> 1] ; 9.1)
<quasi formal parameter list> ::= (10)
<quasi formal parameter> { , <quasi formal parameter> }* (10.1)
<quasi formal parameter> ::= (11)
<simple name string> { , <simple name string> }* <parameter spec> (11.1)
<quasi process definition statement> ::= (12)
<defining occurrence> : PROCESS ([<quasi formal parameter list>])
[END [<simple name string> 1] ; (12.1)

ITU-T Rec. Z.200

(1999 E)

139

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

<quasi signal definition statement> ::= (13)
SIGNAL <quasi signal definition> { , <quasi signal definition> }* ; (13.1)
<quasi signal definition> ::= (14)
<defining occurrence> [= (<mode> { , <mode> }*)][TO] (14.1)

semantics: Quasi statements are used in spec modules, spec regions and contexts to specify static properties of names.
Spec modules, spec regions and contexts may contain quasi statements and real statements. Quasi statements may be
redundant, but are used for piecewise programming.

An implementation that can not guarantee the equality of the values between quasi constant synonym names and the
corresponding real ones may disallow the indication of the constant value.

Note th

tin CHILL no gquasi defining occurrences exist for label names

static properties: Quasi statements are restricted forms of the corresponding statements, and have the\sanje static

propert
The nai

static ¢
conditi

A quas
spec m
definiti
10.10.4

Two de

If two §

The fol

140

If
my

qu
If

If
bo

If
no

Po|

If
ma

If

saie numberofimodes, and corresponding modes must be alike.

€sS.

ne defined by a defining occurrence in a quasi loc-identity declaration is referable if NONREF is not spdcified.

onditions: Quasi statements are restricted forms of the corresponding statements and are subject to thefir static

ns.

synonym definition statement or a quasi signal definition statement may only,b¢ directly enclosed in 4 simple
dule, simple spec region or context. A synonym definition statement or acsignal definition statement in|a quasi
n statement may only be directly enclosed in a module spec or region spet.

Matching between quasi defining occurrences and defining eccurrences

fining occurrences are said to match if they have identical sefantic categories and:

they are synonym names, then they must have the samg regionality and value, the root mode of theirf classes
st be alike, they must both have an M-value, M-derived, M-reference, null or all class, and if the one Wwhich is
hsi is literal, then so the other one must be.

hey are newmode names or synmode names;then their modes must be alike.

hey are location names or loc-identity dames, then they must have the same regionality, they both must be or
th not be referable, and their modes must be alike.

hey are procedure names, thenithey must have the same regionality and generality, they both must be|or both
be critical, they must satisfy)the same conditions of alikeness as procedure modes, and corresponding (by
sition) simple name strings nthe formal parameter list and quasi formal parameter list must be the same.

they are process names, then the parameters of their process definitions must satisfy the same condiftions of
tching and alikene$s-as the parameters of procedure names.

they are signaldiames, then they must both specify or both not specify TO, their lists of modes must Have the

tructure~todes are novelty bound in a reach R, then they must have the same set of visible field names in|R.

owing rules apply:
< Pr

If a name string in a reach that is not the reach of a spec module, spec region or context is bound to a quasi defining
occurrence, then it must also be bound to a defining occurrence which is not a quasi defining occurrence, and
further:

Let a name string be bound to a quasi defining occurrence QD and be bound also to a real defining
occurrence RD in reach R, then:

1) QD and RD must match as defined above; and

2) RD and QD must both be enclosed in an enclosed group of R or both not be enclosed in the group of R or,
if R is the reach of a module or region which is a module body or region body, then QD must be
enclosed in the group of the corresponding module spec or region spec and RD must be enclosed in the
group of R.

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

If a name string in a real reach R is bound to a quasi defining occurrence that is enclosed in the group of R

(i.e. surrounded by a spec modulion), then it must also be bound to a real defining occurrence

that is

surrounded by the group of a module or region that are indicated by a remote modulion directly enclosed in R
(informally, if the interface grants, so must the implementation). If the quasi defining occurrence is enclosed in

the group of a module spec or a region spec, then the real one must be enclosed in the group
corresponding modulion.

of the

For each name string in the reach Q of a spec module or spec region directly enclosed in a real reach R that is
bound to a defining occurrence not surrounded by Q, there must be an identical name string in the reach of a
module or region that is indicated by a remote modulion directly enclosed in R that is bound to the same

defining occurrence (informally, if the interface seizes, so must the implementation).

e If two name strings are bound to the same 1. real, 2. quasi defining occurrence in a reach, then both name strings

mu

st be bound to the same 1. quasi, 2. real defining occurrence, or both not be further bound.

e A

Le
bo|
md
my

10.11
Many 4
providg

definiti

syntax

Ieal novelty may not be novelty bound to two quasi novelties in any reach.

t a quasi novelty QN and a real novelty RN be novelty bound to each other in a reach R; then.RNvand (
h be enclosed in an enclosed group of R or both not be enclosed in the group of R, or if R\is the reg
dule or region which is a module body or region body, then RN must be enclosed in the*group of R
st be enclosed in the group of the corresponding module spec or region spec.

Genericity

lgorithms solve problems on similarly structured data items whose component modes are different. Gd
s a means to implement such algorithms as program schemes which ar¢ instantiated by substituting form

ns by actual ones.

<template> ::= (1)
<generic module template> (1.1)

| <generic region template> (1.2)

| <generic procedure template> (1.3)

| <generic process template> (1.4)

| <generic module mode template> (1.5)

| <generic region mode template> (1.6)

| <generic task mode template> (1.7)

| <generic interface mode template> (1.8)

| <remote program unit> (1.9)
<generic module template> ::= (2)

[<contextlist> | [<defining occurrence> : |
<generic part> MODULE [BODY | <module body> END
[shandler>] [<simple name string> 1 ; (2.1)

<genericyegion template> ::= (3)
[<context list> | [<defining occurrence> : |
<generic part> REGION [BODY] <region body> END

N must
ch of a
hnd QN

nericity
hl mode

[<handler>] [<simple name string> 1] ; (3.1)
<generic procedure template> ::= (4)

<defining occurrence> : <generic part> <procedure definition>

[<handler>][<simple name string> 1] ; (4.1)
<generic process template> ::=)

<defining occurrence> : <generic part> <process definition>

[<handler>][<simple name string> 1] ; (5.1)
<generic module mode template> ::= (6)

<generic part> <module mode specification> (6.1)
<generic region mode template> ::= (7)

<generic part> <region mode specification> (7.1)

ITU-T Rec. Z.200 (1999E)

141

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

142

<generic task mode template> ::= (8)
<generic part> <task mode specification> 8.1)
<generic interface mode template> ::= 9)
<generic part> <interface mode> 9.1)
<generic part> ::= (10)
GENERIC { <seize statement> }* <formal generic parameter list> (10.1)
<formal generic parameter list> ::= (11)
{ <formal generic parameter> }* (11.1)
<formal generic parameter> ::= (12)
SYN <formal generic synonym list> ; (12.1)
| _MODE <formal generic mode list> (122)
| PROC <formal generic procedure spec> ; (12:3)
<formal generic synonym list> ::= (13)
<formal generic synonym> { ,<formal generic synonym> }* (13.1)
<formal generic mode list> ::= (14)
<formal generic mode> { ,<formal generic mode> }* (14.1)
<formal generic synonym> ::= (15)
<defining occurrence list> =
{<mode>| ANY_DISCRETE | ANY_INT | ANY_REAL } (15.1)
<formal generic mode> ::= (16)
<defining occurrence list> = <formal generic mode indicdtion> (16.1)
<formal generic mode indication> ::= (17)
ANY (17.1)
| ANY_ASSIGN (17.2)
| ANY_DISCRETE (17.3)
| ANY_INT (17.4)
| ANY_REAL (17.5)
| <moreta mode name> (17.6)
<formal generic procedure spec> ::= (18)
<simple name string> ([<forinal parameter list>]) [<result spec>]
[EXCEPTIONS (<exception list>)] (18.1)
<generic module instantiation=>>:= (19)
<simple name string> : MODULE = NEW <generic module name>
{ <seize statement> } *
<actual generic parameter list> END [<simple name string> | ; (19.1)
<generic regiontinstantiation> ::= (20)
<simple name string> : REGION = NEW <generic region name>
{<seize statement> } *
<actual generic parameter list> END [<simple name string>] ; (20.1)
<géneric procedure instantiation> ::= (21)
<simple name string> : PROC = NEW <generic procedure name>
{ <seize statement> }*
<actual generic parameter list> END [<simple name string> | ; (21.1)
<generic process instantiation> :.:= (22)
<simple name string> : PROCESS = NEW <generic process name>
{ <seize statement> }*
<actual generic parameter list> END [<simple name string> | ; (22.1)
<generic moreta mode instantiation> ::= (23)
NEW <generic moreta mode name>
{ <seize statement> }*
<actual generic parameter list> END [<simple name string>] ; (23.1)
<actual generic parameter list> ::= (24)
<actual generic parameter> { <actual generic parameter> }* (24.1)

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

<actual generic parameter> ::= (25)
<synonym definition statement> (25.1)

| <symmode definition statement> (25.2)

| <newmode definition statement> (25.3)

| <actual generic procedure> (25.4)
<actual generic procedure> ::= (26)
PROC <defining occurrence list> = <procedure name> ; (26.1)

semantics: The word unit means either a module, a region, a procedure, a process, or a moreta mode.

A generic unit is a unit which contains a generic part.

A generic unit is a template from which nongeneric units may be obtained by a process called generic instantiation.

A gene
and the|
replace

static properties: The formal generic synonyms are characterized by two properties:

a) thg
b) thg

The forj
a) thg
b) thg

mode: formal prop:

act prop:
ANY_DISCRETE: formal prop:

act prop:
ANY_INT: formal prop:
act prop:
ANY_REAL: formal prop:
act prop:

ANY: formal prop:

actual prop:

ANY_ASSIGN: formal prop:

[ic unit may contain formal generic parameters. During generic instantiation a copy of the generic unit
formal generic parameters are replaced by the actual generic parameters throughout the whole vinit-" A
ment the generic part is deleted and thus a nongeneric unit is obtained.

properties which a formal generic parameter has inside the generic unit;

properties which a corresponding actual generic parameter must have to be accepted:

mal generic modes are characterized by two properties:
properties which a formalygeneric parameter has inside the generic unit;

properties which a-eorresponding actual generic parameter must have to be accepted:

properties of the given mode whieh must not have the
non-value property.

is made
fter this

value of the actual generie/parameter must be a value of the node.

operations available:%=, relational, PRED, SUCC, NUM, SI¥E.

value of the actualrgeneric parameter must be a value of a [discrete

mode.
ANY DISCRETE and +, —, *, /, mod, abs, rem.

value of the actual generic parameter must be a value of an|
mode.

operations available: ANY ASSIGN and relational, +, —, *, [.

integer

value of the actual generic parameter must be a value of a real

mode.

SIZE; cannot be used as the mode of a location or of a pai
(can be used as a referenced mode).

any mode acceptable.

operations available: :=, comparison, SIZE.

act-prop:
ANY_DISCRETE: formal prop:

act prop:
ANY_INT: formal prop:

act prop:
ANY_REAL: formal prop:

act prop:

moreta mode name: formal prop:

act prop:

| 4 £ 1
ITTUUC TITUStU })UDD\/D 1UTIIHAr lJlUP.

ameter;

operations available: :=, relational, PRED, SUCC, NUM, SIZE.

mode must posses formal prop.
ANY _ DISCRETE and +, —, *, /, mod, abs, rem.

mode must posses formal prop.

operations available: ANY _ASSIGN and relational, +, —, *, /.

mode must posses formal prop.
those of the mode.

same mode or any Successor.

ITU-T Rec. Z.200 (1999E)

143

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The formal generic procedures are characterized by two properties:

a) the properties which a formal generic parameter has inside the generic unit;

b) the properties which a corresponding actual generic parameter must have to be accepted:
formal prop: according to the given formal generic procedure spec.

act prop: the given formal generic procedure spec must be compatible with the class of the actual
generic parameter.

static conditions: For derivation involving generic moreta mode templates the following restrictions apply: if the base is
a template then any derived entity must also be a template. If the base is not a template a derived entity may be a
template.

In a ge neric instantiation there mnst be exactly one actual generi(‘ parameter for each formal generi(‘ parameter of the
generic|unit being instantiated.

The regtrictions on nesting of groups are given in the following table. It applies to plain groups, generie’ gropps and
generic|instantions.

inner
SO MopULE REGION | PROC PROCESS Module Region Task Interface
outer Mode Mode Mode Mode
group
Begip-End Yes No Yes No Yes No No Yes
PRIOC Yes No Yes No Yes No No Yes
PROLESS Yes No Yes No Yes No No Yes
MOIDULE Yes Yes Yes Yes Yes Yes Yes Yes
REGION Yes No Yes No Yes No No Yes
Modulp Mode No No Yes Yes No No No INo
Regionh Mode No No Yes No No No No INo
Task Mode No No Yes No No No No INo
Interfade Mode No No No No No No No INo
Program Yes Yes Yes No Yes Yes Yes Yes

The tablle is based on the following correspondence between templates and entities of CHILL. For a template in|the left
column|the restrictions of the corresponding entity in the right column apply:

generic module template procedure definition statement
generic region template region

generic procedure. template procedure definition statement
generic process template process definition statement
generic module-mode template procedure definition statement
genericaegion mode template region

generic-task mode template process definition statement

génceric interface mode template procedure definition statement

11 Concurrent execution

11.1 Processes, tasks, threads and their definitions

A thread is either a process or a task. A process is the sequential execution of a series of statements. It may be executed
concurrently with other threads. The behaviour of a process is described by a process definition (see 10.5), that describes
the objects local to a process and the series of action statements to be executed sequentially.

A process is created by the evaluation of a start expression (see 5.2.15). It becomes active (i.e. under execution) and is
considered to be executed concurrently with other threads. The created process is an activation of the definition indicated
by the process name of the process definition. An unspecified number of processes with the same definition may be
created and may be executed concurrently. Each process is uniquely identified by an instance value, yielded as the result

144 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

of the start expression or the evaluation of the THIS operator. The creation of a process causes the creation of its locally
declared locations, except those declared with the attribute STATIC (see 10.9), and of locally defined values and
procedures. The locally declared locations, values and procedures are said to have the same activation as the created
process to which they belong. The imaginary outermost process (see 10.8), which is the whole CHILL program under
execution, is considered to be created by a start expression executed by the system under whose control the program is
executing. At the creation of a process, its formal parameters, if present, denote the values and locations as delivered by
the corresponding actual parameters in the start expression.

A process is terminated by the execution of a stop action, by reaching the end of the process body or by terminating a
handler specified at the end of the process definition (falling through). If the imaginary outermost process executes a stop
action or falls through, the termination will be completed when and only when all other threads in the program are
terminated.

A task is a sequential execution of a series of statements. It may be executed concurrently with other threads. The
behavidur of a task is described by a task mode definition.

A task |s created as part of the creation and initialization of a task mode location (see 4.1). It is called to, ‘belong to this
task m¢de location. A task is terminated if its task mode location is destroyed (see 10.2).A threadjis; at the|CHILL
programhming level, always in one of two states: it is either active (i.e. under execution) or delayed (see 11J3). The
transitign from active to delayed is called the delaying of the thread; the transition from delayed fordctive is calledl the re-
activatipn of the thread.

11.2 Mutual exclusion and regions

11.2.1 General

Region$ (see 10.7) and region locations (see 3.15) are a means of providing threads with mutually exclusive |indirect
access fo locations declared inside the regions or region locations by ‘granted procedures. Static context copditions
(see 11]2.2) are made such that accesses by a thread other than the, imaginary outermost process to locations declared
inside q region can be made only by calling procedures that are defined inside the region or region mode and grgnted by
the regipn or region mode.

NOTE -{ The only situation when the locations declared inside a region or region location can be directly accessed by a thfead T is
when th¢ region or the region location is entered and its reach-beund initializations (if any) are performed by T. A procedurd name is
said to denote a critical procedure (and it is a critical procedure name) if it is defined inside a region and granted by the regiqn.

A component procedure name is said to denoté_a critical component procedure (and it is a critical comjponent
procedpre name) if it is defined inside a region\mode and granted by the region mode. A region is said to be frge if and
only if ¢ontrol lies in none of its critical procediires or in the region itself performing reach-bound initializations.

A regiop location is said to be free if and-only if control lies in none of its critical component procedures or in th¢ region
location) itself performing reach-bound.initializations. The region will be locked (to prevent concurrent execution) if:

e The region is entered (note(that because regions are not surrounded by a block, no concurrent attempts can he made
to pnter the region).

* A pritical procedure of the region is called.

* A process, delayed in the region, is re-activated.

e T

The rejion location will be locked (to prevent concurrent execution) if:

efegion location is entered.

* A critical component procedure of the region location is called.

* A thread, which is delayed in the region location, is re-activated.

The region will be released, becoming free again, if:

* The region is left after having its reach-bound initializations performed.
e A critical procedure returns.

e A critical procedure executes an action that causes the executing process to become delayed (see 11.3). In the case
of dynamically nested critical procedure calls, only the latest locked region will be released.

* A process executing a critical procedure terminates. In the case of dynamically nested critical procedure calls, all
the regions locked by the process will be released.

ITU-T Rec. Z.200 (1999E) 145

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

The region location will be released, becoming free again, if:

* The region location is left after having its reach-bound initializations performed.

e A critical component procedure returns.

e A critical component procedure executes an action that causes the executing thread to become delayed (see 11.3). In
the case of dynamically nested critical procedure calls, only the latest locked region will be released.

* A thread executing a critical component procedure terminates. In the case of dynamically nested critical component
procedure calls, all the region locations locked by the thread will be released. If, while the region is locked, a thread
attempts to call one of its critical procedures or a thread delayed in the region is re-activated, the thread is
suspended until the region is released (note that the thread remains active in the CHILL sense).

If, whill
delayed
thread
while aj
thread

When 4
criticall
selecteq

11.2.2

To allo
by ente

. thg
res

. int
e cr

To allo
critical
followi

. thg
re

* infra-regional componentprocedures are not general (see 10.4);

. cri

» critical compenent procedures are also not inline (see 3.15).

A locaf
which i1

in the region location is re-activated, the thread is suspended until the region location is released (ote

emains active in the CHILL sense).When a region is released and more than one thread has been’ sus
ftempting to call one of its critical procedures or to be re-activated in one of its critical proCedures, o1
ill be selected to lock the region according to an implementation defined scheduling algorithm)

region location is released and more than one thread has been suspended while attempting to call on
component procedures or to be re-activated in one of its critical component procedutes, only one thread
to lock the region location according to an implementation defined scheduling algorithm.

Regionality
v for checking statically that a location declared in a region can only(bg accessed by calling critical proce
regionality requirements mentioned in the appropriate sections (assignment action, procedure call, send
ult action, etc.);
ra-regional procedures are not general (see 10.4);
tical procedures are neither general nor recursive'(see 10.4).

v for checking statically that a component-location declared in a region location can only be accessed by
component procedures or by entering‘the region location for performing reach-bound initializatio
hg static context conditions are enforced:

regionality requirements mentipned in the appropriate sections (assignment action, procedure call, send
ult action, etc.);

tical component procedures are neither general nor recursive (see 10.4).

fon aridprocedure call have a regionality which is intra-regional or extra-regional. A value has a reg
5 intra-regional or extra-regional or nil. These properties are defined as follows:

e the region location is locked, a thread attempts to call one of its critical component procedures or,a| thread

at the
bended
1ly one

e of its
will be

Hures or

ing the region for performing reach-bound initializations, the following static context conditions are enforced:

action,

calling
ns, the

action,

onality

1) Location

A location is intra-regional if and only if any of the following conditions are fulfilled:

146

It is an access name that is either:

— alocation name declared textually inside a region or spec region and not defined in a formal parameter of

a critical procedure,

— a location name declared textually inside a region mode and not defined in a formal parameter of a

critical component procedure,

— a loc-identity name, where the location in its declaration is intra-regional or that is defined in a formal

parameter of an intra-regional procedure,

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

2)

3)

V4

A
ha
on

If

If

ocation which is not intra-regional is extra-regional.

lue

5 regionality nil. Otherwise it has the M-value class or the M-refefence class and it has a regionality de
the mode M as follows:

the value has the M-value class and M does not have_the’ referencing property then the regionality
othherwise the value is an operand-7 (and has the referencing property) or a conditional expression:

t is a primitive value then:

ISO/TEC 9496:2003(E)

— a loc-identity name, where the location in its declaration is intra-regional or that is defined in a formal

parameter of an intra-regional component procedure,

— a location enumeration name, where the array location or string location in the associated do action is

intra-regional,

— alocation do-with name, where the structure location in the associated do action is intra-regional.

It is a dereferenced bound reference, where the bound reference primitive value in it is intra-regional.
It is a dereferenced free reference, where the free reference primitive value in it is intra-regional.
It is a dereferenced row, where the row primitive value in it is intra-regional.

It is an array element or array slice, where the array location in it is intra-regional.

It is a structure field, where the structure location in it is intra-regional.

It is a location procedure call, where in the location procedure call a procedure name is specified
intra-regional.

It is a location built-in routine call, that the CHILL definition or the implementationspecifies to b
regional.

It is a location conversion, where the static mode location in it is intra-regional

alue has a regionality depending on its class. If it has the M-derived.¢lass or the all class or the null clas

If it is a location contents that is a location, then it is that of the location.
If it is a component location contents thatis a component location, then it is that of the component locaf
If it is a value name, then:

— ifitis a synonym name then'it is that of the constant value in its definition;
— ifitis a value do-with name then it is that of the structure primitive value in the associated do actio
— ifitis a value receive name then it is extra-regional.

If it is a tuple then'if one of the value occurrences in it has regionality not nil, then it is that of th
(it does not matter which choice is made, see 5.2.5 static conditions); otherwise it is nil.

If it is a yvqlue array element or a value array slice then it is that of the array primitive value in it.
If itiSavalue structure field then it is that of the structure primitive value in it.

If it is an expression conversion then it is that of the expression in it.

hich is

e intra-

5 then it
pending

F is nil;

ion.

ht value

If it is a value procedure call then it is that of the procedure call in it.

If it is a value component procedure call then it is that of the component procedure call in it.

If it is a value built-in routine call that the CHILL definition or the implementation specifies to be intra-

regional or extra-regional.

If it is a referenced location then it is that of the location in it.

If it is a conditional expression, then if one of the sub expression occurrences in it has regionality not nil, then it is
that of that sub expression (it does not matter which choice is made, see 5.3.2 static conditions); otherwise it is nil.

Procedure name

A procedure name is intra-regional if and only if it is defined inside a region or spec region and it is not critical
(i.e. not granted by the region). Otherwise it is extra-regional.

ITU-T Rec. Z.200 (1999E)

147

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

A component procedure name is intra-regional if and only if it is defined inside a region mode and it is not critical
(i.e. not granted by the region mode). Otherwise it is extra-regional.

4) Procedure call

A procedure call is intra-regional if it contains a procedure name which is intra-regional; otherwise it is extra-
regional.

A component procedure call is intra-regional if it contains a component procedure name which is intra-regional;
otherwise it is extra-regional.

A value is regionally safe for a non-terminal (used only for location, procedure call and procedure name) if and only if:
e the non-terminal is extra-regional and the value is not intra-regional;

* the non-terminal is intra-regional and the value is not extra-regional,

* thg non-terminal has regionality nil.

11.3 Delaying of a thread

An actije thread may become delayed by executing one of the following actions:
* delay action (see 6.16);

* delay case action (see 6.17);

* redeive signal case action (see 6.19.2);

* regeive buffer case action (see 6.19.3);

* send buffer action (see 6.18.3);

e call action to a component procedure of a region location (see 3.15,3)s

* call action to a component procedure of a task location in casefthere is not enough storage to perform step|c) 2) in
6.7 (see 3.15.4).

When 4 thread becomes delayed while its control lies within a\eritical procedure or a critical component procedure, the
associafed region is released. The dynamic context of thejthread is retained until it is re-activated. The thread then
attemptp to lock the region or the region location again, which may cause it to be suspended.

114 Re-activation of a thread

A delayed thread may become re-activated if'it’is time supervised and a time interrupt occurs (see clause 9). It may also
becomd re-activated if another thread executes one of the following actions:

e coptinue action (see 6.15);
» send signal action (see 6.18.2);
. seId buffer action (see-0:18.3);
* redeive buffer case,action (see 6.19.3);

* release of a region location (see 3.15.3);

» at the begifining of the execution of an externally called component procedure of a task location (see 3.15.4),

When { thread, while having locked a region or region location, re-activates another thread, it remains active, i.¢. it will

heathe reaion orrecionlocation-atthat noint
not relelset o a atthal point

11.5 Signal definition statements

syntax:
<signal definition statement> ::= (1)
SIGNAL <signal definition> { , <signal definition> }* ; (1.1)
<signal definition> ::= (2)
<defining occurrence> [= (<mode> { , <mode> }*) | [TO <process name> | 2.1)

semantics: A signal definition defines a composing and decomposing function for values to be transmitted between
processes. If a signal is sent, the specified list of values is transmitted. If no process is waiting for the signal in a receive
case action, the values are kept until a process receives the values.

148 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

static properties: A defining occurrence in a signal definition defines a signal name.

A signal name has the following properties:

It has an optional list of modes attached, that are the modes mentioned in the signal definition.

It has an optional process name attached that is the process name specified after TO.

static conditions: No mode in a signal definition may have the non-value property.

examples:

15.27

11.6

SIGNAL initiate = (INSTANCE),

terminate; (1.1)

Both a

procedyre of L.

After ¢
REGIO|

An RT]
at the ¢

A clos¢

onL

(s

A comj
destroy

12

12.1

12.1.

12.1.

Informial

1

1.]

A modg
a read-|

Definit

A modd

an

aq
wi

Completion of Region and Task locations

REGION location L and a TASK location L contain waiting queues which contain threads waiting-to e

N object the calling thread is also blocked.

L (REGION or TASK location) can be closed. If it is closed no calls are queued but instead an exception is
rresponding call action.

d RTL L is executed until all its queues are empty. Then L is put into the State empty. If all RTLs which|
e 12.2.6) are completed then L itself is completed.

n "

pleted RTL may be destroyed. If an RTL is in one of the stateS)"eopen”, "closed" or "empty" it may
ed.

General semantic properties

Mode rules
Properties of modes and classes

Read-only property

has the read-only property ifit is a read-only mode or contains a component or a sub-component, etc. \
pnly mode.

on

has the read-enly/property if and only if it is:

array mode~with an element mode that has the read-only property;

h animplicit read-only mode of a parameterized structure mode;

an

kecute a

eation L is open, i.e. calls which cannot be executed immediately are put into a waitingqueue of L. IIf L is a

caused

depend

not be

which is

tructure ' mode where at least one of its field modes has the read-only property, where the field is not a tag field

ead-only-mode
hy-rmode-

12.1.1.2 Parameterizable modes

Informal

A mode is parameterizable if it can be parameterized.

Definition

A mode is parameterizable if and only if it is:

as

an

tring mode;

array mode;

a parameterizable variant structure mode.

ITU-T Rec. Z.200 (1999E)

149

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

12.1.1.3 Referencing property
Informal

A mode has the referencing property if it is a reference mode or contains a component or a sub-component, etc. which
is a reference mode.

Definition

A mode has the referencing property if and only if it is:

e areference mode;

e an array mode with an element mode that has the referencing property;

e astructure mode where at least one of its field modes has the referencing property.

12.1.1.4 Tagged parameterized property
Informial

A mode has the tagged parameterized property if it is a tagged parameterized structurefimode or comptains a
comporjent or a sub-component etc. which is a tagged parameterized structure mode.

Definitjon

A modg has the tagged parameterized property if and only if it is:

e anjarray mode with an element mode which has the tagged parameterized property;

e a dtructure mode where at least one of its field modes has the tagged parameterized property;

¢ athgged parameterized structure mode.

12.1.1.5 Non-value property

Informial

A modg has the non-value property if no expression or primitive value denotation exists for the mode.
Definitjon

A modg has the non-value property if and only if itis:

e an|event mode, a buffer mode, an access\mode, an association mode or a text mode;

e an|array mode with an element mode'that has the non-value property;

e a dtructure mode where at leastone of its field modes has the non-value property;

e arnjot_assignable moreta mode;

e an|abstract moreta mode;

* arporeta mode where‘at least one of its components has the non-value property.

12.1.1.¢ Root mode

Any mq@de M 'has a root mode defined as:

e if M"i/not a discrete range mode nor a floating point range mode;

e the parent mode of M, if M is a discrete range mode or a floating point range mode.

Any M-value class or M-derived class has a root mode which is the root mode of M.

12.1.1.7 Resulting class

Given two compatible classes (see 12.1.2.16), where the first one is either the all class, an M-value class or an
M-derived class, where M and N are either a discrete mode, a floating point mode, a powerset mode or a string mode, the
resulting class is defined as:

* the resulting class of the M-value class and the N-value class is the R-value class;
¢ the resulting class of the M-value class and the N-derived class or the all class is the P-value class;

e the resulting class of the M-derived class and the N-derived class is the R-derived class;

150 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

e the resulting class of the M-derived class and the all class is the P-derived class;

e the resulting class of the all class and the all class is the all class,
where R is the resulting mode of M and N, and P is the root mode of M.

Given two similar modes M and N, the resulting mode R is defined as:

e if the root mode of one is a fixed string mode and the other one is a varying string mode, then it is the root mode of
the one (between M and N) whose root mode is a varying string mode;

e otherwise itis P.
Given a list C; of pairwise compatible classes (i = 1, ..., n), the resulting class of the list of classes is recursively

defined as the resulting class of the resulting class of the list C; (i=1,..., n — 1) and the class C,, if n > 1; otherwise as
the resylting class of C; and C;.

12.1.2 | Relations on modes and classes

12.1.2.1 General

In the fpllowing subclauses, the compatibility relations are defined between modes, between classes, and between modes
and clgsses. These relations are used throughout this Recommendation | Internationals Standard to definf static
conditigns.

The coI:patibility relations themselves are defined in terms of other relations which are/mainly used in this claus¢ for the
above-thentioned purpose.

12.1.2.2 Equivalence relations on modes

Informial

The following equivalence relations play a role in the formulation ¢f;the compatibility relations:

* Two modes are similar if they are of the same kind; i.e. they have the same hereditary properties.

* Two modes are v-equivalent (value-equivalent) if they-are similar and also have the same novelty.

e Two modes are equivalent if they are v-equivalent and also possible differences in value representation infstorage
or minimum storage size are taken into account:

e Two modes are l-equivalent (location-equivalent) if they are equivalent and also have the same repd-only
sp¢cification.

e Two modes are alike if they are/indistinguishable; i.e. if all operations that can be applied to objects of onf of the
mqdes can be applied to the other one as well, provided that novelty is not taken into account.

* Two modes are novelty bound if they are alike and have equal novelty specification.

Definition

In the fpllowing subelauses, the equivalence relations on modes are given in the form of a (partial) set of relatigns. The
full equivalence algorithms are obtained by taking the symmetric, reflexive and transitive closure of this set of r¢lations.
The m¢des mentioned in the relations may be virtually introduced or dynamic. In the latter case, the cpmplete
equivalgnce ehieck can only be performed at run time. Check failure of the dynamic part will result in the RANGEFAIL or
TAGFAILeXception (see appropriate subclauses).

Checking two recursive modes for any equivalence requires the checking of associated modes in the corresponding paths
of the set of recursive modes by which they are defined. Equivalence between the modes holds if no contradiction is
found. (As a consequence, a path of the checking algorithm stops successfully if two modes which have been compared
before, are compared.)

12.1.2.3 The relation similar

Two modes are similar if and only if:
e they are integer modes;

* they are floating point modes;

* they are boolean modes;

ITU-T Rec. Z.200 (1999 E) 151

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

e they are character modes;
e they are set modes such that:
1) they define the same number of values;

2) for each set element name defined by one mode there is a set element name defined by the other mode which
has the same name string and the same representation value;

3) they both are numbered set modes or both are unnumbered set modes;
» they are discrete range modes with similar parent modes;
» they are floating point range modes;

* one is a discrete range mode or a floating point range mode whose parent mode is similar to the other mode;

* thgy are powerset modes such that their member modes are equivalent;

e thgy are bound reference modes such that their referenced modes are equivalent;
* thqy are free reference modes;

* thgy are row modes such that their referenced origin modes are equivalent;

* thgy are procedure modes such that:

1)[they have the same number of parameter specs and corresponding (by position) parameter speps have
l-equivalent modes and the same parameter attributes, if present;

2)| they both have or both do not have a result spec. If present, the result\specs must have l-equivalent modes
and the same attributes, if present;

3)| they have the same list of exception names;

4)| they have the same recursivity;
* thgy are instance modes;
* thdy are event modes such that they both have no event.length or both have the same event length;
» thqy are buffer modes such that:

1)| they both have no buffer length or both havethe same buffer length;

~

2)| they have l-equivalent buffer element.modes;
* thgy are association modes;
* thgy are access modes such that:
1)| they both have no index mede or both have index modes which are equivalent;

2)| at least one has no“record mode, or both have record modes that are l-equivalent and that are both static
record modes or‘both dynamic record modes;

* thgy are text modes-such that:
1) they hate the same text length;

2)| theychave l-equivalent text record modes;

3)| “thiey have l-equivalent access modes;

e they are duration modes;
e they are absolute time modes;
e they are string modes such that their element modes are equivalent;
e they are array modes such that:
1) their index modes are v-equivalent;
2) their element modes are equivalent;
3) their element layouts are equivalent;

4) they have the same number of elements. This check is dynamic if one or both modes is (are) dynamic. Check
failure will result in the RANGEFAIL exception;

152 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

12.1.2.4_The relation v-equivalent
Two m¢des are v-equivalent if and only if they are similar and have the same novelty.
12.1.2.3 The relation equivalent

Two m¢des are equivalent if and only if they are v-equivalent and:

12.1.2.¢ The relation l-equivalent

ISO/TEC 9496:2003(E)

they are structure modes which are not parameterized structure modes such that:

1) in the strict syntax, they have the same number of fields and corresponding (by position) fields are equivalent;
2) if they are both parameterizable variant structure modes, their lists of classes must be compatible;

they are parameterized structure modes such that:

1) their origin variant structure modes are similar;

2) their corresponding (by position) values are the same. This check is dynamic if one or both modes is (are)
dynamic. Check failure will result in the TAGFAIL exception;

they are moreta modes whose mode names are synonymous.

if pne is a discrete range mode, the other must also be a discrete range mode and both upper bounds must be equal
anfl both lower bounds must be equal;

if pne is a floating point range mode, the other must also be a floating point tadnge mode and both upper pounds
myst be equal and both lower bounds must be equal and they must have the same precision;

if pne is a fixed string mode, the other one must also be a fixed string. fmode, and they must have the samg¢ string
length. This check is dynamic in the case that one or both modes isAare) dynamic. Check failure will resuft in the
RANGEFAIL exception;

if pne is a varying string mode, the other one must also be a varying string mode, and they must have the same
stifing length. This check is dynamic in the case that one er-both modes is (are) dynamic. Check failure willl result
in the RANGEFAIL exception.

Two medes are l-equivalent if and only if they are equivalent and if one is a read-only mode, the other must also be a

read-oply mode, and:

12.1.2.7 The relations equivalent and l-equivalent for fields

if fhey are bound reference modes, their referenced modes must be l-equivalent;
if fhey are row modes, their referenced origin modes must be l-equivalent;
if fhey are array modes, their element modes must be l-equivalent;

if they are structure modes)which are not parameterized structure modes, corresponding (by position) fields in the
strjct syntax must be I-equivalent; if they are parameterized structure modes, their origin variant structur¢ modes
myst be l-equivalent,

Two fidlds (both fields in the context of two given structure modes) are 1. equivalent, 2. l-equivalent if and only if both
fields afecfixed fields which are 1. equivalent, 2. l-equivalent or both are alternative fields which are 1. equivglent, 2.

l-equivhient:

The relations equivalent and l-equivalent are recursively defined for corresponding fixed fields, variant fields,
alternative fields and variant alternatives, respectively, in the following way:

Fixed fields and variant fields

1) Both fixed fields or variant fields must have equivalent field layout.
2) Both field modes must be 1. equivalent, 2. l-equivalent.
Alternative fields

1) Both alternative fields have tag lists or both have no fag lists. In the former case, the tag lists must have the
same number of tag field names and corresponding (by position) tag field names must denote corresponding
fixed fields.

ITU-T Rec. Z.200 (1999 E) 153

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

2)

3)

C 9496:2003(E)

Both must have the same number of variant alternatives and corresponding (by position) variant alternatives

must be 1. equivalent, 2. l-equivalent.

Both must have no ELSE specified or both must have ELSE specified. In the latter case, the same number of
variant fields must follow and corresponding (by position) variant fields must be 1. equivalent, 2.

l-equivalent.

. Variant alternatives

1)

2)

Both variant alternatives must have the same number of case label lists and corresponding (by position) case

label lists must either be both irrelevant, or both define the same set of values.

Both variant alternatives must have the same number of variant fields and corresponding (by position)
fields must be 1. equivalent, 2. l-equivalent.

variant

12.1.2.§

In ther

and tha

Subclad
e Fi
Tw

po

e Fl
™
in
fo

o Pd

A
oc

12.1.2.4

Two m
have th

. thg

e thg

The relation equivalent for layout
st of the subclause, it will be assumed that each pos is of the form:
POS (<number> , <start bit> , <length>)
each step is of the form:
STEP (<pos> , <step size>)
se 3.13.5 gives the appropriate rules to bring pos or step in the required, form.

bld layout

o field layouts are equivalent if they are both NOPACK, or both PACK, or both pos. In the latter case
k must be equivalent to the other one (see below).

bment layout

o element layouts are equivalent if they are both NOPACK, both PACK, or both szep. In the latter case
the one step must be equivalent to the pos in the other one (see below) and step size must deliver the sam
the two element layouts.

pos is equivalent to another posnif-‘and only if both word occurrences deliver the same value, both |
burrences deliver the same valuéyand both length occurrences deliver the same value.

The relation alike

des are alike if and-Only if they both are or both are not read-only modes and they both have novelty nil
b same novelty-and:

y are integes modes;

y are boolean modes;

* th

the one

the pos
E values

tart bit

or both

vy are character modes:

e they are similar set modes;

e they are discrete range modes with equal upper bounds and equal lower bounds;

¢ they are floating point range modes with equal upper bounds, equal lower bounds and equal precision;

* they are powerset modes such that their member modes are alike;

e they are bound reference modes such that their referenced modes are alike;

e they are free reference modes;

e they are row modes such that their referenced origin modes are alike;

154

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

e they are procedure modes such that:

1) they have the same number of parameter specs and corresponding (by position) parameter specs have alike
modes and the same parameter attributes, if present;

2) they both have or both do not have a result spec. If present, the result specs must have alike modes and the
same attributes, if present;

3) they have the same list of exception names;
4) they have the same recursivity;
e they are instance modes;

» they are event modes such that they both have no event length or both have the same event length;

* thqy are buffer modes such that:
1)| they both have no buffer length or both have the same buffer length;
2)| they have buffer element modes which are alike;

* thqy are association modes;

» thqy are access modes such that:
1)| they both have no index mode or both have index modes that are alike;

2)| at least one has no record mode or both have record modes that are alike and that are both static|record
modes or both dynamic record modes;

* thdy are text modes such that:
1)| they have the same text length,;
2)| their text record modes are alike;
3)| their access modes are alike;
e thdy are duration modes;
* thgy are absolute time modes;
* thgy are string modes such that:
1)| their element modes are alike;
2)| they have the same string length;
3)| they both are fixed string'modes or both are varying string modes;
* thgy are array modes such-that:
1)| their index modes.are alike;
2)| their element.modes are alike;
3)| their element layouts are equivalent;

4)| theythave the same number of elements;

o thd

1) in the strict syntax they have the same number of fields and corresponding (by position) fields are alike;
2) if they are both parameterizable variant structure modes, their lists of classes must be compatible;

» they are parameterized structure modes such that:
1) their origin variant structure modes are alike;

2) their corresponding (by position) values are the same.

12.1.2.10 The relation alike for fields

Two fields (both fields in the context of two given structure modes) are alike if and only if both fields are fixed fields
which are alike or both are alternative fields which are alike.

ITU-T Rec. Z.200 (1999 E) 155

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

The relation alike is recursively defined for corresponding fixed fields, variant fields, alternative fields and variant
alternatives, respectively, in the following way:

Fixed fields and variant fields

1) Both fixed fields or variant fields must have equivalent field layout.
2) Both field modes must be alike.
3) Both fixed fields or variant fields must have the same name string attached.
e Alternative fields
1) Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists must have the
same number of tag field names and corresponding (by position) tag field names must denote corresponding
fixed fields
2)| Both must have the same number of variant alternatives and corresponding (by position) variant alteynatives
must be alike.
3)| Both must have no ELSE specified or both must have ELSE specified. In the latter case,(the’same number of
variant fields must follow and corresponding (by position) variant fields must be alike.
* Variant alternatives
1)| Both variant alternatives must have the same number of case label lists and eerresponding (by positign) case
label lists must either be both irrelevant, or both define the same set of valugs.
2)| Both variant alternatives must have the same number of variant fields and corresponding (by position)| variant
fields must be alike.
12.1.2.11 The relation novelty bound
Informial
In a pr¢gram, each quasi newmode must represent at most one.real newmode. This is established as follows:|when a

name s
novelty

Definit

The rel
real an

156

ring is bound to both a real and a quasi defining ocetirrence all the newmodes involved are paired. The
bound is then established between novelties.

on

htion novelty paired applies between two modes and a reach. For each name string bound in a reach R t
| a quasi defining occurrence:

if
if

if
in

if
if

hey are synonym names, then/the:root modes of their classes are novelty paired in R;
hey are location or loc-identity names, then their location modes are novelty paired in R;

hey are procedure names, then the modes of the parameter specs and result spec, if present, are novelty
D -

hey are process names, then the modes of the parameter specs are novelty paired in R;

hey are signal names, then the modes in the list of modes are novelty paired in R.

relation

b both a

paired

if they are bound reference modes, their referenced modes are novelty paired in R;

if they are row modes, their referenced origin modes are novelty paired in R;

R;

if they are buffer modes, their buffer element modes are novelty paired in R;

if they are procedure modes, the modes of their parameter specs and result spec, if present, are novelty paired in

if they are access modes, their index modes, if present, and record modes, if present, are novelty paired in R;

if they are text modes, their index modes, if present, are novelty paired in R;

if they are array modes, their index modes and element modes are novelty paired in R;

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

e if they are parameterized structure modes, their origin variant structure modes are novelty paired in R;

* if they are parameterizable variant structure modes, their field modes and the modes of the classes in their list of
classes are novelty paired in R;

e otherwise if they are structure modes, their field modes are novelty paired in R.

If two modes are novelty paired in a reach R and their novelties are not equal, then the real and quasi novelties of the
modes are novelty bound to each other in R.

Two novelties are considered the same if they are:
e the same real novelty, or

e areal novelty and a quasi novelty that are novelty bound.

12.1.2.12 The relation read-compatible
Informial

The relation read-compatible is relevant for equivalent modes. A mode M is said to be read-compatible with|a mode
N if it dr its possible (sub-)components have equal or more restrictive read-only specifications.and, if they are r¢ference
modes, [refer to I-equivalent locations. This relation is therefore non-symmetric.

Examplle:
READ |REF READ CHAR is read-compatible with REF READ CHAR
Definitjon

A modg M is said to be read-compatible with a mode N (a non-symimetric relation) if and only if M angl N are
equivalent and, if N is a read-only mode, then M must also be a read-only mode and further:

e if M and N are bound reference modes, the referenced mode'6f M must be l-equivalent with the referencgd mode
of N;

* if M and N are row modes, the referenced origin mode of M must be l-equivalent with the referenced origin
m@de of N;

e if M and N are array modes, the element modé-of M must be read-compatible with the element mode of N

e if M and N are structure modes which ate niot parameterized structure modes, any field mode of M must e read-
compatible with the corresponding, field mode of N. If M and N are parameterized structure modes, th¢ origin
vayiant structure mode of M mustbe\read-compatible with the origin variant structure mode of N.

12.1.2.13 The relations dynamic equivalent and read-compatible
Informial

The relptions 1. dynamie equivalent, 2. dynamic read-compatible, are relevant only for modes that can be dynamic,
i.e. stripg, array and-variant structure modes. A parameterizable mode M is said to be 1. dynamic equivalent, 2.
dynamjc read-compatible with a (possibly dynamic) mode N, if there exists a dynamically parameterized versipn of M
which if 1. equivalent, 2. read-compatible with N.

Definitjon

A mode M is 1. dynamic equivalent to a mode N, 2. dynamic read-compatible with a mode N (a non-symmetric
relation) if and only if one of the following holds:

* M and N are string modes such that M(p) is 1. equivalent, 2. read-compatible with N, where p is the (possibly
dynamic) length of N. The value p must not be greater than the string length of M. This check is dynamic if N is a
dynamic mode. Check failure will result in a RANGEFAIL exception;

* M and N are array modes such that M(p) is 1. equivalent, 2. read-compatible with N, where p is such that NUM
(p) — LOWER (M) + 1 is the (possibly dynamic) number of elements of N. The value p must not be greater than the
upper bound of M. This check is dynamic if N is a dynamic mode. Check failure will result in a RANGEFAIL
exception;

e Mis a parameterizable variant structure mode and N is a parameterized structure mode such that M(py, ..., p,) is
1. equivalent, 2. read-compatible with N, where py, ..., p,, denote the list of values of N.

ITU-T Rec. Z.200 (1999 E) 157

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

12.1.2.14 The relation restrictable

Informal

The relation restrictable is relevant for equivalent modes with the referencing property. A mode M is said to be
restrictable to a mode N if it or its possible (sub-)components refer to locations with equal or more restrictive read-only
specification than those referenced by N. This relation is therefore non-symmetric.

Example:

REF READ /NT is restrictable to REF INT
STRUCT (P REF READ BOOL) is restrictable to STRUCT (Q REF BOOL)

Definition

A modg¢ M is restrictable to a mode N (a non-symmetric relation) if and only if M and N are equivalent and farther:

12.1.2.15 Compatibility between a mode and a class

12.1.2.16 Compatibility between classes

158

if M and N are bound reference modes, the referenced mode of M must be read-compatible with the ref¢renced
mqdde of N;

if M and N are row modes, the referenced origin mode of M must be read-compatible with thé-referenced origin
mgde of N;

if M and N are array modes, the element mode of M must be restrictable to the elemefit mode of N;

if M and N are structure modes, each field mode of M must be restrictable to the corresponding field mode pf N.

A1ly mode M is compatible with the all class.

A [mode M is compatible with the null class if and only if M is 4 reference mode or a procedure mode or an
indtance mode.

A mode M is compatible with the N-reference class if and ofily if M is a reference mode and one of the following
copditions is fulfilled:

1)| N is a static non-moreta mode and M is a bound @eference mode whose referenced mode is read-conppatible
with N;

2)| N is a static moreta mode and M is a bound teference mode REF MM and MM and N are on the same phath;
3)| N is a static mode and M is a free reférenice mode;

4)[M is a row mode whose referencéd origin mode is dynamic read-compatible with N.
A mode M is compatible with thie N-derived class if and only if M and N are similar.

A mmode M is compatible with the N-value class if and only if one of the following holds:

1)[if M does not have.the' referencing property, M and N must be v-equivalent;

2)| if M does have thereferencing property, M must be restrictable to N.

Aty class_is compatible with itself.

THeall class is compatible with any other class.

The null class is compatible with any M-reference class.

The null class is compatible with the M-derived class or M-value class if and only if M is a reference mode,
procedure mode or instance mode.

The M-reference class is compatible with the N-reference class if and only if M and N are equivalent. If M and/or
N is (are) a dynamic mode, the dynamic part of the equivalence check is ignored, i.e. no exceptions can occur.

The M-reference class is compatible with the N-value class if and only if N is a reference mode and one of the
following conditions is fulfilled:

1) Mis a static mode and N is a bound reference mode whose referenced mode is equivalent to M.
2) Mis a static mode and N is a free reference mode.

3) Nisarow mode whose referenced origin mode is dynamic equivalent with M.

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

e The M-derived class is compatible with the N-derived class or N-value class if and only if M and N are similar.
* The M-value class is compatible with the N-value class if and only if M and N are v-equivalent.

Two lists of classes are compatible if and only if both lists have the same number of classes and corresponding (by
position) classes are compatible.

12.1.2.17 Conformance of mode names

Two mode names A and B conform to each other if and only if:

. either they both denote modes of the kind "REF MM", where MM is a moreta mode, and A and B are on the same
path;

e orAsynB.

12.1.3 | Definitions for moreta modes

If M is h moreta mode, then:

Mg = the specification part of M (also the set of components in this part);
Mg = the body part of M (also the set of components in this part);
M, = the set of public components of Mg defined directly in Mg;
Mp, = the set of all public components of Mg (including the inherit€d ones);
M, = the set of internal components of Mg;
My = the set of all internal components of Mg (including thé inherited ones);
Mp = the set of private components of Mg;
Mps = the set of all private components of Mg (including the inherited ones);
Mcep = the set of constructors and destructors of*"Msg;
M,y = the invariant of Mg;
Mo = the set of components (logically).contained in a location of mode M.

If P is component procedure of a moreta mode, then:

PS = the signature part of P;
PD = the (complete) definition of P;
PPre = the precondition of P;
PPost = the postcondition of P;
PE = the set of exceptions specified in PS.

If X is 4 procedure or a moretaimode, then:

attr(X, A) = X contains the attribute A: e.g. attr(P, INLINE);
prop(X, P) {= X has the property P: e.g. prop(P, assignable);
GRANTed” = explicitly exported;
granted = GRANTed UOimplicitly exported.

12.1.3.1Qualifted mames of components of moreta modes and moreta focattoms

If M is the simple name string of a moreta mode, L is the simple name string of a moreta location, and C is the simple
name of a component of M or of a public component of L then the name M.C or L.C can be used as a unique name for C
in order to distinguish C from components with the same simple name string. If necessary the qualified name is assumed.

12.1.3.2 Successor and predecessor relations for moreta mode names

A moreta mode name DM is a direct successor (dsucc) of a moreta mode name BM if and only if there exist moreta
mode names D and B: (B syn BM) (D syn DM) U(B is mentioned in the inheritance clause of D).

A moreta mode name DM is a successor (succ) of a moreta mode name BM if and only if either DM syn BM or (LMM:
(DM succ MM) (MM dsucc BM)).

The relation "predecessor” is the inverse of "successor".

ITU-T Rec. Z.200 (1999 E) 159

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

Two moreta mode names A and B are on the same path if and only if (A succ B) [J(B succ A).

These relations hold isomorphically for modes of the kind "REF MM", where MM is a moreta mode.

12.1.3.3 Matching between procedure signatures and procedure definitions

A guarded procedure signature S matches a guarded procedure definition D if and only if:
S.<parameter list> matches D.<formal parameter list> [
S.<result spec> and D.<result spec> differ at most in the occurrence of RESULT [J

S.<exception list> = D.<exception list> [

S.fguarded-procedurcattributehst—D—<guardedprocedurcattributetist
A pararpeter list P matches a formal parameter list F with strict syntax F' if and only if:
[P|{= [F"| T

all corrgsponding elements of P and F' have the same mode and the same parameter attributes.

12.2 Visibility and name binding

The deffinition of visibility and name binding is based on the following terminology
* name string: denotes a terminal string that has attached a canonical name string (see 2.7) and visibility propgrties;
* name: denotes a simple name string associated with the defining occu¥rence that has created it (see 10.1);
* name: denotes an applied occurrence of a name (with a possibly prefixed name string).

12.2.1 | Degrees of visibility

The birlding rules are based on the visibility of name stkings in the reaches of a program. Within a reach, eagh name

string has one of the following degrees of visibility:

Table)1/Z.200 — Degrees of visibility

Visibility Properties (informal)
directly visible Name string is visible by creation, granting or seizing or inheritance from
spec to body
indirectly visible Name string is predefined or inherited via block nesting
publicly visible Name string is name of a public component of a moreta mode and is used

in a moreta component name, or name string is name of a component of a
moreta mode M and is used in a moreta component name which occurs
inside M or any successor of M

privately visible Name string is name of a guarded procedure definition statement P
contained 1n a moreta mode body B and the moreta mode specification of
B does not contain a corresponding guarded procedure signature statement

invisible Name string may not be applied

A name string is said to be visible in a reach if it is either directly visible or indirectly visible in that reach. Otherwise
the name string is said to be invisible in that reach. The program structuring statements and visibility statements
determine uniquely to which visibility class each name string belongs.

When a name string is visible in a reach, it can be directly linked to another name string in another reach, or directly

linked to a defining occurrence in the program. The rules for direct linkage are in 12.2.3. Notice that any application of
a rule introduces a new direct linkage for a name string.

160 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

Based on direct linkage, the notion of (not necessarily direct) linkage is defined as follows:

A name string N1, visible in reach R, is said to be linked to name string Ny in reach Ry or to defining occurrence D, if
and only if one of the following conditions holds:

Nj in R; is directly linked to N, in R, or to D. However, if N; is directly linked to more than one defining
occurrence in Ry, then all but one of these defining occurrences are superfluous, and Ny is linked to an arbitrary
one of them in R;. This does not apply if N; is the name string of a simple guarded procedure signature statement in
a moreta mode specification.

Nj in Ry is directly linked to some N in some R, and N in R is linked to N, in R or to D.

12.2.2 Visibility conditions and name binding

In eachjreach of a program, the following conditions must be satisfied:

If p name string is visible in a reach and has more than one direct linkage, then it must be linked toyexa¢tly one
reql defining occurrence and one quasi defining occurrence, or to exactly one real defining occurrence in g simple
guhrded procedure signature statement in a mode M which is not an interface mode and exactly,ene real gefining
ocfurrence in a corresponding simple guarded procedure definition statement and possibly \several real {efining
octurrences in a simple guarded procedure signature statement in one or more interface modes which gre base
mqdes of M, or to possibly several real defining occurrences in a simple guarded procedutre signature statgment in
ong or more interface modes which are base modes of a moreta mode M and where\the name string has njo direct
linkage in M.

A namd string NS, visible in reach R, is said to be bound in R to several definingoccurrences according to the fgllowing

rules:

static cpndition: The name string attached to ach name directly enclosed in a reach must be bound in that reach

If NS is visible in R, NS is bound to the defining occurrences to which'it is linked in R (as a visible name|string).
If |t is bound both to a quasi defining occurrence and a real defining occurrence, then the quasi one is reflundant
anfl does not participate further to visibility and name binding (i-e. it is not seized, granted nor inherited)} If it is
linked to exactly one real defining occurrence in a simple.guarded procedure signature statement in a thode M
which is not an interface mode and to exactly one real defining occurrence in a corresponding simple puarded
procedure definition statement and to possibly several real defining occurrences in a simple guarded prpcedure
signature statement in one or more interface modes which are base modes of M then it is bound to the occurfence in
M

Otherwise NS is not bound in R.

binding of names: A name N with attaghed name string NS in a reach R is bound to the defining occurrences tp which

NS is bpund in R.
12.2.3 | Visibility in reaches

12.2.3.1 General

A namd string is divectly visible in a reach according to the following rules:

the¢ name\string is seized into the reach (see 12.2.3.5);

tha name string is granted into the reach (see 12.2.3 4):

there is a defining occurrence with that name string in the reach. In that case, the name string in the reach is
directly linked to the defining occurrence. (Note that the name string may be directly linked to several defining
occurrences in the reach);

inside a constructor or destructor CD of a moreta mode M, the name string of M is not hidden by the defining
occurrence of the same name string in the definition of CD (but it may still be hidden by other defining occurrences
of the same name string);

at a place inside a constructor or destructor CD of a moreta mode M, where the name string S of M is not hidden, S
denotes either M or CD depending on the context;

the reach is a 1. module body, 2. region body and the name string is directly visible in the reach of a corresponding
1. module spec, 2. region spec. The name string is directly linked to the name string in the corresponding reach.

ITU-T Rec. Z.200 (1999 E) 161

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

A name string which is not directly visible in a reach is indirectly visible in it according to the following rules:

* The reach is a block, and the name string is visible in the directly enclosing reach. The name string is said to be
inherited by the block, and is directly linked to the same name string in the directly enclosing reach.

* The reach is not a block in which the name string is inherited and the name string is a language (see II1.2) or
implementation defined name string. The name string is considered to be directly linked to a defining occurrence
in the reach of the imaginary outermost process definition for its predefined meaning.

12.2.3.2 Visibility statements

syntax:
<visibility statement> ::=)
oTant statement 1.1
| <seize statement> A.2)

semantjics: Visibility statements are only allowed in modulion reaches and moreta mode reaches; *and confrol the
visibility of the name strings mentioned in them.

static fJroperties: A visibility statement has one or two origin reaches (see 10.2) and one or two destination [reaches
attachedl, defined as follows:

» If |the visibility statement is a seize statement, its destination reach is the reach directly enclosing the seize
stdtement, and its origin reaches are the reaches directly enclosing that reach.

o If the visibility statement is a grant statement, then its origin reach 4s the reach directly enclosing the grant
stdtement, and its destination reaches are the reaches directly enclosing that reach.

R

o If the visibility statement is a grant statement in a moreta modé.specification, then its origin reach is tHe reach
difectly enclosing the grant statement, and its destination reaches ate not the reaches directly enclosing that feach.

12.2.3.3 Prefix rename clause

syntax

<prefix rename clause> ::= (1)
(<old prefix> —> <new prefix>) | <postfix> (1.1)

<old prefix> ::= 2)
<prefix> (2.1)

| <empty> 2.2)

<new prefix> ::= 3)
<prefix (3.1

| <empty> 3.2)
<postfix>_ 1< 4)
<seize postfix> { , <seize postfix> }* (4.1)

[<grant postfix> { , <grant postfix> }* (4.2)

s¢fix) is

as, with

derived syntax: A prefix rename
derivedlsymtax—for-several pre
the same old prefix and new prefix.

For example:
GRANT p—>¢q)!a,b;
is derived syntax for
GRANT p—>¢q)!a,(p—>q)!b;
semantics: Prefix rename clauses are used in visibility statements to express change of prefix in prefixed name strings

that are granted or seized. (Since prefix rename clauses can be used without prefix changes — when both the old prefix
and the new prefix are empty — they are taken as the semantic base for visibility statements.)

162 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

static properties: A prefix rename clause has one or two origin reaches attached, which are the origin reaches of the
visibility statement in which it is written.

A prefix rename clause has one or two destination reaches attached, which are the destination reaches of the visibility
statement in which it is written.

A postfix has a set of name strings attached, which is the set of name strings attached to its seize postfix or the set of
name strings attached to its grant postfix. These name strings are the postfix name strings of the prefix rename clause.

A prefix rename clause has a set of old name strings and a set of new name strings attached. Each postfix name string
attached to the prefix rename clause gives both an old name string and a new name string attached to the prefix rename
clause, as follows: the new name string is obtained by prefixing the postfix name string with the new prefix; the old
name string is obtained by prefixing the postfix name string with the old prefix.

When g new name string and an old name string are obtained from the same postfix name string, the old name tring is
said to be the source of the new name string.

visibility rules: The new name strings attached to a prefix rename clause are visible in their destination réaches|and are
directly linked in those reaches to their sources in the origin reaches. If the prefix rename claiseyis part of| a seize
statemept (grant statement), those name strings are seized (granted) in their destination reach (reaghes).

A namd string NS is said to be seizable by modulion M directly enclosed in reach R if and dnly“if it is visible in R and it
is neithgr linked in R to any name string in the reach of M nor directly linked to the defining occurrence of a prgdefined
name sging.

A namg string NS is said to be grantable by modulion M directly enclosed in reach R if and only if it is visible in the
reach of M and it is neither linked in it to any name string in R nor directly linked in it to the defining occurrefice of a
predefiped name string.

static gonditions: If a prefix rename clause is in a seize statement ditectly enclosed in the reach of modulion|M then
each oflits old name strings must be:

. boEnd to several defining occurrences in the reach directly‘enclosing the reach of M; and
e seizable by M.

If a prefix rename clause is in a grant statement directly enclosed in the reach of modulion M then each of its old name
strings must be:

. bo[lnd to several defining occurrences ifi the reach of M; and
* grantable by M.

A prefix rename clause that occurs'\ina grant statement (seize statement) must have a postfix that is a grant postfix (seize
postfix)

examples:

25.35 (stack ! int <>=stack) ! ALL (1.1)

12.2.3.4 Grant.statement

syntax

<grant statement> ::= D)
GRANT <prefix rename clause> { , <prefix rename clause> }* ; (1.1)

| GRANT <grant window> [<prefix clause> | [<friend clause>] ; (1.2)

<grant window> ::= (2)
<grant postfix> { , <grant postfix> }* (2.1)

<grant postfix> ::= 3)
<name string> [(< parameter list>) [[RETURNS] (<result spec>)]] (3.1)

| <newmode name string> <forbid clause> (3.2)

| [<prefix>!] ALL (3.3)
<prefix clause> ::= (4)
PREFIXED [<prefix> | (4.1)

ITU-T Rec. Z.200 (1999 E) 163

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

<forbid clause> ::= (5)
FORBID { <forbid name list> | ALL } 5.1)

<forbid name list> ::= (6)
(<field name> { , <field name> }*) (6.1)

<friend clause> ::= (7)
TO <friend name list> (7.1)

<friend name list> ::= (8)
<friend name> {, <friend name>}* (8.1)

<friend name> ::= 9)
<modulion or moreta mode name> [| <friend procedure or process name> | 9.1)
<modulion or moreta mode name> ::= (19)
<modulion name> (L)

| <umoreta mode name> (10.2)
<friend procedure or process name> ::= (11)
<procedure name> [(<parameter list>) [[RETURNS] (<result spec>)]| (11.1)

| <process name> (11.2)

semantiics: Grant statements are a means of extending the visibility of name strings irCa modulion reach into the
enclosii
locatior]

The fol

If
clg

If
ref

Th
(s4

If
fo1

wh

g reaches. FORBID can be specified only for newmode names which aresstructure modes. It means
s and values of that mode have fields which may be selected only inside the granting modulion, not outsid

owing visibility rules apply:

the grant statement contains prefix rename clause(s), the grant statement has the effect of its prefix
use(s) (see 12.2.3.3).

the grant statement contains grant windows, it is shorthand notation for a set of grant statements wit
pame clauses constructed as follows:

for each grant postfix in the grant window, there\is a corresponding grant statement;
the old prefix in their prefix rename clause 18 empty;

the new prefix in their prefix rename-clause is the prefix attached to the prefix clause in the grant state
it is empty if there is no prefix clause-n the original grant statement;

the postfix in the prefix renanie-¢lause is the corresponding postfix in the grant window.

m:
(OP—>NP) | P | ALL

ere OP%and NP are the possibly empty old prefix and new prefix, respectively, and P is the prefix in th
Ktfind The prefix rename clause is then shorthand notation for a clause of the form:

directly
that all
e.

rename

h prefix

nent, or

s of the

e notation FORBID ALL\i$ shorthand notation for forbidding all the field names of the newmode name
e 12.2.5).
h prefix rename clagise~in a grant statement has a grant postfix which contains a prefix and ALL, then it

e grant

(ORI p =NpIDP)lALL

If a friend clause is given, the visibility of the GRANTed objects is extended to only those groups which are
mentioned in the friend name list.

static properties: A prefix clause has a prefix attached, defined as follows:

164

If the prefix clause contains a prefix, then that prefix is attached.

Otherwise the attached prefix is a simple prefix whose name string is determined as follows:

If the reach directly enclosing the prefix is a module or region, then the name string is the same as the one of

the module name or region name of that modulion.

If the reach directly enclosing the prefix is a spec region or spec module, then the name string is the name

string in front of SPEC.

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

A grant postfix has a set of name strings attached, defined as follows:
o Ifitis a name string, or contains a newmode name string, then the set containing only that name string.

* Otherwise, let OP be the (possibly empty) old prefix of the prefix rename clause in which the grant postfix is
placed, the set contains all name strings of the form OP ! N (i.e. obtained by prefixing N with OP) for any name
string N such that OP ! N is visible in the reach of the modulion in which the grant postfix is placed and grantable
by this modulion.

static conditions: The newmode name string with forbid clause must be visible in the reach R of the modulion in which
the grant statement is placed. The newmode name string must be bound in R to the defining occurrence of a newmode
which must be a structure mode, and each field name in the forbid name list must be a field name of that mode. The
newmode defining occurrence must be directly enclosed in R. All field names in a forbid name list must have different
name strings.

If the glant statement is placed in the reach of a region or spec region, it must not grant a name string whichis-bpund in
that reafh to the defining occurrence of:

. a Ipcation name; or
e alpc-identity name, where the location in its declaration is intra-regional; or

* asynonym name whose value is intra-regional.
The prdfix rename clause in a grant statement must have a grant postfix.

If a grant statement contains a prefix clause which does not contain a prefix,ther’ its directly enclosing modulipn must
not be g context and:

e if {ts directly enclosing modulion is a module or region, then it must be named (i.e. it must be headed by a {lefining
octurrence followed by a colon);

e if {ts directly enclosing modulion is a spec module or a spe¢‘region, then it must be headed by a simple name|string.

A namg N contained in a friend name list of a grant statenvent, which is placed immediately in the reach of a group G,
must bg defined immediately in the reach of the group directly surrounding G.

If the grant statement occurs immediately inside a‘moreta specification then no prefixing must occur.

examples:
25.7 GRANT (= stack ! char) | AEL; (1.1)
6.44 gregorian_date, julian_day number (2.1)

12.2.3.5 Seize statement

syntaxj
<seizeStdtement> ::= (1)
SEIZE <prefix rename clause> { , <prefix rename clause> }* ; (1.1)
| SEIZE <seize window> [<prefix clause>] ; (1.2)
SeIZe WIndow=""— 2
<seize postfix> { , <seize postfix> }* 2.1)
<seize postfix> ::= (3)
<name string> | (<formal parameter list>) [[RETURNS] (<result spec>)]] (3.1)
| [<prefix>!] ALL (3.2)

semantics: Seize statements are a means of extending the visibility of name strings in group reaches into the reaches of
directly enclosed modulions.

The following visibility rules apply:
e If the seize statement contains prefix rename clause(s), the seize statement has the effect of its prefix rename

clause(s) (see 12.2.3.3).

ITU-T Rec. Z.200 (1999 E) 165

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

e If the seize statement contains a seize window, it is shorthand notation for a set of seize statements with prefix
rename clauses constructed as follows:

for each seize postfix in the seize window, there is a corresponding seize statement;

the old prefix in their prefix rename clause is the prefix attached to the prefix clause in the seize statement, or is

empty if there is no prefix clause in the original seize statement;
the new prefix in their prefix rename clause is empty;

the postfix in their prefix rename clause is the corresponding postfix of the seize window.

e If a prefix rename clause in a seize statement has a seize postfix which contains a prefix and ALL, then it is of the
form:

wh
po

static properties: A seize postfix has a set of name strings attached, defined as follows:

e If
« El
sej

static cpnditions: The prefix rename clause in a seize statement must have a seize postfix.

If a seite statement contains a prefix clause which does-not contain a prefix, then its directly enclosing moduli

not be 4 context, and:

e if its directly enclosing modulion is a module or region, then it must be named (i.e. it must be headed by a
ocgurrence followed by a colon);

e if its directly enclosing modulion is.aspec module or a spec region, then it must be headed by a simple name

examples:

25.35 SEIZE (stack ! int&>'stack) | ALL; (1.1)

12.2.4 | Visibility of set ¢lement names

A sete

If a sef]
elemen

stfix. The prefix rename clause is then shorthand notation for a clause of the form:

e postfix is part, the set contains all name strings of the form OP ! S, for any name string S, such that:

(OP—=NPJTPTALL

ere OP and NP are the possibly empty old prefix and new prefix, respectively, and P is the prefixin t

(OP | P->NP | P) | ALL

he seize postfix is a name string, the set containing only the name string.

e, if the seize postfix is ALL, let OP be the (possibly empty) old prefix of the prefix rename clause of w

OP!S is visible in the reach directly enclosing the modulion in which the seize statement is placed; and
it is seizable by this modulion; and

it is bound to a quasi defining occurrence if this modulion has a context in front of it.

ement namrestiiay occur only in the context of a set literal.

modé name is specified in the set literal, then the name string of a set element name can be bound
name defining occurrence in the mode of the class of the set literal.

he seize

hich the

bn must

lefining

string.

to a set

Otherwise, a set mode name is not specified, and then the name string can be bound to a set element name defining
occurrence only if it is not visible in the reach in which the set literal is placed.

12.2.5

Visibility of field names

Field names may occur only in the following contexts:

e structure fields and value structure fields,

e labelled structure tuples;

e forbid clauses in grant statements.

Note that a field name may not occur in a grant postfix or in a seize postfix.

166

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

In each of these cases, the name string of the field name can be bound to a field name defining occurrence in the mode

M or in
e M
e M

the defining mode of M, obtained as follows:
is the mode of the structure location or (strong) structure primitive value;

is the mode of the structure tuple;

* M is the mode of the defining occurrence to which the newmode name string is bound in the reach in which the
forbid clause is placed.

However, if the novelty of M is a defining occurrence that defines a newmode name that has been granted by a grant
statement in a modulion as a grant postfix with a forbid clause, then the field names mentioned in the forbid name list are
only visible:

e in the group of the granting modulion;

tsqdirectly

b which

ing the

e R for

eator of

o if the-ne
enftlosed;
* if the modulion is a module spec or region spec, then in the reach of the corresponding modulion.
Outsidg these reaches the field names mentioned in the forbid name list are invisible and cannot be used-
12.2.6 | Dependence of locations
An instpnce LI of a directly declared location L depends on that execution of its immediately surrounding grou;
created|LI.
example:
SYNMODE TM = TASK SPEC
SYNMODE MM = MODULE SPEC
DCL T1 TM;
END MM;
DCL M1 MMV;
The cufrent instance M1-I of M1 contains an instance M1-LT1 of MM.T1. M1-L.T1 has been created du
executipn of "DCL M1 MM;". Therefore M1-1.T1 depends on-M1-I.
Dependence of heap locations: GETSTACK and ALLOCATE create a new location L and deliver a reference valy
L. Therp are two cases:
a) th¢ mode of R is known to be RM. In this case'E depends on the creator of the relevant instance of RM;
b) thg mode of R is not known (IF ALLOCAJE(...) = ALLOCATE(...)). In this case L depends on the cr
thg relevant instance of LM, where LM is the mode of L.
A locat]on Lc which is a subcomponent'of a location L depends on L.
12.3 Case selection
syntax:
<case labelspecification> ::= (1)
<case label list> { , <case label list> }* (1.1)
<caselabel list> ::= (2)
(<case label> { , <case label> }*) 2.1)
| <irrelevant> (2.2)
<case label> ::= (3)
<discrete literal expression> 3.1)
| <literal range> (3.2)
| <discrete mode name> (3.3)
| ELSE (3.4)
<irrelevant> ::= (4)
(%) 4.1)

semantics: Case selection is a means of selecting an alternative from a list of alternatives. The selection is based upon a
specified list of selector values. Case selection may be applied to:

e alternative fields (see 3.13.4), in which case a list of variant fields is selected;

e labelled array tuples (see 5.2.5), in which case an array element value is selected;

ITU-T Rec. Z.200 (1999E)

167

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

conditional expressions (see 5.3.2), in which case an expression is selected;

case action (see 6.4), in which case an action statement list is selected.

In the first, third and fourth situations, each alternative is labelled with a case label specification; in the labelled array
tuple, each value is labelled with a case label list. For ease of description, the case label list in the labelled array tuple
will be considered in this section as a case label specification with only one case label list occurrence.

Case selection selects that alternative which is labelled by the case label specification which matches the list of selector
values. (The number of selector values will always be the same as the number of case label list occurrences in the case
label specification.) A list of values is said to match a case label specification if and only if each value matches the
corresponding (by position) case label list in the case label specification.

A valusg

The val
the lite
which 4
label sp

static properties:

A list
specifid
the con

is-said-to-mateh-a-caselabel listif and-onlyif:

thg
lak

thg

At
ha
alf

A
ex)
ra
iti

A
thg

A

A
co

Fo

Fol
c

4

9

.

case label list consists of case labels and the value is one of the values explicitly indicated by one.of
els or implicitly indicated in the case of ELSE;

case label list consists of irrelevant.

ues explicitly indicated by a case label are the values delivered by any discrete literal expression, or def
al range or discrete mode name. The values implicitly indicated by ELSE are allthe possible selecto
re not explicitly indicated by any associated case label list (i.e. belonging to the’Same selector value) in g
ecification.

alternative fields with case label specification, a labelled array tuple; a conditional expression, or a cas
a list of case label specifications attached, formed by taking the.case label specification in front of each
ernative, value or case alternative, respectively.

case label has a class attached, which is, if it is a dis¢iefe literal expression, the class of the discret
bression; if it is a literal range, the resulting class ofithe classes of each discrete literal expression in th|
nge; if it is a discrete mode name, the resulting classyof the M-value class where M is the discrete mode

s ELSE, the all class.

ase label list has a class attached, which isi-if it is irrelevant, then the all class, otherwise the resulting
classes of each case label.

case label specification has a list of classes attached, which are the classes of the case label lists.

ist of case label specifications.has a resulting list of classes attached. This resulting list of classes is fot
hstructing, for each position‘in’ the list, the resulting class of all the classes that have that position.

f case label specifications is complete if, and only if, for all lists of possible selector values, a ca
ation is present, which matches the list of selector values. The set of all possible selector values is determ
ext as follows:

r a tagged\variant structure mode it is the set of values defined by the mode of the corresponding tag fiel

I a tag<less variant structure mode it is the set of values defined by the root mode of the corresponding r¢

he case

ined by
- values
ny case

b action

variant

b literal
e literal
hame; if

class of

med by

ke label
ined by

.

esulting

s§(this class is never the all class, see 3.13.4).

For an array tuple, it is the set of values defined by the index mode of the mode of the array tuple.

For a case action with a range list, it is the set of values defined by the corresponding discrete mode in the range list.

For a case action without a range list, or a conditional expression, it is the set of values defined by M where the
class of the corresponding selector is the M-value class or the M-derived class.

static conditions: For each case label specification the number of case label list occurrences must be equal.

For any two case label specification occurrences, their lists of classes must be compatible.

The list of case label specification occurrences must be consistent, i.c. each list of possible selector values matches at
most one case label specification.

168

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

If the root mode of the class of a case label list is an integer mode, there must exist a predefined integer mode that

contains all the values delivered by each case label.

examples:

11.9 (occupied)
11.58 (rook),(*)
8.26 (ELSE)
124

2.1)
(1.1)
2.1)

Definition and summary of semantic categories

This subclause gives a summary of all semantic categories which are indicated in the syntax description by means of an
underlined part. If these categories are not defined in the appropriate subclauses, the definition is given here, otherwise

the app

12.4.1

Names

Mode names

absolut

time mode name:

access
array nj
associal
boolea|

bound 4

node name:

lode name:

fion mode name:
mode name:

eference mode name:

buffer n

hode name:

characler mode name:

discretd

discretd

mode name:

range mode name:

duratio

event m

h mode name:

ode name:

floatin

ﬂoatinj point mode name:

point range mode name:

free refl

generid|

interfad

instanc

integer

mode n

ropriate subclause will be referenced.

a name defined to be an absolute time mode.
a name defined to be an access mode.

a name defined to be an array mode,

a name defined to be an association mode.

a name defined to be a booleafi mode.

a name defined to be a.bound reference mode.
a name defined to be a buffer mode.

a name definedto be a character mode.

a name defined to be a discrete mode.

a name defined to be a discrete range mode.
amame defined to be a duration mode.

a name defined to be an event mode.

a name defined to be a floating point mode.

a name defined to be a floating point range mode.

prence mode name: a name defined to be a free reference mode.
moreta mode name: a name defined to be a generic moreta mode.
e mode name: a name defined to be an interface mode.

P mode name: a name defined to be an instance mode.
mode Hame: a name defined to be an integer mode.

et see 321

mode name: a name defined to be a module mode.

module

modulion or moreta mode name:

mode name:

moreta

parameterized array mode name:

parameterized string mode name:

parameterized structure mode name:

powerset mode name:

procedure mode name:

a name defined to be a modulion mode or a moreta mode.
a name defined to be a moreta mode.

a name defined to be a parameterized array mode.

a name defined to be a parameterized string mode.

a name defined to be a parameterized structure mode.

a name defined to be a powerset mode.

a name defined to be a procedure mode.

ITU-T Rec. Z.200 (1999E)

169

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

region mode name:

row mode name:

set mode name:

string mode name:

structure mode name:

task mode name:

text mode name:

variant

structure mode name:

a name defined to be a region mode.

a name defined to be a row mode.

a name defined to be a set mode.

a name defined to be a string mode.

a name defined to be a structure mode.
a name defined to be a task mode.

a name defined to be a text mode.

a name defined to be a variant structure mode.

Access
locatio
locatio

locatio

names
) name:
do-with name:

enumeration name:

loc-ide

tity name:

Value names

booleai]

empting
Synony

value d|

value e

literal name:
ss literal name:
jn name:
b-with name:

Llumeration name:

value r¢

ceive name:.

Miscellaneous names

built-in

friend g

routine name:

rocedure or process name:

genera

procedure name:

generic

generid

module name:

procedure name:

generic
generic

label na

moduli

process name:
region name;

me:

bn fidnie:

see 4.1.2.
see 6.5.4.
see 6.5.2.
see 4.1.3.

see 5.2.4.4.

see 5.2.4.7.

see 5.1.

see 6.5.4.

see 6.5.2.

see 6.19.276:19.3.

any CHILL or implementation defined name denoting a built-in [routine.
see 12.2.3.4.

a procedure name whose generality is general.
see 10.11.

see 10.11.

see 10.11.

see 10.11.

see 6.1, 10.6.

see 12.2.3.4.

newmode name String:

erved name:

non-res

procedure name:

process name:.

set element name:

signal name:

tag field name:

undefined synonym name:

170

ITU-T Rec. Z.200 (1999 E)

a name string bound to the defining occurrence ot a newmode name.

a name which is none of the reserved names mentioned in
Appendix III.

see 10.4.
see 10.5.
see 3.4.5.
see 11.5.
see 3.13.4.

see 5.1.

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

12.4.2

Locations

access location:

array location:

association location:

buffer location:

character string location:

discrete location:

ISO/TEC 9496:2003(E)

a location with an access mode.

a location with an array mode.

a location with an association mode.

a location with a buffer mode.

a location with a character string mode.

a location with a discrete mode.

event ldcation: a location with an cvent mode.
floating point location: a location with a floating point mode.
instancé location: a location with an instance mode.
integer|location: a location with an integer mode.
moretallocation: a location with a moreta mode.

static mode location: a location with a static mode.

string lpcation: a location with a string mode/
structutte location: a location with a structute’' niode.

text locqition: a location with a text'mode.

12.4.3 | Expressions and values

absolutp time primitive value: a primitivévalue whose class is compatible with an absolute tin

array e.
array p|

booleai|

bound i

kpression:
imitive value:
| expression:

eference moreta location

primiti)
bound
characi

constan

discretd

e value:

eference primitive yalue:

er string expression:
t value:

| expression:

mode.
an-expression whose class is compatible with an array mode.
a primitive value whose class is compatible with an array mode

an expression whose class is compatible with a boolean mode.

see 6.7.

a primitive value whose class is compatible with a bound rq
mode.

an expression whose class is compatible with a character strin
a value which is constant.

an expression whose class is compatible with a discrete mode.

1§

ference

> mode.

discreteliteral expression:

duration primitive value:

floating point expression:

floating point literal expression:

free reference primitive value:

instance primitive value:

integer

expression:

integer literal expression:

a discrete expression which 18 literal.

a primitive value whose class is compatible with a duration mode.

an expression whose class is compatible with a floating point mode.

a floating point expression which is literal.

a primitive value whose class is compatible with a free reference

mode.

a primitive value whose class is compatible with an instance mode.

an expression whose class is compatible with an integer mode.

an integer expression which is literal.

ITU-T Rec. Z.200 (1999E)

171

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IE

C 9496:2003(E)

literal expression:

powerset expression:

procedure primitive value:

reference primitive value:

row primitive value:

String expression:

an expression which is literal.

an expression whose class is compatible with a powerset mode.

a primitive value whose class is compatible with a procedure mode.

a primitive value whose class is compatible with either a bound

reference mode, a free reference mode or a row mode.
a primitive value whose class is compatible with a row mode.

an expression whose class is compatible with a string mode.

string p
Structu
12.4.4

array nj
construy|
discretd

inline g
Stateméd

locatior
locatior

moreta

rimitive value:

e primitive value:

Miscellaneous semantic categories

ode:
ctor actual parameter list:
| mode:

arded procedure definition
1.

) built-in routine call:
) procedure call:

component procedure call:

moreta

moreta

moreta

non-pei

non-re

non-res

non-spée

declaration statement:
newmode definition statement:
synmode definition statement:
icent character:

erved character:

erved wide character:

cial character:

a primitive value whose class 1s compatible with a string mode.

a primitive value whose class is compatible with a strueture mo

a mode in which the composite mode is an array mode.
see 4.1.2.

a mode in which the non-composite mode is a discrete mode.

see 10.4.

see 6.7.

see 6.7.

see 2.7:

see-3.15.

see 3.15.

see 3.15.

a character which is not a percent (%).

a character which is neither a quote (") nor a circumflex (*).

a wide character which is neither a quote (") nor a circumflex (

a character which is neither a circumflex (") nor an open
parenthesis (().

He.

simple guarded procedure definition
statement:

simple guarded procedure signature
Statement.

string mode:

value built-in routine call:

value procedure call:

variant

172

structure mode:

ITU-T Rec. Z.200 (1999 E)

see 10.4.

see 10.4.
a mode in which the composite mode is a string mode.
see 6.7.

see 6.7.

a mode in which the non-composite mode is a variant structure mode.

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

13

13.1

ISO/TEC 9496:2003(E)

Implementation options

Implementation defined built-in routines

semantics: An implementation may provide for a set of implementation defined built-in routines in addition to the set of
language defined built-in routines.

The par

ameter passing mechanism is implementation defined.

predefined names: The name of an implementation defined built-in routine is predefined as a built-in routine name.

static properties: A built-in routine name may have a set of implementation defined exception names attached. A built-

in routifie call 1s a value (Iocation) buili-in roufine call 1t and only 1f the implementation specifies that for a give]

of stati

(locatiom).

The implementation specifies also the regionality of the value (location).

13.2

An imp
integer
modes
names,
modes

13.3

An imp
limit, t]
the one
defined
ranges,
modes

134
An imp

not spe
any cor

13.5

An imp
such a

properties of the parameters and the given static context of the call, the built-in routine call delivers

Implementation defined integer modes

lementation defines the upper bound and lower bound of the integer mode //NI*~An implementation ma
modes other than the ones defined by /NT;, e.g. short integers, long integers; unsigned integers. These
must be denoted by implementation defined integer mode names. These(fiames are considered to be ne
similar to /NT. Their value ranges are implementation defined. Thes€ integer modes may be defined
f appropriate classes.

Implementation defined floating point modes

lementation defines the upper bound and the lower.bound, the negative upper limit and the positiv
e precision of the floating point mode FLOAT. Afimplementation may define floating point modes ot
5 defined by FLOAT;, e.g. short float, long float. These floating point modes must be denoted by implem
floating point mode names. These names aré.considered to be newmode names, similar to FLOAT. The
lower limits and precision are implementation defined. These floating point modes may be defined
f appropriate classes.

Implementation defined process names

bified in CHILL. The definition is considered to be placed in the reach of the imaginary outermost procg
text. Processes of this hame may be started and instance values denoting such processes may be manipula

Implementation defined handlers

lementation may specify that an implementation defined handler is appended to a process or procedure de
jafidler may handle any exception.

h choice
a value

 define
integer
wmode
as root

e lower
her than
entation
ir value
as root

lementation may define(aset of implementation defined process names; i.e. process names whose defipition is

SS or in
ed.

finition;

13.6

Implementation defined exception names

An implementation may define a set of exception names.

13.7

Other implementation defined features

» Static check of dynamic conditions (see 2.1.2)

* implementation directive (see 2.6)

* case of special simple name strings

ITU-T Rec. Z.200 (1999E)

173

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

174

text reference name (see 2.7 and 10.10.1)

default generality (see 10.4)

set of values of duration modes (see 3.12.2)

set of values of absolute time modes (see 3.12.3)

default element layout (see 3.13.3)

comparison of tag-less variant structure values (see 3.13.4)

number of bits in a word (see 3.13.5)

minimum bit occupancy (see 3.13.5)
adflitional referable (sub-)locations (see 4.2.1)

semantics of a location do-with name and value do-with name which is a variant field of a tag-less
strpicture location (see 4.2.2 and 5.2.3)

semantics of variant fields of tag-less variant structures (see 4.2.10, 5.2.14 and 6.2)
semantics of location conversion (see 4.2.13)

semantics of expression conversion and additional conditions (see 5.2.11)
adflitional actual parameters in a start expression (see 5.2.15)

rafjges of values for literal and constant expressions (see 5.3.1)
scheduling algorithm (see 6.15, 6.18.2, 6.18.3, 6.19.2, 6.19.3-and 11.2.1)
releasing of storage in TERMINATE (see 6.20.4)

depotation for files (see 7.1)

opprations on associations (see 7.1 and 7.2)I)

noh-exclusive associations (see 7.1)

adflitional attributes of association values (see 7.2.2)

semantics of associate-parameters (see 7.4.2)

AYSOCIATEFAIL exception (see 7.4.2)

semantics of modify parameters (see 7.4.5)

CREATEFAIL, DELETEFAIL and MODIFYFAIL exception (see 7.4.5)

variant

CONNECTFAIL exception (see 7.4.6)

semantics of reading of records that are not legal values according to the record mode (see 7.4.9)
additional timeoutable actions (see 9.2)

TIMERFAIL exception (see 9.3.1, 9.3.2 and 9.3.3)

precision of duration values (see 9.4.1 and 9.4.2)

indication of constant value in quasi synonym definitions (see 10.10.3)

regionality of built-in routines (see 11.2.2).

ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/TEC 9496:2003(E)

Appendix I

Character set for CHILL

The character set of CHILL is an extension of the CCITT Alphabet No. 5, International Reference Version,
Recommendation V3. For the values whose representations are greater than 127, no graphical representation is defined.

The integer representation is the binary number formed by bits bg to by, where b; is the least significant bit.

b;bgbs 000 001 010 011 100 101 110 11
bJbsb,b, 0 1 2 3 4 5 6 U
000 0 NUL TC, SP 0 @ P ' b
(DLE)
001 1 TC, DC, ! 1 A Q a q
(SOH)
010 2 TC, DC, " 2 B R b :
(STX)
DO11 3 TC, DG, # 3 C S c 5
(ETX)
D100 4 TCy4 DC, $ 4 D T d t
(EOT)
D101 5 TCs TCq % 5 E U e)
(ENQ) (NAK)
D110 6 TCs TC, & 6 F \% f
(ACK) (SYN)
D111 7 BEL €, ' 7 G w g W
(ETB)
1000 8 FE CAN (8 H X h K
(BS)
1001 9 FE, EM) 9 I Y i "
(HT)
1010 10 FE, SUB * : J z i 2
(LF)
1011 11 FE, ESC + : K [k
(VT)
66 2 FF7 157 - t t |
(FF) (FS)
1101 13 FEs IS, - = M] m }
(CR) (GS)
1110 14 SO IS, . > N A n -
(RS)
1111 15 SI IS, / ? o) B N DEL
(Us)

ITU-T Rec. Z.200 (1999 E) 175

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

ISO/IEC 9496:2003(E)

Appendix 11

Special symbols

Name Use

; semicolon terminator for statements etc.
, comma separator in various constructs
(left parenthesis opening parenthesis of various constructs
) right parenthesis closing parenthesis of various constructs
[left square bracket opening bracket of a tuple
] right square bracket closing bracket of a tuple
6 left tuple bracket opening bracket of a tuple
) right tuple bracket closing bracket of a tuple

colon label indicator, range indicator

dot field selection symbol
= assignment symbol assignment, initialization
< less than relational operator
<= less than or equal relational operator
= equal relational operator, assignment, initialization,“definition indicator
/= not equal relational operator
>= greater than or equal relational operator
> greater than relational operator
+ plus addition operator
- minus subtraction operator
* asterisk multiplication opérater, undefined value, unnamed value, irrelevant symbol
/ solidus division operator
/l double solidus concatendtion operator
—> arrow referencing and dereferencing, prefix renaming
< diamond statt'or end of a directive clause
/* comment opening bracket start of a comment
*/ comment closing bracket end of a comment
! apostrophe start or end symbol in various literals
sharp location and expression conversion
" quote start or end symbol in character string literals
! prefixing‘operator prefixing of names
B’ literal\qualification binary base for literal
b' literal qualification binary base for literal
D' literal qualification decimal base for literal
d' literal qualification decimal base for literal
H' literal qualification hexadecimal base for literal
h' literal qualification hexadecimal base for literal
o' literal qualification octal base for literal
o' literal qualification octal base for literal
w literal qualification wide character or character string literal
w' literal qualification wide character or character string literal
—— line end line end delimiter of in-line comments

176 ITU-T Rec. Z.200 (1999 E)

https://standardsiso.com/api/?name=e992cbc7bd8011734ba45dd782462a5b

	CONTENTS
	Foreword
	2 Preliminaries
	2.1 The metalanguage
	2.2 Vocabulary
	2.3 The use of spaces
	2.4 Comments
	2.5 Format effectors
	2.6 Compiler directives
	2.7 Names and their defining occurrences

	3 Modes and classes
	3.1 General
	3.2 Mode definitions
	3.3 Mode classification
	3.4 Discrete modes
	3.5 Real modes
	3.6 Powerset modes
	3.7 Reference modes
	3.8 Procedure modes
	3.9 Instance modes
	3.10 Synchronization modes
	3.11 Input-Output Modes
	3.12 Timing modes
	3.13 Composite modes
	3.14 Dynamic modes
	3.15 Moreta Modes

	4 Locations and their accesses
	4.1 Declarations
	4.2 Locations

	5 Values and their operations
	5.1 Synonym definitions
	5.2 Primitive value
	5.3 Values and expressions

	6 Actions
	6.1 General
	6.2 Assignment action
	6.3 If action
	6.4 Case action
	6.5 Do action
	6.6 Exit action
	6.7 Call action
	6.8 Result and return action
	6.9 Goto action
	6.10 Assert action
	6.11 Empty action
	6.12 Cause action
	6.13 Start action
	6.14 Stop action
	6.15 Continue action
	6.16 Delay action
	6.17 Delay case action
	6.18 Send action
	6.19 Receive case action
	6.20 CHILL built-in routine calls

	7 Input and Output
	7.1 I/O reference model
	7.2 Association values
	7.3 Access values
	7.4 Built-in routines for input output
	7.5 Text input output

	8 Exception handling
	8.1 General
	8.2 Handlers
	8.3 Handler identification

	9 Time supervision
	9.1 General
	9.2 Timeoutable processes
	9.3 Timing actions
	9.4 Built-in routines for time

	10 Program Structure
	10.1 General
	10.2 Reaches and nesting
	10.3 Begin-end blocks
	10.4 Procedure specifications and definitions
	10.5 Process specifications and definitions
	10.6 Modules
	10.7 Regions
	10.8 Program
	10.9 Storage allocation and lifetime
	10.10 Constructs for piecewise programming
	10.11 Genericity

	11 Concurrent execution
	11.1 Processes, tasks, threads and their definitions
	11.2 Mutual exclusion and regions
	11.3 Delaying of a thread
	11.4 Re-activation of a thread
	11.5 Signal definition statements
	11.6 Completion of Region and Task locations

	12 General semantic properties
	12.1 Mode rules
	12.2 Visibility and name binding
	12.3 Case selection
	12.4 Definition and summary of semantic categories

	13 Implementation options
	13.1 Implementation defined built-in routines
	13.2 Implementation defined integer modes
	13.3 Implementation defined floating point modes
	13.4 Implementation defined process names
	13.5 Implementation defined handlers
	13.6 Implementation defined exception names
	13.7 Other implementation defined features

	Appendix I Character set for CHILL
	Appendix II Special symbols
	Appendix III Special simple name strings
	III.1 Reserved simple name strings
	III.2 Predefined simple name strings
	III.3 Exception names

	Appendix IV Program examples
	IV.1 Operations on integers
	IV.2 Same operations on fractions
	IV.3 Same operations on complex numbers
	IV.4 General order arithmetic
	IV.5 Adding bit by bit and checking the result
	IV.6 Playing with dates
	IV.7 Roman numerals
	IV.8 Counting letters in a character string of arbitrary length
	IV.9 Prime numbers
	IV.10 Implementing stacks in two different ways, transparent to the user
	IV.11 Fragment for playing chess
	IV.12 Building and manipulating a circularly linked list
	IV.13 A region for managing competing accesses to a resource
	IV.14 Queuing calls to a switchboard
	IV.15 Allocating and deallocating a set of resources
	IV.16 Allocating and deallocating a set of resources using buffers
	IV.17 String scanner1
	IV.18 String scanner2
	IV.19 Removing an item from a double linked list
	IV.20 Update a record of a file
	IV.21 Merge two sorted files
	IV.22 Read a file with variable length records
	IV.23 The use of spec modules
	IV.24 Example of a context
	IV.25 The use of prefixing and remote modules
	IV.26 The use of text i/o
	IV.27 A generic stack
	IV.28 An abstract data type
	IV.29 Example of a spec module
	IV.30 Object-Orientation: Modes for Simple, Sequential Stacks
	IV.31 Object-Orientation: Mode Extension: Simple, Sequential Stack with Operation "Top"
	IV.32 Object-Orientation: Modes for Stacks with Access Synchronization

	Appendix V Decommitted features
	V.1 Free directive (subclause 2.6)
	V.2 Integer modes syntax (subclause 3.4.2)
	V.3 Set modes with holes (subclause 3.4.5)
	V.4 Procedure modes syntax (subclause 3.7)
	V.5 String modes syntax (subclause 3.11.2)
	V.6 Array modes syntax (subclause 3.11.3)
	V.7 Level structure notation (subclause 3.11.5)
	V.8 Map reference names (subclause 3.11.6)
	V.9 Based declarations (subclause 4.1.4)
	V.10 Character string literals (subclause 5.2.4.6)
	V.11 Receive expressions (see 5.3.9/Z.200 (1988))
	V.12 Addr notation (subclause 5.3.8)
	V.13 Assignment syntax (subclause 6.2)
	V.14 Case action syntax (subclause 6.4)
	V.15 Do for action syntax (subclause 6.5.2)
	V.16 Explicit loop counters (subclause 6.5.2)
	V.17 Call action syntax (subclause 6.7)
	V.18 RECURSEFAIL exception (subclause 6.7)
	V.19 Start action syntax (subclause 6.13)
	V.20 Explicit value receive names (subclause 6.19)
	V.21 Blocks (subclause 8.1)
	V.22 Entry statement (subclause 8.4)
	V.23 Register names (subclause 8.4)
	V.24 Recursive attribute (10.4/Z.200 (1988))
	V.25 Quasi cause statements and quasi handlers (subclause 8.10.3)
	V.26 Syntax of quasi statements (10.10.3/Z.200 (1988))
	V.27 Weakly visible names and visibility statements (12.2.1/Z.200 (1988))
	V.28 Weakly visible names and visibility statements (subclause 10.2.4.3)
	V.29 Pervasiveness (subclause 10.2.4.4)
	V.30 Seizing by modulion name (subclause 10.2.4.5)
	V.31 Predefined simple name strings (subclause C.2)

	Appendix VI Index of production rules

