NFPA 2113 Standard on Selection, Care, Use, and Maintenance of Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire 2001 Edition NFPA, 1 Batterymarch Park, PO Box 9101, Quincy, MA 02269-9101 An International Codes and Standards Organization NFPA License Agreement This document is copyrighted by the National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, MA 02269-9101 USA. All rights reserved. NFPA grants you a license as follows: The right to download an electronic file of this NFPA document for temporary storage on one computer for purposes of viewing and/or printing one copy of the NFPA document for individual use. Neither the electronic file nor the hard copy print may be reproduced in any way. In addition, the electronic file may not be distributed elsewhere over computer networks or otherwise. The hard copy print may only be used personally or distributed to other employees for their internal use within your organization. Copyright © National Fire Protection Association, Inc. One Batterymarch Park Quincy, Massachusetts 02269 #### IMPORTANT NOTICE ABOUT THIS DOCUMENT NFPA codes, standards, recommended practices, and guides, of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its codes and standards. The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein. In issuing and making this document available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the NFPA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement. #### **NOTICES** All questions or other communications relating to this document and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA documents during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101. Users of this document should be aware that this document may be amended from time to time through the issuance of Tentative Interim Amendments, and that an official NFPA document at any point in time consists of the current edition of the document together with any Tentative Interim Amendments then in effect. In order to determine whether this document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments, consult appropriate NFPA publications such as the *National Fire Codes*® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed above. A statement, written or oral, that is not processed in accordance with Section 5 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation. The NFPA does not take any position with respect to the validity of any patent rights asserted in connection with any items which are mentioned in or are the subject of this document, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Users of this document should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action that is not in compliance with applicable laws, and this document may not be construed as doing so. #### **Licensing Policy** This document is copyrighted by the National Fire Protection Association (NFPA). By making this document available for use and adoption by public authorities and others, the NFPA does not waive any rights in copyright to this document. - 1. Adoption by Reference—Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders, or similar instruments. Any deletions, additions, and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only. - **2. Adoption by Transcription—A.** Public authorities with lawmaking or rule-making powers only, upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders, or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's lawmaking or rule-making process. **B.** Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rule-making powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately, provided that due notice of NFPA's copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rule-making powers may apply for and may receive a special royalty where the public interest will be served thereby. - 3. Scope of License Grant—The terms and conditions set forth above do not extend to the index of this document. (For further explanation, see the Policy Concerning the Adoption, Printing, and Publication of NFPA Documents, which is available upon request from the NFPA.) Copyright © 2001, National Fire Protection Association, All Rights Reserved #### **NFPA 2113** #### Standard on ## Selection, Care, Use, and Maintenance of Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire #### 2001 Edition This edition of NFPA 2113, Standard on Selection, Care, Use, and Maintenance of Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire, was prepared by the Technical Committee on Flash Fire Protective Garments and acted on by NFPA at its May Association Technical Meeting held May 13–17, 2001, in Anaheim, CA. It was issued by the Standards Council on July 13, 2001, with an effective date of August 2, 2001. This edition of NFPA 2113 was approved as an American National Standard on August 2, 2001. #### Origin and Development of NFPA 2113 The NFPA Standards Council established the Technical Committee on Flash Fire Protective Garments in 1998. Between February and August of 1999, the Technical Committee developed two draft standards: NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire, and NFPA 2113, which were then released for public proposals and comments. NFPA 2113 specifies the minimum selection, care, use, and maintenance requirements for flame-resistant garments that are compliant with NFPA 2112 for use by industrial personnel in areas at risk from flash fires. The first editions of NFPA 2112 and NFPA 2113 were approved by the NFPA membership at the May 2001 NFPA World Fire Safety Congress, and were issued by the Standards Council in July, 2001. #### **Technical Committee on Flash Fire Protective Garments** **Ronald L. Powell,** *Chair* Union Carbide Corporation, TX [U] John A. Alderman, Risk, Reliability, and Safety Engineering, TX [SE] William F. Baitinger, Westex, Inc., IL [M] Peter Clark, Peter Clark Associates, Inc., AB, Canada [M] James
Douglas Dale, University of Alberta, AB, Canada [RT] Allen Duke, Boots & Coots, TX [U] Patricia A. Gleason, Safety Equipment Institute, VA [RT] Michael Jeffrey, Dale North America, Inc., ON, Canada [M] Laura A. Kinney, Workrite Uniform Company, CA [M] David H. Loftin, V F WorKwear, TN [M] Gordon C. McCaffrey, G. C. McCaffrey & Associates Limited, AB, Canada [SE] Max E. Middleton, Eastman Chemical Company, TN [U] Catherine J. Morin, Morin Associates, MD [SE] Roger F. Parry, DuPont, VA [M] Daniel P. Ryan, Underwriters Laboratories Inc., NC [RT] Michael T. Stanhope, Southern Mills, Inc., GA [M] Jeffrey O. Stull, International Personnel Protection, Inc., TX [SE] James J. Swiss, Swiss Environment & Safety Inc., AB, Canada [SE] Dale Vizzini, Halliburton Co., TX [U] James A. Womble, Avista Corporation, WA [U] #### Alternates Steven D. Corrado, Underwriters Laboratories Inc., NC [RT] (Alt. to D. P. Ryan) Tommie G. George, Halliburton Co., TX [U] (Alt. to D. Vizzini) Susan L. Lovasic, DuPont Advanced Fibers Systems, VA [M] (Alt. to R. F. Parry) Stephen R. Sanders, Safety Equipment Institute (SEI), VA [RT] (Alt. to P. A. Gleason) #### Gregory E. Harrington, NFPA Staff Liaison **Committee Scope:** This Committee shall have primary responsibility for documents on the manufacture, selection, care, and use of garments and equipment used for protection of industrial personnel where there is potential for flash fire. Industrial personnel include workers who are potentially or may accidentally be exposed to hydrocarbon or combustible dust flash fires, and not electrical flashes. These documents do not cover fire fighters and other emergency services personnel. This list represents the membership at the time the Committee was balloted on the final text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document. NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves. CONTENTS **2113**–3 ### Contents | Chapte | er 1 Administration 2113– 4 | 5.2 Specific Requirements for Wearing | |--------|---|--| | 1.1 | Scope 2113– 4 | Flame-Resistant Garments 2113– 7 | | 1.2 | Purpose | | | 1.3 | Application | Chapter 6 Care | | 1.4 | Equivalency | 6.1 Cleaning | | 1.5 | Units 2113– 4 | 6.2 Decontamination | | _ | er 2 Referenced Publications 2113- 4 | 6.3 Storage | | 2.1 | General | Chapter 7 Maintenance 2113- 7 | | Chapte | er 3 Definitions | 7.1 Inspection | | 3.1 | General | 7.2 Repairs | | 3.2 | NFPA Official Definitions 2113– 4 | 7.3 Retirement | | 3.3 | General Definitions | 7.4 Disposal | | Chapte | er 4 Selection | Annex A Explanatory Material 2113- 8 | | 4.1 | General | | | 4.2 | Workplace Hazard Assessment 2113– 6 | Annex B Properties for Evaluating | | 4.3 | Selection of Flame-Resistant Garments 2113– 6 | Flame-Resistant Garments 2113–12 | | 4.4 | Purchase Specifications | | | | • | Annex C Informational References 2113–18 | | Chapte | er 5 Use | | | 5.1 | General 9113_ 7 | Index 9113_10 | #### NFPA 2113 #### Standard on ## Selection, Care, Use, and Maintenance of Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire #### 2001 Edition NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Annex A. A reference in brackets [] following a section or paragraph indicates material that has been extracted from another NFPA document. The complete title and edition of the document the material is extracted from is found in Annex C. Editorial changes to extracted material consist of revising references to an appropriate division in this document or the inclusion of the document number with the division number when the reference is to the original document. Requests for interpretations or revisions of extracted text shall be sent to the appropriate technical committee. Information on referenced publications can be found in Chapter 2 and Annex C. #### Chapter 1 Administration #### 1.1 Scope. - 1.1.1* This standard shall specify the minimum selection, care, use, and maintenance requirements for flame-resistant garments for use in areas at risk from flash fires by industrial personnel that are compliant with NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire. - 1.1.2* This standard shall not apply to protective clothing for wildland fire fighting, technical rescue, structural fire fighting, proximity fire fighting, or any other fire-fighting operations, or hazardous materials emergencies. This standard shall not apply to protection from electrical flashes, radiological agents, biological agents, or hazardous materials. - **1.2 Purpose.** The purpose of this standard shall be to reduce the health and safety risks associated with the incorrect selection and use of flame-resistant garments and those risks associated with incorrectly maintained, contaminated, or damaged flame-resistant garments. #### 1.3 Application. - 1.3.1* This standard shall not purport to address all the safety aspects associated with its use. - **1.4 Equivalency.** Nothing herein shall be intended to restrict any individual or organization from exceeding these minimum requirements. - **1.5 Units.** In this standard, values for measurement are followed by an equivalent in parentheses, but only the first stated value shall be regarded as the requirement. Equivalent values in parentheses shall not be considered as the requirement as these values might be approximate. ## **Chapter 2 Referenced Publications** - **2.1 General.** The documents or portions thereof listed in this chapter are referenced within this standard and shall be considered part of the requirements of this document. - **2.1.1 NFPA Publication.** National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101. NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire, 2001 edition. #### 2.1.2 Other Publications. **2.1.2.1 ACGIH Publication.** American Conference of Governmental Industrial Hygienists, 1330 Kemper Meadow Drive, Cincinnati, OH 45240-1634. TLVs and BEIs, 1999. - **2.1.2.2 ASTM Publication.** American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959. - ASTM F 1449, Standard Guide for Care and Maintenance of Flame-Resistant and Thermal Protective Clothing, 1992. - **2.1.2.3 U.S. Government Publication.** U.S. Government Printing Office, Washington, DC 20402. NIOSH Pocket Guide to Chemical Hazards, 1997. #### 2.1.2.4 Additional Publication. Sax, Irving N., 1979. "Dangerous Properties of Industrial Materials," New York: Van Nostrand Reinhold Co. #### **Chapter 3 Definitions** **3.1 General.** The definitions contained in this chapter shall apply to the terms used in this standard. Where terms are not included, common usage of the terms shall apply. #### 3.2 NFPA Official Definitions. - **3.2.1* Authority Having Jurisdiction.** The organization, office, or individual responsible for approving equipment, materials, an installation, or a procedure. - **3.2.2 Labeled.** Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner. - 3.2.3 Shall. Indicates a mandatory requirement. - **3.2.4 Should.** Indicates a recommendation or that which is advised but not required. - **3.2.5 Standard.** A document, the main text of which contains only mandatory provisions using the word "shall" to indicate requirements and which is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions shall be located in an appendix, footnote, or fine-print note and are not to be considered a part of the requirements of a standard. DEFINITIONS 2113–5 - 3.3 General Definitions. - 3.3.1 Agents. - **3.3.1.1 Biological Agents.** Biological materials that are capable of causing an acute disease or long-term damage to the human body. [1999:1-3] - **3.3.1.2 Radiological Agents.** Radiation associated with x-rays, alpha, beta, and gamma emissions from radioactive isotopes, or other material in excess of normal background radiation levels. [1999:1-3.54] - 3.3.2 Body. - **3.3.2.1 Lower Body.** The area of the body below the waist including the legs but excluding the ankles and feet. - **3.3.2.2 Upper Body.** The area of the body above the waist and extending to the shoulder, including the arms and wrists but excluding the hands. - **3.3.3 Care.** Procedures for cleaning, decontamination, and storage of protective clothing. - **3.3.4 Certification/Certified.** A system whereby a certification organization determines that a manufacturer has demonstrated the ability to produce a product that complies with the requirements of this standard, authorizes the manufacturer to use a label on listed products that comply with the requirements of this standard, and establishes a follow-up program conducted by the certification organization as a check on the methods the manufacturer uses to determine continued compliance with the requirements of this standard. [1971:1-3.15] - **3.3.5 Certification Organization.** An independent, third-party organization that determines product compliance with the requirements of this standard with a labeling/listing/follow-up program. [1971:1-3.16] - **3.3.6 Cleaning.** The removal of dirt and debris. - **3.3.7
Compliance/Compliant.** Meeting or exceeding all applicable requirements of this standard. [1971:1-3.22] - **3.3.8 Component.** Any material, part, or subassembly used in the construction of the garment necessary for meeting the requirements of this standard. - **3.3.9 Contamination/Contaminated.** The process of transferring a hazardous material from its source to people, animals, the environment, or equipment, which may act as a carrier. [471:1-4] - **3.3.10 Cross-Contamination.** The transfer of contamination from one item to another or to the environment. - **3.3.11 Decontamination.** The physical and or chemical process of reducing and preventing the spread of contamination from persons and equipment used in a contaminated environment. - **3.3.12 Emblem(s).** A shield(s) or heraldry that designates a government entity or a specific organization, rank, title, position, or some other professional status. - **3.3.13 Fabric.** The one or more layers of textile material(s) used in the primary construction of protective garment(s). - **3.3.14 Fit.** The manner in which the clothing, when worn, relates to the human body. - **3.3.15* Flame Resistance.** The property of a material whereby combustion is prevented, terminated, or inhibited following the application of a flaming or nonflaming source of ignition, with or without subsequent removal of the ignition source. - **3.3.16* Flash Fire.** A fire that spreads rapidly through a diffuse fuel, such as dust, gas, or the vapors of an ignitable liquid, without the production of damaging pressure. - **3.3.17 Functionality/Functional.** The ability of the flameresistant garment or a component of the flame-resistant garment to continue to be utilized for its intended purpose. - **3.3.18 Garments.** Clothing including but not limited to coveralls, trousers, shirts, jackets, rainwear and parkas. - **3.3.19 Hardware.** Nonfabric components of the flame-resistant garment including, but not limited to, those made of metal or plastic. - **3.3.20 Hazard Assessment.** The process by which an organization identifies hazards in the workplace and then determines appropriate controls, including the use of personal protective equipment, to eliminate or reduce worker exposure to those hazards. - **3.3.21 Hazardous Materials.** Any solid, liquid, gas, or mixture thereof that can potentially cause harm to the human body through respiration, ingestion, skin absorption, or contact. - **3.3.22 Hazardous Materials Emergencies.** Incidents involving the release or potential release of hazardous materials into the environment that can cause loss of life, personnel injury, or damage to property and the environment. [1971:1-3.54] - **3.3.23 Industrial Personnel.** Workers who might be exposed to flash fire. - **3.3.24 Interlining.** Any textile that is intended for incorporation into any article of clothing as a layer between outer and inner layers. [1975:1-3] - **3.3.25 Lining.** Any material that is attached and used to cover or partially cover the inside surface of a flame-resistant garment. - **3.3.26 Maintenance.** Procedures for inspection, testing, repair, and retirement of the product. - **3.3.27 Melt.** A response to heat by a material resulting in evidence of flowing or dripping. [1983:1.3.40] - **3.3.28* Organization.** The entity that provides the direct management and supervision for the industrial personnel. - **3.3.29* Product Label.** A label or marking affixed to a product by the manufacturer that provides general information, warnings, instructions for care and maintenance, and other information. - **3.3.30 Reflective Striping.** Material added to the exterior of the garment to enhance nighttime or daytime visibility. - **3.3.31 Reinforcement.** An additional layer of a textile material applied to a specific area of the protective garment to make that portion of the protective garment more resistant to wear. - **3.3.32 Retirement.** The process of removing protective clothing from service. - **3.3.33 Seam.** Any permanent attachment of two or more protective garment fabrics in a line formed by joining the separate material pieces. - **3.3.34 Service Life.** The period for which the protective clothing is useful before retirement. - **3.3.35 Static Electricity.** The acquisition and retention of electrical charge through induction (by means of corona discharge) or by triboelectric means (rubbing with another material). - **3.3.36 Trouser.** A garment that is designed to provide minimum protection to the lower torso and legs, excluding the ankles and feet. - **3.3.37 Wind/Moisture Barrier.** A component of a protective garment designed to inhibit wind penetration and prevent the penetration of liquid water. - **3.3.38 Wristlet.** The circular, close fitting extension of the coat sleeve, usually made of knitted material. #### Chapter 4 Selection - **4.1 General.** The organization's selection process for flameresistant garments shall be based on the following: - (1) The conduct of a hazard assessment of the workplace to determine the need for the wearing of flame-resistant garments - (2) An evaluation of flame-resistant garment designs and characteristics to determine the type of flame-resistant garments suitable for protecting workers from flash fire - (3) The development of specifications for purchasing flameresistant garments #### 4.2* Workplace Hazard Assessment. - **4.2.1** The organization shall conduct a hazard assessment of the work environment to determine the requirement for wearing flame-resistant garments. - **4.2.2** The hazard assessment shall be performed based on a review of the facility to determine if flammable chemicals are present in quantities that will generate a flash fire and endanger a person. - **4.2.3*** The general workplace hazard assessment process shall include consideration of the following: - (1) Determination of the type of hazard or hazards present in the workplace - (2) Determination of the adverse effects of unprotected exposure to the hazards identified - (3) Determination of whether other control options (engineering, administrative, and so forth) can be used instead of flame-resistant garments - (4) Determination of garment performance characteristics needed for protection - (5) Determination of the need for garment decontamination where applicable - (6) Determination of ergonomic constraints of work to be performed while wearing the garment - (7) Comparison of risks and costs of all options - (8) Selection from options and implementation - **4.2.4** A specific evaluation of the work environment to determine the requirement for the wearing of flame-resistant garments shall be based on the potential hazards that workers are exposed to as part of their work duties. Factors in determining - if flame-resistant garments are required shall include, but not be limited to, the following: - Proximity of the work to be performed to a hazard presenting a flash fire potential - (2) The presence of flammable materials in the environment during process operations - (3) The potential for the task being performed to increase the possibility of a flammable release; this could result from a mechanical failure such as a line breaking - (4) Operating conditions of the process that is, potential for flammable fumes or vapors, and so forth - (5) The presence of engineering controls designed to reduce exposure to flammable materials present during normal operations - (6) Accident history - **4.2.5*** The initial review of a facility shall determine if flammable chemicals are present in quantities necessary to generate a flash fire and endanger a person. - **4.3* Selection of Flame-Resistant Garments.** In addition to flame-resistant garments complying with NFPA 2112, *Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire*, the organization shall consider factors in selecting flame-resistant garments including, but not limited to, the following: - (1)*Thermal protective characteristics of the fabric - (2)*Physical characteristics of the fabric - (3)*Garment construction and components (for example, pockets, types of closures) - (4)*Avoidance of static charge buildup - (5)*Design type of the garment - (6)*Type of conditions under which the garments will be worn - (7)*Comfort properties of the fabric and garment - (8)*Cleaning and maintenance considerations #### 4.4 Purchase Specifications. - **4.4.1*** Where the organization develops purchase specifications, the criteria specified in 4.4.1.1 through 4.4.1.4 shall be included. - **4.4.1.1** Clothing to be purchased shall comply with NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire. - **4.4.1.2** Where the organization selects criteria that exceeds the minimum requirements of NFPA 2112, *Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire*, such criteria shall be stipulated in the purchase specifications. - **4.4.1.3** Manufacturer bids shall include substantiation of certification for the protective clothing stated in the bid. - **4.4.1.4** The organization shall compare each bid submittal against purchase specifications. - **4.4.2*** In addition to compliance with NFPA 2112, *Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire*, the organization shall provide additional specifications addressing those design features and performance characteristics specified in Section 4.3. - **4.4.3** Upon receipt, organizations shall inspect purchased garments to ensure they meet their specifications and to verify quantity and sizes of protective garments received. MAINTENANCE 2113–7 - **4.4.4** Organizations shall establish procedures for returning unsatisfactory products if their specifications are not met. - **4.4.5** Organizations shall examine information supplied with the products including instructions, warranties, and technical data. ####
Chapter 5 Use #### 5.1 General. - **5.1.1*** Organizations shall provide users with the instructions provided by the manufacturer on the care, use, and maintenance of flame-resistant garments, including any warning provided by the manufacturer. - **5.1.2** Organizations shall instruct workers in the limitations, use, care, and maintenance of flame-resistant garments, including the use of under- or over-garments. - **5.1.3** For maximum protection, organizations shall require that flame-resistant garments be worn as described in the manufacturer's instructions. - **5.1.4** Flame-resistant garment collars shall be worn closed, and sleeves and cuffs shall be worn down and secured. - **5.1.5** Organizations shall require that protective neck, head, hand, and foot coverings be worn if the occupational hazard warrants their use. - **5.1.6*** Other personal protective equipment (PPE) shall be worn if determined as necessary from a review of the potential hazards to which workers are exposed from the hazard assessment. - **5.1.7*** Organizations shall not permit workers to wear non-flame-resistant clothing over flame-resistant garments. - **5.2*** Specific Requirements for Wearing Flame-Resistant Garments. The organization shall define those facilities and areas of the workplace and tasks that require personnel to wear flame-resistant garments. #### Chapter 6 Care #### 6.1 Cleaning. - **6.1.1*** Flame-resistant garments shall be kept clean. - **6.1.2*** New flame-resistant garments shall be washed or drycleaned at least once prior to their initial use. - **6.1.3*** Flame-resistant garments shall be cleaned in accordance with manufacturer instructions. If cleaning instructions are not provided, protective garments shall be cleaned in accordance with the recommendations provided in ASTM F 1449, Standard Guide for Care and Maintenance of Flame-Resistant and Thermal Protective Clothing. - **6.1.4** Flame-resistant garments shall be laundered or drycleaned with such frequency so as to prevent build-up of contaminants that reduce flame resistance. #### 6.2 Decontamination. **6.2.1*** Flame-resistant garments contaminated by hazardous materials or biological agents shall be decontaminated in accordance with manufacturer instructions. **6.2.2*** If decontamination instructions are not provided, or if decontamination is not recommended for the specific contaminant(s) and the contamination is judged to present hazards to the end user, then contaminated flame-resistant garments shall be disposed of. - **6.2.3*** Contaminated flame-resistant garments shall be handled in such a manner so as to prevent cross-contamination. - **6.2.4** Contaminated flame-resistant garments shall not be laundered or dry-cleaned in public facilities. #### 6.3* Storage. - **6.3.1** Flame-resistant garments shall be stored in accordance with manufacturer instructions. - **6.3.2** Flame-resistant garments shall not be stored in direct or indirect sunlight. - **6.3.3** Flame-resistant garments shall be clean and dry before long-term storage. - **6.3.4** Flame-resistant garment storage areas shall be clean, dry, and well ventilated. - **6.3.5** Soiled flame-resistant garments shall not be stored with personal belongings. #### Chapter 7 Maintenance #### 7.1 Inspection. - **7.1.1*** The organization shall develop a systematic inspection program for all flame-resistant garments to confirm their serviceability. - **7.1.2** The end user shall inspect flame-resistant garments for damage, soiling, or contamination after each use. - **7.1.3** Inspections of flame-resistant garments shall be performed by the organization or the end user following each cleaning and following any use where there was potential for damage or contamination. - **7.1.4** All flame-resistant garments shall be inspected by the organization or the end user for fabric or material damage. - **7.1.4.1** The inspection shall include an examination of all components, including, if present, the outer shell, lining, interlining, wind/moisture barrier, hardware, wristlets, and reinforcements. - **7.1.4.2** Damaged flame-resistant garments shall be immediately removed from service, and the decision to repair or retire the damaged flame-resistant garments shall be made by the organization. - **7.1.5** All seams of the flame-resistant garment shall be inspected by the organization or end user for thread or seam damage as evidenced by skipped, broken, or missing stitches. - **7.1.6** All hardware on the flame-resistant garment including, but not limited to, zippers, buttons, snaps, and other fasteners, shall be inspected by the organization or end user for functionality. - **7.1.7*** The organization shall establish criteria for determining the extent of damage to a flame-resistant garment to warrant its removal from service for repair or disposal. **7.1.8*** At intervals specified by the organization, a selection of protective garments shall be permitted to be removed from use, inspected, and tested to the performance requirements of NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire. #### 7.2 Repairs. - **7.2.1** Flame-resistant garments shall be repaired in accordance with manufacturer instructions. - **7.2.2*** Flame-resistant garments shall be cleaned as specified in Section 6.1 before undergoing repair work. - **7.2.3*** All repairs and alterations to flame-resistant garments shall be performed in the same manner and using the same materials as the manufacturer. - **7.2.4*** Each organization shall be permitted to keep records on repairs made to flame-resistant garments. #### 7.3 Retirement. - **7.3.1** Damaged or deteriorated flame-resistant garments shall be retired when they can no longer be repaired. - **7.3.2*** Flame-resistant garments shall be retired when they exceed the manufacturer-stated service life, if indicated. - **7.4* Disposal.** Retired flame-resistant garments shall be destroyed or disposed of in a manner assuring that they will not be used for protection of industrial personnel. #### Annex A Explanatory Material Annex A is not a part of the requirements of this NFPA document but is included for informational purposes only. This annex contains explanatory material, numbered to correspond with the applicable text paragraphs. **A.1.1.1** The use of garments providing protection against flash fires should be incorporated into a proper safety program that also utilizes appropriate administrative and engineering controls in addition to proper, safe work procedures. Garments for protection against flash fire are available from a variety of manufacturers, in a range of items (coveralls, pants, shirts, vests, parkas, rainwear, disposable garments, aprons, etc.). Flame-resistant garments are made out of a variety of either inherently flame-resistant fabrics or fabrics that have been treated with a flame retardant. - **A.1.1.2** Organizations responsible for fire-fighting applications should use protective clothing and equipment specifically designed for those activities. Applicable standards include the following: - (1) NFPA 1971, Standard on Protective Ensemble for Structural Fire Fighting - (2) NFPA 1976, Standard on Protective Ensemble for Proximity Fire Fighting - (3) NFPA 1977, Standard on Protective Clothing and Equipment for Wildland Fire Fighting Organizations responsible for hazardous materials emergencies should use protective clothing and equipment specifically designed for those activities. Applicable standards include the following: NFPA 1991, Standard on Vapor-Protective Ensembles for Hazardous Materials Emergencies (2) NFPA 1992, Standard on Liquid Splash-Protective Ensembles and Clothing for Hazardous Materials Emergencies Organizations responsible for emergency medical operations should use protective clothing and equipment specifically designed for those activities. The applicable standard is NFPA 1999, Standard on Protective Clothing for Emergency Medical Operations. - **A.1.3.1** Anyone using this standard should consult the authority having jurisdiction and establish health and safety practices in conjunction with any existing applicable regulatory requirements prior to its use. - **A.3.2.1 Authority Having Jurisdiction.** The phrase "authority having jurisdiction" is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction. - **A.3.3.15 Flame Resistance.** Flame resistance can be an inherent property of a material, or it can be imparted by specific treatment. - **A.3.3.16 Flash Fire.** A flash fire requires an ignition source and a hydrocarbon or an atmosphere containing combustible, finely divided particles (e.g., coal dust or grain) having a concentration greater than the lower explosive limit of the chemical. Both hydrocarbon and dust flash fires generate temperatures from 538°C to 1037°C (1000°F to 1900°F). The intensity of a flash fire depends on the size of the gas or vapor cloud. When ignited, the flame front expands outward in the form of a fireball. The resulting effect of the fireball's energy with respect to radiant heat significantly enlarges the hazard areas around the gas released. Additional information
describing flash fires is provided in *Assessing Flame-resistant Clothing Use, CMA Manager's Guide.* - A.3.3.28 Organization. The organization can include contractors. - **A.3.3.29 Product Label.** The product label is not the label, symbol, or identifying mark of the certification organization; however, the label, symbol, or identifying mark of the certification organization can be attached to, or can be part of, the product label. (*See 3.2.2.*) - **A.4.2** An example of a suitable hazard and risk assessment is provided in *Assessing Flame-resistant Clothing Use, CMA Manager's Guide.* This publication includes checklists for assessment of flammable liquid or gas and combustible dust flash fire hazards. - **A.4.2.3** These hazards include, but are not limited to, the following: - (1) Exposure to flash fires - (2) Generation of static electricity on garments or other personal protective equipment (PPE) worn by workers - (3) Physical hazards ANNEX A 2113–9 - (4) Person-position hazards (work near waterways, on elevated platforms, or near roadways) - (5) Hazards created by the wearing of PPE Also, the hazard classification of the work area needs to be determined — for example, chemical, electrical, explosion, and so forth. **A.4.2.5** Examples of operations meeting the criteria include, but are not limited to, the following: - (1) Areas containing combustible dust in process equipment - (2) Processes containing flammable liquids or gases with an NFPA flammability rating of 4 (F4) - (3) Processes containing flammable liquids being processed above their flash point or boiling point **A.4.3** The flame-resistant garments addressed in NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire, and in this standard provide a measure of protection against unplanned exposure to flash fire (approximately 84 kW/m²) for relatively short periods of time, typically 3 seconds or less. Flame-resistant garments could serve to reduce the severity of burn injury as a result of a hydrocarbon flash fire but cannot completely prevent an injury. Garments that continue to burn after a flash fire incident are hazardous. NFPA 2112 was developed to minimize this hazard. NFPA 2112 specifies several requirements for flameresistant garments in terms of flame resistance, heat resistance, thermal shrinkage, and flash-fire performance. Descriptions of these performance requirements are provided in Annex B. One requirement that warrants additional explanation is the manikin test requirement. This test involves placement of a flame-resistant garment on a manikin with exposure to a 3-second, simulated flash fire. The test is used as a qualification of garment fabric performance, not the garment design, since a standard garment design is used for evaluating the fabric. The standard garment is a coverall with a front zipper closure and five pockets. Flame-resistant garments with different designs are not evaluated using this test. Organizations should judge the performance of their garment designs by comparing their design with that of the standard garment design. Garments that provide different areas of body coverage, have different closure systems, or have pockets in different locations can demonstrate lesser or better performance than the standard garment design. Flame-resistant garments should provide a good functional fit for maximum protection and comfort on the job. Users should be aware that the fit of the garment (that is, too tight or too loose) can have a direct influence on how much protection can be provided by a particular garment. **A.4.3(1)** Thermal protective characteristics of the fabric. The principal method used for evaluating the thermal protective characteristics of the fabric is the thermal protective performance (TPP) test, described in Annex B. Two different TPP ratings are provided from this test. "Spaced" TPP ratings are considered representative of those areas of the garment where air spaces exist between the garment and the wearer's skin. "Contact" TPP ratings are considered representative of those areas of the garment where the garment fabric is in direct contact with the wearer's skin. Consideration should be given to maximizing these values in relation to other garment fabric properties described below. Increas- ing TPP ratings can come at the expense of increased garment weight and reduced wearer comfort. **A.4.3(2)** Physical characteristics of the fabric. Fabrics used in the construction of flame-resistant garments have different physical characteristics. These characteristics can be based on the style of fabric construction (for example, knit versus woven fabric) or other characteristics of the fabric such as its weight, thickness, and stiffness. Annex B provides a description of some of the physical characteristics of flame-resistant garment fabrics. **A.4.3(3)** Garment construction and components (for example, pockets, types of closures). Flame-resistant garments are generally constructed of a primary fabric or set of fabrics but also include other fabrics and components. NFPA 2112 addresses the performance of many of these components, but not all components. Emblems such as patches or logos are used to identify the organization or individual. Because emblems are usually constructed of non-flame-resistant materials (such as cotton or nylon), the overall area of the emblem should be minimized on the garment. For example, large company logos across the back of the garment should not be applied. A preferable approach could be silk-screening with flame-resistant films when large logos or identifications are needed. In addition, the use of several patches over the entire garment should be avoided. **A.4.3(4)** Avoidance of static charge buildup. The end user's body can store a large static charge. It is imperative that organizations not rely on clothing static-dissipative properties in place of grounding or other practices to avoid static charge buildup. Friction between clothing layers or between clothing and other surfaces can generate static electricity of sufficient energy to ignite combustible atmospheres. For these reasons it is important to minimize the buildup of static electricity on flame-resistant garments in order to prevent the garments from becoming a source of ignition. Therefore, workers should be grounded before entering a high-risk area and should avoid removing garments while inside the high-risk area. At low humidity levels (less than 20 percent relative humidity), garments made from either natural fibers (such as cotton or wool) or synthetic fibers (such as aramids and rayon) that rely on water content to dissipate static electricity are not static dissipative. One approach to reduce the static of these garments is to use a static dissipative treatment during laundering in keeping with the manufacturers' recommended care procedures. This treatment works by trapping water on the fabric to distribute the static charge through conductivity. The static dissipative treatment needs to be added during each laundering cycle according to most manufacturers' instructions. Over drying in the dryer should also be avoided to minimize static buildup. The organization should verify with the manufacturer that the static dissipative treatment does not reduce the flame resistance or other properties of the garment. An alternative approach is to use garments made of inherently static dissipative fibers or other equally efficient antistatic construction. These blended fibers dissipate static charges by induction and are effective regardless of the environmental conditions, where the relative humidity can be 20 percent or less. **A.4.3(5)** The design type of the garment. Flame-resistant garments are available in different types such as coveralls, shirts, trousers, jackets, and rainwear. These garments can be constructed of single layer or multi-layer fabrics. In addition, the garments can include different design features such as clo- sures (zippers, snaps, or buttons) and pockets. The selection of the design type should consider the work environment, the types of other clothing or equipment to be worn, and the tasks being performed by the wearer. - **A.4.3(6)** The type of conditions under which the garments will be worn. The selection of the garment should take into consideration the working conditions of the end users wearing the garments. Conditions include the range of temperatures and relative humidities, the location of the work, and the tasks to be performed by the wearer. - **A.4.3(7)** The comfort properties of the fabric and garment. Several factors relate to fabric or garment comfort, including fabric weight and thickness, air permeability, water vapor transport, evaporative resistance, moisture regain, and wickability. Comfort assessment also has a subjective dimension that is not readily measured in a laboratory. Wear trials are recommended and often provide other useful information. - **A.4.3(8)** Cleaning and maintenance considerations. Certain fabrics can be laundered while others should be subjected to special cleaning procedures such as dry cleaning. The organization should consider the cleaning procedures associated with a particular fabric or garment type for its selection. In addition, the fabric's durability should also be a consideration for selection. - **A.4.4.1** Organizations should require evidence of certification to NFPA 2112, *Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire*, as part of the specification package. The evidence of certification should include the name of the certification organization, its address, phone number, and a point of contact. This certification can be further verified by contacting the certification organization directly to determine if the flame-resistant garment has been certified and meets the requirements of NFPA 2112. Evidence of certification for a
flame-resistant garment can also be determined by examining the product label. The product label should include the mark of the certification organization. - **A.4.4.2** Any additional specifications should be provided as specific performance criteria with a minimum or maximum requirement, as appropriate, together with a reference to a specific test method. - **A.5.1.1** Organizations should train their workers in the proper use and care of flame-resistant garments. The basis of this training should, as a minimum, be the user information provided by the manufacturer of the flame-resistant garment. Manufacturers are required to provide extensive information about their flame-resistant garments in the form of user information as specified by NFPA 2112, *Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire.* This information includes the following: - (1) Pre-use information: - (a) Safety considerations - (b) Limitations of use - (c) Garment marking recommendations and restrictions - (d) Warranty information - (2) Preparation for use: - (a) Sizing/adjustment - (b) Recommended storage practices - (3) Inspection frequency and details - (4) Donning and doffing procedures - (5) Use considerations - (6) Maintenance and cleaning: - (a) Cleaning instructions and precautions - (b) Decontamination instructions and precautions - (c) Maintenance criteria and methods of repair where applicable - (7) Retirement and disposal criteria End user training should also encompass when and where to wear flame-resistant garments and specific organization policies regarding the wearing of flame-resistant garments. - **A.5.1.6** Organizations should recognize the need for wearing other types of PPE while wearing flame-resistant garments. Other types of PPE include, but are not limited to, head protection, eye and face protection, foot protection, fall protection, personal flotation devices, high-visibility garments, and other types of garments. As with the use of flame-resistant garments, the selection of other PPE should be based on the hazard assessment. It is also important that the other selected PPE be compatible with and not adversely affect the performance properties of the flame-resistant garments. (*See A.5.1.7.*) - **A.5.1.7** Organizations and end users are cautioned that wearing over-garments or other PPE that are not flame-resistant over flame-resistant garments can compromise the performance of the flame-resistant garment. Clothing or items worn over flame-resistant garments that are not flame-resistant, such as jackets, rainwear, and high-visibility vests, can ignite and transfer significant heat through the flame-resistant garment, causing severe burn injuries. Undergarments should be melt-resistant. Certain synthetics or synthetic blends worn as undergarments can be inappropriate for use under flame-resistant garments, as the transferred heat from a flash fire could cause them to melt. Undergarments with melt-resistant properties are recommended (e.g., cotton, aramid, wool). - **A.5.2** Employees should be required to wear flame-resistant garments in facilities or areas where any of the following materials or conditions are present: - (1) Materials having a degree of hazard of 4 when ranked in accordance with NFPA 704, Standard System for the Identification of the Hazards of Materials for Emergency Response, where flammable vapors are present in normal operations - (2) Materials having a degree of hazard of 3 when ranked in accordance with NFPA 704, at temperatures above their flash points where flammable vapors are present in normal operations - (3) Materials having a degree of hazard of 2 or 1 when ranked in accordance with NFPA 704, when heated above their boiling points where flammable vapors are present in normal operations - (4) Combustible dust (components present in the material where particle size is less than 75 microns, required ignition energy is less than 100 mJ, and moisture content is less than 10 percent), where such dust is present in normal operation Flame-resistant garments should be required for specific tasks for employees working in areas meeting any of the following process hazards and performing a task where the assessment indicates that the work increases the possibility of loss of containment of the material: Processes involving materials having a degree of hazard of 4 when ranked in accordance with NFPA 704, where flamANNEX A 2113–11 - mable vapors will be present only if loss of containment - (2) Processes involving materials having a degree of hazard of 3 when ranked in accordance with NFPA 704, at temperatures above their flash points where flammable vapors will be present only if loss of containment occurs - (3) Processes involving materials having a degree of hazard of 2 or 1 when heated above their boiling points when ranked in accordance with NFPA 704, where flammable vapors will be present only if loss of containment occurs and experience indicates a frequency of incidents due to equipment design or arrangement - (4) Processes involving combustible dust {components present in the material where particle size is less than 75 microns, required ignition energy less than 100 mJ [1 micron (μ) = 10^{-6} m], and moisture content less than 10 percent}, where such dust is present in enclosed systems and loss of containment is required to generate a dust cloud Examples of combustible dust environments include locations of operations where charging equipment is used with dusty materials, locations where dust is present on equipment or structural members, and areas where filter bags in dust collectors are changed. Additional information is offered in Assessing Flame-resistant Clothing Use, CMA Manager's Guide. Engineering controls designed to reduce exposure to materials present in normal operation and experience should be considered in the evaluation of areas or tasks requiring the wearing of flame-resistant garments. Where multiple tasks require the wearing of flame-resistant garments, consideration should be given to standardization on the garment as normal work wear for the area. - **A.6.1.1** Adequate cleaning of flame-resistant garments, according to the manufacturers' recommendations, by laundering or dry cleaning is imperative in order to maintain flame resistance and thermal protection. Soiling can reduce the protective qualities and increase the risk of second- and third-degree burns. Garments that are contaminated with a significant amount of oily soil or a flammable substance should be decontaminated (or cleaned) to remove the substance. - **A.6.1.2** Initial washing or dry cleaning of flame-resistant garments removes fabric finishes that are added for ease in manufacturing and makes garments less stiff prior to use. - **A.6.1.3** Note any laundry precautions on the garment label that will lessen the effectiveness of the garment's flame resistance, in particular the following: - (1) Whether the use of chlorine bleach is advised or should be avoided - (2) Whether a heavy-duty soap can be used or laundering should be limited to a heavy-duty synthetic detergent Some soaps and detergents for dry cleaning can rapidly affect the flammable properties of protective garments. Certain petroleum solvents should be avoided as they commonly leave flammable grease deposits and reduce protective properties. **A.6.2.1** Contamination can occur from exposure to hazardous chemicals or biological agents. Hazardous chemicals can include solvents, acids, bases, and other substances that could leave a visible stain on garment fabrics. These chemicals could affect garment performance properties but can otherwise pose health hazards to the wearer if not removed through decontamination. Some chemicals, especially heavy organic solvents, can leave a flammable residue on the flame-resistant garment that will affect its level of protection. Other organic chemicals can cause dermatitis or other reactions with the skin, or can cause long-term health effects that do not become evident until much later after the exposure. Acids and bases can cause physical deterioration of garment fabrics or components and cause burns to the end user if not removed. The most common form of biological contamination is from blood or other body fluids from persons other than the end user. Based on Centers for Disease Control regulations, all blood and body fluids should be assumed to contain bloodborne pathogens (e.g., human immunodeficiency virus or hepatitis). CDC guidelines prescribe that the combination of high wash temperatures (greater than 60°C or 140°F) and detergents should be used to inactivate this biological contamination. Specific regulations addressing protection from bloodborne pathogens are contained in 29 CFR 1910.1030, Occupational Exposure to Bloodborne Pathogens, Final Rule. - **A.6.2.2** On a case-by-case basis, the organization should attempt to identify and assess the contamination of flameresistant garments. The organization should also contact the manufacturer to determine if specific procedures are recommended for removing the particular contaminant(s). If safety and health data for the contaminant indicate a potential harm to the end user, and no specific guidelines are offered by the manufacturer to remove the specific contaminant, then the affected flame-resistant garments should be disposed of. Organizations should also consult with outside cleaning facilities to determine if services are available that can be effective in decontaminating the affected flame-resistant garments. - **A.6.2.3** Flame-resistant garments that are suspected of being contaminated with hazardous substances should be segregated from uncontaminated flame-resistant garments. As a minimum, persons handling contaminated flame-resistant garments should wear protective gloves. Persons handling contaminated flame-resistant garments should also wear protective aprons and respirators as
necessary depending on the type and hazards of the contamination present. Contaminated flame-resistant garments should not be returned to service until the organization has made an assessment that the contamination has been removed. In some instances, this can require that contaminated flame-resistant garments be extracted and evaluated for the presence of contaminants. - **A.6.3** Appropriate storage practices for flame-resistant garments include storing garments inside out of direct sunlight in a dry, ventilated area. Flame-resistant garments are preferably stored on hangers. Cleaned flame-resistant garments should be stored in a separate area from uncleaned flame-resistant garments. Manufacturers should advise if any deleterious effect of storage is known. - **A.7.1.1** One effective practice for routinely and systematically inspecting all clothing is to inspect garments after they have been cleaned. Organizations using outside cleaning services establish criteria and have the outside cleaning organization perform this function and then report any garment discrepancies to an identified representative within the organization. - **A.7.1.7** The criteria used for determining when to retire or repair flame-resistant garments should provide measurable or easily identifiable damage. Examples of possible damage that should be listed by the organization include the following: - (1) Missing components (pockets, linings, reflective striping) - (2) Areas of fabric that show a significant reduction of fabric thickness (by more than 25 percent) as compared to new garment fabric material when measured using an appropriate fabric thickness gauge - (3) Discoloration of fabric over more than 10 percent of the garment that cannot be accounted for - (4) Holes in or abraded areas of the outer fabric layer that are greater than 625 mm² (1 in.²) - (5) Individual rips, tears, or punctures in the garment fabric that are longer than 25 mm (1 in.) in length - (6) Individual seams showing separation or thread loss for a distance greater than 25 mm (1 in.) in length - (7) Missing, corroded, or nonfunctional hardware - **A.7.1.8** Although periodic testing of flame-resistant garments can yield information about specific changes in tested garments, this approach is capable of providing only limited information about the overall use of flame-resistant garments from which samples are taken. The extent of wear and changes in the performance properties of flame-resistant garments will be dependent on the specific use and care of the individual garments sampled. Sampling of garments for testing to provide a determination of the overall lot of flameresistant garments used requires a relatively large number of garments. This is not practical since specimens need to be taken from each flame-resistant garment, effectively destroying each tested garment. Furthermore, it is likely that flameresistant garments used by an organization will involve different wearing histories that do not predict performance of all flame-resistant garments for that organization. - **A.7.2.2** It is important that garments be clean, dry, and free from contamination before repairs are attempted to minimize the spread of contamination to repair workers. - **A.7.2.3** Methods and materials include, but are not limited to, fabric, thread type, stitch construction, and hardware. When repairs are made to flame-resistant garments, it is important that the fabrics and components used for repairing the garments be the same as the original fabrics or components used in their construction to avoid reducing the performance properties of the flame-resistant garment. It is especially important that the fabrics and components used in repairs meet the performance requirements specified in NFPA 2112, Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire. For example, non-flame-resistant fabrics should never be used as patches or replacement pockets on flame-resistant garments. Thread used in stitching repaired areas should meet the melting temperature requirement in NFPA 2112. - **A.7.2.4** Organizations could find it useful to track the repairs on flame-resistant garments in order to monitor their life cycle. This practice will require that each garment have a unique identifying number or other means for separately tracking specific flame-resistant garments. Information that could be kept as part of these records includes, but is not limited to, the following: - (1) Garment manufacturer - (2) Manufacturer's garment identification - (3) Date of production - (4) Date of repair - (5) Who performed the repair - (6) Brief description of the repair - (7) Person authorizing return of the garment to service - **A.7.3.2** Some manufacturers can specify a maximum service life based on the total number of cleanings that a flameresistant garment is subjected to or other criteria. If the life cycles (e.g., time of service, length of wear, number of cleanings and repairs) of specific flame-resistant garments are tracked, then it should be possible for the organization to determine which garments have reached the maximum service life, if specified. - **A.7.4** Organizations should either destroy or mark retired flame-resistant garments in a manner that is clear to anyone picking up the garment that it cannot be used for protection of industrial personnel against flash fire. Methods for ensuring this practice include cutting clothing into pieces or marking "Do Not Use for Protection" on the outside of the clothing. ## Annex B Properties for Evaluating Flame-Resistant Garments This annex is not a part of the requirements of this NFPA document but is included for informational purposes only. **B.1 Properties and Test Methods.** Table B.1, extracted from NFPA 2112, *Standard on Flame-Resistant Garments for Protection of Industrial Personnel Against Flash Fire*, provides a description of the test properties and methods used for evaluating flame-resistant garments. A number of additional properties can be used in the evaluation of flame-resistant garments that are not required as part of this standard. Table B.1 also lists these additional properties, recommended test methods, and their suggested applications. The section numbers referenced in Table B.1 refer to those in NFPA 2112. ANNEX B **2113**–13 Table B.1 Performance Properties and Additional Evaluation Properties for Flame-Resistant Garments | Property (Section No.) | Test Method Cited | Description of Test Method | Application of Test Method | |--|--|---|--| | Mandatory Tests | | | | | Thermal protective performance (TPP) (7.1.1) | Method appears in Section 8.2 | A 150 mm (6 in.) square fabric specimen is placed on a specimen holder that suspends the specimen horizontally over two Meker burners and a radiant panel. The heat and flame source is adjusted to provide an exposure heat flux of 83 kW/m² (2.0 cal/cm²·sec). A weighted sensor containing a copper calorimeter is placed on top of the specimen and measures the heat transfer through the specimen. A water-cooled shutter between the specimen and heat source is withdrawn to begin the exposure. The test measures the amount of heat through the specimen to cause a second-degree burn. This time is multiplied by the exposure heat flux to provide a TPP rating. TPP ratings are measured with the sensor both in "contact" with the specimen and "spaced" 6 mm (¼ in.) away from the specimen. | This test is used to measure the thermal insulation provided by garment materials. The TPP test uses an exposure heat flux that is representative of flash fire environments. NFPA 2112 requires that specimens have a TPP rating of 3 or more when measured in "contact," simulating direct contact with the skin, and 6 or more when measured "spaced," simulating an air gap between the skin and the garment material. Higher TPP ratings indicate better performance for this test. | | Flame resistance (7.1.2) | ASTM D 6413; Washing and drying per commercial laundering procedure or dry cleaning (100 cycles) (Section 8.3) | A 75 mm × 305 mm (3 in. × 12 in.) fabric specimen is placed in a holder that is suspended vertically over a 38 mm (1½ in.) high methane-fueled flame. The specimen is placed 19 mm (¾ in.) into the flame for 12 seconds. After exposure to the flame, the amount of time during which the specimen continues to burn (afterflame) is recorded. The length of the burn or char length is then measured by attaching a weight to the specimen and measuring the length of the tear along the burn line. Observations are
recorded if any melting and dripping is observed. Samples are tested in this manner both before and after 100 wash/dry cycles or 100 dry cleaning cycles. | This test is used to determine how easily fabrics ignite and how easily they continue to burn once ignited. In order to pass NFPA 2112, materials cannot have an average afterflame time greater than 2 seconds, a char length greater than 102 mm (4 in.), or any melting with dripping. | Table B.1 Continued | Property (Section No.) | Test Method Cited | Description of Test Method | Application of Test Method | |--------------------------------------|---|---|--| | Mandatory Tests | | | | | Thermal shrinkage resistance (7.1.3) | Method appears in Section 8.4; Washing and drying per commercial laundering procedure or dry cleaning (3 cycles) | A 381 mm (15 in.) square fabric specimen is marked for width and length dimensions and is then suspended in a forced air-circulating oven at 260°C (500°F). Following a 5-minute exposure, the specimen dimensions are remeasured and then compared against the original measurements to determine the amount of shrinkage. The specimen is examined for evidence of melting, dripping, separation, or ignition. Specimens that demonstrate such behavior fail the test. | Resistance to shrinkage of a fabric when exposed to heat is considered important in minimizing the effects of a flash fire. NFPA 2112 permits shrinkage in this laboratory-based test of 10 percent or less. Lower reported shrinkage indicates fabric that is more resistant to thermal shrinkage. | | Heat resistance (7.1.4/7.3) | Method appears as Section
8.4;
Washing and drying per
commercial laundering
procedure or dry cleaning (3
cycles) | The same exposure used for thermal shrinkage above is also used for measuring heat resistance. Fabrics or garment components not required to meet thermal shrinkage requirements can be 152 mm (6 in.) square specimens. Following a 5-minute exposure, the specimen is examined for evidence of melting and dripping, separation, or ignition. Specimens that demonstrate such behavior fail the test. The test is also applied to hardware items. | This test measures how garment fabrics and components react to the high heat that could occur during a flash fire. The purpose of the test is to prevent materials or components being used in garments that will easily ignite, melt, drip, or separate during exposure to high heat from being used in garments. | | Manikin testing (7.1.5) | ASTM F 1930;
Washing and drying per
commercial laundering
procedure or dry cleaning
(1 cycle)
(Section 8.5) | The fabric is made into a standardized coverall design and placed on an instrumented manikin that is dressed in cotton underwear. The manikin is subjected to an overall flame and heat exposure averaging 83 kW/m² (2.0 cal/cm²·sec) for 3 seconds. Sensors embedded in the manikin's skin predict whether a second- or third-degree burn will occur at that specific location. A computer program determines the percentage of the body that would sustain second- or third-degree burns. This percentage is related to a body burn rating. | This test provides an overall evaluation of how the fabric performs in a standardized coverall design. NFPA 2112 requires body burn ratings of 50 or less. Lower body burn ratings indicate greater protection provided by the fabric. | ANNEX B 2113–15 Table B.1 Continued | Property (Section No.) | Test Method Cited | Description of Test Method | Application of Test Method | |---------------------------------|---|--|--| | Thread melting resistance (7.2) | FTMS 191A, 1534
(Section 8.6) | A small segment of thread used in the stitching of station/work uniforms is placed in a flask containing an organic solvent and heated. (The solvent extracts substances that would interfere with the test.) Next, the extracted thread segment is put in a device that slowly heats the thread. The temperature at which the thread begins to melt is the melting temperature. | Thread used in flame-resistant garments must withstand temperatures of up to 260°C (500°F). If the melting temperature is less than 260°C (500°F), the thread fails the test. The temperature, 260°C (500°F), is consistent with the heat resistance test (above). | | Label legibility (7.4) | Method appears in Section 8.7;
Washing and drying per commercial laundering procedure or dry cleaning (100 cycles) | Sample labels containing the required product information are subjected to 100 wash/dry or dry cleaning cycles and then examined for legibility. | This requirement checks for label durability. Following this test, the labels must remain legible from a distance of at least 305 mm (12 in). | | Other Property Evaluations | | | | | Fabric weight | ASTM D 3776 | A known, specific area of fabric is weighed using a laboratory balance. The measured fabric weight is divided by the area of the fabric. This yields a fabric weight in ounces per square yard. | Fabric weights are commonly used to reference materials. | | Tensile strength (grab method) | ASTM D 5034 | In this test, a 102 mm × 204 mm (4 in. × 8 in.) fabric specimen is placed between the two grips of a tensile testing machine and pulled in the direction of the specimen's long axis until it breaks. The force measured at the site of the break is reported as the tensile strength. Tensile strength is reported for both the warp (machine) and fill (cross-machine) directions of the fabric. | Tensile strength is a measurement that describes the ease with which a woven material can be pulled apart. Higher tensile strengths indicate greater fabric strength. | Table B.1 Continued | Property (Section No.) | Test Method Cited | Description of Test Method | Application of Test Method | |----------------------------------|---|---|---| | Other Property Evaluations | | | | | Tear strength (Elmendorf method) | ASTM D 1424 | In this test, a notched 102 mm × 204 mm (4 in. × 6 in.) material specimen is placed into a test device. The test device uses a pendulum that is allowed to fall by its own weight. The force of the falling pendulum tears the material beyond the notch. This test measures the force in pounds that is required to continue a tear in the notched test specimen. Tear resistance is reported for both the warp (machine) and fill (cross-machine) directions of the fabric. | Tear resistance is a measurement of the ease with which a woven fabric can be torn apart. Higher tear strengths indicate fabrics with greater resistance to tearing. | | Material burst strength | ASTM D 3787 | This test measures the force required to burst a knit or stretch woven fabric. A material specimen is clamped over a diaphragm that is inflated until the specimen bursts. The pressure at which the fabric bursts is the burst strength. | Burst strength is a measure of
how easily a knit fabric can be
penetrated by a hard round
object. Higher burst strength
indicates fabrics that are more
resistant to bursting. | | Laundering shrinkage | AATCC 135; Machine cycle 3; wash temp. IV; and drying procedure Aiii (number of cycles to be specified) | A fabric specimen, on which dimensions are marked and measured in both its width and length, is subjected to a specified number of separate wash/dry cycles under controlled conditions. Following the washing and drying, the dimensions of the material sample are compared to its original dimensions to determine the amount of shrinkage. Shrinkage is
reported in both the warp (machine) and fill (cross-machine) directions of the fabric. | Laundering shrinkage is a measure of the percentage a fabric shrinks after laundering. Shrinkage measured for a fabric is not necessarily representative of shrinkage measured for a garment. | | Laundering colorfastness | AATCC 61;
Color change procedure | A fabric sample is subjected to controlled washing and drying conditions. Following exposure, the color of the material sample is compared to a color scale chart that indicates the degree of a color change. Color scale ratings range from Grade 1 (change in color) to Grade 5 (negligible or no change) in 0.5 increments. | Laundering colorfastness assesses the amount of color change, or fading, that occurs in the fabric following exposure to washing and drying. Fabrics with high color scale ratings are more resistant to color changes in laundering. |