

N-PA

FIRE TESTS— BUILDING CONSTRUCTION & MATERIALS 1979

NATIONAL FOR INCOMEN ASSN.

470 AL LANGE A THUE
BOSTON, A YES LITTIO

Copyright © 1979

All Rights Reserved

NATIONAL FIRE PROTECTION ASSOCIATION, INC 470 Atlantic Avenue, Boston, MA 02210

3M-12-79-FP Printed in U.S.A.

NOTICE

All questions or other communications relating to this document should be sent only to NFPA Headquarters, addressed to the attention of the Committee responsible for the document.

For information on obtaining Formal Interpretations of the document, proposing Tentative Interim Amendments, proposing amendments for Committee consideration, and appeals on matters relating to the content of the document, write to the Assistant Vice President — Standards, National Fire Protection Association, 470 Atlantic Avenue, Boston, MA 02210.

Licensing Provision — This document is copyrighted by the National Fire Protection Association (NFPA).

- 1. Adoption by Reference Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders or similar instruments. Any deletions, additions and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Assistant Vice President Standards) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription A. Public authorities with law-making or rule-making powers only, upon written notice to the NFPA (Attention: Assistant Vice President Standards), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and, (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's law-making or rule-making process. B. Public authorities with advisory functions and all others desiring permission to reproduce this document or its contents in whole or in part in any form shall consult the NFPA.

All other rights, including the right to vend, are retained by NFPA.

(For further explanation, see the Policy Concerning the Adoption, Printing and Publication of NFPA Documents which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

See Official NFPA Definitions at the back of this pamphlet.

© 1979 NFPA, All Rights Reserved

Standard Methods of Fire Tests of Building Construction and Materials

NFPA 251 - 1979

1979 Edition of NFPA 251

This 1979 edition of NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials, was prepared by the Committee on Fire Tests and was adopted by the National Fire Protection Association, Inc. on November 13, 1979, at its Fall Meeting in Phoenix, Arizona. It was released by the Standards Council for publication on December 3, 1979.

The principal changes to the previous 1972 edition incorporated in this 1979 edition are: The location of thermocouples required to determine temperatures of unexposed surfaces of floors, roofs, walls, and partitions; the allowance of fire endurance tests of floor and roof assemblies at a specific load condition other than maximum; and the rearrangement of the document to correspond with the latest style manual.

Origin and Development of NFPA 251

This standard had its origin in recommendations of the International Fire Prevention Congress, London, 1903. It was presented to the NFPA by the Committee on Fire-Resistive Construction in 1914. It was officially adopted in a revised form in 1918. Successive editions were published in 1918, 1926, 1934, 1941, 1955, 1958, 1959, 1960, 1961, 1963 and 1969. It was handled in the NFPA successively by the Committee on Fire-Resistive Construction, the Committee on Building Construction, and now by the Committee on Fire Tests.

Committee on Fire Tests

Herman Spaeth, Chairman Insurance Services Office

- M. S. Abrams, Portland Cement Association Irwin A. Benjamin, U.S. National Bureau of Standards
- John A. Blair, E. I. Dupont De Nemours & Company (Rep. Society of the Plastics Industry)
- B. J. Callahan, Factory Mutual Research Corporation
- Herbert B. Carlsen, Gypsum Association
- Dr. William J. Christian, Underwriters Laboratories Inc.
- Wells Denyes, Eastman Chemical Products Inc. (Rep. Man-Made Fiber Producers Association)
- Robert W. Dougherty, M & M Protection Consultants
- Gerard R. Dufresne, U.S. Testing Company, Incorporated (vote limited to textile matter & related prod.)

- Buell B. Dutton, Village of Mt. Prospect (Rep.: Building Officials & Code Administrators International, Inc.)
- Richard G. Gewain, American Iron and Steel Institute
- Gerald E. Lingenfelter, American Insurance Association
- Dr. William H. McLain, Cannyon Lake, TX E. E. Miller, Industrial Risk Insurers
- Norman S. Pearce, Underwriters' Laboratories of Canada
- T. P. Pritsker, The Dallas Laboratories
- Dr. A. F. Robertson, U.S. National Bureau of Standards
- John Ed Ryan, National Forest Products As-
- K. Sumi, National Research Council of Canada Lewis W. Vaughan, Canadian Sheet Steel Building Institute

Alternates

- J. S. Barritt, Industrial Risk Insurers (Alternate to E. E. Miller)
- David Brackett, Gypsum Association (Alternate to H. B. Carlsen)
- Peter B. McOrmond, Insurance Services Office (Alternate to H. H. Spaeth)
- Alton T. Riddick, National Forest Products Association (Alternate to J. E. Ryan)
- G. M. Watson, American Insurance Association (Alternate to G. E. Lingenfelter)

Nonvoting

A. J. Bartosic, Rohm & Haas Company

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

Contents

Chapter 1 General 1-1 Scope 1-2 Purpose 1-3 Significance	251- 5 251- 5
Chapter 2 Control of Fire Tests 2-1 Time-Temperature Curve 2-2 Furnace Temperatures 2-3 Temperatures of Unexposed Surfaces of Floors, Roofs, Walls, and Partitions	251- 7 251- 7 251- 8
Chapter 3 Classification as Determined by Test	251-10 251-10
Chapter 4 Test Specimen	251-11
Chapter 5 Conduct of Fire Tests	251 -13
Chapter 6 Tests of Bearing Walls and Partitions	251-15 251-15
Chapter 7 Tests of Nonbearing Walls and Partitions	251-16 251-16 251-16
Chapter 8 Tests of Columns	251-17 251-17
Chapter 9 Alternate Test of Protection for Structural Steel Columns 9-1 Application 9-2 Size and Character of Specimen 9-3 Temperature Measurement 9-4 Exposure to Fire 9-5 Conditions of Acceptance	251-18 251-18 251-18 251-18
Chapter 10 Tests of Floor and Roof Assemblies 10-1 Application 10-2 Size and Characteristics of Specimen 10-3 Loading 10-4 Temperature Measurement 10-5 Conditions of Acceptance — Restrained Assembly 10-6 Conditions of Acceptance — Unrestrained Assembly 10-7 Reports of Results	251-19 251-19 251-19 251-20 251-20 251-21

Chapter 11 Tests of Loaded Restrained Beams	251 -22
11-1 Application 11-2 Size and Characteristics of Specimen	251-22
11-2 Size and Characteristics of Specimen	251 -22
11-3 Loading	251-22
11-3 Loading	251 -22
Chapter 12 Alternative Classification Procedure for Loaded Beams	25 1-23
12-1 Application	251 -23
12-2 Temperature Measurement	251-23
12-3 Conditions of Acceptance	251-23
Chapter 13 Alternate Test of Protection for Solid Structural Steel Beams	0.1 0.5
and Girders	251-25
13-1 Application	
13-2 Size and Character of Specimen	
13-3 Temperature Measurement	
13-4 Conditions of Acceptance	251-26
Chapter 14 Tests of Protection for Combustible Framing, or for Combustible Facings on the Unexposed Side of Walls, Partitions, and Floors	9K1 97
14-1 Character of Specimen	921 97
14-2 Size of Specimen	491-27
14-3 Conditions of Acceptance	451-27 951 97
14-5 Conditions of Acceptance	431-47
Appendix A	251 -28
Appendix B Standard Time-Temperature Curve for Control of Fire	
Tests	25 1-31
Appendix C Requirements for Asbestos Pads	251 -32
Appendix D Suggested Report Form	251 -33
Appendix E Guide for Determining Conditions of Restraint for Floor and Roof Assemblies and for Individual Beams	251 -36
Appendix F Method of Correcting Fire Endurance for Concrete Slabs Determined by Unexposed Surface Temperature Rise for Nonstandard Moisture Content	251 -39

Standard Methods of Fire Tests of Building Construction and Materials

NFPA 251-1979

NOTICE: An asterisk (*) following the number or letter designating a subdivision indicates explanatory material on that subdivision in Appendix A.

Chapter 1 General

1-1* Scope.

- 1-1.1 These methods of fire tests are applicable to assemblies of masonry units and to composite assemblies of structural materials for buildings, including bearing and other walls and partitions, columns, girders, beams, slabs, and composite slab and beam assemblies for floors and roofs. They are also applicable to other assemblies and structural units that constitute permanent integral parts of a finished building.
- 1-1.2* It is the intent that classifications shall register performance during the period of exposure and shall not be construed as having determined suitability for use after fire exposure.
- 1-1.3 This standard shall be used solely to measure and describe the properties of materials, products, or systems in response to heat and flame under controlled laboratory conditions and shall not be considered or used for the description, appraisal, or regulation of the fire hazard of materials, products, or systems under actual fire conditions.
- **1-2 Purpose.** This standard outlines methods of fire test for the fire-resistive properties of building members and assemblies.

1-3 Significance.

1-3.1 This standard is intended to evaluate the duration for which the types of assemblies noted in Section 1-1 will contain a fire, or

retain their structural integrity or exhibit both properties dependent upon the type of assembly involved during a predetermined test exposure.

- 1-3.2 The test exposes a specimen to a standard fire exposure controlled to achieve specified temperatures throughout a specified time period. In some instances, the fire exposure may be followed by the application of a specified standard fire hose stream. The exposure, however, may not be representative of all fire conditions which may vary with changes in the amount, nature and distribution of fire loading, ventilation, compartment size and configuration, and heat sink characteristics of the compartment. It does, however, provide a relative measure of fire performance of comparable assemblies under these specified fire exposure conditions. Any variation from the construction or conditions (that is, size, method of assembly, and materials) that are tested may substantially change the performance characteristics of the assembly.
- 1-3.3 The test standard provides for the following:
 - (a) In walls, partitions, and floor or roof assemblies:
 - 1. Measurement of the transmission of heat.
- 2. Measurement of the transmission of hot gases through the assembly, sufficient to ignite cotton waste.
- 3. For load-bearing elements, measurement of the load carrying ability of the test specimen during the test exposure.
- (b) For individual load-bearing assemblies such as beams and columns: Measurement of the load-carrying ability under the test exposure with some consideration for the end support conditions (that is, restrained or not restrained).
- 1-3.4 The test standard does not provide the following:
- (a) Full information as to performance of assemblies constructed with components or lengths other than those tested.
- (b) Evaluation of the degree by which the assembly contributes to the fire hazard by generation of smoke, toxic gases, or other products of combustion.
- (c) Measurement of the degree of control or limitation of the passage of smoke or products of combustion through the assembly.
- (d) Simulation of the fire behavior of joints between building elements such as floor-wall or wall-wall, etc., connections.
 - (e) Measurement of flame spread over surface of tested element.
- (f) The effect on fire endurance of conventional openings in the assembly, that is, electrical receptacle outlets, plumbing pipe, etc., unless specifically provided for in the construction tested.

Chapter 2 Control of Fire Tests

2-1 Time-Temperature Curve.

2-1.1 The conduct of fire tests of materials and construction shall be controlled by the standard time-temperature curve shown in Figure 2-1.1. The points on the curve that determine its character are:

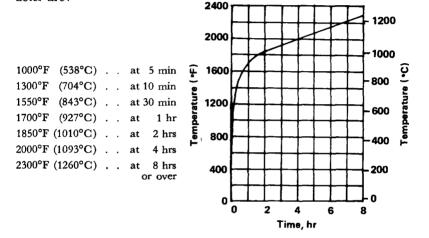


Figure 2-1.1 Time-Temperature Curve

2-1.2 For a closer definition of the time-temperature curve, see Appendix B.

2-2* Furnace Temperatures.

2-2.1 The temperature fixed by the curve shall be deemed to be the average temperature obtained from the readings of not less than nine thermocouples for a floor, roof, wall or partition and not less than eight thermocouples for a structural column, symmetrically disposed and distributed to show the temperature near all parts of the sample, the thermocouples being enclosed in sealed porcelain tubes $\frac{3}{4}$ in. (19 mm) in outside diameter and $\frac{1}{8}$ in. (3 mm) in wall thickness, or, as an alternative in the case of base metal thermocouples, enclosed in sealed, standard-weight $\frac{1}{2}$ -in. (13-mm) black wrought steel or black wrought iron pipe. The exposed length

of the pyrometer tube and thermocouple in the furnace chamber shall be not less than 12 in. (305 mm). Other types of protecting tubes or pyrometers may be used that, under test conditions, give the same indications as the above standard within the limit of accuracy that applies for furnace-temperature measurements. For floors and columns, the junction of the thermocouples shall be placed 12 in. (305 mm) away from the exposed face of the specimen at the beginning of the test and, during the test, shall not touch the sample as a result of its deflection. In the case of walls and partitions, the thermocouples shall be placed 6 in. (152 mm) away from the exposed face of the specimen at the beginning of the test, and shall not touch the specimen during the test, in the event of deflection.

- **2-2.2** The temperatures shall be read at intervals not exceeding 5 min during the first 2 hrs, and thereafter the intervals may be increased to not more than 10 min.
- 2-2.3 The accuracy of the furnace control shall be such that the area under the time-temperature curve, obtained by averaging the results from the pyrometer readings, is within 10 percent of the corresponding area under the standard time-temperature curve shown in Figure 2-1.1 for fire tests of 1 hr or less duration, within 7.5 percent for those over 1 hr and not more than 2 hr, and within 5 percent for tests exceeding 2 hrs in duration.

2-3 Temperatures of Unexposed Surfaces of Floors, Roofs, Walls, and Partitions.

2-3.1* Temperatures of unexposed surfaces shall be measured with thermocouples or thermometers placed under flexible, dry, felted asbestos pads. The properties of these pads shall meet the requirements listed in Appendix C. The wire leads of the thermocouple or the stem of the thermometer shall have an immersion under the pad and be in contact with the unexposed surface for not less than $3\frac{1}{2}$ in. (90 mm). The hot junction of the thermocouple or the bulb of the thermometer shall be placed approximately under the center of the pad. The outside diameter of protecting or insulating tubes and of thermometer stems shall be not more than 5/16 in. (8 mm). The pad shall be held firmly against the surface, and shall fit closely about the thermocouples or thermometer stems. Thermometers shall be of the partial-immersion type, with a length of stem, between the end of the bulb and the immersion mark, of 3 in. (76 mm). The wires for the thermocouple in the length covered by the pad shall be not heavier than No. 18 B & S gage [0.04] in. (1.02 mm)] and shall be electrically insulated with heat-resistant and moisture-resistant coatings.

- 2-3.2 Temperature readings shall be taken at not less than nine points on the surface. Five of these shall be symmetrically disposed, one to be approximately at the center of the specimen, and four at approximately the center of its quarter sections. The other four shall be located at the discretion of the testing authority to obtain representative information on the performance of the construction under test. None of the thermocouples shall be located nearer to the edges of the test specimen than one and one-half times the thickness of the construction, or 12 in. (305 mm). An exception can be made in those cases where there is an element of the construction that is not otherwise represented in the remainder of the test specimen. None of the thermocouples shall be located opposite or on top of beams, girders, pilasters, or other structural members if temperatures at such points will obviously be lower than at more representative locations. None of the thermocouples shall be located opposite or on top of fasteners such as screws, nails, or staples that will be obviously higher or lower in temperature than at more representative locations if the aggregate area of any part of such fasteners projected to the unexposed surface is less than 0.8 percent of the area within any 5-in. (127-mm) square. Such fasteners shall not extend through the assembly.
- 2-3.3 Temperature readings shall be taken at intervals not exceeding 15 min until a reading exceeding 212°F (100°C) has been obtained at any one point. Thereafter the readings may be taken more frequently at the discretion of the testing body, but the intervals need not be less than 5 min.
- 2-3.4 Where the conditions of acceptance place a limitation on the rise of temperature of the unexposed surface, the temperature end point of the fire endurance period shall be determined by the average of the measurements taken at individual points; except that if a temperature rise 30 percent in excess of the specified limit occurs at any one of these points, the remainder shall be ignored and the fire endurance period judged as ended.

Chapter 3 Classification as Determined by Test

3-1 Report of Results.

3-1.1 Results shall be reported in accordance with the performance in the tests prescribed in these methods. They shall be expressed in time periods of resistance, to the nearest integral minute.

Reports shall include observations of significant details of the behavior of the material or construction during the test and after the furnace fire is cut off, including information on deformation, spalling, cracking, burning of the specimen or its component parts, continuance of flaming, and production of smoke.

- **3-1.2** Reports of tests involving wall, floor, beam, or ceiling constructions in which restraint is provided against expansion, contraction, or rotation of the construction shall describe the method used to provide this restraint.
- **3-1.3** Reports of tests involving floor constructions in which other than maximum load conditions (see Section 10-3) are imposed shall fully define the conditions of loading used in the test and shall be designated in the title of the report of the test as a restricted load condition.
- 3-1.4* When the indicated resistance period is ½ hr or over, determined by the average or maximum temperature rise on the unexposed surface or within the test specimen, or by failure under load, a correction shall be applied for variation of the furnace exposure from that prescribed, where it will affect the classification, by multiplying the indicated period by two-thirds of the difference in area between the curve of average furnace temperature and the standard curve for the first three-fourths of the period and dividing the product by the area between the standard curve and a base line of 68°F (20°C) for the same part of the indicated period, the latter area increased by 54° Fahr-hr or 30° Cent-hr (3240° Fahr-min or 1800° Cent-min), to compensate for the thermal lag of the furnace thermocouples during the first part of the test. For fire exposure in the test higher than standard, the indicated resistance period shall be increased by the amount of the correction and be similarly decreased for fire exposure below standard.
- 3-1.5 Unsymmetrical wall assemblies may be tested with either side exposed to the fire, and the report shall indicate the side so exposed. Both sides may be tested, and the report then shall so indicate the fire endurance classification applicable to each side.

Chapter 4 Test Specimen

4-1 Specimen.

- **4-1.1** The test specimen shall be truly representative of the construction for which classification is desired, as to materials, workmanship, and details such as dimensions of parts, and shall be built under conditions representative of those obtaining as practically applied in building construction and operation. The physical properties of the materials and ingredients used in the test specimen shall be determined and recorded.
- **4-1.2** The size and dimensions of the test specimen specified herein are intended to apply for rating constructions of dimensions within the usual general range employed in buildings. If the conditions of use limit the construction to smaller dimensions, a proportionate reduction may be made in the dimensions of the specimens for a test qualifying them for such restricted use.
- **4-1.3** When it is desired to include a built-up roof covering, the test specimen shall have a roof covering of 3-ply, 15-lb-type felt and not in excess of 120 lbs (54.4 kg) per square [100 sq ft (9.3 sq m)] of hot mopping asphalt without gravel surfacing. Tests of assemblies with this covering do not preclude the field use of other built-up roof coverings.

4-2 Protection and Conditioning of Test Specimen.

4-2.1 The test specimen shall be protected during and after fabrication to assure normality of its quality and condition at the time of test. It shall not be tested until a large portion of its final strength has been attained, and, if it contains moisture, until the excess has been removed to achieve an air-dry condition in accordance with the requirements given in 4-2.1.1 through 4-2.1.3. The testing equipment and sample undergoing the fire test shall be protected from any condition of wind or weather that might lead to abnormal results. The ambient air temperature at the beginning of the test shall be within the range of 50° to 90°F (10° to 32°C). The velocity of air across the unexposed surface of the sample, measured just before the test begins, shall not exceed 4.4 ft per sec (1.3 m/sec) as determined by an anemometer placed at right angles to the unexposed surface. If mechanical ventilation is employed during the test, an air stream shall not be directed across the surface of the specimen.

- 4-2.1.1* Prior to fire test, constructions shall be conditioned with the objective of providing, within a reasonable time, a moisture condition within the specimen approximately representative of that likely to exist in similar construction in buildings. For purposes of standardization, this condition is to be considered as that which would be established at equilibrium resulting from drying in an ambient atmosphere of 50 percent relative humidity at 73°F (23°C). However, with some constructions, it may be difficult or impossible to achieve such uniformity within a reasonable period of time. Accordingly, where this is the case, specimens may be tested when the dampest portion of the structure, the portion at 6-in. (152-mm) depth below the surface of massive constructions, has achieved a moisture content corresponding to drying to equilibrium with air in the range of 50 to 75 percent relative humidity at $73^{\circ} \pm 5^{\circ}F$ $(230^{\circ} \pm 3^{\circ}C)$. In the event that specimens dried in a heated building fail to meet these requirements after a 12-month conditioning period, or in the event that the nature of the construction is such that it is evident that drying of the specimen interior will be prevented by hermetic sealing, these requirements may be waived, except as to attainment of a large portion of final strength, and the specimen tested in the condition in which it then exists.
- **4-2.1.2** If, during the conditioning of the specimen it appears desirable or is necessary to use accelerated drying techniques, it is the responsibility of the laboratory conducting the test to avoid procedures which will significantly alter the structural or fire endurance characteristics of the specimen or both from those produced as the result of drying in accordance with procedures given in 4-2.1.1.
- **4-2.1.3*** Within 72 hrs prior to the fire test, information on the actual moisture content and distribution within the specimen shall be obtained. The information shall be included in the test report.

Chapter 5 Conduct of Fire Tests

5-1 Fire Endurance Test. The fire endurance test on the specimen with its applied load, if any, shall be continued until failure occurs, or until the specimen has withstood the test conditions for a period equal to that herein specified in the conditions of acceptance for the given type of construction.

5-2 Hose Stream Test.

5-2.1 Where required by the conditions of acceptance, a duplicate specimen shall be subjected to a fire exposure test for a period equal to one-half of that indicated as the resistance period in the fire endurance test, but not for more than 1 hr, immediately after which the specimen shall be subjected to the impact, erosion, and cooling effects of a hose stream directed first at the middle and then at all parts of the exposed face, changes in direction being made slowly.

Exception 1: The hose stream test shall not be required in the case of constructions having a resistance period, indicated in the fire endurance test, of less than 1 hr.

Exception 2: The submitter may elect, with the advice and consent of the testing body, to have the hose stream test made on the specimen subjected to the fire endurance test and immediately following the expiration of the fire endurance test.

5-2.2 Stream Equipment and Details. The stream shall be delivered through a $2\frac{1}{2}$ -in. (65-mm) hose discharging through a National Standard Playpipe of corresponding size equipped with a $1\frac{1}{8}$ -in. (29-mm) discharge tip of the standard-taper smooth-bore pattern without shoulder at the orifice. The water pressure and duration of application shall be as prescribed in Table 5-2.2.

Table 5-2.2

Duration of				
	Application, min			
Water Pressure at	per 100 sq ft			
Base of Nozzle, psi.	exposed area.			
45 (310 kPa)	6 (0.65min/m^2)			
45 (310 kPa)	$5 (0.54 \text{min/m}^2)$			
30 (207 kPa)	$2\frac{1}{2}$ (0.27 min/m ²)			
30 (207 kPa)	$1\frac{1}{2}$ (0.16 min/m ²)			
30 (207 kPa)	1 (0.11min/m^2)			
30 (207 kPa)	1 (0.11min/m^2)			
	Base of Nozzle, psi. 45 (310 kPa) 45 (310 kPa) 30 (207 kPa) 30 (207 kPa) 30 (207 kPa) 30 (207 kPa)			

5-2.3 Nozzle Distance. The nozzle orifice shall be 20 ft (6 m) from the center of the exposed surface of the test sample if the nozzle is so located that when directed at the center its axis is normal to the surface of the test sample. If otherwise located, its distance from the center shall be less than 20 ft (6 m) by an amount equal to 1 ft (0.3 m) for each 10 degrees of deviation from the normal.

Chapter 6 Tests of Bearing Walls and Partitions

- **6-1 Size of Specimen.** The area exposed to fire shall be not less than 100 sq ft (9.3 sq m), with neither dimension less than 9 ft (2.7 m). The test specimen shall not be restrained on its vertical edges.
- **6-2* Loading.** Throughout, the fire endurance and fire and hose stream tests apply a superimposed load to the construction in a manner calculated to develop theoretically, as nearly as practicable, the working stresses contemplated by the design. A double wall may be tested either with each side loaded separately or both sides together. The method used shall be recorded.
- **6-3 Conditions of Acceptance.** The test shall be regarded as successful if the following conditions are met:
- (a) The wall or partition shall have sustained the applied load during the fire endurance test without passage of flame or gases hot enough to ignite cotton waste, for a period equal to that for which classification is desired.
- (b) The wall or partition shall have sustained the applied load during the fire and hose stream test as specified in Section 5-2, without passage of flame, of gases hot enough to ignite cotton waste, or of the hose stream, and after cooling, but within 72 hrs after its completion, shall sustain the dead load of the test construction plus twice the superimposed load specified above. The assembly shall be considered to have failed the hose stream test if an opening develops that permits a projection of water from the stream beyond the unexposed surface during the time of the hose stream test.
- (c) Transmission of heat through the wall or partition during the fire endurance test shall not have been such as to raise the temperature on its unexposed surface more than 250°F (139°C) above its initial temperature.

Chapter 7 Tests of Nonbearing Walls and Partitions

- **7-1 Size of Specimen.** The area exposed to fire shall be not less than 100 sq ft (9.3 sq m), with neither dimension less than 9 ft (2.7 mm). The test specimen shall be restrained on all four edges.
- **7-2 Conditions of Acceptance.** The test shall be regarded as successful if the following conditions are met:
- (a) The wall or partition shall have withstood the fire endurance test without passage of flame or gases hot enough to ignite cotton waste, for a period equal to that for which classification is desired.
- (b) The wall or partition shall have withstood the fire and hose stream tests as specified in Section 5-2, without passage of flame, of gases hot enough to ignite cotton waste, or of the hose stream. The assembly shall be considered to have failed the hose stream test if an opening develops that permits a projection of water from the stream beyond the unexposed surface during the time of the hose stream test.
- (c) Transmission of heat through the wall or partition during the fire endurance test shall not have been such as to raise the temperature on its unexposed surface more than 250°F (121°C) above its initial temperature.

Chapter 8 Tests of Columns

8-1 Size of Specimen. The length of the column exposed to fire shall, when practicable, approximate the maximum clear length contemplated by the design, and for building columns shall be not less than 9 ft (2.7 m). The contemplated details of connections, and their protection, if any, shall be applied according to the methods of acceptable field practice.

8-2 Loading.

- **8-2.1** During the fire endurance test the column shall be exposed to fire on all sides and shall be loaded in a manner calculated to develop theoretically, as nearly as practicable, the working stresses contemplated by the design. Provision shall be made for transmitting the load to the exposed portion of the column without unduly increasing the effective column length.
- **8-2.2** If the submitter and the testing body jointly so decide, the column may be subjected to $1\frac{3}{4}$ times its designed working load before the fire endurance test is undertaken. The fact that such a test has been made shall not be construed as having had a deleterious effect on the fire endurance test performance.
- **8-3 Condition of Acceptance.** The test shall be regarded as successful if the column sustains the applied load during the fire endurance test for a period equal to that for which classification is desired.

Chapter 9 Alternate Test of Protection for Structural Steel Columns

9-1 Application. This test procedure does not require column loading at any time and may be used at the discretion of the testing laboratory to evaluate steel column protections that are not required by design to carry any of the column load.

9-2 Size and Character of Specimen.

- 9-2.1 The size of the steel column used shall be such as to provide a test specimen that is truly representative of the design, materials, and workmanship for which classification is desired. The protection shall be applied according to the methods of acceptable field practice. The length of the protected column shall be at least 8 ft (2.4 m). The column shall be vertical during application of the protection and during the fire exposure.
- 9-2.2 The applied protection shall be restrained against longitudinal temperature expansion greater than that of the steel column by rigid steel plates or reinforced concrete attached to the ends of the steel column before the protection is applied. The size of the plates or amount of concrete shall be adequate to provide direct bearing for the entire tranverse area of the protection.
- **9-2.3** The ends of the specimen, including the means for restraint, shall be given sufficient thermal insulation to prevent appreciable direct heat transfer from the furnace.
- 9-3 Temperature Measurement. The temperature of the steel in the column shall be measured by at least three thermocouples located at each of four levels. The upper and lower levels shall be 2 ft. (0.6 m) from the ends of the steel column, and the two intermediate levels shall be equally spaced. The thermocouples at each level shall be so placed as to measure significant temperatures of the component elements of the steel section.
- **9-4 Exposure to Fire.** During the fire endurance test the specimen shall be exposed to fire on all sides for its full length.
- **9-5 Conditions of Acceptance.** The test shall be regarded as successful if the transmission of heat through the protection during the period of fire exposure for which classification is desired does not raise the average (arithmetical) temperature of the steel at any one of the four levels above 1000°F (530°C) or does not raise the temperature above 1200°F (649°C) at any one of the measured points.

Chapter 10 Tests of Floor and Roof Assemblies

10-1 Application.

- **10-1.1** This test procedure is applicable to floor and roof assemblies with or without attached, furred, or suspended ceilings and requires application of fire exposure to the underside of the specimen under test.
- 10-1.2* Two fire endurance classifications shall be developed for assemblies restrained against thermal expansion: a restrained assembly classification based upon the conditions of acceptance specified in Section 10-5 (a), (b), and (c) and an unrestrained assembly classification based upon the conditions of acceptance specified in Section 10-6 (a) and (b) in addition to Section 10-6 (c), (d) or (e).
- 10-1.3 One fire endurance classification shall be developed from tests of assemblies not restrained against thermal expansion based upon the conditions of acceptance specified in Section 10-6 (a) and (b).
- **10-1.4** Individual unrestrained classifications may be developed for beams tested in accordance with this test method using the conditions of acceptance specified in Section 12-3 (a), (b), or (c).

10-2 Size and Characteristics of Specimen.

- 10-2.1 The area exposed to fire shall be not less than 180 sq ft (16.7 sq m) with neither dimension less than 12 ft (3.6 m). Structural members, if a part of the construction under test, shall lie within the combustion chamber and have a side clearance of not less than 8 in. (203 mm) from its walls.
- 10-2.2 The specimen shall be installed in accordance with recommended fabrication procedures for the type of construction and shall be representative of the design for which classification is desired. Where a restrained classification is desired, specimens representing forms of construction in which restraint to thermal expansion occurs shall be reasonably restrained in the furnace.
- 10-3 Loading. Throughout the fire endurance test apply a superimposed load to the specimen to simulate a maximum load condition. The maximum load condition shall be as nearly as practicable the maximum load allowed by the limiting condition of design under nationally recognized structural design criteria. A fire endurance

test may be conducted applying a restricted load condition to the specimen which shall be identified for a specific load condition other than the maximum allowed load condition.

10-4 Temperature Measurement.

- 10-4.1 The temperature of the steel in structural members shall be measured by thermocouples at three or more sections spaced along the length of the members with one section preferably located at midspan, except that in cases where the cover thickness is not uniform along the specimen length, at least one of the sections at which temperatures are measured shall include the point of minimum cover.
- 10-4.2 For steel beams, there shall be four thermocouples at each section; two shall be located on the bottom of the bottom flange (one on the edge and one on the center of this flange), one on the web at the center, and one on the bottom of the top flange.
- 10-4.3 For reinforced or prestressed concrete structural members, thermocouples shall be located on each of the tension reinforcing elements, unless there are more than eight such elements, in which case, thermocouples shall be placed on eight elements selected in such a manner as to obtain representative temperatures of all the elements.
- 10-4.4 For open-web steel joists, four thermocouples shall be placed on each joist, one on the top chord, one at the middle of the web, and two on the bottom chord, except that no more than four joists need be so instrumented. The groups of four thermocouples shall be placed in representative locations such as at midspan, over joints in the ceiling, and over light fixtures, etc.
- 10-5 Conditions of Acceptance Restrained Assembly. In obtaining a restrained assembly classification, the following conditions shall be met:
- (a) The specimen shall have sustained the applied load during the classification period without developing unexposed surface conditions which will ignite cotton waste.
- (b) Transmission of heat through the specimen during the classification period shall not have been such as to raise the average temperature on its unexposed surface more than 250°F (121°C) above its initial temperature.
- (c) For specimens employing beams spaced more than 4 ft (1.2 m) on centers, the beams shall achieve a fire endurance classi-

fication on the basis of the temperature criteria specified in Section 10-6 (c), (d) or (e) for assembly classifications up to and including 1 hr. For classifications greater than 1 hr the above temperature criteria shall apply for a period of one half the classification of the assembly or 1 hr, whichever is the greater.

- 10-6 Conditions of Acceptance Unrestrained Assembly. In obtaining an unrestrained assembly classification, the following conditions shall be met:
- (a) The specimen shall have sustained the applied load during the classification period without developing unexposed surface conditions which will ignite cotton waste.
- (b) The transmission of heat through the specimen during the classification period shall not have been such as to raise the average temperature on its unexposed surface more than 250°F (121°C) above its initial temperature.
- (c) For specimens employing steel structural members (excluding steel floor units having spans equal to or less than those tested), the temperature of the steel shall not have exceeded 1300°F (704°C) at any location during the classification period nor shall the average temperature recorded by four thermocouples at any section have exceeded 1100°F (593°C) during this period.
- (d) For specimens employing conventionally designed concrete structural members (excluding cast in place concrete slabs having spans equal to or less than those tested), the average temperature of the tension steel at any section shall not have exceeded 800°F (426°C) for cold-drawn prestressing steel or 1100°F (593°C) for reinforcing steel during the classification period.
- (e) For specimens employing multiple (five or more) open-web steel joists, the average temperature recorded by all joist thermocouples shall not have exceeded 1100°F (593°C) during the classification period.

10-7 Report of Results.

- **10-7.1** The fire endurance classification of a restrained assembly shall be reported as that developed by applying the conditions of acceptance specified in Section 10-5 (a), (b), and (c).
- 10-7.2 The fire endurance classification of an unrestrained assembly shall be reported as that developed by applying the conditions of acceptance specified in Section 10-6 (a) and (b) and, where applicable, Section 10-6 (c), (d), or (e) to a specimen tested in accordance with this test procedure.

Chapter 11 Tests of Loaded Restrained Beams

- 11-1 Application. An individual classification of a restrained beam may be obtained by this test procedure and based upon the conditions of acceptance specified in Section 11-4. The fire endurance classification so derived shall be applicable to the beam when used with a floor or roof construction which has a comparable, or greater, capacity for heat dissipation from the beam than the floor or roof with which it was tested. The fire endurance classification developed by this method shall not be applicable to sizes of beams smaller than those tested.
- 11-2 Size and Characteristics of Specimen. The test specimen shall be installed in accordance with recommended fabrication procedures for the type of construction and shall be representative of the design for which classification is desired. The length of beam exposed to the fire shall be not less than 12 ft (306 m) and the member shall be tested in its normal horizontal position. A section of a representative floor or roof construction not more than 7 ft (2.1 m) wide, symmetrically located with reference to the beam, may be included with the test specimen and exposed to the fire from below. The beam including that part of the floor or roof element forming the complete beam as designed (such as composite steel or concrete construction) shall be restrained against longitudinal thermal expansion in a manner simulating the restraint in the construction represented. The perimeter of the floor or roof element of the specimen, except that part which forms part of a beam as designed, shall not be supported or restrained.
- 11-3 Loading. Throughout the fire endurance test a superimposed load shall be applied to the specimen. This load, together with the weight of the specimen, shall be as nearly as practicable the maximum theoretical dead and live loads permitted by nationally recognized design standards.
- 11-4 Conditions of Acceptance. The following conditions shall be met:
- (a) The specimen shall have sustained the applied load during the classification period.
- (b) The specimen shall have achieved a fire endurance classification on the basis of the temperature criteria specified in Section 10-6 (c) or (d) of one half the classification of the assembly or 1 hr, whichever is the greater.

Chapter 12 Alternative Classification Procedure for Loaded Beams

12-1 Application. Individual unrestrained classifications may be developed for beams tested as part of a floor or roof assembly as described in Sections 10-1 through 10-4 (except 10-1.3) or for restrained beams tested in accordance with the procedure described in Sections 11-1 through 11-3. The fire endurance classification so derived shall be applicable to beams when used with a floor or roof construction which has a comparable or greater capacity for heat dissipation from the beam than the floor or roof with which it was tested. The fire endurance classification developed by this method shall not be applicable to sizes of beams smaller than those tested.

12-2 Temperature Measurement.

- 12-2.1 The temperature of the steel in structural members shall be measured by thermocouples at three or more sections spaced along the length of the members with one section preferably located at midspan, except that in cases where cover thickness is not uniform along the specimen length, at least one of the sections at which temperatures are measured shall include the point of minimum cover.
- 12-2.2 For steel beams, there shall be four thermocouples at each section; two shall be located on the bottom of the bottom flange, one on the web at the center, and one on the bottom of the top flange.
- 12-2.3 For reinforced or prestressed concrete structural members, thermocouples shall be located on each of the tension reinforcing elements unless there are more than eight such elements, in which case thermocouples shall be placed on eight elements selected in such a manner as to obtain representative temperatures of all the elements.
- **12-3 Conditions of Acceptance.** In obtaining an unrestrained beam classification the following conditions shall be met:
- (a) The specimen shall have sustained the applied load during the classification period.

- (b) For steel beams the temperature of the steel shall not have exceeded 1300°F (704°C) at any location during the classification period nor shall the average temperature recorded by four thermocouples at any section have exceeded 1100°F (593°C) during this period.
- (c) For conventionally designed concrete beams the average temperature of the tension steel at any section shall not have exceeded 800°F (426°C) for cold-drawn prestressing steel or 1100°F (593°C) for reinforcing steel during the classification period.

Chapter 13 Alternate Test of Protection for Solid Structural Steel Beams and Girders

13-1 Application. Where the loading required in Section 10-3 is not feasible, this alternative test procedure may be used to evaluate the protection of steel beams and girders without application of design load, provided that the protection is not required by design to function structurally in resisting applied loads. The conditions of acceptance of this alternative test are not applicable to tests made under design load as provided under tests for floors and roofs in Sections 10-2, 10-5, and 10-6.

13-2 Size and Character of Specimen.

- 13-2.1 The size of the steel beam or girder shall be such as to provide a test specimen that is truly representative of the design, materials, and workmanship for which classification is desired. The protection shall be applied according to the methods of acceptable field practice and the projection below the ceiling, if any, shall be representative of the conditions of intended use. The length of beam or girder exposed to the fire shall be not less than 12 ft (3.6 m) and the member shall be tested in a horizontal position. A section of a representative floor construction not less than 5 ft (1.5 m) wide, symmetrically located with reference to the beam or girder and extending its full length, shall be included in the test assembly and exposed to fire from below. The rating of performance shall not be applicable to sizes smaller than those tested.
- 13-2.2 Restrain the applied protection against longitudinal expansion greater than that of the steel beam or girder by rigid steel plates or reinforced concrete attached to the ends of the member before the protection is applied. The ends of the member, including the means for restraint, shall be given sufficient thermal insulation to prevent appreciable direct heat transfer from the furnace to the unexposed ends of the member or from the ends of the member to the outside of the furnace.
- 13-3 Temperature Measurement. The temperature of the steel in the beam or girder shall be measured with not less than four thermocouples at each of four sections equally spaced along the length of the beam and symmetrically disposed and not nearer than 2 ft (0.6 m) from the inside face of the furnace. The thermocouples at each section shall be symmetrically placed so as to measure significant temperatures of the component elements of the steel section.

13-4 Conditions of Acceptance. The test shall be regarded as successful if the transmission of heat through the protection during the period of fire exposure for which classification is desired does not raise the average (arithmetical) temperature of the steel at any one of the four sections above 1000°F (538°C), or does not raise the temperature above 1200°F (649°C) at any one of the measured points.

Chapter 14 Tests of Protection for Combustible Framing, or for Combustible Facings on the Unexposed Side of Walls, Partitions, and Floors

- 14-1 Character of Specimen. Test panels carrying wall, partition, or floor protection shall be finished with the protections which are the subject of the test, except that where the finish on the unexposed side is not the subject of the test and not specifically indicated, the testing authority shall apply a finish judged suitable for the purpose. In case a floor construction, as installed for actual use, is to have no finish on the unexposed side, it shall be so tested.
- 14-2 Size of Specimen. The area exposed to fire shall be, for tests of wall and partition protection, not less than 100 sq ft (9.3 sq m) with neither dimension less than 9 ft (2.7 m); for tests of floor protection, not less than 180 sq ft (16.7 sq m) with neither dimension less than 12 ft (3.6 m).
- **14-3 Conditions of Acceptance.** The test shall be regarded as successful if the following conditions are met:
- (a) The protection shall have withstood the fire endurance test, without ignition of the materials protected, for a period equal to that for which classification is desired.
- (b) Transmission of heat through the protection during the fire endurance test shall not have been such as to raise the temperatures at its contact with the protected structural members or facings of the test panel more than 250°F (121°C) above the initial temperatures at these points, except that for members closely embedded on three sides in masonry, concrete, or other noncombustible materials the permissible temperature rise may be 325°F (163°C).

Appendix A

This Appendix is not a part of this NFPA document . . . but is included for information purposes only.

A-1-1 The performance of walls, columns, floors, and other building members under fire exposure conditions is an item of major importance in securing constructions that are safe, and that are not a menace to neighboring structures nor to the public. Recognition of this is registered in the codes of many authorities, municipal and other. It is important to secure balance of the many units in a single building, and of buildings of like character and use in a community, and also to promote uniformity in requirements of various authorities throughout the country. To do this it is necessary that the fire-resistive properties of materials and assemblies be measured and specified according to a common standard expressed in terms that are applicable alike to a wide variety of materials, situations, and conditions of exposure.

Such a standard is found in the methods that are contained in this test method. They prescribe a standard exposing fire of controlled extent and severity. Performance is defined as the period of resistance to standard exposure elapsing before the first critical point in behavior is observed. Results are reported in units in which field exposures can be judged and expressed.

The methods may be cited as the "Standard Fire Tests," and the performance or exposure shall be expressed as "2-hr," "6-hr," "1/2-hr," etc.

When a factor of safety exceeding that inherent in the test conditions is desired, a proportional increase should be made in the specified time-classification period.

- **A-1-1.2** A method of fire hazard classification based on rate of flame spread is covered in NFPA 255, Method of Test of Surface Burning Characteristics of Building Materials.
- **A-2-2 Recommendations for Recording Fuel Flow to Furnace Burners.** The following provides guidance on the desired characteristics of instrumentation for recording the flow of fuel to the furnace burners. Fuel flow data may be useful for a furnace heat balance analysis, for measuring the effect of furnace or control changes, and for comparing the performance of assemblies of different properties in the fire endurance test.¹

¹ Harmathy, T. Z., "Design of Fire Test Furnaces," Fire Technology, Vol. 5, No. 2, May 1969, pp. 146–150; Seigel, L. G., "Effects of Furnace Design on Fire Endurance Test Results," Fire Test Performance, ASTM STP 464, American Society for Testing and Materials, 1970, pp. 57–67; and Williamson, R. B., and Buchanan, A. H., "A Heat Balance Analysis of the Standard Fire Endurance Test."

Record the integrated (cumulative) flow of gas (or other fuel) to the furnace burners at 10 min, 20 min, 30 min, and every 30 min thereafter or more frequently. Total gas consumed during the total test period is also to be determined. A recording flow meter has advantages over periodic readings on an instantaneous or totalizing flow meter. Select a measuring and recording system to provide flow rate readings accurate to within \pm 5 percent.

Report the type of fuel, its higher (gross) heating value, and the fuel flow (corrected to standard conditions of 60°F (16°C) and 30.0

in Hg) as a function of time.

A-2-3.1 Under certain conditions it may be unsafe or impracticable to use thermometers.

For the purpose of testing roof assemblies, the unexposed surface shall be defined as the surface exposed to ambient air.

A-3-1.4 The correction can be expressed by the following formula:

$$C = \frac{2I(A - As)}{3(As + L)}$$

where:

C =correction in the same units as I

I = indicated fire resistance period

A = area under the curve of indicated average furnace temperature for the first three-fourths of the indicated period

As = area under the standard furnace curve for the same part of the indicated period, and

 $L = \text{lag correction in the same units as } A \text{ and } As [54^{\circ} \text{ Fahr-hr}]$ or 30° Cent-hr (3240° Fahr-min or 1800° Cent-min)].

A-4-2.1.1 A recommended method for determining the relative humidity within a hardened concrete specimen with electric sensing elements is described in Appendix I of a paper by Carl A. Menzel, "A Method for Determining the Moisture Condition of Hardened Concrete in Terms of Relative Humidity," Proceedings, American Society for Testing and Materials, Vol. 55, p. 1085 (1955). A similar procedure with electric sensing elements can be used to determine the relative humidity within fire test specimens made with other materials.

With wood constructions, the moisture meter based on the electrical resistance method can be used, when appropriate, as an alternate to the relative humidity method to indicate when wood has attained the proper moisture content. Electrical methods are described on pages 320 and 321 of the 1955 edition of the "Wood

Handbook of the Forest Products Laboratory," U.S. Department of Agriculture. The relationships between relative humidity and moisture content are given by the graphs in Fig. 23 on p. 327. They indicate that wood has a moisture content of 13 percent at a relative humidity of 70 percent for a temperature of 70° to 80°F (21° to 27°C).

- **A-4-2.1.3** If the moisture condition of the fire test assembly is likely to change drastically from the 72 hr sampling time prior to test, the sampling should be made not later than 24 hrs prior to the test.
- **A-6-2** The choice depends on the intended use, and whether the load on the exposed side, after it has failed, will be transferred to the unexposed side.
- **A-10-1.2** See Appendix E, which is intended as a guide for assisting the user of this method in determining the conditions of thermal restraint applicable to floor and roof constructions and individual beams in actual building construction.

Appendix B Standard Time-Temperature Curve for Control of Fire Tests

This Appendix is not a part of this NFPA document . . . but is included for information purposes only.

Time	<i>m</i>	Area Abov	e 68°F Base		Area Abov	e 20°C Base
hr:min	Temperature deg Fahr	deg Fahr- min	deg Fahr-hr	Temperature deg Cent	deg Cent-	deg Cent-hr
0:00 0:05 0:10 0:15 0:20 0:25 0:80 0:45 0:45 0:55 1:00	68 1 000 1 300 1 399 1 462 1 510 1 550 1 584 1 613 1 638 1 661 1 681	2 380 7 740 14 150 20 970 28 050 85 360 42 860 50 510 58 800 66 200 74 220 82 380	0 39 129 236 350 468 589 714 842 971 1 108 1 237 1 372	20 538 704 750 795 821 843 862 878 892 905 916	1 290 4 800 7 860 11 850 15 590 19 650 23 810 28 060 32 890 36 780 41 230	0 22 72 131 194 260 328 397 468 540 618 687 762
1:05 1:10 1:15 1:20 1:25 1:30 1:35 1:40 1:48 1:50 1:58	1 718 1 735 1 750 1 765 1 779 1 779 1 804 1 816 1 826 1 836 1 848 1 850	90 540 98 830 107 200 115 650 124 180 132 760 141 420 150 120 158 890 167 700 176 550 185 440	1 509 1 647 1 787 1 928 2 070 2 213 2 357 2 502 2 648 2 795 2 942 3 091	987 946 955 968 971 978 985 991 996 1 001 1 006	50 800 54 910 59 560 64 250 68 990 73 760 78 560 88 400 88 280 93 170 93 080 108 020	888 915 998 1 071 1 150 1 229 1 309 1 471 1 558 1 685 1 717
2:10	1 862	208 880	8 889	1 017	112 960	1 882
2:20	1 875	221 880	8 689	1 024	122 960	2 049
2:80	1 888	289 470	8 991	1 081	133 040	2 217
2:40	1 900	257 720	4 295	1 088	143 180	2 886
2:50	1 912	276 110	4 602	1 045	153 390	2 556
8:00	1 925	294 610	4 910	1 052	163 670	2 728
8:10	1 938	813 250	5 221	1 059	174 080	2 900
8:20	1 950	832 000	5 533	1 066	184 450	8 074
8:30	1 962	850 890	5 848	1 072	194 940	8 249
8:40	1 975	869 890	6 165	1 079	205 500	8 425
8:50	1 988	889 080	6 484	1 086	216 180	8 602
4:00	2 000	408 280	6 805	1 098	226 820	8 780
4:10	2 012	427 670	7 128	1 100	287 590	8 960
4:20	2 025	447 180	7 458	1 107	248 480	4 140
4:80	2 038	466 810	7 780	1 114	259 840	4 822
4:40	2 050	486 560	8 110	1 121	270 810	4 505
4:50	2 062	506 450	8 441	1 128	281 860	4 689
5:00	2 075	526 450	8 774	1 186	292 470	4 874
5:10 6:20 5:80 5:40 6:50	2 088 2 100 2 112 2 125 2 188 2 150	546 580 566 840 587 220 607 730 628 860 649 120	9 110 9 447 9 787 10 129 10 478 10 819	1 142 1 149 1 156 1 168 1 170 1 177	303 660 314 910 326 240 337 680 349 090 360 620	5 061 5 248 5 487 5 627 5 627 5 818 6 010
6:10	2 162	670 000	11 167	1 184	872 280	6 204
6:20	2 175	691 010	11 517	1 191	888 900	6 398
6:80	2 188	712 140	11 869	1 198	895 640	6 594
6:40	2 200	733 400	12 223	1 204	407 450	6 791
6:50	2 212	754 780	12 580	1 211	419 880	6 989
7:00	2 225	776 290	12 938	1 218	481 270	7 188
7:10	2 288	797 920	18 299	1 225	448 290	7 388
7:20	2 250	819 680	13 661	1 232	455 880	7 590
7:30	2 262	841 560	14 026	1 239	467 640	7 792
7:40	2 275	868 570	14 398	1 246	479 760	7 996
7:50	2 288	885 700	14 762	1 253	492 060	8 201
8:00	2 300	907 960	15 138	1 260	504 420	8 407

Appendix C Requirements for Asbestos Pads

This Appendix is not a part of this NFPA document . . . but is included for information purposes only.

C-1 The asbestos pads used in measurements of temperature of unexposed surfaces of specimens shall be of felted amosite asbestos free of organic additives and shall exhibit the following properties:

- (a) Length and width, $6 \pm \frac{1}{8}$ in. $(152 \pm 3.2 \text{ mm})$
- (b) Thickness, 1 0.40 \pm 0.05 in. (10.2 \pm 1.3 mm)
- (c) Dry weight, 0.260 ± 0.026 lb $(0.118 \pm 0.012 \text{ kg})$
- (d) Thermal conductivity [at 150° F (65° C)], 0.38 ± 0.027 Btu in. per hr sq ft deg Fahr (0.55 ± 0.039 w/-k), and
- (e) Hardness, 2 10-25 (modified Brinell).

The pads shall be sufficiently soft so that, without breaking, they may be shaped to contact over the whole surface against which they are placed.

Hardness =
$$\frac{2.24}{y}$$

where y = the difference in indentation in inches.

¹ The thickness measurement shall be made under the light load of a ½-in. (13-mm) diameter pad of a dial micrometer gage.

² The hardness measurement shall be made by pressing a 1-in. (25.4-mm) diameter steel ball against the sample and measuring the indentation obtained between a minor load of 2 lb (.91 kg) and an additional major load of 10 lb. (4.5 kg) [12 lb (5.4 kg) total]. The hardness is obtained by the relationship

Appendix D Suggested Report Form

This Appendix is not a part of this NFPA document . . . but is included for information pur poses only.

NFPA 251 Title Page

(Preferably Cover)

Laboratory _____ Project Number

NFPA 251 (Year)
STANDARD FIRE ENDURANCE TEST
Fire Endurance Time
Construction
Date Tested
Sponsor
Material
Maximum Load Condition, or Restricted Load Conditions (as the conditions of the test dictate)

(Identify if test is part of a research program) (Add — Table of Contents)

- **D-1** Description of Laboratory Test Facility. Furnace, restraining frame, details of end conditions, including wedges, bearing, etc.
- (a) If construction is to be tested under load indicate how the load is applied and controlled. (Give loading diagram.) Indicate whether the load is a maximum load condition or a restricted load condition and for either condition, report the specific loads and the basis for limitation, such as bending stress, shear, etc. A restricted load condition shall be reported as a percentage of the maximum load condition.
- (b) If construction is to be tested as nonload bearing indicate whether frame is rigid or moves in test, or whether test is of temperature rise only.
- **D-2 Description of All Materials.** Type, size, class, strength, densities, trade name, and any additional data necessary to define materials. The testing laboratory should indicate whether materials meet NFPA standards by markings, or by statement of sponsor, or by physical or chemical test by the testing laboratory.

D-3 Description of Test Assembly.

- (a) Give size of test specimen.
- (b) Give details of structural design, including safety factors of all structural members in test assembly.
- (c) Include plan, elevation, principal cross section, plus other sections as needed for clarity.
 - (d) Give details of attachment of test panel in frame.
- (e) Location of thermocouples, deflection points, and other items for test.
 - (f) Describe general ambient conditions at:
 - 1. Time of construction,
 - 2. During curing (time from construction to test), and
 - 3. Time of test.

D-4 Description of Test.

- (a) Report temperature at beginning and every 5 min. If charts are included in report, clearly indicate time and temperature.
 - 1. In furnace space,
 - 2. On unexposed surface, and
 - 3. On protected framing members as stipulated in standard.

Note: It is recommended that temperature observations not required by the standard, but useful, be reported in the Appendix to the report. These include temperatures on the face of framing members in back of protection and others that may be required by various building codes.

- (b) Report deflections every 5 min for first 15 min of test and last hour. In between, every 10 min.
 - (c) Report appearance of exposed face:
 - 1. Every 15 min,
- 2. At any noticeable development, give details and time, i.e., cracks, buckling, flaming, smoke, loss of material, etc., and
- 3. At end of test include amount of dropout, condition of fasteners, sag, etc.
 - (d) Report appearance of unexposed face:
 - 1. Every 15 min,
- 2. At any noticeable development including cracking, smoking, buckling, give details and time, and
 - 3. At end of test.
 - (e) Report time of failure by:
 - 1. Temperature rise,
 - 2. Failure to carry load, and
 - 3. Passage of flame-heat-smoke.

(f) If a hose stream test is required repeat necessary parts of D-1 and D-3. If failure occurs in hose stream test — describe!

D-5 Official Comments On.

- (a) Included shall be a statement to the effect that the construction truly represents field construction. If the construction does not represent typical field construction, then the deviations shall be noted.
- (b) If construction is unsymmetrical (has different details on each face) be sure to indicate face exposed to fire with comments on fire resistance from opposite side.
 - (c) Fire test.

D-6 Summarize Results, Include.

- (a) Endurance time.
- (b) Nature of failure.
- (c) Hose stream test results.

D-7 List Official Observers. Signatures of responsible persons.

- **D-8** Appendix. Include all data not specifically required by test standard, but useful to better understanding of test results. Special observations for building code approvals should be in Appendix.
- **D-9 Pictures.** All taken to show what cannot be covered in report or to clarify.
 - (a) Assembly in construction.
 - (b) Exposed face prior to fire test.
- (c) Unexposed face at start of endurance test; include recording equipment when possible.
 - (d) Unexposed face at end of fire endurance test.
 - (e) Exposed face at end of fire endurance test.
 - (f) Unexposed face at end of fire exposure before hose test.
 - (g) Exposed face at end of fire exposure before hose test.
 - (h) Exposed face after hose stream test.
 - (i) Unexposed face after hose stream test.

D-10 It is essential to have the following:

- (a) Detailed drawing of test assembly.
- (b) Pictures [(a), (d), (h), and (i) of D-9] for every test report.

Appendix E Guide for Determining Conditions of Restraint for Floor and Roof Assemblies and for Individual Beams

This Appendix is not a part of this NFPA document . . , but is included for information purposes only.

- **E-1** The revisions adopted in 1970 have introduced, for the first time in the history of the standard, the concept of fire endurance classifications based on two conditions of support: restrained and unrestrained. As a result, most specimens will be fire tested in such a manner as to derive these two classifications.
- **E-2** A restrained condition in fire tests, as used in this method, is one in which expansion at the supports of a load-carrying element resulting from the effects of the fire is resisted by forces external to the element. An unrestrained condition is one in which the load-carrying element is free to expand and rotate at its supports.
- **E-3** Some difficulty is recognized in determining the condition of restraint that may be anticipated at elevated temperatures in actual structures. Until a more satisfactory method is developed, this guide recommends that all construction be temporarily classified as either restrained or unrestrained. This classification will enable the architect, engineer, or building official to correlate the fire endurance classification, based on conditions of restraint, with the construction type under consideration.
- **E-4** For the purpose of this guide, restraint in buildings is defined as follows: "Floor and roof assemblies and individual beams in buildings shall be considered restrained when the surrounding or supporting structure is capable of resisting substantial thermal expansion throughout the range of anticipated elevated temperatures. Construction not complying with this definition is assumed to be free to rotate and expand and shall therefore be considered as unrestrained."
- **E-5** This definition requires the exercise of engineering judgment to determine what constitutes restraint to "substantial thermal expansion." Restraint may be provided by the lateral stiffness of supports for floor and roof assemblies and intermediate beams forming part of the assembly. In order to develop restraint, connections must adequately transfer thermal thrusts to such supports. The rigidity of adjoining panels or structures should be considered in assessing the capability of a structure to resist thermal expansion. Continuity, such as that occurring in beams acting continuously over