NFPA®

Recommended Practice for Water Flow Testing and Marking of Hydrants

2022

NFPA® 291

Recommended Practice for Water Flow Testing and Marking of Hydrants

2022 Edition

IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA® STANDARDS

NFPA® codes, standards, recommended practices, and guides ("NFPA Standards"), of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in NFPA Standards.

The NFPA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on NFPA Standards. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making NFPA Standards available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of NFPA Standards. Nor does the NFPA list, certify, test, or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

REVISION SYMBOLS IDENTIFYING CHANGES FROM THE PREVIOUS EDITION

Text revisions are shaded. A \triangle before a section number indicates that words within that section were deleted and a \triangle to the left of a table or figure number indicates a revision to an existing table or figure. When a chapter was heavily revised, the entire chapter is marked throughout with the \triangle symbol. Where one or more sections were deleted, a \bullet is placed between the remaining sections. Chapters, annexes, sections, figures, and tables that are new are indicated with an N.

Note that these indicators are a guide. Rearrangement of sections may not be captured in the markup, but users can view complete revision details in the First and Second Draft Reports located in the archived revision information section of each code at www.nfpa.org/docinfo. Any subsequent changes from the NFPA Technical Meeting, Tentative Interim Amendments, and Errata are also located there.

REMINDER: UPDATING OF NFPA STANDARDS

Users of NFPA codes, standards, recommended practices, and guides ("NFPA Standards") should be aware that these documents may be superseded at any time by the issuance of a new edition, may be amended with the issuance of Tentative Interim Amendments (TIAs), or be corrected by Errata. It is intended that through regular revisions and amendments, participants in the NFPA standards development process consider the then-current and available information on incidents, materials, technologies, innovations, and methods as these develop over time and that NFPA Standards reflect this consideration. Therefore, any previous edition of this document no longer represents the current NFPA Standard on the subject matter addressed. NFPA encourages the use of the most current edition of any NFPA Standard [as it may be amended by TIA(s) or Errata] to take advantage of current experience and understanding. An official NFPA Standard at any point in time consists of the current edition of the document, including any issued TIAs and Errata then in effect.

To determine whether an NFPA Standard has been amended through the issuance of TIAs or corrected by Errata, visit the "Codes & Standards" section at www.nfpa.org.

ISBN: 978-145592796-8 (Print)

ADDITIONAL IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA® STANDARDS

Updating of NFPA Standards

Users of NFPA codes, standards, recommended practices, and guides ("NFPA Standards") should be aware that these documents may be superseded at any time by the issuance of a new edition, may be amended with the issuance of Tentative Interim Amendments (TIAs), or be corrected by Errata. It is intended that through regular revisions and amendments, participants in the NFPA standards development process consider the then-current and available information on incidents, materials, technologies, innovations, and methods as these develop over time and that NFPA Standards reflect this consideration. Therefore, any previous edition of this document no longer represents the current NFPA Standard on the subject matter addressed. NFPA encourages the use of the most current edition of any NFPA Standard [as it may be amended by TIA(s) or Errata] to take advantage of current experience and understanding. An official NFPA Standard at any point in time consists of the current edition of the document, including any issued TIAs and Errata then in effect.

To determine whether an NFPA Standard has been amended through the issuance of TIAs or corrected by Errata, visit the "Codes & Standards" section at www.nfpa.org.

Interpretations of NFPA Standards

A statement, written or oral, that is not processed in accordance with Section 6 of the Regulations Governing the Development of NFPA Standards shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Patents

The NFPA does not take any position with respect to the validity of any patent rights referenced in, related to, or asserted in connection with an NFPA Standard. The users of NFPA Standards bear the sole responsibility for determining the validity of any such patent rights, as well as the risk of infringement of such rights, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on NFPA Standards.

NFPA adheres to the policy of the American National Standards Institute (ANSI) regarding the inclusion of patents in American National Standards ("the ANSI Patent Policy"), and hereby gives the following notice pursuant to that policy:

NOTICE: The user's attention is called to the possibility that compliance with an NFPA Standard may require use of an invention covered by patent rights. NFPA takes no position as to the validity of any such patent rights or as to whether such patent rights constitute or include essential patent claims under the ANSI Patent Policy. If, in connection with the ANSI Patent Policy, a patent holder has filed a statement of willingness to grant licenses under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, copies of such filed statements can be obtained, on request, from NFPA. For further information, contact the NFPA at the address listed below.

Law and Regulations

Users of NFPA Standards should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of its codes, standards, recommended practices, and guides, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

NFPA Standards are copyrighted. They are made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of safe practices and methods. By making these documents available for use and adoption by public authorities and private users, the NFPA does not waive any rights in copyright to these documents.

Use of NFPA Standards for regulatory purposes should be accomplished through adoption by reference. The term "adoption by reference" means the citing of title, edition, and publishing information only. Any deletions, additions, and changes desired by the adopting authority should be noted separately in the adopting instrument. In order to assist NFPA in following the uses made of its documents, adopting authorities are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. For technical assistance and questions concerning adoption of NFPA Standards, contact NFPA at the address below.

For Further Information

All questions or other communications relating to NFPA Standards and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA standards during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, NFPA, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101; email: stds_admin@nfpa.org.

For more information about NFPA, visit the NFPA website at www.nfpa.org. All NFPA codes and standards can be viewed at no cost at www.nfpa.org/docinfo.

NFPA® 291

Recommended Practice for

Water Flow Testing and Marking of Hydrants

2022 Edition

This edition of NFPA 291, Recommended Practice for Water Flow Testing and Marking of Hydrants, was prepared by the Technical Committee on Private Water Supply Piping Systems, released by the Correlating Committee on Automatic Sprinkler Systems, and acted on by the NFPA membership during the 2021 NFPA Technical Meeting held June 14–July 2. It was issued by the Standards Council on August 26, 2021, with an effective date of September 15, 2021, and supersedes all previous editions.

This edition of NFPA 291 was approved as an American National Standard on September 15, 2021.

Origin and Development of NFPA 291

The NFPA Committee on Public Water Supplies for Private Fire Protection presented the idea of indicating the relative available fire service water supply from hydrants in its 1934 report. The committee felt then and feels now that such an indication is of substantial value to water and fire departments. The following recommendations were initially adopted in 1935. The committee agreed that tests of individual hydrants did not give as complete and satisfactory results as group testing but expressed the opinion that tests of individual hydrants did have sufficient value to make the following recommendations worthy of adoption. This was reconfirmed with minor editorial changes in 1974.

The 1977 edition was completely rewritten and a chapter on the flow testing of hydrants was added.

The 1982 edition was reconfirmed by the committee.

The 1988 edition of the document noted several changes that clarified and reinforced certain recommendations. Specific guidance was added on the correct method of using a pitot tube to gain accurate test results.

The 1995 edition incorporated several changes in an attempt to make the document more user-friendly. Changes were also incorporated with regard to the layout of hydrant and water flow tests.

The 2002 edition clarified the recommendations for flow tests and was restructured to comply with the *Manual of Style for NFPA Technical Committee Documents*.

The 2007 edition represented a reconfirmation of the 2002 edition, as there were no technical changes.

The 2010 edition clarified the responsibility for marking of hydrants.

The 2013 edition of NFPA 291 added language recommending frequencies for flushing and flow testing of public hydrants in Section 4.13.

No technical revisions were made to the 2016 edition of NFPA 291.

The 2019 edition of NFPA 291 included the metric formula for discharge through circular orifices, and the table on discharge through circular orifices was updated to provide measurable velocity pressures in the metric system.

The 2022 edition of NFPA 291 revises the purpose and application of this recommended practice to better clarify its applicability. Definitions of the various hydrant types have been added, and the list of equipment needed for field work has been modified and expanded, describing the type of

pressure gauges to be used and adding various types of discharge devices. Finally, a new test method for evaluating the available flow through a single hydrant has been added to Chapter 4.

Correlating Committee on Automatic Sprinkler Systems

William E. Koffel, Chair Koffel Associates, Inc., MD [SE]

Roland A. Asp, National Fire Sprinkler Association, Inc., MD [M] Rep. National Fire Sprinkler Association

Jose R. Baz, JRB Associates Group Inc., FL [M] Rep. NFPA Latin American Section

Kerry M. Bell, UL LLC, IL [RT]

Tracey D. Bellamy, Telgian Corporation, GA [U] Rep. The Home Depot

Chase A. Browning, Medford Fire Department, OR [E]

Steven W. Dellasanta, Jensen Hughes Associates, Inc., RI [SE]

John August Denhardt, American Fire Sprinkler Association (AFSA), TX [IM]

Rep. American Fire Sprinkler Association

Michael J. Friedman, Friedman Consulting, Inc., MD [SE]

Alex Hoffman, Viking Fire Protection Inc., Canada [IM]

Rep. Canadian Automatic Sprinkler Association

Sultan M. Javeri, SC Engineering, France [IM]

Charles W. Ketner, National Automatic Sprinkler Fitters LU 669, MD [L]

Rep. United Assn. of Journeymen & Apprentices of the Plumbing & Pipe Fitting Industry

James D. Lake, Viking Corporation, MI [M]

John A. LeBlanc, FM Global, MA [I]

Kenneth W. Linder, Swiss Re, CT [I]

David O. Lowrey, City of Boulder Fire Rescue, CO [E]

Bryan Edwin Matthews, Liberty Mutual Group, NY [I]

Garner A. Palenske, Wiss Janney Elstner Associates, Inc. (WJE), CA

Lawrence Richard Phillips, US Department of the Navy, VA [E]

Adam Seghi, Coda Risk Analysis, TX [I]

Joseph Su, National Research Council of Canada, Canada [RT]

J. Michael Thompson, GHD/The Protection Engineering Group, PC, VA [SE]

Alternates

Ralph E. Bless, Jr., Telgian Corporation, GA [U] (Alt. to Tracey D. Bellamy)

Bruce H. Clarke, American International Group, Inc. (AIG), SC [I] (Alt. to Adam Seghi)

Russell P. Fleming, Northeast Fire Suppression Associates, LLC, NH

(Alt. to Michael J. Friedman)

Scott T. Franson, The Viking Corporation, MI [M] (Alt. to James D. Lake)

David B. Fuller, FM Approvals, RI [I]

(Alt. to John A. LeBlanc)

Jeffrey E. Harper, JENSEN HUGHES, IL [SE]

(Alt. to Steven W. Dellasanta) Jeff Hebenstreit, UL LLC, IL [RT]

(Alt. to Kerry M. Bell)

Jeffrey M. Hugo, National Fire Sprinkler Association, Inc., MI [M] (Alt. to Roland A. Asp)

Jack A. Medovich, Fire & Life Safety America, MD [IM] (Alt. to John August Denhardt)

Donato A. Pirro, Electro Sistemas De Panama, S.A., Panama [M] (Alt. to Jose R. Baz)

Jason W. Ryckman, Canadian Automatic Sprinkler Association, Canada [IM]

(Alt. to Alex Hoffman)

Douglas Paul Stultz, US Department of the Navy, VA [E] (Alt. to Lawrence Richard Phillips)

Jeffrey J. Van Rhyn, Jr., Local 669 JATC, NV [L] (Alt. to Charles W. Ketner)

Nonvoting

James B. Biggins, TUV SUD America Inc./Global Risk Consultants Corporation, IL [SE]

Rep. TC on Hanging & Bracing of Water-Based Systems

Christopher I. Deneff, FM Global, RI [I]

Rep. TC on Hanging & Bracing of Water-Based Systems

Raymond A. Grill, Arup, DC [SE]

Rep. TC on Sprinkler System Installation Criteria

Kenneth E. Isman, University of Maryland, MD [SE]

Rep. TC on Residential Sprinkler Systems

Russell B. Leavitt, Telgian Corporation, AZ [U]

Rep. TC on Sprinkler System Discharge Criteria

John J. Walsh, UA Joint Apprenticeship Committee Local 669, MD [SE]

Rep. United Assn. of Journeymen & Apprentices of the Plumbing & Pipe Fitting Industry (Member Emeritus)

Chad Duffy, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the final text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have overall responsibility for documents that pertain to the criteria for the design and installation of automatic, open and foam-water sprinkler systems including the character and adequacy of water supplies, and the selection of sprinklers, piping, valves, and all materials and accessories. This Committee does not cover the installation of tanks and towers, nor the installation, maintenance, and use of

central station, proprietary, auxiliary, and local signaling systems for watchmen, fire alarm, supervisory service, nor the design of fire department hose connections.

Technical Committee on Private Water Supply Piping Systems

Robert G. Caputo, Chair Fire & Life Safety America , AZ [IM]

Roland A. Asp, National Fire Sprinkler Association, Inc., MD [M] Rep. National Fire Sprinkler Association

James B. Biggins, TUV SUD America Inc./Global Risk Consultants Corporation, IL [SE]

Dominic Bosco, Shambaugh & Son, NV [IM] Rep. Illinois Fire Prevention Association

Marinus Both, API Group Inc., MA [IM]

Rep. National Fire Sprinkler Association Flora F. Chen, Hayward Fire Department, California, CA [E]

Stephen A. Clark, Jr., Allianz, GA [I]

Jeffry T. Dudley, National Aeronautics & Space Administration, Kennedy Space Center (NASA), FL [U]

Byron E. Ellis, Entergy Corporation, LA [U] Rep. Edison Electric Institute

Brandon W. Frakes, AXA XL/Global Asset Protection Services, LLC, NC [I]

Robert M. Gagnon, Gagnon Engineering, MD [SE]

LaMar Hayward, 3-D Fire Protection, Inc., ID [IM]

Jeff Hebenstreit, UL LLC, IL [RT]

Kevin J. Kelly, Victaulic, PA [M]

Rep. National Fire Sprinkler Association

Alan R. Laguna, Merit Sprinkler Company, Inc., LA [IM]

Michael Larsen, Amway Inc., MI [U]

Leslie "Chip" L. Lindley, II, Lindley Fire Protection Company Inc., CA [IM]

James M. Maddry, James M. Maddry, P.E., GA [SE]

Bob D. Morgan, Fort Worth Fire Department, TX [E]

Jason R. Olliges, Sprinkler Fitters Local 268, MO [L]

Rep. United Assn. of Journeymen & Apprentices of the Plumbing & Pipe Fitting Industry

Shawn C. Olson, Clackamas County Fire District #1, OR [E]

John H. Pecot, Johnson Controls, TX [M]

Rep. Johnson Controls

Dion Powell, Liberty Mutual, IL [I]

Martin Ramos, Environmental Systems Design, Inc., IL [SE]

James R. Richardson, Lisle Woodridge Fire District, IL [E]

Daniel Sanchez, City of Los Angeles, CA [E]

Peter T. Schwab, Wayne Automatic Fire Sprinklers, Inc., FL [IM]

Austin L. Smith, Consolidated Nuclear Security, LLC, Y-12, TN [U]

Kenneth W. Wagoner, Parsley Consulting Engineers, CA [SE]

Byron Weisz, Cen-Cal Fire Systems, Inc., CA [IM] Rep. American Fire Sprinkler Association

Alternates

Mark A. Bowman, Global Asset Protection Services, LLC, OH [I] (Alt. to Brandon W. Frakes)

Christopher D Fulkerson, Local 669 Jatc, IN [L]

(Alt. to Jason R. Olliges)

William J. Gotto, TUV SUD America Inc./Global Risk Consultants Corporation, NI [SE]

(Alt. to James B. Biggins)

Andrew C. Higgins, Allianz, NC [I]

(Alt. to Stephen A. Clark, Jr.)

 $\textbf{Conor J. Kauffman,} \ \text{Kauffman Company,} \ \text{TX} \ [\text{IM}]$

(Alt. to Marinus Both)

Larry Keeping, PLC Fire Safety Solutions, Canada [SE] (Voting Alt.)

Kevin D. Maughan, Victaulic/Globe Fire, MI [M] (Alt. to Kevin J. Kelly)

Michael G. McCormick, UL LLC, IL [RT]

(Alt. to Jeff Hebenstreit)

Thomas William Noble, American Fire Sprinkler Association, TX [IM]

(Alt. to Byron Weisz)

William Overton, Consolidated Nuclear Security, LLC, Y-12, TN [U] (Alt. to Austin L. Smith)

Ryan Lee Peterson, Wayne Automatic Fire Sprinklers, Inc., FL [IM] (Alt. to Peter T. Schwab)

Steven P. Rasch, Johnson Controls, OK [M]

(Alt. to John H. Pecot)

William Scott Roberts, Quick Response Fire Protection, NJ [M] (Alt. to Roland A. Asp)

Craig M Vesely, Alliant Energy, WI [U]

(Alt. to Byron E. Ellis)

James. A Zimmerman, JENSEN HUGHES, IL [SE] (Voting Alt.)

Nonvoting

Frans Alferink, Wavin Overseas, Netherlands [U]

Chad Duffy, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the final text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have the primary responsibility for documents on private piping systems supplying water for fire protection and for hydrants, hose houses, and valves. The Committee is also responsible for documents on fire flow testing and marking of hydrants.

Contents

Chapter	1 Administration	291 – 7	4.5	Layout of Test and Procedure to Evaluate the	
$1.\hat{1}$	Scope	291 – 7		Available Flow Through a Fire Hydrant	291 – 9
1.2	Purpose	291 – 7	4.6	Equipment	291 – 9
1.3	Application	291 – 7	4.7	Test Procedure.	291 – 9
1.4	Units.	291 – 7	4.8	Pitot Readings.	291 – 10
			4.9	Determination of Discharge.	291 – 10
Chapter	2 Referenced Publications	291 – 7	4.10	Use of Pumper Outlets	291 – 10
2.1	General.	291 – 7	4.11	Determination of Discharge Without a Pitot	291 – 10
2.2	NFPA Publications. (Reserved)	291 – 7	4.12	Calculation Results.	291 – 11
2.3	Other Publications.	291 – 7	4.13	Data Sheet.	291 – 11
2.4	References for Extracts in Recommendations		4.14	System Corrections.	291 – 11
	Sections.	291 – 7	4.15	Public Hydrant Testing and Flushing	291 – 11
Chapter	3 Definitions	291 – 7	Chapter	5 Marking of Hydrants	291 – 18
$3.\overline{1}$	General.	291 – 7	5.1	Classification of Hydrants.	291 – 18
3.2	NFPA Official Definitions	291 – 7	5.2	Marking of Hydrants.	291 – 18
3.3	General Definitions.	291– 8	5. 2	Transaction of the state of the	-01
3.4	Hydrant Definitions	291– 8	Annex A	Explanatory Material	291 – 18
Chapter	4 Flow Testing	291– 8	Annex B	Informational References	291 – 20
4.1	Water Flow Testing Purposes	291 – 8			
4.2	Rating Pressure.	291 – 8	Index		291 – 21
4.3	Procedure.	291 – 8			
4.4	Layout of Test and Procedure to Determine the				
	Available Water Supply in a Water Main	901 8			

DEFINITIONS 291-7

NFPA 291

Recommended Practice for

Water Flow Testing and Marking of Hydrants

2022 Edition

IMPORTANT NOTE: This NFPA document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notices and Disclaimers Concerning NFPA Standards." They can also be viewed at www.nfpa.org/disclaimers or obtained on request from NFPA.

UPDATES, ALERTS, AND FUTURE EDITIONS: New editions of NFPA codes, standards, recommended practices, and guides (i.e., NFPA Standards) are released on scheduled revision cycles. This edition may be superseded by a later one, or it may be amended outside of its scheduled revision cycle through the issuance of Tentative Interim Amendments (TIAs). An official NFPA Standard at any point in time consists of the current edition of the document, together with all TIAs and Errata in effect. To verify that this document is the current edition or to determine if it has been amended by TIAs or Errata, please consult the National Fire Codes® Subscription Service or the "List of NFPA Codes & Standards" at www.nfpa.org/docinfo. In addition to TIAs and Errata, the document information pages also include the option to sign up for alerts for individual documents and to be involved in the development of the next edition.

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Annex A.

A reference in brackets [] following a section or paragraph indicates material that has been extracted from another NFPA document. Extracted text may be edited for consistency and style and may include the revision of internal paragraph references and other references as appropriate. Requests for interpretations or revisions of extracted text shall be sent to the technical committee responsible for the source document.

Information on referenced and extracted publications can be found in Chapter 2 and Annex B.

Chapter 1 Administration

- 1.1* Scope. The scope of this document is water flow testing and marking of hydrants.
- 1.2* Purpose. This document provides recommended practices to test and determine the available water supply for fire protection systems and fire flow purposes and the marking of hydrants.
- 1.3* Application. The application of this document is the flow testing and marking of both public and private fire hydrants.
- 1.4 Units. Metric units of measurement in this recommended practice are in accordance with the modernized metric system known as the International System of Units (SI). Two units (liter and bar), outside of but recognized by SI, are commonly used in international fire protection. These units are listed in Table 1.4 with conversion factors.

Δ Table 1.4 SI Units and Conversion Factors

Unit Name	Unit Symbol	Conversion Factor
Liter	L	1 gal = 3.785 L
Liter per minute	$(L/min)/m^2$	$1 \text{ gpm ft}^2 =$
per square		$(40.746 \text{L/min})/\text{m}^2$
meter		
Cubic decimeter	$ m dm^3$	$1 \text{ gal} = 3.785 \text{ dm}^3$
Pascal	Pa	1 psi = 6894.757 Pa
Bar	bar	1 psi = 0.0689 bar
Bar	bar	1 bar = 10^5 Pa

Note: For additional conversions and information, see ASTM SI10, IEEE/ASTM SI10 American National Standard for Metric Practice, 2016.

1.4.1 If a value for measurement as given in this recommended practice is followed by an equivalent value in other units, the first value stated is to be regarded as the recommendation. A given equivalent value might be approximate.

Chapter 2 Referenced Publications

- **2.1 General.** The documents or portions thereof listed in this chapter are referenced within this recommended practice and shall be considered part of the recommendations of this docu-
- 2.2 NFPA Publications. (Reserved)
- 2.3 Other Publications.
- **2.3.1 ASTM Publications.** ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

ASTM SI10, IEEE/ASTM SI10 American National Standard for Metric Practice, 2016.

2.3.2 Other Publications.

Merriam-Webster's Collegiate Dictionary, 11th edition, Merriam-Webster, Inc., Springfield, MA, 2003.

Δ 2.4 References for Extracts in Recommendations Sections.

NFPA 1, Fire Code, 2021 edition.

NFPA 24, Standard for the Installation of Private Fire Service Mains and Their Appurtenances, 2022 edition.

NFPA 1141, Standard for Fire Protection Infrastructure for Land Development in Wildland, Rural, and Suburban Areas, 2017 edition.

Chapter 3 Definitions

3.1 General. The definitions contained in this chapter apply to the terms used in this recommended practice. Where terms are not defined in this chapter or within another chapter, they should be defined using their ordinarily accepted meanings within the context in which they are used. Merriam-Webster's Collegiate Dictionary, 11th edition, is the source for the ordinarily accepted meaning.

3.2 NFPA Official Definitions.

3.2.1* Authority Having Jurisdiction (AHJ). An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.

- **3.2.2* Listed.** Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- **3.2.3 Should.** Indicates a recommendation or that which is advised but not required.

3.3 General Definitions.

- **N 3.3.1 Fire Flow.** The flow rate of a water supply, measured at 20 psi (1.4 bar) residual pressure, that is available for fire fighting. [1, 2021]
 - **3.3.2 Rated Capacity.** The flow available from a hydrant at the designated residual pressure (rated pressure), either measured or calculated.
 - **3.3.3 Residual Pressure.** The pressure that exists in the distribution system, measured at the residual hydrant at the time the flow readings are taken at the flow hydrants.
 - **3.3.4 Static Pressure.** The pressure that exists at a given point under normal distribution system conditions measured at the residual hydrant with no hydrants flowing.

N 3.4 Hydrant Definitions.

- **N** 3.4.1* **Dry Barrel Hydrant (Frostproof Hydrant).** A type of hydrant with the main control valve below the frost line between the footpiece and the barrel. [24, 2022]
- **N** 3.4.2 Fire Hydrant. A valved connection on a water supply system having one or more outlets and that is used to supply hose and fire department pumpers with water. [1141, 2017]
- **N** 3.4.3 Flow Hydrant. The hydrant that is used for the flow and flow measurement of water during a flow test. [24, 2022]
- **N** 3.4.4 Flush Hydrant (Below Ground Hydrant). A type of hydrant that is installed below the ground level that is intended for use in congested urban areas or aircraft movement areas.
- **N** 3.4.5 Private Fire Hydrant. A valved connection on a water supply system having one or more outlets that is used to supply hose and fire department pumpers with water on private property. [24, 2022]
- **N** 3.4.6 Public Hydrant. A valved connection on a water supply system having one or more outlets that is used to supply hose and fire department pumpers with water. [24, 2022]
- **N** 3.4.7 **Residual Hydrant.** The hydrant that is used for measuring static and residual pressures during a flow test. [24, 2022]
- **N** 3.4.8* **Wet Barrel Hydrant.** A type of hydrant that is intended for use where there is no danger of freezing weather and where each outlet is provided with a valve and an outlet. [24, 2022]

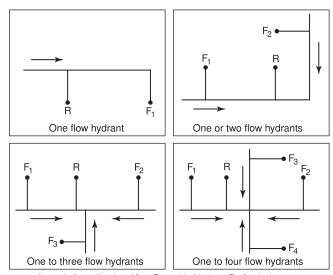
Chapter 4 Flow Testing

N 4.1 Water Flow Testing Purposes.

N 4.1.1 Water flow tests are conducted to determine the available water supply for fire protection purposes, the flow that

would be available from a fire hydrant for firefighting purposes, or the status of the water supply distribution system for fire protection systems or for firefighting purposes.

4.2 Rating Pressure.


- **4.2.1** For the purpose of uniform marking of fire hydrants, the ratings should be based on the flow available at the hydrant at a residual pressure of 20 psi (1.4 bar).
- **4.2.2** It is generally recommended that a minimum residual pressure of 20 psi (1.4 bar) should be maintained at hydrants when delivering the fire flow. Fire department pumpers can be operated where hydrant pressures are less, but with difficulty.
- **4.2.3** A primary concern should be the ability to maintain sufficient residual pressure to prevent developing a negative pressure at any point in the street mains, which could result in the collapse of the mains or other water system components or back-siphonage of polluted water from some other interconnected source.
- **4.2.4** It should be noted that the use of residual pressures of less than 20 psi (1.4 bar) is not permitted by many state health departments.

4.3 Procedure.

- **4.3.1*** Tests should be conducted during periods of peak demand, based on knowledge of the water supply and engineering judgment.
- **4.3.2** The procedure consists of discharging water at a measured rate of flow from the system at a given location and observing the corresponding pressure drop in the mains.
- N 4.3.3* The fire hydrant and the area around the fire hydrant should be visually inspected for safety concerns prior to conducting the flow test.

4.4* Layout of Test and Procedure to Determine the Available Water Supply in a Water Main.

- **4.4.1** After the location where the test is to be run has been determined, a group of test hydrants in the vicinity is selected.
- **4.4.2** Once selected, due consideration should be given to potential interference with traffic flow patterns, damage to surroundings (e.g., roadways, sidewalks, landscapes, vehicles, and pedestrians), and potential flooding problems both local and remote from the test site.
- **4.4.3** One hydrant, designated the residual hydrant, is chosen to be the hydrant where the normal static pressure will be observed with the other hydrants in the group closed, and where the residual pressure will be observed with the other hydrants flowing.
- **4.4.4** This hydrant is chosen so it will be located between the hydrant to be flowed and the large mains that constitute the immediate sources of water supply in the area. In Figure 4.4.4, test layouts are indicated showing the residual hydrant designated with the letter R and hydrants to be flowed with the letter F.
- **4.4.5** The number of hydrants to be used in any test depends upon the strength of the distribution system in the vicinity of the test location.
- **4.4.6** To obtain satisfactory test results of theoretical calculation of expected flows or rated capacities, sufficient discharge should be achieved to cause a drop in pressure at the residual

Arrows indicate direction of flow: $\mathsf{R}-\mathsf{residual}$ hydrant; $\mathsf{F}-\mathsf{flow}$ hydrant

FIGURE 4.4.4 Suggested Test Layout for Hydrants.

hydrant of at least 10 percent. In water supply systems where additional municipal pumps increase the flow and pressure as additional test hydrants are opened, it might be necessary to declare an artificial drop in the static pressure of 10 percent to create a theoretical water supply curve.

- **N 4.4.7** When conducting a flow test for the purpose of fire protection system design, the flow and pressure results should be adequate for the total demand of the system.
- **N 4.4.8** If the mains are small and the system weak, only one or two hydrants need to be flowed.
- **N 4.4.9** If the mains are large and the system strong, it might be necessary to flow as many as seven or eight hydrants.

N 4.5* Layout of Test and Procedure to Evaluate the Available Flow Through a Fire Hydrant.

- **N 4.5.1** When the purpose of a flow test is to determine the available flow through an individual fire hydrant only, the static and residual pressures should be taken at a single hydrant. The flow hydrant is also used as the static/residual hydrant.
- **N 4.5.2** A pressure gauge (or other pressure measuring device) should be located on one of the $2\frac{1}{2}$ in. (65 mm) hydrant outlets [see 4.6.1(5)].
- **N 4.5.3** A closed control valve connected to a discharge nozzle(s) for the purpose of rate of flow measurement should be located on one of the other hydrant outlets.
- **N 4.5.4** The test procedures in Section 4.7 for venting air and taking static/residual readings and Section 4.8 for taking pitot readings should be followed.
- **N 4.5.5** The control valve on another hydrant outlet should be opened. When the rate of flow stabilizes, rate of flow and residual pressure measurements are taken and recorded.

4.6 Equipment.

Δ 4.6.1 The equipment necessary for field work can consist of the following:

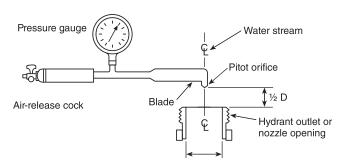
(1) A special hydrant cap tapped with a hole into which is fitted a short length of ½ in. (6 mm) nipple provided with a "T" connection for a pressure gauge and a petcock at the end for relieving air pressure

(2) A single 100 psi (6.9 bar) or 200 psi (13.8 bar) bourdon pressure gauge with 1 psi (0.07 bar) graduations fixed onto the hydrant cap [If the static pressure on the system is greater than 100 psi (6.9 bar), the 200 psi (13.8 bar) gauge will be required.]

(3) A pitot tube and a 100 psi (6.9 bar) bourdon pressure gauge with 1 psi (0.07 bar) graduations, for each hydrant to be flowed simultaneously

- (4) A sufficient number of hydrant wrenches to operate the hydrants simultaneously
- (5)* Playpipes, stream straighteners, or other specially designed flow test outlets with known coefficients of discharge
- Δ 4.6.2 It is preferred to use playpipes or stream straighteners or
 other specially designed flow test outlets with known coefficients of discharge when testing hydrants due to more streamlined flows and more accurate pitot readings.
 - **4.6.3** All pressure gauges should be calibrated at least every 12 months, or more frequently depending on use.
 - **4.6.4** When more than one hydrant is flowed, it is desirable and could be necessary to facilitate communications between team members.

4.7 Test Procedure.


- **4.7.1** In a typical test, the 100 psi (6.9 bar) or 200 psi (14 bar) gauge is attached to one of the $2\frac{1}{2}$ in. (65 mm) outlets of the residual hydrant using the special cap.
- **4.7.2** The cock on the gauge piping is opened, and the hydrant valve is opened full.
- **4.7.3** As soon as the air is exhausted from the barrel, the cock is closed.
- ${f 4.7.4}$ A reading (static pressure) is taken when the needle comes to rest.
- **4.7.5** At a given signal, each of the other hydrants is opened in succession, with discharge taking place directly from the open hydrant butts.
- **4.7.6** Hydrants should be opened one at a time.
- **4.7.7** With all hydrants flowing, water should be allowed to flow for a sufficient time to clear all debris and foreign substances from the stream(s).
- **4.7.8** At that time, a signal is given to the people at the hydrants to read the pitot pressure of the streams simultaneously while the residual pressure is being read.
- **4.7.9** The final magnitude of the pressure drop can be controlled by the number of hydrants used and the number of outlets opened on each.
- **4.7.10** After the readings have been taken, hydrants should be shut down slowly, one at a time, to prevent undue surges in the system.

4.8 Pitot Readings.

- **4.8.1** When measuring discharge from open hydrant butts, it is always preferable from the standpoint of accuracy to use $2\frac{1}{2}$ in. (65 mm) outlets rather than pumper outlets.
- **4.8.2** In practically all cases, the $2\frac{1}{2}$ in. (65 mm) outlets are filled across the entire cross-section during flow, while in the case of the larger outlets there is very frequently a void near the bottom.
- **4.8.3** When measuring the pitot pressure of a stream of practically uniform velocity, the orifice in the pitot tube is held downstream approximately one-half the diameter of the hydrant outlet or nozzle opening, and in the center of the stream. (See Figure 4.8.3.)
- **4.8.4** The center line of the orifice should be at right angles to the plane of the face of the hydrant outlet.
- **4.8.5** The air chamber on the pitot tube should be kept elevated.
- Δ 4.8.6 Pitot readings of less than 10 psi (0.7 bar) should be avoided, if possible.
 - **4.8.7** Opening additional hydrant outlets will aid in controlling the pitot reading.
 - **4.8.8** With dry barrel hydrants, the hydrant valve should be wide open to minimize problems with underground drain valves.
- △ 4.8.9 With wet barrel hydrants, the valve for the flowing outlet should be wide open to give a more streamlined flow and a more accurate pitot reading.

4.9 Determination of Discharge.

- **4.9.1** At the hydrants used for flow during the test, the discharges from the open butts are determined from measurements of the diameter of the outlets flowed, the pitot pressure (velocity head) of the streams as indicated by the pitot gauge readings, and the coefficient of the outlet being flowed as determined from Figure 4.9.1.
- **4.9.2** If flow tubes (stream straighteners) are being utilized, a coefficient of 0.95 is suggested unless the coefficient of the tube is known.
- **4.9.3** The formula used to compute the discharge, Q, in gpm (L/min) from these measurements is as shown in Equations 4.9.3a and 4.9.3b.

N FIGURE 4.8.3 Pitot Tube Position.

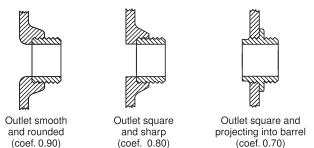


FIGURE 4.9.1 Three General Types of Hydrant Outlets and Their Coefficients of Discharge.

[4.9.3a]

$$Q = 29.84cd^2 \sqrt{p}$$

where:

Q = flow (gpm)

c = coefficient of discharge (see Figure 4.9.1)

d = diameter of the outlet (in.)

p = pitot pressure (velocity head) (psi)

$$Q_{\rm M} = 0.666cd^2 \sqrt{p_{\rm M}}$$
 [4.9.3b]

where:

 $Q_{\rm M}$ = flow (L/min)

c = coefficient of discharge (see Figure 4.9.1)

d = diameter of the outlet (mm)

 $p_{\rm M}$ = pitot pressure (velocity head) (bar)

4.10 Use of Pumper Outlets.

- **4.10.1** If it is necessary to use a pumper outlet, and flow tubes (stream straighteners) are not available, the best results are obtained with the pitot pressure (velocity head) maintained between 5 psi and 10 psi (0.34 bar and 0.7 bar).
- **4.10.2** For pumper outlets, the approximate discharge can be computed from Equations 4.9.3a and 4.9.3b using the pitot pressure (velocity head) at the center of the stream and multiplying the result by one of the coefficients in Table 4.10.2, depending upon the pitot pressure (velocity head).
- **4.10.3** These coefficients are applied in addition to the coefficient in Equations 4.9.3a and 4.9.3b and are for average-type hydrants.

4.11 Determination of Discharge Without a Pitot.

- **4.11.1** If a pitot tube is not available for use to measure the hydrant discharge, a gauge of sufficient pressure range, tapped into a hydrant cap can be used when the flow is through a hydrant outlet or a nozzle attached to a hydrant outlet.
- **4.11.2** The hydrant cap with gauge attached is placed on one outlet, and the flow is allowed to take place through the other outlet at the same elevation.
- **4.11.3** The readings obtained from a gauge so located, and the readings obtained from a gauge on a pitot tube held in the stream, are approximately the same.

FLOW TESTING 291-11

Table 4.10.2 Pumper Outlet Coefficients

	Pressure ty Head)	
psi	bar	Coefficient
2	0.14	0.97
3	0.21	0.92
4	0.28	0.89
5	0.35	0.86
6	0.41	0.84
7 and over	0.48 and over	0.83

4.12 Calculation Results.

- **4.12.1** The discharge in gpm (L/min) for each outlet flowed is obtained from Table 4.12.1(a) and Table 4.12.1(b) or by the use of Equations 4.9.3a and 4.9.3b.
- **4.12.1.1** If more than one outlet is used, the discharges from all are added to obtain the total discharge.
- **4.12.1.2** The formula that is generally used to compute the available flow in the desired test location (either the underground main or static/residual hydrant, depending on the test), the specified residual pressure, or for any desired pressure drop is Equation 4.12.1.2:

[4.12.1.2]

$$Q_R = Q_F \times \frac{h_r^{0.54}}{h_f^{0.54}}$$

where:

 Q_R = flow predicted at desired residual pressure

 Q_F = total flow measured during test

 h_r = pressure drop to desired residual pressure

 h_f = pressure drop measured during test

- **4.12.1.3** In Equation 4.12.1.2, any units of discharge or pressure drop can be used as long as the same units are used for each value of the same variable.
- **4.12.1.4** In other words, if Q_R is expressed in gpm, Q_F must be in gpm, and if h_r is expressed in psi, h_F must be expressed in psi.
- **4.12.1.5** These are the units that are normally used in applying Equation 4.12.1.2 to fire flow test computations.

4.13 Data Sheet.

- **4.13.1** The data secured during the testing of hydrants for uniform marking can be valuable for other purposes.
- **4.13.2** With this in mind, it is suggested that the form shown in Figure 4.13.2 be used to record information that is taken.
- **4.13.3** The back of the form should include a location sketch.
- **4.13.4** Results of the flow test should be indicated on a hydraulic graph, such as the one shown in Figure 4.13.4.
- **4.13.5** When the tests are complete, the forms should be filed for future reference by interested parties.

4.14* System Corrections.

4.14.1 Flow test results show the strength of the distribution system at the time and date of the testing. It does not necessarily indicate the degree of adequacy of the entire water works system. If the testing does not occur during a period of peak demand, then the flow test results might not provide an accurate representation of the water available during those peak periods.

4.15 Public Hydrant Testing and Flushing.

- **4.15.1*** Public fire hydrants should be flow tested at least every 5 years to verify capacity and marking of the hydrant.
- **4.15.2** Public fire hydrants should be flushed at least annually to verify operation, address repairs, and verify reliability.

△ Table 4.12.1(a) Theoretical Discharge Through Circular Orifices (U.S. Gallons of Water per Minute)

Pitot Pressure							C	Prifice Siz	e					
(psi)	Feet	1.75	2	2.25	2.375	2.5	2.625	2.75	3	3.25	3.5	3.75	4	4.5
1	2.31	91	119	151	168	187	206	226	269	315	366	420	477	604
2	4.61	129	169	214	238	264	291	319	380	446	517	593	675	855
3 4	6.92 9.23	158 183	207 239	262 302	292 337	$\frac{323}{373}$	356 411	391 451	465 537	546 630	633 731	727 839	827 955	1047 1209
5	11.54	204	267	338	376	417	460	505	601	705	817	938	1068	1351
6	13.84	224	292	370	412	457	504	553	658	772	895	1028	1169	1480
7	16.15	242	316	400	445	493	544	597	711	834	967	1110	1263	1599
8 9	18.46	258	338	427	476	528	582	638	760	891	1034	1187	1350	1709
10	20.76 23.07	$\frac{274}{289}$	358 377	$453 \\ 478$	505 532	560 590	617 650	677 714	806 849	946 997	1097 1156	1259 1327	1432 1510	1813 1911
11	25.38	303	396	501	558	619	682	748	891	1045	1212	1392	1583	2004
12	27.68	317	413	523	583	646	712	782	930	1092	1266	1454	1654	2093
13	29.99	329	430	545	607	672	741	814	968	1136	1318	1513	1721	2179
14 15	32.30 34.61	$342 \\ 354$	447 462	565 585	630 652	698 722	769 796	844 874	1005 1040	1179 1221	1368 1416	1570 1625	1786 1849	2261 2340
16 17	36.91 39.22	$\frac{366}{377}$	477 492	604 623	673 694	746 769	822 848	903 930	$1074 \\ 1107$	1261 1300	1462 1507	1679 1730	1910 1969	2417 2491
18	41.53	388	506	641	714	709 791	872	957	1139	1337	1551	1780	2026	2564
19	43.83	398	520	658	734	813	896	984	1171	1374	1593	1829	2081	2634
20	46.14	409	534	676	753	834	920	1009	1201	1410	1635	1877	2135	2702
22	50.75	429	560	709	789	875	964	1058	1260	1478	1715	1968	2239	2834
24	55.37	448	585	740	825	914	1007	1106	1316	1544	1791	2056	2339	2960
26 28	59.98 64.60	$\frac{466}{484}$	609 632	770 799	858 891	951 987	1048 1088	1151 1194	1369 1421	1607 1668	1864 1934	2140 2220	2434 2526	3081 3197
30	69.21	501	654	827	922	1022	1126	1236	1471	1726	2002	2298	2615	3310
32	73.82	517	675	855	952	1055	1163	1277	1519	1783	2068	2374	2701	3418
34	78.44	533	696	881	981	1087	1199	1316	1566	1838	2131	2447	2784	3523
36	83.05 87.67	548	716 736	906 931	1010 1038	1119	1234 1268	1354 1391	1611 1656	1891	2193 2253	2518 2587	2865 2943	3626 3725
38 40	92.28	$\frac{563}{578}$	755	955	1058	$\frac{1150}{1180}$	1300	1427	1699	1943 1993	2312	2654	3020	3822
42	96.89	592	774	979	1091	1209	1333	1462	1740	2043	2369	2719	3094	3916
44	101.51	606	792	1002	1116	1237	1364	1497	1781	2091	2425	2783	3167	4008
46	106.12	620	810	1025	1142	1265	1395	1531	1821	2138	2479	2846	3238	4098
48	110.74	633	827	1047	1166	1292	1425	1563	1861	2184	2533	2907	3308	4186
50	115.35	646	844	1068	1190	1319	1454	1596	1899	2229	2585	2967	3376	4273
52	119.96	659	861	1089	1214	1345	1483	1627	1937	2273	2636	3026	3443	4357
54 56	124.58 129.19	$672 \\ 684$	877 893	1110 1130	1237 1260	$1370 \\ 1396$	1511 1539	1658 1689	1974 2010	2316 2359	2686 2735	3084 3140	3508 3573	4440 4522
58	133.81	696	909	1150	1282	1420	1566	1719	2045	2400	2784	3196	3636	4602
60	138.42	708	925	1170	1304	1445	1593	1748	2080	2441	2831	3250	3698	4681
62	143.03	720	940	1189	1325	1469	1619	1777	2115	2482	2878	3304	3759	4758
64	147.65	731	955	1209	1347	1492	1645	1805	2148	2521	2924	3357	3820	4834
66	152.26 156.88	$742 \\ 754$	970 984	1227 1246	1367 1388	1515 1538	1670 1696	1833 1861	2182 2215	2561 2599	2970 3014	3409 3460	3879 3937	4909 4983
68 70	161.49	765	999	1240	1408	1560	1720	1888	2213	2637	3058	3511	3995	5056
72	166.10	775	1013	1282	1428	1583	1745	1915	2279	2674	3102	3561	4051	5127
74	170.72	786	1027	1300	1448	1604	1769	1941	2310	2711	3144	3610	4107	5198
76 70	175.33	797	1041	1317	1467	1626	1793	1967	2341	2748	3187	3658	4162	5268
78 80	179.95 184.56	807 817	1054 1068	1334 1351	1487 1505	$1647 \\ 1668$	1816 1839	1993 2018	2372 2402	2784 2819	3228 3269	3706 3753	4217 4270	5337 5405
82	189.17	828	1081	1368	1524	1689	1862	2043	2432	2854	3310	3800	4323	5472
84	193.79	838	1094	1385	1543	1709	1885	2068	2461	2889	3350	3846	4376	5538
86	198.40	847	1107	1401	1561	1730	1907	2093	2491	2923	3390	3891	4428	5604
88	203.02	857	1120	1417	1579	1750	1929	2117	2519	2957	3429	3936	4479	5668

(continues)

FLOW TESTING 291-13

△ Table 4.12.1(a) Continued

Pitot Pressure							O	rifice Siz (in.)	e					
(psi)	Feet	1.75	2	2.25	2.375	2.5	2.625	2.75	3	3.25	3.5	3.75	4	4.5
90	207.63	867	1132	1433	1597	1769	1951	2141	2548	2990	3468	3981	4529	5733
92	212.24	877	1145	1449	1614	1789	1972	2165	2576	3023	3506	4025	4579	5796
94	216.86	886	1157	1465	1632	1808	1994	2188	2604	3056	3544	4068	4629	5859
96	221.47	895	1169	1480	1649	1827	2015	2211	2631	3088	3582	4111	4678	5921
98	226.09	905	1182	1495	1666	1846	2035	2234	2659	3120	3619	4154	4726	5982
100	230.70	914	1194	1511	1683	1865	2056	2257	2686	3152	3655	4196	4774	6043
102	235.31	923	1205	1526	1700	1884	2077	2279	2712	3183	3692	4238	4822	6103
104	239.93	932	1217	1541	1716	1902	2097	2301	2739	3214	3728	4279	4869	6162
106	244.54	941	1229	1555	1733	1920	2117	2323	2765	3245	3763	4320	4916	6221
108	249.16	950	1240	1570	1749	1938	2137	2345	2791	3275	3799	4361	4962	6280
110	253.77	958	1252	1584	1765	1956	2157	2367	2817	3306	3834	4401	5007	6338
112	258.38	967	1263	1599	1781	1974	2176	2388	2842	3336	3869	4441	5053	6395
114	263.00	976	1274	1613	1797	1991	2195	2409	2867	3365	3903	4480	5098	6452
116	267.61	984	1286	1627	1813	2009	2215	2430	2892	3395	3937	4519	5142	6508
118	272.23	993	1297	1641	1828	2026	2234	2451	2917	3424	3971	4558	5186	6564
120	276.84	1001	1308	1655	1844	2043	2252	2472	2942	3453	4004	4597	5230	6619
122	281.45	1009	1318	1669	1859	2060	2271	2493	2966	3481	4038	4635	5273	6674
124	286.07	1018	1329	1682	1874	2077	2290	2513	2991	3510	4070	4673	5317	6729
126	290.68	1026	1340	1696	1889	2093	2308	2533	3015	3538	4103	4710	5359	6783
128	295.30	1034	1350	1709	1904	2110	2326	2553	3038	3566	4136	4748	5402	6836
130	299.91	1042	1361	1722	1919	2126	2344	2573	3062	3594	4168	4784	5444	6890
132	304.52	1050	1371	1736	1934	2143	2362	2593	3086	3621	4200	4821	5485	6942
134	309.14	1058	1382	1749	1948	2159	2380	2612	3109	3649	4231	4858	5527	6995
136	313.75	1066	1392	1762	1963	2175	2398	2632	3132	3676	4263	4894	5568	7047

Notes:

found by using the formula $Q = 29.84cd^2\sqrt{p}$.

⁽¹⁾ This table is computed from the formula $Q = 29.84cd^2\sqrt{p}$, with c = 1.00. The theoretical discharge of seawater, as from fireboat nozzles, can be

⁽²⁾ Appropriate coefficient should be applied where it is read from hydrant outlet. Where more accurate results are required, a coefficient appropriate on the particular nozzle must be selected and applied to the figures of the table. The discharge from circular openings of sizes other than those in the table can readily be computed by applying the principle that quantity discharged under a given head varies as the square of the diameter of the opening.

△ Table 4.12.1(b) Theoretical Discharge Through Circular Orifices (Liters of Water per Minute)

Pitot Pressure	Pitot Pressure	Meters							Orifice S						
(kPa)	(bar)	(m)	44.5	50.8	57.2	60.3	63.5	66.7	69.9	76.2	82.6	88.9	95.3	101.6	114.3
5	0.05	0.51	295	384	487	541	600	663	728	865	1016	1177	1353	1537	1946
10	0.10	1.02	417	544	689	766	849	937	1029	1223	1437	1664	1913	2174	2751
15 20	0.15 0.20	1.53 2.04	511 590	666 769	844 974	938 1083	1040 1201	1148 1325	$\frac{1260}{1455}$	1498 1729	$1760 \\ 2032$	2039 2354	2343 2705	2663 3075	3370 3891
25 25	0.20	2.55	659	859	1090	1211	1343	1481	1433 1627	1934	2032	2632	3024	3437	4350
30	0.30	3.06	722	941	1194	1326	1471	1623	1782	2118	2489	2883	3313	3765	4766
35	0.35	3.57	780	1017	1289	1433	1589	1753	1925	2288	2688	3114	3578	4067	5148
40	0.40	4.08	834	1087	1378	1532	1698	1874	2058	2446	2874	3329	3826	4348	5503
45 50	0.45 0.50	4.59 5.10	885 933	1153 1215	1462 1541	1624 1712	1801 1899	1988 2095	$2183 \\ 2301$	2594 2734	3048 3213	3531 3722	4058 4277	4612 4861	5837 6153
55	0.55	5.61	978	1275	1616	1796	1992	2197	2413	2868	3370	3904	4486	5099	6453
60	0.60	6.12	1022	1331	1688	1876	2080	2295	2521	2995	3520	4077	4685	5325	6740
65	0.65	6.63	1063	1386	1757	1952	2165	2389	2624	3118	3663	4244	4877	5543	7015
70	0.70	7.14	1103	1438	1823	2026	2247	2479	2723	3235	3802	4404	5061	5752	7280
75	0.75	7.65	1142	1488	1887	2097	2326	2566	2818	3349	3935	4558	5238	5954	7535
80	0.80	8.16	1180	1537	1949	2166	2402	2650	2911	3459	4064	4708	5410	6149	7782
85 90	0.85 0.90	8.67 9.18	1216 1251	1585 1631	2009 2067	2233 2297	2476 2548	2732 2811	$\frac{3000}{3087}$	3565 3669	4189 4311	4853 4993	5577 5738	6338 6522	8022 8254
95	0.95	9.18	1285	1675	2124	2360	2617	2888	3172	3769	4429	5130	5896	6701	8481
100	1.00	10.20	1319	1719	2179	2422	2685	2963	3254	3867	4544	5264	6049	6875	8701
105	1.05	10.71	1351	1761	2233	2481	2752	3036	3334	3963	4656	5394	6198	7045	8916
110	1.10	11.22	1383	1803	2285	2540	2817	3108	3413	4056	4766	5520	6344	7210	9126
$\frac{115}{120}$	1.15 1.20	11.73 12.24	$\frac{1414}{1445}$	1843 1883	2337 2387	2597 2653	2880 2942	3177 3246	3490 3565	4147 4236	4873 4978	5645 5766	6486 6626	7372 7531	9331 9531
125	1.25	12.24	$1445 \\ 1475$	1922	2436	2707	3002	3313	3638	4324	5080	5885	6763	7686	9728
130	1.30	13.26	1504	1960	2484	2761	3062	3378	3710	4409	5181	6001	6897	7839	9921
140	1.40	14.28	1560	2034	2578	2865	3178	3506	3850	4576	5376	6228	7157	8134	10295
150	1.50	15.30	1615	2105	2669	2966	3289	3629	3985	4736	5565	6446	7408	8420	10656
$\frac{160}{170}$	1.60 1.70	16.32 17.34	$\frac{1668}{1720}$	2174 2241	2756 2841	3063 3157	3397 3501	3748 3863	4116 4243	4892 5042	5748 5925	6658 6863	7651 7887	8696 8964	11006 11345
180	1.80	18.36	1769	2306	2923	3249	3603	3975	4366	5188	6096	7062	8115	9224	11674
190	1.90	19.38	1818	2369	3004	3338	3702	4084	4485	5330	6263	7255	8338	9476	11993
200	2.00	20.40	1865	2431	3082	3425	3798	4190	4602	5469	6426	7444	8554	9722	12305
210	2.10	21.42	1911	2491	3158	3509	3892	4294	4716	5604	6585	7628	8765	9963	12609
220	2.20	22.44	1956	2549	3232	3592	3983	4395	4827	5736	6740	7807	8972	10197	12906
230	2.30	23.46	2000	2607	3305	3673	4073	4494	4935	5865	6891	7983	9173	10426	13196
240 250	2.40 2.50	24.48 25.50	$2043 \\ 2085$	2663 2718	3376 3445	3752 3829	4160 4246	4590 4685	$5041 \\ 5145$	5991 6114	7039 7185	8154 8322	9371 9564	10650 10870	13479 13757
260	2.60	26.52	2127	2771	3514	3905	4330	4778	5247	6235	7327	8487	9753	11085	14030
270	2.70	27.54	2167	2824	3581	3979	4413	4869	5347	6354	7466	8649	9939	11296	14297
285	2.85	29.07	2226	2902	3679	4088	4534	5002	5494	6528	7671	8886	10211	11606	14689
300	3.00	30.60	2284	2977	3774	4194	4651	5132	5636	6698	7870	9117	10477	11908	15070
315 330	3.15 3.30	32.13 33.66	2341 2396	3050 3122	3867 3958	4298 4399	4766 4878	5259 5382	5775 5911	6863 7025	8065 8255	9342 9562	10735 10988	12202 12489	15443 15806
345	3.45	35.19	2450	3192	4047	4498	4988	5503	6044	7183	8440	9777	11235	12769	16161
360	3.60	36.72	2502	3261	4134	4595	5095	5622	6174	7337	8622	9987	11477	13044	16509
375	3.75	38.25	2554	3328	4220	4689	5200	5738	6302	7489	8799	10193	11713	13313	16849
390	3.90	39.78	2605	3394	4303	4782	5303	5851	6426	7637	8974	10395	11945	13577	17183
$405 \\ 420$	4.05 4.20	41.31 42.84	$2654 \\ 2703$	3459 3522	4385 4466	4873 4963	5404 5504	5963 6072	6549 6669	7782 7925	9145 9312	10593 10787	12173 12396	13835 14089	17510 17832
435	4.35	44.37	2751	3585	4545	5051	5601	6180	6787	8065	9477	10978	12616	14339	18147
450	4.50	45.90	2798	3646	4622	5137	5697	6285	6903	8203	9639	11166	12831	14584	18458
465	4.65	47.43	2844	3706	4699	5222	5791	6389	7017	8339	9799	11350	13043	14825	18763
480	4.80	48.96	2889	3765	4774	5306	5884	6492	7129	8472	9955	11532	13252	15062	19063

(continues)

FLOW TESTING 291-15

△ Table 4.12.1(b) Continued

Pitot Pressure	Pitot Pressure	Meters							Orifice S						
(kPa)	(bar)	(m)	44.5	50.8	57.2	60.3	63.5	66.7	69.9	76.2	82.6	88.9	95.3	101.6	114.3
495	4.95	50.49	2934	3824	4848	5388	5975	6592	7240	8604	10110	11711	13457	15296	19358
510	5.10	52.02	2978	3881	4921	5469	6065	6691	7349	8733	10262	11887	13660	15526	19650
525	5.25	53.55	3022	3938	4993	5549	6153	6789	7456	8861	10412	12060	13859	15752	19936
540	5.40	55.08	3065	3994	5064	5627	6240	6885	7562	8986	10559	12231	14056	15976	20219
555	5.55	56.61	3107	4049	5133	5705	6327	6980	7666	9110	10705	12400	14250	16196	20498
570	5.70	58.14	3149	4103	5202	5782	6411	7074	7769	9233	10849	12567	14441	16413	20773
585	5.85	59.67	3190	4157	5270	5857	6495	7166	7871	9353	10990	12731	14630	16628	21045
600	6.00	61.20	3231	4210	5338	5932	6578	7258	7971	9472	11130	12893	14816	16840	21313
615	6.15	62.73	3271	4262	5404	6005	6660	7348	8070	9590	11269	13053	15000	17049	21578
630	6.30	64.26	3310	4314	5469	6078	6740	7437	8168	9706	11405	13211	15182	17256	21839
645	6.45	65.79	3349	4365	5534	6150	6820	7525	8264	9821	11540	13368	15362	17460	22098
660	6.60	67.32	3388	4415	5598	6221	6899	7612	8360	9935	11674	13522	15539	17662	22353
675	6.75	68.85	3426	4465	5661	6292	6977	7698	8454	10047	11806	13675	15715	17861	22606
690	6.90	70.38	3464	4515	5724	6361	7054	7783	8548	10158	11936	13826	15889	18059	22856
705	7.05	71.91	3502	4563	5786	6430	7130	7867	8640	10268	12065	13976	16060	18254	23103
720	7.20	73.44	3539	4612	5847	6498	7206	7950	8732	10376	12193	14124	16230	18447	23347
735	7.35	74.97	3576	4660	5908	6565	7281	8033	8822	10484	12319	14270	16398	18638	23589
750	7.50	76.50	3612	4707	5968	6632	7354	8114	8912	10590	12444	14415	16565	18827	23829
765	7.65	78.03	3648	4754	6027	6698	7428	8195	9000	10696	12568	14558	16730	19015	24066
780	7.80	79.56	3683	4800	6086	6763	7500	8275	9088	10800	12691	14700	16893	19200	24300
795	7.95	81.09	3719	4846	6144	6828	7572	8354	9175	10904	12812	14841	17055	19384	24533
810	8.10	82.62	3754	4892	6202	6892	7643	8433	9261	11006	12932	14980	17215	19566	24763
825	8.25	84.15	3788	4937	6259	6956	7713	8510	9347	11107	13052	15118	17373	19746	24992
840	8.40	85.68	3822	4981	6315	7019	7783	8587	9431	11208	13170	15255	17531	19925	25218
855	8.55	87.21	3856	5026	6372	7081	7852	8664	9515	11308	13287	15391	17687	20102	25442
870	8.70	88.74	3890	5069	6427	7143	7921	8739	9598	11406	13403	15525	17841	20278	25664
885	8.85	90.27	3923	5113	6482	7204	7989	8814	9681	11504	13518	15658	17994	20452	25884
900	9.00	91.80	3957	5156	6537	7265	8056	8889	9762	11601	13632	15791	18146	20624	26103
915	9.15	93.33	3989	5199	6591	7325	8123	8963	9843	11698	13745	15922	18297	20796	26319
930	9.30	94.86	4022	5241	6645	7385	8190	9036	9924	11793	13857	16052	18446	20965	26534
945	9.45	96.39	4054	5283	6699	7444	8255	9108	10003	11888	13969	16181	18594	21134	26747

Notes:

⁽¹⁾ This table is computed from the formula $Q_{\rm M}=0.0666cd^2\sqrt{p_{\rm M}}$, with c=1.00. The theoretical discharge of seawater, as from fireboat nozzles, can

be found by using the formula $Q_M = 0.065cd^2\sqrt{p_M}$.

⁽²⁾ Appropriate coefficient should be applied where it is read from the hydrant outlet. Where more accurate results are required, a coefficient appropriate on the particular nozzle must be selected and applied to the figures of the table. The discharge from circular openings of sizes other than those in the table can readily be computed by applying the principle that quantity discharged under a given head varies as the square of the diameter of the opening.

Date:	Date:								
SYSTEM DATA Size of main: Dead end: Looped: Comments:	Time:						Test	by:	
Dead end: Looped:	Dead end: Dead end: Looped:	Address	: _						
Size of main: Dead end: Looped: Comments: TEST DATA Location of test hydrants:	Dead end: Looped:	oo===	_				Ti	ime:	
Test No. of Outlets (in.) Orifice Coeff. (psig) Pressure (psig) (psig) Comments 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Test No. of No.				Dogo	l and:		Looped:	
Test No. of Outlets Size (in.) Orifice Coeff. (psig) Pitot (psig) Comments 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Location of test hydrants: Flow hydrant A:					r enu.		Loopeu	
Accation of test hydrants: Flow hydrant A: Flow hydrant B: Static pressure: Test No. of Outlets Size (in.) Outlets Size (in.) Pitot Pressure (psig) Flow (US gpm) Comments Comments A 4	Location of test hydrants: Flow hydrant A:								
Static pressure: Test No. of Outlets Size (in.) Orifice Size (in.) Orifice Coeff. Residual Pressure (psig) Pitot (psig) (US gpm) Comments	Static pressure: Test No. of Outlets Size (in.) Orifice Coeff. Residual Pressure (psig) Projected results @ 20 psi:			rants:	Resid	ual hydrants:			
Static pressure: Test No. of Outlets Size (in.) Orifice Size (in.) Pressure (psig) Pressure (psig) (US gpm) Comments 1	Static pressure:				Flo	w hydrant A:			
Test No. of Outlets Size (in.) Orifice Coeff. Residual Pressure (psig) Pitot Pressure (psig) Comments 1 2 3 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Test No. of Outlets Size (in.) Orifice Size (in.) Orifice Coeff. Residual Pressure (psig) Pressure (psig) (US gpm) Comments 1				Flo	w hydrant B:			
No. Outlets Size (in.) Size Coeff. Pressure (psig) Pressure (psig) Comments 1 2 3 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 Comments Comment		Sta	atic pressure	e:				
2 3 4 4	2 3 4 5			Size		Pressure	Pressure		Comments
3 4	3 4 5 Projected results @ 20 psi:	1							
4	4 5 Projected results @ 20 psi:								
	5 Projected results @ 20 psi:								
5	Projected results @ 20 psi:								
	Projected results @ 20 psi: Sketch of test configurat	5							
Sketch of test configura									
Okerell of test configuration									
Okerell of test configuration									
Okeich of test configuration									
Sketch of test configuration									

△ FIGURE 4.13.2 Sample Report of a Hydrant Flow Test.