
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely
voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright 2001 Society of Automotive Engineers, Inc.
All rights reserved. Printed in U.S.A.

TO PLACE A DOCUMENT ORDER: (724) 776-4970 FAX: (724) 776-0790 SAE WEB ADDRESS: http://www.sae.org

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE
RECOMMENDED
PRACTICE

ARP4868

Issued 2001-10

Application Programming Interface Requirements for the
Presentation of Gas Turbine Engine Performance on

Digital Computers

TABLE OF CONTENTS

1. SCOPE ...4

1.1 Purpose..4

2. REFERENCES ...5

2.1 Applicable Documents ...5
2.1.1 SAE Publications ...5
2.2 Definitions ..5

3. OVERVIEW ..7

3.1 Multiple Programming Language Support..8
3.2 Parameter Organization...8
3.3 Element Attributes..8
3.4 Typical Order of Calls to the API Functions ...9

4. PROGRAM DOCUMENTATION...9

4.1 User Documentation ..9

5. ELEMENT ATTRIBUTES..10

5.1 Path Name ...10
5.2 Direct Access ID...10
5.3 Element I/O Status ... 11
5.4 Data Type...12
5.5 Description ...13

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 2 -

TABLE OF CONTENTS (Continued)

5.6 Description ...13
5.7 Units ...13

6. PARAMETER HIERARCHIES ..14

6.1 Overview ..14
6.2 Required Hierarchies ...14

7. TABULAR DATA..14

8. CHARACTER STRING REQUIREMENTS...15

8.1 Accommodating Differences in Character String Format Between Programming
Languages ...15

8.2 Character String Lengths ...16

9. FUNCTION ATTRIBUTES AND BEHAVIORS..16

9.1 Function Names...16
9.2 Element Path Names in Call List Arguments ...16
9.3 Usage of Element Names and Direct Access IDs..17
9.3.1 API Function Return...17
9.3.2 Error and Warning Messages ..18

10. API FUNCTION DEFINITIONS...18

10.1 Function Summary...18
10.1.1 Structure of Function Definitions ..18
10.1.2 List of API Functions ..18
10.2 programInfo - Overall Engine Program Information ...20
10.2.1 Description ...20
10.2.2 Call List Arguments ..20
10.2.3 Common Error and Warning Messages...21
10.3 listHierarchies - List Available Hierarchies ...21
10.3.1 Description ...21
10.3.2 Call List Arguments ..21
10.3.3 Common Error and Warning Messages...21
10.4 initializeProgram - Initialize Engine Program ...22
10.4.1 Description ...22
10.4.2 Call List Arguments ..22
10.4.3 Common Error and Warning Messages...23
10.5 listCategory - List Category Contents ..23
10.5.1 Description ...23

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 3 -

TABLE OF CONTENTS (Continued)

10.5.2 Call List Arguments ..24
10.5.3 Common Error and Warning Messages...25
10.6 getDescription - Get Element Attributes...25
10.6.1 Description ...25
10.6.2 Call List Arguments ..26
10.6.3 Common Error and Warning Messages...27
10.7 listChangedIOstatus - Get Parameters With Changed I/O Status..27
10.7.1 Description ...27
10.7.2 Call List Arguments ..28
10.7.3 Common Error and Warning Messages...28
10.8 setDefaultCategory - Set Default Category..29
10.8.1 Description ...29
10.8.2 Call List Arguments ..29
10.8.3 Common Error and Warning Messages...29
10.9 getDefaultCategory - Get Default Category ...30
10.9.1 Description ...30
10.9.2 Call List Arguments ..30
10.9.3 Common Error and Warning Messages...30
10.10 setValue - Set Parameter Values ...30
10.10.1 Description ...30
10.10.2 Call List Arguments ..31
10.10.3 Common Error and Warning Messages...32
10.11 runEngProgram - Engine Program Execution..32
10.11.1 Description ...32
10.11.2 Call List Arguments ..33
10.11.3 Common Error and Warning Messages...33
10.12 getValue - Get Parameter Values...34
10.12.1 Description ...34
10.12.2 Call List Arguments ..35
10.12.3 Common Error and Warning Messages...36
10.13 listLimitParameters - List Parameters At or Beyond Specified Limits36
10.13.1 Description ...36
10.13.2 Call List Arguments ..37
10.13.3 Common Error and Warning Messages...38
10.14 resetEngProgram - Reset Engine Program Values..38
10.14.1 Description ...38
10.14.2 Call List Arguments ..38
10.14.3 Common Error and Warning Messages...39

APPENDIX A EXAMPLE OF VARIABLE HIERARCHIES ...40
APPENDIX B EXAMPLE OF TABULAR DATA TO 1-D DATA ARRAY CONVERSION.........................43
APPENDIX C FORTRAN 77 IMPLEMENTATION ...49
APPENDIX D C IMPLEMENTATION ...59

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 4 -

1. SCOPE:

This SAE Aerospace Recommended Practice (ARP) specifies a set of functions and their expected
behavior that constitute an Application Programming Interface (API) for gas turbine engine customer
programs. The main body of this document contains a description of each of the API function calls and
of the data that passes through these functions. Implementations of this API in specific programming
languages are contained in separate appendices. These appendices include language specific details
and the definitions for each function as required for the given language.

AS681 is the parent document of ARP4868. All of AS681 applies to customer engine programs written
to conform to this document.

1.1 Purpose:

The function call based API specified in this ARP represents an alternative to the FORTRAN
COMMON block structure historically used to communicate with an engine program. The COMMON
block transport mechanism for communications with gas turbine engine customer programs is still
supported. ARP4191 is a companion document. It contains the specifications for using COMMON
blocks as the basis of an API to communicate with an engine program. It represents an alternative to
meeting the requirements specified in AS681.

A function call API allows the calling program to directly reference an engine parameter by name in
the function call list. Only those parameters that are available from the given engine program need
be present in the list of variables. There is no need to include variables simply to maintain alignment
in predefined COMMON blocks. The functions in the API are not restricted to setting and retrieving
the numerical value of the engine program parameters. There are documentation type functions that
list the engine parameters available to the user and that give information about each parameter. A
function call based API also provides an opportunity to perform parameter specific calculations such
as calculating infrequently used parameters only when the calling program specifically requests the
value, so called calculate-on-demand. Lastly, a function call API, either as stand-alone functions or
as methods of an object in an object-oriented program, integrates very well with object-broker,
distributed processing and object-oriented methods.

A COMMON block API does have a speed advantage, since directly sharing memory represents the
fastest way to communicate between programs. However, such an interface does have several
shortcomings. A COMMON block API requires the calling program and the engine program to map
the same parameter in the same location in the COMMON block definition in each program.
Misalignment of the COMMONs will result in miscommunication of data across the interface. Engine
programs have also not been able to be self-documenting, other than a brief identifier, since only
limited character data can be communicated through the existing COMMONs. Lastly, COMMON
block APIs do not integrate well with emerging technologies such as Common Object Request
Broker Architecture (CORBA) and other distributed processing and object-oriented methods.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 5 -

2. REFERENCES:

2.1 Applicable Documents:

The following publications form a part of this document to the extent specified herein. The latest
issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in
effect on the date of the purchase order. In the event of conflict between the text of this document
and references cited herein, the text of this document takes precedence. Nothing in this document,
however, supersedes applicable laws and regulations unless a specific exemption has been
obtained.

2.1.1 SAE Publications: Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

AS681 Gas Turbine Engine Steady-State and Transient Performance Presentation for
Digital Computer Programs

AS755 Aircraft Propulsion System Performance Station Designation and Nomenclature
ARP4191 Gas Turbine Engine Performance Presentation for Digital Computer Programs

Using FORTRAN 77

2.2 Definitions:

ENGINE PROGRAM: Gas turbine engine performance program for digital computers.

API: Application Programming Interface. The formalized mechanism for communication between the
calling program and the engine program.

PARAMETER NAME: The final element of a path name that refers to a variable within the engine
program. Example: T41 or ALT.

CALCULATED PARAMETER: Any engine program parameter with a value calculated by the engine
program. Often, these are referred to as output parameters. However, since the value of the input
parameters may also be output through this API, the term "calculated" is used to avoid ambiguity.

INPUT PARAMETER: A parameter that can be set by the customer and which the engine program
will not overwrite.

CATEGORY: A collection of elements, either engine program parameters or subcategories. All
categories may contain subcategories. The result is a tree-like structure with all categories branching
from a single root category. This structure has many similarities to the file structure of a computer
operating system, where a category is analogous to a directory and a parameter to a single file.

ROOT CATEGORY: The base level category that contains, directly or indirectly, all subcategories
and parameters in the engine program. A path name beginning with a leading backslash indicates
that the path begins with the root category. The root category is explicitly referenced by a character
string containing only the backslash character. An empty string does not reference the root category.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 6 -

2.2 (Continued):

DEFAULT CATEGORY: A partial path name starting at the root category that defines the starting
point for all relative path names. If the default category is an empty string, all path names are full path
names.

SUBCATEGORY: A category that is contained within another category. With the exception of the root
category, each category is a subcategory.

ELEMENT: A generic term for categories and parameters. The term element is used when referring
to the contents of a category, which may contain both parameters and subcategories.

DIRECT ACCESS IDENTIFIER: A globally unique non-zero integer associated with each element. It
provides a way to directly reference each element. An ID value of zero has special meaning within
the API functions, and must not be used as the ID of any element. If direct access identifiers are not
utilized then the ID value for all elements must be zero. If they are utilized, then none may be zero.

DATA TYPE: An integer value associated with each engine program element that identifies that
element as being an integer, single precision floating point, double precision floating point or
character parameter; or a category. The data type also indicates whether the parameter represents a
single value or a table of values.

HIERARCHY: The organization of categories and parameters within the root category. More than
one hierarchy may be defined for a given engine program, though only one may be active in a single
execution session.

PATH NAME: A string that contains category names and possibly a parameter name. Each element
name in the path name is separated by a backslash character. This string describes a path through
the category hierarchy. Read from left to right, the path descends from category to subcategories to
parameters. If the path contains a parameter name, the parameter name must be the last element of
the path.

FULL PATH NAME: A path name that begins at the root level category (i.e. begins with a backslash).
Only full path names are guaranteed to be unique. Individual element names and partial path names
may reappear in other branches of the hierarchy.

RELATIVE PATH NAME: A path name, which when appended to the path name of the default
category, results in a full path name.

KEYWORD: A unique character string associated with a hierarchy. More than one keyword may be
associated with each hierarchy.

EMPTY STRING: An empty string contains either an initial ASCII NULL character or all blank
characters.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 7 -

2.2 (Continued):

SUPPLIER: The organization or person that delivered or created the engine program.

CUSTOMER: The person that executes the engine program through the API function calls.

INTEGER: A whole number of at least 32 bits unless otherwise agreed to by the customer and
supplier. The supplier should document the exact size of integers in the engine program. 32 bits is
specified because the largest positive 16 bit signed integer is 32,768. This is not sufficiently large to
support some possible ID number schemes.

CORBA: Common Object Request Broker Architecture. A specification defining the inter-process
communication between two programs using Internet protocols.

3. OVERVIEW:

Current gas turbine engine programs use a FORTRAN-based API that relies on COMMON blocks for
data communication. The use of COMMON blocks results in a position dependent API. Misalignment
of the COMMON block definitions in the engine program and in the calling program will result in
miscommunication of data across the interface. The use of numerical COMMON blocks as the only
communication channel between the engine program and the customer does not allow the engine
program to be self-documenting. COMMON block APIs do not integrate well with emerging
technologies such as CORBA and other distributed processing and object-oriented methods that rely
on function and method calls as their fundamental communication mechanism.

This document defines an alternative, position-independent, function-based API for engine programs.
A function-based API provides a method to reference parameters directly by name, thus eliminating
the need to align parameter locations in named COMMON blocks. Some of the API functions send and
return numerical values. Others provide access to documentation that may be contained within the
engine program. This documentation can include descriptions of the engine program, as well as
information about the engine program parameters, such as descriptions, input/output status, and
associated units definitions.

The supplier includes the API functions as an integral part of the engine program. This document
specifies only those aspects and behaviors of the API functions that are visible to the calling program.
Suppliers are free to determine how they implement the API functions. All interactions between the
customer and the engine program should be through the API functions. The engine program supplier,
with the prior agreement of the customer, is allowed to include additional API functions.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 8 -

3.1 Multiple Programming Language Support:

The language in which the API functions are implemented should be agreed to by the customer and
supplier. It is possible, but not recommended, for API functions written in one programming language
to be called by a program written in another language. There are numerous inter-language issues
that have to be addressed when the API and calling programs are written in different languages. This
document defines separate sets of functions for each programming language. The main body of this
document specifies the functionality expected of the API functions as well as common aspects of the
structure and content of the data passing through those functions. The appendices, starting with
Appendix C, contain the definitions of the API functions as they would be expressed in a specific
programming language. Any language-specific issues, such as string termination and array indexing,
are addressed in the applicable appendix. The function names, the number of arguments and the
argument names vary between different programming languages.

3.2 Parameter Organization:

This API supports the concept of a parameter hierarchy that is analogous to the file structure of a
computer operating system. Just as a file system is made up of directories that contain
subdirectories and files, a parameter hierarchy may be made up of categories that contain
subcategories and parameters. This capability is included to provide an organization and structure to
the engine program parameters. The categories and subcategories also provide a context that is
intended to help the customer understand the purpose and meaning of the parameters within the
engine program. For example, a category named "BleedFlows" should clearly tell the user where to
look for parameters related to the bleed flows in the engine program.

All conforming engine programs will have, as a minimum, a single category referred to as the root
category. The root category, and any category in general, may contain subcategories as well as
parameters. The result is a highly flexible parameter hierarchy. An engine program may support
multiple parameter hierarchies. See Appendix A for an example of two possible hierarchy structures
that a given engine program might support. The listHierarchies function provides a listing of the
hierarchies available for the engine program. The user can select which hierarchy to use at run-time.
Only one hierarchy may be used in each execution session.

The customer may query the engine program for a list of the elements within a given category.
Starting the query with the root category and querying each subcategory in turn will result in a listing
of the entire hierarchy. Thus, the hierarchy can be extracted from the engine program at run-time.
The calling program does not need to be preprogrammed with the hierarchy structures in order to
work with the engine program.

3.3 Element Attributes:

The three required attributes for parameters or categories are name, data type, and parameter I/O
status. For parameters, the optional attributes are a direct access identifier, a description string, a
security classification string, and an engineering units string. For categories, the optional attributes
are a direct access identifier, a description string, and a security classification string.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 9 -

3.4 Typical Order of Calls to the API Functions:

The following represents a typical order of events for communication between the calling program
and the engine program. The name in courier font is the API function responsible for performing the
action in the given step. The required or optional notation for each step refers to whether that step is
required for successful execution. The initializeProgram function must be called before any of the
remaining functions except programInfo and listHierarchies. The order of the calls to the other
functions is not limited to what is given below, but represents a typical sequence.

1. Get information about the engine program – programInfo [Required]
2. List the available parameter hierarchies – listHierarchies [Optional]
3. Initialize the engine program interface – initializeProgram [Required]
4. List category and parameter elements in the engine program – listCategory [Optional]
5. Get additional descriptive information for each element – getDescription [Optional]
6. Get the current default category – getDefaultCategory [Optional]
7. Change the default category – setDefaultCategory [Optional]
8. Specify input values for a given case – setValue [Required]
9. Get a list of parameters that have changed I/O status – listChangedIOstatus [Optional]
10. Execute the engine program and examine returned Numerical Status Indicators (NSIs) –

runEngProgram [Required]
11. Retrieve values for desired parameters – getValue [Required]
12. Retrieve a list of values at or beyond their limits – listLimitParameters [Optional]
13. Reset the input parameters to the supplier defined baseline values – resetEngProgram [Optional]
14. Repeat steps 8 through 13 until all the desired cases have been executed.

4. PROGRAM DOCUMENTATION:

4.1 User Documentation:

The program supplier will supply all the documentation specified in AS681. The following information
that is unique to engine programs conforming to ARP4868 should be included with the user
documentation:

1. The specific programming language used to implement the API functions.
2. A list of all parameter hierarchies available.
3. A map showing the structure of each of these hierarchies. This map is to include all the available

parameters.
4. The maximum size of fixed size character string and array parameters or character string

attributes, if applicable.
5. A list of security classification strings and their relative ranking.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 10 -

5. ELEMENT ATTRIBUTES:

This API specifies a number of attributes for each element. The following sections list these attributes.
The engine program supplier must provide those attributes marked as required for each element in the
engine program. The optional attributes are not required for proper execution of the engine program,
though it is highly recommended that the supplier include these attributes for each element. See Table
1 for a summary of the required and optional attributes for categories and parameters.

TABLE 1 - Required and Optional Attributes

The API functions listed after the description of each attribute are those that contain that attribute in the
argument list.

5.1 Path Name:

Each full path name in the engine program must be unique. The individual element names contained
within the path are not required to be globally unique. A backslash is used to separate the element
names. The individual element names may contain only alphanumeric, period, and underscore
characters. They may not begin with a number. They also may not be empty or null strings.

Path name is output of listCategory, listChangedIOstatus, getDefaultCategory, listLimitParameters.
Path name is input to getDescription, setValue, getValue, setDefaultCategory.

5.2 Direct Access ID:

The direct access ID attribute is a globally unique, non-zero integer associated with each element in
the engine program. The direct access ID is an optional attribute. However, partial implementation of
direct access IDs is not allowed. If direct access IDs are implemented, an ID value must be given for
all elements. If direct access IDs are not implemented, then the ID value for all elements must be set
to zero.

The purpose of the ID is to provide a mechanism for fast element access. The uniqueness of each ID
within the engine program allows the engine program to directly locate the desired parameter.
Location by name, on the other hand, requires a potentially large number of string comparisons to
match the full path name.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 11 -

5.2 (Continued):

The supplier does not have to follow any set numbering scheme when assigning IDs to elements.
The only requirement is that there be a one-to-one correspondence between each ID number and
one specific engine program element. Further, the IDs are not guaranteed to be the same for each
execution of the engine program. For example, the IDs might represent memory addresses that will
be different each time the engine program is loaded into memory. The user should therefore use the
appropriate API function to get the IDs each time the engine program is run.

A distinction is made between category IDs and parameter IDs for some functions. This is because
some API functions require an ID that is associated with a category and an ID that is associated with
a parameter. Thus, separate argument names are required. However, both category IDs and
parameter IDs belong to the same set of integer values. Thus, there are no duplicate integer values
in the union of the set of category IDs and parameter IDs.

Direct access ID is output of listCategory, getDescription, setDefaultCategory, setValue, getValue.
Direct access ID is input to listCategory, getDescription, listChangedIOstatus,setDefaultCategory,
getDefaultCategory, setValue, getValue, listLimitParameters.

5.3 Element I/O Status:

An element can have the following I/O attributes:

• active The parameter is in use.
• inactive The parameter is not in use for a particular engine program set-up.
• input The parameter can be set by the user but not by the engine program. The program

may provide a default value.
• calculated The parameter is calculated by the engine program and should not be set by the user.
• category The parameter is a category. Even though I/O status does not apply to a category, a

value must still be given.

(Note: “output”, in this document, is not an element I/O attribute but only a direction of information
flow)

The integer values for element I/O status are:

0 = Category
1 = Input/active
2 = Calculated/active
3 = Input/Inactive
4 = Calculated/Inactive

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 12 -

5.3 (Continued):

Changing the value of one input parameter may result in changing the I/O status of other
parameters. The user can call the listChangedIOstatus function to get a list of parameters with an I/O
status different than the last time that function had been called.

Element I/O status is output of listCategory, getDescription, listChangedIOstatus.
Element I/O status is not input to any API function.

5.4 Data Type:

The data type attribute is used to indicate if the element is a category or a numerical or character
string parameter. For parameters, it also indicates whether the parameter is a single value, a simple
array of values, or a packed array of values. See section 7 for more information about packed arrays.

The data type indicated by each value is shown below. A value of 0 indicates that the element is a
category. Values from 1 to 4 indicate that the element is a parameter containing a single value.
Values from 11 to 14 indicate that the element is a parameter containing a simple array data. Values
from 21 to 24 indicate that the element is a parameter containing a 2-D or higher table of data packed
into a 1-D array.

The integer values for data type are:

 0 = Category
 1 = Integer Number
 2 = Single Precision Floating Point Number
 3 = Double Precision Floating Point Number
 4 = Character String
11 = Array of Integer Numbers
12 = Array of Single Precision Floating Point Numbers
13 = Array of Double Precision Floating Point Numbers
14 = Array of Character Strings
21 = Table of Integer Numbers
22 = Table of Single Precision Floating Point Numbers
23 = Table of Double Precision Floating Point Numbers
24 = Table of Character Strings

Data type is output of listCategory, getDescription.
Data type is not the input of any API function.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 13 -

5.5 Security Classification:

This attribute is a character string that indicates the security classification of an element. Examples
of the security classification attribute include: UNCLASSIFIED, PROPRIETARY, COMPANY
CONFIDENTIAL, and SPECIAL ACCESS REQUIRED. The security classification attribute is
assigned by the supplier in accordance with governing security guidelines. The attribute is provided
to assist the customer in handling output from the engine program in the case where different levels
of classification are applied to some parameters.

The security classification is output of listCategory, getDescription.
The security classification is not input to any API function.

5.6 Description:

The description attribute is a character string that contains a description of an element. The content
is at the discretion of the engine program supplier. It may be an empty string.

The description is output of listCategory, getDescription.
The description is not input to any API function.

5.7 Units:

The standard string for each type of unit is given in AS681. Categories will have an empty units
string.

The supplier may make a parameter available to the calling program that allows it to change the
Units family, e.g. between US customary and SI units, during the course of a run. If the supplier does
make such a parameter available, and it is changed, the units string of each parameter needs to be
obtained from the engine program. This can be done by calling either the listCategory function to
relist the entire hierarchy, or calling the getDescription function to get the units string for each
parameter individually.

The units string is output of listCategory, getDescription.
The units string is not input to any API function.SAENORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 ar

p4
86

8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 14 -

6. PARAMETER HIERARCHIES:

6.1 Overview:

Multiple hierarchies can be defined for a single engine program. A function is provided to list the
hierarchies defined by the supplier for the engine program. The user can select which hierarchy to
load when the engine program is initialized. Once initialized, the selected hierarchy remains in effect
for the duration of the execution session.

Multiple keywords can be associated with a single hierarchy. It is recommended that suppliers
associate one hierarchy with both the keyword "default" and an empty string keyword. This allows
the user to initialize the program with the supplier's default hierarchy without having to know any of
the specific hierarchy keywords defined for the engine program.

6.2 Required Hierarchies:

Engine programs that conform to this ARP must have at least one hierarchy that is associated with
the keyword "AS681" This hierarchy contains only the root category. This category will have all
parameters described in AS681, with the parameter names exactly as they are specified in AS681.
The list of parameters in AS681 should be considered as the minimum that must appear in this
hierarchy, even if the parameter is not used or calculated by the engine program. The hierarchy may
contain additional parameters beyond those defined by AS681. Any additional parameter used in this
hierarchy must appear in the root category. The only naming requirement for these additional
parameters is that they conform to AS755.

7. TABULAR DATA:

The API setValue and getValue functions can only pass single data values or one-dimensional data
arrays. Data tables of two or more dimensions can not be passed directly through the API functions.
These data tables can be passed through the API by packing the data into a 1-D array. The data type
attribute is used to distinguish regular 1-D array data from table data. Parameters that can contain data
tables must have data type attributes of 21, 22, 23, or 24.

The index data necessary to unpack the 1-D data stream once it has passed through the API functions
is placed in a separate integer array parameter, and is retrieved or set through a separate function call.
These index array parameters always have a data type of 11, indicating they are an array of integers.
A separate index array parameter is defined for each packed data stream, even if two or more packed
data streams have identical index arrays.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 15 -

7. (Continued):

More complex data structures, such as tabular functions, or graphs, can be represented by a group of
parameters that define the content and structure of the multi-dimensional tables that make up the
graph. For example, the commonly used graph for intake recovery can be represented by 5
parameters:

1. A 1-D stream for the values of mach number
2. A 1-D stream packed with the values of the multi-dimension referred flow table
3. A 1-D stream packed with the values of the multi-dimension ram recovery factor, eRam
4. A 1-D stream of integers containing the index information required to unpack the referred flow data

stream
5. A 1-D stream of integers containing the index information required to unpack the eRam data

stream.

It is recommended that a separate sub-category be defined to contain only the parameters necessary
to define a table or graph. The name and description of the category become, in effect, the name and
description of the table or graph. Each parameter will still have its own description, type and units
attributes. With the subcategory as an organizing entity, further parameters could be included in the
sub-category to define related information, such as interpolation and extrapolation methods.

Appendix B gives examples of how multi-dimensional tables and graphs can be packed into 1-D data
streams for transmission through the setValue and getValue functions. The examples include the
packing of uniformly and irregularly filled tables.

8. CHARACTER STRING REQUIREMENTES:

8.1 Accommodating Differences in Character String Format Between Programming Languages:

The character string formats used by different programming languages, and the different
mechanisms used to pass character strings through the function call list are the principle reasons
why a single set of API functions was not specified in this document. While it is possible for one
function to pass character strings to or from a function written in another language, it is not simple.

This document recommends that the function in the calling program and the API function in the
engine program are written in the same programming language. This will ensure that the character
strings passed through the API functions are in a format that is native to both the calling and API
function. If the language of the API functions, as agreed by the customer and supplier, is different
from the core language of the engine program, it is the responsibility of the engine program to
convert the character strings to the format native to the language of the API function.

The character string format and any character string requirements specific to each programming
language are given in the appendix pertaining to that language.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 16 -

8.2 Character String Lengths:

The following string lengths are recommended. Some programming languages, such as C, can be
written such that additional memory is allocated if the character strings exceed the initial allocated
length. Other languages, such as FORTRAN 77, use a fixed character length, which is set at
compilation.

• Units = 32 characters
• Element name = 32 characters
• Parameter hierarchy keyword = 64 characters
• Parameter hierarchy keyword description = 512 characters
• Element path name = 256 characters
• Element description = 256 characters
• Element security classification = 64 characters
• NSI description = 256 characters
• Error and Warning description = 256 characters
• Engine program description = 4096 characters
• Engine program name = 64 characters
• Engine program version = 64 characters

The initial character string sizes were selected as multiples of 32. This was done so that the strings
end on a word boundary for a 32-bit architecture, or half word boundary for a 64-bit architecture. The
goal is to use core and disk memory efficiently. If the character string lengths need to be increased
during a run, it is recommended that additional length be allocated in multiples of 32 characters.

9. FUNCTION ATTRIBUTES AND BEHAVIORS:

9.1 Function Names:

A unique set of function names will be defined for each programming language. This is done so that
the user can determine the language type directly from the function name.

9.2 Element Path Names in Call List Arguments:

The full path name does not need to be used when calling the API functions. All API functions will
accept relative path names. However, the concatenation of the default category path name plus the
relative path name must be a valid full path name. If the path name begins with a backslash, it will be
treated as a full path name and will not be appended to the default category path name.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 17 -

9.3 Usage of Element Names and Direct Access IDs:

The direct access ID is used whenever an API function is called with a non-zero value for the ID. If
the name is not an empty string, the ID is used to locate the element and the given name is validated
against the name of element identified by the ID value. If the names do not match, the input name is
used to locate the desired element and the ID corresponding to the named element is returned to the
calling program. A warning flag is returned to notify the calling program that a match for the given ID
was not found and that the ID corresponding to the given element name is being returned.

An empty name string is used to indicate that only an ID is being given. A valid name string
corresponding to the given ID is returned. This is the only combination where precedence is given to
the ID. What constitutes an empty string is dependent on the programming language being used.
See the appropriate appendix for a definition.

An ID value of zero is used to indicate that only a name is being given, and that correspondence of
the ID to the given name should not be checked. When the ID is zero, the ID that corresponds with
the given name is returned through the call list. No error or warning message is generated.

Table 2 summarizes the action taken in each of the possible combinations of element name and ID.

TABLE 2 - Responses to Name and ID Combinations

9.3.1 API Function Return: Each API function will return a single integer value. It is used to indicate if
errors and/or warnings occurred during the execution of the function. A zero return value indicates
a successful execution of the function with no warnings or errors. A return value of one indicates
that one or more warnings have been issued. A return value of two indicates that one or more
errors have been issued. And a return value of three indicates that both warnings and errors have
been issued.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 18 -

9.3.2 Error and Warning Messages: Each API function call list includes two array arguments through
which the function will return a numerical value for each error or warning and descriptive strings of
those warnings or errors. A third argument gives the number of errors and warnings being returned
by the function. The numerical value and descriptive string for each error or warning that is
common to all programming languages is given in Section 10. Each programming language may
have additional errors and warnings that are unique to that language. These additional errors and
warnings are given with the function definitions in the appropriate appendix.

10. API FUNCTION DEFINITIONS:

10.1 Function Summary:

10.1.1 Structure of Function Definitions: The function names in this section are generic. Language
specific function names are given in the appropriate appendix. The definition section for each API
function has three parts: a description, an argument list, and a list of warning/error values and
descriptions. The description outlines the expected behavior of the function. The argument list
section describes the information passed and returned through the call list. The exact argument list
and argument names may vary between programming languages. The common error and warning
messages section lists the numerical value and description of those flags that are common to all
programming languages. Error and warning flags that are specific to a programming language are
specified in the appropriate appendix.

10.1.2 List of API Functions: Table 3 is a summary of the minimum list of API functions. The table lists
those functions that may be implemented as a non-functional stub. A stub implementation provides
a callable function but does not have a functional body. Instead, calls to a stub implementation
immediately return with a warning message that the function has not been functionally
implemented. A stub is needed so that all functions specified in the API are always present. The
order presented represents a typical order of usage.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 19 -

TABLE 3 - List of API Functions

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 20 -

10.2 programInfo - Overall Engine Program Information:

10.2.1 Description: The programInfo function provides overall information about the engine program. This
includes strings representing the engine program name, engine program version or identifier
number, and an engine program description. The engine program version argument may contain
non-numeric characters.

The other arguments returned are integer flags. Each indicates the availability of information for the
flagged attribute in the engine program. If a flag is true (an integer value of 1), all appropriate
elements in the engine program have the information represented by the flag. If it is false (an
integer value of 0), the flagged attribute is not supported by the engine program.

10.2.2 Call List Arguments:

TABLE 4 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 21 -

10.2.3 Common Error and Warning Messages: No common error or warning messages.

10.3 listHierarchies - List Available Hierarchies:

10.3.1 Description: The listHierarchies function returns an array of strings containing the keywords
available for use in the initializeProgram function. It also returns an array of strings containing a
description of the hierarchy associated with each keyword. More than one keyword may be
associated with a given hierarchy. Thus, there may be more keywords than actual hierarchies in
the engine program. The maximum number of keyword, unless otherwise agreed to, is 25.

The list of keywords must contain a keyword that is an empty string. This is the hierarchy selected
if an empty string is passed to the initializeProgram function. The list should also include the
keyword "default". Both empty string and default keywords should be associated with the same
hierarchy. The list must also contain the keyword "AS681". This keyword is associated with the
AS681 hierarchy described in section 6.

10.3.2 Call List Arguments:

TABLE 5 - Call List Arguments

10.3.3 Common Error and Warning Messages: No common error or warning messages

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 22 -

10.4 initializeProgram - Initialize Engine Program:

10.4.1 Description: The initializeProgram function performs any initialization required by the engine
program. This function must be called before any other API function in the engine program, with
the exception of the programInfo and listHierarchies functions. The initializeProgram function may
be called only once per execution session. An error will be returned if this function is called more
than once. All functions, other than programInfo and listHierarchies will return an error if they are
called before this function, and therefore the engine program is responsible for retaining the fact
that initializeProgram has been called.

The string given for the "keyword" argument must be from the list of hierarchy keywords defined by
the supplier. An empty string keyword may always be passed to this function, since it must be
defined for all engine programs. An empty keyword will result in the supplier's default hierarchy
being used. Otherwise, a non-empty string, valid keyword must be supplied to initialize the engine
program.

After initializeProgram returns, the selected hierarchy has been loaded, all the input parameters
have been set to a baseline value defined by the supplier, and the default category has been set to
be the root category. The engine program is then ready to accept user input. The baseline values
of the input parameters should represent a valid set of values, and the engine program should be
able to execute without additional user input. The calculated parameters are not guaranteed to
contain valid values that correspond to the input parameter baseline values until the
runEngProgram function has been successfully executed.

10.4.2 Call List Arguments:

TABLE 6 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 23 -

10.4.3 Common Error and Warning Messages:

TABLE 7 - Common Error and Warning Messages

10.5 listCategory - List Category Contents:

10.5.1 Description: The listCategory function lists the contents of a single category. It returns the number
of elements listed and arrays containing the name, ID and all other attributes of each element in the
category. The calling program passes in the name and/or category ID of the category to be listed.

On the first call to list each category, the calling program sets nStart equal to one and passes in the
maximum number of element names it can accept in the returned arrays through the maxElements
argument. If the number of names to be listed exceeds the maximum value specified by the calling
program, then the first maxElements number of elements is returned, the value of the nStart
argument is set to the index of the next element to be listed, and a message is returned to indicate
that additional elements remain to be listed.

When this occurs, the calling program is expected to make another call to listCategory, again
indicating the maximum number of elements that can be accepted using the maxElements
argument and pass back in the value of nStart returned by the function on the previous call. The
remaining elements or next maxElements number of elements are returned. This cycle will
continue until all the elements in that category have been listed. On the call to listCategory that lists
the last elements in the category the value of nStart is reset to a value of one.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 24 -

10.5.2 Call List Arguments:

TABLE 8 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 25 -

10.5.3 Common Error and Warning Messages:

TABLE 9 - Common Error and Warning Messages

10.6 getDescription - Get Element Attributes:

10.6.1 Description: The getDescription function returns all information available for a specific element.
The attributes returned by this function are the element type integer, I/O status integer,
classification level, description string, and units string. The unit strings returned are as specified in
AS681.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 26 -

10.6.2 Call List Arguments:

TABLE 10 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 27 -

10.6.3 Common Error and Warning Messages:

TABLE 11 - Common Error and Warning Messages

10.7 listChangedIOstatus - Get Parameters with Changed I/O Status:

10.7.1 Description: The listChangedIOstatus function returns the full path name and I/O status of any
parameter that has changed I/O status since the last time this function was called (or since
initializeProgram was called for the first call to this function). Changing the values of some
parameters may cause the I/O status of other parameters in the engine program to change. All set
functions contain a value of the "flag return" flag that indicates that the I/O status of one or more
parameters has changed as a result of the function call.

The engine program will accumulate a list of those parameters that changed I/O status and the
new I/O status value. If the I/O of a parameter has changed more than once since the last call to
this function, only the last I/O status value is returned.

This function should be included in all engine programs, but it does not have to be fully
implemented. Coverage of I/O status changes does not have to be exhaustive.
listChangedIOstatus can be written to report only the changes in I/O status that can be known prior
to program execution. This is similar to the I/O status information given in a customer's manual. An
example of this situation is the variable that determines how the flight condition is specified.
Changing the value of this variable changes the I/O status of a number of other variables in a
known way.

On the first call to list each category, the calling program sets nStart equal to one and passes in the
maximum number of parameter names it can accept in the returned arrays through the
maxParameters argument. If the number of names to be listed exceeds the maximum value
specified by the calling program, then the first maxParameters number of elements is returned, the
value of the nStart argument is set to the index of the next element to be listed, and a message is
returned to indicate that additional parameters remain to be listed.

When this occurs, the calling program is expected to make another call to listChangedIOstatus,
again indicating the maximum number of elements that can be accepted using the maxParameters
argument and pass back in the value of nStart returned by the function on the previous call. The
remaining parameters or next maxParameters number of parameters are returned. This cycle will
continue until all the affected parameters have been listed. On the call to listChangedIOstatus that
lists the last elements in the category the value of nStart is reset to a value of one.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 28 -

10.7.2 Call List Arguments:

TABLE 12 - Call List Arguments

10.7.3 Common Error and Warning Messages:

TABLE 13 - Common Error and Warning Messages

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 29 -

10.8 setDefaultCategory - Set Default Category:

10.8.1 Description: The setDefaultCategory function sets the default category. When the engine program
receives a relative path name, name matching starts at this internally stored default category. A full
path name must be used when specifying a new default category. The path name of the root
category is a string containing only a backslash character. If the categoryName is an empty string
and the categoryID corresponds to a valid category, then the name of the corresponding category
is returned through the categoryName argument.

10.8.2 Call List Arguments:

TABLE 14 - Call List Arguments

10.8.3 Common Error and Warning Messages:

TABLE 15 - Common Error and Warning Messages
SAENORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 ar

p4
86

8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 30 -

10.9 getDefaultCategory - Get Default Category:

10.9.1 Description: The getDefaultCategory function returns the full path name and category ID of the
current default category.

10.9.2 Call List Arguments:

TABLE 16 - Call List Arguments

10.9.3 Common Error and Warning Messages:

TABLE 17 - Common Error and Warning Messages

10.10 setValue - Set Parameter Values:

10.10.1 Description: The setValue functions will set the parameter to the specified value. A separate
function is required to set integer, single and double precision floating point, and character data
as well as to set arrays of those types. See the appropriate appendix for implementation details.

Multidimensional data arrays can not be directly set through this API. Instead these functions can
only accept 1-D arrays. However, multidimensional data can be packed into a 1-D array. A
separate parameter is used to pass the index array necessary to unpack the 1-D data array. The
arrays for both parameters must be passed to the engine program in order for it to unpack the
multidimensional data. See Section 7 for details on how to pack and unpack multidimensional
data into and out of a 1-D array.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 31 -

10.10.1 (Continued):

The setValue functions will set the value in the engine program even if the I/O status is not input/
active. While setting the value of an inactive input or a calculated parameter will not change the
calculation results, it may mislead users. They may not notice that the value they set is being
ignored. The engine program should, therefore, return a warning flag if the parameter being set
has an I/O status of other than input/active.

If changing the value of the parameter causes the I/O status of any parameter in the engine
program to change, a flag is returned through the IOchanged argument. It is the user’s
responsibility to query the listChangedIOstatus function to determine which parameters have
changed and to find out their new I/O status value.

10.10.2 Call List Arguments:

TABLE 18 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 32 -

10.10.3 Common Error and Warning Messages:

TABLE 19 - Common Error and Warning Messages

10.11 runEngProgram - Engine Program Execution:

10.11.1 Description: The runEngProgram runs the current case, as defined by the values of the input
parameters when this function is called, and returns any numerical status indicators in the NSI
array argument. The values of the NSI will conform to AS681. A description string for each NSI
will be passed back as well. The maxNSI argument sets the upper limit on the number of NSI
values that the calling program is able to accept through the NSI and NSIdesc arguments. If the
number of NSIs generated exceeds the specified NSI return array size, then the method
specified in AS681 for determining which NSI to return is used. The NSI description strings will
follow the same pattern.

The limitsFlagged argument indicates if any parameters exceeded or were held to a limit value. If
this argument is true, then the listLimitParameters function can be called to return a list of these
parameters. This list will include any parameter where the value used by the engine program was
different than the input value as a result of other parameters reaching or exceeding their limit
values. SAENORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 ar

p4
86

8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 33 -

10.11.2 Call List Arguments:

TABLE 20 - Call List Arguments

10.11.3 Common Error and Warning Messages:

TABLE 21 - Common Error and Warningn Messages

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 34 -

10.12 getValue - Get Parameter Values:

10.12.1 Description: The getValue functions return the value for the named parameter. A separate
function is required to get integer, single and double precision floating point, and character data
as well as to get arrays of those types. Different programming languages accommodate this
requirement in different ways. See the appropriate appendix for implementation details.

For the getValue functions that return an array of values, the initial call to this program by the
calling program passes in nStart equal one and the maximum array sizes it can accept. If the
number of values in the array exceeds the maximum value specified by the calling program, then
the first maxvalues number of values are returned, the value of the nStart argument is set to the
index of the next value to be listed, and a message is returned through the function return value
to indicate that additional values remain in the array.

When this occurs, the calling program is expected to make another call to getValue, again
indicating the maximum number of elements that can be accepted using the maxValues
argument. The remaining parameters or next maxValues number of parameters are returned.
This cycle will continue until all the values in the array have been returned. On the call to
getValue that lists the last elements in the category the value of nStart is reset to a value of one.

Multidimensional data arrays can not be directly returned through this API. Instead these
functions can only accept 1-D arrays. However, multidimensional data can be packed into a 1-D
array. A separate parameter is used to return the index array necessary to unpack the 1-D data
array. Both parameters must be retrieved from the engine program in order to unpack the
multidimensional data. See Section 7 for details on how to pack and unpack multidimensional
data into and out of a 1-D array.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 35 -

10.12.2 Call List Arguments:

TABLE 22 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 36 -

10.12.3 Common Error and Warning Messages:

TABLE 23 - Common Error and Warning Messages

10.13 listLimitParameters - List Parameters At or Beyond Specified Limits:

10.13.1 Description: The listLimitParameters function returns a list of parameters that are either at or
beyond their limit value or that are not at their input value because another parameter is being
held to a limit value. An example might be an input value of fuel flow that causes the N2 speed to
exceed its limit value. This function would return the name of the N2 parameter and a limit flag
value of 1 to indicate it is above its maximum value. If the fuel flow were such that N1 and
exhaust gas temperature were above their limits as well, then all three parameters would be
listed in the return of this function.

If, however, the fuel flow was cut back from the set value in order to hold the N2 at its limit, then
this function would return the N2 and fuel flow parameter names. The limit flag value for N2
would be 2 to indicate that it is being held at the maximum value. The limit flag value for fuel flow
would be 5 to indicate that it is at a value below its input value.

On the first call to this function, the calling program passes in nStart equal one and the maximum
number of parameter names it can accept in the returned arrays through the maxParameters
argument. If the number of names to be listed exceeds the maximum value specified by the
calling program, then the first maxParameters number of elements is returned, the value of the
nStart argument is set to the index of the next element to be listed, and a message is returned to
indicate that additional elements remain to be listed.

When this occurs, the calling program is expected to make another call to listLimitParameters,
again indicating the maximum number of elements that can be accepted using the
maxParameters argument and pass back in the value of nStart returned by the function on the
previous call. The remaining parameters or next maxParameters number of parameters are
returned. This cycle will continue until all the elements in that category have been listed. On the
call to listCategory that lists the last elements in the category the value of nStart is reset to a
value of one.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 37 -

10.13.2 Call List Arguments:

TABLE 24 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 38 -

10.13.3 Common Error and Warning Messages:

TABLE 25 - Common Error and Warning Messages

10.14 resetEngProgram - Reset Engine Program Values:

10.14.1 Description: The resetEngProgram function resets all input parameters to the baseline value
defined by the supplier. The default category remains the same as when this function was called.
It is not set back to the root category. The calculated parameters are not guaranteed to contain
valid values that correspond to the input parameter values until the engine program has been
executed though the runEngProgram function.

10.14.2 Call List Arguments:

TABLE 26 - Call List Arguments

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 39 -

10.14.3 Common Error and Warning Messages:

TABLE 27 - Common Error and Warning Messages

PREPARED UNDER THE JURISDICTION OF
SAE COMMITTEE S-15, ENGINE PERFORMANCE PRESENTATION

FOR ELECTRONIC DIGITAL COMPUTERS

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 40 -

APPENDIX A
EXAMPLE OF VARIABLE HIERARCHIES

The following are sample variable hierarchies that are supported by this API. Hierarchies are not limited to
these structures. The organization of the hierarchy is at the discretion of the engine program supplier.

A.1 Example 1: AS681 Hierarchy:

This first example is a partial listing of the required hierarchy with the keyword of "AS681". It is a
hierarchy with only the root category. It contains all the variables specified as the minimum variable
set by AS681. The variable names are as given in AS681. The names of variables beyond the
required minimum specified in AS681 must follow the name construction rules specified in AS755.
The default category must be the root category since it is the only category in this hierarchy. As such
the parameter names can be referred to without a leading backslash.

\CASE
\TITLE
\ZALT
\ZDTAMB
\ZDT1A
\ZERM1A
\ZPWXH
\ZP1A
\ZRC
[…]
\AE18
\ALT
\CLASS
\DTAMB
\ERAM1
\FG
\FGI
\FHV
\FN
\NSI
\P7
\PB3
\WB3Q

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 41 -

A.2 Example 2: Structured Hierarchy:

This second example shows how engine program parameters could be organized in a structured
hierarchy based around the components in an engine. It shows parameters that would not normally
be visible in a customer engine program as a way to illustrate several levels of nested subcategories
in a structured hierarchy. Some parameters, such as Fnet, are contained directly within the root
category, while others like \Core\HPC\Map\ReCorrection\etaReScalar, are in several layers of
nested categories.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 42 -

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 43 -

APPENDIX B
EXAMPLE OF TABULAR DATA TO 1-D DATA ARRAY CONVERSION

This Appendix gives examples of how 2-D and higher order data tables and graphs can be packed into 1-
D data arrays that can be sent through the API setValue and getValue functions. Different methods are
used to pack uniformly filled and irregularly filled data tables into the 1-D data stream. Examples of both
are given. Also given are examples of how complete function graphs, such as those for ram recovery, can
be packed into a set of arrays that can be individually passed through the API functions.

CREATING THE 1-D DATA STREAM

The data from the table is simply written to the 1-D array in row order.

CREATING THE INDEX ARRAY

In addition to the 1-D data stream, a 1-D index array for each table is required. The index array contains all
the information necessary to unpack the 1-D data stream and restore the data to its original structure.

The naming convention for the index arrays is to simply affix “index” to the name of the 1-D array
containing the packed data.

The first three elements of the index array are always the same.

• Element 1: Dimensionality of the table.
• Element 2: Flag indicating if the table is uniformly (a zero) or irregularly filled (a one).
• Element 3: Number of subtables of dimensionality n-1.

After the third element, the elements in the index array differ between uniformly and irregularly filled tables.
Uniformly filled tables have the same number of points in each line, the same number of lines in each 2-D
table, the same number of 2-D subtables in each 3-D table and so forth. As a result, the index for a
uniformly filled table needs only to contain this single piece of information for each level in the table.

Irregularly filled tables, on the other hand, do not have this inherent predictability. The index array for an
irregular table must contain information giving the number of data points in each line and the number of
lines in each subtable. For example, one line might contain 5 points while the next might contain 8. There
might be 10 lines in one 2-D subtable and 7 in the next.

Since, in practice many data tables may be irregularly filled at the highest dimensions, but uniformly filled
at lower dimensions, the packing algorithm illustrated in the following examples allows for the index array
to also be a mix. Thus, at each level in the table there will be a flag to indicate if that level is uniformly or
irregularly filled. While an irregularly filled table may have uniformly filled subtables, the converse is not
allowed. Once a table or subtable is declared to be uniformly filled, that entire table or subtable must have
that structure.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 44 -

Please note that sections 1 through 4 are simply examples of how 2-D and 3-D tables of numbers can be
packed into a 1-D array. The tables in these section have no physical meaning. They are simply a series of
number organized into a 2-D or 3-D table. Section 5 and 6 illustrate how this methodology applies to
packing actual table data using a map of eRam as an example.

B.1 Uniformly Filled 2-D Table:

The following is an example of converting a uniformly filled table from tabular data to a 1-D data
stream and an index array.

Assume that we have the following 2-D table:

Note that all elements in all rows are filled. The data from the table is packed into the 1-D array in row
order. The 1-D data array would then be as follows:

The resulting index array for the 2-D uniformly filled table is:

The following is the meaning of each of the 4 elements in Bindex.

Element 1 = 2 A is a 2-D table.
Element 2 = 0 A is a uniformly-filled table.
Element 3 = 3 There are three rows in A.
Element 4 = 5 There are 5 data elements in each row.

B.2 Uniformly Filled 3-D Table:

The following is the index array for a uniformly filled 3-D table that has 4 subtables of the same
structure as the 2-D table A in the example above.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 45 -

B.3 Irregularly Filled 2-D Table:

The following is an example of converting an irregularly-filled table into a 1-D data stream and the
resulting index array. Since the structure of the data can vary at each level in the table, considerably
more index information is required for an irregular data table.

Assume that we have the following 3-D table, Z which consists of sub-tables X and Y:

The 1-D data array written in row order would be as follows:

The index array Cindex for table Z is as follows:

Element 1 = 3 Z is a 3-D table.
Element 2 = 1 Z is an irregularly filled table.
Element 3 = 2 There are two 2-D sub-tables in Z.
Element 4 = 1 The X sub-table is irregular.
Element 5 = 3 The X sub-table has three rows.
Element 6 = 4 The first row in X has 4 elements.
Element 7 = 3 The second row in X has 3 elements.
Element 8 = 2 The third row in X has 2 elements.
Element 9 = 1 The Y sub-table is irregular.
Element 10 = 1 The Y sub-table has 2 rows.
Element 11 = 6 The first row in Y has 6 elements.
Element 12 = 4 The second row in Y has 4 elements.

Note that elements 4 to 8, which define the first sub-table, and elements 9 to 12, which define the
second sub-table, are similar to an index array for an irregular 2-D table, except that the dimension of
the table is known and therefore not repeated. This enables complex tables to be built up from lower
order tables. Also it enables the sub-tables to be either regular or irregular.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 46 -

B.4 Irregularly Filled 3-D Table with Uniformly and Irregularly Filled 2-D Subtables:

This example shows the index array for an irregular 3-D table, which contains both regular and
irregular sub-tables. There are four sub-tables, the first, second, and fourth are regular, and the third
is irregular.

The first sub-table contains 9 rows and there are 6 elements per row.

The second sub-table contains 8 rows and there are 7 elements per row.

The third sub-table is the same as subtable Y in EXAMPLE 2 above.

The fourth sub-table contains 5 rows and there are 12 elements per row.

The index for the complete table is:

B.5 eRam Function with Uniformly Filled Tables:

This is an example of a complete tabular function represented by a group of parameters. The
function is the typical inlet recovery table of ERAM = f (W1R, XM). Each row in ERAM represents the
data for one Mach number. The values in each row are the value of ERAM for each of the Flow
function. Since the ERAM for each Mach number correspond to the same values of Flow function,
the result is a uniformly filled ERAM table.

Parameter 1 is a 1-D array of values of Mach number:

Parameter 2 is a 1-D array of values of Flow function:

Parameter 3 is a 2-D table of values of Recovery Factor with 3 rows of 5 values each:

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 47 -

B.5 (Continued):

Parameter 4 is a 1-D index to unpack the data in ERAM:

indicating that this is a table of 2 dimensions (index 1=2) that is uniformly filled (index 2=0) with 3
rows (index 3=3) with 5 data points each (index 4=5).

B.6 eRam Function with Irregularly Filled Tables:

This example shows an irregular ERAM function, where the number and value of Flow function and
the corresponding values of ERAM are different for each Mach number. The function is as follows:

This function can be represented by 1 1-D table and 2 irregularly filled 2-D tables.

To store this irregular function we need 5 1-D parameters. The XM parameter is simply the three
Mach numbers, for which an index parameter is not needed. The data type of this parameter is 12
(array of single precision floating point numbers).

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 48 -

B.6 (Continued):

The W1R and ERAM parameters are the result of packing the Flow Function values into one array
and the Recovery Factor into another. The data type for these arrays is 22 (table of single precision
floating point numbers). The W1R and ERAM parameters require index information in order to
unpack the data.

Even though the index data for W1R and ERAM are identical, separate index arrays are specified.
This is done to avoid making exceptions to the general algorithm rule of one packed array to one
index array. The data type of the index arrays is 12.

The meaning of the values in both the W1Rindex and ERAMindex arrays are:

Element 1 = 2 This is a 2-D table.
Element 2 = 1 This is an irregularly-filled table.
Element 3 = 3 There are 3 1-D sub-tables.
Element 4 = 5 The first sub-table has 5 elements.
Element 5 = 4 The second sub-table has 4 elements.
Element 6 = 3 The third sub-table has 3 elements.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 49 -

APPENDIX C
FORTRAN 77 IMPLEMENTATION

C.1 Overview:

This appendix gives only the additional information required for FORTRAN 77 implementations of
this API. The FORTRAN 77 implementation differs from the implementation in other programming
languages in two key aspects. First is that the string lengths and array sizes in the FORTRAN 77 API
functions are coded into the functions. This means that the maximum size for all strings must be
known in advance. Second is the need to have short function and argument names. The strict ANSI
FORTRAN 77 specification limits function names to 6 characters. However, creating intelligible 6
character function and argument names is very difficult. Few compilers adhere to this limit. The
majority allow at least 7 character names. This API takes advantage of this common deviation and
defines functions and argument names up to 7 characters.

FORTRAN 77 is unable to use differences in the number and type of the call list arguments to
discriminate between functions with the same name. Therefore each set and get function for each
parameter type has a different name. The same set of array passing functions is used for both array
and packed tabular data, since these types differ only in the structure of the contents of the array.

C.2 Character String Format:

All character string lengths must be defined in the code. If the actual string length is less than the
allocated length, then ASCII blank characters are appended to the string to bring it to the allocated
length. An empty string is specified by a string containing all blank characters.

C.3 Character String Lengths:

The recommended character string lengths for a FORTRAN implementation are the same as given
in section 8.2

C.4 API Function Definitions in FORTRAN 77:

The following gives the call list and argument declaration for the API functions as they would appear
in a FORTRAN function. FORTRAN functions are used rather than subroutines because they return
a value and because functions are the normal organizational unit in most other languages. The call
list argument names are contractions of the argument names given in the general API function
definition. They are, therefore, not repeated here. All common error and warning messages may be
returned by the FORTRAN function. Any error or warning messages that are unique to a FORTRAN
77 implementation are noted here.

C.4.1 PGMINFO - Overall Engine Program Information:

C.4.1.1 Description: The general description of this function is applicable to the FORTRAN 77
implementation.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 50 -

C.4.1.2 Function Definition:

C.4.1.3 FORTRAN 77-Specific Error and Warning Messages:

TABLE C1 - FORTRAN 77-Specific Error and Warning Messages

C.4.2 LISTHIR - List Available Hierarchies:

C.4.2.1 Description: The general description of this function is applicable to the FORTRAN 77
implementation.

C.4.2.2 Function Definition:

C.4.2.3 FORTRAN 77-Specific Error and Warning Messages:

TABLE C2 - FORTRAN 77-Specific Error and Warning MessagesSAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 51 -

C.4.3 INITPGM - Initialize Engine Program:

C.4.3.1 Description: The general description of this function is applicable to the FORTRAN 77
implementation.

C.4.3.2 Function Definition:

C.4.3.3 FORTRAN 77-Specific Error and Warning Messages: No FORTRAN specific warning or error
messages.

C.4.4 LISTCAT - List Category Contents:

C.4.4.1 Description: The general description of this function is applicable to the FORTRAN 77
implementation.

C.4.4.2 Function Definition:

C.4.4.3 FORTRAN 77-Specific Error and Warning Messages:

TABLE C3 - FORTRAN 77-Specific Error and Warning Messages

C.4.5 GETDESC - Get Element Attributes:

C.4.5.1 Description: The general description of this function is applicable to the FORTRAN 77
implementation.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

SAE ARP4868

- 52 -

C.4.5.2 Function Definition:

C.4.5.3 FORTRAN 77-Specific Error and Warning Messages:

TABLE C4 - FORTRAN 77-Specific Error and Warning Messages

C.4.6 CHANGIO - Get Parameters with Changed I/O Status:

C.4.6.1 Description: The general description of this function is applicable to the FORTRAN 77
implementation.

C.4.6.2 Function Definition:

C.4.6.3 FORTRAN 77-Specific Error and Warning Messages:

TABLE C5 - FORTRAN 77-Specific Error and Warning Messages

C.4.7 SETCAT - Set Default Category:

C.4.7.1 Description: The general description of this function is applicable to the FORTRAN 77
implementation.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ar
p4

86
8

https://saenorm.com/api/?name=8886a8097426a75506380943834b0bdd

