

UL 217

STANDARD FOR SAFETY AT 2007

Smoke Alarms

Smoke Alarms

JUNGRIN, COM.: Click to lieuw the full part of the large of the l

JI. MORM. COM: Cick to view the full Polit of UL. 27,7 2022

OCTOBER 7, 2022 - UL217 tr1

UL Standard for Safety for Smoke Alarms, UL 217

Ninth Edition, Dated January 2, 2020

SUMMARY OF TOPICS

This revision of ANSI/UL 217 dated October 7, 2022 includes the following changes in requirements:

- Alarm Silence Feature; 13.1

- Annex C Requirement; Section C0

Text that has been changed in any manner or impacted by UL's electronic publishing system is marked with a vertical line in the margin.

The new and revised requirements are substantially in accordance with Proposal(s) on this subject dated February 25, 2022 and July 29, 2022.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of UL.

UL provides this Standard "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for any purpose.

In no event will UL be liable for any special, incidental, consequential, indirect or similar damages, including loss of profits, lost savings, loss of data, or any other damages arising out of the use of or the inability to use this Standard, even if UL or an authorized UL representative has been advised of the possibility of such damage. In no event shall UL's liability for any damage ever exceed the price paid for this Standard, regardless of the form of the claim.

Users of the electronic versions of UL's Standards for Safety agree to defend, indemnify, and hold UL harmless from and against any loss, expense, liability, damage, claim, or judgment (including reasonable attorney's fees) resulting from any error or deviation introduced while purchaser is storing an electronic Standard on the purchaser's computer system.

<u>tr2</u> OCTOBER 7, 2022 - UL217

No Text on This Page

JILMORM. COM: Cick to view the full POF of UL 217 2022

JANUARY 2, 2020

(Title Page Reprinted: October 7, 2022)

1

UL 217

Standard for Smoke Alarms

Prior to the seventh edition, the previous editions were entitled Standard for Single and Miltiple Station Smoke Alarms.

First Edition – January, 1976 Second Edition – October, 1978 Third Edition – October, 1985 Fourth Edition – May, 1993 Fifth Edition – February, 1997 Sixth Edition – August, 2006 Seventh Edition – June, 2015 Eighth Edition – October, 2015

Ninth Edition

January 2, 2020

This ANSI/UL Standard for Safety consists of the Ninth Edition including revisions through October 7, 2022.

The most recent designation of ANSI/UL 217 as an American National Standard (ANSI) occurred on October 7, 2022. ANSI approval for a standard does not include the Cover Page, Transmittal Pages, and Title Page.

Comments or proposals for revisions on any part of the Standard may be submitted to UL at any time. Proposals should be submitted via a Proposal Request in UL's On-Line Collaborative Standards Development System (CSDS) at https://csds.ul.com.

UL's Standards for Safety are copyrighted by UL. Neither a printed nor electronic copy of a Standard should be altered in any way. All of UL's Standards and all copyrights, ownerships, and rights regarding those Standards shall remain the sole and exclusive property of UL.

COPYRIGHT © 2022 UNDERWRITERS LABORATORIES INC.

No Text on This Page

JILMORM. COM. Click to view the full POF of UL 21/2022

CONTENTS

INTRODUCTION

1	Scope	9
2	Assembly	10
3	Components	10
4	Units of Measurement	
5	Referenced Publications	
6	Glossary	
7	Smoke Alarm Reliability Prediction	
8	Manufacturer's Published Instructions	
9	Automatic Drift Compensation for Smoke Sensing	16
10	Non fire Feature	16
11	Smoke Sensitivity Indicating Means (Ontional)	16
12	Maintenance (Field Cleaning)	10
	Automatic Drift Compensation for Smoke Sensing Non-fire Feature Smoke Sensitivity Indicating Means (Optional) Maintenance (Field Cleaning) Alarm Silencing Feature	17
13	Alarm Stiencing Feature	17
14	Smoke Sensitivity Test Feature	19
15	Batteries	19
	15.1 General	19
	15.2 Battery removal/deactivation indicator	20
16	Firmware Update (if provided)	20
	16.1 General	20
	Smoke Sensitivity Test Feature Batteries 15.1 General 15.2 Battery removal/deactivation indicator Firmware Update (if provided) 16.1 General 16.2 Firmware update	20
	16.2 Firmware update	
CONST	RUCTION	
ASSEM	BLY	
17	Ochiciai	
	17.1 Remote accessories	22
	17.2 Smoke sensitivity adjustment (single criteria)	22
	17.3 Radioactive materials	22
	17.4 Supplementary signaling feature	22
	17.5 Insect guards	
	17.6 Supplementary heat sensor	
18	Servicing and Maintenance Protection	
	18.1 General	
	18.2 Sharp edges	
19	, , ,	
	19.1 General	
	19.2 Cast metal enclosures	
	19.3 Sheet metal enclosures	
	19.4 Nonmetallic enclosures	
	19.5 Ventilating openings	
	19.6 Covers	
20	19.7 Glass panels	
20	Corrosion Protection	
21	Field Wiring Connections	
	21.1 Permanent connection	
	21.2 Field wiring compartment	
	21.3 Field wiring terminals (general)	
	21.4 Special field-wiring terminals (qualified application)	
	21.5 Field wiring leads	
	21.6 Grounding terminals and leads	31

	21.7 Power supply cord	
22	Remote Power Supply	32
23	Internal Wiring	32
	23.1 General	
	23.2 Wireways	
	23.3 Splices	
	23.4 Barriers	
0.4	23.5 Strain relief	
24	Bonding for Grounding	33
СОМРО	NENTS	
25	General	34
	25.1 Mounting of components	34
	25.2 Operating components	35
	25.2 Operating components 25.3 Current-carrying parts	35
26	Bushings	36
27	Electrical Insulating Material	36
28	Bushings	37
29	Photocell Illuminating Lamps and Light Emitting Diodes A EDs)	38
_0	29.1 General	38
	20.2 Quality assurance program	38
30	Protective Devices	30
31	Printed Wiring Boards	ວຣ
	Cuitabaa	ວດ
32	Switches	38
33	Transformers and Coils	36
34	Dropping Resistors	39
35	Power Supplies	40
	35.1 Primary power supply	40
	35.2 Secondary power supply	40
36	Spacings	40
PERFOR	RMANCE	
37	General	42
٥.	37.1 Testunits	
	37.2 Performance of single sensor components of multi-criteria smoke alarms	
	37.3 Test voltages	
	37.4 Test samples and data	
	37.5 Component reliability data	
	37.6 Accessories	
	37.7 Smoke alarm guards	
	37.8 Test conditions	
	37.9 Tests and analysis	
38	Normal Operation Test	
	38.1 General	
	38.2 Standardized alarm signal	53
	38.3 Sensitivity shift criteria	
39	Automatic Drift Compensation for Smoke Sensing	54
40	Alarm Silenced Test	
41	Electrical Supervision Test	
• • •	41.1 General	
	41.2 Component failure	
	41.3 Photocell illuminating lamps and light emitting diodes (LEDs)	
	41.4 AC or remotely powered units	

	41.5 Battery powered (primary or secondary) smoke alarms	
	41.6 External wiring	57
	41.7 Smoke chamber monitoring	57
	41.8 End-of-life signal	57
	41.9 Multi-criteria smoke alarm with gas sensor	
42	Sensitivity Test	
	42.1 Smoke sensor (general)	58
	42.2 Combustibles	
	42.3 Aerosol generation equipment (alternate method)	
	42.4 Test equipment (alternate method)	
	42.5 Test method	
	42.6 Uniformity of operation	
	42.7 Smoke sensitivity test feature	
	42.8 Sensitivity test – gas sensor of a multi-criteria smoke alarm	
12		
43	Directionality Test	
44	velocity-sensitivity rest	
	44.1 Smoke sensor	
4.5	44.2 Multi-criteria smoke alarm with gas sensor	
45	Smoke Entry (Stack Effect) Test	
46	Reduction in Light Output Test	68
47	Stability Test	
48	Stability Tests – Multi-Criteria Smoke Alarms Incorporating Gas Sensor(s)	
49	Stability Tests for Multi-Criteria Smoke Alarms Incorporating CO Gas Sensor(s)	71
50	Fire Tests	72
	50.1 General	72
	50.2 Paper fire	73
	50.3 Wood fire	76
	50.4 Flaming polyurethane foam test	78
	50.5 Test method	
51	Smoldering Smoke TestQ	
52	Smoldering Polyurethane Foam Test	
	52.1 Combustible	95
	52.2 Test procedure	
	52.3 Test validity criteria (smoke profile)	96
	52.4 Acceptance criteria	
53	Cooking Nuisance Smoke Test	99
	53.1 General	99
	53.2 Acceptance criteria	99
	53.3 Electric range	
	53.4 Hamburger mixture and freezing	
•	53.5 Test procedure	
	53.6 Fresh-frozen hamburger placement	
	53.7 Smoke alarms	
	53.8 Electric range broiler	
	53.9 Test termination	
	53.10 Smoke profile criteria	
54	Go/No Go Flaming Polyurethane Foam Test	
04	54.1 General	
	54.2 Test method	
	54.3 Acceptance criteria	
5E	<u>.</u>	
55 56	Selectivity Test – Multicriteria Smoke Alarms Incorporating Gas Sensor(s)	
56	Circuit Measurement Test	
	56.1 General	
E 7	56.2 Battery trouble voltage determination	
57	Overvoltage and Undervoltage Tests	
	57.1 Overvoltage test	112

	57.2 Undervoltage test	
58	Temperature Test	113
59	Vibration Test	117
60	Replacement Test, Head and Covers	117
61	Mechanical Push Test for Push-Type Features	117
62	Jarring Test	
63	Variable Ambient Temperature Tests	
-	63.1 Operation in high and low ambients	
	63.2 Effect of shipping and storage – (single and multi-criteria smoke alarms)	
	63.3 Effect of shipping and storage – multi-criteria smoke alarms incorporating gas	127
	sensor(s)	124
64	Humidity Test	
0-	64.1 High humidity	
	64.2 Low humidity [multi-criteria smoke alarms with gas sensor(s)]	
GE	Correction Test	125
65	Corrosion Test	120
66	Alternate Corrosion Test (21-Day)	120
67	Transient Tests	126
	67.1 General	126
	67.2 Internally induced transients	126
	67.3 Extraneous transients	127
	67.4 Surge immunity test (combination wave)	128
	67.5 Surge current test	128
	67.6 Supply line (ring wave surge voltage) transients	
	67.7 Supply line (extra-low-voltage circuit) transients	129
68	Static Discharge Test	130
69	Dust Test	130
70	Dust Test	132
	70.1 Smoke alarm	132
	70.2 Separately energized circuits	
71	Endurance Test	
	71.1 Smoke alarm	
	71.2 Separately energized circuits	
	71.3 Audible signaling appliance	
	71.4 Test means	
72	Fire Test – Smoke Alarm with Supplementary Heat Detection	
73	Leakage Current Test	
74	Abnormal Operation Test	
75	Electric Shock Current Test	
76	Locked Rotor Test	
70	76.1 Motors	
	76.2 Thermal or overcurrent protection	
77	76.3 Impedance protection	
77	Dielectric Voltage-Withstand Test	
78	Polarity Reversal Test	
79	Tests on Polymeric Materials	
	79.1 General	
	79.2 Temperature test	
	79.3 Flame test – 19 mm (3/4 inch)	
	79.4 Flame test – 127 mm (5 inch)	
80	Strain Relief Test	
	80.1 General	
	80.2 Power-supply cord	147
	80.3 Special field-wiring terminals	
	80.4 Field-wiring leads	
	80.5 Battery connections	
81	Non-Compulsory Fire and Smoldering Smoke Tests	
	, ,	

82	Survivability Tests	148
83	Drop Test	148
84	Audibility Test	149
	84.1 General	
	84.2 Sound output measurement	
	84.3 Alarm duration test	
	84.4 Supplementary remote sounding appliances	
	84.5 Low frequency alarm signal format	
85	Reserved	
86	Field Service Tests (If recommended by the manufacturer)	
	86.1 Go/no-go field test	
	86.2 Maintenance (cleaning)	
	86.3 Battery tests	
87	Conformal Coatings on Printed Wiring Boards	153
01	87.1 General	153 153
	87.1 General	153 153
	87.3 High voltage printed wiring boards	155 156
	87.4 Evaluation of reduced spacings on printed-wiring boards	150 156
88	Power Supply Tests	150 157
00	99.1 Caparal	157
	Power Supply Tests 88.1 General 88.2 VA Capacity	157
	88.3 Burnout test	10 <i>1</i> 150
00	Smoke Alarms for Use in Recreational Vehicles (RV) and Boats	
89	90.1 Caparal	100 150
	89.1 General	150
	89.3 Operating and installation instructions	
	89.4 Variable ambient temperature and humidity test	
	89.5 Watertightness test	100
	89.6 Corrosion (Salt spray) test	
	89.7 Vibration test	
	89.8 Contamination test (Cooking by-products)	101
MANUFA	ACTURING AND PRODUCTION	
90	General	
91	Sensitivity Callbration Tests	
92	Smoke Tests	
93	Photocell Illuminating Lamp Test	
94	Measurement of In-Service Reliability for Multi-criteria Smoke Alarms with Gas Sensor(s).	
	94.1 Required in-service reliability	
	♥94.2 Sample frequency and sample size	
	94.3 Test results and record keeping	
95	Production Line Voltage Dielectric Voltage-Withstand Test	
96	Production Line Grounding Continuity Tests	165
97	Battery Quality Assurance	166
98	Smoke Alarm Shipment	166
MARKIN	G	
99	General	166
100		
100	. ~~.~gg	100
INSTRU	CTIONS	
101	General	169
11/1	Output	いご

102	2 Installation Instructions – Wiring Diagram	
ANNEX	(A (INFORMATIVE) TYPICAL SENSITIVITY SMOKE TEST CHAMBER CONSTRUC	ΓΙΟΝ
A1	Construction	174
ANNEX	(B (NORMATIVE) OBSCURATION CALCULATIONS	
B1 B2	· · · · · · · · · · · · · · · · · · ·	
ANNEX	C (NORMATIVE) INSTRUCTIONS FOR DETERMINING A RELIABILITY PRED ELECTRONIC COMPONENTS AND MICROELECTRIC CIRCUITS	ICTION OF
C0	Instructions for Determining a Reliability Prediction for Smoke Alarms	182
C1	Methods Of Determining Failure Rate	182
	RIA FOR ACCEPTANCE OF MICROELECTRONIC DEVICES	
C2		191
C3	Part I – Quality Assurance Screening Program.	192
C4		
	C4.1 General	194
	C4.3 Test calculations and procedures.	194
	C4.4 Test conditions	196
	C4.5 Failure rate number calculation	
	x O **	
ANNEX	(D (INFORMATIVE) STANDARDS FOR COMPONENTS	
	Clic	
ANNEX	(E SAMPLE SIZE DETERMINATION FOR IN SERVICE RELIABILITY TE MULTICRITERIA SMOKE ALARMS CONSISTING OF GAS DETECTION	STING OF
E1	General	200
E2		
E3		

INTRODUCTION

1 Scope

- 1.1 These requirements cover electrically operated single and multiple station smoke alarms intended for open area protection in indoor locations and portable smoke alarms used as "travel" alarms in accordance with:
 - a) National Fire Alarm and Signaling Code, NFPA 72;
 - b) Standard for Recreational Vehicles, NFPA 501C, for smoke alarms intended for use in recreational vehicles:
 - c) For smoke alarms intended for use in recreational boats:
 - 1) Fire Protection Standard for Pleasure and Commercial Motor Craft, NFPA 302,
 - 2) AC and DC Electrical Systems on Boats, ABYC E-11, and
 - 3) The applicable regulations of the United States Coast Guard.
- 1.2 A single station smoke alarm (e.g. ionization-type, photoelectric-type, smoke alarm with supplementary heat detection type, combination smoke type, multi-criteria type), as defined by these requirements, is a self-contained fire alarm device that consists of an assembly of electrical components including a smoke sensor/ chamber, alarm sounding appliance, and provision for connection to a power supply source, either by splice leads, terminals, a cord and plug arrangement or containing integral batteries to detect one or more products of combustion. The products of combustion may consist of visible as well as invisible smoke particles, gases, heat, radiant energy, and water vapor. Additional functionality such as, a supplemental heat detector, terminals for connection to a remote audible signaling appliance (device) or accessory, and an integral transmitter to energize a remote audible signaling appliance (device) is permitted to be incorporated as part of the smoke alarm assembly.
- 1.3 Smoke alarms not intended for interconnection are defined as single-station type.
- 1.4 Multiple station units are single station smoke alarms that are:
 - a) Interconnected so that actuation of one results in alarm sounding by all interconnected smoke alarms, or
 - b) Smoke alarms that are connected to remote heat detectors or heat alarms.
- 1.5 These requirements, where applicable, also cover all remote accessories that are to be connected.
- 1.6 This standard does not cover the following:
 - a) Smoke detectors of the non-self-contained type that are intended for connection to a household or industrial system control unit. These are included in the Standard for Smoke Detectors for Fire Protective Signaling Systems, UL 268;
 - b) Mechanically operated single and multiple station fire alarm devices that are specified in the Standard for Single and Multiple Station Heat Alarms, UL 539;
 - c) Heat detectors except for the requirements in the Fire Test Smoke Alarm with Supplementary Heat Detection, Section 72, incorporated as part of a single station smoke alarm assembly whose requirements are covered in the Standard for Heat Detectors for Fire Alarm Signaling Systems, UL 521 or and/or when part of a multi-criteria smoke alarm.

- d) An accessory that is provided with a means to transmit alarm signals to a constantly attended, remote monitoring location. Any accessory capable of transmitting these types of signals is covered by the requirements in the Standard for Household Fire-Warning System Units, UL 985 or;
- e) A gas and vapor detector or sensor incorporated as a part of a smoke alarm assembly and covered by the Standard for Single and Multiple Station Carbon Monoxide Alarms, UL 2034, or except when part of a multi-criteria smoke alarm.

2 Assembly

- 2.1 A smoke alarm shall be so constructed that it will be reliable and sufficiently durable for its intended installation and use.
- 2.2 A component of a smoke alarm shall comply with the requirements for that component, except that such requirements may be modified if appropriate for the particular application.
- 2.3 Unless specifically indicated, the construction requirements specified for a smoke alarm shall also apply to any remote accessories with which it is to be used.

3 Components

- 3.1 Except as indicated in $\underline{3.2}$, a component of a product covered by this standard shall comply with the requirements for that component. See Annex \underline{D} for a list of standards covering components used in the products covered by this standard.
- 3.2 A component is not required to comply with a specific requirement that:
 - a) Involves a feature or characteristic not required in the application of the component in the product covered by this statement or
 - b) Is superseded by a requirement in this standard.
- 3.3 A component shall be used in accordance with its rating established for the intended conditions of use.
- 3.4 Specific components are incomplete in construction features or restricted in performance capabilities. Such components are intended for use only under limited conditions, such as certain temperatures not exceeding specified limits, and shall be used only under those specific conditions.

4 Units of Measurement

4.1 Values in parentheses are explanatory or approximate information.

5 Referenced Publications

5.1 Where reference is made to other publications, such reference shall be considered to refer to the latest edition and all amendments published to that edition up to the time when this Standard was approved.

UL Standards

UL 94, Tests for Flammability of Plastic Materials for Parts in Devices and Appliances UL 521, Heat Detectors for Fire Protective Signaling Systems UL 985, Household Fire Warning System Units

UL 1730, Smoke Detector Monitors and Accessories for Individual Living Units of Multifamily Residences and Hotel/Motel Rooms

NFPA

ANSI/NFPA 70, National Electrical Code ANSI/NFPA 72, National Fire Alarm and Signaling Code NFPA 302, Fire Protection Standard for Pleasure and Commercial Motor Craft

ASTM International

ASTM B117-16, Standard for Salt Spray (Fog) Testing
ASTM MNL12, Manual on the Use of Thermocouples in Temperature Measurement – Edition 4, 1993.01.01

ISO

ISO 8201, Acoustics – Audible Emergency Evacuation Signal ISO/FDIS 8201, Acoustics – Audible and other emergency evacuation signals

Department of Defense

MIL-HDBK-217F(2) – February 28, 1995, Reliability Prediction of Electronic Equipment MIL-STD-750E(2) – November 30, 2016 Test Methods for Semiconductor Devices MIL-STD-883K(2) – February 22, 2017 Test Methods Standard Microcircuits

Acoustical Society of America

ANSI/ASA S3.41, Audible Emergency Evacuation Signal

IEEE

ANSI/IEEE C62.41, IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits

American Boat and Yacht Council

ABYC-E_11, AC and DC Electrical Systems on Boats

Federal Communications Commission

FCC 47 CFR Part 15.247

6 Glossary

- 6.1 For the purpose of this standard the following definitions apply.
- 6.2 BROILING The fresh-frozen hamburger cooking process used to cook the fresh-frozen hamburger in the oven of an electric range.
- 6.3 COMBINATION SMOKE ALARM A smoke alarm that employs more than one smoke detecting principle in one unit. The sensor output signals are individually evaluated but not combined to determine when an alarm signal is warranted.

- 6.4 COMPONENT, LIMITED-LIFE A component which is likely to fail during the anticipated service life of a smoke alarm and be periodically replaced and the failure of which is monitored, when failure of the component affects the intended operation, gas and/or smoke sensitivity, or both. Typical examples of such components include incandescent lamps, electronic tube heaters, and functional heating elements.
- 6.5 COMPONENT, RELIABLE A component that is not expected to fail or be periodically replaced and is not monitored. A reliable component shall have a predicted failure rate of 2.5 or less failures per million hours as determined for a "Ground Fixed" (GF) environment by Military Standardization Handbook, MILHDBK 217F, or equivalent (see Annex C).
- 6.6 CONFORMAL COATING A protective covering applied on a printed-wiring board capable of conforming to the configuration of objects coated, used to increase the dielectric voltage-withstand capability between conductors and/or to protect against environmental conditions. Conformal coatings may be used on printed wiring boards where electrical spacing's are insufficient between uninsulated live parts of opposite polarity or between such parts and accessible dead-metal parts.
- 6.7 DRIFT COMPENSATION A feature of a smoke alarm that monitors and automatically adjusts the smoke alarm's smoke sensitivity, example: to the gradual build-up of contaminants in the sensing chamber or degradation of the sensor component(s).
- 6.8 END-OF-LIFE-SIGNAL An audible signal, differing from the alarm signal, intended to indicate that the device has reached the end of its useful life and should be replaced. It is permitted for the audible component of the signal to be of the same format as a trouble signal, provided a visual indicator is employed to differentiate between the end-of-life and other trouble conditions.
- 6.9 FIRMWARE For the purpose of this Standard, software programs residing permanently on a microprocessor or in a nonvolatile memory chip within smoke alarm and accessory devices.
- 6.10 GAS SENSITIVITY Relative degree of response of gas sensor(s) that are used within the multicriteria smoke alarm as defined by the manufacturer and verified by the tests required in this Standard.
- 6.11 HEAT ALARM, SINGLE STATION A self-contained fire alarm system comprising of a heat alarm, an alarm sounding device and a stored energy source (wound spring) incorporated in one integral package.
- 6.12 HEAT DETECTOR A device that detects an abnormal high temperature or rate of temperature rise.
- 6.13 LOW BATTERY TROUBLE POINT Any combination of battery voltage and series resistance that results in an audible trouble signal from a battery-operated alarm.
- 6.14 MANUFACTURER'S PUBLISHED INSTRUCTIONS Published installation and operating documentation provided for each product or component. The documentation includes directions and necessary information for the intended installation, maintenance, and operation of the product or component.

(Reproduced with permission from NFPA 72® -2019, National Fire Alarm and Signaling Code® Copyright © 2018, National Fire Protection Association. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety which may be obtained through the NFPA website at www.nfpa.org.)

(NFPA 72® and National Fire Alarm and Signaling Code® are registered trademarks of the National Fire Protection Association, Inc., Quincy, MA.)

6.15 MULTI-CRITERIA SMOKE ALARM – An alarm comprised of a smoke sensor plus one or more additional sensors such as heat, radiant energy, fire gases or smoke that operates on different principles.

Each sensor in the set is separately monitored for the presence or absence of physical stimuli. The individual signal from each sensor is mathematically evaluated together with the signals from the other sensor(s) to determine when a smoke alarm signal is warranted. Aside from this smoke alarm signal, the smoke alarm may generate other independent alarm signals such as but not limited to a CO alarm, heat alarm, or a flame alarm for which each alarm type complies with the applicable standard.

- 6.16 NUISANCE SENSOR A component on a smoke alarm that is solely used to identify nuisance (non-fire) conditions.
- 6.17 PRODUCTION GAS SENSITIVITY A gas sensitivity range equal to or less than the sensitivity limits determined by the applicable tests required in this Standard. This range is used to verify sensitivity calibration in Section 91, Sensitivity Calibration Tests.
- 6.18 PRODUCTION SMOKE SENSITIVITY The smoke sensitivity range produced during manufacture, established by the tests in this Standard within the limit outlined in <u>Table 37.1</u>, Most sensitive visible smoke obscuration limits (gray smoke), and <u>Table 37.2</u>, Measuring ionization chamber (MIC) measurement, for single criteria smoke alarms. For multi-criteria smoke alarms, smoke sensitivity limits may be provided by the manufacturer.
- 6.19 RISK OF ELECTRIC SHOCK A risk of electric shock is determined to exist at any part when:
 - a) The potential between the part and earth ground or any other accessible part is more than 42.4 volt peak and
 - b) The continuous current flow through a 1500 ohm resistor connected across the potential exceeds 0.5 milliampere.
- 6.20 RISK OF FIRE A risk of fire is determined to exist at any point in a circuit where:
 - a) The open circuit voltage is more than 42.4 volt peak, and the energy available to the circuit under any condition of load, including short circuit, results in a current of 8 amperes or more after 1 minute of operation, or
 - b) A power of more than 15 watts is deliverable into an external resistor connected between the two points.
- 6.21 SMOKE ALARM ACTIVATION An audible signal that lasts at least two complete cycles of the temporal pattern.
- 6.22 SMOKE ALARM SENSITIVITY Relative degree of response of a smoke sensor in a smoke alarm as measured in percent/m obscuration (percent/ft obscuration). A high sensitivity denotes response to a lower concentration of smoke than a low sensitivity under identical smoke build-up conditions.
- 6.23 SMOKE ALARM AUDIBLE SIGNAL The Audible Emergency Evacuation Signal as defined in ANSI/ASA S3.41, Audible Emergency Evacuation Signal, ISO 8201, Acoustics Audible Emergency Evacuation Signal, or ISO/FDIS 8201, Acoustics Audible and other emergency evacuation signals.
- 6.24 SMOKE ALARM WITH SUPPLEMENTARY HEAT DETECTION A smoke alarm that responds to excessive concentrations of smoke or heat in compliance with <u>17.6</u>, Supplementary heat sensor, and Section <u>72</u>, Fire Test Smoke Alarm with Supplementary Heat Detection, but are not fully compliant to the Standard for Single and Multiple Station Heat Alarms, UL 539. The sensor output signals are individually evaluated but not combined to determine when an alarm signal is warranted.

- 6.25 SMOKE SENSITIVITY Relative degree of response of a smoke sensor in a smoke alarm as measured in percent/ft obscuration (percent/m obscuration). A high sensitivity denotes response to a lower concentration of smoke than a low sensitivity under identical smoke build-up conditions.
- 6.26 SMOKE SENSOR/CHAMBER Components of a smoke alarm that sense particulate.
- 6.27 SPECIFIED LIFETIME For purposes of this standard, specified lifetime will be referred to as "lifetime." A continuous period of time specified by the manufacturer, during which the alarm meets the requirements of this standard. The manufacturer will specify the start date of the period as either the date of manufacturer or the fully assembled unit in its final enclosure, or the date the unit is placed into service.
- 6.28 TRANSCEIVER A device capable of transmitting and receiving wireless signals.
- 6.29 TROUBLE SIGNAL A visible or audible signal intended to indicate a fault or trouble condition.
- 6.30 VOLTAGE CLASSIFICATION Unless otherwise indicated, all voltage and current values specified in this standard are rms:
 - a) Extra-Low-Voltage Circuit A circuit that has an AC voltage of not more than 30-volts alternating current (AC) (42.4 volts peak) and maximum power of 100 volt-amperes, such as supplied by a Class 2 transformer; or a circuit of not more than 30-volts direct current (DC) supplied by a primary battery; or a circuit supplied by a combination of a transformer and fixed impedance, that as a unit, complies with all the performance requirements of a Class 2 transformer. A circuit that is derived from a supply circuit of more than 30 volts by connecting resistance or impedance, or both, in series with the supply circuit to limit the voltage and current, is not identified as an extra-low-voltage circuit.
 - b) Hazardous-Voltage Circuit A circuit having characteristics in excess of those of an extra-low-voltage circuit.
- 6.31 WATERTIGHT A product that is constructed to prevent water from entering the enclosure under any condition other than submersion.

7 Smoke Alarm Reliability Prediction

- 7.1 Smoke alarms shall be constructed to a maximum failure rate of 4.0 failures per million hours as calculated by a full part stress analysis prediction as described in Section 2.0 of Millitary Standardization Handbook, MIL HDBK 217F or 3.5 failures per million hours as calculated by a simplified parts count reliability prediction as described in Section 3.0 of MIL-HDBK 217F, or equivalent. See Annex C, Instructions for Determining a Reliability Prediction of Electronic Components and Microelectric Circuits. A "Ground Fixed" (GF) environment is to be used for all calculations. When actual equivalent data is available from the manufacturer, it is permissible that it be used in lieu of the projected data for the purpose of determining reliability.
- 7.2 Any component whose failure:
 - a) Results in energization of an audible trouble signal, or
 - b) Results in energization of a separate visual indication (orange or yellow), or
 - c) Results in de-energization of a power-on light, or
 - d) Does not affect the normal operation, or
 - e) Is evaluated by specific performance tests included in this standard

is not required to be included in the failure rate calculation. Examples include but are not limited to the audible signal appliance, non-compulsory thermostat, test switch, battery contacts and functional light source (LED or IRLED) that is supervised for light degradation as well as additional failures as specified within this standard and/or as identified by the manufacturer.

- 7.3 An integral or remote accessory is not required to be included in the reliability prediction except for those components whose failure affects the normal operation of the alarm.
- 7.4 A reliable light emitting diode (LED) of a single station smoke alarm employing a photocell-light assembly shall have a predicted failure rate of not greater than 2.5 failures per million hours.
- 7.5 An application specific integrated circuit (ASIC) employed in a smoke alarm shall have a predicted failure rate of not greater than 2.5 failures per million hours. The failure rate is to be determined through evaluation of data in a 3000 hour burn-in test, or equivalent.
- 7.6 A gas sensor or a gas-sensing component supervision system of an alarming device shall be provided with the following:
 - a) Reliability data developed using the Military Standardization Handbook, MIL-HDBK 217F or equivalent demonstrating a predicted failure rate of not more than 2.5 failures per million hours operation (see 7.5); or
 - b) Supervision of the predicted failure modes other than for loss of electrical continuity; and
 - c) If the sensor is automatically and periodically tested for its performance response to the target gas (acceptable proxy gas), and results in a trouble signal when the sensor drifts out of specification, then the sensor can be excluded from the reliability calculation.
- 7.7 Documentation of the failure modes resulting from aging for the gas sensor in a multi-criteria alarm or the sensing components and identification of failure modes addressed by the supervision system shall be provided. The manufacturer shall submit a test method to render the sensor unresponsive to the test concentrations as specified by the manufacturer if the documentation submitted for the sensor or the sensing components indicates drift in the less sensitive direction. This method shall be used when conducting the Electrical Supervision Test, Section 41. All predicted failure modes shall result in a trouble signal.
- 7.8 Integral transceiver and related components used for non-supervised, wireless interconnected alarms are required to be included in the reliability prediction.

8 Manufacturer's Published Instructions

- 8.1 A copy of the manufacturer's published instructions, which includes installation and operating instructions, related schematic wiring diagrams, and installation drawings shall be used as a reference in the examination and test of the smoke alarm. For this purpose, a printed edition is not required. The information is to be included in a homeowner's manual. See MARKING, Section 99, General; Section 100, Packaging Marking; and INSTRUCTIONS, Section 101, General.
- 8.2 The manufacturer's published instructions shall include such directions and information as deemed by the manufacturer to be required for proper installation, testing, maintenance, operation, and use of the smoke alarm.

9 Automatic Drift Compensation for Smoke Sensing

- 9.1 Where automatic drift compensation of smoke sensitivity is provided and initiated within the smoke alarm, the alarm shall initiate a visual and/or audible trouble condition when drift compensation is no longer capable of making additional adjustments to the smoke sensitivity of the smoke alarm. The trouble signal(s) created when reaching the drift compensation limit shall differ from the low battery signal but may be identical or similar to trouble signals for other supervised conditions. The trouble signal shall be activated when the limit of compensation is reached.
- 9.2 For alarms with adjustable smoke sensitivity settings, after automatic drift compensation has occurred, the smoke sensitivity of the smoke alarm shall be within 1.65 percent/m (0.5 percent/ft) obscuration of the initial smoke sensitivity when tested as described in $\frac{42.5.1}{42.5.4}$ (Test method).
- 9.3 For alarms without adjustable smoke sensitivity settings, after automatic drift compensation has occurred the smoke sensitivity of the smoke alarm shall remain within the manufacturer's identified range.
- 9.4 The compensation shall not adversely affect the operation of the smoke alarm. The summation of compensation steps over a twenty-four hour period shall not change the clean-air reference value by more than 50 percent of the shift necessary to indicate an alarm signal and shall not impact the smoke sensitivity of the smoke alarm as specified in 9.2. Maximum compensation rate of the clean air reference value shall not exceed 5 percent every 2.4 hours.

10 Non-fire Feature

10.1 A non-fire feature, such as carbon monoxide detection, shall be used in common with a single or multiple station smoke alarm or both, or an accessory only when a non-fire feature does not degrade or interfere with operation of the smoke alarm or accessory and complies with all the applicable requirements of this standard. See smoke alarm reliability in 7.3 (Smoke Alarm Reliability Prediction) and 38.1.9 (Normal Operation Test).

11 Smoke Sensitivity Indicating Means (Optional)

- 11.1 This requirement applies to end product installation smoke alarms that are provided with a means for measuring or indicating the nominal sensitivity or a sensitivity range, as described in 11.2. Removal of a snap-on cover to gain access to the sensitivity control is permissible, only when no hazardous-voltage parts are exposed or are able to be contacted by the user.
- 11.2 The measuring or indicating instrument may include the use of jacks or terminals for the connection of a meter, visual indicators (such as a change in frequency of a pulsing light visible with the smoke alarm installed), operation of a mechanical device (such as described in 11.3), or any arrangement determined to be equivalent. An instrument used for measuring smoke sensitivity of a smoke alarm shall be provided with the following information and features:
 - a) The instrument shall have the capability to determine if the smoke alarm is within its production smoke sensitivity range. If the instrument contains a numerical readout, a chart shall be provided with the instrument to indicate the acceptable production smoke sensitivity range of each model of smoke alarm that it is capable of testing. A chart is not required for a numerical readout in units of percent obscuration per m (ft).
 - b) Instructions for the instrument shall clearly state the operating temperature range of the instrument.
 - c) If a warm-up period is required, the instrument shall clearly state this period.

- d) The instrument shall include the description of the method used to confirm the calibration of the instrument and the period at which re-calibration is required.
- e) The instrument shall have provision to identify its date of last calibration.
- f) The instrument shall have a method of identifying to the user that it is not calibrated, if low batteries, dirty filters, or the like, affect the instrument.
- 11.3 The test feature of such an alarm shall verify that the smoke sensitivity alarm is within its marked range. Unless it is employed on an alarm that has other means of measuring its smoke sensitivity, the test feature shall consist of either an electrical means or a mechanical device which simulates a specified level of smoke in the sensing chamber.
- 11.4 The use of a plug-in type alarm assembly that is removed readily for insertion of an adapter connected to metering equipment is permissible. A plug-in type alarm that is removed readily and connected to metering equipment is also permissible.
- 11.5 An alarm that incorporates a variable smoke sensitivity setting intended to be field adjusted shall have a mechanical stop on the adjusting means for the maximum and minimum settings.

12 Maintenance (Field Cleaning)

- 12.1 If recommended by the manufacturer, the smoke alarm shall be cleaned without:
 - a) Degradation of performance when tested in accordance with 86.2, Maintenance (cleaning); and
 - b) Disturbance of field wiring.

13 Alarm Silencing Feature

13.1 Each smoke alarm shall be provided with an automatically resettable alarm silencing means that has a fixed or variable time setting which desensitizes the alarm for a maximum of 10 minutes. Alarm silencing shall not disable the smoke alarm. Sensitivity shall not be reduced to less than 125 % of the manufacturer's minimum sensitivity setting test group as determined from the Uniformity of Operation minimum sensitivity defined in 42.6.1(b). Each alarm shall produce a distinctive audible or visible trouble signal while in the silence mode. Following the silenced period, the alarm shall restore automatically to its intended operation. Silencing of one alarm of a multiple station system shall not prevent an alarm operation from the other alarms in the system. See Section 40, Alarm Silenced Test.

NOTE: For example, a smoke alarm with a minimum sensitivity (smoke box sensitivity as specified in Section 42, Sensitivity Test) of 4 %/ft may have its sensitivity reduced to 5 %/ft during the alarm silence period.

- 13.2 When a variable adjustment is provided on an alarm to vary the silenced period, the adjustment means shall be provided with a mechanical stop, or the equivalent, so that the maximum 10-minute limitation is not exceeded.
- 13.3 When single station smoke alarms are configured in a multiple station connection (interconnection of two or more smoke alarms), the smoke alarm that initiates an alarm signal shall be designed to be silenced through a manual operation by physically depressing the alarm silence feature on the initiating alarm.
- 13.4 As an optional feature, the manufacturer is permitted to include an additional wireless communication remote silencing feature. If included and tested for compliance with the requirements outlined in 13.7, the wireless communication remote silence feature may be activated through a remote device and shall be capable of providing additional instructions for the user to confirm his physical

proximity to the initiating smoke alarm. Manufacturers that include a wireless communication remote silencing feature shall include language on their remote device for the user to confirm his physical proximity to the initiating smoke alarm, and that the user verified the presence or absence of smoke/fire at the initiating alarm(s) before silencing the alarm signal using the remote device.

- 13.5 A multiple-station interconnected smoke alarm that produces an alarm signal (wired, wireless, relay, audible and/or visual) shall be permitted to be silenced by either of the following:
 - a) By activating the alarm silence feature on any multiple station interconnected smoke alarm, provided the smoke alarm that initiated the alarm signal remains in alarm; or
 - b) By physically depressing the alarm silence feature on the initiating smoke alarm(s), as noted in 13.3; or
 - c) By activating the wireless communication remote silencing feature using a remote device.

Exception: In the event that the initiating alarm(s) cannot be silenced per the requirements in <u>13.1</u>, it is permitted that the smoke alarms providing an alarm signal resulting from the multiple-station interconnect, excluding the initiating alarm(s), be silenced but not exceed the limits defined in <u>13.1</u>.

- 13.6 Upon activation of an alarm signal from a smoke alarm in the multiple-station circuit, or reactivation of the alarm signal from the originating smoke alarm, all alarms in the multiple-station interconnect shall reinitiate their alarm signal.
- 13.7 Smoke alarms with a wireless RF communication remote device and employing a remote alarm silence feature shall be tested in accordance with one of the following requirements:
 - a) The remote transmission radio of the smoke alarm shall comply with FCC 47 CFR Part 15.249 for the frequency band used and the field strength limits:

```
1) Frequency range
```

```
i) 2.4 GHz (2.4 GHz – 2.4835 GHz)
```

ii) 900 MHz (902 – 928 MHz)

2) Field strength

i) 94 dBuV/m @ 3m

or

- b) The remote transmission radio of the smoke alarm shall comply with FCC 47 CFR Part 15.247 for the frequency band used and the field strength limits:
 - 1) Frequency range

```
i) 2.4 GHz (2.4 GHz – 2.4835 GHz)
```

ii) 900 MHz (902 – 928 MHz)

iii) 5.8 GHz (5725 - 5875 MHz)

- 2) Field strength
 - i) 30 dBm (1 W) (using antennas with directional gains < 6 dBi)

or

- c) The manufacturer shall provide a defined test procedure, test frequency and field strength in compliance with FCC regulations that demonstrate the open field (line of sight) transmission range of the smoke alarm does not exceed 300 m (984 ft).
- 13.8 Where a visible signal device or component is used as an optional feature, the alarm silence feature may be permitted to deactivate the visible signal device or component.

14 Smoke Sensitivity Test Feature

- 14.1 A smoke alarm shall incorporate means for manual test of its operability and sensitivity by mechanically or electrically simulating a preset level of smoke in the sensing chamber. The test means shall be externally accessible when the unit is installed as intended and shall test the operability of the entire unit with the exception of the trouble indicating part of the circuit, which may be excluded. See 42.7, Smoke sensitivity test feature.
- 14.2 Where a visible signaling device or component is used for the smoke sensitivity test feature it shall also activate the visible signaling device or component.

15 Batteries

15.1 General

- 15.1.1 When a battery or set of batteries is used as the main source of power of a single or multiple station smoke alarm, it shall comply with the requirements of the Battery tests, <u>86.3</u>.
- 15.1.2 Batteries included as part of an alarm shall be so located and mounted that terminals of cells are prevented from coming in contact with uninsulated live parts, terminals or adjacent cells, or metal parts of the enclosure as a result of shifting.
- 15.1.3 A battery compartment intended for use with rechargeable batteries which emit gases during charging shall be provided with vent holes.
- 15.1.4 Ready access shall be available to the battery compartment to facilitate battery replacement, without damage to the alarm components or disassembly of any part of the alarm, except for a cover or the equivalent. When the battery is capable of powering the alarm for a minimum of 10 years, the battery shall not be user replaceable.
- 15.1.5 Connections of external wiring to a battery-operated single- or multiple-station smoke alarm, or to a portable accessory, shall not be subjected to stress or motion during battery replacement, servicing, or both. Removal of the alarm or accessory from the mounting support to replace a battery or to service the unit shall occur only when the connected wiring is not subjected to flexing or stress.
- 15.1.6 A smoke alarm powered by a non-replaceable, ten-year life battery shall be provided with a means of activating the power prior to installation and deactivating the battery at the end of useful battery life. The deactivation means shall require the use of a tool, or equivalent, and shall render the unit resistant to being reinstalled. The deactivation means shall also serve to discharge the battery(ies) completely. Both the activation and deactivation means shall be designed to operate one time only. The manufacturer's published instructions shall provide the user with information describing this one-time operation. See 101.1(p).

15.2 Battery removal/deactivation indicator

- 15.2.1 Removal of a battery from a battery-operated (or AC with battery back-up) smoke alarm shall result in a readily apparent and prominent visual indication. The visual indication shall consist of one of the following:
 - a) A warning flag that is exposed with the battery removed and the cover closed;
 - b) A hinged cover that is resistant to being closed with the battery removed;
 - c) A swing-out or pull-out battery compartment that is resistant to being closed unless it has a battery in place;
 - d) An audible or audible and tactile trouble signal on an AC powered smoke alarm with battery back-up;
 - e) An arrangement to render the unit resistant to reinstallation; or
 - f) A local audible, local audible and tactile, or local visual indication at the control panel.
- 15.2.2 Deactivation of the battery of a smoke alarm that uses a non-replaceable battery with a 10-year minimum battery life shall result in a readily apparent and prominent indication. The indication includes but not limited to the following:
 - a) A warning flag that is exposed when the battery is deactivated and the cover closed;
 - b) A hinged cover that is resistant to being closed when the battery is deactivated;
 - c) An audible or audible and tactile trouble signal on an AC powered smoke alarm with battery back-up when the battery is deactivated;
 - d) An arrangement to render the unit resistant to reinstallation; or
 - e) A local audible, local audible and tactile, or local visual indication at the control panel.
- 15.2.3 When a warning flag, or equivalent, is employed to comply with the requirement of <u>15.2.1</u> or <u>15.2.2</u>, it shall be marked as required in <u>99.6</u> (Marking).

16 Firmware Update (if provided)

16.1 General

- 16.1.1 A firmware release level shall identify the firmware of a product. A new release level shall be assigned due to any changes in the firmware.
- 16.1.2 Program software and code shall not be accessible for modification by the user.

16.2 Firmware update

- 16.2.1 Products capable of receiving a firmware update shall provide a means of indicating the current firmware version of the unit
- 16.2.2 The manufacturer shall provide documentation which details the differences:
 - a) From the original to each subsequent firmware version and

- b) Between subsequent versions (if applicable).
- 16.2.3 Firmware updates for smoke alarms shall not occur when the battery (primary or secondary) supply associated with the device has been depleted to the trouble point (refer to <u>56.2</u>, Battery trouble voltage determination).
- 16.2.4 Products capable of receiving a firmware update shall be tested and evaluated for the following type of applicable firmware updates when the alarm device or accessory is subjected to the specified operating conditions:
 - a) Authentic Firmware Update:
 - 1) Normal standby condition smoke alarm shall operate as intended after receiving an authentic firmware update.
 - 2) Alarm condition when detecting smoke during a fire event, a firmware update shall not interfere with alarm detection and signaling.
 - 3) Loss of power smoke alarm shall comply with 16.26 or 16.2.7.
 - 4) Firmware transmission (data) interruption smoke alarm shall comply with <u>16.2.6</u> or <u>16.2.7</u>.
 - b) Duplicate firmware version update:
 - 1) Normal standby condition smoke alarm shall operate as intended after receiving a duplicate firmware update.
 - c) Corrupt firmware update:
 - 1) Normal standby condition smoke alarm shall comply with 16.2.6 or 16.2.7.
 - d) Unsigned manufacturer firmware update:
 - 1) Normal standby condition smoke alarm shall comply with 16.2.6 or 16.2.7.
- 16.2.5 Successful firmware updates shall result in the smoke alarm or accessory operating as intended following the update and comply with all applicable requirements as defined within this standard.
- 16.2.6 For products capable of receiving an automatic (no end user interaction) update, such as the use of WiFi, failure to successfully update the firmware shall result in the alarm and accessory if provided, reverting to the previous firmware version and the alarm and accessory if provided shall operate as originally intended. At a minimum, Section 38, Normal Operation Test shall be conducted. As an alternative, failure to update or revert to the previous firmware revision shall result in a trouble signal.
- 16.2.7 For products requiring physical interaction to install a firmware update, such as the use of a USB connection, failure to update the firmware shall result in the alarm and accessory if provided, reverting to the previous firmware version and the alarm and accessory if provided, shall operate as originally intended. At a minimum, Section 38, Normal Operation Test shall be conducted. As an alternative, failure to update or revert to the previous firmware version may result in a trouble signal.
- 16.2.8 For products that are capable of receiving firmware updates, manufacturers shall provide a means for the end user to obtain the manual for the updated firmware if any user discernible functionality has changed.

- 16.2.9 Where firmware updates alter the alarm threshold or smoke detection algorithm, the alarm (with firmware updates) shall be tested according to Section $\underline{42}$, Sensitivity Test, Section $\underline{50}$, Fire Tests, and Section $\underline{51}$, Smoldering Smoke Test.
- 16.2.10 An alarm with firmware updates shall also be subjected to the Smoldering Polyurethane Foam Tests, <u>52</u>, and Cooking Nuisance Smoke Test, <u>53</u>.

CONSTRUCTION

ASSEMBLY

17 General

17.1 Remote accessories

17.1.1 Unless specifically indicated otherwise, the construction requirements specified for a smoke alarm shall apply also for any remote accessories with which it is to be employed.

17.2 Smoke sensitivity adjustment (single criteria)

17.2.1 When a field smoke sensitivity adjustment is provided, it shall be accessible with the alarm installed as intended, marked to indicate the direction of smoke sensitivity (high or low), and shall employ a mechanical stop at both extremes. The smoke sensitivity shall be within the production sensitivity limits indicated in 42.1.1 (Sensitivity Test). Removal of a snap-on cover to gain access to the smoke sensitivity control is permissible only when no high-voltage parts are able to be contacted by the user.

17.3 Radioactive materials

- 17.3.1 The manufacture, importation, distribution, marking, and disposal of smoke alarms containing radioactive material are subject to the safety requirements of local and federal agencies responsible for the control of these materials.
- 17.3.2 Documentation verifying compliance with regulating agency requirements is required for the smoke alarm.

17.4 Supplementary signaling feature

17.4.1 A supplementary signaling feature, such as a transmitter for remote signaling, included integral with a single or multiple station smoke alarm, is to be compatible with the device(s) with which it is intended to be employed, and the remote signaling device(s) shall be intended for fire alarm application.

17.5 Insect guards

- 17.5.1 A smoke sensor shall be provided with a screen or equivalent protection (louvers, slots, holes) as a deterrent for entry of insects into the detecting chamber. The maximum opening size shall not exceed 1.27 mm (0.05 in).
- 17.5.2 To determine that the maximum opening size has not been exceeded, openings in rigid assemblies shall not permit passage of a 1.30 mm (0.051 in) diameter rod. For nonrigid openings, such as a screen, ten measurements are to be made at different locations by an optical micrometer; five measurements are to be made in each direction (not on diagonal).

17.6 Supplementary heat sensor

- 17.6.1 When a heat sensor is provided integral with a non multi-criteria smoke alarm, the temperature rating of the heat sensor shall not be less than 57°C (135°F). The heat sensor shall be connected in the smoke alarm circuit or be intended for connection to a separate circuit.
- 17.6.2 The temperature rating of a heat sensor shall not be greater than 60°C (140°F), unless the smoke alarm has been investigated and found appropriate for installation at a higher temperature.
- 17.6.3 A fixed-temperature heat alarm shall operate within the temperature tolerance range according to its rating as specified in the operating temperature test of the Standard for Single and Multiple Station Heat Alarms, UL 539.

18 Servicing and Maintenance Protection

18.1 General

- 18.1.1 An uninsulated live part of a hazardous voltage circuit and hazardous moving parts that present a risk of injury to persons within the enclosure shall be located, guarded, or enclosed to reduce the risk of unintentional contact by persons performing service functions performed with the equipment energized.
- 18.1.2 Manual switching devices may be located or oriented with respect to uninsulated live parts or hazardous moving parts so that manipulation of the mechanism can be accomplished in the normal direction of access if uninsulated live parts or hazardous moving parts are not located in front (in the direction of access) of the mechanism, or not located within 150 mm (5.9 in) of any side or behind the mechanism, unless guarded.
- 18.1.3 In determining compliance with 18.1.2 only uninsulated live parts in circuits above 30 Vrms shall be considered.
- 18.1.4 An electrical control component, which may require examination, adjustment, servicing, or maintenance while energized (excluding voltage measurements except for jacks or terminals specifically intended for that purpose), shall be located and mounted with respect to other components and with respect to grounded metal parts so that it is accessible for electrical service functions without subjecting persons to the likelihood of shock hazard from adjacent uninsulated live parts or to accident hazard from adjacent hazardous moving parts.
- 18.1.5 Other arrangements of location of components and/or guarding shall be also acceptable where electrical components are accessible for service as indicated by <u>17.1.1</u> (Remote accessories).
- 18.1.6 The following are not identified as uninsulated live parts:
 - a) Coils of controllers, relays, and solenoids, and transformer windings when the coils and windings are provided with appropriate insulating overwraps;
 - b) Enclosed motor windings;
 - c) Terminals and splices with suitable insulation; and
 - d) Insulated wire.
- 18.1.7 An assembled part intended to be removed during installation shall be protected against damage from normal handling.

18.2 Sharp edges

18.2.1 An edge, or corner of an enclosure, opening, frame, guard, knob, handle, or other similar projection of a smoke alarm shall be smooth and rounded, so as not to result in a cut-type injury when contacted during use or user maintenance.

19 Enclosure

19.1 General

- 19.1.1 The enclosure of a smoke alarm shall be constructed to resist the abuses encountered in service. The degree of resistance to abuse inherent in the smoke alarm shall preclude total or partial collapse with the attendant reduction of spacings, loosening or displacement of parts, and other serious defects, which alone or in combination result in an increase in the risk of fire, electric shock, or injury to persons.
- 19.1.2 Enclosures for individual electrical components, outer enclosures, and combinations of the two shall be evaluated in determining compliance with the requirement specified in 19.1.1.
- 19.1.3 All electrical parts of a smoke alarm, including a separate power supply, except for plug-in blades, shall be enclosed to provide protection against contact with uninsulated live parts. A separate enclosure for field wiring terminals that will be enclosed by a back box is not required.
- 19.1.4 There shall be no rear openings in a smoke alarm through which debris or air currents can pass that would affect alarm response.
- 19.1.5 Following installation as intended there shall not be any openings between the intended mounting surface and the rear of the smoke alarm which allow for sufficient passage of air to affect smoke alarm response from test smoke.
- 19.1.6 To comply with 19.1.4 and 19.1.5, one of the following methods, or a method determined to be equivalent, shall be used:
 - a) An elastomeric rubber or neoprene gasket, or the equivalent, interposed between the rear of the alarm and the mounting surface to seal the rear openings and preclude the escape of air from around the edge of the alarm; or
 - b) The manufacturer's published instructions shall describe the location and method(s) of applying a sealing compound that has been found appropriate for the intended use.
- 19.1.7 Representative smoke alarms, unless otherwise noted, shall be subjected to the Smoke Entry (Stack Effect) Test, Section <u>45</u>.
- 19.1.8 The enclosure of a smoke alarm shall be provided with means for mounting in the intended manner. Any fittings, such as brackets or hangers, required for mounting shall be furnished with the smoke alarm. The mounting means shall be accessible without disassembling any operating part of the smoke alarm. The removal of a completely assembled panel, cover, or equivalent, to mount the smoke alarm is not identified as disassembly of an operating part.
- 19.1.9 If the smoke alarm is intended for permanent connection, the enclosure shall either have provision for the connection of metal-clad cable, conduit, or nonmetallic sheathed cable or have provision for mounting on an outlet box.

19.2 Cast metal enclosures

19.2.1 The thickness of cast metal used for an enclosure shall be as indicated in <u>Table 19.1</u>, Cast-metal enclosures. Cast metal having a thickness 0.8 mm (1/32 in) less than that indicated in <u>Table 19.1</u>. Cast-metal enclosures shall be employed only when the surface under consideration is curved, ribbed, or otherwise reinforced, or when the shape of the surface, size of the surface, or both, are such that equivalent mechanical strength is determined to be provided.

Table 19.1 Cast-metal enclosures

	Minimum thickness							
	Die-ca	ast metal,	Cast metal of other tha the die-cast type,					
Use or dimensions of area involved	mm	(in)	mm	(in)				
Area of 155 cm ² (24 in ²) or less and having no dimension greater than 152 mm (6 in)	1.6	(1/16)ª	3.2	(1/2)				
Area greater than 155 cm ² (24 in ²) or having any dimension greater than 152 mm (6 in)	2.4	(3/32)	3.2	(1/8				
At a threaded conduit hole	6.4	(1/4)	6.4	(1/4)				
At an unthreaded conduit hole	3.2	(1/8)	3.2	(1/8)				
^a The area limitation for metal 1.6 mm (1/16 in) thick is obtained by the provision of reinforcing ribs subdividing a larger area.								

- 19.2.2 If threads for the connection of conduit are tapped all the way through a hole in an enclosure wall, or if an equivalent construction is employed, there shall be not less than 3.5 nor more than 5 threads in the metal, and the construction shall be such that a standard conduit bushing can be properly attached.
- 19.2.3 When threads for the connection of conduit are tapped only part of the way through a hole in an enclosure wall, there shall be a smooth, rounded inlet hole for the conductors that shall afford protection to the conductors equivalent to that provided by a standard conduit bushing.

19.3 Sheet metal enclosures

19.3.1 The thickness of sheet metal employed for the enclosure of a smoke alarm shall not be less than that indicated in <u>Fable 19.2</u>, Sheet metal enclosures, except that sheet metal of two gage sizes lesser thickness shall be employed only when the surface under consideration is curved, ribbed, or otherwise reinforced, or when the shape of the surface, the size of the surface, or both, are such that equivalent mechanical strength is determined to be provided.

Table 19.2 Sheet metal enclosures

Maximum dimensions of enclosure				Minimum thickness of sheet metal								
Length or width, Area,		Steel, zinc-coated,		Steel, uncoated,		Brass or aluminum,						
mm	(in)	cm²	(in)²	mm	(in)	GSG	mm	(in)	GSG	mm	(in)	AWG
305	(12)	581	(90)	0.86	(0.034)	20	0.81	(0.032)	20	1.14	(0.045)	16
610	(24)	2322	(360)	1.14	(0.045)	18	1.07	(0.042)	18	1.47	(0.058)	14
1219	(48)	7742	(1200)	1.42	(0.056)	16	1.35	(0.053)	16	1.91	(0.075)	12
1524	(60)	9678	(1500)	1.78	(0.070)	14	1.70	(0.067)	14	2.41	(0.095)	10
1524	(Over 60)	9678	(Over 1500)	2.46	(0.097)	12	2.36	(0.093)	12	3.10	(0.122)	8

- 19.3.2 At any point where conduit or metal-clad cable is to be attached, sheet metal shall be of such thickness or shall be so formed or reinforced that it will have a stiffness at least equivalent to that of an uncoated, flat, sheet steel having a minimum thickness of 1.59 mm (1/16 in).
- 19.3.3 A ferrous plate or plug closure for an unused conduit opening or other hole in the enclosure shall have a thickness not less than 0.69 mm (0.027 in) or 0.81 mm (0.032 in) nonferrous metal for a hole having a 34.9 mm (1-3/8 in) diameter maximum dimension.
- 19.3.4 A closure for a hole larger than 35 mm (1-3/8 in) diameter shall have a thickness equal to that required for the enclosure of the device or a standard knockout seal shall be used. Such plates or plugs shall be securely mounted. See <u>25.1</u>, Mounting of components.
- 19.3.5 A knockout in a sheet metal enclosure shall be secured and shall be capable of being removed without undue deformation of the enclosure.
- 19.3.6 A knockout shall be provided with a surrounding surface for seating of a conduit bushing and shall be located so that installation of a bushing at any knockout used during installation does not result in spacings between uninsulated live parts and the bushing of less than those indicated in Spacings, Section 36.

19.4 Nonmetallic enclosures

19.4.1 An enclosure or parts of an enclosure of nonmetallic material shall be formed so that operating parts are protected against damage. The mechanical strength of the enclosure shall be at least equivalent to a sheet metal enclosure of the minimum thickness specified in Sheet metal enclosures, <u>Table 19.2</u>, or Thickness of glass covers, <u>Table 19.3</u>. See also Tests on Polymeric Materials, Section 79.

Table 19.3
Thickness of glass covers

	Maximum si					
Length	or width,	Ar	ea,	Minimum thickness,		
mm	(in)	cm ²	(in²)	mm	(in)	
102	(4)	103	(16)	1.6	(1/16)	
305	(12)	929	(144)	3.2	(1/8)	
Over 305	(Over 12)	Over 929	(Over 144)	See footnote a	(See footnote a)	

^a 3.2 mm (1/8 in) or more, based upon the size, shape, and mounting of the glass panel. A glass panel for an opening having an area greater than 929 cm² (144 in²), or having any dimension greater than (12 in), shall be supported by a continuous groove not less than 4.8 mm (3/16 in) deep along all four edges of the panel.

- 19.4.2 The continuity of any grounding system intended for a smoke alarm connection shall not rely on the dimensional integrity of the nonmetallic material.
- 19.4.3 Polymeric material used for an enclosure shall comply with the following requirements:
 - a) Enclosures containing parts including a risk of fire minimum flammability rating of 5VA or V-0 and compliance with the Flame test 127-mm (5-in), 79.4.
 - b) Enclosures containing power limited circuits with a voltage not exceeding 30 volts AC, 42.4 volts-peak, or 60 volts DC minimum flammability rating of:

- 2) HB and successful completion with the Flame test 19-mm (3/4-in), as described in 79.3.
- c) Enclosures containing circuits powered by batteries with energy limited to 15 watts minimum flammability rating of HB.
- 19.4.4 For <u>19.4.3</u>, Flammability ratings are defined in the Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances, UL 94.

19.5 Ventilating openings

- 19.5.1 Ventilating openings in an enclosure, including holes, louvers, and openings protected by means of wire screening, expanded metal, or perforated covers, shall be of such size or shape that no opening will permit passage of a rod having a diameter of 3.6 mm (9/64 in) for circuits greater than 30 V rms (42.4 V peak). An enclosure for fuses or other overload protective devices and provided with ventilating openings shall afford adequate protection against the emission of flame or molten metal. Openings provided to permit cleaning or openings which may be used to clean internal parts shall be arranged to prevent damage to functional internal components during such cleaning operations. For units equipped with a cover, the requirements of this paragraph apply with the cover open for circuits greater than 30 V rms (42.4 V peak).
- 19.5.2 Perforated sheet metal and sheet metal employed for expanded metal mesh shall not be less than 1 mm (0.039 in) in average thickness, 1.2 mm (0.047 in) when zinc coated.
- 19.5.3 When the indentation of the guard enclosure does not alter the clearance between uninsulated live parts and grounded metal so as to reduce spacings below the minimum values required, it is permissible for 0.5 mm (0.02 in) expanded metal mesh or perforated sheet metal, 0.6 mm (0.024 in) when zinc coated, to be employed under the following conditions:
 - a) The exposed mesh on any one side or surface of the product has an area of not more than 465 cm² (72 in²) and has no dimension greater than 300 mm (12 in), or
 - b) The width of an opening so protected is not greater than 90 mm (3-1/2 in).
- 19.5.4 The wires forming a screen employed as a smoke chamber cover shall be not less than 0.032 mm² (22 AWG) for steet and not less than 0.025 mm² (20 AWG) for aluminum.

19.6 Covers

- 19.6.1 An enclosure cover, other than the type usually employed over the sensing chamber, shall be hinged, sliding, pivoted, or similarly attached when:
 - a) It provides ready access to fuses or any other overcurrent protective device, the intended protective functioning of which requires renewal, or
 - b) It is required to periodically open the cover in connection with the intended operation of the smoke alarm.

For the purpose of this requirement, intended operation is identified as operation of a switch for testing or for silencing an audible signal device or operation of any other component of a smoke alarm that requires such action in connection with its intended performance.

Exception: This requirement does not apply to a photoelectric type smoke alarms where the lamp is intended to be periodically replaced, or to the battery replacement aspect of an alarm employing a battery as the main or standby supply.

- 19.6.2 A cover that is intended to be removed only for periodic cleaning of the sensing chamber or replacement of a lamp shall be secured by any one of the following or equivalent means: snap catch, plugin or twist action, snap tab with one screw, or two screws.
- 19.6.3 When a smoke alarm cover is not intended to be removed for cleaning, maintenance, or both, and the smoke alarm is intended to be returned to the factory for servicing, the cover shall be secured so that it cannot be readily removed. Exposed screw slots or nuts, other than a tamper proof type, shall be sealed or covered. See 99.1(s).

Exception: These requirements do not apply when the smoke alarm cover is intended to be removed for cleaning, maintenance, or both, even though the smoke alarm is intended to be returned to the manufacturer for servicing.

- 19.6.4 A hinged cover is not required where the only fuse(s) enclosed is intended to provide protection to portions of internal circuits, such as a fuse on a separate printed wiring board or circuit subassembly, to prevent excessive circuit damage resulting from a fault. The use of such a fuse(s) shall be used only when the word "CAUTION" « MISE EN GARDE » and the following or equivalent marking is indicated on the cover of a smoke alarm employing hazardous-voltage circuits: "Circuit Fuse(s) Inside Disconnect Power Prior To Servicing." « Fusible(s) de circuit à l'intérieur Débranchez l'alimentation pour effectuer une réparation ».
- 19.6.5 A hinged cover shall be provided with a latch, screw, or catch to hold it closed. An unhinged cover shall be securely held in place by screws or the equivalent.

19.7 Glass panels

- 19.7.1 Glass covering an enclosure or observation opening shall be held securely in place so that it cannot be displaced in service and shall provide mechanical protection of the enclosed parts. The thickness of a glass cover shall not be less than the applicable value indicated in <u>Table 19.3</u>.
- 19.7.2 A transparent material other than glass employed as a cover over an opening in an enclosure shall have mechanical strength equivalent to that of glass, shall not become a fire hazard or distort, and shall not become less transparent at the temperature to which it may be subjected under normal or abnormal service conditions.
- 19.7.3 A lens, light filter, or similar part of a smoke alarm shall be constructed of a material the transparency of which is not impaired by the conditions to which it is exposed in service as represented by the performance tests described in Sections 37 89.

20 Corrosion Protection

20.1 Iron and steel parts shall be protected against corrosion by enameling, galvanizing, plating, or other means determined to be equivalent.

Exception: Parts made of stainless steel, polished or treated when required, do not require additional protection.

- 20.2 The requirement of 20.1 applies to all enclosures, whether of sheet steel or cast iron, and to all springs and other parts upon which proper operation depends. It does not apply to minor parts such as washers, screws, and bolts, when the deterioration of such unprotected parts does not result in noncompliance with this standard, result in a hazardous condition, or impair the operation of the smoke alarm.
- 20.3 Bearing surfaces shall be of such materials that reduce the risk of binding due to corrosion.

- 20.4 Metal shall not be used in combinations such as to result in galvanic action that results in deterioration of cabinets or enclosures.
- 20.5 Hinges and other attachments shall be resistant to corrosion.
- 20.6 Nonferrous cabinets and enclosures do not require special corrosion protection.

21 Field Wiring Connections

21.1 Permanent connection

21.1.1 A smoke alarm intended for permanent connection shall be provided with wiring terminals or leads for the connection of conductors of at least the size corresponding to the rating of the unit in accordance with the National Electrical Code, ANSI/NFPA 70.

21.2 Field wiring compartment

- 21.2.1 The field wiring compartment area shall be sized for completing all field wiring connections as specified by the installation wiring diagram. There shall be space within the compartment to permit the use of a standard conduit bushing on conduit connected to the compartment when a bushing is required for installation.
- 21.2.2 Protection from sharp edges for internal components in the wiring area and wire insulation shall be provided by insulating or metal barriers having smooth, rounded edges or equivalent means of protection.

21.3 Field wiring terminals (general)

- 21.3.1 A field-wiring terminal to which field-wiring connections are made shall comply with the requirements in 21.3.2 21.3.5 and:
 - a) The field-wiring requirements in the Standard for Electrical Quick-Connect Terminals, UL 310;
 - b) The Standard for Wire Connectors, UL 486A-486B;
 - c) The Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors, UL 486E; or
 - d) The Standard for Terminal Blocks, UL 1059, rated for field-wiring (FW) Code 2 applications and also suitable for the voltage, current, wire range, and wire type of the intended application.
- 21.3.2 Nonferrous soldering lugs or solderless (pressure) wire connectors shall be used for 5.3 mm² (10 AWG) and larger wires. When the connectors or lugs are secured to a plate, the plate thickness shall not be less than 1.3 mm (0.050 in) thick. Securing screws of plated steel have been determined to meet the requirements.
- 21.3.3 A wire-binding screw used at a wiring terminal shall not be smaller than 4.2 mm (No. 8) diameter. Plated screws are not prohibited.

Exception: A 3.5 mm (No. 6) diameter screw is appropriate for use for the connection of a 2.1 mm² (14 AWG) and a 2.8 mm (No. 4) diameter screw is appropriate for use for the connection of a 0.65 mm² (19 AWG) or smaller conductor.

21.3.4 Terminal plates tapped for wire-binding screws shall:

- a) Have not less than two full threads in the metal (the terminal plate metal may be extruded to provide the two full threads) and shall have upturned lugs, clamps, or the equivalent, to hold the wires in position. Other constructions may be used if they provide equivalent thread security of the wire-binding screw.
- b) Be of a nonferrous metal not less than 1.3 mm (0.050 in) thick when used with a 4.2 mm (No. 8) diameter or larger screw, and not less than 0.76 mm (0.030 in) thick when used with a 3.5 mm (No. 6) diameter or smaller screw.
- 21.3.5 When two or more conductors are intended to be connected by wrapping under the same screw, a nonferrous intervening metal washer shall be used for each additional conductor. A separator washer is not required when two conductors are separated and intended to be secured under a common clamping plate. When the wires protrude above terminal barriers, the nonferrous separator shall include means, such as upturned tabs or sides, to retain the wire.

21.4 Special field-wiring terminals (qualified application)

- 21.4.1 Any of the following terminal configurations are suitable for connection of field wiring when all of the conditions in 21.4.2 are met:
 - a) Quick-Connect Terminals Nonferrous, quick-connect (push-type) terminals consisting of male posts permanently secured to the device and provided with compatible, female connectors for connection to field wiring. These require a special tool for crimping of field wires. Mating terminals shall be shipped with the control unit with instructions for their installation;
 - b) Push-In Terminals Nonferrous, push-in terminals (screwless) of the type used on some switches and receptacles. Solid conductors are pushed into slots containing spring-type contacts. The leads are removable by means of a tool inserted to relieve the spring tension on the conductor. Push-in terminals are not to be used with aluminum conductors. The marking adjacent to the terminal shall indicate that copper conductors only are to be used; and
 - c) Other Terminals Other terminal connections are not prohibited when determined to be equivalent to (a) and (b) and are limited to the same restrictions.
- 21.4.2 Any of the terminal configurations listed in <u>21.4.1</u> are appropriate for connection of field wiring provided all of the following indicated conditions are met:
 - a) When a special tool is required for connection, it shall be provided and its use indicated on the installation wiring diagram by name of the manufacturer and the model number or equivalent;
 - b) The range of wire sizes shall be indicated on the installation wiring diagram. The minimum permissible wire size to be used shall not be less than 0.13 mm² (26 AWG) for a jacketed, multiconductor cable or 0.82 mm² (18 AWG) for a single conductor wire;
 - c) The wire size to be used shall be rated for the current-carrying capacity of the circuit application; and
 - d) The special field-wiring terminal assembly shall comply with the strain relief test as outlined in 80.3, Special field-wiring terminals.

21.5 Field wiring leads

21.5.1 Power supply leads provided for field connection shall not be less than 6 in (152 mm) long; shall be provided with strain relief; and shall not be smaller than 0.82 mm² (18 AWG). The insulation, when of rubber or thermoplastic, shall not be less than 0.8 mm (1/32 in) thick. Wire shall be of stranded copper.

21.5.2 Extra-low voltage leads provided for field connection signaling circuits, such as employed for multiple station interconnection or for connection to remote signaling devices, shall not be smaller than 1.3 mm² (16 AWG), for a single conductor, 0.65 mm² (19 AWG) for two or more conductors, and 0.32 mm² (22 AWG) for four or more conductors of a multiconductor cable. The conductor shall be solid, bunch tinned stranded, or stranded copper. Stranded copper wire, consisting of not more than seven strands, shall be used only for 0.82 mm² (18 AWG) and larger conductors.

21.6 Grounding terminals and leads

- 21.6.1 Except as permitted by <u>21.6.9</u>, an equipment-grounding terminal or lead shall be provided in a smoke alarm intended for connection to other than a 30 V rms or less energy limited source of supply (see Primary power supply battery, <u>86.3.1</u>) by means of other than metal enclosed wiring system.
- 21.6.2 The grounding means shall be reliably connected to all exposed dead metal parts which are liable to become energized and all dead metal parts within the enclosure which are exposed to contact during servicing and maintenance.
- 21.6.3 The surface of an insulated lead intended solely for the connection of an equipment-grounding conductor shall be green, with or without one or more yellow stripes and no other leads visible to the installer, other than grounding conductors, shall be so identified.
- 21.6.4 A field wiring terminal intended for connection of an equipment grounding conductor shall be plainly identified, such as being marked "G", "GR", "Ground", "Grounding", or the equivalent, or by a suitable marking on a wiring diagram provided on the smoke alarm. The field wiring terminal shall be so located that it is unlikely to be removed during normal servicing of the smoke alarm.
- 21.6.5 A field wiring terminal for the connection of an identified supply conductor shall be identified by means of a metallic plated coating substantially white in color and shall be readily distinguishable from the other terminals, or proper identification of the terminal for the connection of the identified supply conductor shall be clearly shown in some other manner, such as on an attached wiring diagram.
- 21.6.6 A field wiring lead provided for connection of an identified supply conductor shall be finished to show a white or gray color and shall be readily distinguishable from other leads and no other leads, other than identified supply conductors, shall be so identified.
- 21.6.7 A terminal or lead identified for the connection of the identified supply conductor shall not be electrically connected to a single-pole manual switching device which has an off position or to a single-pole over-current (not thermal) protective device.
- 21.6.8 The grounding means for a cord-connected smoke alarm shall consist of a separate ground lead integral with the supply cord and terminating in the grounding pin of a parallel blade attachment plug.
- 21.6.9 An equipment grounding terminal or lead is not required for a smoke alarm provided with an overall nonmetallic enclosure and cover and which is not intended to be internally serviced or a smoke alarm provided with an overall nonmetallic enclosure and cover and does not employ internal dead-metal parts which may be energized under a fault condition and which can be contacted during servicing.

21.7 Power supply cord

21.7.1 A cord-connected single station smoke alarm accessory shall be provided with not less than 1.83 m (6 ft) nor more than 6.10 m (20 ft) of flexible cord and a two or three prong attachment plug of the type and rating for connection to the supply circuit.

- 21.7.2 The flexible cord shall be minimum 0.82 mm² (18 AWG) and rated for use at the voltage and ampacity rating of the smoke alarm. Acceptable cord types are Type SP-1, SPT-1, SP-2, SPT-2, SV, SVT, SJ, SJT, SPE-1. SPE-2, SVE, or the equivalent in accordance with the National Electrical Code, ANSI/NFPA 70.
- 21.7.3 Means shall be provided to prevent the flexible cord from being pushed into the enclosure through the cord-entry hole if such displacement can subject the cord to mechanical damage or to exposure to a temperature higher than that for which the cord is rated, reduce spacings below the minimum acceptable values, or result in damage in internal components.
- 21.7.4 Where a flexible cord passes through an opening in a wall, barrier, or enclosing case, the edges of the hole shall be smooth and rounded, without burrs, fins, or sharp edges which may damage the cord jacket. The cord as connected to the smoke alarm shall comply with Strain Relief Test, Section 80.

22 Remote Power Supply

- 22.1 For an alarm that is intended to be connected to a separate remote power supply such as a transformer, the supply cord is not required to be factory wired to the alarm or to the transformer terminals or leads when the manufacturer's published instructions provided with the unit are explicit regarding the method of connection. The minimum size conductors between the alarm and remote power supply shall not be less than 0.82 mm² (18 AWG) and shall not be longer than 6.1 m (20 ft). The interconnecting wiring is to be provided with the alarm and the transformer by the manufacturer.
- 22.2 Where longer runs of interconnecting wiring are used in an installation, such as in a multiple station configuration, or where several alarms are supplied by a common power supply, the wiring is not required to be provided by the manufacturer. However, the installation wiring diagram or manufacturer's published instructions shall be marked to specify that the wiring to be used shall be in accordance with the provisions of Articles 210 and 300.3 (B) of the National Electrical Code, ANSI/NFPA 70. Additionally, the resistance of the interconnecting wiring shall be a maximum of 10 ohms, unless otherwise specified by the manufacturer.

23 Internal Wiring

23.1 General

- 23.1.1 The internal wiring of a smoke alarm shall be routed away from moving parts and sharp projections and held in place with clamps, string, ties, or the equivalent, unless the wiring is determined to be rigid enough to retain a shaped form. The internal wiring shall consist of conductors having:
 - a) Insulation rated for the potential involved;
 - b) Insulation rated for the temperatures to which they are subjected; and
 - c) The current-carrying capacity for the service.
- 23.1.2 Leads or a cable assembly connected to parts mounted on a hinged cover shall be of sufficient length to permit the full opening of the cover without applying stress to the leads or their connections. The leads shall be secured or equivalently arranged to prevent abrasion of insulation and jamming between parts of the enclosure. Wire shall be stranded copper.
- 23.1.3 When the use of a short length of insulated conductor is not feasible, such as for a short coil lead or the like, electrical insulating tubing shall be used. The tubing shall not be subjected to sharp bends, tension, compression, or repeated flexing and shall not contact sharp edges, projections, or corners. The wall thickness of the tubing shall comply with the requirements for such tubing except that the wall thickness at any point for polyvinyl chloride tubing of 9.5 mm (3/8 in) diameter or less shall not be less than

- 0.43 mm (0.017 in). For insulating tubing of other types, the wall thickness shall not be less than that required to at least equal the mechanical strength, dielectric properties, and heat and moisture resistance characteristics of polyvinyl chloride tubing having a wall thickness of 0.43 mm (0.017 in).
- 23.1.4 Internal wiring of circuits which operate at different potentials shall be reliably separated by barriers or shall be segregated, unless the conductors of the circuits of lower voltage are provided with insulation equivalent to that required for the highest voltage involved. Segregation of insulated conductors may be accomplished by clamping, routing, or an equivalent means, which ensures permanent separation. See 23.4, Barriers.
- 23.1.5 Stranded conductors clamped under wire-binding screws or similar parts shall have the individual strands soldered together or be equivalently arranged to provide secure connections.

23.2 Wireways

23.2.1 Wireways shall be smooth and free from sharp edges, burrs, fins, moving parts, and the like which may cause abrasion of the conductor insulation.

23.3 Splices

- 23.3.1 All splices and connections shall be mechanically secured and bonded electrically. Tack soldering of components is permitted where the construction precludes mechanical security only when 5 samples resist a pull-force of 8.9 N (2 lbs) applied for 3 seconds and the connection is subjected to 100 percent inspection and testing with the same pull force by the manufacturer.
- 23.3.2 A splice shall be provided with insulation determined to be equivalent to that of the wires involved when permanence of electrical spacings between the splice and uninsulated metal parts is not provided.
- 23.3.3 Splices shall be located, enclosed, and supported so that flexing, movement, or vibration does not damage the insulation or affect the integrity of the splice.

23.4 Barriers

23.4.1 A metal barrier shall have a thickness at least equal to that required by <u>Table 19.2</u>, as determined by the size of the barrier. A barrier of insulating material shall not be less than 0.71 mm (0.028 in) thick and shall be thicker when its deformation is readily accomplished so as to defeat its purpose. Any clearance between the edge of a barrier and a compartment wall shall not exceed 1.6 mm (1/16 in).

23.5 Strain relief

23.5.1 A strain relief means shall be provided for the field leads, battery leads, and all internally connected wires or cords that are subject to movement in conjunction with the installation, operation, or servicing of a smoke alarm to reduce the risk of any mechanical stress being transmitted to internal connections and terminals. Inward movement of the cord or leads provided with a ring-type cord grip shall not damage internal connections or components, or result in a reduction of the electrical spacings required. See the Strain Relief Test, 80.

24 Bonding for Grounding

24.1 An exposed non-current-carrying metal part of a smoke alarm operating at more than 30 Vrms that is liable to become energized, shall be reliably bonded to the point of connection of the field-equipment grounding terminal or lead, if provided or required, and to the metal surrounding the knockout, hole, or

bushing provided for field power-supply connections. This requirement also applies to a smoke alarm equipped with auxiliary function contacts rated at more than 30 Vrms.

- 24.2 Except as indicated in <u>24.3</u>, uninsulated metal parts of electrical enclosures, motor frames and mounting brackets, controller mounting brackets, capacitors, and other electrical components shall be bonded for grounding when it is possible that they be contacted by the user or by a service person in servicing or operating the equipment.
- 24.3 Metal parts as described below are not required to comply with the requirement specified in 24.2:
 - a) Adhesive attached metal foil markings, screws, and handles that are located on the outside of the smoke alarm enclosure and isolated from electrical components or wiring by grounded metal parts so that they do not become energized.
 - b) Isolated metal parts, such as small assembly screws, that are positively separated from wiring and uninsulated live parts.
 - c) Panels and covers that do not enclose uninsulated live parts when wiring is positively separated from the panel or cover so that it does not become energized.
 - d) Panels and covers that are insulated from electrical components and wiring by an insulating barrier of vulcanized fiber, varnished cloth, phenolic composition, or similar material not less than 0.8 mm (1/32 in) thick and secured in place.
- 24.4 A bonding conductor shall be of material determined to be capable for use as an electrical conductor. When of ferrous metal, it shall be protected against corrosion by painting, plating, or the equivalent. The conductor shall not be smaller than the maximum size wire employed in the circuit wiring of the component or part. A separate bonding conductor or strap shall be installed in such a manner that it is protected from mechanical damage.
- 24.5 The bonding shall be by a positive means, such as by clamping, riveting, bolted or screwed connection, brazing, or welding. The bonding connection shall penetrate nonconductive coatings such as paint. Bonding around a resilient mount shall not depend on the clamping action of rubber or similar material.
- Note 1: A bolted or screwed connection that incorporates a star washer under the screw head is considered acceptable for penetrating non-conductive coatings.
- Note 2: Where the bonding means depend upon screw threads, two or more screws or two full threads of a single screw engaging metal are considered acceptable. Metal-to-metal hinge-bearing members for doors or covers may be considered as a means for bonding the door or cover for grounding providing that a multiple bearing, pin-type hinge is employed.
- 24.6 Splices shall not be employed in conductors used to bond electrical enclosures or components.

COMPONENTS

25 General

25.1 Mounting of components

25.1.1 All parts of a smoke alarm shall be securely mounted in position and prevented from loosening or turning.

Exception No. 1: It is not required that a switch be prevented from turning when all four of the following conditions are met:

- a) The switch is a plunger or other type that does not tend to rotate when operated. A toggle switch is subject to forces that tend to turn the switch during operation of the switch.
- b) The switch mounting means is constructed so that it is not loosened by the switch operation.
- c) The spacings are not reduced below the minimum required values when the switch rotates.
- d) The operation of the switch is by mechanical means rather than by direct contact by persons.

Exception No. 2: A lampholder of the type in which the lamp is not capable of being replaced, such as a neon pilot or indicator light in which the lamp is sealed in a nonremovable jewel, is not required to be prevented from turning when rotation does not reduce spacings below the minimum values required.

- 25.1.2 Uninsulated live parts shall be secured to the base or mounting surface so that they shall not turn or shift in position when it is possible that such motion results in a reduction of spacings below the acceptable values. Friction between surfaces shall not be used as a means to prevent shifting or turning of live parts. A lock washer applied as intended is permitted.
- 25.1.3 Uninsulated live parts, for example, field wiring terminals, shall be secured to their supporting surfaces by methods other than friction between surfaces so that they shall not turn or shift in position when such motion results in reduction of spacings below the minimum values required. This may be accomplished by two screws or rivets, by square shoulders or mortices, by a dowel pin, lug, or offset, by a connecting strap or clip fitted into an adjacent part, or by any method determined to be equivalent.

25.2 Operating components

- 25.2.1 Operating components and assemblies, such as switches, relays, and similar devices, shall be protected by individual protection (i.e. dust covers) or dust tight cabinets against fouling by dust or by other material which affect their operation.
- 25.2.2 Adjusting screws and similar adjustable parts shall not loosen under the conditions of actual use. The use of a lock washer, applied as intended, to reduce the risk of loosening is permitted.
- 25.2.3 Moving parts shall have sufficient play at bearing surfaces to prevent binding.
- 25.2.4 Manually operated parts shall have sufficient strength to withstand the stresses to which they will be subjected in operation.
- 25.2.5 An electromagnetic device shall be reliable and ensure positive electrical and mechanical performance under all conditions of normal operation.

25.3 Current-carrying parts

- 25.3.1 A current-carrying part shall have adequate mechanical strength and current-carrying capacity for the service, and shall be a metal such as silver, copper or copper alloy, or other material, which will provide equivalent performance.
- 25.3.2 Bearings, hinges, and the like shall not be acceptable for carrying current between interrelated fixed and moving parts.

26 Bushings

- 26.1 When a lead or wire harness passes through an opening in a wall, barrier, or enclosing case, there shall be a metal or insulating type bushing, or the equivalent, that shall be substantial, secured in place, and have a smooth, rounded surface to provide support for the wire.
- 26.2 When the opening is in a phenolic composition or other nonconducting material or in metal of thickness greater than 1.07 mm (0.042 in) at the opening, a smooth surface having rounded edges is identified as the equivalent of a bushing.
- 26.3 Ceramic materials and some molded compositions are permissible for insulating bushings. Separate bushings of wood and of hot-molded shellac shall not be used.
- 26.4 Fiber shall be employed only where:
 - a) It is not subjected to a temperature higher than 90°C (194°F) under normal operating conditions;
 - b) The bushing is not less than 1.6 mm (1/16 in) thick, with a minus tolerance of 0.4 mm (1/64 in) for manufacturing variations; and
 - c) It does not deteriorate in normal ambient humidity conditions.
- 26.5 When a soft rubber bushing or similar material that deteriorates with age is employed in a hole in metal, the hole shall be free from sharp edges, burrs, projections, and other anomalies which cut into the bushing and wire insulation.
- 26.6 An insulating metal grommet shall be used in lieu of an insulating bushing, only when the insulating material used is not less than 0.8 mm (1/32 in) thick and completely fills the space between the grommet and the metal in which it is mounted.

27 Electrical Insulating Material

- 27.1 Material for the mounting of current-carrying parts shall be porcelain, phenolic composition, cold-molded composition, or equivalent material which is suitable for the particular application.
- 27.2 Polymeric materials shall be used for the sole support of uninsulated live parts only when determined to be equivalent to the materials indicated in <u>27.1</u>.
- 27.3 When vulcanized fiber is used for insulating bushings, washers, separators, and barriers, it shall not be the sole support for uninsulated current-carrying parts of other than extra-low-voltage circuits.
- 27.4 The thickness of a flat sheet of insulating material, such as phenolic composition employed for panel mounting of parts, shall not be less than the applicable value indicated in Table 27.1.

Table 27.1	
Thickness of flat sheets of insulating	material

	Maximum	dimensions			
Length o	Length or width,		Area,		ickness, ^a
mm	(in)	cm²	(in²)	mm	(in)
152	(6)	232.4	(36)	1.6	(1/16)
305	(12)	928.8	(144)	3.2	(1/8)
610	(24)	2322	(360)	9.5	(3/8)
1219	(48)	7432	(1152)	12.7	(1/2)
1219	(48)	11148	(1728)	15.9	(5/8)
Over 1219	(Over 48)	Over 11148	(Over 1728)	19.1	(3/4)

^a Material less than the minimum thickness shown shall be used for a panel only when the panel is supported or reinforced to provide equivalent rigidity.

27.5 A terminal block mounted on a metal surface which is capable of being grounded shall be provided with an insulating barrier between the mounting surface and all live parts on the underside of the base to reduce the risk of the parts and the ends of replaceable terminal screws from reducing spacings below the minimum thickness specified in Table 27.1.

Exception: Such insulation is not required when the parts are staked, inset, sealed, or equivalently kept from loosening.

27.6 A countersunk sealed part shall be covered with a waterproof insulating compound which does not melt at a temperature 15°C (27°F) higher than the maximum intended operating temperature of the assembly, and not less than 65°C (149°F) in any case. The depth or thickness of sealing compound shall not be less than 3.2 mm (1/8 in).

28 Lampholders and Lamps

- 28.1 A smoke alarm intended to be connected to a utility supply, either directly or via a separate power supply as described in 18.1 shall be provided with a steady or pulsed "power-on" lamp to indicate energization of the unit. If pulsed, the lamp shall flash at least once per minute.
- 28.2 When a smoke alarm has more than one indicator lamp, lamp colors shall be:
 - a) A "power-on" lamp, white or green;
 - b) An alarm indicating lamp, red; and
 - c) A trouble lamp, amber or yellow.

When the "power-on" lamp is of a different color it shall be marked to identify the function.

- 28.3 At least one spare lamp shall be provided in a smoke alarm that employs photocell illuminating lamps that burn out during the service life of a smoke alarm.
- 28.4 A lampholder and lamp shall be rated for the circuit in which they are employed.
- 28.5 A lampholder in a hazardous-voltage circuit shall be wired so that the screw shell is connected to an identified neutral (grounded circuit) conductor.

28.6 A lampholder shall be installed so that uninsulated hazardous-voltage circuit live parts are not exposed to contact by persons removing or replacing lamps in service.

29 Photocell Illuminating Lamps and Light Emitting Diodes (LEDs)

29.1 General

- 29.1.1 An LED used as a light source of a smoke alarm employing a photocell light assembly shall comply with electrical supervision requirements specified in $\frac{41.5}{7}$, Battery powered (primary or secondary) smoke alarms, and the reliability prediction specified in Section $\frac{7}{7}$, Smoke Alarm Reliability Prediction.
- 29.1.2 To be determined reliable, an LED shall comply with <u>7.4</u> and with the requirements specified in <u>41.3.6</u>. In addition, the operating conditions of the LED in the smoke alarm circuit, as well as the LED and smoke alarm manufacturer's Quality Assurance (QA) Programs, shall be evaluated as to the level of reliability they provide as described in Quality assurance program, <u>29.2</u>.
- 29.1.3 A reliable LED that complies with the requirement specified in 29.1.2 shall additionally comply with the requirements specified in the Reduction in Light Output Test, Section 46, and the electrical supervision requirements described in 41.3.2 41.3.5.

29.2 Quality assurance program

29.2.1 Light emitting diode (LED) manufacturer

- 29.2.1.1 Verification shall be provided by the LED manufacturer to indicate compliance with the following minimum quality assurance program:
 - a) Lot sample testing of optical efficiency, anode bond, and chip peel tests are performed on diode chips;
 - b) 100 percent production tests of light output, forward conduction, leakage, and reverse breakdown are performed on the finished LED.

29.2.2 Smoke alarm manufacturer

- 29.2.2.1 The smoke alarm manufacturer shall conduct the following minimum quality assurance program on the LED lamps.
 - a) All incoming LEDs, in a de-energized condition, shall be subjected to one of the following stress conditions:
 - 1) Ten cycles of temperature variation from minus 40°C to 85°C (minus 40°F to 185°F) with 30 min at each extreme and 5 min between extremes. Each cycle consists of starting at minus 40°C, going to 85°C, and returning to minus 40°C; or
 - 2) Exposure for 48 hours at the LED Manufacturer's maximum recommended storage temperature;
 - b) Following the stress conditioning, 100 percent inspection tests shall be conducted on the following parameters:
 - 1) Light output;
 - 2) Maximum forward voltage drop at specified forward current; and
 - 3) Maximum reverse leakage current at specified reverse voltage.

29.2.2.2 The temperature cycling burn-in and component screening may be conducted by the LED manufacturer if each shipment is accompanied by a certificate of compliance verifying its conduction on that shipment. In this case the smoke alarm manufacturer need only conduct 100 percent inspection for light output.

30 Protective Devices

30.1 Fuseholders, fuses, and circuit breakers shall be rated for the application.

31 Printed Wiring Boards

- 31.1 Printed-wiring boards shall be suitable for the application. The securing of components to the board shall be made in the intended manner and the spacings between circuits shall comply with the requirements for Spacings, Section <u>36</u>. The board shall be reliably mounted so that deflection of the board during installation or servicing shall not result in damage to the board or in developing a risk of fire or electric shock.
- 31.2 All printed-wiring boards shall have a minimum flammability rating of V-2, rated for direct support of current-carrying parts, and be suitable for the soldering process used.

32 Switches

- 32.1 A switch provided as part of a unit shall have a current and voltage rating not less than that of the circuit which it controls when the device is operated under any condition of normal service.
- 32.2 When a reset switch is provided, it shall be of a self-restoring type.
- 32.3 An alarm silencing switch or equivalent means shall be provided so that its off-normal position results in an audible smoke alarm trouble signal, or following alarm silencing the unit automatically returns to normal condition after a timed interval as specified in Section 13, Alarm Silencing Feature.

33 Transformers and Coils

- 33.1 A transformer shall be of the two-coil or insulated type.
- 33.2 A transformer shall meet the requirements of the Standard for Specialty Transformers, UL 506.
- 33.3 The insulation of coil windings of relays, transformers, and other insulation, shall resist the absorption of moisture.

Exception: An autotransformer shall be used only when the terminal or lead connected to the autotransformer winding that is common to both input and output circuits is identified and the output circuits are located only within the enclosure containing the autotransformer. See 21.6.1 and 21.6.2.

33.4 Film-coated or equivalently insulated wire does not require additional treatment to stop moisture absorption.

34 Dropping Resistors

34.1 A carbon composition resistor shall not be used as a dropping resistor in the hazardous-voltage circuit of a smoke alarm.

35 Power Supplies

35.1 Primary power supply

- 35.1.1 The primary power supply of a smoke alarm shall be either a utility supply (commercial light and power source) or an integral battery or batteries. Connection to the utility supply (commercial light and power source), when used, shall be in the form of permanent wiring to terminals or leads in a separate wiring compartment having provision for the connection of conduit, metal-clad or nonmetallic sheathed cable, by means of a power-supply cord and attachment-plug, or by means of a separate power supply.
- 35.1.2 When a separate power supply is provided, it shall have limited output energy consisting of an open circuit voltage not in excess of 30 volts rms, 42.4 volts peak or direct current (DC), and its output capacity shall be limited to a maximum of 100 VA. The energy may be limited by an energy limiting device having an output rating of 100 VA or less or by a transformer plus additional circuitry having characteristics equivalent to those of a 100 VA transformer.

35.2 Secondary power supply

- 35.2.1 A secondary power supply, such as a battery, shall be provided and have the capacity to supply the maximum intended power to the smoke alarm for no less than 7 days in the standby condition and thereafter be able to operate the smoke alarm for an alarm signal for at least 4 minutes continuously. This capacity shall be measured using a fully charged battery or other applicable rechargeable energy storage media, or a fresh non-rechargeable battery, as appropriate. Refer to 41.5, Battery powered (primary or secondary) smoke alarms. Smoke alarms consisting of battery primary power shall not be subject to this requirement.
- 35.2.2 If a battery or set of batteries is employed as the main source of power of a smoke alarm, it shall meet the requirements of the Battery tests, <u>86.3</u>.
- 35.2.3 When a battery is used for the secondary power supply, it shall be of either a rechargeable or non-rechargeable type. For a rechargeable type battery, the maximum charging current, as well as the maximum trickle charging current available, shall not exceed the battery manufacturer's specifications. For a non-rechargeable type battery, data on battery life, including discharge curves, shall be provided for the investigation to evaluate battery shelf aging and performance characteristics.
- 35.2.4 When a non-rechargeable or rechargeable type battery is used as a secondary power supply, the marking on the unit shall include specified periodic battery replacement instructions.
- 35.2.5 The discharge condition of a non-rechargeable or rechargeable type battery shall be monitored where a trouble indication, as described in $\underline{41.5.3}$ is obtained. The monitoring shall take place whether the alarm is operating on the primary supply or on the standby supply.

36 Spacings

36.1 Spacings shall be maintained between uninsulated live parts and dead metal parts and between uninsulated live parts of opposite polarity. The spacings shall not be less than those indicated in Table 36.1.

Exception: In accordance with Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances, UL 94, for printed-wiring boards having a flammability classification of V-0, spacings (other than spacings to dead metal traces, between primary and secondary circuits, and at field wiring terminals) are not specified between traces of different potential connected in the same circuit when:

- a) The spacings are adequate to comply with the requirements in <u>87.4</u>, Evaluation of reduced spacings on printed-wiring boards; or
- b) An analysis of the circuit indicates that no more than 12.5 mA of current is available between short-circuited traces having reduced spacings.

Table 36.1 Minimum spacings

		Minimum spacings ^{a,b}			
		Through-air, Over-su		surface,	
Point of application	Voltage range ^f	mm	(in)	_mm	(in)
To walls of enclosure				2	
Cast metal enclosures	0 – 300	6.4	(1/4)	6.4	(1/4)
Sheet metal enclosures	0 – 300	12.7	(1/2)	12.7	(1/2)
Installation wiring terminals			, V		
With barriers	0 – 30	3.2	(1/8)	4.8	(3/16)
	31 – 150	3.2	(1/8)	6.4	(1/4)
	151 – 300	6.4	(1/4)	9.5	(3/8)
Without barriers	0 – 30	4.8	(3/16)	4.8	(3/16)
	31 – 150	6.4	(1/4)	6.4	(1/4)
	151 – 300	6.4	(1/4)	9.5	(3/8)
Rigidly clamped assemblies ^c	1,47				
100 volt-amperes maximum ^{d,e}	0 – 30	0.8	(1/32)	0.8	(1/32)
Over 100 volt-amperes ^e	0 – 30	1.2	(3/64)	1.2	(3/64)
	31 – 150	1.6	(1/16)	1.6	(1/16)
	1 51 – 300	2.4	(3/32)	2.4	(3/32)
Other parts	0-30	1.6	(1/16)	3.2	(1/8)
Ma	³1 – 150	3.2	(1/8)	6.4	(1/4)
cO,	151 – 300	6.4	(1/4)	9.	(3/8)

^a An insulating liner or barrier of vulcanized fiber, varnished cloth, mica, phenolic composition, or similar material employed where spacings are otherwise insufficient, shall not be less than 0.71 mm (0.028 in) thick. When a liner or barrier is used that is less than 0.71 mm (0.028 in), and not less than 0.33 mm (0.013 in) thick, it shall be used only in conjunction with an air spacing of not less than one-half of the through air spacing required. The liner shall be located so that it is not affected adversely by arcing. When insulating material having a thickness less than that specified is used it shall be found to be appropriate for the particular application.

- 36.2 The spacings shall not be less than that indicated in <u>Table 36.1</u> between an uninsulated live part and:
 - a) A wall or cover of a metal enclosure,

^b Measurements are to be made with solid wire of adequate ampacity for the applied load connected to each terminal. In no case is the wire to be smaller than 1.3 mm² (16 AWG).

^c Rigidly clamped assemblies include such parts as contact springs on relays or cam switches, printed-wiring boards, and similar assemblies.

^d Spacings less than those indicated, and not less than 0.4 mm (1/64 in), are appropriate for the connection of integrated circuits and similar components where the spacing between adjacent connecting wires on the component is less than 0.8 mm (1/32 in).

^e When spacings between traces on a printed-wiring board are less than the minimum specified, the boards shall be covered with a conformal coating, and the combination shall be evaluated to the requirements in Conformal Coatings of Printed-Wiring Boards, Section 87.

^f RMS volts for sinusoidal waveform. The equivalent peak voltage should be used for non-sinusoidal waveforms.

- b) A fitting for conduit or metal-clad cable, and
- c) Any dead-metal part.
- 36.3 The Through Air and Over Surface spacings of Table 36.1 measured at an individual component part shall be judged on the. basis of the volt-amperes used and controlled by the individual component. However, the spacing from one component to another, and from any component to the enclosure or to other uninsulated dead metal parts, excluding the component mounting surface, shall be judged on the basis of the maximum voltage and total volt-ampere ratings of all components in the enclosure.
- The spacing requirements specified of Table 36.1 do not apply to the inherent spacings inside motors, except at wiring terminals, nor to inherent spacings for a component provided as part of the smoke alarm. Such spacings are judged on the basis of the requirements for the component. The electrical clearance resulting from the assembly of a component into the complete device including clearances to dead metal or enclosures, shall be as indicated in of Table 36.1.
- 36.5 The "To Walls of Enclosure" spacings of <u>Table 36.1</u> are not to be applied to an individual enclosure of a component part within an outer enclosure.
- 36.6 Film-coated or equivalently insulated wire is identified as an uninsulated live part. Enamel is capable of being used as turn-to-turn insulation in coils.
- 36.7 Spacings on printed-wiring boards which are less than those indicated in Table 36.1 shall be ck to view the provided with a coating in compliance with Conformal Coatings on Printed-Wiring Boards, Section 87.

PERFORMANCE

General

Test units

- 37.1.1 Smoke alarms and power supply units that are fully representative of production units shall be used for the tests specified in Sections 38 – 98, unless otherwise specified. The sensitivity setting or range of sensitivities provided on the units for test will define the production smoke sensitivity single and multicriteria smoke alarms and production gas sensitivity, for multi-criteria smoke alarms.
- 37.1.2 The devices employed for testing shall be those specified by the wiring diagram of the smoke alarm. When substitute devices are used, they shall produce functions and load conditions equivalent to those obtained with the smoke alarm in service, including devices intended to be used with the smoke alarm. Smoke alarms intended to be energized by a separate power supply, as described in 35.1.2 shall be tested as a combination, and the applicable requirements of the test also applied to the power supply unit. See Section 88, Power Supply Tests.

37.2 Performance of single sensor components of multi-criteria smoke alarms

- The performance of single sensor components of a multi-criteria smoke alarm need not comply with the standards specific for those single phenomena alarms.
- 37.2.2 The performance of the multi-criteria smoke alarm shall meet the requirements of this standard except for the smoke sensitivity limit specified in Table 37.1 and Table 37.2. Manufacturers shall provide samples that reflect and information that identifies the combined and discreet maximum and minimum sensitivities of each constituent sensor.

Table 37.1

Most sensitive visible smoke obscuration limits (gray smoke)

Percent per m	(Percent per ft)	OD per m	(OD per ft)		
1.6	(0.5)	0.0072	0.0022		
Note: Refer to Annex B for the calculation of obscuration and optical density.					

Table 37.2 Measuring Ionization Chamber (MIC) measurement

93 pA (maximum)

*NOTE: Smoke Density X is derived as follows:

X = (lo - l) / lo

Where:
lo is the quiescent chamber current in clean air in pA, and
l is the reduced chamber current when smoke is present in pA.

Refer to Annex B for the calculation of obscuration and optical density.

37.3 Test voltages

37.3.1 Unless otherwise specified, the test voltage for each test shall be as specified in <u>Table 37.3</u> and at rated frequency.

Table 37.3 Test voltages

Nameplate voltage rating	Test voltage ^a		
110 to 120	120		
220 to 240	240		
Other Maximum marked nameplate rating			
^a Smoke alarms rated at frequencies other than 60 Hz shall be tested at their rated nameplate voltage and frequency.			

37.4 Test samples and data

- 37.4.1 The following samples and data are required; the data required in (e) does not have to be in final printed form:
 - a) At least 28 assembled alarms; 12 preset (as close as intended production calibration permits) to the nominal maximum production sensitivity (most sensitive setting), and 16 preset (as close as intended production calibration permits) to the nominal minimum anticipated production sensitivity (least sensitive setting). Four of the 12 units preset to the maximum sensitivity and four of the 16 preset to the minimum sensitivity shall be calibrated so that the sensitivity of any individual unit does not vary more than 25 percent from any other unit in each setting (max, min, or nominal), and shall establish the maximum and minimum sensitivities to be employed in production. Combination/multi-criteria smoke alarms shall be provided with means for monitoring each principle of operation during the Sensitivity Test, Section 42. Fewer samples are permitted to be submitted for partial investigations based on a limited test program when agreed to by the testing agency.
 - b) One additional unassembled smoke alarm.

- c) Five additional samples of smoke alarms that operate on the photoelectric principle provided with means to reduce the light output as described in 46.2.
- d) The monitoring instrument, or reference to a readily available instrument, intended to monitor the sensitivity of each sensor in the multi-criteria smoke alarm.
- e) Manufacturer's Published Instructions, Section 8 and INSTRUCTIONS, General, Section 101.
- f) A copy of the Technical Bulletin if applicable. See <u>102.1.5</u>.
- g) Where applicable, samples of conformal coated printed-wiring boards, as specified in Conformal Coatings on Printed-Wiring Boards, Section 87.
- h) Power supplies, if the smoke alarms are intended to be employed with specific power supply.
- 37.4.2 For smoke alarms employing a battery as the main operating supply, 24 additional battery-operated smoke alarms for long term battery tests or equivalent test circuit set ups with appropriate measuring facilities to monitor the battery voltage, standby current, and alarm current shall be provided. See Battery tests, <u>86.3</u>.
- 37.4.3 Four battery test setups shall be provided for subjection to each of four environmental conditions. Each set up shall be representative of six smoke alarms and shall include test terminals and switches, limiting resistors, the alarm horn, and batteries. The value of resistors shall represent the normal standby current which is obtained from a complete smoke alarm.
- 37.4.4 The batteries shall be connected in the test circuit with the same terminal arrangement employed in the smoke alarm. Provision for connection of the actual sounding appliance used in the unit for the periodic and weekly testing shall also be made. See Battery tests, <u>86.3</u>.

37.5 Component reliability data

- 37.5.1 Data on smoke alarm components, for example, capacitors, resistors, solid-state devices and the like, shall be provided for evaluation of the components for the intended application. When a military specification is referenced, a copy of the specification is to be provided for review.
- 37.5.2 The data required by 37.5.1 shall include the following or equivalent information:
 - a) Component Fault Analysis. Effect of failure, open and short, of capacitors and limited-life components on operation of a smoke alarm;
 - b) Maximum supplier's ratings for each component as well as the actual maximum operating values (voltage and current) in the smoke alarms;
 - c) A description of component screening and burn-in test data for solid-state devices (including, but not limited to, relays, semiconductor, integrated circuit) that operate at greater than the limits described in note d of Table 37.4, Temperature test;
 - d) General description of the smoke alarm manufacturer's quality assurance (QA) program. This data shall include incoming inspection and screening, in-process quality assurance, burn-in data, and testing. This applies to complete and partial assemblies as well as individual components;
 - e) A general description of the circuit operation under standby, alarm, and trouble conditions;
 - f) For smoke alarm employing a reliable LED as the photocell illuminating light source, the data shall be as specified in Section 29, Photocell Illuminating Lamps and Light Emitting Diodes (LEDs);

- g) General calibration procedure of test instruments employed by the manufacturer in the calibration of a smoke alarm;
- h) Amount of derating of components under normal standby and alarm conditions; and
- i) Component failure rate data at rated values and derated values.

Table 37.4 Maximum temperature rises

	Normal standby,		(Signaling) alarm condition,	
Materials and components	°C	(°F)	°C	(°F)
A. COMPONENTS		00		
1. Capacitors: ^{a, b}		11		
a. Electrolytic types	25	(45)	40	(72)
b. Other types	25	(45)	65	(117)
2. Rectifiers – At any point a. Germanium b. Selenium c. Silicon (i) Maximum 60 percent of rated voltage (ii) 61 percent or more of rated voltage 3. Relay, solenoid, transformer, and other coils with: a. Class 105 insulation system: Thermocouple method Resistance method b. Class 130 insulation system: Thermocouple method	KO.			
a. Germanium	25	(45)	50	(90)
b. Selenium	25	(45)	50	(90)
c. Silicon				
(i) Maximum 60 percent of rated voltage	50	(90)	75	(135)
(ii) 61 percent or more of rated voltage	25	(45)	75	(135)
3. Relay, solenoid, transformer, and other coils with:				
a. Class 105 insulation system:				
Thermocouple method	25	(45)	65	(117)
Resistance method	35	(63)	75	(135)
b. Class 130 insulation system:				
Thermocouple method	45	(81)	85	(153)
Resistance method	55	(99)	95	(171)
c. Class 155 insulation system:				
(i) Class 2 transformers:				
Thermocouple method	95	(171)	95	(171)
Resistance method	115	(207)	115	(207)
(ii) Power transformers:				
Thermocouple method	110	(198)	110	(198)
Resistance method	115	(207)	115	(207)
d. Class 180 insulation system:				
(i) Class 2 transformers:				
Thermocouple method	115	(207)	115	(207)
Resistance method	135	(243)	135	(243)
(ii) Power transformers:				
Thermocouple method	125	(225)	125	(225)
Resistance method	135	(243)	135	(243)
4. Resistors: ^c				

Table 37.4 Continued on Next Page

Table 37.4 Continued

	Normal standby,		(Signaling) alarm condition,	
Materials and components	°C	(°F)	°C	(°F)
a. Carbon	25	(45)	50	(90)
b. Wire wound	50	(90)	125	(225)
c. Other	25	(45)	50	(90)
5. Solid state devices		See foo	otnote d	
6. Other components and materials:				
a. Fiber used as electrical insulation or cord bushings	25	(45)	65	(117)
b. Varnished cloth insulation	25	(45)	60	(108)
c. Thermoplastic materials	Rise base	d on tempera	ture limit of t	he material
 d. Phenolic composition used as electrical insulation or as parts whose malfunction or deterioration results in a risk of electric shock, explosion, fire, or injury to persons^e 	2	112		
e. Wood or other combustibles	25/	(45)	125	(225)
f. Sealing compound	25	(45)	65	(117)
g. Fuses	25	(45)	65	(117)
B. CONDUCTORS				
f. Sealing compound g. Fuses B. CONDUCTORS 1. Appliance wiring material ^f 2. Flexible cord (for example, SJO, SJT)	25 °C (45°	°F) less than the		ture limit of
2. Flexible cord (for example, SJO, SJT)	35	(63)	35	(63)
Conductors of field-wired circuits to be permanently connected to the product	35	(63)	35	(63)
C. GENERAL				
All surfaces of the product and surfaces adjacent to or upon which the product is be mounted	65	(117)	65	(17)
Surfaces normally contacted by the user in operating the unit (such as control knobs, push buttons, and levers):				
a. Metal	35	(63)	35	(63)
b. Nonmetallic	60	(108)	60	(108)
Surfaces subjected to casual contact by the user (such as the enclosure or grille):				
a. Metal	45	(81)	45	(81)
b. Nonmetallic	65	(117)	65	(117)

^a For an electrolytic capacitor which is physically integral with or attached to a motor, the temperature rise on insulating material integral with the capacitor enclosure shall not be more than 65°C (117°F).

^b It is not prohibited to evaluate a capacitor which operates at a temperature higher than a 65°C (117°F) rise on the basis of its marked temperature rating.

^c When the temperature rise of a resistor exceeds the values shown the power dissipation shall be 50 percent or less of the manufacturer's rating.

^d The temperature of a solid-state device (for example, transistor, SCR, integrated circuits), shall not exceed 50 percent of its rating during the normal standby condition. The temperature of a solid-state device shall not exceed 75 percent of its rated temperature under the alarm condition or any other condition of operation which produces the maximum temperature dissipation of its components. For reference purposes 0°C (32°F) shall be identified as 0 percent. For integrated circuits the loading factor shall not exceed 50 percent of its rating under the normal standby condition and 75 percent under any other condition of operation. It is permissible that both solid-state devices and integrated circuits be operated up to the maximum ratings under any one of the following conditions:

¹⁾ The integrated circuit (microcircuits) complies with the requirements of MIL-STD.883H...

Table 37.4 Continued

	Normal standby,		(Signaling) alarm condition,	
Materials and components	°C	(°F)	°C	(°F)

- 2) The semiconductor devices comply with the requirements of MIL-STD 750E.
- 3) A quality-control program is established by the manufacturer consisting of an inspection stress test followed by operation of 100 percent of all components, either on an individual basis, as part of a subassembly, or equivalent.
- 4) Each assembled production unit is subjected to a burn-in test, under the condition which results in the maximum temperatures, for 24 hours while connected to a source of rated voltage and frequency in an ambient of at least 49°C (120°F) followed by a Normal Operation Test, Section 38.
- ^e The limitations on phenolic composition and on rubber and thermoplastic insulation do not apply to compounds which have been investigated and determined to have special heat-resistant properties.
- ^f For standard insulated conductors other than those mentioned, reference shall be made to the National Electrical Code, ANSI/NFPA 70, the maximum allowable temperature rise in any case is 25°C (45°F) less than the temperature limit of the wire in question.

37.6 Accessories

- 37.6.1 Unless specifically indicated otherwise, the applicable performance requirements of this standard shall also apply to any remote accessories with which it is to be employed for example, but not limited to:
 - a) Normal Operation Test, Section 38;
 - b) Circuit Measurement Test, Section 56;
 - c) Overvoltage and Undervoltage Tests, Section 57;
 - d) Temperature Test. Section 58:
 - e) Jarring Test, Section 62
 - f) Overload Tests, Section 70:
 - g) Endurance Test, Section 71;
 - h) Variable ambient temperature and humidity test, 89.4;
 - i) Leakage Current Test, Section 73;
 - j) Transient Tests, Section 67;
 - k) Dielectric Voltage-Withstand Test, Section 77;
 - I) Tests on Polymeric Materials, Section 79;
 - m) Drop Test, Section 83 (portable appliance only);
 - n) Audibility Test, Section 84.
- 37.6.2 The primary power supply of optional accessories shall be either a utility supply (commercial light and power source) or a supervised integral battery or batteries.
- 37.6.3 Optional accessories used to assist persons with disabilities by enhancing the low frequency or signaling a tactile appliance shall include a source of secondary power meeting the requirements of 41.5.3. If the accessory is powered solely from a primary battery, the primary battery shall comply with the primary battery requirements contained in this standard (including Sections 15, 41.5,84.3, and 86.3).

- 37.6.4 Detached accessories utilizing a low frequency sound or actuating tactile appliances for single and multiple units shall provide a low frequency audible trouble signal or visual trouble indication on the portion of the accessory intended to be visible to the user after installation in the event of the following:
 - a) Low energy of the primary battery power source in accordance with <u>56.2</u>, Battery trouble voltage determination.
 - b) Loss of primary power, (not required for accessories utilizing primary batteries as the sole power supply),
 - c) Low energy of the secondary power source (not required for accessories utilizing primary batteries as the sole power supply), or
 - d) The accessory unit cannot perform its intended function of enhancing the smoke or heat alarm's primary low frequency audible sound or operate the tactile appliance.
- 37.6.5 Where secondary power is provided for visible signaling accessories, the secondary power shall meet the requirements of <u>35.2</u>, Secondary power supply.
- 37.6.6 Where secondary power is not provided for visible signaling accessories, the manufacturer's published instructions shall clearly indicate that the visible signal does not operate during loss of ac power. See 101.1(r).
- 37.6.7 The visible signaling accessories shall comply with UL 1638, CAN/ULC S526, Visible Signaling Devices for Fire Alarm Systems Including Accessories.
- 37.6.8 An open or short circuit on the connection to a visible signaling accessory shall not impair the stand-alone operation of the smoke alarm. Refer to 41.1.2 of Electrical Supervision Test.
- 37.6.9 The interconnection to a nonintegral (remote) visible signaling accessory does not require electrical supervision for circuit integrity.
- NOTE 1: Optional visible signaling devices do not require synchronization of the visible signals.
- NOTE 2: Where synchronization is provided, the visible signaling device shall meet the synchronization requirement of UL 1638, CAN/ULC-S526, Visible Signaling Devices for Fire Alarm Systems Including Accessories.

37.7 Smoke alarm guards

- 37.7.1 Mechanical smoke alarm guards for use in providing physical protection to an installed smoke alarm shall be subjected to the following tests (in conjunction with the smoke alarm) as applicable:
 - a) Normal Operation Test, Section 38;
 - b) Sensitivity Test, Section 42;
 - c) Velocity-Sensitivity Test, Section 44;
 - d) Reduction in Light Output Test, Section 46;
 - e) Fire Tests, Section 50;
 - f) Smoldering Smoke Test, Section 51;
 - g) Audibility Test, Section 84.

37.8 Test conditions

- 37.8.1 The smoke alarm shall be installed in an environment so as to permit accurate monitoring of the conditions in (a) (e). Unless otherwise specified, the following conditions shall be established and maintained throughout the test:
 - a) Ambient temperature at 23 ± 3 °C (73.4 ± 5 °F) or a higher temperature if specified by the manufacturer,
 - b) Relative humidity at 50 ±20 percent,
 - c) Oxygen concentration at 20.9 ±1 percent,
 - d) Barometric pressure of 760 ±30 mm of mercury (101 ±4 kPa), and
 - e) Supply voltage, if applicable, adjusted to 100 percent of rated input voltage.

37.9 Tests and analysis

37.9.1 Samples are to be subjected to analysis and tests as specified in <u>Table 37.5</u> but are not required to be completed in the sequential order unless otherwise noted within the specified paragraph.

Table 37.5 Smoke alarm tests and analysis

Test title	Applicable test (paragraphs, sections, subsection)	Single criteria	Multi-criteria / combination
Test units	<u>37.1</u>	X	X
Performance of single sensor components of multi-criteria smoke alarms	37.2		Х
Test voltages Test samples and data Component reliability data Remote accessories Smoke alarm guards Tests and analysis	<u>37.3</u> – <u>37.9</u>	x	×
Normal Operation – General	<u>38.1.1</u> – <u>38.1.3</u> , <u>38.1.6</u> , <u>38.1.8</u> – <u>38.1.13</u>	Х	Х
Normal Operation – General	<u>38.1.4</u> – <u>38.1.5</u> , <u>38.1.7</u>		Х
Standardized alarm signal Sensitivity shift criteria	<u>38.2</u> – <u>38.3</u>	Х	х
Automatic Drift Compensation for Smoke Sensing	<u>39</u>	х	х
Alarm Silenced Test	<u>40</u>	Х	Х
Electrical Supervision – General Component failure Photocell illuminating lamps and light emitting diodes (LEDs) AC or remotely powered units Battery powered (primary or secondary) smoke alarms External Wiring Smoke chamber monitoring	<u>41.1</u> – <u>41.4, 41.5, 41.6, 41.7</u>	X	х
End-of-life signal	<u>41.8</u>	Х	Х

Table 37.5 Continued

Test title	Applicable test (paragraphs, sections, subsection)	Single criteria	Multi-criteria / combination
Multi-criteria smoke alarm with gas sensor	<u>41.9</u>		X
Sensitivity Test, General	<u>42.1.1</u>	Х	
Sensitivity Test, General	<u>42.1.2</u>	Х	Х
Combustibles	42.2	Х	X
Aerosol generation equipment (alternate method)	<u>42.3</u>	Х	Х
Test equipment	42.4	Х	Х
Test method	<u>42.5</u>	X	Х
Uniformity of operation	<u>42.6</u>	X	X
Smoke sensitivity test feature	42.7	X	Х
Sensitivity test – gas sensor of a multi-criteria smoke alarm, general	42.8.1	()	Х
Sensitivity test – heat sensor	42.8.2		X
Sensitivity test – sensors other than smoke, gas or heat	42.8.3		Х
Directionality Test	43	Х	Х
Velocity Sensitivity Test – Smoke sensor	<u>44.1</u>	Х	Х
Multi-criteria smoke alarm with gas sensor	44.2		Х
Smoke Entry (Stack Effect) Test	45	Х	Х
Reduction in Light Output Test	46	Х	X
Stability Test	47	Х	Х
Stability Tests – Multi-Criteria Smoke Alarms Incorporating Gas Sensor(s)	48		Х
Stability Tests for Multi-Criteria Smoke Alarms Incorporating CO Gas Sensor(s)	<u>49</u>		Х
Fire Tests	<u>50</u>	Х	Х
Smoldering Smoke Test	<u>51</u>	X	X
Smoldering Polyurethane Foam Test	<u>52</u>	X	X
Cooking Nuisance Smoke Test	<u>53</u>	Х	X
Go/No Go Flaming Polyurethane Test	<u>54</u>	X	X
Selectivity Test - Multicriteria Smoke Alarms Incorporating Gas Sensor(s)	<u>55</u>		Х
Circuit Measurement Test	<u>56</u>	Х	Х
Overvoltage and Undervoltage Tests	<u>57</u>	X	X
Temperature Test	<u>58</u>	X	X
Vibration Test	<u>59</u>	Х	X
Replacement Test, Head and Covers	<u>60</u>	Х	X
Mechanical Push Test for Push-Type Features	<u>61</u>	Х	Х
Jarring Test	<u>62</u>	X	X
Operation in high and low ambients Effect of shipping and storage – (single and multi-criteria smoke alarms)	<u>63.1</u> and <u>63.2</u>	Х	Х

Table 37.5 Continued on Next Page

Table 37.5 Continued

Test title	Applicable test (paragraphs, sections, subsection)	Single criteria	Multi-criteria / combination
Effect of shipping and storage – Multi-criteria smoke alarms incorporating gas sensor(s)	<u>63.3</u>		Х
Humidity Test – High humidity	<u>64.1</u>	X	Х
Low humidity [multi-criteria smoke alarms with gas sensors(s)]	<u>64.2</u>		Х
Corrosion Test	<u>65</u>	Х	Х
Alternate Corrosion Test (21-Day)	<u>66</u>	X	X
Transient Tests	<u>67</u>	X	Х
Static Discharge Test	<u>68</u>	ON.	X
Dust Test	<u>69</u>	N/N	Х
Overload Tests	<u>70</u>	X	Х
Endurance Test	<u>71</u>	X	Х
Fire Test – Smoke Alarm with Supplementary Heat Detection	72	X	
Leakage Current Test	73	X	X
Abnormal Operation Test	<u>74</u>	X	Х
Electric Shock Current Test	<u>76</u> 0	Х	Х
Locked Rotor Test	<u>76</u>	X	Х
Dielectric Voltage-Withstand Test	<u>77</u>	X	X
Polarity Reversal Test	<u>78</u>	X	Х
Tests on Polymeric Materials	<u>79</u>	Х	Х
Strain Relief Test	<u>80</u>	Х	Х
Non-Compulsory Fire and Smoldering Smoke Tests	<u>81</u>	Х	Х
Survivability Tests	<u>82</u>	X	Х
Drop Test	<u>83</u>	Х	Х
Audibility Test	<u>84</u>	Х	Х
Reserved	<u>85</u>		
Field Service Tests	<u>86.1</u> – <u>86.2</u>	Х	Х
Battery tests	<u>86.3</u>	X	Х
Conformal Coatings on Printed Wiring Boards	<u>87</u>	Х	Х
Power Supply Tests	<u>88</u>	Х	Х
Smoke Alarms for Use in Recreational Vehicles (RV) and Boats	<u>89</u>	Х	Х

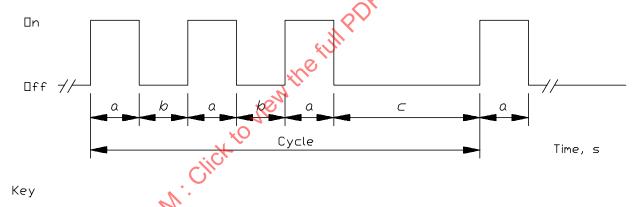
38 Normal Operation Test

38.1 General

- 38.1.1 A smoke alarm shall operate for all conditions of its intended performance, at all smoke alarm sensitivity settings, when energized from a source of rated voltage, under all conditions covered both in the manufacturer's published instructions and in any supplementary information provided by the manufacturer.
- 38.1.2 The test voltage is to be in accordance with <u>37.3</u>, Test voltages. The smoke alarm is to be in the standby condition and prepared for its intended signaling operation when it is connected to related devices and circuits.

- 38.1.3 The introduction of smoke into the detection chamber, such as from a smoldering cotton lamp wick, rope, or equivalent, shall result in the operation of the alarm in its intended manner. See $\frac{42.1.1}{1}$. The alarm signal shall persist for at least 4 minutes under an abnormal level of smoke exceeding the alarm threshold limit.
- 38.1.4 A smoke alarm that employs a secondary power supply shall operate for alarm signals with the main power de-energized.
- 38.1.5 A multiple-station smoke alarm shall result in an indication (while in alarm), which will positively identify the actuating unit when installed in a multiple-station mode.

Note: Interconnection requirements are specified in ANSI/NFPA 72, Chapter 29.


- 38.1.6 When a heat alarm is provided integral with a single station smoke alarm, or is intended to be connected to a remote initiating device circuit of a multiple station smoke alarm, actuation of the heat alarm shall result in the smoke alarm signal.
- 38.1.7 No individual sensor of a smoke alarm shall be rendered inoperative by any of the Performance Tests (Sections 37 89) of this standard. Each principle shall contribute in response either entirely or partially to at least one of the fire tests or smoldering smoke tests in this standard unless the sensor is only used to identify nuisance alarm conditions.
- 38.1.8 If low power wireless transmission between smoke alarms, is used, it shall be in compliance with the applicable requirements outlined in the section entitled "Short Range Radio Frequency Devices" in both the Standard for Household Fire Warning System Units, UL 985. The transmission signal of a smoke alarm with integral or remote transmitter to a compatible receiver shall result in an alarm signal, at the receiver, being locked-in for at least 4 minutes. The test is to be conducted at the maximum distance specified by the manufacturer when tested under free-field conditions with no obstructions between the smoke alarm transmitter and receiver units. Refer to 101.1(m) for instructions to be provided. Lock-in of the receiver is not required when the receiving unit audible alarm signal is energized in time sequence and duration with the smoke alarm.
- 38.1.9 An alarm or accessory that employs one or more non-fire alarm features shall operate as follows:
 - a) The smoke alarm/fire alarm signal shall take precedence or be clearly recognizable over any other signal even when the non-fire alarm signal is initiated first.
 - b) Distinctive signals shall be obtained between the smoke alarm/fire alarm and other non-fire alarm functions. The use of a common sounding appliance for the fire alarm and non-fire alarm function(s) shall be used only when distinctive signals are obtained. When an audible trouble signal is additionally provided it shall be distinctive from all alarm signals. The trouble signal may be common to all functions employed.
 - c) Any fault condition of limited life non-fire alarm components shall not interfere with the operation and supervision of the smoke alarm. See <u>41.1.5</u>.
- 38.1.10 Multiple station smoke alarms interconnected with carbon monoxide alarms shall result in the carbon monoxide audible alarm sounding by all interconnected alarms when the carbon monoxide alarms are the actuating units. Smoke alarms may remain silent if they do not produce the CO alarm signal. Refer to the Standard for Single and Multiple Station Carbon Monoxide Alarms, UL 2034.
- 38.1.11 Multiple station smoke alarms interconnected with carbon monoxide alarms shall result in the smoke alarm audible alarm sounding by all interconnected smoke alarms when the smoke alarms are the actuating units. CO alarms may remain silent if they do not produce the smoke alarm signal.

- 38.1.12 Multiple station smoke alarms interconnected with carbon monoxide alarms or combination smoke alarms and carbon monoxide alarms shall result in a smoke alarm audible signal taking precedence when both types of alarms are activated.
- 38.1.13 For the multiple station smoke alarm that initiates the smoke alarm signal, the initiating alarm shall be allowed to restore all interconnected units, by operation of the reset button on the actuating unit, to their "Normal Operation" state.

38.2 Standardized alarm signal

38.2.1 A smoke alarm that produces an audible signal which is intended to initiate immediate evacuation from the protected area shall produce the signal in the form of the "three pulse" temporal pattern shown in Figure 38.1. Each ON phase shall last 0.5 second ±10 percent followed by an OFF phase of 0.5 second ±10 percent. After the third of these ON phases, there shall be an OFF phase that lasts 1.5 seconds ±10 percent. Where the intended action is not immediate evacuation, the audible signal shall produce an alert signal distinctive from the "three pulse" temporal system.

Figure 38.1
Standardized alarm signal temporal pattern


```
Phase a signal s "on" for 0.5 s ± 10 %
Phase b signal is "off" for 0.5 s ± 10 %
Phase c signal is "off" for 1.5 s ± 10 % (c = a + 2b)
Total cycle lasts for: 4 s ± 10 %
```

- 38.2.2 A voice message shall be permitted to be included with the standardized alarm signal in one or both of the formats noted below.
 - a) A voice message of 1.5 seconds or less in length shall be permitted to be inserted into any or all of the 1.5 second OFF phases of the temporal pattern.
 - b) A voice message that exceeds 1.5 seconds but does not exceed 10 seconds in length shall be permitted to be inserted following a minimum of 8 cycles of the initial "three pulse" temporal pattern.

This voice message shall be followed by not less than 2 cycles of the "three pulse" temporal pattern. The voice message shall then be permitted to be repeatedly inserted provided that each additional use of the voice message follows at least 2 cycles of the "three pulse" temporal pattern.

38.3 Sensitivity shift criteria

38.3.1 During or immediately after performance tests, the sensitivity of the smoke sensor shall not vary more than ± 3.3 percent per m (± 1 percent per ft) [± 0.014 optical density per m (± 0.0045 optical density per ft)] obscuration from the value recorded prior to the test. For non-multi-criteria smoke alarms the sensitivity limits shall comply with $\underline{42.1.1}$. For multi-criteria alarms manufacturers shall define the acceptable sensitivity shift for non-smoke sensors that will allow the smoke alarm to pass Fire Tests, Section $\underline{50}$ and Smoldering Smoke Test, Section $\underline{51}$.

39 Automatic Drift Compensation for Smoke Sensing

- 39.1 For products that employ a drift compensation function to automatically shift the alarm threshold to maintain the same overall sensitivity of the smoke alarm, the compensation shall comply with the requirements in Section 9, Automatic Drift Compensation for Smoke Sensing.
- 39.2 Two samples of each smoke alarm shall be subjected to the conditions described in 39.3. One sample of the smoke alarm shall be set at the maximum production clean air setting and the highest production gain, while the other shall be set at the lowest production clean air setting and the lowest production gain.
- 39.3 Each smoke alarm shall be subjected to the Sensitivity Test described in Section 42. The product sensitivity setting for the low gain alarm shall be the least (minimum) sensitivity value and the sensitivity setting for the high gain alarm shall be the most (maximum) sensitivity setting. The measured sensitivities shall be within the rated limits for the smoke alarm.
- 39.4 A contamination or simulated contamination (as defined by the manufacturer) is then to be introduced into each smoke alarm and the smoke alarm allowed to compensate. The process is to be repeated, increasing the contamination or simulated contamination within the smoke alarm, until the smoke alarm is at the point where the maximum amount of compensation has been provided. The Sensitivity Test described in Section $\underline{42}$ is to be repeated. This sensitivity shall be within 1.65 percent/m (0.5 percent/ft) obscuration of the initial sensitivity measurement for the same smoke alarm. If the sensitivity of the alarm is not adjustable, the sensitivity must remain within the proposed production smoke sensitivity limits.

40 Alarm Silenced Test

- 40.1 To determine the duration of the alarm silenced period, one single station smoke alarm, in the normal standby condition, is to be placed in the sensitivity test chamber. See the Sensitivity Test, Section 42. The smoke is to be increased until the smoke alarm goes into an alarm condition. The smoke is to be maintained at an abnormal amount for the duration of the test. After the smoke alarm has been in an alarm condition for 1 minute, the silencing means is to be actuated and the time recorded between operation of the silencing means and reactivation of the smoke alarm signal. The maximum time of silencing shall not exceed the time limits specified in 13.2. This test shall be conducted on four individual samples.
- 40.2 With the maximum number of smoke alarms interconnected in a multiple station configuration, as specified by the manufacturer's published instructions, one smoke alarm is to be placed into an alarm condition by permitting an abnormal amount of smoke to fill the sensitivity test chamber in accordance with the procedure described in 40.1. The alarm silencing means on that one unit shall be actuated. The time shall be recorded between operation of the silencing means and reactivation of the alarm. During the silenced period, the other smoke alarms in the system are also to be subjected to an abnormal amount of

smoke to determine that they are still operational for initiating an alarm. The maximum silenced period shall not exceed the time limits specified in 13.2. This test shall be conducted on four individual samples.

41 Electrical Supervision Test

41.1 General

- 41.1.1 A single station smoke alarm shall be electrically supervised so that failure of a limited life component, open in an externally connected smoke alarm circuit, or ground fault on any externally connected wiring, which prevents operation for an alarm signal from the smoke alarm, shall result in an audible trouble signal.
- 41.1.2 The wiring extending between smoke alarms wired in a multiple station configuration shall be electrically supervised and capable of operation as a single station type smoke alarm, or multi-criteria smoke alarm, during the following fault condition; open-circuit, short-circuit, or ground, fault conditions on the interconnect circuit. This includes, but is not limited to short circuit faults between the interconnect conductor(s) and supply conductors if the interconnect circuit is common with the supply circuit. Any fault condition which results in trouble or alarm signal is considered as meeting this requirement. This requirement does not apply to the interconnected wiring of alarms intended to be connected by NFPA 70 Class 1 wiring method.
- 41.1.3 When an audible trouble signal is required to indicate a fault condition, it shall be produced at least once every minute for a minimum of seven consecutive days. The trouble signal shall be distinctive from the smoke alarm signal.
- 41.1.4 To determine that a smoke alarm unit complies with the requirements for electrical supervision, the smoke alarm is to be energized in the standby condition, and the type of fault to be detected is then to be introduced. Each fault is to be applied separately, the results noted, and the fault removed. The smoke alarm is then to be restored to the standby condition prior to establishing the next fault.
- 41.1.5 A fault condition (open, ground, or short), of other than the smoke detection circuit of a smoke alarm with a non-fire alarm feature shall not prevent alarm signal operation as a smoke alarm. For this test the smoke alarm is to be energized from a rated source of supply in the normal standby condition and the fault is to be applied. With the fault applied the smoke alarm is then to be subjected to an abnormal smoke condition which shall result in an audible smoke alarm.

41.2 Component failure

41.2.1 Falure of a limited life (non-reliable) electronic component, such as opening or shorting of electrolytic capacitors, shall be indicated by an audible trouble or alarm signal; otherwise a reliable component shall be used. The reliable component shall fall within the reliability prediction described 37.5, Component reliability data.

41.3 Photocell illuminating lamps and light emitting diodes (LEDs)

- 41.3.1 The filament(s) of a photocell illuminating lamp(s), which burn out periodically, shall be electrically monitored to indicate an open circuit fault by an audible trouble signal.
- 41.3.2 In smoke alarms employing a limited life LED light source, the source shall be monitored for an open, short, or, except as exempted in $\underline{41.3.3}$, 50 percent or greater light degradation, by means of an audible trouble signal. Failure of the light source shall not result in a smoke alarm signal. Energization of the alarm signal for a maximum of 5 seconds prior to the audible trouble signal is acceptable.

- 41.3.3 An audible trouble signal for greater than 50 percent light degradation of a limited life LED is not required when light degradation data is supplied by the LED manufacturer to show that, for the conditions under which it is to be operated, the LED does not reduce to 50 percent light output at the maximum failure rate prediction described in 37.5, Component reliability data.
- 41.3.4 The sensitivity of a smoke alarm employing a LED as the functional light source shall not be reduced abnormally when either the light output from the LED is reduced to the light level anticipated at the end of the reliability prediction described in <u>37.5</u>, Component reliability data, or to 50 percent of normal.
- 41.3.5 An LED employed as the light source of a photoelectric type smoke alarm is not required to be electrically supervised by means of a trouble signal if it is considered to be reliable.
- 41.3.6 To be considered reliable, an LED shall have a predicted failure rate of less than 0.25 percent/1000 h, (2.5 failures per million hours), and shall comply with the requirements in 41.3.3 and 41.3.4. In addition, the operating conditions of the LED in the smoke alarm circuit, as well as the diode and smoke alarm manufacturer's quality assurance (QA) programs, are to be evaluated as to the level of reliability they provide. See Section 29, Photocell Illuminating Lamps and Light Emitting Diodes (LEDs).

41.4 AC or remotely powered units

- 41.4.1 Failure of the main power supply to an alarm other than those powered from a primary battery shall be indicated by de-energization of a green "power-on" lamp.
- 41.4.2 Neither loss nor restoration of power shall result in an alarm signal under either momentary or extended (at least 1/2 hour) power outage conditions. Momentary energization of the alarm circuit (maximum of 1 second), and energization of the trouble circuit (maximum of 2 minutes), is acceptable. A gradual increase to 110 percent of rated voltage or reduction to 0 volts from rated voltage at a rate of not greater than 5 volts per minute shall not result in energization of the alarm signal for more than 1 second, nor energization of the trouble circuit for more than 2 minutes.
- 41.4.3 Loss of power to a single unit of a multiple station alarm configuration, while energized in the standby condition, shall not result in a false alarm and shall not prevent the operation of the remaining units for alarm.

41.5 Battery powered (primary or secondary) smoke alarms

- 41.5.1 A smoke alarm that uses a battery as the main source of supply shall be capable of producing an alarm signal for at least 4 minutes, at the battery voltage at which an audible trouble signal is obtained, followed by 7 days of an audible trouble signal indication. Reference the Audibility Test, Section 84.
- 41.5.2 To determine compliance with <u>41.5.1</u>, three samples, powered from primary battery supplies, shall be equipped with batteries which have been depleted to the trouble signal level. The samples are then to be placed in alarm for 4 minutes. Following the 4 minutes of alarm the trouble signal shall persist for at least seven consecutive days. It is possible to deplete a fresh battery by applying a 1 percent or smaller loading factor based on the ampere hour rating of the battery. For example, a 1000 milliampere-hour rated battery is depleted by applying a 10 milliamperes (1 percent load) or less drain continuously until the battery voltage reaches the predetermined test level.
- 41.5.3 A smoke alarm which uses a battery (or other applicable rechargeable energy storage media) as the secondary source of supply shall be capable of supplying the smoke alarm with a minimum of 7 days of power in the normal standby condition. The smoke alarm shall be capable of producing an alarm signal for at least 4 minutes at the battery voltage at which an audible trouble signal is obtained followed by 7 days of audible trouble signal indication.

- 41.5.4 To determine compliance with <u>41.5.3</u> for smoke alarms whose secondary supply is a battery (or other applicable rechargeable energy storage media), three samples shall be powered from secondary sources of supply (with the primary source of supply disabled) which are fully charged, or in fresh condition (see <u>35.2</u>, Secondary power supply) and allowed to remain in the normal standby condition for a minimum of 7 days. The samples shall not emit audible low battery trouble signals before the end of the 7-day period. Three samples shall also be equipped with secondary supplies (with the primary source of supply disabled) which have been depleted to the trouble signal level. The samples are then to be placed in alarm for 4 minutes. Following the 4 minutes of alarm the trouble signal shall persist for at least 7 consecutive days. It is possible to deplete a fresh battery by applying a 1 percent or smaller loading factor based on the ampere hour rating of the battery. For example, a 1000 milliampere-hour rated battery is depleted by applying a 10 milliampere (1 percent load) or less drain continuously until the battery voltage reaches the predetermined test level.
- 41.5.5 A decrease in the battery capacity of a smoke alarm, which uses a battery as the main power supply, to a level where at least a 4-minute alarm signal is not obtainable, shall result in an audible trouble signal. The trouble signal is to be produced at least once each minute for seven consecutive days.

41.6 External wiring

41.6.1 An open or ground fault in the loop wiring connected from a single station smoke alarm to additional remote heat alarms that prevent operation for alarm signals from any of the interconnected alarms, shall not result in an alarm signal and shall result in an audible trouble signal.

Note: It is acceptable for a short or double ground fault in the leads to result in an alarm.

- 41.6.2 An open, ground fault, or short in any power limited fire protective circuit wiring among multiple station interconnected smoke alarms or any wiring extending to a heat alarm, or remote signaling device is not required to be indicated by a trouble signal when the fault does not prevent operation of any of the interconnected units as a single station smoke alarm. It is acceptable for a ground fault to prevent operation for alarm when the interconnected wiring is to be made in accordance with Class 1 requirements of the National Electrical Code, ANSI/NFPA 70. The installation wiring diagram shall indicate the type of connections to be employed.
- 41.6.3 An open, ground fault, or short in the power limited fire protection circuit conductors extending between the output of a separate power supply and a smoke alarm, which prevents operation of the smoke alarm, shall result in de-energization of the smoke alarm "power-on" light.

41.7 Smoke chamber monitoring

- 41.7.1 The clean-air condition of a smoke chamber shall be monitored for contamination. A trouble signal shall be indicated at the smoke alarm before the clean-air reference value changes by more than 50 percent of the shift required to place the smoke alarm into the alarm condition.
- 41.7.2 Two smoke alarms, one set at maximum and one set at minimum sensitivity, shall be used for the test. Each smoke alarm is to have the clean-air reference value in the smoke chamber gradually adjusted over a 48-hour period in increments not exceeding 1/14 of the value required to reach 50 percent of the shift that places the smoke alarm into the alarm condition. The reference value is to be adjusted not more than once each hour.

41.8 End-of-life signal

41.8.1 The smoke alarm shall indicate end-of-life, based on the manufacturer's specified lifetime (not to exceed 10 years), with an end-of-life signal (see <u>6.8</u>). It is permitted for the audible component of the signal to be of the same format as a trouble signal, provided a visual indicator is employed to differentiate

between the end-of-life and other trouble conditions. The end-of-life signal shall repeat once every 30 - 60 seconds ± 10 percent. This signal shall be triggered either by an internal timer or by a self-diagnostic test(s) as follows:

- a) For a smoke alarm that employs an internal timer that activates the end-of-life signal, once the maximum specified lifetime is reached, the end-of-life signal shall be initiated. The end-of-life signal can be reset repeatedly for a period not exceeding 72 hours for each period of reset provided that the self-diagnostic test(s) does not result in a trouble signal. The end-of-life signal timer shall not be able to be reset after a maximum of 30 days.
- b) The end-of-life signal shall be allowed to be reset prior to the end of 30 days, but shall not be allowed to be reset beyond the maximum of 30 days.
- c) For a smoke alarm that employs a signal generated by a self-diagnostic test, the end-of-life signal shall be initiated once the manufacturer specified fault has been identified. The manufacturer shall provide a detailed description of operation associated with the self-diagnostic process/procedure, describe a method to verify the self-diagnostic that results in an end-of-life signal and provide the additional equipment necessary to confirm operation of the end-of-life signal within the timelines specified by the manufacturer not exceeding the limits of this standard.

41.9 Multi-criteria smoke alarm with gas sensor

- 41.9.1 The gas sensor shall have a specified lifetime of at least 3 years from the date of manufacture, or from the date the smoke alarm is placed into service. The smoke alarm reliability shall be estimated with an in-service reliability measurement, see Section 94, Measurement of In-Service Reliability for Multicriteria Smoke Alarms with Gas Sensor(s). If the manufacturer bases the specified lifetime on the date that the smoke alarm is placed into service, this specification shall be substantiated with technical data documenting that performance degradation is not likely to occur prior to the smoke alarm being placed into service if the smoke alarm is placed into service within 18 months after manufacture. The selection of which basis is employed to define the beginning of specified lifetime may be contingent upon the technology of the sensor used in the smoke alarm.
- 41.9.2 If the gas sensor has a lifetime of less than 10 years and is field replaceable, the alarm shall produce a gas sensor end-of-life signal that is different from other trouble conditions.
- 41.9.3 The gas sensor end-of-life signal shall be reset upon replacing the field replaceable gas sensor. The end-of-life signal shall only be reset upon replacing the gas sensor with a new gas sensor.
- 41.9.4 The smoke alarm shall immediately produce a trouble signal if the replaceable gas sensor is removed.
- 41.9.5 The sensitivity of the smoke alarm shall not be altered upon replacing the gas sensor.
- 41.9.6 The replaceable gas sensor shall be marked with a date indicating its end-of-life.

42 Sensitivity Test

42.1 Smoke sensor (general)

42.1.1 A single criteria smoke alarm, when calibrated to maximum production sensitivity, shall not be more sensitive than the limit specified in <u>Table 37.1</u>, Visible smoke obscuration limits (gray smoke), or <u>Table 37.2</u>, Measuring ionization chamber (MIC) measurement, when subjected to a smoldering smoke or aerosol buildup condition using the test equipment described in <u>42.2</u> – <u>42.4</u> and when subjected to a range of air velocities. The manufacturer shall define the gray smoke/aerosol limits for the smoke sensor in a multi-criteria smoke alarm. The smoke generating method used for this test can be smoldering cotton lamp

wick, aerosol generator, or punk sticks. Interchangeability between the methods is acceptable (e.g., conformity assessment testing utilizing a different method than the manufacturer) and shall be so documented in product reports and procedures created to document compliance to this standard. When the smoke alarm employs a variable field adjustable sensitivity setting, test measurements shall be made at the maximum sensitivity setting as specified in Table 37.1 or Table 37.2. The sensitivity measurement is to be made with the smoke alarm located in the air stream in the least and most favorable horizontal positions for smoke entry as determined in the Directionality Test, Section 43.

42.1.2 When the manufacturer's required production control, inspection and test procedures (see Section 90, General, and Section 95, Production-Line Dielectric Voltage-Withstand Tests) include testing in accordance with the Sensitivity test, then all product conformity testing shall use the same smoke generating method (e.g. aerosol, cotton lamp wick, punk stick, or equivalent) as specified in the manufacturer's procedures for the Sensitivity test and all related gray smoke/aerosol testing.

42.1.3 A smoke alarm employing a secondary power supply shall operate within the limits specified in 42.1.1 when operating from the secondary power supply.

42.2 Combustibles

42.2.1 A cotton lamp wick, nominally 3.2 mm (1/8 in) in diameter, a minimum of 127 mm (5 in) long and secured by a thin wire inserted through one end, is to be employed as the source of smoke. Prior to use, the wick is to be conditioned at least 72 hours at 45°C (113°F) and 10 percent or less relative humidity. It is then to be stored in a desiccator at room temperature and 10 percent or less relative humidity. The wick end is to be cut square and smoldering initiated by momentarily placing the wick end over a horizontally mounted resistive heater element energized to a dull red color. Upon ignition, it is possible for momentary flaming to occur for 1 second, after which the flame is to be extinguished. The wick is then permitted to smolder a minimum of 30 seconds before being placed in the chamber. The smoldering rate of the wick is to be such that the relationship between the MIC output and the percent light transmission remains within the curves illustrated in Figure 42.1. The visible smoke buildup rate is to be maintained within the limits illustrated in Figure 42.2 outside the test compartment and the smoke permitted to enter through an inverted funnel-pipe arrangement.

Figure 42.1

Sensitivity test limits

Gray smoke – cotton wick/aerosol – 9.8 mpm

Room ambient temperature, 85 percent relative humidity

4.4 VAI NOBOONSTANDING PER LOOJ

BENEFIT (1,5m)

ROOM ambient temperature, 85 percent relative humidity

4.4 VAI NOBOONSTANDING PER LOOJ

BENEFIT (1,5m)

BENEFIT (1,5m)

BENEFIT (1,5m)

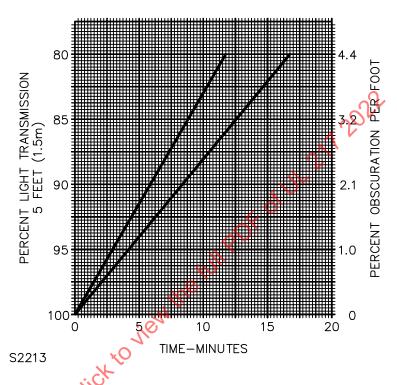

BOOM ambient temperature, 85 percent relative humidity

Figure 42.2

Smoke build-up rate – sensitivity test

Gray smoke – cotton wick/aerosol – 9.8 mpm

Room ambient temperature, 85 percent relative humidity

42.3 Aerosol generation equipment (alternate method)

42.3.1 The equipment used shall generate the buildup rates specified in <u>Figure 42.1</u> – <u>Figure 42.4</u>.

Figure 42.3 Sensitivity test limits (gray smoke/aerosol)

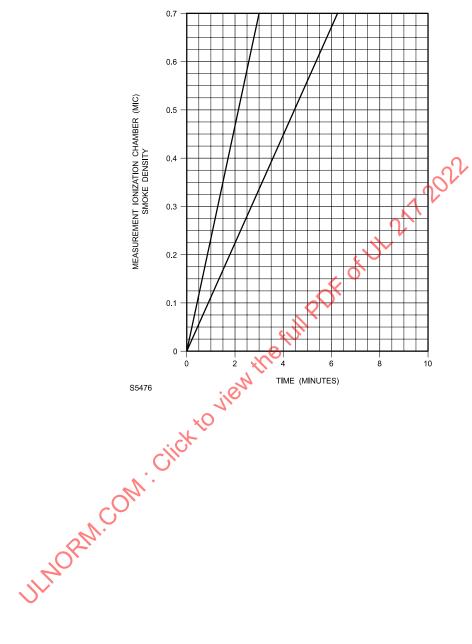


Figure 42.4
Smoke buildup rate – sensitivity test (gray smoke/aerosol)

S5477

42.4 Test equipment

42.4.1 For sensitivity smoke test chamber construction and details on test equipment refer to Annex A.

42.5 Test method

- 42.5.1 Test conditions are defined in 37.8.
- 42.5.2 A minimum of 12 samples of the smoke alarm, previously energized from a source of supply in accordance with <u>37.3</u>, Test voltages, for at least 16 hours or for a time interval as specified by the manufacturer, shall be subjected to this test. The smoke alarm under test is to be tested in the least and most favorable horizontal positions of smoke entry. See the Directionality Test, Section <u>43</u>.
- 42.5.3 The air velocity in the test compartment is to be maintained at 0.16 ±0.01 m/s (32 ±2 fpm) as measured in front of the middle section of the smoke alarm with a hot wire anemometer, or equivalent air velocity measuring instrument. The velocity measurement is to be made with the smoke alarm removed.
- 42.5.4 Smoldering cotton lamp wick, or equivalent, producing a gray smoke having an equivalent particle size distribution shall be used as the actuating medium. The rate of smoke build-up shall be uniform and within the limits as specified in Section 42.2, Combustibles, or 42.3, Aerosol generation equipment (alternate method).
- 42.5.5 The smoke/aerosol is to be admitted into the test chamber and operation is to be continued until smoke alarm activation as specified in 38.2.1. The MIC/light relationship and the visible smoke buildup rate is to remain within the limits represented by the curves illustrated in the figures described in 42.2, Combustibles. When the trial-to-trial variation in light transmission alarm is $\pm 0.2 \,\mu\text{A}$ or less, only three trials

are required to be conducted on each sample. When the variation is greater than $\pm 0.2~\mu A$, five trials shall be performed. The test chamber is to be exhausted between each trial until the MIC and light beam indicate a clear condition. The airflow is to be allowed to stabilize for at least 30 seconds before each test trial.

- 42.5.6 The final value used for the sensitivity is to be the average of the total number of readings. The following readings shall be recorded for each trial at the moment of actuation:
 - a) Visible Obscuration (percent light transmission),
 - b) Measuring Ionization Chamber (MIC) Meter Reading, and
 - c) Time of test trial.

For combination smoke alarms, the sensitivity of each principle of operation is to be recorded. When a smoke alarm has a variable sensitivity setting, test trials shall be made at the maximum and minimum sensitivity settings.

42.6 Uniformity of operation

- 42.6.1 Smoke alarms shall be uniform in operation when conducting the Sensitivity Test, Section <u>42</u>, as follows:
 - a) The sensitivity of any one smoke alarm, based on the average of at least three trials, shall be within 25 percent of the overall average when testing at least 12 alarms that are preset (as close to production calibration permits) to the nominal maximum production sensitivity (most sensitive setting); and
 - b) The sensitivity of any one smoke alarm, based on the average of at least three trials, shall be within 25 percent of the overall average when testing at least 12 alarms that are preset (as close to production calibration permits) to the nominal minimum anticipated production sensitivity(least sensitive setting).
- 42.6.1A Combination/multi-criteria smoke alarms shall be provided with a means for monitoring each principle of operation during the Sensitivity Test, Section 42.
- 42.6.1B If a smoke alarm has a variable sensitivity setting, the requirement in <u>42.6.1</u> applies to the end points of the variable range.
- 42.6.2 Deleted
- 42.6.3 For multi-criteria alarms that employ sensors that do not sense smoke, the sensitivity measurements for these sensors shall be within the specified operating range as defined by the manufacturer.

42.7 Smoke sensitivity test feature

- 42.7.1 A sensitivity test feature shall be provided on a smoke alarm, to simulate either mechanically or electrically a specified level of smoke in the sensing chamber. The test feature shall be accessible from outside the alarm, with the alarm installed as intended.
- 42.7.2 When this test feature is the method used by the manufacturer to comply with the smoke sensitivity indicating means requirements in 11.1 and 11.2, the test feature is to have the capability of verifying that the sensitivity of the smoke alarm is within 25 percent of the marked range.

- 42.7.3 When a sensitivity test feature is provided as an operational test to simulate either mechanically or electrically a specified level of smoke in the sensing chamber, the maximum permissible measured obscuration level using gray smoke/aerosol shall not exceed:
 - a) 18.4 percent per m, or if the marked sensitivity is greater than 12.5 percent per m, the test shall provide for a maximum of 6.4 percent per m over the marked range, or
 - b) 6 percent per ft, or if the marked sensitivity is greater than 4 percent per ft, the test shall provide for a maximum of 2 percent per ft over the marked range.
- 42.7.4 Four samples, two at maximum and two at minimum sensitivity, shall be subjected to this test. Each sample is to be connected to a rated supply voltage, except that an alarm employing a battery as the main supply shall be tested at the test voltage level (rated or trouble level voltage) that results in the lowest sensitivity measurement. The sensitivity is to be determined by conducting a curve plot of obscuration versus an instrument (meter) reading, or equivalent.

42.8 Sensitivity test – gas sensor of a multi-criteria smoke alarm

42.8.1 General

- 42.8.1.1 The manufacturer shall provide the sensitivity performance over its operating range/tolerance for the gas sensor(s).
- 42.8.1.2 The smoke alarm shall be installed in a chamber, having a volume of at least 0.0283 m³ (1 ft³) constructed so as to permit accurate monitoring and control of chamber air temperature and humidity and oxygen and target gas concentrations. The following conditions shall be established within the test chamber and maintained throughout the test.
- 42.8.1.3 Before commencing each measurement, the gas test chamber shall be purged to ensure that the gas concentration is less than 1 ppm.
- 42.8.1.4 The air velocity in the proximity of the specimen shall be specified by the manufacturer.
- 42.8.1.5 Connect the specimen to its supply and monitoring equipment and allow it to stabilize for a period of at least 15 minutes, unless otherwise specified by the manufacturer.
- 42.8.1.6 Increase the gas concentration to the level specified by the manufacturer within 3 minutes after sealing the chamber and maintain this concentration throughout the remainder of the test. Record the:
 - a) Time to reach the target gas concentration within the test chamber; and
 - b) Output from the sensor which will be compared to the manufacturer's gas sensor specification.

42.8.2 Sensitivity test - heat sensor

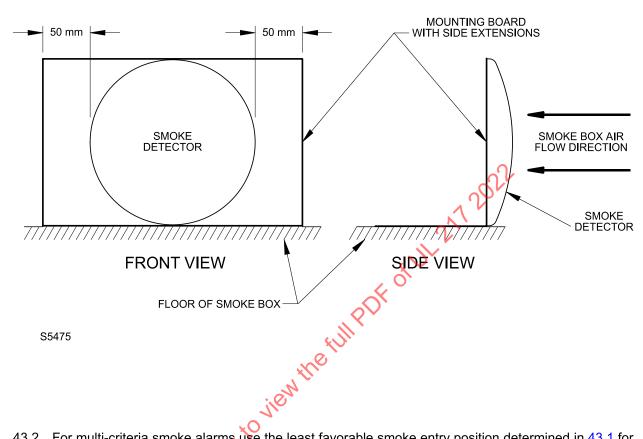
- 42.8.2.1 Where smoke alarms comply with the Standard for Single and Multiple Station Heat Alarms, UL 539, the response times measured in those tests may be used as the heat response values for the purposes of this standard.
- 42.8.2.2 Install the specimen for which the temperature response value is being measured in a UL 539, Standard for Single and Multiple Station Heat Alarms, heat tunnel. The orientation of the specimen, relative to the direction of airflow, shall be the least sensitive one, as determined in the Directionality Test, Section 43, unless otherwise specified in the test procedure.

42.8.2.3 Install the specimen for which the temperature response value is being measured in a UL 539 heat tunnel. The orientation of the specimen, relative to the direction of airflow, shall be the least sensitive one, as determined in the Oven Test of the Standard for Single and Multiple Station Heat Alarms, UL 539, unless otherwise specified in the test procedure.

Note: Depending upon the construction of the alarm, it may be necessary to repeat the oven tests with test samples rotated 90 degrees and 180 degrees from the original test position.

- 42.8.2.4 Connect the specimen to its supply and indicating equipment, and allow it to stabilize for at least 15 minutes, unless otherwise specified by the manufacturer.
- 42.8.2.5 Conduct the Oven Test as described in the Standard for Single and Multiple Station Heat Alarms, UL 539 the response times measured in those tests may be used as the heat response values for the purposes and measure the heat response value as defined by the manufacturer's heat sensor specification.

42.8.3 Sensitivity test – sensors other than smoke, gas or heat


42.8.3.1 For sensors other than smoke, gas or heat, including nuisance sensors, the manufacturer shall provide a method for measuring the sensor's response acceptable limits.

43 Directionality Test

43.1 The sensitivity of the smoke alarm shall comply with the requirements of Section 42, Sensitivity Test, using gray smoke/aerosol in any orientation with the air flow in the chamber. The smoke alarm is to be tested at an air velocity of 0.16 ±0.01 m/s (32 ±2 fpm) in its least favorable position for smoke entry and at each 90 degree angle from this position. The positions are to include all four compass points with the smoke alarm in a horizontal position with the oncoming air directed to each of four sides and with the smoke alarm positioned on edge with the smoke alarm front facing the oncoming air illustrated in Figure 43.1. The locations of the least and most favorable smoke entry positions for the smoke sensors in the unit shall be marked on all smoke alarms to be used in subsequent tests. See 42.1.1, Stability Test, Section 47, and Stability Tests – Multi-Criteria Smoke Alarms Incorporating Gas Sensor(s), Section 48. The variation of the highest and lowest sensitivity position from the mean shall not exceed 50 percent.

Figure 43.1

Directionality test

- 43.2 For multi-criteria smoke alarms use the least favorable smoke entry position determined in $\underline{43.1}$ for the measurements used in the Sensitivity Test, Section $\underline{42}$.
- 43.3 In this test, the air velocity is measured prior to the sample mounted in the chamber and not adjusted during the test. Refer to Figure 43.1, Directionality Test.
- 43.4 Two samples, one set at the maximum production sensitivity, and one set at the minimum sensitivity, shall be employed for this test.
- 43.5 A sample to be positioned on edge is to be mounted on a wooden board so that the edge of the sample rests on the mounting platform. The mounting board is to:
 - a) Extend a maximum of 50.8 mm (2 in) beyond the vertical sides of the sample, and
 - b) Have no extension beyond the top edge.
- 43.6 When the height of a smoke alarm is too great to be accommodated in the platform test area, it is to be located adjacent to the left edge of the mounting platform with the top edge touching the roof of the test compartment and corresponding adjustments made in the location of the velocity measurement. See Typical Sensitivity Smoke Test Chamber Construction, Annex A, A1.3.

44 Velocity-Sensitivity Test

44.1 Smoke sensor

- 44.1.1 The smoke sensitivity of the smoke alarm shall not vary more than 3.3 percent per m (1 percent per ft) obscuration outside of the production window limits, using gray smoke/aerosol, when tested in accordance with the sensitivity test at air velocities of 0.16 and 1.52 m/s (32 and 300 fpm) ±10 percent. In no case shall the smoke sensitivity of a single criteria smoke alarm exceed the limits specified in 42.1.1 for gray smoke/aerosol.
- 44.1.2 Two smoke alarms, one at maximum and one at minimum sensitivity, shall be subjected, in turn, to the sensitivity test; first at a velocity of 0.16 m/s (32 fpm), and then at a velocity of 1.52 m/s (300 fpm). At 1.52 m/s the smoldering rate of the cotton lamp wick, punk stick, aerosol, or equivalent build-up is to be such that the relationship between the MIC output and percent light transmission remains within the limits represented by the curve illustrated in <u>Figure 42.1</u>. The visible smoke buildup rate is to be maintained within the limits illustrated in <u>Figure 42.2</u>.
- 44.1.3 For this test, the smoke alarms shall be oriented in the least favorable and most favorable positions for smoke entry.

44.2 Multi-criteria smoke alarm with gas sensor

44.2.1 The sensitivity of the gas sensor shall not vary by more than that specified in 38.3, Sensitivity shift criteria, when tested at an air velocity of 0.16 ±0.1 m/s and 1.52 m/s ±0.1 m/s (32 ±2 fpm and 300 fpm ±10 percent).

45 Smoke Entry (Stack Effect) Test

45.1 The sensitivity of a smoke sensor as part of a smoke alarm intended to be mounted to an electrical box shall not vary by more than specified in Section 38.3, Sensitivity shift criteria, when subjected to the test conditions described in 45.2 45.4, which simulate air passing through an electrical conduit system that is connected to a smoke alarm.

Exception: Battery operated units not intended for connection to an electrical conduit are exempt from this test.

45.2 The test box shown in Figure 45.1 is to be employed. Fan operation is to be adjusted so that the free flow air velocity at the center of the hole in the base is 91.4 mpm (300 fpm). With the hole covered, the fan shall produce a back pressure measuring between 0.304 and 0.381 mm (0.012 and 0.015 in) (2.99 Pa and 3.74 Pa) of water. The fan is then to be turned off. A smoke alarm is to be installed in accordance with the manufacturer's published instructions, facing downward and covering the hole in the base of the test box, to simulate installation in a ceiling.

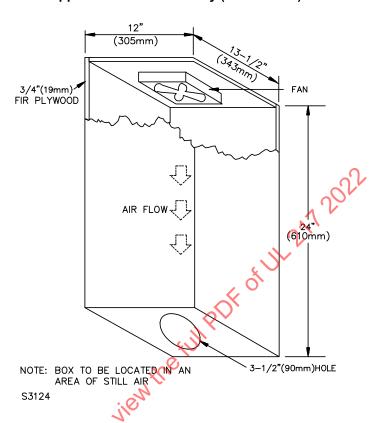


Figure 45.1
Test apparatus for smoke entry (stack effect) test

- 45.3 The entire test box/smoke alarm assembly is to be placed (alarm side down) in an opening provided in a modified top door of the test chamber described in $\underline{A1.3}$ of Annex \underline{A} . The smoke alarm shall then be tested for sensitivity while in this position. Two samples shall be tested, one at maximum and one at minimum sensitivity.
- 45.4 The procedure described in $\frac{45.2}{}$ and $\frac{45.3}{}$ is to be repeated on both smoke alarms, except the fan is to be turned on.

46 Reduction in Light Output Test

- 46.1 The sensitivity of a smoke alarm employing an LED as the functional light source shall not be reduced to less than the minimum levels when the light output from the LED is reduced to 50 percent of the intended output or to the light level anticipated at the end of the devices' specified lifetime. The light level anticipated at the end of the devices' specified lifetime shall be determined through manufacturer's testing of the LED. During this determination, the duty cycle and test temperature of the LED under test shall be selected such that the burn-in test length multiplied by the as-tested duty cycle, divided by the end-use duty cycle, and related to the maximum device operating temperature by using the Arrhenius equation (as described in C4.2.1), is equal to or greater than the devices' specified lifetime.
- 46.2 Five samples, calibrated to the minimum sensitivity, shall be subjected to the Sensitivity Test, Section 42, while connected to a source of rated voltage and frequency. Following this, the light output from the LED is to be reduced to 50 percent of the intended output or to the light level anticipated at the end of the devices' specified lifetime when less than 50 percent light reduction, by reducing the supply voltage to the smoke alarm, or an equivalent method. (The level of reduction of light is to be determined initially by means of a light meter intended for this use, review of curve sheets, or the equivalent.) The

samples shall then be subjected to the Fire Tests, Section <u>50</u>, and the Smoldering Smoke Test, Section <u>51</u>. In no case shall the single criteria smoke alarm exceed the limits specified by <u>Table 37.1</u> or <u>42.1.1</u>.

- 46.3 A smoke alarm which employs a battery as the main source of power, the test is to be conducted at the worst case sensitivity levels as determined in Section 57, Overvoltage and Undervoltage Tests.
- 46.4 For smoke alarms equipped with drift compensation, the Sensitivity Test, Section $\underline{42}$, shall be conducted after the samples have been allowed to compensate as defined in $\underline{39.4}$, in response to the light output reduction. The Fire Tests, Section $\underline{50}$, and Smoldering Smoke Test, Section $\underline{51}$, shall be conducted in the operational mode (normal light, or reduced light) that results in the least sensitive smoke alarm as measured in the Sensitivity Test.

47 Stability Test

- 47.1 There shall be no false alarms of a smoke alarm set at the maximum smoke alarm sensitivity setting when two representative samples are subjected to the test specified in (a) (f). Different smoke alarms may be employed for each test. A test is not required to be conducted when the principle of operation is such that conducting the test has no possible effect. A smoke alarm for which smoke alarm sensitivity is affected by air velocity is to be tested in the position in which a false alarm is most likely to occur.
 - a) Operation (with a laminar flow) for 90 days in a relatively clean atmosphere in an air stream having a velocity of 1.5 \pm 0.13 m/s (300 \pm 25 fpm) in an ambient of 23 \pm 2°C (73.4 \pm 3°F) and 30 50 percent relative humidity. For a smoke alarm with a maximum specified installation ambient higher than 38°C refer to $\frac{47.7}{4}$ (a).
 - b) Three plunges from an ambient humidity of 20 ± 5 percent relative humidity to an ambient of 93 ± 2 percent relative humidity at 23 ± 2 °C (73.4 ± 3 °F).
 - c) Ten cycles of temperature variation between minus 17.8°C (0°F) and plus 66°C (150°F) for extended temperature range; the following formulas shall be applied:
 - 1) Low temperature $= (T_{LO} 0^{\circ}C) 17.8^{\circ}C \text{ or } (T_{LO} 32^{\circ}F) 0^{\circ}F$
 - 2) High temperature = $(T_{HI} 38^{\circ}C) + 66^{\circ}C$ or $(T_{HI} 100^{\circ}F) + 150^{\circ}F$

Where T_{LO} and T_{HI} are the respective low and high operating temperatures.

- d) Ten cycles of a 50.8 mm (2 in) change of air pressure starting from 787 − 737 mm ±12.7 mm (31 − 29 in ±0.5 in) of mercury.
- e) Fifty cycles of momentary (1/2 second) interruption of the smoke alarm power supply at a rate of not more than 6 cycles per minute.
- f) Twenty cycles subjected to high light intensity from a distance of 0.3 m (1 ft), 10 cycles (e.g., 150-watt incandescent lamp), 10 cycles using a 4 light fluorescent fixture (e.g., 40-watt daylight lamps) at a rate of 4 cycles per minute. Each cycle is to consist of 10 seconds of exposure and 5 seconds non-exposure. The peak luminous intensity of the incandescent lamp test shall be 175 candela. The peak luminous intensity of the fluorescent fixture test shall be 424 candela.
- 47.2 Two smoke alarms, set at the maximum smoke alarm sensitivity setting, shall be mounted in a position of intended use, energized from a source of supply in accordance with <u>37.3</u>, Test voltages, and subjected to each of the test conditions in <u>47.1</u>.
- 47.3 For <u>47.1(b)</u>, the smoke alarm is to be transferred from the 20 percent humidity environment to the 90 percent humidity environment as follows:

- a) The smoke alarm is to be first conditioned in the 20 percent humidity environment for at least 1/2-hour.
- b) The smoke alarm shall be transferred from the 20 percent humidity environment to the 90 percent humidity environment in less than 5 seconds.
- c) The smoke alarm shall remain powered during each transfer and while in the sample conditioning environment.
- d) When conducting the transfer of the smoke alarm between conditioning environments, the smoke alarm shall:
 - 1) Be placed in an enclosure that was conditioned in the same environment as the smoke alarm, such as a portable cooler,
 - 2) The enclosure shall be closed, prior to opening the door of the test environment,
 - 3) Then the enclosure containing the smoke alarm shall be transferred between environments.
- e) Once the enclosure containing the sample is placed in the 90 percent relative humidity conditioning environment:
 - 1) The target temperature and humidity within the conditioning environment shall be reached within 3 minutes of placing the enclosure, containing the sample, within the conditioning environment.
 - 2) The enclosure shall be opened after the target temperature and humidity within the conditioning environment have been reached.
- f) After conditioning the smoke alarm in the 90 percent environment for at least 1/2-hour, the smoke alarm is to be placed in the 20 percent environment, repeating (a) (f) two additional trials.
- 47.4 The transfer method noted within $\frac{47.3}{47.3}$ (a) (f) may be conducted using an alternate means provided that the smoke alarm is only exposed to the two conditioning environments as noted in $\frac{47.1}{10}$ (b).
- 47.5 For 47.1(c), the time of cycling from one extreme to the other is to be a maximum of 1 hour and a minimum of 5 minutes and not less than 15 minutes at each temperature level. For 47.1(d), the time of change from one pressure to the other is to be 30 seconds. For 47.1 (e) and (f), the smoke alarm is to be positioned in a plane to permit the maximum entry of light into the chamber. Each cycle is to start at one test condition, changing to the other extreme, and returning to the original test condition.
- 47.6 The test samples subjected to 47.1 (a) (f) shall be tested for smoke sensitivity (see the Sensitivity Test, Section 42, following the completion of each test. The response of any smoke alarm, when tested in accordance with the Sensitivity Test shall vary not more than that specified in Section 38.3, Sensitivity shift criteria.
- 47.7 The tests specified in (a) and (b) are an alternate test method to the 90-day stability test requirement of 47.1(a):
 - a) A smoke alarm shall operate for its intended signaling performance after being subjected for 90 days to an ambient temperature of 15 degrees below its maximum installation temperature (minimum 38 °C). Alternately, the smoke alarm may be subjected to a shorter time period and higher temperature as determined by the following equation:

$$\frac{4*D_1}{D_2} = e^{-\frac{\theta}{k} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$

Where:

 $D_1 = 90 \text{ days},$

 D_2 = proposed time period in days,

 T_1 = the temperature in Kelvin when testing for 90 days (minimum 23°C)

 T_2 = temperature in Kelvin when testing for proposed time period in days,

 $\theta = 0.65 \text{ eV}$ and

 $k = 8.62 \times 10^{-5} \text{ eV/K}$

allowed by 10 cycles of change of air velocity from 0 to 1.5 ±0.13 m/s. No false alarms shall occur following the aging or during exposure to the air velocity; and

b) Sensitivity measurements recorded before and after the exposures in (a) shall be conducted in accordance with 42.5, Test method. The sensitivity values shall be in accordance with 38.3, Sensitivity shift criteria.

48 Stability Tests – Multi-Criteria Smoke Alarms Incorporating Gas Sensor(s)

- 48.1 Three sets of two representative smoke alarm samples set at the manufacturer's defined gas sensitivity setting shall be subjected to a series of tests as outlined in Section 42, Sensitivity Test, Section 47 Stability Test, Section 55, Selectivity Test Multicriteria Smoke Alarms Incorporating Gas Sensor(s), Section 63, Variable Ambient Temperature Test, and Section 64, Humidity Test.
- 48.2 The smoke alarms shall be mounted in a position of normal use, energized from a source of supply in accordance with 37.3, Test voltages, and subjected to the following tests:
 - a) Two smoke alarm samples are to be tested sequentially to the following tests:
 - 1) Sensitivity test gas sensor of a multi-criteria smoke alarm, 42.8,
 - 2) Stability Tests, 47.1(c),
 - 3) Selectivity Test Multicriteria Smoke Alarms Incorporating Gas Sensor(s), Section 55,
 - 4) Operation in high and low ambients, 63.1.
 - b) Two smoke alarm samples are to be tested according to <u>63.3</u>, Effect of shipping and storage multi-criteria smoke alarms incorporating gas sensor(s),
 - c) Two smoke alarm samples are to be tested according to the Humidity Test, Section 64.
- 48.3 The gas sensitivity reading shall not in any case exceed the limits specified in <u>42.8</u>, Sensitivity test gas sensor of a multi-criteria smoke alarm.

49 Stability Tests for Multi-Criteria Smoke Alarms Incorporating CO Gas Sensor(s)

- 49.1 Two representative multi-criteria smoke alarm samples set at the manufacturer's defined CO gas sensitivity setting shall be subjected to the following CO gas concentrations and exposure times (absent of smoke or simulated smoke) and shall not produce an alarm signal:
 - a) Exposure to 30 ±3 ppm of CO for a minimum of 30 days;
 - b) Exposure to 70 ±5 ppm of CO for a minimum of 60 minutes; and

- c) Exposure to an increase in CO of 16 ppm per minute (starting from fresh air) for a minimum of 19 minutes.
- 49.2 Tests defined in 49.1 shall be conducted using equipment and methods identified in the Sensitivity Test specified in the Standard for Single and Multiple Station Carbon Monoxide Alarms, UL 2034.

50 Fire Tests

50.1 General

- 50.1.1 Fire test fuel guidelines are provided, but actual fuel amounts used can be varied to meet the required profiles as specified in the following figures: Figure 50.1, Figure 50.2, Figure 50.5, Figure 50.14.
- 50.1.2 All combustibles shall be ignited with the device as described. The bottom of the container for all combustibles is to be 0.9 m (3 ft) \pm 7.6 cm (3 in) above the floor. Both the paper and wood brand are to be preconditioned in a relative humidity of 50 \pm 5 percent at a temperature of 23 \pm 2°C (73.4 \pm 3°F) for at least 48 hours prior to the test.
- 50.1.3 Each smoke alarm subjected to the tests specified in 50.2 50.5 shall produce the alarm sound for not less than two complete cycles of the temporal pattern when installed as intended in service and exposed to two types of controlled test fires. The response time of each smoke alarm shall not be more than 4 minutes for each flaming fire type. Different samples may be used for each flaming fire test. See 50.2 50.5.
- 50.1.4 With reference to the requirements of 50.1.1, and in lieu of employing smoke alarms with a precalibrated alarm setting, it is not prohibited to employ smoke alarms that are equipped with means to provide an analog output (electrical measurement) of the alarm sensitivity during the course of the test trials. The smoke alarms are then subjected to the Sensitivity Test, Section 42, in the smoke box with the analog output recorded to translate the electrical reading into an obscuration measurement. It is possible to obtain the minimum production sensitivity setting using this type of arrangement without conducting repeat tests after recalibration. This method is also usable for the Smoldering Smoke Test, Section 51.
- 50.1.5 Smoke alarms shall also be subjected to the following tests:
 - a) Flaming polyurethane foam test, 50.4,
 - b) Smoldering Polyurethane Foam Test, Section 52,
 - c) Cooking Nuisance Smoke Test, Section 53,
 - d) Go/No-Go Flaming Polyurethane Foam Test, Section <u>54</u>.
- 50.1.6 For smoke alarms incorporating nuisance sensors, the manufacturer shall provide a method or means to simulate the nuisance condition. Tests shall be performed as defined in Section $\underline{42}$ (Sensitivity Test), $\underline{50.2} \underline{50.5}$ of the fire tests, Section $\underline{51}$ (Smoldering Smoke), Section $\underline{52}$ (Smoldering Polyurethane Foam), and Section $\underline{53}$ (Cooking Nuisance) with the simulated nuisance condition activated.
- 50.1.7 Smoke alarms incorporating nuisance sensors shall also be subjected to the tests under normal operating conditions without the nuisance condition present or simulated as specified in 50.1.5.

50.2 Paper fire

- 50.2.1 The following materials and procedures are to be used for the paper fire test. Dimensions and locations of test apparatus are intended for reference only. The smoke produced in this section (Paper Fire) shall have a particle composition that falls within specified profiles and may require the adjustment of the fuel quantity to achieve that result.
- 50.2.2 The materials and procedures shall be used as follows:
 - a) Combustible Shredded newsprint preconditioned in a relative humidity of 50 \pm 5% at a temperature of 23 \pm 2°C (73 \pm 3.6°F) for at least 48 h prior to the test, is to be cut in strips as follows:

Width: 6 - 10 mm (0.25 - 0.375 in)

Length: 25.4 - 102 mm (1 - 4 in)

Total weight: 42.6 g (1.5 oz)

The paper, cut and weighted to the dimensions above, is to be placed into the receptacle, see (b), with the bottom covered temporarily by a flat plate. The receptacle is to be tamped periodically during the pouring operation until the paper contents are even with the top of the receptacle. The paper is then to be further tamped by hand or by a rod 25.4 mm (1 in) in diameter until the paper level is of a height specified by country, see #1 or #2, but below the top edge of the receptacle. A hole approximately 25.4 mm (1 in) in diameter is to be formed through the center from top to bottom of the paper. The temporary bottom plate is then to be removed and the assembly mounted 0.9 m (3 ft) above the floor on a 127-mm (5-in) diameter ring support at a height of 102 mm (4 in).

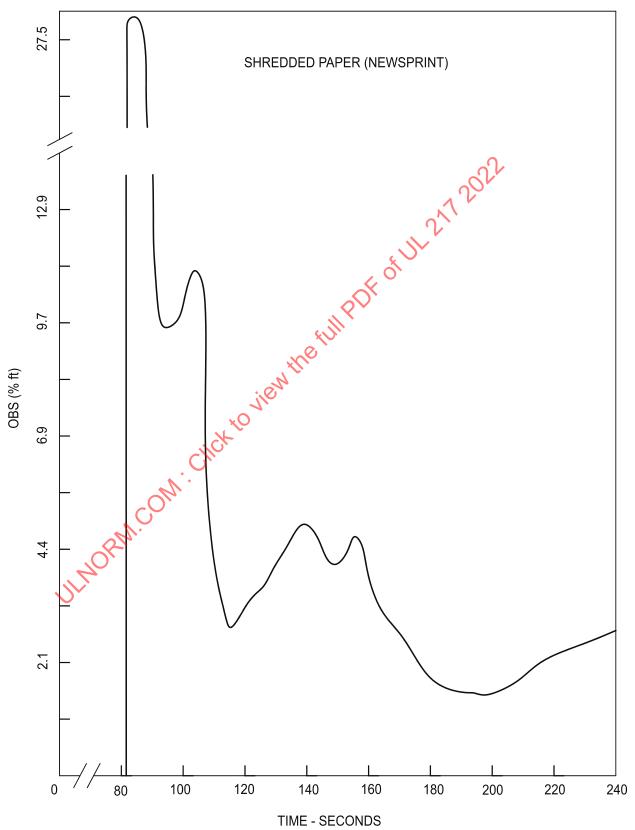
b) Receptacle – To be formed of sheet metal seamed together, with no air gap at the seam (open at both ends). Dimensions are as follows:

Thickness: $0.40 \text{ mm} \pm 2 \text{ mm} (0.031 \text{ in} \pm 0.08 \text{ in})$

Diameter: 101 mm ±2 mm (4 in ±0.08 in)

Height: 300 mm ±2 mm (12 in ±0.08 in)

c)Point of Ignition – The probe tips of the igniter shall be placed at the bottom center of the receptacle and arcing sustained for up to 5 seconds.

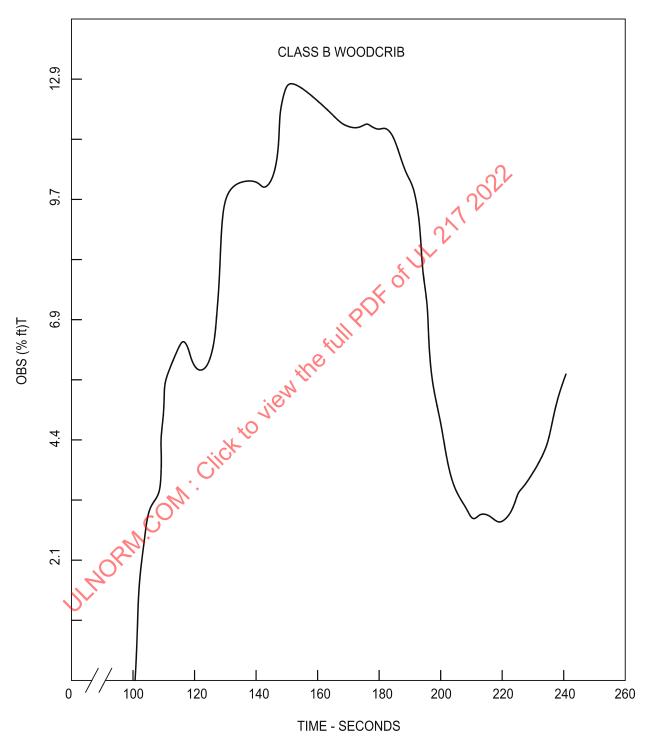

d)Smoke Profile - The test fire shall follow the test profile specified in Shredded paper (newsprint) Figure 50.1. The test shall be terminated 4 minutes after ignition. All three samples shall respond prior to the termination of the test. Refer to Figure 50.1. Additionally, the following conditions apply:

- 1)Flame breakthrough is to occur at between 1 and 3 minutes.
- 2) The first principle peak is to occur at between 1 and 3 minutes.
- 3)Smoke is to peak at between 0.45 and 0.66 OD/m (0.137 and 0.2 OD/ft) [64.4 and 78.1 %/m obscuration (27 and 37 %/ft obscuration)] at the ceiling smoke alarm location, and between 0.345 and 0.66 OD/m (0.105 and 0.2 OD/ft)) [54.8 and 78.1 %/m obscuration (21.5 and 37 percent per ft obscuration)] at each sidewall location.
- 4)There is to be between 20 and 40 seconds of 0.058 OD/m (0.018 OD/ft) [12.56 %/m (4 %/ft obscuration)], or higher obscuration at the ceiling smoke alarm location, and between 10 and 30 seconds of 0.15 OD/m (0.045 OD/ft) [29.26 %/m (10 %/ft) obscuration] or higher obscuration at the sidewall alarm locations.

5) The secondary peak is not to exceed 0.198 OD/m (0.061 OD/ft)) [36.7 %/m (13%/ft) obscuration] at any smoke alarm location.

JI. MORM. COM. Cick to view the full POF of UL 21/2022

Figure 50.1
Shredded paper (newsprint) profile



50.3 Wood fire

- 50.3.1 The following materials and procedures shall be used for the wood fire test. Dimensions and locations of test apparatus are intended for reference only. These are variable as long as the correct build up rates are achieved.
 - a) Combustible^a– A wood brand formed of three layers of kiln dried fir strips, each strip 19.1 mm (3/4 in) square in cross section, 152 mm (6 in) long with six strips in each layer, is to be used. Wood strips are to be nailed or stapled together with adjacent layers at right angles to each other. Overall dimensions of the wood brand are to be 152 by 152 by 64 mm (6 by 6 by 2-1/2 in). The brand is to be supported on a 127-mm (5-in) diameter ring support 0.9 m (3 ft) above the test room floor.
 - b) Promoter The wood brand is to be ignited by burning 4 milliliters of denatured alcohol consisting of 190 proof (95 percent) ethanol to which 5 percent methanol is added as a denaturant. The alcohol is to be placed in a 38 mm (1-1/2 in) diameter, 25.4-mm (1-in) deep metal container, the bottom of which is to be 89 mm (3-1/2 in) below the bottom of the wood brand and centered so that the flame does not break through the top of the wood brand. The container is to be supported by a 6.4-mm (1/4-in) hardware cloth. The alcohol is to be placed in the container no earlier than 30 seconds prior to ignition.
 - c) Point of Ignition Ignition is to be by probes in alcohol. Probe tips of the igniter are to be placed as near the container lip as possible without arcing to the sides.
 - d) Smoke Profile (Refer to Figure 50.2) For this test the following conditions apply:
 - 1) Smoke buildup shall begin between 80 and 120 seconds at the ceiling alarm location; and between 60 and 120 seconds at each sidewall alarm location.
 - 2) There shall be at least 60 seconds of 0.058 OD/m (0.018 OD/ft) [12.56 percent/m (4 percent/ft) obscuration] or higher obscuration at all alarm locations.
 - 3) Maximum obscuration shall not exceed 0.265 OD/m (0.081 OD/ft) [45.8 percent/m (17 percent/ft) obscuration] at the ceiling alarm location; and 0.46 OD/m (0.14 OD/ft) [66.2 percent/m (27.5 percent/ft) obscuration] at either sidewall alarm location.
 - 4) Flame breakthrough shall occur between 150 and 190 seconds.
 - 5) Length of test shall be 4 minutes.

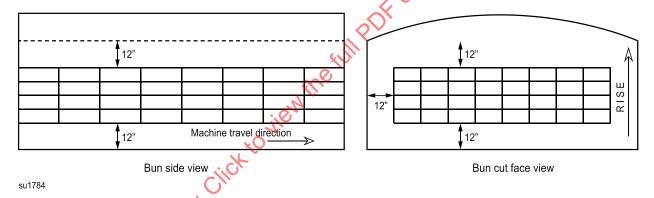
^a Douglas Fir, S4 (smooth on all sides), clear of knots and holes, weight – 0.48 – 0.6 kg per 3.05 m length (1.05 – 1.32 lbs. per 10 ft length).

Figure 50.2
Woodcrib profile

s2485f

50.4 Flaming polyurethane foam test

50.4.1 Combustible


50.4.1.1 Foam specifications

50.4.1.1.1 The foam shall be a pure polypropylene oxide polyol, polyether-based flexible polyurethane foam, produced using an 80/20 TDI blend. It shall not have any colorants or whitening additives, nor shall it have any fire retardant additives or post-production fire retardant treatment.

50.4.1.2 Foam physical properties

50.4.1.2.1 Foam test samples shall be cut horizontally with the longest sample dimension parallel to the bun machine direction, not less than 12 in. (30.5 cm) from top and bottom of bun and not less than 12 in. from bun sidewalls as shown in Figure 50.3.

Figure 50.3
Cutting diagrams for foam samples

(Figure courtesy of Polyurethane Foam Association)

50.4.1.2.2 The toam when measured at standard laboratory conditions of 23 \pm 2°C (73.4 \pm 3 °F) and 50 \pm 5 percent relative humidity shall have the physical properties specified in Table 50.1.

Table 50.1 Foam

Property	Range (average of 5 samples)	
Density	1.80 ±0.05 lb/ft ³	(28.8 ±0.8 kg/m³)
Indentation Force Deflection (IFD) 25% by ASTM D 3574, Standard Test Methods for Flexible Cellular Materials – Slab, Bonded, and Molded Urethane Foams, Test Method B1	30 ±3 lb/50 sq. in. IFD @ 25%	(4140 ± 414N/m²) IFD @ 25%

50.4.1.3 Foam combustion properties

50.4.1.3.1 The average of five samples of the polyether foam shall have the burning characteristic properties specified in <u>Table 50.2</u> when tested by ASTM E 1354, Standard Test Method for Heat and

Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, Cone calorimeter coupled to a particle analyzer based on mobility measurement and a gas analyzer. Test samples shall nominally measure 4 by 4 by 1 in. (100 by 100 by 25 mm). Samples shall be mounted using a horizontal sample holder with edge frame and restraining grid (HEG) and tested at a heat flux of 35 ±0.5 kW/m² with piloted ignition.

Table 50.2 Burning properties

Property	Range
Peak HRR	250 ±35 kW/m²
Effective HOC	25.8 ±1.6 kJ/g
Peak SRR	0.030 ±0 <mark>.004 m²</mark> /s
Effective Cross Section Area	0.11 ± 0.04 m²/g
Average particle diameter	0.08 ±0.03 micron
Average particle number density ×10 ⁶	3 .55 ±1.05 cm ⁻³
CO maximum concentration	170 ±25 ppm
CO ₂ maximum concentration	6500 ±1500 ppm

NOTE: Additional conditioning of the foam to ASTM E 1354 conditioning oritoria has been found to be beneficial for samples that did not initially meet the requirements listed in 50.4.1.3. wherill

50.4.2 Test procedure

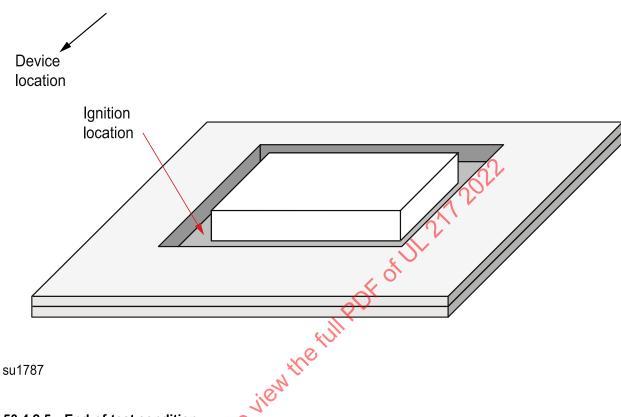
50.4.2.1 Sample dimensions

50.4.2.1.1 The foam test sample shall nominally measure 14.5 by 17.0 by 3.0 in. (368 by 432 by 76 mm). However, the exact quantity of fuel may be adjusted to obtain valid tests.

50.4.2.2 Sample conditioning

50.4.2.2.1 The foam test sample(s) shall be conditioned in air at a temperature 23 ±2°C (73.4 ±3°F) and 50 ±5 percent relative humidity for a minimum of 48 hours prior to testing.

50.4.2.3 Sample arrangement


50.4.2.3.1 Place the foam test sample on a base formed from aluminum foil with the edges folded up approximately 1 inch (25 mm) to provide a melt retention tray. The foil tray is placed on a nominal 5/8 in (16 mm) thick non-combustible tile such that the top of the tile is 2-3/4 in. (70 mm) above the floor such that the long dimension of the sample is perpendicular to the longest dimension of the room. The exact arrangement of the sample may be varied to obtain valid tests.

50.4.2.4 Point of ignition

Ignite the foam test sample at one of the corners closest to the devices under investigation. The exact position of ignition may be adjusted to obtain a valid test. A small quantity of a clean burning material [e.g., 5 mL (0.17 oz)] of methylated spirit or denatured alcohol) may be used to assist the ignition.

Figure 50.4

Example of sample arrangement and ignition location

50.4.2.5 End-of-test condition

50.4.2.5.1 The end-of-test condition shall be 6 minutes.

50.4.3 Test validity criteria (smoke profile)

50.4.3.1 The development of the fire shall be such that the curves of beam against time and beam against MIC fall within the limits shown in <u>Figure 50.5</u> and <u>Figure 50.6</u>, respectively.

Figure 50.5 Flaming foam test profile

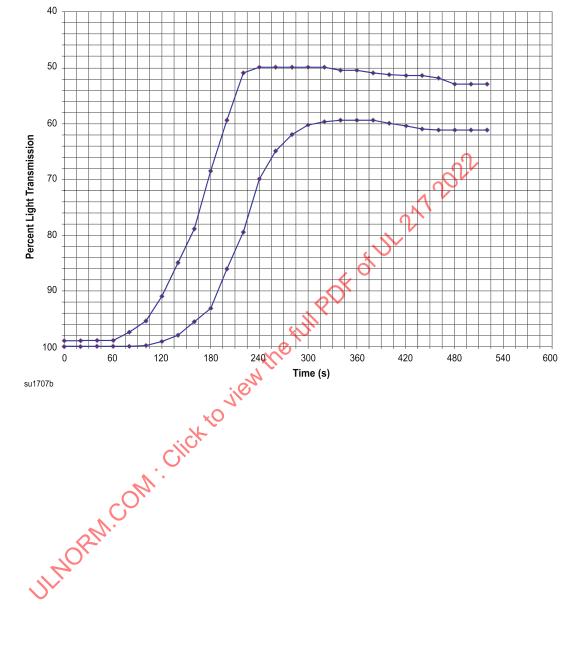
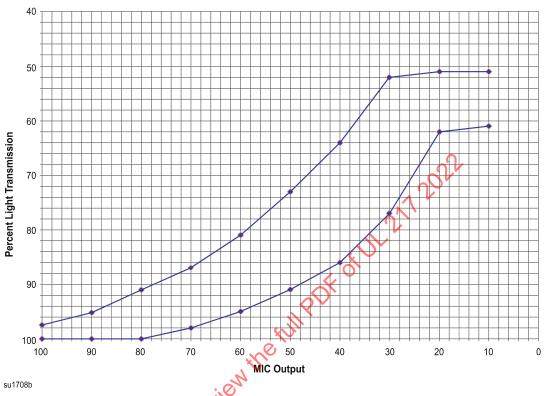
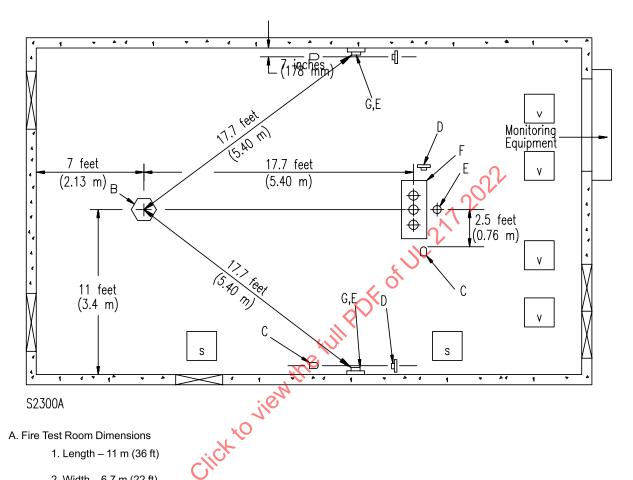



Figure 50.6
Flaming foam measuring ionization chamber/light beam limits


50.4.4 Acceptance criteria

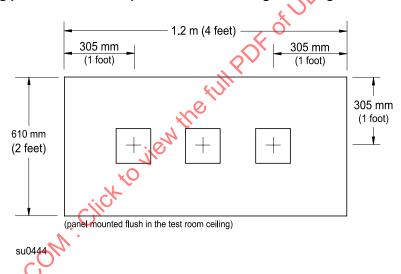
50.4.4.1 All alarms shall produce an alarm signal at or before an obscuration limit of 5%/ft (15.47 percent per meter) [0.0223 OD/foot (0.0730 OD/m)] at each alarm location as measured by the photocell-lamp assembly described in Annex A1.3 (f) and (m).

50.5 Test method

50.5.1 The fire tests shall be conducted in a room having a smooth ceiling with no physical obstructions. Air movement in the test room is to be minimal. The distance from the base of the combustible to the ceiling shall be 7 ft. (2.1 m). The room is to be provided with a means for the removal of smoke. Heating, humidity, and air conditioning shall be provided for maintaining the room ambient, when required. Specified dimensions are for reference only and are variable as long as the correct smoke build up rates are achieved. For room dimensions see Figure 50.7.

Figure 50.7 Fire test room

A. Fire Test Room Dimensions

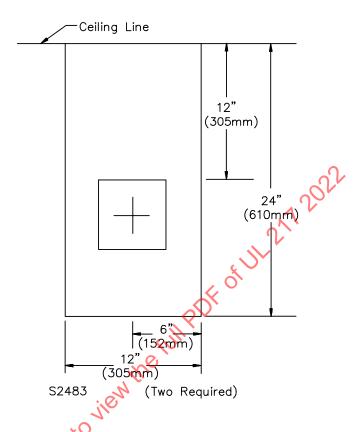

- 1. Length 11 m (36 ft)
- 2. Width 6.7 m (22 ft)
- 3. Ceiling height 3.0 m (10 ft) suspended type. Consists of 0.6 by 1.2 m (2 by 4 ft) by 15.9 mm (5/8 in) thick noncombustible fissured mineral fiber layer in panels.
- B. Test Fire
 - 1. 0.91 m (3ft) above floor for the Fire Tests
 - 2. 203 mm (8 in) above floor for the Smoldering Smoke Test
- C. Lamp Assembly 102 mm (4 in) below ceiling, 178 mm (7 in) from each side wall.
- D. Photocell Assembly Spaced 1.5 m (5 ft) from lamp, photocell center 102 mm (4 in) below ceiling, 178 mm (7 in) from each side wall.
- E. Measuring Ionization Chamber (MIC)
- F. Test Panel, Ceiling Mounted Alarms see Figure 50.8 and Figure 50.10.
- G. Test Panel, Sidewall Mounted Alarms see Figure 50.9 and Figure 50.10.
- S. Air Supply
- V. Exhaust Vents

- 50.5.2 The tests shall be conducted at 50 ±10 percent relative humidity in an ambient temperature between 20.0 and 27°C (68 and 81°F). The smoke alarm samples, each adjusted to the minimum smoke alarm sensitivity, shall be energized from a source of supply in accordance with the requirements specified in 37.3, Test voltages.
- 50.5.3 A smoke alarm intended for flush mounting is to be mounted flush with the mounting base. The ceiling mounted smoke alarms shall be mounted such that the least favorable position of the center sample faces the oncoming smoke flow, with the remaining samples rotated 120 and 240 degrees respectively. The wall mounted smoke alarm shall be placed in the least favorable position of smoke entry with respect to the oncoming smoke flow unless the manufacturer's published instructions indicate a specific mounting arrangement, or the mounting position is obvious.

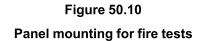
50.5.4 When intended for ceiling mounting only, three smoke alarms shall be tested on a ceiling panel; see <u>Figure 50.8</u>.

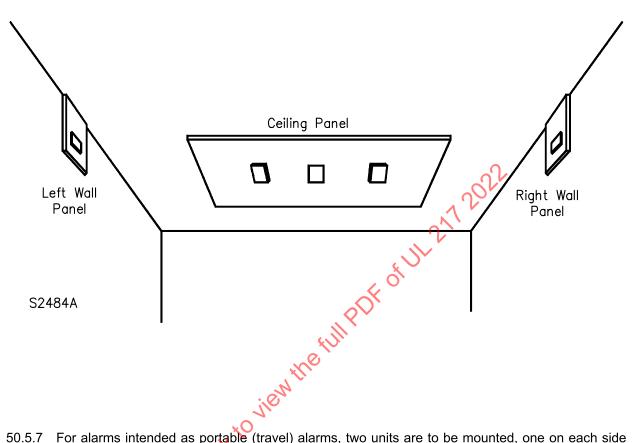
Figure 50.8

Ceiling panel size and sample location for ceiling mounting of smoke alarms



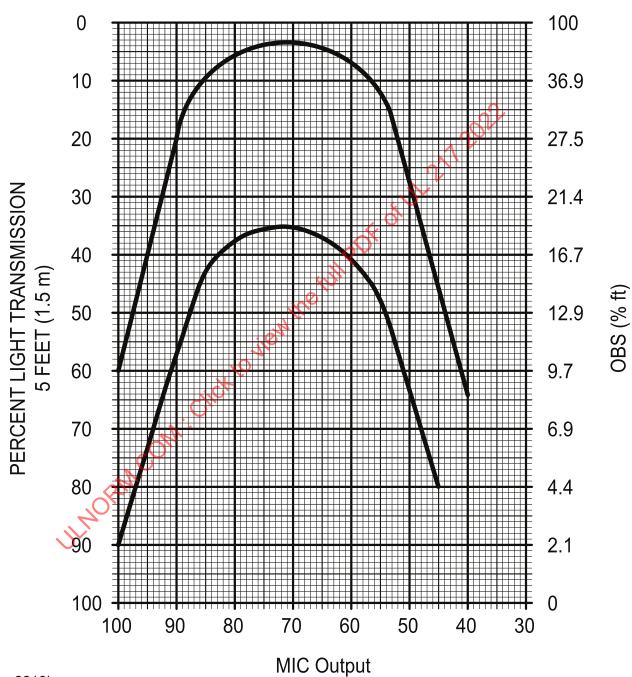
50.5.5 When intended for wall mounting only, two smoke alarms shall be tested, one on each sidewall; see Figure 50.9.


NOTE: Distance less than 305 mm (12 in), and not less than 102 mm (4 in) is permissible only when so specified in the manufacturer's published instructions.


Figure 50.9

Test panel and alarm location for side wall mounted alarms

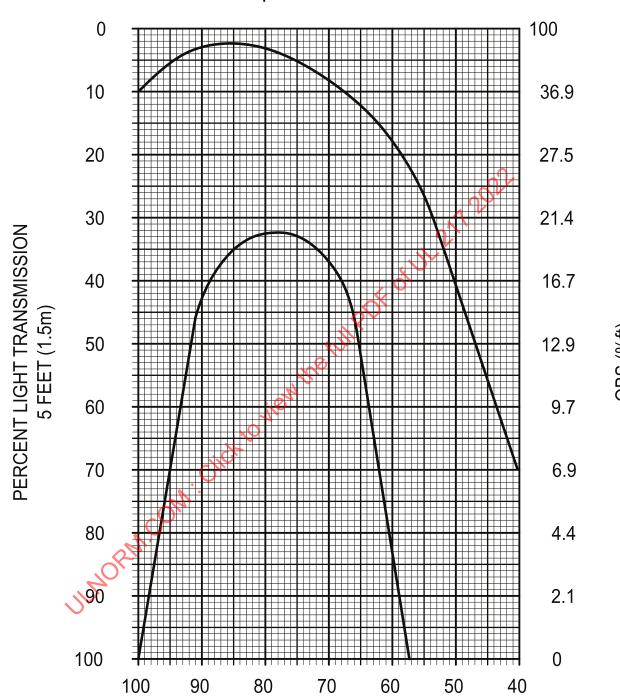
50.5.6 For smoke alarms intended for both wall and ceiling mounting, five smoke alarms shall be tested: three on the ceiling and one on each side wall; see <u>Figure 50.8</u> – <u>Figure 50.10</u>.



- 50.5.7 For alarms intended as portable (travel) alarms, two units are to be mounted, one on each side wall, 406 mm (16 in) from the ceiling to the top of the alarm.
- 50.5.8 All smoke alarm samples shall respond by generating an alarm signal to the test fire for each combustible. The test time is to start at ignition. The smoke obscuration level at each smoke alarm location is to be monitored by a photocell-light-beam assembly, mounted directly on the ceiling, on each side wall, and spaced 1.5 m (5 tt) apart. Combination and multi-criteria smoke alarms shall be provided with means for monitoring each principle of operation during testing. Each sensor shall contribute in response, either wholly or partially to at least one of the test fires in Section 50 or to the Smoldering Smoke Test, Section 51, unless the sensor is only used to identify nuisance alarm condition. See Figure 50.7.
- 50.5.9 To determine the acceptability of each test fire; the smoke profile curves as described in each fire test shall be obtained for the specific combustible. Consult the test profiles in Figure 50.1, Figure 50.2, Figure 50.7, Figure 50.11, Figure 51.1 and Figure 51.2.
- 50.5.10 Measuring ionization chambers (MIC) shall be used to measure the relative buildup of particles of combustion during each trial at each smoke alarm location for the wood and paper fires. A monitoring head shall be located at each smoke alarm location as shown in Figure 50.7.
- 50.5.11 Prior to each test, each MIC is to be calibrated in clean air for a value of 100 picoamperes. As the smoke level increases during the test, the meter reading decreases.
- 50.5.12 To determine the acceptability of the test trial for each combustible and each smoke alarm location, the relationship between the MIC output (ordinate) and the percent light obscuration (abscissa) is

to be plotted. The data generated is to remain within the limits represented by the curves illustrated in Figure 50.11 – Figure 50.14.

Figure 50.11


Paper fire – ceiling location

s2218b

Figure 50.12

Paper fire – wall location

MEASURING IONIZATION CHAMBER (MIC) VALUE-PICOAMPERES S2219b

Figure 50.13 Wood fire - ceiling location

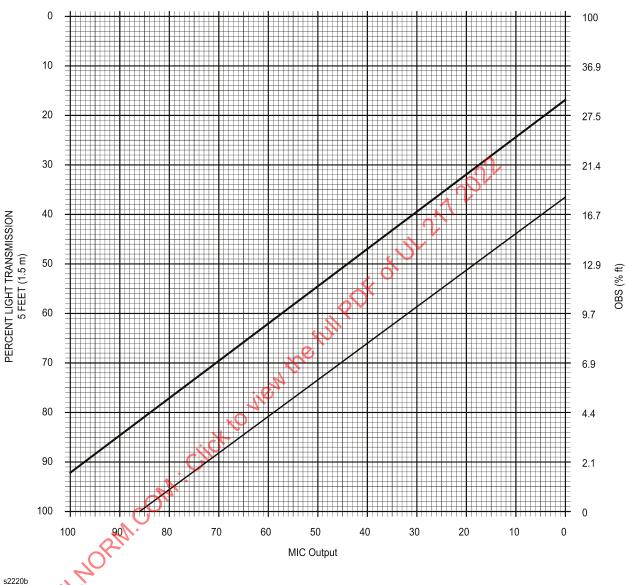
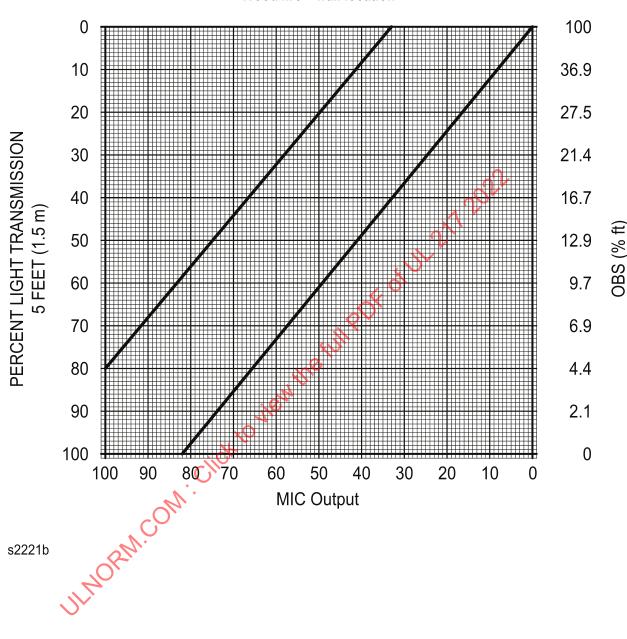
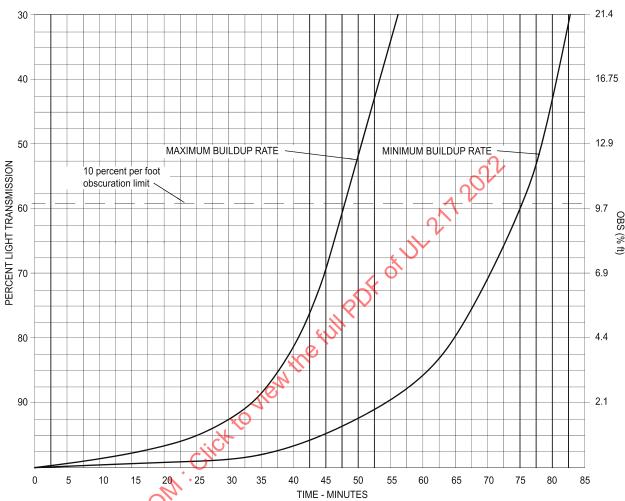



Figure 50.14 Wood fire - wall location



s2221b

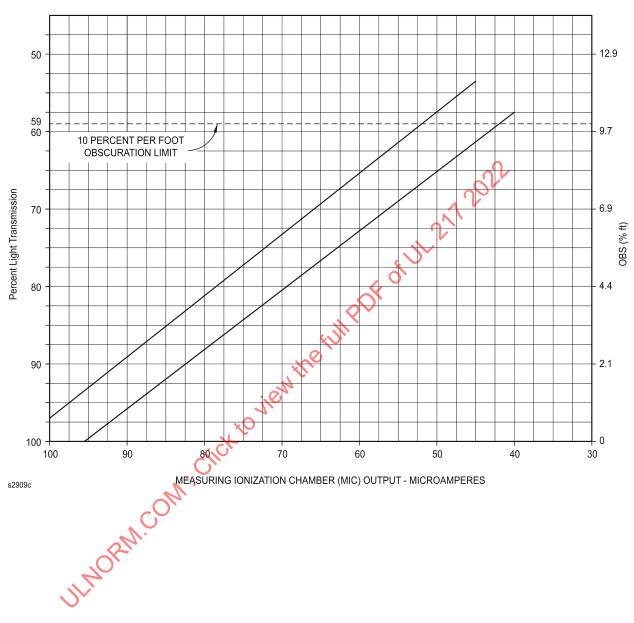
51 Smoldering Smoke Test

- 51.1 Each smoke alarm shall produce an alarm sound for not less than two complete cycles of the temporal pattern when installed as intended in service and exposed to the following controlled smoldering smoke condition.
- 51.2 Each smoke alarm shall produce an alarm when installed as intended in service, and exposed to the following controlled smoldering smoke condition.
- 51.3 Unless specifically indicated otherwise in the manufacturer's published instructions, the alarms are to be installed in the least favorable position for smoke entry (except where noted in Test method, 50.5) with respect to the smoldering smoke source as determined by the Directionality Test, Section 43. Smoke alarms adjusted to the minimum smoke alarm sensitivity are to be employed for this test. Alarms shall also comply with the Smoldering Polyurethane Foam test specified in Section 52.
- 51.4 The combustible for this test shall be Ponderosa pine sticks (nonresinous, free from knots or pitches) placed on a hotplate. All surfaces of each stick shall be relatively smooth and free from burrs or holes. The grain of the wood is to be parallel to the stick length. Each stick is to be conditioned for not less than 48 hours at 52°C (125°F) in an air-circulating oven. The stick weight is to be 16 ±2 grams (0.56 ±0.07 oz) following the oven conditioning. The following stick configuration has been used for this test:
 - a) Eight sticks placed in four parallel rows of two sticks each. The two sticks in each row are configured to touch at the 25.4 by 19.1 mm (1 by 3/4 in) face, with the 19.1 by 76.2 mm (3/4 by 3 in) face in contact with the hot plate. The rows are arranged such that outermost corner of the end sticks is flush with the edge of the hot plate. The distance between each row is roughly 12.7 mm (1/2 in).
- 51.5 The heat source shall be a hot plate capable of being adjusted to achieve the profile described in Figure 51.1.

Figure 51.1
Smoldering test profile

s2488c

51.6 The Smoldering Smoke Test is to be conducted in the same room and ambient conditions and under the same mounting conditions as employed for the Fire Tests. See <u>50.1</u> and <u>50.5</u>. The alarm samples are to be energized from a source of supply in accordance with <u>37.3</u>, Test voltages, except that alarms powered from a battery shall be energized by batteries that are depleted to their trouble signal voltage levels unless the minimum sensitivity is measured at rated battery voltage.


Flaming of the wood shall not occur before the obscuration level is reached.

51.7 All smoke alarms shall respond to the test trial before the obscuration levels exceed the following limits: 29.26 percent per m (10.0 percent per ft) [0.15 OD/m (0.0458 OD/ft)] at the smoke alarm location as measured by the photocell-lamp assembly described in $\underline{A1.3}$ (f) and (m) of Annex \underline{A} .

Flaming of the wood shall not occur before the obscuration level is reached.

- 51.8 Prior to the test, the MIC is to be calibrated in clean air for a value of 100 picoamperes. As the smoke level increases during the test, the meter reading decreases. See Figure 51.1. At no time during the test trial shall the buildup rate exceed 5 percent obscuration per minute as measured over the length of the 1.5 m (5 ft) light beam.
- 51.9 A Measuring Ionization Chamber (MIC) is to be used to measure the relative buildup of particles of combustion during the test. The monitoring head shall be located as shown in Figure 50.7.
- 51.10 Prior to the test, the MIC is to be calibrated in clean air for a value of 100 picoamperes. As the smoke level increases during the test, the meter reading decreases.
- 51.11 To determine the acceptability of the test trial, the relationship between the MIC output (ordinate) and the percent light transmission (abscissa) is to be plotted at 1-minute intervals during the test. The points generated are to remain within the curves illustrated in Figure 51.2.

Figure 51.2 Smoldering smoke test measuring ionization chamber/light beam limits

s2909c

51.12 For multi-criteria smoke alarms incorporating nuisance sensors, the smoldering smoke test shall be performed with the alarms in the presence of the nuisance. As an alternative, the manufacturer may simulate the nuisance condition in such a way that the alarm considers itself to be in the presence of the nuisance.

52 Smoldering Polyurethane Foam Test

52.1 Combustible

52.1.1 Foam specifications

52.1.1.1 The foam shall be a pure polypropylene oxide polyol, polyether-based flexible polyurethane foam, produced using an 80/20 TDI blend. It shall not have any colorants or whitening additives, nor shall it have any fire-retardant additives or post-production fire retardant treatment.

52.1.2 Foam physical properties

- 52.1.2.1 Foam test samples shall be cut horizontally with the longest sample dimension parallel to the bun machine direction, not less than 12 in. (30.5 cm) from top and bottom of bun and not less than 12 in. from bun sidewalls as shown in Figure 50.3.
- 52.1.2.2 The foam when measured at standard laboratory conditions of 23 \pm 2°C (73.4 \pm 3 °F) and 50 \pm 5 percent relative humidity shall have the physical properties specified in <u>Table 52.1</u>.

Table 52.1 Foam

Property Q	Range (average of 5 samples)	
Density	1.80 ±0.05 lb/ft ³	(28.8 ±0.80 kg/m ³)
Indentation Force Deflection (IFD) 25% by ASTM D 3574, Standard Test Methods for Flexible Cellular Materials – Slab, Bonded, and Molded Urethane Foams, Test Method B1	30 ±3 lb/50 sq. in. IFD @ 25%	(4140 ± 414N/m²) IFD @ 25%

52.1.3 Foam combustion properties

52.1.3.1 The average of five samples of the polyether foam shall have the burning characteristic properties specified in <u>Table 52.2</u> when tested by ASTM E 1354, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, Cone calorimeter coupled to a particle analyzer based on mobility measurement and a gas analyzer. Test samples shall nominally measure 4 by 4 by 1 in. (100 by 100 by 25 mm). Samples shall be mounted using a horizontal sample holder with edge frame and restraining grid (HEG) and tested at a heat flux of 35 ± 0.5 kW/m² with piloted ignition.

Table 52.2 Burning Properties

Property	Range
Peak HRR	250 ±35 kW/m ²
Effective HOC	25.8 ±1.6 kJ/g
Peak SRR	0.030 ±0.004 m ² /s
Effective Cross Section Area	0.11 ±0.04 m ² /g
Average particle diameter	0.08 ±0.03 micron
Average particle number density ×10 ⁶	3.55 ±1.05 cm ⁻³
CO maximum concentration	170 ±25 ppm
CO ₂ maximum concentration	6500 ±150 0 ք թյո

NOTE: Additional conditioning of the foam to ASTM E 1354 conditioning criteria has been found to be beneficial for samples that did not initially meet the requirements listed in 52.1.3.

52.2 Test procedure

52.2.1 Sample dimensions

52.2.1.1 The foam test sample shall nominally measure 14.5 by 17.0 by 4.0 in. (368 by 432 by 101 mm). However, the exact quantity of fuel may be adjusted to obtain valid tests.

52.2.2 Sample conditioning

52.2.2.1 The foam test sample(s) shall be conditioned in air at a temperature 23 ±2°C (73.4 ±3°F) and 50 ±5 percent relative humidity for a minimum of 48 hours prior to testing.

52.2.3 Test method

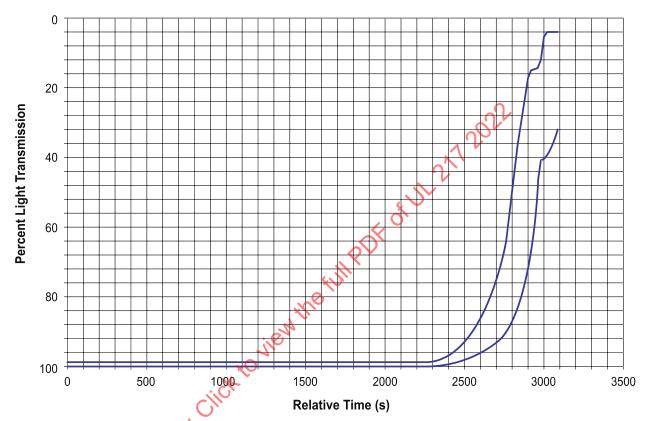
52.2.3.1 The foam test sample(s) shall smolder without transitioning to open flame. Smoldering may be induced by a number of means including radiant heaters, hot plates, and cartridge heaters.

52.2.4 End of test

52.2.4.1 General

52.2.4.1.1 The test shall be terminated after the smoke alarm has activated or the smoke obscuration has reached the acceptance criteria.

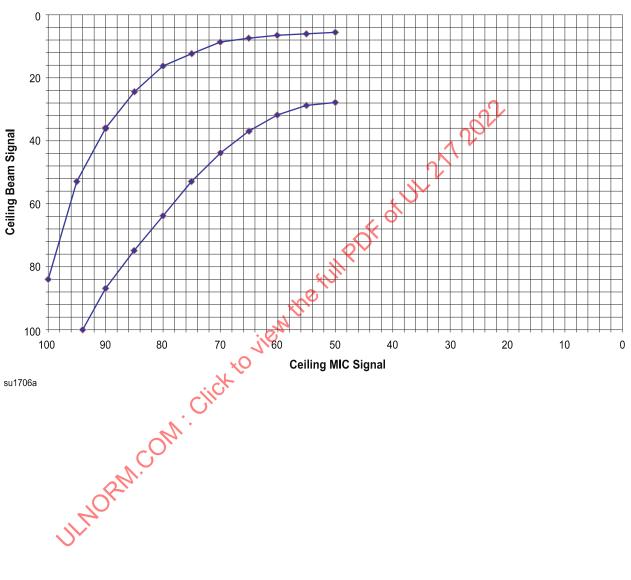
52.2.4.2 Early test termination criterion


52.2.4.2.1 The test shall be terminated if the foam blocks transition to flaming combustion before the end of the test.

52.3 Test validity criteria (smoke profile)

- 52.3.1 The test is invalid if the early test termination criterion, <u>52.2.4.2</u>, is observed.
- 52.3.2 The development of the fire shall be such that the curve of beam against time shall fall within the limits shown in Figure 52.1 when time-adjusted such that an obscuration level of 1.0 percent per foot (3.24).

percent per meter) [0.0044 OD/foot (0.014 OD/m)] at the alarm location as measured by the photocell-lamp assembly described in Annex A1.3 (f) and (m) occurs at a reference time of 2500 seconds.


Figure 52.1
Smoldering foam test profile (time-adjusted)

su1705b

52.3.3 The development of the fire shall be such that the curve of the measured beam against MIC falls within the limits shown in Figure 52.2.

Figure 52.2 Smoldering foam measuring ionization chamber/light beam limits

su1706a

52.4 Acceptance criteria

52.4.1 All alarms shall produce an alarm signal prior to the smoke obscuration exceeding 12.0 percent per foot (34.3 percent per meter) [0.0555 OD/foot (0.182 OD/m)] at each alarm location as measured by the respective photocell-lamp assembly described in Annex A1.3 (f) and (m).

53 Cooking Nuisance Smoke Test

53.1 General

53.1.1 Four smoke alarm samples as specified in $\underline{53.7.1}$, shall be subject to the Cooking Nuisance Smoke Test requirements described in $\underline{53.3} - \underline{53.5}$. Once the Acceptance Criteria defined in $\underline{53.2.1}$ has been reached, the test procedure and acceptance criteria defined in $\underline{54.3}$ shall be conducted.

53.2 Acceptance criteria

- 53.2.1 Four alarms (excluding projected beam alarms) shall not produce an alarm signal or other notification signal prior to:
 - a) An obscuration level of 1.5 percent per foot (4.84 %/m) [0.0066 OD/ft (0.022 OD/m)] based on the profile illustrated in Figure 53.1,
 - b) A MIC value between the range of 59.3 to 49.2 based on the profile illustrated in Figure 53.2, and
 - c) The combined acceptance criteria from (a) and (b) as identified in the profile illustrated in <u>Figure</u> 53.3.
- 53.2.2 The acceptance criteria specified in 53.2.1 shall be based on:
 - a) The data recorded from the center alarm location as measured by the respective photocell-lamp assembly described in A1.3 (f) and (m) of Annex A;
 - b) The OBS vs Time, MIC vs Time, OBS vs MIC, and CO vs OBS profiles shall be within the limits as specified in Figure 53.1 Figure 53.4;
 - c) The CO buildup rate in relation to the particle displacement (obscuration (OBS) in %/ft) shall be within the profile as specified in <u>Figure 53.4</u>. The maximum CO limit shall not exceed 4.72 ppm at 1.5 %/ft obscuration; and
 - d) The requirements outlined in 53.3 53.10.

Figure 53.1 Nuisance alarm test profile (OBS vs Time)

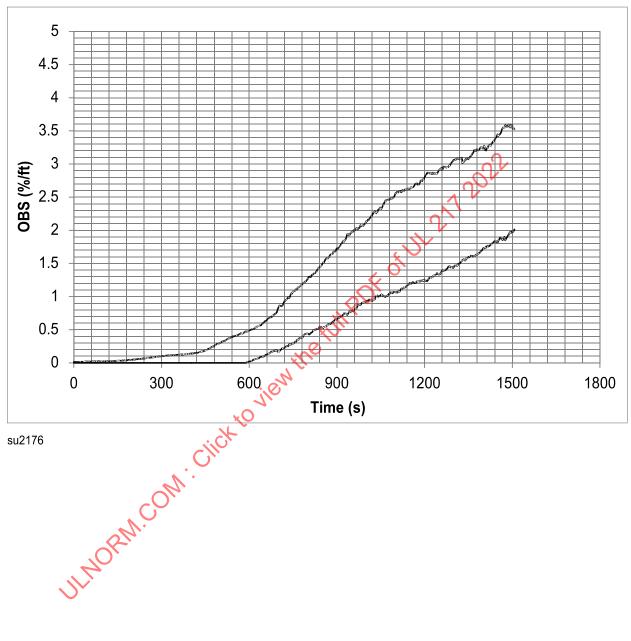


Figure 53.2 Nuisance alarm test profile (MIC vs Time)

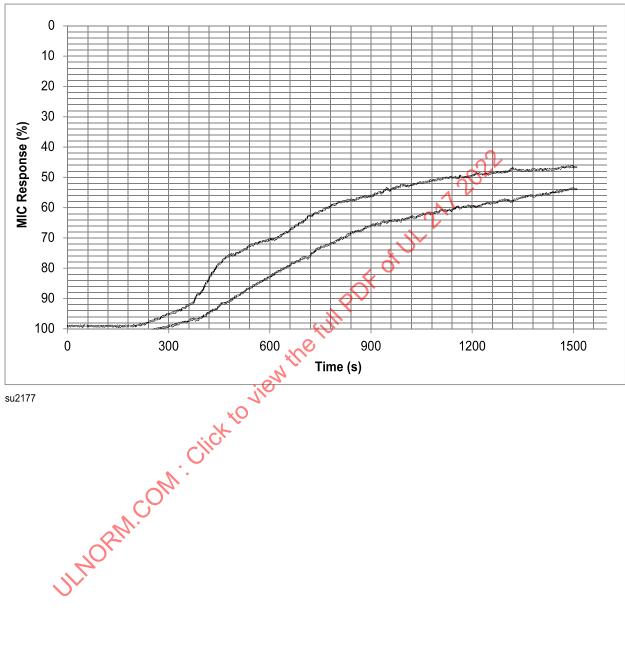


Figure 53.3 Nuisance alarm test profile (OBS vs MIC)

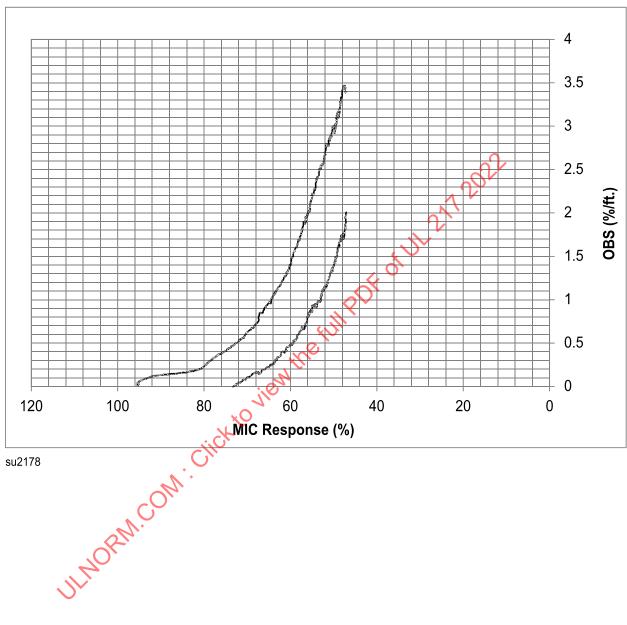


Figure 53.4 Nuisance alarm test profile (CO vs OBS)

53.2.3 The test shall be considered invalid and terminated if more than 5 flashes of a light (similar to a spark) are observed or a flame is observed within the electric range.

53.3 Electric range

53.3.1 An electric range shall be used for this test. The electric range shall consist of electric coils within the range, that are used for broiling, that can be adjusted for operation necessary to achieve the smoke profiles specified in 53.10. The electric range shall not be located more than 2 ±0.5 in. (5 ±1.27 cm) from the back wall as noted in Figure 53.5.

Fire test room electric range and smoke alarm placement

36'

10'

Range

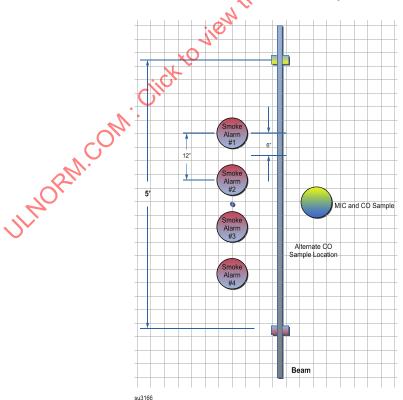
Beam

22-0'

Sample

Figure 53.5

53.4 Hamburger mixture and freezing


- 53.4.1 Each fresh hamburger is to consist of a mixture of 75 percent lean beef and 25 percent suet by weight ground together at least twice in succession. Each fresh hamburger is to be approximately 3/4 in. (19 mm) thick with an approximate diameter of 4 inches (102 mm) before cooking. Overall fresh hamburger size may vary based on templates from the butcher and packaging.
- 53.4.2 Before being used for testing, the hamburger shall be frozen in an ambient temperature ranging from minus 20 to minus 25°C (minus 4 to minus 13°F) for at least 72 hours. After freezing, the test hamburger shall be referred to as a "fresh-frozen hamburger."

53.5 Test procedure

53.5.1 Test room

53.5.1.1 The fire test room specified in 50.5, shall be used for this test. The room shall be modified so that the wall closest to the back of the electric range shall be a flat surface that is perpendicular to the ceiling and free of any obstructions that may affect air entrainment. A separate wall placed behind the electric range may be added but shall not reduce the length of the room by more than 165 cm (65 in). See Figure 53.5 for placement of the electric range within the room. Also reference Figure 53.6 for placement of the smoke alarms on the ceiling.

Figure 53.6
Alternate Smoke Alarm and CO Sample Locations

53.5.1.2 The electric range shall be elevated from the floor so that the top of the cooking surface of the electric range is 154 ± 2.5 cm $(60.5 \pm 1 \text{ in})$ from the ceiling.

53.6 Fresh-frozen hamburger placement

53.6.1 Two fresh-frozen hamburgers shall be equally spaced on the center of a broiler tray that is equally spaced in the center of a baking rack inside the oven of the electric range. The door to the oven on the electric range shall be closed such that the opening between the "Inside Surface of Range Door" and the "Front Surface" of the oven door of the electric range maintains a gap of 11.5 ±2.54 cm (4.5 ±1 in). The opening between the "Inside Surface of Range Door" and the "Front Surface" of the oven door of the electric range shall be maintained for the duration of the test. See Figure 53.7 for details.

Figure 53.7
Electric range door opening description

53.7 Smoke alarms

- 53.7.1 Four smoke alarms shall be used for this test. Each of these alarms shall be calibrated to the maximum smoke sensitivity anticipated in production and shall be oriented in the most favorable position facing the fire as determined in the Directionality Test.
- 53.7.2 The smoke alarms shall be placed on the ceiling, 304.8 ±5.1 cm (120 ±2 in) along the ceiling from the horizontal plane of the "Front of Cooktop/Range". The smoke alarms shall be centered and installed flush to the ceiling.
- 53.7.3 Carbon monoxide shall be measured and recorded and shall not exceed the limit specified in 53.10.1 when conducting this test. The CO measuring equipment shall either be range selectable by the user or have auto range capability for measuring up to 10 ppm of carbon monoxide. The sample draw for the CO monitor location shall not exceed 3.3 L/min (0.12 ft³/min)
- 53.7.4 The carbon monoxide sampling tube shall be centered between the 2nd and 3rd smoke alarm as illustrated in Figure 53.6. The sample tube shall not be larger than the rated 6.4 mm (1/4 in) O.D. tubing,

and shall protrude from the ceiling surface 25.4 ±3.2 mm (1 ±0.125 in) into the room from the ceiling surface. Centering of the test samples (alarms) and CO sample tube shall be within ±10% of the specified dimensions illustrated in Figure 53.5 and Figure 53.6.

53.7.5 Beam and MIC placement shall be located in the 10-foot location as noted in <u>Figure 53.5</u>, with the same Beam and MIC placement as specified in <u>Figure 50.7</u> – Fire Test Room," items C, D, E and F.

53.8 Electric range broiler

53.8.1 Full power to the heating coils shall be applied within 1 second from turning on the power. Test power will vary based on the make and model of the electric range used. However, smoke build-up rates shall be within the profile limits specified in <u>53.6</u>.

53.9 Test termination

- 53.9.1 The test shall be terminated after the smoke alarm
 - a) Has activated, or
 - b) The smoke obscuration has reached the acceptance criteria in 53.2

53.10 Smoke profile criteria

- 53.10.1 Unless otherwise specified, the development of the combined smoke and carbon monoxide from a broiling hamburger shall be such that the curve of the measured data falls between the upper and lower limits specified in the figures below:
 - a) Figure 53.1, OBS vs. Time
 - b) Figure 53.2, MIC vs. Time
 - c) Figure 53.3, OBS vs. MIC
- 53.10.2 For Figure 53.4 60 vs. OBS, the curve of the measured data may fall between the upper and lower limits but shall not exceed the upper limit specified in the figure.

54 Go/No Go Flaming Polyurethane Foam Test

54.1 General

- 54.1.1 The Flaming Polyurethane Foam test requirements outlined in $\underline{50.4}$ shall be conducted with the acceptance criteria applying to the 17 ft test location. Test samples shall not be located at the 17 ft location. As defined in $\underline{50.4.1}$ and $\underline{50.4.3}$, the samples located at the 10 ft test location shall produce an alarm signal before the Flaming Polyurethane Foam acceptance criteria at the 17 ft location has been reached.
- 54.1.2 While conducting the entirety of this test, the room shall remain in static mode, i.e. no air movement caused by opening doors, ventilation systems or air movement caused by sources other than the electric cooking appliance and PU foam burning.

54.2 Test method

54.2.1 The smoke alarm calibration and orientation shall be the same as specified in 53.7.1 and 53.7.2.

54.2.2 The Cooking Nuisance test and Flaming Polyurethane acceptance criteria shall be conducted as specified in Section 54.3 except for the following:

Immediately after achieving the 1.5 %/ft OBS during the Cooking Nuisance Test:

- a) The samples located at the 10 ft location shall remain powered and shall not be modified via software, mechanical intervention or electrically during the entirety of the test.
- b) The Flaming Polyurethane Foam Test as outlined in 50.4 shall be conducted
- c) The polyurethane foam used for the Flaming Polyurethane Foam Test, <u>50.4</u> shall be ignited within 10 seconds of achieving 1.5 %/ft OBS during the Cooking Nuisance Test.
- d) The electric range used for the Cooking Nuisance Smoke Test shall be turned off once ignition of the foam has been confirmed.

54.3 Acceptance criteria

54.3.1 When conducting the Cooking Nuisance test, the four smoke alarm samples located at the 10 ft location shall not produce an alarm signal as specified in <u>53.2</u>, but all four samples located at the 10 ft location shall produce an alarm signal once the 5 %/ft OBS acceptance criteria defined in <u>50.4.4</u> has been achieved.

55 Selectivity Test – Multicriteria Smoke Alarms Incorporating Gas Sensor(s)

55.1 The smoke alarm shall not alarm or have its gas sensitivity performance affected when exposed sequentially, as described in $\underline{55.2} - \underline{55.6}$, to the concentrations of gases and vapors shown in $\underline{\text{Table 55.1}}$, Gas and vapor concentrations. These substances are intended to represent air contaminants found in the vicinity of an installed smoke alarm.

Table 55.1
Gas and vapor concentrations

Substance	Concentration, ppm
Methane	500 ±50
n-Butane	300 ±30
n-Heptane	500 ±50
Ethyl acetate	200 ±20
Isopropyl alcohol	200 ±20
Carbon dioxide	5000 ±500
Ammonia	100 ±10
Ethanol	200 ±20
Toulene	200 ±20
Trichloroethane	200 ±20
Acetone	200 ±20
hexamethyldisiloxane	10 ±3
Hydrogen	30 ±3
Manufacturer Defined Gases	Provided By Manufacturer

55.2 Calculate the interior volume of the test chamber used in <u>42.8.1.2</u>. From this volume, calculate the amount of each test substance necessary to supply the concentrations given in <u>Table 55.1</u>, Gas and vapor concentrations.

- 55.3 Ensure that the chamber has been well ventilated with fresh air. Place the smoke alarm in operation inside the chamber and allow it to run for 15 ±5 minutes. Close and seal the chamber to prevent air infiltration.
- 55.4 Using a syringe or equivalent device, add the calculated amount of the first substance into the chamber at a rate and in a location such that it is well mixed with the air within 30 seconds and does not cause localized high concentrations.
- 55.5 Allow the smoke alarm to remain in the chamber for 2 hours. Unless specifically designated to detect the gas under test, during the two hours of exposure the smoke alarm shall not produce an alarm signal or aid in the signaling of an alarm when combined with the multi-detection properties of the multi-criteria smoke alarm.
- 55.6 Resistance to background gases shall be demonstrated by monitoring the appropriate output signal of a multi-criteria smoke alarm and/or the firmware logic that is used to determine the smoke alarm's alarm condition. The manufacturer shall provide the necessary equipment and/or information to monitor the output signal.
- 55.7 If the gas under test has not been identified to be integral to the sensitivity performance of the smoke alarm, an output signal from the sensor(s) is permitted for each specific gas and its designated concentration, but shall not result in an alarm signal or result in an increase or decrease of the smoke alarm performance.
- 55.8 Purge the chamber with clean air to remove all of the test atmosphere. Maintain clean air in the chamber for a recovery time of 16 hours, or as specified by the manufacturer. In no case shall recovery time exceed 16 hours. Reseal the chamber and repeat the test using another substance from <u>Table 55.1</u>, Gas and vapor concentrations, until the smoke alarm has been exposed to all substances. It is not required that exposure to the substances be in any particular order.
- 55.9 Following each selectivity test gas exposure and recovery, the gas sensitivity of each sensor shall be assessed in accordance with 42.8, Sensitivity test gas sensor of a multi-criteria smoke alarm. Alternatively, the manufacturer may choose to conduct the gas sensitivity test following the sequential test gas exposure and recovery time for all selectivity gases.

56 Circuit Measurement Test

56.1 General

- 56.1.1 Except for a battery-operated smoke alarm, the input current of a smoke alarm shall not exceed the marked rating of the smoke alarm by more than 10 percent when operated under conditions of intended use and with the smoke alarm connected to a source of supply as specified in 37.3, Test voltages. Measurements shall also be made of components such as capacitors to determine that they are being employed within the manufacturer's ratings.
- 56.1.2 For each smoke alarm with an external power supply, surge current, start-up time, normal supervisory current, and alarm current shall be measured at the:
 - a) Smoke alarm's rated input voltage values and
 - b) Nominal voltage value.

The measured current values shall be within the rated values.

56.2 Battery trouble voltage determination

- 56.2.1 An increase in the internal resistance, or a decrease in terminal voltage, of a battery employed as the primary source of power to a smoke alarm shall not impair operation for an alarm signal before a trouble signal is obtained. In addition, any combination of voltage and resistance at which a trouble signal is obtained shall be greater than the battery voltage and resistance combination measured over a 1-year period in the room ambient of the Battery tests, 86.3.
- 56.2.2 The trouble level of a battery-operated smoke alarm shall be determined (using the test circuit in <u>Figure 56.1</u>, Test circuit, and the voltage-resistance curves of <u>Figure 56.2</u>, Trouble level determination, for each of the following voltages:
 - a) Rated battery voltage,
 - b) Trouble level voltage (assuming minimal or no series resistance), and
 - c) Voltages between rated and trouble level voltage.

Figure 56.1

Test circuit for battery trouble voltage determination

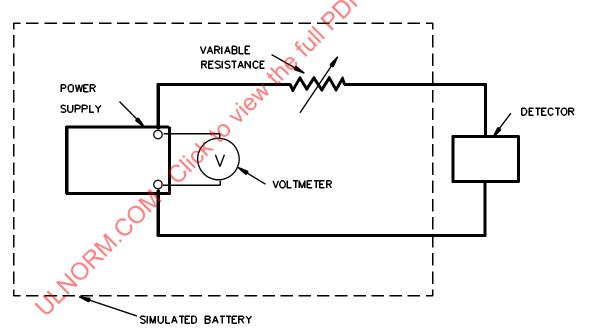
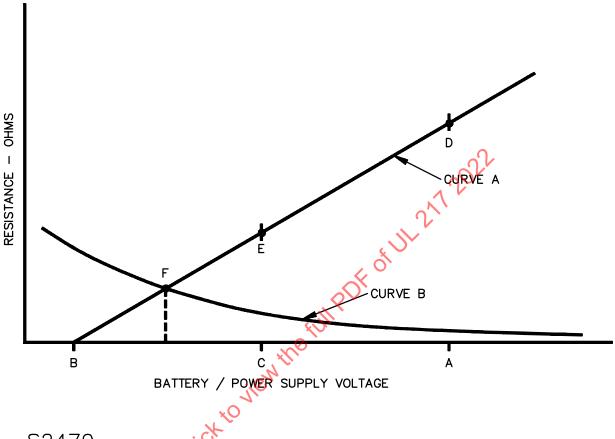



Figure 56.2
Trouble level determination

S2479

- A Rated battery voltage.
- B Trouble level voltage (assuming minimal resistance).
- C Voltage value between rated and trouble level.
- D Trouble level resistance at rated battery voltage.
- E Trouble level resistance at voltage value C.
- F Maximum permissible battery resistance and minimum voltage after 1 year in long-term battery test.

Curve A – Sample plot of voltage vs. resistance (Alarm Trouble Level Curve) at which a trouble signal in a smoke alarm is obtained. Audibility measurement is to be made at points between D and F.

Curve B – Sample plot of battery internal resistance vs. battery open circuit voltage derived from long term (minimum 1 year) battery test. Shape and slope of curve, as well as point of intersection with Curve A, varies based on battery used.

- 56.2.3 To determine compliance with <u>56.2.1</u> each of three smoke alarms is to be connected in series with a variable regulated direct current power supply and a variable resistor as illustrated in <u>Figure 56.1</u>, Test circuit for battery trouble voltage determination. The trouble level is to be determined by the following steps:
 - a) Rated Battery Voltage The voltage of the power supply is to be set at the rated battery voltage and the series resistor at 0 ohm. The resistor is to be increased in increments of 0.1 10 ohms, at a rate of not more than one increment per minute, until a trouble signal is obtained. The smoke alarm is to be tested for alarm operation at each resistance level and at the trouble level.
 - b) Trouble Level Voltage With the variable resistor set at 0 ohm, the voltage of the power supply connected to the smoke alarm is to be reduced in increments of 1/10 volt per minute to the level where the trouble signal is obtained. The smoke alarm is to be tested for alarm operation at each voltage level and at the trouble signal level.
 - c) Voltage Values Between Rated and Trouble Level Voltages The voltage of the power supply is to be set at prespecified voltages between the rated battery voltage and the trouble level voltage. The series resistor is then to be increased in increments of 0.1 10 ohms, at a rate of not more than one increment per minute, until a trouble signal is obtained. The smoke alarm is to be tested for alarm operation at each resistance and voltage level and at the trouble voltage level. A number of voltage values shall be used to determine the shape of the trouble level curve.
 - d) Internal Resistance Increase With Constant Terminal Voltage The voltage of the power supply is to be set at the battery rated voltage (terminal voltage of new battery under normal standby current drain) and the resistance increased from zero ohms until the smoke alarm trouble signal is obtained. The rate of resistance change prior to the trouble point shall be reduced to a value required to eliminate any error due to any time lag in the trouble circuit of the smoke alarm.
 - e) Terminal Voltage Decrease With Constant Internal Resistance With the variable resistance set at zero ohms, the power supply voltage is to be decreased until the smoke alarm trouble signal is obtained. The rate of voltage change prior to the trouble point shall be reduced to a value required to eliminate any error due to any time lag in the trouble circuit of the smoke alarm.
 - f) Variable Internal Resistance With Variable Terminal Voltage The test of (a) is to be repeated with the power supply voltage set to values equal to the 25 percent, 50 percent and 75 percent points of the voltage range determined in (b).
- 56.2.4 To determine that a battery is capable of supplying alarm and trouble signal power to the smoke alarm for at least 1 year under the room ambient condition described in Battery tests, <u>86.3</u>. Curve A of <u>Figure 56.2</u>, Trouble level determination, is to be plotted from the data obtained in the measurements described in <u>56.2.3</u> and compared to Curve B of <u>Figure 56.2</u>, which is plotted from data generated in the 1-year battery test. The intersection of Curves A and B shall not occur before 1 year and all points of Curve B to the right of point F (extended to the base line), shall be below Curve A.

57 Overvoltage and Undervoltage Tests

57.1 Overvoltage test

57.1.1 A smoke alarm, other than one operating from a main battery power supply, shall operate as intended in the standby condition at maximum and minimum sensitivity settings and perform its intended signaling function, while connected to a supply source of 110 percent of the rated voltage. When a nominal rated voltage value is specified, the overvoltage shall be 110 percent of the rated voltage specified in 37.3, Test voltages. When an operating voltage range is specified, the overvoltage shall be either 110 percent of the high value of the rated voltage range or 110 percent of the rated voltage specified in 37.3, Test voltages, whichever is higher. Three samples are to be subjected to the specified increased voltage in the

normal standby condition for at least 16 hours, or until stabilized temperatures have been reached, and then tested for normal signaling operation and sensitivity.

- 57.1.2 Sensitivity measurements at the increased voltage shall vary not more than specified in Sensitivity shift criteria, <u>38.3</u>. For smoke alarms intended to be energized from a separate power supply, as described in <u>35.1</u>, Primary power supply, the overvoltage shall be applied to the input of the power supply.
- 57.1.3 For alarms intended for connection in a multiple station configuration, the minimum number of alarms specified by the manufacturer's published instructions are to be interconnected with zero line resistance between alarms and tested for their intended operation.

57.2 Undervoltage test

- 57.2.1 An alarm shall operate for its intended signaling performance while energized from a supply of 85 percent of the test voltage specified by the manufacturer and while at both maximum and minimum sensitivity settings. For units powered from a primary battery, the test shall be conducted at the battery trouble signal voltage level. Sensitivity measurements at the reduced voltage shall vary not more than specified in Sensitivity shift criteria, 38.3 from the readings measured at rated voltage. Refer to the Audibility Test, Section 84.
- 57.2.2 For smoke alarms intended for connection in a multiple station configuration, the maximum number of alarms specified by the manufacturer's published instructions are to be interconnected with either 10 ohms resistance between alarms, or the maximum resistance specified in the manufacturer's published instructions, and tested for intended operation.
- 57.2.3 When the smoke alarm is provided with a standby battery the test is to be conducted at 85 percent of the charged battery voltage. When the standby battery provides a trouble signal requiring replacement at higher than 85 percent of the charged battery voltage, the test is to be conducted at the battery trouble signal voltage level.
- 57.2.4 For operation at the reduced voltage, three smoke alarms are to be energized from a source of supply in accordance with Test voltages, <u>37.3</u>, following which the voltage is to be reduced to 85 percent of the test voltage specified in Test voltages, <u>37.3</u> for AC operated smoke alarms, or the battery trouble level voltage for battery operated smoke alarms, and then tested for signaling operation and sensitivity. For units intended to be energized from a separate power supply, as described in <u>35.1</u>, Primary power supply, the undervoltage shall be applied to the input of the power supply.

58 Temperature Test

58.1 The materials or components employed in a smoke alarm shall not be subjected to a temperature rise greater than the values indicated in <u>Table 58.1</u>, Maximum temperature rises, under any condition of intended operation.

Table 58.1 Maximum temperature rises

	Normal			naling) alarm condition,	
Materials and components	°C	(°F)	°C	(°F)	
A. COMPONENTS					
1. Capacitors: ^{a, b}					
a. Electrolytic types	25	(45)	40	(72)	
b. Other types	25	(45)	65	(117)	
2. Rectifiers – At any point					
a. Germanium	25	(45)	50	(90)	
b. Selenium	25	(45)	50	(90)	
c. Silicon		1 V			
(i) Maximum 60 percent of rated voltage	50	(90)	75	(135)	
(ii) 61 percent or more of rated voltage	25	(45)	75	(135)	
3. Relay, solenoid, transformer, and other coils with:	(V)				
a. Class 105 insulation system:	0				
Thermocouple method	25	(45)	65	(117)	
Resistance method	35	(63)	75	(135)	
(ii) 61 percent or more of rated voltage 3. Relay, solenoid, transformer, and other coils with: a. Class 105 insulation system: Thermocouple method Resistance method b. Class 130 insulation system: Thermocouple method Resistance method c. Class 155 insulation system: (i) Class 2 transformers: Thermocouple method Resistance method					
Thermocouple method	45	(81)	85	(153)	
Resistance method	55	(99)	95	(171)	
c. Class 155 insulation system:					
(i) Class 2 transformers:					
Thermocouple method	95	(171)	95	(171)	
Resistance method	115	(207)	115	(207)	
(ii) Power transformers:					
Thermocouple method	110	(198)	110	(198)	
Resistance method	115	(207)	115	(207)	
d. Class 180 insulation system:					
(i) Class 2 transformers:					
Thermocouple method	115	(207)	115	(207)	
Resistance method	135	(243)	135	(243)	
(ii) Power transformers:					
Thermocouple method	125	(225)	125	(225)	
Resistance method	135	(243)	135	(243)	
4. Resistors: ^c					
a. Carbon	25	(45)	50	(90)	
b. Wire wound	50	(90)	125	(225)	
c. Other	25	(45)	50	(90)	
5. Solid state devices		See foo	tnote d		
6. Other components and materials:					
a. Fiber used as electrical insulation or cord bushings	25	(45)	65	(117)	

Table 58.1 Continued on Next Page

Table 58.1 Continued

		Normal standby,		(Signaling) alarm condition,	
Materials and components	°C	(°F)	°C	(°F)	
b. Varnished cloth insulation	25	(45)	60	(108)	
c. Thermoplastic materials	Rise based	d on tempera	ture limit of t	he material	
 d. Phenolic composition used as electrical insulation or as parts whose malfunction or deterioration results in a risk of electric shock, explosion, fire, or injury to persons^e 					
e. Wood or other combustibles	25	(45)	125	(225)	
f. Sealing compound	25	(45)	65	(117)	
g. Fuses	25	(45)	65	(117)	
B. CONDUCTORS		200			
1. Appliance wiring material ^f	25°C (45°	F) less than t		ure limit of	
2. Flexible cord (for example, SJO, SJT)	35	(63)	35	(63)	
Conductors of field-wired circuits to be permanently connected to the product	35	(63)	35	(63)	
C. GENERAL					
All surfaces of the product and surfaces adjacent to or upon which the product is be mounted	65	(117)	65	(17)	
Surfaces normally contacted by the user in operating the unit (such as control knobs, push buttons, and levers):					
a. Metal	35	(63)	35	(63)	
b. Nonmetallic	60	(108)	60	(108)	
Surfaces subjected to casual contact by the user (such as the enclosure or grille):					
a. Metal	45	(81)	45	(81)	
b. Nonmetallic	65	(117)	65	(117)	

^a For an electrolytic capacitor which is physically integral with or attached to a motor, the temperature rise on insulating material integral with the capacitor enclosure shall not be more than 65°C (117°F).

- 1) The integrated circuit (microcircuits) complies with the requirements of MIL-STD.883H...
- 2) The semiconductor devices comply with the requirements of MIL-STD 750E.
- 3) A quality-control program is established by the manufacturer consisting of an inspection stress test followed by operation of 100 percent of all components, either on an individual basis, as part of a subassembly, or equivalent.
- 4) Each assembled production unit is subjected to a burn-in test, under the condition which results in the maximum temperatures, for 24 hours while connected to a source of rated voltage and frequency in an ambient of at least 49°C (120°F) followed by a Normal Operation Test, Section 38.

^b It is not prohibited to evaluate a capacitor which operates at a temperature higher than a 65°C (117°F) rise on the basis of its marked temperature rating.

^c When the temperature rise of a resistor exceeds the values shown the power dissipation shall be 50 percent or less of the manufacturer's rating.

^d The temperature of a solid-state device (for example, transistor, SCR, integrated circuits), shall not exceed 50 percent of its rating during the normal standby condition. The temperature of a solid-state device shall not exceed 75 percent of its rated temperature under the alarm condition or any other condition of operation which produces the maximum temperature dissipation of its components. For reference purposes 0°C (32°F) shall be identified as 0 percent. For integrated circuits the loading factor shall not exceed 50 percent of its rating under the normal standby condition and 75 percent under any other condition of operation. It is permissible that both solid-state devices and integrated circuits be operated up to the maximum ratings under any one of the following conditions:

^e The limitations on phenolic composition and on rubber and thermoplastic insulation do not apply to compounds which have been investigated and determined to have special heat-resistant properties.

^f For standard insulated conductors other than those mentioned, reference shall be made to the National Electrical Code, ANSI/NFPA 70, the maximum allowable temperature rise in any case is 25°C (45°F) less than the temperature limit of the wire in question.

- 58.2 Except as noted in <u>58.3</u>, all values for temperature rises apply to equipment intended for use in prevailing ambient temperatures that usually are not higher than 23°C (73°F).
- 58.3 When equipment is intended specifically for use in a prevailing ambient temperature constantly more than 23°C (73°F), the test of the equipment is to be made at the higher ambient temperature, and allowable temperature rises specified in <u>Table 58.1</u> shall be reduced by the amount of the difference between that higher ambient temperature and 23°C (73°F).
- 58.4 Temperature measurements on equipment intended for recessed mounting are to be made with the unit installed in an enclosure of nominal 19.1-mm (3/4-in) wood having clearances of 50 mm (2 in) on the top, sides and rear, and the front extended to be flush with the smoke alarm cover.
- 58.5 A temperature is determined to be constant when three successive readings, indicate no change, when taken at not less than 5-minute intervals.
- 58.6 Temperatures shall be measured by means of thermocouples consisting of 0.06 mm² (30 AWG) wire. Measuring the temperature of a coil is to be accomplished by either the thermocouple or resistance method. The thermocouple method, however, is not to be employed for a temperature measurement at any point where supplementary thermal insulation is employed.
- 58.7 Thermocouples consisting of iron and constantan wires and a potentiometer-type indicating instrument shall be used whenever temperature measurements by thermocouples are required. The thermocouples shall be 0.06 mm² (30 AWG) wire.
- 58.8 The thermocouple wire is to conform with the requirements for "special" thermocouples as listed in ASTM MNL12: Manual on the Use of Thermocouples in Temperature Measurement.
- 58.9 The temperature of a copper coil winding is to be determined by the resistance method by comparing the resistance of the winding at the temperature to be determined with the resistance at a known temperature by means of the equation:

$$T = \frac{R}{r}(234.5 + t) - 234.5$$

in which:

T is the temperature to be determined in degrees C,

R is the resistance in ohms at the temperature to be determined,

r is the resistance in ohms at the known temperature, and

t is the known temperature in degrees C.

- 58.10 As it is essential to de-energize the winding before measuring R, the value of R at shutdown is determined by taking several resistance measurements at short intervals, beginning as quickly as possible after the instant of shutdown. A curve of the resistance values and the time is plotted and extrapolated to give the value of R at shutdown.
- 58.11 The smoke alarm is to be connected to a source of supply as specified in 37.3, Test voltages, and operated under the conditions specified in (a) (c):
 - a) STANDBY (16 hours minimum). Constant temperatures,

- b) ALARM (1 hour), and
- c) ALARM (7 hours or to battery depletion) Abnormal test.
- 58.12 For test condition <u>58.11(c)</u>, when the temperature limits are exceeded, there shall be no manifestation of a fire or impending malfunction, and the smoke alarm shall operate as intended following the test.
- 58.13 The smoke alarm is to be subjected to the Dielectric Voltage-Withstand Test, Section <u>77</u>, following test <u>58.11</u> (b) or (c).

59 Vibration Test

- 59.1 A smoke alarm shall withstand vibration without breakage or damage to parts. Following the vibration, the smoke alarm shall operate for its intended signaling operation.
- 59.2 To determine compliance with $\underline{59.1}$ following vibration as specified in $\underline{59.3}$, smoke sensitivity measurements using gray smoke/aerosol shall be conducted, in accordance with the Sensitivity Test, Section $\underline{42}$, and shall vary not more than specified in $\underline{38.3}$, Sensitivity shift criteria.
- 59.3 Two samples, one at the maximum and one at the minimum sensitivity setting, shall be secured in their intended mounting position on a wood mounting board which is to be securely bolted to a variable speed vibration machine having an amplitude of 0.25 mm (0.01 in). The frequency of vibration is to be varied from 10 to 35 Hz in increments of 5 Hz until a resonant frequency is obtained. The samples then shall be vibrated at the maximum resonant frequency for a period of 1/4 hour. If a resonant frequency cannot be achieved, the samples shall be vibrated at 35 Hz for a period of 4 hours.
- 59.4 For these tests, amplitude is defined as the maximum displacement of sinusoidal motion from a position of rest or 50 percent of the total table displacement. Resonance is defined as the maximum magnification of the applied vibration.

60 Replacement Test, Head and Covers

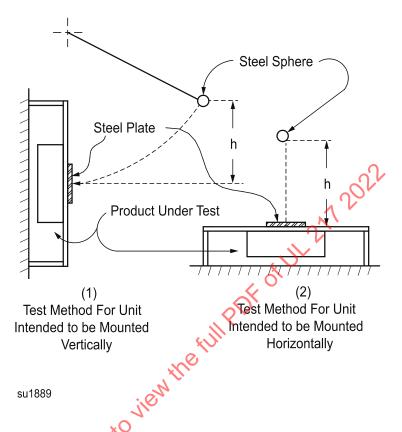
- 60.1 A smoke alarm employing a removable head or a cover that is intended to be attached or closed by a snap type action, shall withstand 50 cycles of removal and replacement or opening and closing the cover, and shall comply with the requirements of the Jarring Test, Section 62.
- 60.2 A smoke alarm is to be installed as intended in service and the cover or head removed and replaced, or opened and closed, as specified by the manufacturer. The unit is then to be subjected to the Jarring Test, Section 62.

61 Mechanical Push Test for Push-Type Features

- 61.1 This test shall be conducted on smoke alarms with a functional feature (i.e., test button, strobe test button, etc.) greater than 12.7 mm (1/2 inch) in diameter that is either elevated or protrudes from the surface of the alarm and that also serves as a method of activating the test feature or other operational feature of the smoke alarm.
- 61.2 The smoke alarm and any additional installation materials shall be installed and positioned as specified in the manufacturer's published instructions. A 12.7 mm (0.50 in) $\pm 10\%$ diameter probe of a strain gage shall be positioned in at least 3 mutually exclusive locations/positions on the elevated or protruding feature. A force of 110 N (24.7 lbf) $\pm 5\%$ shall be gradually applied and maintained for a minimum of 60 s.

61.3 The mounting, securement, and normal operation of the smoke alarm and elevated or protruding feature shall not be impaired as a result of this test. Dislodgment of parts shall not occur unless the dislodged part(s) does not affect the operation of the unit and does not result in an electrical shock or fire hazard.

62 Jarring Test


62.1 A smoke alarm shall withstand jarring resulting from impact and vibration such as that experienced in service, without causing an alarm or trouble signal, without dislodgment of any parts, and without impairing its subsequent operation.

Exception: Dislodgment of parts is acceptable if the dislodged part(s) does not affect the operation of the unit, and there are no high voltage parts exposed.

- 62.2 The smoke alarm and associated equipment, if any, shall be mounted in a position of intended use to the center of an 1800 by 1200 mm (6 by 4 ft), nominal 19 mm thick (nominal 3/4 in thick) plywood board which is secured in place at four corners.
- 62.3 A 100 by 100 mm \pm 10 percent (3.94 \times 3.94 in \pm 10 percent) steel plate, 3.2 mm \pm 10 percent (1/8 in \pm 10 percent) thick, shall be rigidly secured to the center of the reverse side of the board.
- 62.4 An impact of 4.08 J (3 ft-lbs) shall be applied once to the center of the reverse side of this board by means of a 540 g (1.18 lb), 50 mm (2 in) diameter steel sphere either:
 - a) Swung through a pendulum arc from a height of 775 mm (2.54 ft) in order to apply 4.08 J (3 ft-lbs) of energy; or
 - b) Dropped from a height of 775 mm (2.54 ft) to apply 4.08 J (3 ft-lbs) of energy, depending upon the mounting of the equipment (see Figure 62.1, Jarring test).

Figure 62.1

Jarring test

- 62.5 The test is to be conducted by supporting the smoke alarm in its intended mounting position and conducting the jarring with the smoke alarm in the standby condition and connected to a rated source of supply in accordance with <u>37.3</u>, Test voltages.
- 62.6 Following the jarring the smoke alarm shall be tested for sensitivity in accordance with Section <u>42</u>, Sensitivity Test. Sensitivity measurements shall vary not more than specified in <u>38.3</u>, Sensitivity shift test.

63 Variable Ambient Temperature Tests

63.1 Operation in high and low ambients

- 63.1.1 The smoke alarm shall operate for its intended performance. For products that identify an installation temperature below 0°C and above 38°C, the following ambient test conditions shall be applied:
 - a) Relative humidity = 30 to 50 percent;
 - b) Low temperature = proposed low end environmental ambient temperature (T_{LO})
 - c) High temperature = $(T_{HI} 38^{\circ}C) + 49^{\circ}C$ or $(T_{HI} 100^{\circ}F) + 120^{\circ}F$

Where T_{LO} and T_{HI} are low and high end operating range respectively.

Otherwise, the smoke alarm shall operate for its intended performance when tested in an ambient temperature of 0° and 49°C (32° and 120°F).

- 63.1.2 Two smoke alarms, one at maximum and one at minimum sensitivity, are to be maintained at each ambient temperature for a minimum of 3 hours.
- 63.1.3 The smoke alarms are to be tested for sensitivity while connected to a source of supply in accordance with <u>37.3</u>, Test voltages.
- 63.1.4 Sensitivity measurements shall be recorded before and during exposure to each ambient temperature in accordance with the Sensitivity Test, Section $\underline{42}$, except that the relationship between the MIC output and the percent light transmission remains within the limits represented by the curves illustrated in Figure 63.1 and Figure 63.2 for the 0°C (32°F) and 49°C (120°F) ambient, respectively. The visible smoke buildup rates shall be maintained within the limits illustrated in Figure 63.3 and Figure 63.4 for the 0°C (32°F) and 49°C (120°F) ambient, respectively.

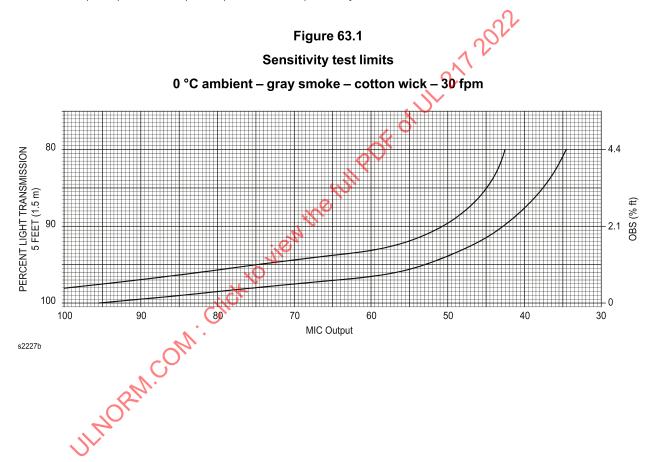


Figure 63.2 Sensitivity test limits 49°C ambient – gray smoke/aerosol 0.16 ±0.01 m/s (32 ±2 fpm)

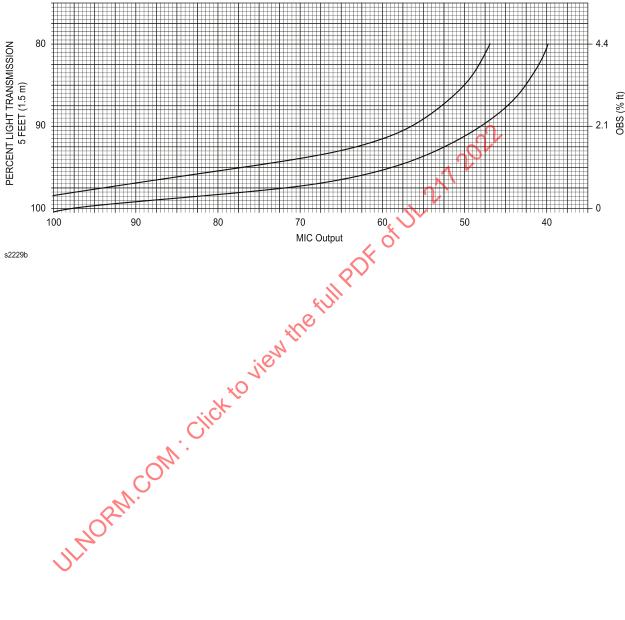


Figure 63.3 Smoke build-up rate – sensitivity test 0° C ambient gray smoke/aerosol – 0.16 ±0.01 m/s (32 ±2 fpm)

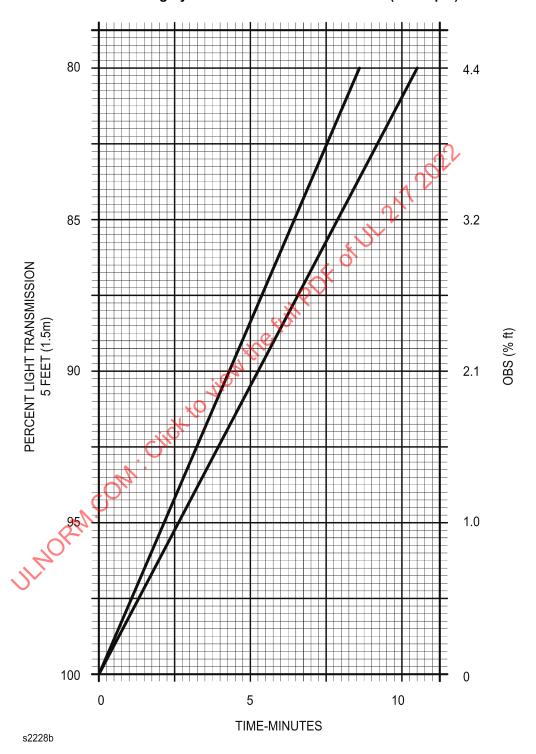
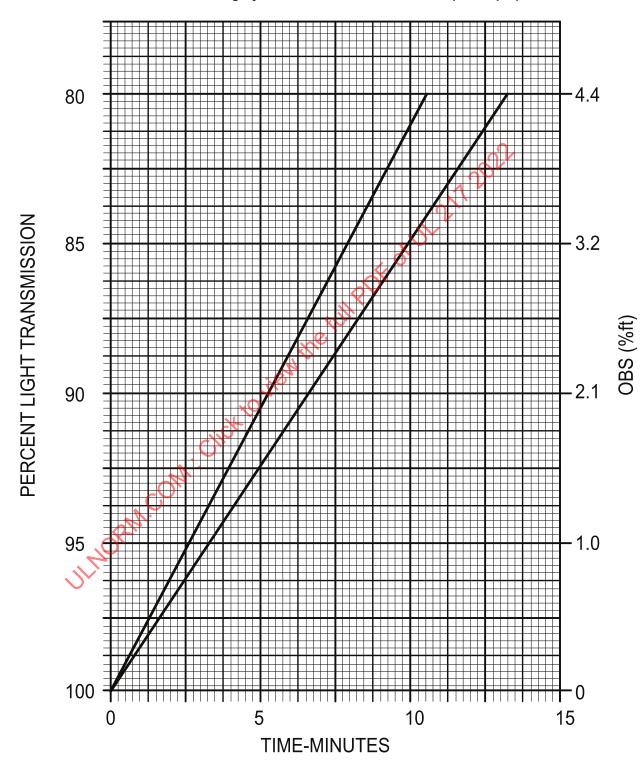



Figure 63.4

Smoke build-up rate – sensitivity test

49°C ambient – gray smoke/aerosol 0.16 ±0.01 m/s (32 ±2 fpm)

- 63.1.5 For products that identify an installation temperature below 0°C (32°F) and above 38°C (100°F) it is permissible to conduct the sensitivity test at 0°C and 49°C (120°F) after conditioning at the temperatures identified in 63.1.1. When conducting the transfer of the alarm between conditioning environments, the alarm shall:
 - a) Be placed in an enclosure that was conditioned in the same environment as the alarm, such as a portable cooler,
 - b) The enclosure shall be closed, prior to opening the door of the test environment, and
 - c) Then the enclosure containing the alarm shall be transferred between environments.
- 63.1.6 Both units shall operate normally in each ambient. Sensitivity measurements shall vary not more than specified in 38.3, Sensitivity shift criteria, and shall be in accordance with Section 42, Sensitivity Test.

63.2 Effect of shipping and storage – (single and multi-criteria smoke alarms)

- 63.2.1 The sensitivity of a smoke alarm shall not be impaired by exposure to high and low temperatures representative of shipping and storage. The exposure shall not result in warping, cracking or any other physical or electronic damage, which would impair its operation in any way or its suitability for its intended use.
- 63.2.2 Two smoke alarms, one at maximum and one at minimum smoke sensitivity, packaged as intended for shipping, shall be subjected, in turn, to a temperature of 70°C (158°F) for a period of 24 hours, allowed to cool to room temperature for at least 1 hour. The same two smoke alarms shall then be exposed to a temperature of minus 40°C (minus 40°F) for at least 3 hours, and then permitted to warm up to room temperature for a minimum of 3 hours. The same smoke alarms are then to be tested for sensitivity using gray smoke/aerosol while connected to a source of rated supply voltage in accordance with 37.3, Test voltages.
- 63.2.3 Sensitivity measurements shall be recorded, before and after exposure to both ambient conditions, in accordance with the Sensitivity Test, Section $\underline{42}$.
- 63.2.4 The sensitivity readings using gray smoke/aerosol measured after exposure shall comply with the requirements of the Sensitivity Test, Section <u>42</u>, and shall vary not more than specified in <u>38.3</u>, Sensitivity shift criteria.

63.3 Effect of shipping and storage – multi-criteria smoke alarms incorporating gas sensor(s)

- 63.3.1 The sensitivity of the gas sensor of a multi-criteria smoke alarm shall not be impaired by exposure to high and low temperatures representative of shipping and storage as well as storage in point-of-purchase packaging.
- 63.3.2 Two smoke alarms, in point of purchase packaging, one at maximum and one at minimum sensitivity, are to be subjected, in turn, to a temperature of 70° C (158° F) at 50 ± 30 percent RH for a period of 24 hours, allowed to cool to room temperature for at least 1 hour. The same two smoke alarms shall then be exposed to a temperature of minus 40° C (minus 40° F) for at least 3 hours, and then warmed up to room ambient temperature for at least 3 hours. The same two samples are then to be subjected to 50 ± 30 percent RH at 50° C for 45 days, or 50 ± 30 percent RH at 55° C for 30 days, or 50 ± 30 percent RH at 60° C for 20 days as selected by the manufacturer. The same smoke alarms are then tested for sensitivity per 42.8, Sensitivity test gas sensor of a multi-criteria smoke alarm, while connected to a source of supply in accordance with 37.3, Test voltages.
- 63.3.3 Sensitivity measurements shall be recorded, before and after exposure to the ambient conditions in <u>63.3.2</u> and shall be in accordance with <u>42.8</u>, Sensitivity test gas sensor of a multi-criteria smoke alarm.

64 Humidity Test

64.1 High humidity

- 64.1.1 Two smoke alarms, one at maximum and one at minimum sensitivity, shall operate for their intended signaling performance when exposed for 168 hours to air having a relative humidity of 93 \pm 2 percent and a temperature of 40 \pm 2°C (104 \pm 4°F) while energized from a source of supply in accordance with \pm 37.3, Test voltages. There shall not be false alarms during the exposure.
- 64.1.2 Gas and smoke sensitivity measurements shall be recorded before and during exposure to the humidity condition in accordance with the Sensitivity Test, Section <u>42</u>. The heat sensor sensitivity may be initiated within 5 min after exposure to the humidity condition.
- 64.1.3 The sensitivity values during exposure to the humid atmosphere shall vary not more than specified in Sensitivity shift criteria, <u>38.3</u>.

64.2 Low humidity [multi-criteria smoke alarms with gas sensor(s)]

- 64.2.1 Two smoke alarms, one at maximum and one at minimum gas sensitivity, shall operate for their intended signaling performance when exposed for 168 hours to air having a relative humidity of 10 ±3 percent at a temperature of 22 ±3°C (72 ±5°F) while energized from a source of supply in accordance with 37.3, Test voltages.
- 64.2.2 Gas sensitivity measurements shall be recorded before and during exposure to the humidity condition. Gas sensitivity measurements shall not vary more than specified in the Sensitivity shift criteria, 38.3.

65 Corrosion Test

- 65.1 The alarms are to be tested for sensitivity prior to exposure to the corrosive atmospheres. Following the corrosion exposures described in 65.2 and 65.3, the smoke alarms are to be dried in a circulating air oven at a temperature of 40°C (104°F) for at least 24 hours after which the smoke alarms are to be again tested for sensitivity. The sensitivity shall not exceed the limits specified in the Sensitivity Test, Section 42.
- 65.2 An alarm shall operate as intended after being subjected to the corrosive atmosphere tests described in 65.3 and 65.4. The samples shall be placed in the test chambers that are located in a room having a temperature of 23 ±2 °C (73 ±4°F) and 20 50 percent relative humidity. The samples shall be mounted in their intended position of use on a platform 25.4 mm (1 in) above the bottom. The relative humidity inside the chamber during the test is to be 93 ±2 percent. The samples are not to be energized during these tests.
- 65.3 Two samples, one at the maximum and one at the minimum sensitivity setting, are to be exposed to a moist hydrogen sulfide-air mixture as specified in 65.2, in a closed glass chamber for 10 days. The concentration of hydrogen sulphide by volume in air saturated with water vapor at room temperature is to be 1000 ±50 ppm (parts per million).
- 65.4 Two samples, one at maximum and one at minimum sensitivity setting, are to be exposed to a moist carbon dioxide-sulphur dioxide-air mixture as specified in 65.2 in a closed glass chamber for 10 days The concentration of carbon dioxide by volume in air saturated with water vapor at room temperature is to be 10 000 ±500 ppm (parts per million). The concentration of sulphur dioxide by volume in air saturated with water vapor at room temperature is to be 5000 ±250 ppm.
- 65.5 Alarms are to be subjected to the corrosive atmospheres while de-energized so as not to produce an alarm signal. Battery operated alarms are to be tested with the batteries in place, and the leads to the

clips disconnected for the same reason. After the exposure the leads are to be reconnected and the Sensitivity Test, Section $\frac{42}{10}$, is to be conducted.

66 Alternate Corrosion Test (21-Day)

- 66.1 The 21-day corrosion test outlined in $\underline{66.2} \underline{66.4}$ may be conducted in lieu of the Corrosion Test, Section $\underline{65}$.
- 66.2 Two alarm samples, one at maximum and one at minimum sensitivity setting, are to be placed in a 200 liter or larger test chamber on a platform approximately 50.8 mm (2 in) above the bottom of the chamber. The temperature in the chamber shall be maintained at $30 \pm 2^{\circ}$ C ($86 \pm 3^{\circ}$ F) and the relative humidity at 70 ± 2 percent (measured directly in the chamber). The temperature and humidity are to be checked daily. Because of the corrosive atmosphere a set of wet and dry bulb thermometers shall be used for measurement of relative humidity.
- 66.3 The following gas mixture in air is to be supplied to the chamber at a rate sufficient to achieve an air exchange in the chamber of about five times per hour, for a period of 3 weeks: 100 ± 10 parts per billion (ppb) (parts per billion = parts per 10^9 by volume) hydrogen sulfide (H₂S) plus 20 ± 5 ppb chlorine (Cl₂) plus 200 ± 50 ppb nitrogen dioxide (NO₂). The air inside the chamber is to be circulated by a single fan, with flow upwards from the bottom.
- 66.4 Following this test, the alarms shall comply with the sensitivity requirements of the Sensitivity Test, Section 42.

67 Transient Tests

67.1 General

- 67.1.1 Two smoke alarms, one at maximum and one at minimum sensitivity:
 - a) Shall operate for their intended signaling performance,
 - b) Shall not initiate a smoke alarm signal,
 - c) Shall not initiate a trouble signal, and
 - d) The sensitivity shall be in accordance with <u>38.3</u> (Sensitivity Shift Criteria) after being subjected to 500 Internally induced transients in <u>67.2</u>, Extraneous transients in <u>67.3</u>, 500 (hazardous-voltage) Supply line (ring wave surge voltage) transients in <u>67.6</u>, Supply line (extra-low-voltage) circuit transients in <u>67.7</u>, while energized from a source of supply as specified in <u>Table 37.3</u>, Test voltages, and connected to the devices intended to be used with the alarm. Smoke alarms using a primary battery as a power supply are to be subjected to <u>67.3</u>, extraneous transients, only. When a smoke alarm is intended for multiple-station connection, the transient tests are to be first conducted with an individual smoke alarm, and secondly with two interconnected smoke alarms. The interconnecting wiring shall not exceed 300 mm (12 in).
- 67.1.2 Different smoke alarms are to be used for each test. The smoke alarms shall not false alarm for more than 1 second.

67.2 Internally induced transients

67.2.1 The alarm is to be energized in the standby condition from a source of supply as specified in <u>Table 37.3</u>, Test voltages. The supply is to be interrupted a total of 500 cycles for 1 second at a rate of not more than 6 cycles/min. Following the test, the alarm is to be operated for its intended signaling performance and the alarm shall be tested for sensitivity. Following this test, the alarm shall comply with the

requirements of Section 42, Sensitivity Test, and shall vary not more than specified in 38.3, Sensitivity shift criteria.

67.3 Extraneous transients

- 67.3.1 A smoke alarm shall not false alarm nor shall its intended operation be impaired when subjected to extraneous transients generated by the devices and appliances described in 67.3.2.
- 67.3.2 The alarm shall respond to smoke or other aerosol during application of the transient condition.
- 67.3.3 To determine compliance with 67.3.1, two single and two sets of multiple station smoke alarms are to be energized from a source of rated voltage and frequency and subjected to transients generated from the following devices located 300 mm (11.8 in) from the alarm, interconnecting wires, or both. The time of application for condition (b) shall be at least 2 minutes. Conditions (c), (d), and (e) are to be applied for 10 cycles, each application of 2 seconds duration, except the last application shall be of a 2-minute duration. Near the end of the last cycle, smoke or other aerosol is to be introduced into the alarm chamber to determine whether the unit is operational with the transient applied.
 - a) Energization and transmission of random voice message of transmitter-receiver units in turn, each having a 5 watt output and operating in the following nominal frequencies:

of six energy five the single of the six energy five the single of the six energy five A total of six energizations in each of two orientations are to be applied from each transmitterreceiver; five to consist of 5 seconds on and 5 seconds off, followed by one consisting of a single 15-second energization. For this test, the cellular phones are to be in the same room and on the same plane as the alarm under test. The cellular phones are to be positioned to generate a field strength of 20 volts/meter at the power sensing antenna adjacent to the smoke alarm under test. The test is to be conducted with the antenna tip pointed directly at the smoke alarm, and at a right angle to the first position, centered on the alarm.

- b) Sequential arc (Jacob's ladder) generated between two 381 mm (15 in) long, 2.1 mm² (14 AWG) solid copper conductors attached rigidly in a vertical position to the output terminals of an oil burner ignition transformer or gas tube transformer rated 120 volts, 60 Hz primary; 10,000 volts, 60 Hz, 23 milliamperes secondary. The two wires are to be formed in a taper, starting with a 3.2 mm (1/8 in) separation at the bottom (adjacent to terminals) and extending to 31.8 mm (1-1/4 in) at the top.
- c) Energization of an electric drill rated 120 volts, 60 Hz, 2.5 amperes.
- d) Energization of a soldering gun rated 120 volts, 60 Hz, 2.5 amperes.
- e) Energization of a 152-mm (6-in) diameter solenoid-type vibrating bell with no arc suppression and rated 24 volts DC.

At the conclusion of the test series, the smoke alarm shall comply with the requirements of the Normal Operation Test, Section 38, and the Sensitivity Test, Section 42.

67.4 Surge immunity test (combination wave)

- 67.4.1 The smoke alarm shall be subjected to the Surge Immunity Test without demonstrating, either during or after testing, any of the following:
 - a) Emission of flame, molten metal, glowing or flaming particles through any openings (preexisting or created as a result of the test) in the product;
 - b) Ignition of the enclosure; nor
 - c) Creation of any opening in the enclosure that results in energized parts becoming accessible.
- 67.4.2 The test method is to be conducted in accordance with the testing methods described in IEC 61000-4-5, Electromagnetic Compatibility (EMC) Part 4-5: Testing and Measurements Techniques Surge Immunity Test. The surges (five positive and five negative) are to be applied at phase angles of 90 and 270 electrical degrees.
- 67.4.3 The surge impulse test levels in <u>Table 67.1</u> re to be used (combination 1.2/50 μs, 8/20 μs Voltage/Current surge waveform). A separate smoke alarm shall be used for each surge level.

Table 67.1 Surge impulse levels

Peak voltage (kV)		Peak current (kA)
2	*Ke	1
4	N	2
6	:0	3

67.4.4 At the conclusion of the test, the alarm is to comply with the requirements of the Normal Operation Test, Section 38, and the Sensitivity Test, Section 42.

67.5 Surge current test

- 67.5.1 Each of three previously untested representative devices of the smoke alarm are to be subjected to the Surge Current Test without demonstrating, either during or after testing, any of the following:
 - a) Emission of flame, molten metal, glowing or flaming particles through any openings (preexisting or created as a result of the test) in the product;
 - b) Charring, glowing, or flaming of the supporting surface, tissue paper, or cheesecloth;
 - c) Ignition of the enclosure; nor
 - d) Creation of any opening in the enclosure that results in energized parts becoming accessible.
- 67.5.2 The smoke alarm is to be mounted on a ceiling surface covered with a double layer of white tissue paper. Each smoke alarm is to be loosely draped with a double layer of cheesecloth. The cheesecloth shall cover openings (for example, ventilation openings) where flame, molten metal, or other particles are not prohibited from being expelled as a result of the test. During this test it is not intended that the cheesecloth be deliberately pushed into any openings.
- 67.5.3 A permanently-connected smoke alarm shall be connected to a source of supply in accordance with 37.3, Test voltages, and shall be subjected to a surge of 20 kV ± 10 percent at 10 kA ± 10 percent. The surge shall be a combination $1.2/50 \, \mu s$, $8/20 \, \mu s$ voltage/current surge waveform. The polarity of the

impulses shall be one positive applied at a phase angle of 90 degrees (+0, -15) and one negative applied at a phase angle of 90 degrees (+0, -15).

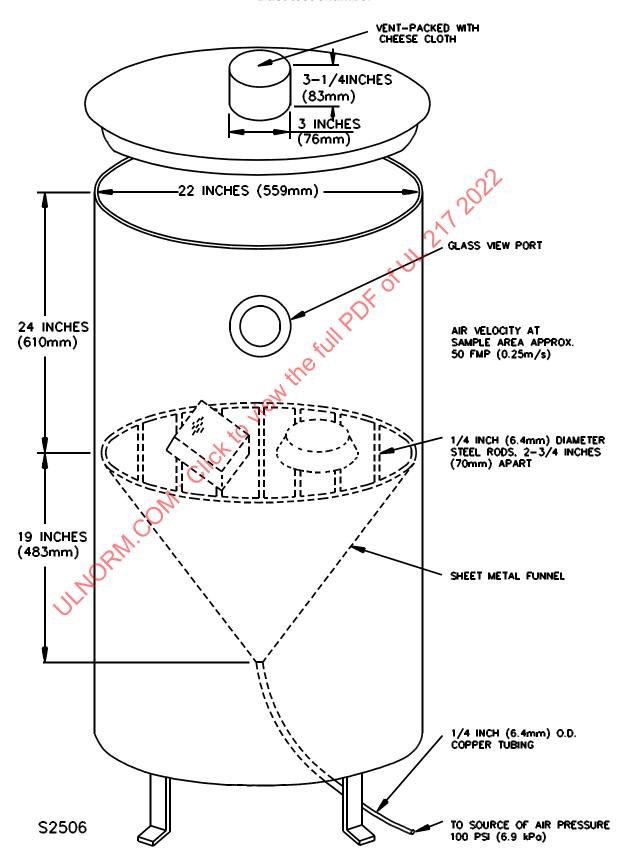
67.6 Supply line (ring wave surge voltage) transients

- 67.6.1 An alarm intended to be powered from commercial AC power shall be subject to supply line transients induced directly between the power supply circuit conductors of the alarm under test.
- 67.6.2 For this test, the product is to be connected to a transient generator capable of producing the Location Category A, 100 kHz Ring Wave transient as defined in ANSI/IEEE C62.41, IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits.
- 67.6.3 Each unit is to be subjected to 500 oscillatory transient pulses induced at an average rate of 3 pulses every minute. Each transient pulse is to be induced 90 degrees into the positive half of the 60 Hz cycle. A total of 250 pulses are to be applied so that the polarity of the transients is positive with reference to earth ground, and the remaining 250 pulses are to be negative with respect to earth ground.
- 67.6.4 The alarm is to be subjected to 500 oscillatory transient pulses a rate of 6 cycles/min. Each transient pulse is to be induced 90 degrees into the positive half of the 60 Hz cycle.
- 67.6.5 At the conclusion of the test, the smoke alarm shall comply with the requirements of the Normal Operation Test, Section $\frac{38}{2}$, the requirements of the Sensitivity Test, Section $\frac{42}{2}$, and shall not vary more than the limits specified in $\frac{38.3}{2}$, Sensitivity shift test.

67.7 Supply line (extra-low-voltage circuit) transients

- 67.7.1 Each of two extra-low-voltage smoke alarms are to be subjected to 60 transient voltage pulses. The pulses are to be induced into:
 - a) The alarm circuit intended to be connected to the extra-low-voltage initiating device circuit of a system control unit and
 - b) The extra-low-voltage power supply circuit of the alarm.
- 67.7.2 For this test, each circuit is to be subjected to five different transient waveforms having peak voltage levels in the range of 100 to 2400 volts, as delivered into a 200 ohm load. A transient waveform at 2400 volts shall have a pulse rise time of 100 volts per microsecond, a pulse duration of 80 microseconds, and an energy level of 1.2 joules. Other applied transients shall have peak voltages representative of the entire range of 100 to 2400 volts, with pulse durations from 80 to 110 microseconds, and energy levels not less than 0.3 joule or greater than 1.2 joules.
- 67.7.3 The alarm is to be subjected to 60 transient pulses induced at the rate of six pulses per minute as follows:
 - a) Twenty pulses (two at each transient voltage level specified in <u>67.7.2</u>) between each circuit lead or terminal and earth ground, consisting of ten pulses of one polarity, and ten of the opposite polarity (total of 40 pulses) and
 - b) Twenty pulses (two at each transient voltage level specified in 67.7.2) between any two circuit leads or terminals consisting of ten pulses of one polarity and ten of the opposite polarity.
- 67.7.4 At the conclusion of the test, the alarm shall comply with the requirements of the Normal Operation Test, Section 38, and the Sensitivity Test, Section 42.

68 Static Discharge Test


- 68.1 The intended performance of an alarm shall not be impaired, or a false alarm obtained, when the alarm is subjected to static electric discharges. Operation of the trouble circuit during this test shall not be considered a malfunction, when the subsequent intended operation is not affected. The test is to be conducted in an ambient temperature of $23 \pm 3^{\circ}$ C ($73.4 \pm 5^{\circ}$ F) at a relative humidity of 10 ± 5 percent and a barometric pressure of not less than 700 mm of mercury (193.5 kPa). The alarm is permitted to sound for 5 seconds or less during the test.
- 68.2 Each of two alarms, one at maximum and one at minimum sensitivity, is to be mounted on the underside of an 18.1-mm (3/4-in) thick plywood panel in its intended mounting position and connected to a source of supply in accordance with 37.3, Test voltages. When an alarm is intended to be installed on a metal back box, the box is to be connected to earth ground. A 250 picofarad low leakage capacitor, rated 10,000 volts DC, is to be connected to two high voltage, hazardous-voltage insulated leads, 0.9 m (3 ft) long, stripped 25.4 mm (1 in) at each end. A 1500 ohm resistor is to be inserted in series with one lead. The end of each lead is to be attached to a 12.7-mm (1/2-in) diameter metal test probe with a spherical end mounted on an insulating rod. The capacitor is to be charged by touching the ends of the test leads to a source of 10,000 volts DC for at least 2 seconds for each discharge. One probe is to be first touched to the alarm and the other probe then touched to earth ground. An electrostatic voltmeter is to be employed to measure the voltage and is to be removed prior to conducting the discharge.
- 68.3 Ten discharges are to be applied to different points on the exposed surface of the alarm, recharging the capacitors for each discharge. Five discharges are to be made with one lead connected to earth ground and the other lead probed on the smoke alarm surface followed by five discharges with the polarity reversed. For an alarm intended to be serviced by the consumer, ten additional discharges are to be applied on all internal parts that are able to be contacted during servicing. Discharges inside the smoke alarm are not to be applied when the smoke alarm is not intended to be serviced in the field and is marked to be returned to the factory for servicing.
- 68.4 Following the discharges, the alarm is to be tested for normal operation and sensitivity. Sensitivity shall be in accordance with the requirements of Section <u>42</u>, Sensitivity Test, and shall vary not more than specified in <u>38.3</u>, Sensitivity shift criteria.

69 Dust Test

- 69.1 The smoke alarm samples subjected to the Go/no-go field test, <u>86.1</u>, shall be used for the dust test.
- 69.2 The smoke sensitivity of a smoke alarm shall be evaluated in conformance with the requirements of 69.2 69.4 Energization and operation of the alarm or trouble circuit is permitted.
- 69.3 To determine compliance with <u>69.2</u>, two samples, one at maximum and one at minimum smoke sensitivity, are to be placed in the normal mounting positions, de-energized, on metal supports in a chamber having an internal volume of at least 0.09 m³ (3 ft³). See <u>Figure 69.1</u>, Dust test chamber, as an example.

Figure 69.1

Dust test chamber

- 69.4 Sixty ± 3 g (2.1 ± 0.1 oz) of cement dust, maintained in an ambient room temperature of 23 $\pm 2^{\circ}$ C (73.4 $\pm 3^{\circ}$ F) at 20 50 percent relative humidity and capable of passing through a 200 mesh screen, is to be circulated for 15 minutes by means of compressed air or a blower so as to completely envelop the sample in the chamber. The air flow is to be maintained at an air velocity of at least 0.25 m/s (50 fpm).
- 69.5 Following the exposure to dust the smoke alarm is to be removed carefully, mounted in its intended position, energized from a source of supply in accordance with <u>Table 37.3</u>, Test voltages, and tested for smoke sensitivity, using gray smoke/aerosol, unless a trouble signal or false alarm is obtained. Following exposure to dust:
 - a) Acceptable modes of operation are:
 - 1) Trouble signals;
 - 2) Alarm signals; or
 - 3) Smoke sensitivity measurement which is more sensitive than the least sensitive limit.
 - b) Failure modes are:
 - 1) Inoperative test switch; or
 - 2) Smoke sensitivity measurements less sensitive than the least sensitive limit.

Refer to manufacturer's published instructions for cleaning or replacement information.

Following this test, the alarm shall comply with the requirements of Section <u>42</u>, Sensitivity Test, and shall vary not more than specified in <u>38.3</u>, Sensitivity shift test..

70 Overload Tests

70.1 Smoke alarm

- 70.1.1 A smoke alarm other than that operating from a primary battery shall be capable of operating as intended after being subjected to 50 cycles of alarm signal operation at a rate of not more than 6 cycles per minute with the supply circuit to the smoke alarm at 115 percent of the rated test voltage. Each cycle shall consist of starting with the smoke alarm energized in the standby condition, initiation of an alarm by smoke or equivalent means, and restoration of the smoke alarm to standby.
- 70.1.2 Rated test loads are to be connected to the output circuits of the smoke alarm that is energized from the smoke alarm power supply. The test loads are to be those devices, as specified by the manufacturer, such as remote indicators, relays, and the like, or their equivalent, intended for connection. When the equivalent load consists of an inductive load, a power factor of 0.6 shall be employed. The rated loads shall be established initially with the smoke alarm connected to a source of supply as specified in 37.3, Test voltages, following which the voltage shall be increased to 115 percent of the smoke alarms stated nominal voltage rating.
- 70.1.3 A multiple-station type smoke alarm shall be tested while interconnected with the maximum number of units specified and all units supplied by 115 percent of the smoke alarms stated nominal voltage rating.
- 70.1.4 For direct current rated signaling circuits, an equivalent inductive test load is to have the required DC resistance for the test current and the inductance (calibrated) to obtain a power factor of 0.6 when connected to a 60 Hz potential equal to the rated DC test voltage. When the inductive load has both the required DC resistance and the required inductance, the current measured with the load connected to an

AC circuit is equal to 0.6 times the current measured with the load connected to a DC circuit when the voltage of each circuit is the same.

70.2 Separately energized circuits

- 70.2.1 Separately energized circuits of a smoke alarm, such as dry contacts, shall operate as intended after being subjected for 50 cycles of signal operation at a rate of not more than 6 cycles/min while connected to a source of supply in accordance with the requirements specified in 37.3, Test voltages, with 150 percent rated loads at 0.6 power factor applied to output circuits that do not receive energy from the smoke alarm. There shall be no electrical or mechanical malfunction of the switching circuit.
- 70.2.2 The test loads shall be adjusted to carry 150 percent of rated current while connected to a 217202 separate source of supply as specified in 37.3, Test voltages.

71 **Endurance Test**

71.1 Smoke alarm

- 71.1.1 Following the Overload Test Smoke alarm, 70.1, a smoke alarm shall operate as intended after being subjected to 6000 cycles of the complete alarm/test signal operation, at a rate of not more than 10 cycles per minute, with the smoke alarm connected to a source of supply in accordance with Table 37.3, Test voltages, and with related devices or equivalent loads connected to the output circuits. There shall not be electrical or mechanical failure or evidence of failure of the smoke alarm components. It is acceptable for battery operated units to be connected to an equivalent filtered DC power supply source for this test.
- 71.1.2 Sensitivity measurements are to be recorded before and after the Endurance Test, in accordance with the Sensitivity Test, Section 42. The sensitivity values shall vary not more than specified in 38.3, Sensitivity shift criteria.

71.2 Separately energized circuits

71.2.1 Following the overload test of Separately energized circuits, 70.2, the separately energized circuits of a smoke alarm shall operate as intended, when operated for 6000 cycles at a rate of not more than 10 cycles per minute at a 50 percent duty cycle. When an electrical load is involved, the contacts of the device shall be made to make and break the normal current at the voltage specified by 37.3, Test voltages. The load is to represent that which the device is intended to control. The Endurance Tests of the separately energized circuits shall be conducted either separately or in conjunction with the Endurance Test of the smoke alarm. There shall not be electrical or mechanical malfunction of the smoke alarm nor malfunction or welding of any relay contacts.

Exception: When the contact rating is at least twice that of the load controlled, this test is not required.

71.3 Audible signaling appliance

The internal and/or external audible signaling appliance associated with each of two smoke alarms shall operate as intended when the smoke alarms are operated for 8 hours of alternate 5-minute periods of activation and de-activation of the audible alarm signal, followed by 72 hours of continuous activation of the alarm signal. For this test, the smoke alarms shall be connected to a source of rated voltage and frequency. For a battery operated smoke alarm, a filtered DC supply shall be employed that has an output voltage equivalent to the fresh battery voltage. The sound level output following endurance shall meet the requirements of the Audibility Test in Section 84.

71.4 Test means

71.4.1 A sensitivity adjustment switch, test means, alarm silencing means, or reset switch provided on a smoke alarm shall operate as intended after being operated for 1500 cycles at the rate of not more than 10 cycles per minute. The time of actuation of a test means is to be long enough to obtain at least 1 test sequence of alarm. For this test one smoke alarm is to be connected to a rated source of supply voltage and frequency. This test shall be conducted either separately or in conjunction with the Endurance Test of the smoke alarm.

72 Fire Test – Smoke Alarm with Supplementary Heat Detection

- 72.1 The smoke alarm with supplementary heat detection shall comply with the following items as specified in the Standard for Single and Multiple Station Heat Alarms, UL 539:
 - a) The operation temperature test for a fixed temperature device; and/or
 - b) The rate of rise test for devices that incorporate a rate of rise feature.
- 72.2 The smoke alarm with supplementary heat detection shall be sensitive enough to qualify for at least a 15.2 m (50 ft) spacing when subjected to the Fire Test described in the Standard for Single and Multiple Station Heat Alarms, UL 539.
- 72.3 Two samples of the smoke alarm incorporating the heat detector shall be subjected to this test.


73 Leakage Current Test

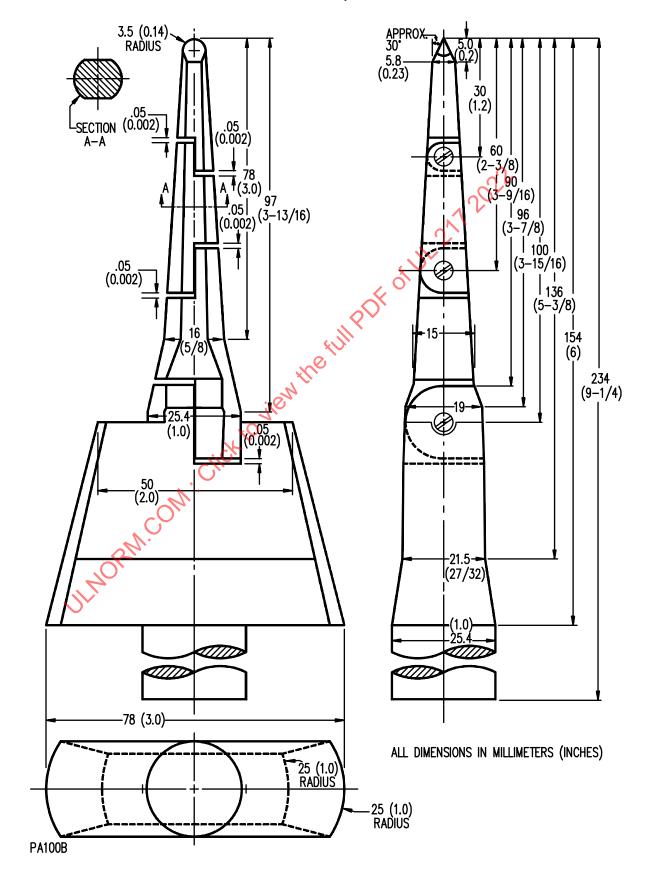
- 73.1 The leakage current of an alarm not operating from a primary battery shall not exceed 0.5 milliampere, AC or DC, after being subjected to the Humidity Test, Section 64, when measured as follows:
 - a) Between any exposed surface of an alarm that is contacted by a person and earth ground, and
 - b) Between any interior parts of an alarm that are contacted by a person during servicing and earth ground.

All grounding connections to the unit being tested are to be disconnected prior to making the measurement. The leakage current measurement is to be made at the supply connection polarity indicated on the installation wiring diagram by the manufacturer on the smoke alarm and at the same locations with the polarity reversed. See <u>Figure 73.1</u>, Leakage current measurement circuit.

Figure 73.1

Leakage current measurement circuit

- 73.2 For this test the alarm is to be de-energized, removed from the humidity environment, placed on a dry insulating surface, and immediately reenergized from a rated source of supply. The leakage measurement then is to be made within 5 minutes of energization while in the standby and alarm conditions. The leakage current value is to be rms values for DC (nonfiltered rectified AC) and sinusoidal waveforms up to 1 kilohertz. For frequencies above 1 kilohertz the leakage current limit is to be the value given multiplied by the frequency in kilohertz up to a maximum multiplier of 100.
- 73.3 The test meter employed to measure the leakage current is to be an average responding AC milliammeter that indicates the rms value of a pure sine wave, having an error of not greater than 5 percent, and a maximum input impedance of 1000 ohms. For DC measurements, a DC milliammeter, with a maximum impedance of 1000 ohms in the test circuit, is to be employed.
- 73.4 When a conductive surface other than metal is used for the enclosure or part of the enclosure, the leakage current is to be measured using a metal foil with an area of 10 by 20 cm (4 by 8 in) placed in contact with the enclosure surface. Where the enclosure surface is less than 10 by 20 cm (4 by 8 in), the metal foil is to be the same size as the surface. It is not intended that the metal foil be pressed into openings on the smoke alarm during this test and the metal foil should not remain in place long enough to affect the temperature of the sample.
- 73.5 When an alarm is intended for multiple station connection, leakage currents are to be measured with the maximum number of alarms intended to be interconnected, unless it is established by circuit analysis that the leakage current is independent of interconnection.


74 Abnormal Operation Test

- 74.1 A smoke alarm shall operate continuously under abnormal (fault) conditions without resulting in a risk of fire.
- 74.2 The smoke alarm is to be operated under the most severe abnormal circuit fault conditions encountered in service while connected to a source of supply as specified in <u>Table 37.3</u>, Test voltages. There shall not be emission of flame or molten metal, or any other manifestation of a fire
- 74.3 During this test, the fault condition is to be maintained continuously until constant temperatures are attained, or burnout occurs, when the fault condition does not result in the operation of an overload protective device. The shorting of an electrolytic capacitor(s) and operation in the alarm condition for more than 1 hour represents typical abnormal conditions. See 41.2, Component failure and 88.3, Burnout test.

75 Electric Shock Current Test

75.1 If the open circuit potential between any part that may be contacted by the probe shown in Figure 75.1, Articulated probe, either during normal operation or during operator servicing (servicing as defined in the operating or installation instruction) and either earth ground or any other exposed accessible part, exceeds 42.4 volts peak, then the part shall comply with the requirements of 75.2 and 75.4.

Figure 75.1
Articulated probe

75.2 The continuous current flow through a 500-ohm resistor shall not exceed the values specified in Table 75.1, Maximum current during operator servicing, when the resistor is connected between any part that is exposed only during operator servicing and either earth ground or any other exposed accessible part.

Table 75.1

Maximum current during operator servicing

Frequency, hertz ^a	Maximum current through a 500-ohm resistor, milliamperes peak
0 – 100	7.1
500	9.4
1000	11.0
2000	14.1
3000	173
4000	19.6
5000	22.0
6000	25.1
7000 or more	27.5

^a Linear interpolation between adjacent values may be used to determine the maximum allowable current corresponding to frequencies not shown. The table applies to repetitive nonsinusoidal or sinusoidal waveforms.

- 75.3 The duration of a transient current flowing through a 500-ohm resistor connected as described in 75.2 shall not exceed the following:
 - a) The value determined by the following equation:

$$T \le \left(\frac{20\sqrt{2}}{I}\right)^{1.43}$$

in which:

T is the interval, in seconds, between the time that the instantaneous value of the current first exceeds 7.1 milliamperes and the time that the current falls below 7.1 milliamperes for the last time;

🎎 the peak current in milliamperes; and

b) 809 milliamperes, regardless of duration.

The interval between occurrences shall be equal to or greater than 60 seconds if the current is repetitive. Typical calculated values of maximum acceptable transient current duration are shown in <u>Table 75.2</u>, Maximum transient current duration.

Table 75.2 Maximum transient current duration

Maximum peak current (I) through 500-ohm resistor, milliamperes	Maximum duration (T) of waveform containing excursions greater than 7.1 milliamperes peak, seconds
7.1	7.22
8.5	5.58
10.0	4.42
12.5	3.21
15.0	2.48
17.5	1.99
20.0	1.64
22.5	1.39
25.0	109
30.0	0.919
40.0	0.919 0.609 0.443 0.341 0.274 0.226 0.191 0.164 0.092 0.061 0.044 0.034 0.027 0.023 0.019 0.016
50.0	0.443
60.0	0.341
70.0	0.274
80.0	0.226
90.0	0.191
100.0	0.164
150.0	0.092
200.0	0.061
250.0	0.044
300.0	0.034
350.0	0.027
400.0	0.023
450.0	0.019
500.0	0.016
600.0	0.013
700.0	0.010
809.0	0.0083

75.4 The maximum capacitance between the terminals of a capacitor that is accessible during operator servicing shall comply with the following equations:

$$C = 35,288E^{-1.5364}$$
 for $400 \le E \le 1000$

$$C = \frac{88,400}{E^{1.43}(Ln\ E - 1.26)}$$
 for $42.4 \le E \le 400$

in which:

C is the maximum capacitance of the capacitor in microfarads and

E is the potential in volts across the capacitor prior to discharge; E is to be measured 5 seconds after the capacitor terminals are made accessible, such as by the removal or opening of an interlocked cover, or the like.

Typical calculated values of maximum capacitance in microfarads are shown in <u>Table 75.3</u>, Electric shock – stored energy.

Table 75.3 Electric shock – stored energy

Potential across capacitance prior to discharge, volts	Maximum capacitance, microfarads
1000	0.868
900	1.02
800	1.22
700	1.50
600	1.90
500	2.52
400	3.55
380	3.86
360	3.56 3.86 4.22 4.64 5.13 5.71 6.40 7.24 8.27 9.56 11.2 13.4 16.3 20.5 26.7 36.5
340	4.64
320	5.13
300	5.71
280	6.40
260	7.24
240	8.27
220	9.56
200	11.2
180	13.4
160	16.3
140	20.5
120	26.7
100	36.5
90	43.8
80%	53.8
C70	68.0
60 50 45	89.4
50	124.00
45	150.00
42.4	169.00

- 75.5 With reference to the requirements in 75.2 and 75.3, the current is to be measured while the resistor is connected between ground and each accessible part individually or all accessible parts collectively if the parts are simultaneously accessible. The current also is to be measured while the resistor is connected between one part or group of parts and another part or group of parts, if the parts are simultaneously accessible.
- 75.6 With reference to the requirements in 75.5, parts are considered to be simultaneously accessible if they can be contacted by one or both hands of a person at the same time. For the purpose of these requirements, one hand is to be considered to be able to contact parts simultaneously if the parts are within a 102- by 203-mm (4- by 8-in) rectangle; and two hands of a person are considered to be able to contact parts simultaneously if the parts are not more than 1.83 m (6 ft) apart.
- 75.7 Electric shock current refers to all currents, including capacitively coupled currents.

- 75.8 If the product has a direct-current rating, measurements are to be made with the product connected in turn to each side of a 3-wire, direct current supply circuit.
- 75.9 Current measurements are to be made with any operating control, or adjustable control that is subject to user operation, in all operating positions, and either with or without a vacuum tube, separable connector, or similar component in place. These measurements are to be made with controls placed in the position that causes maximum current flow.

76 Locked Rotor Test

76.1 Motors

- 76.1.1 All motors used in smoke alarms shall be protected by thermal or by overcurrent protective devices, or a combination thereof.
- 76.1.2 A motor used in a smoke alarm shall comply with the following requirements or shall be an impedance-protected motor complying with the requirements in the Standard for Overheating Protection for Motors, UL 2111, without the necessity of additional tests.
- 76.1.3 Motors such as direct-drive fan motors, which are not normally subjected to over-loads and which are determined to be adequately protected against overheating due to locked-rotor current by a thermal or overcurrent protective device, may be accepted under this requirement if it is determined that the motor will not overheat under the performance requirements of this Standard. (A thermal or overcurrent protective device shall not open the circuit during the temperature test.)
- 76.1.4 A motor having openings in the enclosure or frame shall be arranged so that particles dropping out of the motor will not fall onto combustible material within or under the smoke alarm.

76.2 Thermal or overcurrent protection

- 76.2.1 When the rotor of the motor is locked, the maximum temperature on a Class A insulated motor winding shall be 200°C (392°F) during the first hour of operation and 175°C (347°F) thereafter. After the first hour of operation, the average temperature, found by taking the arithmetic mean of the maximum temperatures and the arithmetic mean of the minimum temperatures, shall not exceed 150°C (302°F).
- 76.2.2 Temperatures shall be measured by thermocouples on the surface of coils of the motor. The test of a manually reset device is to be continued for four operations of the protective device, with the device being reset as quickly as possible after it has opened. For an automatically reset device, the locked-rotor test is to be continued for 72 hours unless the smoke alarm includes other controls (such as a timer) that limits the duration of the operation to a shorter interval. During the test, the motor is to be connected to a source of supply as specified in 37.3, Test voltages.
- 76.2.3 An automatic-reset thermal protector of a motor shall perform as intended when operated for 15 days (unless the smoke alarm includes other controls, such as a timer, which positively and reliably limits the operation to a shorter interval, or unless the device permanently opens the circuit prior to the expiration of that period), with the rotor of the motor locked, and with the motor connected to a supply circuit having a voltage of 100 110 percent of the rated voltage of the motor. There shall not be permanent damage to the motor (including excessive deterioration of the insulation), and, in a situation where the device permanently opens the circuit, it shall do so without grounding to the motor frame, damaging the motor, or resulting in a risk of fire. A manual-reset thermal protector of a motor shall interrupt for 50 operations, without damage to itself, the locked-rotor current of the motor.
- 76.2.4 There shall not be any ignition of cotton surrounding the enclosure of a thermal protector of a motor when three samples of the device are subjected to limited short-circuit currents. For a motor rated at

1/2 horsepower (373 W output) or less, and 250 volts or less, the current is to be 200 amperes. For a motor having other ratings, and not more than 1 horsepower (746 W output), it is to be 1000 amperes. The power factor of the test circuit is to be 0.9 - 1.0, and the circuit capacity is to be measured without the device in the circuit. A nonrenewable cartridge fuse is to be connected in series with the device under test. The fuse rating is to be not less than four times the rated current of the smoke alarm except that the fuse rating is not to be less than 20 amperes for a smoke alarm rated 150 volts or more, and not more than 600 volts. The test on one sample is to be made by closing the device on the short circuit.

76.3 Impedance protection

- 76.3.1 When operated under locked-rotor conditions for 15 days:
 - a) A motor shall not attain a temperature of more than 150°C (302°F) during the first 72 hours of operation;
 - b) The motor winding shall not burn out or become grounded to the frame, nor shall there be any evidence of excessive deterioration of insulation; and
 - c) The supply-circuit fuses shall not open. The supply-circuit fuses shall not open.

Exception: The test does not have to be continued longer than required for the windings of the motor (of either the open or totally enclosed type) to reach constant temperature, when this constant temperature is not more than 100°C (212°F).

- 76.3.2 During the test, a motor having a nominal rating of 115 volts is to be connected to a circuit having a voltage of 120 volts, and a motor having a nominal rating of 230 volts is to be connected to a circuit having a voltage of 240 volts. A motor having any other voltage rating is to be connected to a circuit having a voltage of 100 105 percent of the voltage rating of the motor.
- 76.3.3 To determine that a motor complies with the requirements of $\frac{76.3.1}{1}$, temperature readings shall be taken as follows:
 - a) For a totally enclosed motor a motor whose outer metal enclosure is complete the temperature is to be measured by means of a thermocouple on the enclosure.
 - b) For any other motor, the temperature is to be measured by means of a thermocouple on the integrally applied insulation of the winding under the coil wrap, when present.
 - c) When the coil is encapsulated, the winding temperature is to be determined by the resistance method.
- 76.3.4 The rotor of the motor is to be locked in a stationary position. The motor is to be mounted on wood or other thermal insulating material determined to be equivalent. Blades or other motor attachments shall be removed from the motor. Integral mounting brackets shall be left in place. The frame of the motor is to be connected to ground by means of a solid conductor (that is, with no fuse in the grounding conductor). A 30-amp time-delay fuse is to be connected in each ungrounded conductor of the supply cord.
- 76.3.5 At the conclusion of the first 72 hours of the Locked Rotor Test, the motor shall withstand the Dielectric Voltage-Withstand Test, Section 77.
- 76.3.6 At the conclusion of the 15-day test, a potential of twice the marked rated voltage of the motor is to be applied between the windings and the frame to determine whether or not the winding has become grounded.

77 Dielectric Voltage-Withstand Test

- 77.1 A product shall withstand for 1 min without breakdown, the application of an essentially sinusoidal AC potential of a frequency within the range of 40 70 Hz, or a DC potential, between live parts and the enclosure, between live parts and exposed dead-metal parts (see $\frac{77.2}{1}$), and between live parts of circuits operating at different potentials or frequencies (see $\frac{77.3}{1}$). The test potential is to be:
 - a) For circuits rated 30 V AC rms (42.4 V DC or AC peak) or less 500 V AC (707 V, when a DC potential is used);
 - b) For circuits rated greater than 30 and equal to or less than 150 V AC rms (42.4 and 212 V DC) 1000 V AC (1414 V, when a DC potential is used);
 - c) For circuits rated more than 150 V AC rms (212 V DC) 1000 V AC plus twice the rated voltage (1414 V plus 2.828 times the rated AC rms voltage, when a DC potential is used). See $\frac{77.4}{2}$ and $\frac{77.5}{2}$.
- 77.2 Exposed dead-metal parts are non-current-carrying metal parts that are capable of becoming energized and are accessible from outside of the enclosure of a product.
- 77.3 For the application of a potential between live parts of circuits operating at different potentials or frequencies, the voltage is to be the applicable value specified in 77.1 (a), (b), or (c), based on the highest voltage of the circuits under test. Electrical connections between the circuits are to be disconnected before the test potential is applied.
- 77.4 Where the charging current through a capacitor or capacitor-type filter connected across-the-line, or from line-to-earth ground is sufficient to prevent maintenance of the specified AC test potential, the capacitor or filter is to be tested using a DC test potential in accordance with 77.1.
- 77.5 The test potential shall be obtained from any convenient source having sufficient capacity to maintain the specified voltage. The output voltage of the test apparatus is to be monitored. The method of applying the test voltage is to be such that there are no transient voltages that result in instantaneous voltage being applied to the circuit exceeding 105% of the peak value of the specified test voltage. The applied potential is to be:
 - a) Increased from 0 at a uniform rate so as to arrive at the specified test potential in approximately 5 s; and then
 - b) Maintained at the test potential for 1 min without an indication of a breakdown.

Manual or automatic control of the rate of rise is not prohibited.

78 Polarity Reversal Test

78.1 A smoke alarm shall operate as intended after being connected in each polarity. While energized under either polarity, the alarm shall comply with the requirements of the Electric Shock Current Test, Section 75. This includes high-voltage cord connected and fixed wiring (splice lead) types, battery types (main or standby), and multiple station interconnection leads. Each polarity is to be applied for at least 24 hours on all units unless a trouble signal or alarm signal is obtained. For battery operated alarms intended to be connected by a polarized clip assembly the reverse polarity is to be applied for a minimum of 1 second. A trouble or alarm signal is to be permitted under any incorrect polarity applied. A maximum 1-second alarm is permitted when the correct polarity is connected.

78.2 Two samples are to be subjected to this test. Sensitivity measurements prior to and following the test are to be made in accordance with the Sensitivity Test, Section <u>42</u>. Measurements following the polarity reversal shall vary not more than specified in <u>38.3</u>, Sensitivity shift criteria.

79 Tests on Polymeric Materials

79.1 General

79.1.1 Polymeric materials intended for the sole support of current-carrying parts or as an enclosure of a smoke alarm shall be subjected to the tests specified in $\frac{79.2}{10.2} - \frac{79.4}{10.2}$. When possible, a complete smoke alarm is to be used.

79.2 Temperature test

79.2.1 There shall not be warping that impairs intended operation or exposes hazardous-voltage uninsulated current-carrying parts when representative samples of a polymeric material are in a circulating-air oven for the number of days associated with the test temperature per the equation below, and at a relative humidity of 0-10 percent.

$$t_{test-time} = t_{real-time} / 2^{(T_{oven} - T_{installation})/10}$$
(70°C minimum)

Where

 $t_{real time} = 257 days,$

 T_{oven} = oven temperature (70°C minimum)

 $T_{installation}$ = maximum installation temperature (as specified by the manufacturer)

For example, for a smoke alarm with a maximum installation ambient temperature of 38°C (100°F), tested at an oven temperature of 90°C (194°F), the calculation below would apply:

$$t_{test-time} = 257 / 2^{(90-38)/10}$$

$$t_{test-time} = 7 \ days$$

79.2.2 Three representative samples shall be mounted on supports as intended in service and placed in the oven. Following the aging period indicated in 79.2.1, the samples shall be viewed (while in the oven) for distortion, removed, permitted to cool to room temperature, and then reexamined for compliance with the requirements of 79.2.1. The smoke alarm cover shall be allowed to fall off only when hazardous-voltage parts are not exposed, operation for smoke detection is not affected, and the cover is able to be replaced as intended. Smoke sensitivity measurements, using gray smoke/aerosol, conducted in the event of questionable distortion, shall not vary more than specified in 38.3, Sensitivity shift criteria.

79.3 Flame test – 19 mm (3/4 inch)

79.3.1 When equipment is tested as described in $\frac{79.3.2}{-9.3.6}$, the material shall not flame for more than 1 minute after two 30-second applications of a test flame, with an interval of 1 minute between applications of the flame. The sample shall not be completely consumed.

Exception: Parts that are molded from materials that are classed as 5VA, 5VB, V-0, or V-2 are not required to be subjected to the flammability test described in 79.3.2 – 79.3.6.

79.3.2 Three samples of the equipment shall be placed in a forced draft circulating air oven maintained at a uniform temperature not less than 10° C (18° F) higher than the maximum temperature of the material measured under normal operating conditions, and not less than 70° C (158° F) in any case. The samples are to remain in the oven for 7 days. After cooling to room temperature for a minimum of 4 hours, the samples shall be tested as described in 79.3.3 - 79.3.6.

Exception: It is permissible that the test be conducted on only three unconditioned test samples when both of the following conditions are met:

- a) The material does not exhibit a reduction in its flame-resistance properties as a result of long-term thermal aging and
- b) The thermal-aging program used for such determination included specimens having a thickness equal to or less than the wall thickness of the polymeric part.
- 79.3.3 Three samples of the part shall be subjected to the flame test described in 79.3.5. In the performance of the test, the equipment is to be supported in its normal operating position in a draft free location. Nonpolymeric portions are not to be removed and insofar as possible, the internal mechanism of the equipment is to be in place. The flame is to be applied to an inside surface of the sample at a location judged ignitable because of its proximity to a source of ignition. Each sample shall be tested with the flame applied to a different location.

Exception: It is permissible that the test be conducted on only three unconditioned test samples when both of the following conditions are met:

- a) The material does not exhibit a reduction in its flame-resistance properties as a result of long-term thermal aging and
- b) The thermal-aging program used for such determination included specimens having a thickness equal to or less than the wall thickness of the polymeric part.
- 79.3.4 With reference to <u>79.3.3</u>, the sections most ignitable shall be identified as those adjacent to coil windings, splices, open-type switches, or arcing parts.
- 79.3.5 The flame of a Bunsen or Tirrill burner having a tube with a length of 100 ± 10 mm (3.94 ± 0.39 in) and an inside diameter of 9.5 ± 0.3 mm (0.374 ± 0.12 in) is to be adjusted to have a 19-mm (3/4-in) height of yellow flame with no blue cone. Two 30-second applications of the tip of the flame shall be made to each section of the equipment chosen as indicated in 79.3.4, with 1-minute intervals between the applications. A supply of technical-grade methane gas is to be used with a regulator and meter for uniform gas flow.

Exception: Natural gas having a heat content of 37 MJ/m³ (1000 Btu/ft³) at 23°C (73°F) has been found to provide similar results and is permissible for use.

79.3.6 When one sample from a set of three does not comply with $\frac{79.3.1}{1}$, an additional set of three samples shall be tested. All samples from the second set shall comply with $\frac{79.3.1}{1}$.

79.4 Flame test – 127 mm (5 inch)

- 79.4.1 When equipment is tested as described in $\underline{79.4.2} \underline{79.4.5}$, all of the following results shall be obtained:
 - a) The material shall not continue to burn for more than 1 minute after the fifth 5-second application of the test flame, with an interval of 5 seconds between applications of the flame;

- b) Flaming drops or flaming or glowing particles that ignite surgical cotton 305 mm (12 in) below the test specimen shall not be emitted by the test sample at any time during the test; and
- c) The material shall not be destroyed in the area of the test flame to such an extent that the integrity of the part is affected with regard to containment of fire or exposure of high voltage parts.

79.4.2 Three samples of the complete equipment or three test specimens of the part thereof shall be subjected to this test. Consideration is to be given to leaving in place components and other parts that influence the performance. The test samples shall be conditioned in a full draft circulating air oven for 7 days at 10° C (18° F) greater than the maximum use temperature and not less than 70° C (158° F) in any case. Prior to testing, the samples shall be conditioned for a minimum of 40 hours at $23.0 \pm 2.0^{\circ}$ C ($73.4 \pm 3.6^{\circ}$ F) and 50 ± 5 percent relative humidity. The flame is to be applied to an inside surface of the sample at a location judged to be ignitable because of its proximity to a source of ignition. When more than one part is near a source of ignition, each sample shall be tested with the flame applied to a different location.

Exception: The test be shall be conducted on only three unconditioned test samples only when both of the following conditions are met:

- a) The material does not exhibit a reduction in its flame-resistance properties as a result of long-term thermal aging; and
- b) The thermal-aging program used for such determination included specimens having a thickness equal to or less than the wall thickness of the polymeric part.
- 79.4.3 The three samples are to result in the performance described in <u>79.4.1</u>. When one sample does not comply, the test is to be repeated on a set of three new samples with the flame applied under the same conditions as for the unsuccessful sample. All the new specimens shall comply with <u>79.4.1</u>.
- 79.4.4 The Bunsen or Tirrill burner with a tube length of 100 \pm 10 mm (3.94 \pm 0.39 in) and an inside diameter of 9.5 \pm 0.3 mm (0.374 \pm 0.12 in), is to be placed remote from the specimen, ignited, and adjusted so that the burner flame is 127 mm (5 in) and the height of the inner blue cone is 38 mm (1-1/2 in). The tube is not to be equipped with end attachments, such as a stabilizer.
- 79.4.5 When a complete enclosure is used to conduct the flame test, the sample is to be mounted as intended in service, providing it does not impair the flame testing, in a draft-free test chamber, enclosure, or laboratory hood. A layer of surgical cotton is to be located 305 mm (12 in) below the point of application of the test flame. The 127 mm (5 in) flame is to be applied to any portion of the interior of the part judged as ignitable (by its proximity to live or arcing parts, coils, or wiring) at an angle of 20 degrees in so far as possible from the vertical so that the tip of the blue cone touches the specimen. The test flame is to be applied to three different locations on each of the three samples tested. A supply of technical-grade methane gas is to be used with a regulator and meter for uniform gas flow.

Exception No. 1: It is permissible that the flame be applied to the outside of an enclosure when the equipment is of the encapsulated type or of such size that the flame cannot be applied inside.

Exception No. 2: Natural gas having a heat content of 37 MJ/m³ (1000 Btu/ft³) at 23°C (73°F) has been found to provide similar results and is permissible for use.

79.4.6 The flame is to be applied for 5 seconds and removed for 5 seconds. The operation is to be repeated until the specimen has been subjected to five applications of the test flame.

80 Strain Relief Test

80.1 General

80.1.1 A cord or lead that relies upon a thermoplastic enclosure or part for strain relief is to be subjected to the applicable tests specified in 80.2 and 80.3 following exposure to the temperature conditioning test described in 79.2.1.

80.2 Power-supply cord

- 80.2.1 When tested in accordance with <u>80.2.2</u>, the strain relief means provided on the flexible cord shall withstand for 1 minute, without displacement, a pull of 156 N (35 pounds-force) applied to the cord with the connections within the alarm disconnected.
- 80.2.2 A 15.9 kg (35 pound-mass) weight is to be suspended on the cord and supported by the alarm so that the strain relief means are stressed from any angle that the construction of the alarm permits. The strain relief does not comply when, at the point of disconnection of the conductors, there is such movement of the cord as to indicate that stress has resulted on the connections.

80.3 Special field-wiring terminals

- 80.3.1 To determine suitability as a field-wiring connection in compliance with <u>21.4.1</u> and <u>21.4.2</u>, (field wiring connections) representative samples shall comply with all of the tests specified in <u>80.3.2</u> and <u>80.3.3</u>.
- 80.3.2 A terminal connection shall withstand the application of a straight pull of 22.2 N (5 lbs), applied for 1 minute to the wire in the direction which would most likely result in pullout, without separating from the terminal.
- 80.3.3 Six samples of the terminal are to be connected to the wire sizes with which they are intended to be used, in accordance with the manufacturer's published instructions. When a special tool is required to assemble the connection, it is to be used. Each sample is to be subjected to a gradually increasing pull on the wire until the test pull of 22.2 N (5 lbs) is reached and maintained at 22.2 N (5 lbs) for 1 minute.

80.4 Field-wiring leads

80.4.1 Each lead employed for field connections shall withstand for 1 minute a pull of 44.5 N (10 lbs) without any evidence of damage or transmittal of stress to internal connections. A connector used in the lead assembly shall withstand a pull of 22.2 N (5 lbs) without any evidence of damage, transmittal of stress to internal connections, or separation.

80.5 Battery connections

- 80.5.1 Lead or terminal connections to batteries shall be identified with the proper polarity, (plus or minus signs). It is not prohibited for the polarity to be indicated on the unit adjacent to the battery terminals or leads.
- 80.5.2 Each lead employed in a battery clip lead assembly, shall withstand for 1 minute a pull of 44.5 N (10 lbs) without any evidence of damage or of transmittal of stress to internal connections.
- 80.5.3 Connections to battery terminals shall be either by a lead terminating in a positive snap action type of clip, or a fixed butt-type connection which applies a minimum of 6.6 N (1.5 lbs) force to each battery contact, or equivalent. The connection shall consist of an unplated or plated metal which is resistant to the corrosive action of the electrolyte.

80.5.4 Each lead of a clip-lead assembly used as part of a battery operated alarm shall be a minimum of 0.32 mm² (22 AWG) stranded wire with a minimum 0.4 mm (1/64 in) insulation.

81 Non-Compulsory Fire and Smoldering Smoke Tests

81.1 When the smoke alarm sensitivity of smoke alarms subjected to any one of the following tests exceeds the maximum sensitivity change permitted for that particular test then the same samples, adjusted to the minimum sensitivity settings, shall comply with the Fire Tests, Section 50, the Smoldering Smoke Test, Section 51, Smoldering Polyurethane Foam Test, Section 52, Cooking Nuisance Smoke Test, 33, and the Go/No Go Flaming Polyurethane Foam Test, Section 54:

112772022

- a) Reduction in Light Output Test, Section 46,
- b) Overvoltage test, 57.1,
- c) Undervoltage test, 57.2,
- d) Vibration Test, Section 59,
- f) Jarring Test, Section 62,
- g) Corrosion Test, Section 65, or Alternate Corrosion Test (21-Day) Section 66, and
- h) Dust Test, Section 69.
- 81.2 For the tests specified in 81.1 (b) and (c), the supply voltage to the smoke alarms in the Fire Tests, Section 50 and the Smoldering Smoke Test, Section 51, is to be at the voltage indicated for the applicable tests.

82 Survivability Tests

- 82.1 Two samples of the smoke alarm shall be exposed to a temperature of 121 ±2°C (250 ±4°F) for a period of 4 minutes. The units shall be removed from the test chamber and allowed to return to room temperature. The units are then to be subjected to the Audibility Test, Section 84, (when applicable) and the Sensitivity Test, Section 42.
- 82.2 Following conditioning, the samples shall be capable of producing an audible output (when applicable) of 85 dBA at 3.05 m (10 ft), and the sensitivity of each smoke alarm shall not vary by more than specified in 38.3. Sensitivity shift criteria.

83 Drop Test

- 83.1 This test is to be conducted only on smoke alarms intended for transient use, such as a travel alarm, and is not to be conducted on alarms intended for stationary installation.
- 83.2 An alarm shall withstand five drops from a height of 2.1 m (7 ft) onto a tiled concrete floor without exposure of internal high-voltage parts and without affecting its intended operation and sensitivity. The sample is to be held so that each impact with the floor is at a different location on the alarm. Dislodgement of parts is not prohibited when:
 - a) The dislodged part does not affect operation or sensitivity of the unit,
 - b) The dislodged part is replaceable (such as a cover),
 - c) There are no high-voltage parts exposed, and

- d) The condition is visually obvious.
- 83.3 Each of two alarms is to be raised to a height of 2.1 m (7 ft) and permitted to drop five times onto a concrete floor covered with a 3.2 mm (1/8 in) thick uncushioned vinyl tile. Following the drops, the unit is to be examined for damage and tested for sensitivity. Sensitivity measurements, recorded after the drop test, shall vary not more than specified in 38.3, Sensitivity shift criteria.

84 Audibility Test

84.1 General

84.1.1 The sound level of an alarm shall be capable of providing at least 4 minutes of alarm as measured in 84.2 and 84.3.1A. It is appropriate for alarms to be tested with the horn duty cycle specified in 38.2, Standardized alarm signal, defeated and emitting a continuous tone.

84.2 Sound output measurement

84.2.1 The sound power output of the alarm shall be measured in a reverberation room using procedures outlined in ANSI ASA Standard S12.51 (Acoustics Determination of Sound Power Levels of Noise Sources using Sound Pressure Precision Method for Reverberation Rooms). The sound power in each 1/3 octave band shall be determined using the comparison method. The A-weighing factor shall be added to each 1/3 octave band. The total power is to be determined on the basis of actual power. The total power is then to be converted to an equivalent sound pressure level for a radius or 3.05 m (10 ft) using the following formula:

Where:

Lp is converted sound pressure level,

Lw is the sound power level measured in the reverberation room, and

R is the radius for the converted sound pressure level 3.05 m (10 ft).

An additional 6 dBA is to be added to allow for two reflecting planes.

84.2.2 Each alarm is to be mounted to a 19.1 mm (3/4 in) plywood board measuring 610 by 610 mm (2 by 2 ft), supported in a vertical plane, and positioned at an angle of 45 degrees to the walls of the reverberation room. A supplemental remote sounding appliance intended for tabletop use is to be placed in the center of a 19.1 mm (3/4 in) plywood board measuring 610 by 610 mm (2 by 2 ft), supported in a horizontal plane.

84.2.3 Deleted

- 84.2.3A At least two samples shall be tested. Units intended for hard wired multiple-station connection shall be tested as a single station and also be tested interconnected as multiple-stations. When connected in the multiple station configuration, the maximum line resistance as defined in 57.2.2 (Undervoltage test) shall be connected in line with the alarm under test.
- 84.2.4 For AC-powered units employing a non-rechargeable standby battery, the measurement shall be made with the smoke alarm connected to a rated AC voltage source and a rated voltage battery. Measurements shall also be made with the AC power de-energized and the alarm energized from the standby battery depleted to 85 percent of battery's rated battery voltage, or at the voltage level at which a

trouble signal is obtained. For an AC unit employing a rechargeable standby battery, the measurement is to be made using a fully recharged battery.

- 84.2.5 Alarms other than low frequency alarms, when energized as described in <u>84.2.4</u> shall provide a sound output equivalent to that of an omnidirectional source with an A-weighted sound pressure level of at least 85 decibels (dB) at 3.05 m (10 ft) with two reflecting planes assumed.
- 84.2.6 A low frequency alarm when energized as described in <u>84.2.4</u> shall have a sound output equivalent to that of an omnidirectional source with an A-weighted sound pressure level of at least 79 decibels (dB) at 3.05 m (10 ft) with two reflecting planes assumed.
- 84.2.7 A primary battery powered alarm is to be energized from a power supply simulating batteries along the trouble signal level curve illustrated in <u>Figure 56.2</u>, Trouble level determination, or equivalent. The simulated battery shall be identified as a voltage source with a series resistance adjusted to a level at which a trouble signal is obtained during the normal standby condition. The resistance and voltages used are to be those that were determined during the Circuit Measurement Test, Section <u>56</u> under each of the following conditions:
 - a) A voltage simulating a battery with some unknown shelf life, such as those purchased at a retail outlet) with enough added resistance to obtain a trouble signal (Point D of Figure 56.2), or the maximum resistance for the particular battery based on documented data, whichever is less.
 - b) A voltage simulating a battery depleted to the trouble signal level voltage, no added resistance (point F of Figure 56.2), and a voltage and resistance in between (point E of Figure 56.2).
- 84.2.8 Sound levels for alarms other than a low frequency alarm while energized as described in 84.2.7, shall produce a minimum sound level of 85 dBA at 3.05 m (10 ft). In addition to the sound levels required in 84.2.8, the sound level over time of a primary battery alarm shall also comply with the requirements in 84.3.1.
- 84.2.9 The sound level of an alarm with the low frequency alarm format signal while energized in 84.2.7, shall provide a minimum sound level of 79 dBA at 3.05 m (10 ft). In addition to the sound levels required in 84.2.7, the sound level over time of a low frequency alarm shall also comply with the requirements in 84.3.1A.

84.3 Alarm duration test

- 84.3.1 An alarm sounding appliance of an alarm other than a low frequency alarm, and powered by a primary or a non-rechargeable secondary battery that has been discharged to the trouble level condition, shall provide the equivalent of 85 dBA minimum at 3.05 m (10 ft) for 1 minute of continuous alarm operation and shall provide at least 82 dBA up to 4 minutes of alarm operation.
- 84.3.1A A low frequency alarm sounding appliance of an alarm powered by a primary or non-rechargeable secondary battery that has been discharged to the trouble level condition, shall provide the equivalent of 79 dBA minimum at 3.05 m (10 ft) for 1 minute of continuous alarm operation and shall provide at least 76 dBA up to 4 minutes of alarm operation.
- 84.3.2 To determine compliance with <u>84.3.1</u> or <u>84.3.1A</u> a measurement shall be made under the following conditions. The ambient noise level is to be at least 10 dB below the measured level produced by the signaling appliance. The alarm is to be mounted 302 mm (1 ft) from the microphone placed in a direct line with the alarm. The alarm is then to be energized in the alarm condition and the sound output is to be measured at 1-minute intervals, using a sound level meter employing the A-weighting network. A maximum 3 dBA decrease from the original 1-minute reading after 4 minutes shall alarm.

84.4 Supplementary remote sounding appliances

84.4.1 The sound output of a supplementary remote sounding appliance, intended to be installed in a sleeping area, shall meet the low frequency signal format of <u>84.5</u>, and be marked with the following or equivalent text to indicate the specific use:

"THIS UNIT IS TO BE INSTALLED IN A ROOM OCCUPIED FOR SLEEPING."

84.5 Low frequency alarm signal format

- 84.5.1 A low frequency alarm shall produce an acoustical output having a fundamental frequency of 520 (F1) Hz ±10 percent, with subsequent harmonic frequencies occurring at 1560 (F3), 2600 (F5) and 3640 (F7) Hz ±10 percent as determined by a Fast Fourier Transform (FFT) analysis of the audible alarm signal.
- 84.5.2 The FFT measurement shall be a 30 second spectrum averaging of a 12.8 (kHz) frequency span of 2 (Hz) resolution, non-weighted. The spectral analyses shall be performed in a reverberant room per the test setup as described in 84.2.2 (Sound output measurement).
- 84.5.3 The maximum sound pressure level (dB) of any frequency within the FFT measurement shall be at least 5 dB less than the F1 sound pressure level (dB). The minimum sound pressure level (dB) of the odd harmonics, F3 through F7, shall not be reduced from the F1 sound pressure level by more than 20 dB for F3, 30 dB for F5, and 50 dB for F7.
- 85 Reserved
- 86 Field Service Tests (If recommended by the manufacturer)
- 86.1 Go/no-go field test
- 86.1.1 Go/no-go field test (gas sensors used in multi-criteria smoke alarms)
- 86.1.1.1 Where the smoke and gas sensor can be tested independent of the other sensors, Section <u>69</u>, Dust Test shall apply.
- 86.1.1.2 Two smoke alarms shall be energized with their rated voltage and operate at their intended signaling performance. The smoke alarms shall be subjected to X number of the manufacturer's recommended go/no-go field test. The number of go/no-go field tests is determined using the following calculation:

$$X = (A \times B)2.5$$

in which:

- A = Sensor life (years based on shortest sensor lifespan) as stated by the manufacturer.
- B = The number of tests the sensor is to be subject to annually (as required by NFPA 72 or as recommended by the manufacturer, whichever is worst case).
- X = Number of go/no-go test gas concentration exposures the product is to be subject to.

The samples shall indicate a successful gas entry into the sensing cell via a measurement means provided by the manufacturer. The alarm shall be reset either mechanically, electrically, or by the smoke alarm remaining in fresh air for a period of time specified by the manufacturer. Following the reset period, this sequence of go/no-go field tests is to be repeated "X" number of trials. Following "X" number of go/no-

go test gas exposures, the smoke alarms shall comply with <u>42.8</u>, Sensitivity test – gas sensor of a multi-criteria smoke alarm, and <u>86.1.2</u>, Go/no-go field test (for the smoke sensor).

86.1.2 Go/no-go field test (for the smoke sensor)

86.1.2.1 Two smoke alarms, one at maximum and one at minimum sensitivity, shall operate at their intended signaling performance, and each smoke alarm's sensitivity shall not shift by more than specified in 38.3, Sensitivity shift criteria, after being subjected to 50 alarm and restoration cycles of the manufacturer's specified go/no-go field test method for smoke entry. When conducting this test, smoke, aerosol, and/or a representative smoke source as defined by the manufacturer shall be used. The samples are to be energized with rated voltage and subjected to the go/no-go test at a rate of not more than one field test per 30 minutes.

Note: Where smoke entry into the smoke alarm is not applicable the manufacturer's specified test method shall be utilized.

86.1.2.2 Following the successful completion of the go/no-go field test these samples shall be subjected to the Dust Test, Section 69.

86.2 Maintenance (cleaning)

86.2.1 For single criteria or multi-criteria smoke alarms intended to be cleaned in the field, two smoke alarms, one at maximum and one at minimum sensitivity, shall operate for their intended signaling performance, and each smoke alarm's sensitivity shall not shift by more than specified in 38.3, Sensitivity shift criteria, after being subjected to 50 cycles of the manufacturer's specified field cleaning procedure. The other sensor(s) of a multi-criteria smoke alarm need not be tested for sensitivity if only the smoke sensor is cleaned.

86.3 Battery tests

86.3.1 Primary power supply – battery

- 86.3.1.1 Where a replaceable battery is employed as the primary source of power of a smoke alarm, it shall provide power to the unit under intended ambient conditions for at least 1 year (or whatever longer period specified by the manufacturer) in the standby condition, including novelty and weekly alarm testing, and then operate the alarm for a minimum of 4 minutes of alarm, followed by 7 days of trouble signal. See 41.5, Battery powered (primary or secondary) smoke alarms. The alarm sound level shall be at least 85 dBA at the end of the 4-minute alarm period when tested in accordance with the Audibility Test, Section 84, and the Battery trouble voltage determination, 56.2.
- 86.3.1.2 Where a non-replaceable battery is employed as the primary source of power, it shall provide power to the unit under intended ambient conditions for at least 10 years in the standby condition, including novelty and weekly testing, and then operate the alarm for a minimum of 4 minutes of alarm, followed by 7 days of trouble signal.
- 86.3.1.3 Six samples of the battery, or sets of batteries when more than one battery is used for primary power, shall be tested under each of the following ambient conditions for a minimum of 1 year while connected to the smoke alarm or a simulated load to which the battery is to supply power:
 - a) A room ambient temperature of 23 \pm 2°C (73.4 \pm 3.6°F), 30 50 percent relative humidity, and 760 mm Hg (101.3 kPa);
 - b) High temperature of = $(T_{HI} 38^{\circ}C) + 45^{\circ}C$ or $(T_{HI} 100^{\circ}F) + 113^{\circ}F$;
 - c) Low temperature of = $(T_{LO} 0^{\circ}C)$ or $(T_{LO} 32^{\circ}F)$; and

d) Temperature = $(T_{HI} - 38^{\circ}C) + 30^{\circ}C$ or $(T_{HI} - 100^{\circ}F) + 86^{\circ}F$, and 85 ±5 percent relative humidity.

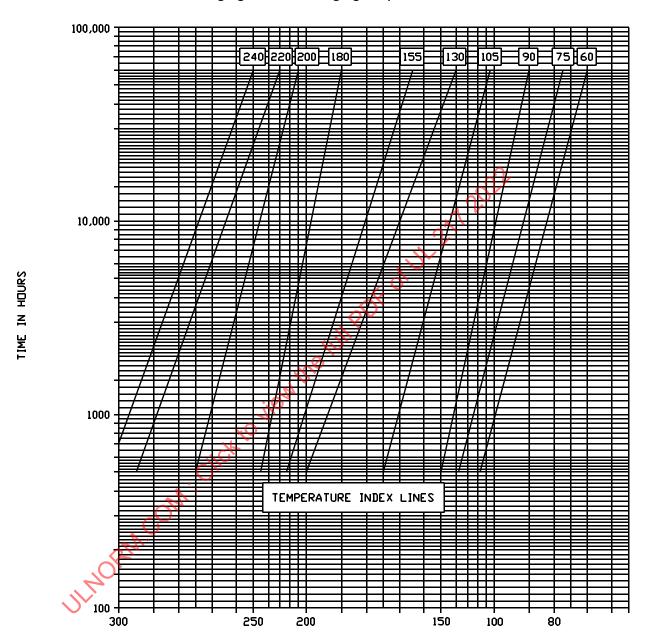
Where T_{LO} and T_{HI} are the respective low and high end operating temperatures.

- 86.3.1.4 For the test, either alarm samples or test loads simulating a maximum standby current drain are to be employed. The alarm load is to be the audible appliance intended to be used in the smoke alarm or an appropriate load simulating maximum alarm conditions. The batteries are to be tested in the mounting clips employed in the alarm.
- 86.3.1.5 Terminals or jacks are to be provided on each test means to facilitate measurement of battery voltage, standby, and alarm currents. The measuring means is to be separated from the battery test means by a wiring harness or equivalent at least 0.9 m (3 ft) long.
- 86.3.1.6 Prior to placing the battery test setups in the various ambient conditions, each battery is to be subjected to 25 cycles of alarm representing novelty testing. Each cycle is to consist of 5 seconds of alarm and at least 5 minutes between each application.
- 86.3.1.7 During the course of the test, the battery voltage and current in standby and alarm condition are to be recorded periodically. The alarm voltage is to be recorded 3 seconds after energization. The standby voltage and current are to be recorded prior to the alarm measurements. The smoke alarm is to be placed into an alarm condition weekly. The duration of the weekly alarm test signal is to be 3 seconds.
- 86.3.1.8 For batteries rated longer than one year, at the end of the specified test period, all batteries shall have a capacity capable of operating the alarm signal for a minimum of 4 minutes, followed by 7 days of trouble signal. To obtain the trouble signal level it is sometimes required to continue the test with the standby current drain for longer than the test period. Batteries shall be subjected to the conditions described in 86.3.1.3 (b), (c), and (d) (Primary power supply battery) for the test period unless the alarm is marked to indicate the battery limitations for the condition involved. In no case shall the length of conditioning be less than one year.
- 86.3.1.9 For batteries rated for one year only, at the end of the specified test period (1 year) all batteries shall have a capacity capable of operating the alarm signal for a minimum of 4 minutes, followed by 7 days of trouble signal. To obtain the trouble signal level it is sometimes required to continue the test with the standby current drain for longer than 1 year. Batteries shall be subjected to the conditions described in 86.3.1.3 (b), (c), and (d) (Primary power supply battery) for a minimum of 1 year unless the alarm is marked to indicate the battery limitations for the condition involved. In no case shall the length of conditioning be less than 6 months.

87 Conformal Coatings on Printed Wiring Boards

87.1 General

87.1.1 Conformal coatings are for use only on printed wiring boards where the acceptability of the combination has been investigated for flammability in accordance with the Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances, UL 94, and the dielectric property after environmental, humidity, and thermal conditioning in accordance with the Standard for Polymeric Materials – Industrial Laminates, Filament Wound Tubing, Vulcanized Fibre, and Materials Used in Printed Wiring Boards, UL 746E.


87.2 Low voltage printed wiring boards

87.2.1 The following test program is to be utilized to determine the acceptability of a conformal coating in lieu of full electrical spacings for circuits at potential of 30 volts rms or less.

- 87.2.2 Eight samples of the printed wiring board, without electrical components installed, and coated with the conformal coating, shall be subjected to this test. Test leads shall be attached to the printed wiring (prior to the application of the coating) so as to allow for convenient application of the specified test potential.
- 87.2.3 Four specimens shall be conditioned to room ambient by exposure to ambient air at a temperature of $23 \pm 2^{\circ}$ C (73, minus 3, $\pm 4^{\circ}$ F) and 50 ± 5 percent relative humidity for not less than 24 hours. Following the conditioning, the four samples shall be subjected to the Dielectric Voltage-Withstand Test, Section $\frac{77}{1}$, for the 0-30 volt range. There shall be no indication of dielectric breakdown as a result of the test. All specimens shall be smooth, homogeneous, and free of heat deformation such as bubbles and pin holes, as determined by visual examination.
- 87.2.4 Four samples shall be exposed to ambient air at a temperature chosen from the applicable temperature index line shown in Figure 87.1, Aging time versus aging temperature, corresponding to the "in service" operating temperature of the coating. The aging temperature chosen from the index line shall correspond to not less than 1000 hours of exposure. It is permissible for any value of temperature to be chosen when it corresponds to no fewer than 300 hours of exposure. The samples are then to be subjected to the Dielectric Voltage-Withstand Test, Section 77. All specimens shall be smooth, homogeneous, and free of defects such as bubbles and pin holes, as determined by visual examination. There shall not be crazing, chipping, or other visual evidence of deterioration or separation of the coating from the board after conditioning. There shall not be indication of a dielectric breakdown.

There shall not be indication the full property of the propert

Figure 87.1
Aging time versus aging temperature

SM1015

OVEN TEMPERATURE - DEGREES 'CELSIUS'

87.3 High voltage printed wiring boards

- 87.3.1 The following test program is to be utilized to determine the acceptability of a conformal coating in lieu of full electrical spacing for circuits at potential greater than 30 volts rms. The coating shall not be less than 0.2 mm (0.008 inch) thick.
- 87.3.2 Three samples of the printed wiring board without electrical components installed, and coated with the conformal coating, shall be subjected to this test. Test leads shall be attached to the printed wiring (prior to the application of the coating) so as to allow for convenient application of the specified test potential. Each sample shall be subjected to a 5,000 volts AC Dielectric Voltage-Withstand Test potential for one minute:
 - a) The test shall be performed between tracks on the printed wiring board;
 - b) A 7-day heating-cooling cycling period, each cycle consisting of 4 hours "on" at 105 °C (189°F) followed by 4 hours "off" at 25 °C (77°F);
 - c) A 7-day oven conditioning period of 100 °C (212°F);
 - d) A 7-day oven conditioning period at 85 percent relative humidity at 65 °C (149°F); and
 - e) A Dielectric Voltage-Withstand Test potential at 2,500 volts AC repeated 10 times.

There shall not be peeling or other deterioration of the coating material as a result of the conditioning.

87.3.3 A sample of the coated printed wiring board, equipped with test leads, without electrical components installed, shall be subjected to this test. The sample shall be subjected to an atmosphere having a relative humidity of 93 ±2 percent at a temperature of 32 ±2 °C (89, minus 3, +4°F) for a period of 24 hours followed by a 500 volts Dielectric Voltage-Withstand Test with the sample maintained in the conditioning atmosphere. There shall be no indication of a dielectric breakdown.

87.4 Evaluation of reduced spacings on printed-wiring boards

- 87.4.1 In accordance with the Exception of Spacings, <u>36.1</u>, printed-wiring board traces of different potential having reduced spacings shall comply with:
 - a) The dielectric voltage-withstand test described in 87.4.2 and 87.4.3; or
 - b) The shorted trace test described in 87.4.4 and 87.4.5.
- 87.4.2 A printed-wiring board, as specified in 87.4.1(a), shall withstand for 1 min without breakdown the application of a dielectric withstand potential between the traces having reduced spacings, in accordance with 77.1, as appropriate.
- 87.4.3 Power-dissipating component parts, electronic devices, and capacitors connected between traces having reduced spacings, are to be removed or disconnected so that the spacings and insulations, rather than these component parts, are subjected to the full dielectric voltage-withstand test potential.
- 87.4.4 Printed-wiring board traces, as specified in 87.4.1(b), are to be short-circuited, one location at a time, and the test is to be conducted as described in 87.1, General. As a result of this test:
 - a) The overcurrent protection associated with the branch circuit to the unit shall not open; and
 - b) A wire shall not open.

When the circuit is interrupted by opening of a component, the test is to be repeated twice, using new components when required. When a printed wiring board trace opens, the gap is to be electrically shorted and the test continued until ultimate results occur, and the procedure is to be repeated for each occurrence of a trace opening.

Exception: After opening of an internal overcurrent protective device, the test is not required to be repeated.

- 87.4.5 The test of <u>87.4.4</u> is to be continued for 1 hr or until one of the conditions described below occurs. When, at the end of 1 hr, no condition described below has occurred, and it is indicated that such a condition is imminent, the test is to be continued until ultimate results are obtained (usually 7 hr).
 - a) Ignition or charring of the cheesecloth indicator (charring is deemed to have occurred when the structural integrity of the threads has been destroyed due to the temperature rise; or

of JL 211'

b) Fuse from the enclosure to ground does opens.

88 Power Supply Tests

88.1 General

- 88.1.1 If a separate power supply, as described in Section 22, Remote Power Supply, is used to provide energy to one or more smoke alarms, it shall be subjected to the tests of 88.2 and 88.3 and meet the requirements of the following test:
 - a) Circuit Measurement Test, Section 56;
 - b) Overvoltage and Undervoltage Tests, Section 57;
 - c) Temperature Test, Section 58
 - d) Jarring Test, Section 62;
 - e) Variable ambient temperature and humidity test, 89.4;
 - f) Transients Tests, Section 67;
 - g) Overload Tests, Section 70;
 - h) Endurance Test, Section 71;
 - i) Leakage Current Test, Section 73; and
 - j) Tests on Polymeric Materials, Section 79.

88.2 VA Capacity

- 88.2.1 The VA output capacity of a power supply shall not exceed 100 VA and shall not be more than 30 V rms (42.4 V peak).
- 88.2.2 To determine compliance with 88.2.1, a variable resistive load shall be connected to the output circuit. With the sample connected to a rated source of supply, the load resistor is to be varied between open circuit to short circuit conditions in such a manner that the elapsed time is between 1.5 and 2.5 min. Voltage and current measurements are recorded over the range and the maximum VA is calculated. If an interchangeable type over-current protective device is provided, it shall be shunted out during the test.

88.3 Burnout test

- 88.3.1 There shall be no damage to the enclosure, charring or burning of the cheesecloth, nor emission of flame or molten metal when a sample is operated under the conditions described in <u>88.3.2</u>. While still hot from the burnout test, the power supply is to be subjected to and comply with the requirements of the Leakage Current Test, Section 73; and Dielectric Voltage-Withstand Test, Section 77.
- 88.3.2 With the output shorted, the supply circuit of the sample is to be connected to a rated source of voltage and frequency with the enclosure grounded and operated for at least 7 hours or until burnout occurs. A single layer of mercerized cotton cheesecloth is to be loosely draped over the device during the test. If accessible, interchangeable type over-current protective devices are provided, they are to be shunted out, but inaccessible over-current protective devices are to remain in the circuit.

89 Smoke Alarms for Use in Recreational Vehicles (RV) and Boats

89.1 General

- 89.1.1 A single criteria smoke alarm intended for use in recreational vehicles/boats shall comply with the requirements specified in 89.1 89.8, in addition to the requirements specified in Sections 1 88 and 90 102, inclusive.
- 89.1.2 A multi-criteria smoke alarm with gas sensor intended for use in recreational vehicles/boats shall comply with the requirements specified in Sections $\underline{1} \underline{88}$ and $\underline{90} \underline{102}$, inclusive.
- 89.1.3 All batteries included with smoke alarms intended for use in recreational vehicles/boats shall at a minimum have a published operational specification range of minus 18°C to 54°C (0°F to 130°F). Recommended replacement batteries shall also meet the temperature range.

89.2 Marking

- 89.2.1 In addition to the applicable requirements in MARKING, General, Section 99, a single criteria or multicriteria smoke alarm for use in a recreational vehicle/boat shall be permanently and legibly marked with the following information. The markings shall be in contrasting color, finish or equivalent, in letters at least 1.2 mm (3/64 in) high. Items (f) and (g) shall be readily visible after installation:
 - a) Manufacturer's or private labeler's name or identifying symbol;
 - b) Model, type, or catalog designation;
 - c) Date of manufacture (in code is not prohibited);
 - d) Electrical rating in volts and amperes;
 - e) Reference to owner's manual;
 - f) The type of product, such as "RV Smoke Alarm" or "RV Multi-criteria Smoke Alarm", "Marine Smoke Alarm or "Marine Multi-criteria Smoke Alarm" or "RV/Marine Smoke Alarm" or equivalent. It is not prohibited that this marking be incorporated in (g);
 - g) Identification of switches and light indicators;
 - h) "Watertight" if the alarm complies with the requirements for watertightness in 89.5, and
 - i) "For enclosed spaces only," or the equivalent if not marked in accordance with (h).

89.3 Operating and installation instructions

- 89.3.1 Each alarm for use in recreational vehicles/boats shall be provided with manufacturer's published instructions that include the following information:
 - a) Typical installation drawing layouts and information as specified in 101.1(a);
 - b) Description of the operation, testing, and proper maintenance procedures for the alarm(s) including the warm-up period (including time), when applicable;
 - c) Replacement parts, and applicable information specified in 101.1(c);
 - d) Description of the various conditions in which the alarm becomes ineffective or contaminated. Test the alarm when a possibility of one of these conditions has existed;
 - e) In addition to the conditions described in (d), and to reduce the risk of nuisance tripping of the alarm circuit, the instructions shall state that accommodation spaces are to be well ventilated when household cleaning supplies or similar contaminates are used;
 - f) Information regarding the alarm and an indication where false alarms are to be anticipated;
 - g) Identification of the manufacturer's published instructions by number or equivalent;
 - h) An indication that the device shall not be installed in locations where temperature, moisture, and/or ultraviolet light affect the operation, unless the alarm is intended and tested for installation in these areas;
 - i) The name and address of the company to whom the alarm is to be sent for servicing;
 - m) A statement shall be provided to specify that the alarm, including a sensor, is not to be located within 1.5 m (5 ft) of any cooking appliance.
- 89.3.2 The instructions shall be incorporated on the outside of the alarm, on a separate sheet, or as part of a manual. When not included directly on the alarm, the manufacturer's published instructions or manual shall be referenced in the marking information on the alarm.
- 89.3.3 For smoke alarms specifically for use on recreational boats, the manufacturer's published instructions shall include the following or equivalent:
 - a) The smoke alarm is intended to be installed in enclosed accommodation compartments where smoke from undetected fire may accumulate.
 - b) The instructions shall indicate that the devices shall be wired in accordance with Fire Protection Standard for Pleasure and Commercial Motor Craft, NFPA 302, and AC and DC Electrical Systems on Boats, ABYC E-11, and applicable regulations of the United States Coast Guard.

89.4 Variable ambient temperature and humidity test

- 89.4.1 There shall be no false alarms or adverse change in performance when two units, one at maximum and one at minimum sensitivity, are subjected, in turn, to each of the following conditions:
 - a) Thirty days in air at 66 ±3°C (150 ±6°F).
 - b) At least 72 hours at minus 40 ±2°C (minus 40 ±4°F).
 - c) Ten days in 93 ±2 percent humidity at 61 ±2°C (142 ±4°F).

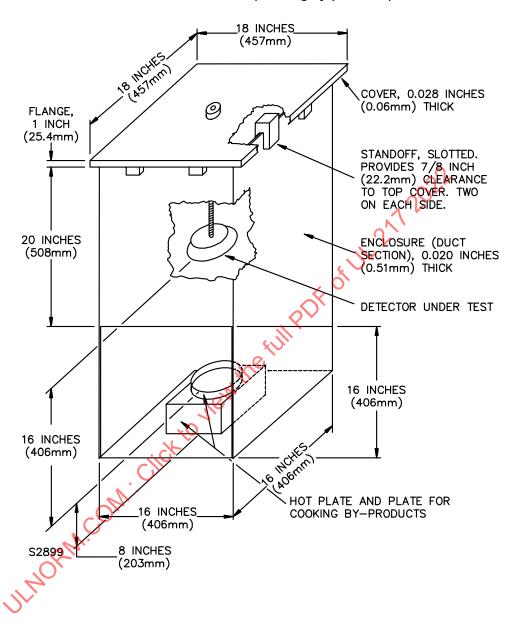
- 89.4.2 Sensitivity measurements, recorded in the environmental chamber smoke box, shall not vary more than specified in <u>38.3</u>, Sensitivity shift criteria. During the sensitivity measurement, the environmental chamber is to be as close as possible to the test conditions specified in <u>89.4.1</u>, condition (a) to be conducted at 49°C, condition (b) to be conducted at 0°C, and condition (c) to be conducted at 40°C, 93 percent relative humidity, respectively.
- 89.4.3 Gas sensitivity measurements, recorded in the environmental chamber, shall not vary more than specified in <u>42.8</u>, Sensitivity test gas sensor of a multi-criteria smoke alarm.
- 89.4.4 During each test condition, the alarm is to be connected to a source of rated voltage or battery.
- 89.4.5 The tests in 89.5.1 shall be done sequentially on the same two samples, and using the same battery samples for all three environments. The tests shall be conducted using each battery model specified in the marking or manufacturer's published instructions.

89.5 Watertightness test

- 89.5.1 A smoke alarm marked "Watertight" is to be tested as specified in <u>89.5.2</u>. There shall be no evidence of water leakage so as to reach energized parts. No false alarms shall be generated, and the alarm shall operate as intended.
- 89.5.2 One sample smoke alarm from the humidity conditioning is to be used for this test. The assembly is to be mounted in accordance with the manufacturer's published instructions and energized. A solid stream of water from a nozzle not less than. 25.4 mm (1 in) in diameter and a flow rate of 3 psig 4.1 l/s 246 l/min (65 gpm), measured at the nozzle, is to be directed at the enclosure in all directions from a distance of 3.1 m (10 ft) for 5 min.
- 89.5.3 Any water on the exterior of the enclosure is to be removed with a cloth and the enclosure then opened and examined for any evidence of leakage.
- 89.5.4 An alarm that complies with this test shall be marked in accordance with 89.2.1(h).
- 89.5.5 An alarm not marked in accordance with 89.5.4 shall be marked as specified in 89.2.1(h).

89.6 Corrosion (Salt spray) test

- 89.6.1 A smoke alarm shall operate as intended and shall not false alarm after exposure for 48 h to a salt spray in accordance with the procedure specified in the Standard for Salt Spray (Fog) Testing, ASTM B117.
- 89.6.2 Two alarms, one at maximum and one at minimum sensitivity, are to be subjected to the salt spray while in a de-energized condition. Following the exposure, the samples are to be removed, dried for at least 24 h in an air circulating oven or air dried for at least 48 h, and then subjected to the Sensitivity Test, Section 42.
- 89.6.3 It is not prohibited for sensitivity measurements following the exposure to vary by more than specified in <u>38.3</u>, Sensitivity shift criteria, in the direction of high sensitivity under the following conditions:
 - a) The smoke alarm does not false alarm; and
 - b) The sensitivity does not vary more than specified in 38.3 in the direction of low sensitivity.


89.7 Vibration test

- 89.7.1 After vibration in accordance with 89.7.2, a smoke alarm shall not false alarm nor be adversely damaged. Sensitivity measurements shall not be greater than specified in 38.3, Sensitivity shift criteria, in the direction of low sensitivity, measurements greater than specified in 38.3 in the direction of high sensitivity are not prohibited. In no case shall the measurements exceed the limits specified in the Sensitivity Test, Section 42.
- 89.7.2 Two smoke alarms, one at maximum and one at minimum sensitivity, are to be subjected to vibration for 120 hours in accordance with the Vibration Test, Section <u>59</u>. Sensitivity measurements are to be recorded before and after the test.

89.8 Contamination test (Cooking by-products)

- 89.8.1 After exposure in accordance with 89.8.2 89.8.5, a smoke alarm shall not false alarm or otherwise be adversely affected. Sensitivity measurements following the exposure shall not be greater than specified in 38.3, Sensitivity shift criteria, in the direction of low sensitivity, (measurements greater than specified in 38.3 in the direction of high sensitivity are not prohibited). In no case shall measurements exceed the limits of the Sensitivity Test, Section 42.
- 89.8.2 Two samples are to be subjected to the vaporization of a mixture of 50 grams (1.76 oz) of animal fat (lard), 50 grams of vegetable fat (Crisco), and 100 grams (3.5 oz) of beef gravy (Franco-American). The mixture is to be placed in a 203 mm (8 in) diameter aluminum plate that is heated on a 216 mm (8-1/2 in) diameter hot plate located on the bottom center of a galvanized sheet metal enclosure.
- 89.8.3 The enclosure is to measure 914 mm (3 ft) high, 406 mm (16 in) square and have an open top and a 406 mm (16 in) square opening at the bottom of one side. A sheet metal cover, 457 mm (18 in) square, with 25 mm (1 in) flanges, is to be supported at the enclosure top by 20 mm (7/8 in) high standoffs. See Figure 89.1, Contamination test (cooking by-products).

Figure 89.1
Contamination test (cooking by-products)

- 89.8.4 The alarm under test is to be supported on the end of a threaded 61 mm (1/4 in) steel rod positioned so that the exposed face of the alarm is 304 mm (12 in) below the enclosure cover and 406 mm (16 in) above the aluminum plate. The alarm is not to be energized during the test.
- 89.8.5 Each sample is to be subjected to five complete vaporization exposures. Following the fifth exposure, each sample is to be removed, permitted to cool for at least 3 hours, and then tested for sensitivity as specified in the Sensitivity Test, Section 42.

MANUFACTURING AND PRODUCTION

90 General

- 90.1 To verify compliance with the requirements of this section, the manufacturer shall provide the necessary production control, inspection, and tests. The program shall include at least the tests specified in Sections 91 98.1 conducted on 100 percent of the production unless otherwise specified.
- 90.2 A record of accepted smoke alarms, and the smoke alarm serial number or date code, or equivalent identification is to be maintained.

91 Sensitivity Calibration Tests

- 91.1 The smoke sensitivity of each single or multi-criteria smoke alarm is to be checked, following the warm-up period specified by the manufacturer and using appropriate instruments, to determine that the sensitivity level is within the marked rating including tolerance, which is within the smoke alarm's specified limits. The test equipment is to verify the value of range of sensitivities marked on the smoke alarm. The value of instrument reading is to be convertible to percent per m (percent per ft) obscuration.
- 91.2 For multicriteria smoke alarms, the sensitivity of each sensor shall be verified according to the manufacturer's specification for each sensor following the warm-up period specified by the manufacturer. The limits shall be as specified by the manufacturer and verified by Section 42, Sensitivity Test.
- 91.3 For the warm-up period, the smoke alarms shall be energized from a source of supply as specified in <u>Table 37.3</u>, Test voltages. In cases where the smoke alarm sensitivity is not within the manufacturer's specifications, the smoke alarm is to be corrected and retested. When a retested sample is still outside the specifications, it is to be rejected.
- 91.4 A warm-up period is not required when the smoke alarm components, except for a photocell illuminating lamp, are operated at not more than 25 percent of the component manufacturer's power or temperature rating, whichever is appropriate, in the standby condition or when the individual components are burned-in prior to assembly.
- 91.5 A warm-up period is required for those smoke alarms or individual components operating at more than 25 percent of rating whose characteristics are variable during initial warm-up, such as solid-state devices, lamp filaments, and resistors, that affect smoke alarm sensitivity.

92 Smoke Tests

92.1 A minimum of two samples from each day's production shall be subjected to a test to determine response from smoke. A smoke test chamber, equivalent to the test compartment described in Annex \underline{A} or \underline{B} with at least one of the measuring instruments to record the smoke level, shall be employed in conjunction with a smoke generating source, such as a smoldering cotton wick, punk sticks, aerosol generator or equivalent means.

93 Photocell Illuminating Lamp Test

93.1 The manufacturer is to provide facilities for measurement of all the photocell illuminating lamps used in production smoke test chambers (where applicable), including any replacement lamps that are provided, to determine that the illumination output is uniform and within the specifications for the intended use.

94 Measurement of In-Service Reliability for Multi-criteria Smoke Alarms with Gas Sensor(s)

94.1 Required in-service reliability

- 94.1.1 Reliability for Supervised Failures: The cumulative supervised failures over the specified lifetime of a multi-criteria smoke alarm shall not exceed 23 percent at a 90 percent confidence level.
- 94.1.2 Reliability for Unsupervised Failures: The cumulative unsupervised failures over the specified lifetime of a multi-criteria smoke alarm shall not exceed 14.6 percent at a 90 percent confidence level.

94.2 Sample frequency and sample size

- 94.2.1 In-service reliability shall be estimated by subjecting a suitable sample of devices to the Sensitivity Test of Section 42 or 42.8, Sensitivity test gas sensor of a multi-criteria smoke alarm, at the manufacturer's specified gas concentrations.
- 94.2.2 Reliability information on devices shall be collected quarterly using any of the following methods:
 - a) Life cycle testing at the manufacturer's facility,
 - b) Testing of devices installed in the field, or
 - c) Laboratory testing of devices bought back from customers.
- 94.2.3 Prior to testing, devices shall be installed and operated in an actual or simulated intended environment for a period of sufficient duration to predict the average failure rate of the overall population over the devices' specified lifetime. During the installation period the alarms shall be tested and an upper bound on their failure rate at a 90 percent confidence level shall be determined at quarterly intervals. It is not prohibited that installation times of less than the devices' specified lifetime, but not less than 3000 hours, be used in this analysis, taking into account any other measurements that might be available demonstrating the applicability of the shorter installation period for estimating failure rates averaged over the devices' specified lifetime. The data from the shorter installation period shall be replaced with data from progressively longer durations, up to the devices' specified lifetime, as it becomes available. When no data is available to demonstrate the applicability of the shorter duration data it is still usable.
- 94.2.4 The sample size for tests shall be determined according to widely accepted procedures for statistical quality control, as summarized in Annex E. A statistically significant sample of representative devices shall be randomly chosen to estimate the required in-service reliability at the required confidence level.

94.3 Test results and record keeping

94.3.1 The manufacturer shall maintain data and records of all tests performed to evaluate devices' conformance to the required in-service reliability.

95 Production Line Voltage Dielectric Voltage-Withstand Test

- 95.1 Each product rated at more than 30 V AC rms (42.4 V DC or AC peak) shall withstand, without a breakdown or leakage of greater than 0.5 mA, as a routine production-line test, the application of an essentially sinusoidal AC potential of a frequency within the range of 40 70 Hz, or a DC potential. The test potential is to be applied between high-voltage live parts and the enclosure, high-voltage live parts and exposed dead-metal parts, and live parts of circuits operating at different potentials or frequencies. The test potential is to be:
 - a) For a unit rated at 150 V AC rms or less either 1000 V (1414 V, when a DC potential is used) applied for 60 s or 1200 V (1697 V, when a DC potential is used) applied for 1 s.
 - b) For a unit rated at more than 150 V either 1000 V plus twice the rated AC rms voltage (1414 V plus 2.828 times the rated AC rms voltage, when a DC potential is used) applied for 60 s or 1200 V plus 2.4 times the rated AC rms voltage (1697 V plus 3.394 times the rated AC rms voltage, when a DC potential is used) applied for 1 s.
- 95.2 A printed-wiring assembly or other electronic circuit component that will be damaged by or will short circuit because of the application of the test potential, is to be removed, disconnected, or otherwise rendered inoperative before the test. Where applicable, a representative subassembly is to be tested instead of an entire unit. Also where applicable, rectifier diodes in the power supply are to be individually shunted before the test to avoid destroying them in the case of a malfunction elsewhere in the secondary circuits.
- 95.3 When the unit employs both high-voltage and low-voltage circuits, the test may be conducted with the low voltage circuits connected to the cabinet, chassis, or other dead-metal parts so that the potential that is applied between the high-voltage live parts and dead-metal parts will simultaneously be applied between high-voltage live parts and low-voltage circuits.

Exception: The test potentials may be applied between the primary and core of all high voltage input transformers located within the product. Other high voltage components and wiring shall be visually examined to verify that required spacings have been maintained to the enclosure or other dead metal parts.

- 95.4 A transformer of 500 VA or larger capacity, the output voltage of which is essentially sinusoidal and can be varied, is to be used to determine compliance with 95.1. The requirement of a 500 VA or larger transformer may be waived if the high-potential testing equipment used maintains the specified high potential voltage at the product for the duration of the test.
- 95.5 The test equipment used for the test in <u>95.1</u> is to include a visible indication of application of the test potential and an audible or visible indication of breakdown. In the event of breakdown, manual reset of an external switch is to be required, or an automatic reject of the unit under test is to result.
- 95.6 When the charging current through a capacitor or capacitor-type filter connected across-the-line, or from line to earth ground, is sufficient to prevent maintenance of the specified AC test potential, the unit is to be tested using a DC test potential in accordance with <u>95.1</u>.

96 Production Line Grounding Continuity Tests

96.1 The manufacturer shall test each alarm that has a power-supply cord terminating in an attachmentplug employing a grounding pin to verify electrical continuity between the device and the grounding blade of the attachment-plug.

- 96.2 For this test, the manufacturer is to employ a resistance-indicating instrument with leads and terminals which determine the grounding circuit continuity.
- 96.3 When an investigation of the alarm has shown all exposed dead metal parts that become energized and all dead metal parts within the enclosure that are exposed to contact during servicing to be acceptably bonded to the frame and enclosure of the alarm, a test that determines the electrical continuity between the grounding blade and the frame or enclosure is satisfactory.

97 Battery Quality Assurance

97.1 When batteries are employed in a smoke alarm, the smoke alarm manufacturer shall conduct a quality assurance program on the batteries to determine the operational capability. The battery quality assurance may be conducted by the battery manufacturer if each shipment is accompanied by a certificate of compliance verifying the condition on that shipment.

98 Smoke Alarm Shipment

- 98.1 The battery intended to be employed with the alarm shall be shipped from the factory with the alarm in the same package. To prevent unnecessary drain during shipment and storage, the battery shall not be connected in the alarm. One or both polarities of the battery shall be physically disconnected from the circuitry of the smoke alarm such that no battery capacity is used to provide standby, sleep, or other power to the alarm.
- 98.2 A nonrechargeable standby battery of an AC operated accessory to a single- or multiple-station smoke alarm is not required to be shipped with the unit when instructions on the unit specify the battery to be used by model number and manufacturer, as well as a source of purchase. A rechargeable standby battery shall be shipped with the unit in which it is to be employed.

MARKING

99 General

- 99.1 A smoke alarm shall be permanently marked with the following information unless specifically indicated that it appears on the installation wiring diagram. The marking shall be in a contrasting color, finish, or equivalent. Unless the letter height is specified, all markings shall be at least 1.2 mm (3/64 in) high.
 - a) Name or identifying symbol and address of the manufacturer or vendor.
 - b) Model number and date of manufacture. The date of manufacture shall be non-coded and in the format YEAR (in 4 digits), MONTH (in letters), DATE (in 2 digits) located on the outside of the smoke alarm.
 - c) A multi-criteria smoke alarm shall be marked, "Multi-Criteria Smoke Alarm."
 - d) Electrical rating, in volts, amperes, or watts, and frequency. Not required for battery operated alarms.
 - e) Correct mounting position when a unit is intended to be mounted in a definite position. This information may appear in the manufacturer's published instructions.
 - f) Identification of lights, switches, meters, and similar devices regarding their function unless their function is obvious.

- g) Maximum rating of fuse in each fuseholder and temperature rating of supplementary heat detector, when provided, in degrees Fahrenheit and Celsius.
- h) Identification of spare lamps and batteries by part number, manufacturer's model number or equivalent. Located adjacent to the component.
- i) Reference to an installation diagram and/or owner's manual.
- j) For a smoke alarm that employs a radioactive material, the following information shall be indicated directly on the exterior of the unit:
 - 1) The statement "CONTAINS RADIOACTIVE MATERIAL,"
 - 2) Name or Radionuclide and quantity (no abbreviations), and
 - 3) The statement, "U.S. NRC License No. XXX." (XXX No. of License) or the name of the Licensee.
- k) The following or equivalent notice shall be on the outer surface of the enclosure. The letters shall not be less than 3.2 mm (1/8 inch) high and shall be located to be readily visible after the alarm is mounted in its intended manner.
 - 1) "DO NOT PAINT" and/or symbol indicated below.

The symbol shall be to scale min 12.7 mm (1/2 in) diameter

I) The following or equivalent qualifying statement on a battery-operated alarm where battery operation, under other than normal room ambient temperature conditions during the long term (minimum 1 year) battery tests in <u>86.3</u>, Battery tests, is less than 1 year:

"CONSTANT EXPOSURES TO HIGH OR LOW TEMPERATURES OR HIGH HUMIDITY MAY REDUCE BATTERY LIFE."

- m) Distinction between alarm, end-of-life and trouble signals.
- n) For battery-operated alarms employing replaceable batteries, reference to a source for battery replacement. (It is permissible for this to appear in the manufacturer's published instructions.)
- o) For a battery- operated alarm employing replaceable batteries, the word "WARNING", and the following or equivalent marking shall be included on the unit: "Use Only Batteries Specified In Marking. Use Of A Different Battery Will Have A Detrimental Effect On Smoke Alarm Operation." The letter height shall be a minimum of 3.2 mm (1/8 in) for "WARNING" and 1.2 mm (3/64 in) for the rest of the notice.
- p) For a smoke alarm employing a nonrechargeable standby battery, the marking information described in 35.2.1 and 35.2.1 (secondary power supply) shall be in letters not less than 3.2 mm (1/8 in) high.
- q) Test instructions and frequency. Not less than once per week for battery-powered alarms and not less than once per month for other than battery-powered alarms.
- r) Maintenance instructions, such as cleaning, lamp and battery replacement.

- s) Units intended to be returned to the manufacturer for servicing shall be marked as follows on the outside of the alarm: "RETURN TO <u>+</u>FOR SERVICING," or equivalent. It is permissible for units on which the cover is removable, and that are also intended to be returned to the manufacturer for servicing, to have the marking on the inside of the alarm.
- (+) Name and address of manufacturer or supplier.
- t) The smoke sensitivity setting for a smoke alarm having a fixed setting. For an alarm which is intended to be adjusted in the field, the range of sensitivity shall be indicated. The marked sensitivity shall be indicated as a percent per ft obscuration level. The marking shall include a nominal value plus tolerance. For an alarm that is capable of receiving a firmware update, and the sensitivity production range is impacted by the content of the firmware update (such as a new smoke algorithm), a means of indicating the current certified sensitivity or sensitivity range for the current firmware version of the unit shall be provided.
- u) For a battery-operated smoke alarm employing a non-replaceable 10-year battery, a statement indicating that the unit is sealed, with no serviceable parts, and that the maintenance and testing specified elsewhere on the marking must be performed.
- v) For a battery-operated smoke alarm employing a non-replaceable 10-year battery, a description of how to use the deactivation feature and indication that once deactivated the smoke alarm is incapable of being reactivated and must be replaced.
- w) A smoke alarm guard shall be permanently marked with the following information in a contrasting color, finish, or equivalent:
 - 1) Name or identifying symbol of the manufacturer or private labeler,
 - 2) Model number and
 - 3) A statement indicating that the guard is only to be used with smoke alarms specified in the manufacturer's published instructions of the guard or smoke alarm.
- x) The smoke alarm shall be marked with the following or equivalent, "Replace after X years" where X = Lifetime of the product that identifies when the end-of-life signal will be initiated, but shall not exceed 10 years.
- 99.2 Information required to appear directly on the alarm shall be readily visible after installation. Except for 99.1(k), the removal or opening of an enclosure cover not requiring a tool, or an equivalent arrangement to view the marking is not prohibited.
- 99.3 When markings are placed on the base (bottom) of an alarm intended for permanent installation, the word "CAUTION" and the following or equivalent marking in letters 3.2 mm (1/8 in) high is to be provided on the outside or inside of the alarm: "Additional marking on back. Disconnect power."
- 99.4 Additional marking requirements are specified by <u>19.6.4</u> (covers), <u>41.9.6</u>, <u>84.4.1</u>, <u>89.2</u> (RV-Marking), and <u>89.3</u> (RV-Operating and installation instructions).
- 99.5 For manufacturers producing alarms at more than one factory, each such assembly shall have a distinctive marking to identify each subassembly as the product of a particular factory.
- 99.6 With regard to the requirement in <u>15.2</u>, Battery removal indicator, a warning flag shall be marked with the word "WARNING" and the following or equivalent text such as "Smoke Alarm is Non-Operational" or "NO BATTERY". The letter height shall be a minimum of 3/8 in (9.5 mm) unless it is in a contrasting color, visible from 1.83 m (6 ft).